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FOREWORD 

This document presents the results of an analysis performed 

by personnel of the Lockheed-Huntsville Research & Engineering 

Center for the Aerodynamic Systems Analysis Section of the Johnson 

Space Center, Houston, Texas, under Contract NAS9-14517. The 

work was performed in support of an analYl5is of the Space Shuttle 

solid rocket motor exhaust plumes. 
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SUMMARY 

A parametric analysis was conducted to assess the sensitivity of the 

initial plume expansion angle of analytical solid rocket motor flow fields to 

various analytical input parameters and operating conditions. The results 

of the analysis are presented and conclusions reached regarding the sensi­

tivity of the initial plume expansion angle to each parameter investigated. 

Operating conditions p;i.rametrically varied were chamber pressure, nozzle 

inlet angle, nozzle throat radius of Curvature ratio and propellant particle 

loading. Empirical particle parameters investigated were mean size , local 

drag coefficient and local heat transfer coefficient. Sensitivity of the initial 

plume expansion angle to gas thermochemistry model and local drag coefficient 

model assumptions were determined. Initial plume expansion angle was most 

sensitive to gas thermochemistry model, propellant particle loading, and 

mean particle size assumption. Initial plume expansion angle was minimally 

sensiti ve to chamber pressure, nozzle throat radius of curvature ratio, 

nozzle inlet angle, local drag coefficient and local heat transfer coefficient. 

The local drag coefficient model assumption had no dfect on the initial plume 

expansion angle. 
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NOMENCLATURE 

Description 

nozzle area ratio 
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particle specific heat at constant pressure 
for liquid phase at melting temperature 

particle specific heat at constant pressure 
for solid phase at rn.elting temperature 

particle enthalpy for liquid phase at melting 
temperature 

particle enthalpy for solid phase at melting 
temperature 

Mach nurn.ber 

molecular weight 

particle heat transfer coefficient 

pressure 

pa rtic Ie radius 

ratio of throat radius of curvature to nozzle 
throat radius 

gas static temperature 

ratio of particle mass flow rate to gas mass 
flow rate 

ratio of specific heats 

initial plume expansion angle 

nozzle lip angle 

nozzle inlet angle 

chamber condition 

exit plane condition 

ambient freestream 
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The exhaust plumes of the Space Shuttle solid rocket motors (SRMs) 

can have a significant effect (Ref. I) on the base pressure and base drag of 

the Shuttle vehicle. Previous studies (Ref. 2) have shown that base pressure 

can be correlated to the initial plume expansion angle, 6.. These same studies 
J 

indicate that small changes in 6, can have a significant effect on the vehicle 
J 

base pressure. Therefore, it is necessary t.o predict the value of 6 , as 
J 

d.ccurately as possible before a realistic assessment of the exhaust plume 

effect on the vehicle base pressure can be ascertained. 

Prediction of 6, requires that the nozzle exit conditions be known. This 
J 

requires a definition of the nozzle flow field which is a function c:i the nozzle 

geometry, chamber operating conditions and particulate behavior. Nozzle 

geometry is described by analytic functions. The chamber operating con­

ditions are obtained from analytical combustion models which utilize the 

propellant formulation and combustion pressure. However; the particle 

data (size, drag, heat transfer) are described empirically. Since the plume 

initial expansion angle has been shown to be an important correlation parameter 

for vehicle base drag, relevant questions are how does the empiricism affect 

the flow field and how sensivitive is {" to the input data? These questions were 
J 

the subject of an investigation which parametrically examined the sensitivity 

of (), to the various input data. Input parameters examined included: 
J 

1. Chamber Pressure 

2. Flowfield Chemistry Assumption 

3. Particle Loading 

4. Particle Size 

5. Pa rticle Drag Coeffici nt 
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6. Particle Heat Transfer Coefficient, and 

7. Nozzle Geometric Modifications. 

The discussion is begun with a description of the nominal set of input 

and ope~ating parameters for the nozzle solution. 

This report describes the results of this investigation. 

