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ONE YEAR REPORT - SKYLAB EXPERIMENT S019 

I • HI STORY AND BACKGROUND 

A. History - This project originated at Dearborn Observatory, 

Northwestern University, in Evanston, Illinois. In 1965, Dr. Henize, 

having undertaken a survey of stellar spectra in middle UV wavelengths 

(2400-4000A) from Gemini spacecraft, proposed a more comprehensive 

survey reaching fainter stars and shorter wavelengths with a lS-cm 

aperture UV telescope mounted on the scientific airlock in the hatch 

of the Apollo command module. The proposal was accepted and the 

design and construction of the telescope was contracted to Cooke 

Electric Co. of Morton Grove, Illinois. 

The design included a novel modification of the Ritchey-Chretien 

telescope configuration employing LiF and CaF2 field correctors near 

the focal plane to provide sharp image quality over a 4° x 5° field at 

wavelengths extending from 1300 to 5000 A. Another novel feature was 

the use of a 15-cm diameter prism of CaF2 to disperse the light. 

Although the availability of CaF2 crystals of this size had been 

advertised it was soon discovered that the UV transmission of such 

large crystals was less than might be desired. This technical obstacle 

was finally overcome by a cooperative program in which the vacuum 

testing facility at Northwestern University was utilized to measure 

the transmission curves of numerous experimental crystals grown by 

Harshaw Chemical Co. until, at last, a suitable crystal was obtained. 

Unfortunately the Apollo fiI'e in early 1967 resulted in the 

removal of the scientific airlock from the hatch of the command module. 

Since the construction and most of the testing of the S019 telescope 

had been completed it was proposed to incorporate it into the Apollo 

Applications Prog!'amwhich later came to be named the Skylab Program. 

Operation of the telescope from Skylab required three major additions 

to or modifications of the equipment: (1) a quick-change mechanism 

was provided so that film canisters could be easily installed on and 

removed from the optical canister, (2) an articulated mirror system 

was required to allow the telescope line of sight to reach a large 

area of sky without need for maneuvering Skylab itself and (