2 
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Section 2 

DISCUSSION 

2.1 NOZZLE FLOW FIELD ANALYSIS 

The Space Shuttle SRM utilizel;l a solid propellant which contains 160/0 

by weight of aluminum. The presence of the aluminum results in the forma-

tion of aluminum oxide (Al20
3

) particulates in the exhaust. For the heavily 

aluminum loaded SRM propellant the two-phase effects on the gaseous ex­

pansion process are si nificant. Therefore, it is important thAt the analytic 

solution of the nozzle and plume flow fields consider two-phase effects. The 

analysis of the current SRM nozzle flow field was performed using the Lockheed­

Huntsville RAMP Two- Phase Flow program (Ref. 3). The RAMP code allows 

momentum and energy exchange between the particulate !\nd gaseous phases, 

thus allowing the particles to affect the nozzle and exhaust plume expansion. 

The supersonic RAMP solution was initiated using a start-line generated by 

Kliegel's transonic program (Ref. 4). 

The sensitivity study was conduci:ed by parametrically perturbing 

various input parameters to the flowfield solution about a nominal set of 

conditions. Nominal conditions were chosen to be: 

* • Nozzle area ratio, A/A =7.16 

• Nozzle throat radius of curvature, Re/Rt = 2.0 

• Nozzle throat inl tangle, 91 = 30 deg 

• Nozzle lip half angle, 9lip = 11.202 deg 

• Nozzle throat radius, R t = 2.2679 f et 

• Chamber pressure, P = 700 psia c 
• Constant gaseous thermodynamic properties 

y = 1.25 

M = 20.245 w 

3 
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• Particles 

loading, 00 /00 = 0.4 P g 
mean particle size, r = 6.0 microns 

p 
drag coefficient - Kliegel (Ref. 8) 

LMSC-HREC TM D496636 

heat transfer coefficient. = Drake (Ref. 10) 

C p = 0.3395 Btu/lbm-oR 
L / 0 C p = 0.2676 Btu Ibm- R 
S 

Hp = 1612.1 Btu/Ibm 
L 

Hp = 1112.8 Btu/lbm 
S 

The nozzle flow field for these sets of nominal values provided a reference 

set of e xit properties and consequently 6 . as a function of expansion pressur 
J 

ratio. Th sensitivity of 6. to change in the input data was then obtained by 
J 

parametrically varying the input data about the nominal conditions and exam-

ming the change in 6 .• 
J 

Frozen and equilibrium gas th e rmochemistry models were used as 

comparative models. Data for these models were obtained using a version 

of TRAN72 (Ref. 5) which has been modified (Ref. 6) to meet the requirem&.nts 

of the RAMP Two-Phase Flow program. The tables of thermodynamic and 

transJX>rt prope rties were constructed such that variations in gas prop rti s 

due to changes in total enthalpy, entropy and temperature are consider d. 

An imJX>rtant parame~er for a two-phase calculation is the parti 1 

siz e distribution. For a nominal SRM condition a mass mean radius of 6 

mic rons w s us d. This waG obtain d based on a mean diameter v e rsus 

nozzle throat diame ter correlation by Delaney (R ef. 7). For comparison, 

calculations wer also performe d using the pa rticle siz distribution in 

Table 1. The ratio of particle mass to total propellant mass was nominally 

selected as 0.4 

de r 

For th purJX>s s of this do ument, a v riation in 6 . of I ss th n on 
J 

is onsidered minimal nd a v riation in () . r t r than two d r 
J 

4 
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is considered significant. With the current Space Shuttle configuration, 

a one degree change in 6 . results in a change of 100 Ibs in allowable payload 
J 

weight (Ref. 7). 

2.2 CHAMBER PRESSURE E.;FFECT 

To investigate the effect of chamber pressure on the initial plum e 

expansion angle, 6 . , RAMP nozzle calculations wer e p, ene r ate d for chamber 
J 

pressures of 500, 600. 700, 800 and 900 psia. A fi gure was c onstructed 

with chamber to ambient pressure ratio plf)tted as a function of 6. for each 
J 

chamber pressure, In Fig. 1 it is evident that chamber pressure has a I'l ini-

mal effect on 6. with a maximum variation of approximately one degr e e. 
J 

2.3 EFFECT OF GAS THERMOCHEMISTR Y MODEL 

Th e RAMP code has the capability to -.lse s everal gas th ermodynami c 

and transport property models. Th e nominal model chosen for this analysis 

is one in which the the rmodynamic (Y. molecular weight) and t1 ansport prop r­

ti s (ex ept vi o sity) are held onst nt. Th e quilibrium th e rmo h emistry mod 

u s s tabul t d d ta from the TRAN72 code a nd llow s th rmodynami pro p rti s 

to vary with hanges in total enthalpy, entropy and tempe ratur e . The froz n 

thermochemistry model uses tabulated thermodynamic properties but assum s 

that no hemical reactions ocour after the flow has expanded b eyond a static 

to total pressu r e ratio specified by the user. Th frozen chemistry model 

used in this analysis assumed that c hemical rations ceased at th nozzl 

throat. Nozzl e alculations were perform ed with ea h chemistry mod 1 for 

a h mb er pr ssur of 700 psia e xhausting to ambient pressu r es ran in 

from 15 .21 to 0.07 psia. 

In Fi .2, c h mb r to a mbient pres sure ratio is plotted 8 a fun tion of 

{; . for ch h mistry model. For cramber to ambient pres8u re ratio 1 s 
J 

than 400, th us of diHerent hemis.ry models did not produ e any si nifi c n t 

d vi tions in 6 . . At hi h r chamber to mbi nt pr ssu r e r atio , P Ip , th 
J 00 

c h mi lly froz n nd quilibrium hemi Rtry mod I s produ ed si nifi a nt1y 

5 
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differ e nt \"alues for 6 .• For a pressure ratio, P Ip , of 10,000, the 
J c 00 

diff rene e in 6. using the different chemistry models was 4 degrees. At 
J 

high pressure ratios the constant thermodynamic property model typically 

produced a 6. approximately one degree greater than the 6. produced by the 
J J 

chemically frozen model. Above a pressure ratio of 1000,6. values calculated 
J 

with the constant property model deviate significantly from the 6. values 
J 

calculated with the equilibrium model. The difference in initial plume ex-

pansion for these models at P Ip = 10,000 is 3 degrees. The difference in 
c 00 

Yamong the three m cxiels investigated appears to be the parameter which 

produces the variations in 6. illustrated in Fig. 2. 
J 

Nozzle calculations were performed to investigate the effect on 6 . of 
J 

the value of Y assumed in the constant thermodynamic property model. 

Calculations were generated using values for Yof 1.250 and 1.179. It is 

evident in Fig. 3 that the effect on 6. is significant. The difference in 6. 

for the two values of Y is I d e gree lt P Ip = 100 and 7 degrees at P Ip = 
c 00 c 00 

10,000. A lower value for Y produces a higher initial expansion angle. This 

trend is confirmed in Fig. 2 where the equilibrium chemistry model had the 

lowest exit plane r of the three models and produced the highest initial ex­

pansion angles. 

2.4 NOZZLE GEOMETRY EFFECT 

Initial plume expansion angle sensitivity to two pa r ameters defining 

nozzle geometry was investigated. The parameters were nozzle throat radius 

of curvature ratio and nozzle inlet angle. The nozzle inlet angle directly 

effects the structure of the subsonic and transonic portions of the noz·zle flow 

field and the supersonic startline generated by the Kliegel transonic code. 

The startline characteristics subsequently impact the supersonic expansion. 

Nozzle radius of curvature ratio and inlet angle were varied since the 

Kliege l transonic solution will not handle radius of curvature ratios below 

about 1.5 nor inlet angles greater than 45 deg. Therefore, to run two-phase 

solutions for nozzles whose geometrie s do not fall within the Kliegel capa­

bility the thr oa t geometry must be modified. For this reason nozzle geo­

metric effec ts on 6 . were examined. 
J 
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Nozzle configurations with nozzle throat radius of curvature ratios 

of 1'.5, 1.75, 2.0, 2.25 and 2.50 were input to the RAMP code and nozzle 

flow fields caJculated with a chamber pressure of 700 psia exhausting to 

various ambient pressures. A figure was constructed with chamber to 

ambient pressure ratio plotted as a function of 6. for each throat radius of 
J 

curvature ratio. In Fig. 4 the variation of 0.. with throat radius of curvature 
J 

ratio is 0.5 degrees or less over t!le entire pressure ratio range. Throat 

radius of curvature ratio has a minimal effect on the initial plume expansion. 

Figures 5 and 6 are figures depictin~ the d.eviation 6. with throat 
J 

inlet angle for a range of operating pressure ratios., The data pre-

sented in Fig. 5 were calculated using one mean particle size (6 micron 

radius). The data in Fir,. 6 were calculated using the particle size distribution 

of Table 1. Variation of the throat inlet angle from 20 to 45 degrees resulted 

in a (). variation of 0.5 to 1.0 degree at the higher pressure ratios and less 
J 

than 0.5 degree at pressure ratios less than 100. These data are presented 

in the nomographs of Figs. 5 and 6. For the calculations using one mean 

particle size, 6 . was highest at a given pressure ratio for an inlet angle of 
J 

20 degrees. For the calculations using a particle size distribution, O. was 
J 

highest at a given pressure ratio for an inlet angle of 30 degrees. The vari-

ation of O. with throat inlet angle was considered minimal. 
J 

2.5 PROPELLANT LOADING EFFECT 

The weight percent of solid particles in a propellant has significant 

effects on the nozzle and exhaust plume expansion of a solid propellant 

motor. To assess the sensitivity of O. to particle propellant loading (00 1 
J _ P 

W ), nozzle flow fields were calculated for a range of propellant loadings g 
(oo/OO

g 
= 0.3 to 0.5) and chamber to ambient pressure ratios. The parametric 

calculations were generated using two chemistry models, the constant thermo­

dynamic property model and the chemically frozen model. The figure in 

Fig. 7 indicates that at low pressure ratios the variation of OJ with wp/oog is 

less than 0.5 degree. However, as the pressure ratio is increased the 

variation of o. with W 100 increases to a significant level, e.g., a 2 degree 
J p g 

variance at a pressure ratio of 6000 between calculations with a Wp/Wg = 0.3 

7 
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and calculations with a 00 /00 = 0.5. As ffi /00 increases for a given pressure 
p g p g 

ratio, the greater the initial plume expansion. 

Results are presented in Fig. 8 for calculations using the chemically 

frozen thermochemistry model. Variations in 6. with 00 /00 increased with 
J p g 

increasing chamber to ambient pressure ratio. For a given pressure ratio 

the initial plume expansion angle increases with increasing ffi /00. This 
P g 

effect is the result of the coupling between the gaseous and particulate phases 

which results in a higher exit pressure as particle propellant loading is 

increased. The higher exit pressure requires a greater initial plume ex­

pansion to expand to the same ambient pressure. 

2.6 EFFECT OF MEAN PARTICLE SIZE 

An important input parameter to the analytical RAMP flowfield calcu­

lations is mean particle size. The particle drag and h eat transfer coefficients 

vary with the square of the spherical particle radius. Thus, the temperature 

and velocity lags between the gas and particle phases is a strong function of 

particle size. To investigate the deviation of 6. with different values for this 
J 

empirically determined parameter, nozzle analyses were generated with 

various mean particle sizes. Comparative calculations were also made to 

investigate the effect of assuming one mean particle size as opposed to 

assuming a distribution of particle sizes about the given mean size. 

In Fig. 9, chamber to ambient pressure ratio is plotted as a function 

of 6 . for a calculation assuming a mean particle size versus a calculation 

J 
assuming a distribution of particle sizes (Table l). There was no difference 

in () . for a given pressure ratio between calculations ~si!'lg the different 

J 
pa rticle size assumptions. 

The results of nozzle calculations using different mean particle sizes 

(r = 4 - 8 micron s ) are pr sented in Fi . 10. At a iven pres s ur e ratio, 
mp 

the initial plume expansion angle decreased for inc reasing mean.. particle 

8 
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size. The difference 6. for r = 4 and for r = 8 was approximately 2 
J mp mp 

degrees across the entire range of pressure ratios. Thus, there is a signi-

ficant variation in 6. with the empirically determined mean particle size. 
J 

2.7 EFFECT OF MEAN PARTICLE SIZE FOR DIFFERENT VALUES 
OF LOCAL DRAG COEFFICIENT 

Two empirically derived constants which are impacted by mean particle 

size and have a significant effect on the coupling between the gas and particle 

phases are the heat transfer coefficient and the local drag coefficient. An 

analysis was performed to determine the sensitivity of 6. to different mean 
J 

particle sizes and different heat transfer and drag coefficients. The nominal 

local drag coefficient used in calculating the results (presented ;'n Fig. 10) 

was doubled and halved and used in nozzle calculations in which mean particle 

size and pressure ratio were parametrically varied. The results are pre­

sented in Figs. 11 and 12, respectively. Figure 11 represents the results 

obtained with a drag coefficient double the nominal local drag coefficient. 

For chamber to ambient pressure ratios less than 700, results were similar 

to those obtained with the nominal value of drag coefficient. The intial ex­

pansion angle decreased with increasing mean particle size at a given pressure 

ratio. However, above a pressure ratio of 700 6. increased with l.~~reasing 
J 

mean particle size. Differences in 6 . values ranged from 0 to 2 degrees at 
J 

pressure ratios below 700 and from 0 to 1 degree above 700. Figure 12 

represents the , 'esults obtained with a drag coefficient of one half the nomi­

nal drag coefficient. For all values of chamber to ambient pressure ratio, 

results were qualitatively identical to those obtained with the nominal value 

of drag coefficient. The initial expansion angle decreased with increasing 

mean particle size at a given pressure ratio. Quantitatively, the variation 

of 6 , with mean particle size was greater for calculations using a value of 
J 

one half the nominal drag coefficient than for calculations using the nominal 

value. For a deviation in mean particle radius from r = 4 to r = 8, 
mp mp 

the maximum variation in 6
j 

was approximately 3 degrees. 

9 
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A value of local drag coefficient of twice th e nominal value l' c sulted in 

qUil.l1titil.tivdy smaller variations in 6 . than calculations using the nominal 
J 

drag coe ffi ient. Calculations using a drag coeffici nt one half th e nominal 

value l' suIted in quantitatively larger variations in 6. with mean particle 
J 

size than calculations using the :lominal drag coefficient. 

2.8 EFFECT OF MEAN PARTICLE SIZE FOR DIFFERENT VALUES 
OF LOCAL HEAT TRANSFER COEFFICIENT 

The nominal local heat transfer coefficient used in calculating the 

results presented in Fig. 10 was doubled and halved and used in nozzle 

calculations in which mean particle size and pressure ratio were parametri­

cally varied. The results are contained in the nomographs of Figs. 13 and 

14, respectivel y. Figure 13 represents the results obtained with a local 

heat transfer coefficient double the value of the nominal heat transfer 

coefficient. For chamber to ambient pressure ratios greater than 700, 

results were similar to those obtained with the nominal value of heat trans­

fer coefficient. The initial expansion angle decreased with increasing mean 

particle size at a given pressure ratio. The variation in 6 . with mean particl e 
J 

size was negligible at a chamber to ambient pressu r e ratio of 700. However, 

below a pr es sure ratio of 700 6 . increased with increasing mean particle 
J 

size. Differences in 6 . values for vadous mean particle sizes varied from 
J 

o to 0.5 degrees across the entire pressure ratio range. 

Figure 14 represents the results obtained with a local heat transfer 

coeffi ient of one-half the value of the nominal heat transfer coefficient. 

For all values of chamber to ambient pressure ratio, results were qualita ­

tively identical to those obtained with th e nominal value of heat transfer 

coefficient. The initial expansion angle decreased with incr~asing mean 

particle s iz e at a g iven pressur ratio. Quantitativ ly, the variation in 6 . 
J 

with mean particle size was greater for calculations using the value of on -

half the nominal heat transfer oeffici ent than the calculations using th 

nominal h ea t transf r coeffici nt. For a vari tion in mean pa rticl e radius 

from r = 4 to r = 8, th e maximum deviation in 6 . was a pproximately 2 
mp mp J 

10 
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degn.'ps for calculations using values of one-half the nominal heat trans­

fer coefficient. 

2.9 EFFECT OF DRAG COEFFICIENT MODEL 

Several empirical models are currently in use for calculating particle 

drag coefficients. The models we:-e developed by Kliegel (Ref. 8) and Crowe 

(Ref. 9), respectively. An analysis was conducted to assess the sensitivity 

of 6. to different drag coefficient models. In Fig. 15 chamber to ambient 

J 
pressure ratio is plotted as a function of 6. for calculations using drag co­

J 
efficient models developed by Kliegel and Crowe. There was no difference 

in 6. at a given pressure ratio for calculations using different drag coefficient 

J 
models. These calculations were performed assuming a mean particle size 

with r = 6 mic rons. 
mp 

An analysis was conducted to investigate the sensitivity of 6. to different 
J 

values of drag coefficient. Using the Kliegel drag model and parametrically 

varying pressure ratio, nozzle calculations were generated using different 

values of drag coefficient (0.5 x Kliegel Co to 2.0 x Kliegel CD). The results 

of these calculations are represented by the nomograph of Fig. 16. For a 

given pressure ratio, the initial plume expansion angle increases slightly for 

increasing values of drag coefficient. Over the range of pressure ratios 

investigated, the maximum variation in 6. was less than one degree. The 
J 

increased initial plume expansion angle with increa sed value of drag coefficient 

resulted from the coupling between the gas and particulate phases. The in­

creased particle drag coefficient increased the momentum loss of the gas 

resulting in a lower gas velocity and higher pressure at the nozzle exit plane. 

The higher exit pressure produced a greater initial plume expansion. The 

chang e in 6 . with the value of drag coefficient (assuming a mea:l particle size) 

J 
was minimal over the range of drag coefficient values considered. 

The seneitivity of (). to different drag coefficient models assuming a 
J 

distribution of particle sizes was inve s tigated. The distribution of particle 

sizes in Table I was used in nozzle calculations with drag co fndent models 

I 1 
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by Klieg 1 and Crowe. In Fig. 17 chamber to ambient pressure ratio is 

plotted as a function of {). for calculations using different drag coefficient 
J 

models. At a given pressure ratio, there was no difference in 6. for nozzle 
J 

calculations using different drag coefficient models. 

An analysis was conducted to investigate the sensitivity of {). to different 
J 

values of drag coefficient using a distribution of particle sizes. Using the 

Kliegel drag model and parametrically varying pressure ratio, nozzle cal­

culations were generated using different values of drag coefficient (0.5 x 

Kliegel CD to 2.0 x Kliegel Cn). The results of these calculations are pre­

sented in Fig. 18. Acros s the range of pressure ratios investigated, the 

initial plume expansion angle increased with increasing drag coefficient. 

As pressure rati.o increased, the difference in 6. for calculations using 
J 

various values of CD inc!'eased. Quantitatively, for the range of drag 

coefficients used, the maxhnum deviation in 6. at given pressure ratio 
J 

was approximately one degre. The quantitative and qualitative results 

were the same as the results obtained from calculations which assumed 

a mean pa rUde size. Changes in 6. with values of local drag coefficient 
J 

were considered minimal. 

2.10 EFFECT OF VALUE OF HEAT TRANSFER COEFFICIENT 

Nozzle calculations were generated to assess the effect of the value 

of heat transfer coefficient on the initial plume expansion angle. Pressure 

ratio was parametrically varied for calculations using values of the local 

heat transfer coefficient ranging from 0.5 x Drake Q to 2.0 x Drake Q. In 

Fig. 19, the variation of 6. with heat transfer coefficient at a given pressure 
J 

ratio is illustrat d. The initial plume expansion angle increases with in-

creasing local heat transfer coefficient for a given chamber to ambient 

pressure ratio. For the range of pressure ratios and heat transfer coeffi­

cients investigated, difference in 6. at a given pressure ratio ranged from 
J 

0.5 to 1.0 degree. 
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To investigate the combined effect of heat transfer coefficient .and 
thermochemistry model, parametric calculations were performed afO:sum­
ing the flow to be chemically frozen at the nozzle throat. The value of the 
local heat transfer coefficient was varied from 0.5 x Drake Q to 2.0 x . 
Drake Q. The results of the calculations are presented in Fig. 20. For 
a given pressure ratio, 6. increases with increasing value of heat lrans­J 
fer coefficient. The maximum deviation in 6. at a given pressure ratio 

J was 2.5 degrees. Typically. the variation in 6. was greater in the calcu­
J lations using the chemically frozen thermochemical model than in the 

nominal calculations assuming constant thermodynamic properties. 

To investigate the combined effect of heat transfer coefficient and parti­
cle size distribution, parametric calculations were performed assuming the 
particle size distribution of Table 1 rather than the nominal mean particle 
radius of 6 microns. As in the previous cases, the value of the local heat . . transfer coefficient was varied from 0.5 x Drake Q to 2.0 x Drake Q. 
Qualitatively and quantitatively the results presented in Fig. 21 are similar 
to those in Fig. 19 obtained with a mean particle radius of 6 microns. At 
a given chamber to ambient pressure ratio, 6. increased with increasing 

J heat transfer coefficient. The variation of 6. with heat transfer coefficient J over the range of pressure ratioc; was approximately 0.5 to 1.0 degree. It 
was concluded that the differences in particle size distributions investigated 
did not affect the variation of () . with heat transfer coefficient. J 

2.11 COMBINED EFFECT OF PARTICLE DRAG AND HEAT 
TRANSFER COEFFICIENT 

The sensitivity of 6. to simultaneous changes in local drag and heat J 
transfer coefficients was investigated. Nozzle calculations were performed 
with; (1) a local drag coefficient of twice the Kli gel drag coefficient and a 
local heat transfer coefficient of twice the Drake heat transfer coefficient 
(case 1), (2) a nominal heat transfer coefficient and a drag coefficient of 
one-half the Kliegel coefficient (case 2), (3) a nominal drag coefficient and 
a heat transfer coefficient of onp,-half the Drake coefficient (case 3). 

13 
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R e sults of these calculations are plotted compara tiv ly in Fig s. 22 through 

25. In Fig. 22 the parametric variation of 6 . with pressure ratio for cases 
J 

1 and 3 is plotted along with the results of calculatio ns using nominal values. 

Over most of the pressure ratio range, the nominal curve fell between the 

curve s for calculations using one-half the Drake heat transfer coefficient 

and for calculations using twice the value of the Kliegel drag and Drake heat 

transfer co efficients. The maximum difference in 6 . for the two later curves 
J 

was approximately two degrees. The results of calculations for cases I and 2 

and nominal conditions are presented in Fig. 23. There was no difference in 

values of 6. at a given pressure ratio for the nominal c urve and the curve 
J 

generated with one-half the value of the local drag coefficient. This result 

is verified by results presented in Fig. 16. At pres sure ratios below 500, 

the curves for all three cases coincided. Above a pr essure ratio of 500, 

calculations using drag and heat transfer coefficien ts twice the nominal values 

diverged from the nominal curve. At a giver. pr essure ratio above 500, the 

initial plUlne expansion was greater for calculations using twice U:.e nominal 

drag and heat transfer coefficients. This trend agrees qualitatively with the 

results presented in Figs. 16 and 19 in which th e drag and heat transfer co­

e ffici el' ts, respectively, were increas ed separately. 

Figure 24 compares the res ults of three calc ulations : (1) using a nomi­

nal value of h eat transfer coefficient and a dra g coefficient of twice the nomi­

nal value; (2) using twice the nominal values of h at a nd drag coefficients; and 

(3) using nominal valu e s. The curveS of chamb e r-to-ambient pressure ratio 

as a function of 6. for all thr ee conditions coin cide at pr essu r e ratios b elow 
J 

500. Above a pressure ratio of 500, the curves for th e off-nominal conditions 

diverged from the curve generat ed with nominal valu s for drag and h eat 

transfe r coeffi cients . Both curves gene r ated with twi e th nominal value 

of dra g coefficient coinc'ded over the entir e pr ssur ratio 

Thus the drag oefficient a pp ared to be a stron r drivin 

tr nds ar 

range investi ated. 

func tion of 6 . than 
J 

similar to th the h eat transfer coefficient. Q ualitative ly, th 

results pr sented in Figs. 16 and 19 in which h t tran s f e r a nd drag coefficients 
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were increased and produced larger 6. values at a given pressure ratio. 
J 

Above a pressure ratio of 500, calculations using values of drag and heat 

transfer coefficients of twice the nominal values produced 6. values of up 
J 

to 1 degree greater at a given pressure ratio than calculations using the 

nominal values. The maximum difference in 6 . (1 degree) between nominal 
J 

and off-nominal calculations (assuming values of heat transfer and drag 

coefficients twice the nominal values) was the same order of magnitude as 

the difference in 6 . between nominal calculations and calculations generated 
J 

with the coefficients doubled separately (Figs. 16 and 19). 
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Section 3 

CONCLUSIONS 

The sensitivity of the initial plume expansion to various operating and 

input parameters was investigated. The variation of 6 . with changes in 
J 

chamber pressure at constant pressure ratio was minimal. At low chamber-

to ambient pressure ratios, the use of different chemistry models did not 

produce any variation in 6.. The difference in Y among the th ree chemistry 
J 

models resulted in large difference in o. at the high pressure ratios. The 
J 

largest difference in o. at a given pressure ratio occurred between calcu­
J 

lations using a constant property rYlodel and calculations using an equilibrium 

chemistry model. Large differences in o. (7 degrees) were obtained when 
J 

diffe rent values of Y were used in calculations with a constant property 

c h e mistry model. At a g iven pressure ratio, as Y decreases the initial 

expan sion a ngl e , 0 . , increases. Changes in nozzle throat radius of curvatur 
J 

ratio and nozzle inlet produ ed minimal changes in 0 . . At press ure ratios 
J 

a bov 1000, prop llant parti I e load in g produc d si nificant differenc es in 

0 . . Th initial plume expan sion a n gl e increased with inc r eas ing propellant 
J 

loading at a giv e n pr essure ratio. Th e re was no difference in o. betwe en 
J 

calcul a tions assuming a mean particle size a nd calculations assumin a 

particl e size distribution. As mean particle size was varied from r = 4 
mp 

to r = 8, the initial plum expansion angle decreased by 2 d e r ees e Th 
mp 

assumed mean pa rticle size thus has a si nificant e ffect on 0 . . There w s 
J 

no differen e in o. at a given pressure ratio for cal culations usin g diffe rent 
J 

d ra co ffid nt mod Is. .., Kli gel and Crowe. Parametri variation of 

10 al dra co ffid nt from 0.5 x Klie el Co to 2.0 x Kli e I CD produ d a 

m a ximum 6 . v riation of less than on de ree. Th param tri variation o f 
J 

h at tr nsf r 0 Hi i nt indi ,; d incr sin g 6 . with in r 
J 

in 

10 1 h at tr nsf r 0 Hi i nt. Th d vi tion of o. with h 
J 

eHi i nt was onsid r d minim 1. Th t on initi 1 plum 

from ombin d c han in 10 I dr nd h a t transf r 
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was investigated. Qualitatively and quantitatively, the results were similar 

to thos e obtained in calculations in which only one of the coefficients was 

changed at a time. It was concluded that the coupling between the drag and 

heat transfer calculatione was minimal. 

In summary the following qualitative effects on initial plume expansion 

were observed for each parameter: 

• Chamber pressure - minimal effect 

• Chemistry model- large variation in () . 
J 

• Nozzle throat radius of curvature ratio and throat 
inlet angle - minimal effect 

• M an particle size assumption versus particle dis­
tribution assumption - no effect 

• M ean particle size - large variations in () . 
J 

• Propellant parti I e loadin (00 / 00 ) - significant 
variations in () . p g 

J 
• Drag 0 fficient model (Kliegel versus Crowe )-

no e ffect 

• Drag o effici ent valu - minimal e H c t 

• Heat transfer oeffici e nt valu - minima l eff c t 

• Combin e d chan es in valu of drag nd heat 
transfe r coefficie nts - minimal effect . 

17 
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Tabl 

PARTICLE SIZE DISTRIBUTION 

I Parti 1 Ra dius I P a rticl e Mas s P e r ntage of 

D nsit 'T) P a rti 1 Ma ss 

(mi rons) (lbm/ it ) Flow Ra t 

3 .1 5 2 50 10 

4 .70 250 2 0 

5 .90 25 0 20 

6.9 2 0 20 

8.1 5 2 50 2 0 

9.70 25 0 10 
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~ Pc 60 300 1800 5000 

500 20.2 40.9 59.2 67.9 

700 20.1 40.9 59.0 G7.9 

900 20.6 41.4 59.6 6 '7.9 

i . 

P = c 500 600 700 800 900 

6 . = 20 
J 

70 

... 
Note : AI A = 7.16 

9
1

, = 11.202 
lp 
Q ~ = 30 r:I."!l{ 

r = 611 
• ITP 
w w = 0.4 P g 

Fig. 1 - Va riation of 6 . wi th C hange in Cha mb er P ressu r e to Amb ient Pr e ssur e Ra tio 
J 
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R/Rt piPe M T (oR) 
e e RC/~~ 60 300 1800 5000 

1.5 32.62 2.62 3262.4 

2.0 33.11 2 .62 3258.5 
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Fig. 4 - Variation of 6. with Chan ge in Nozzl e Throat Radius of Curva tur Ra tio 
J 

and Ambient Pr e s s ure Ratio 
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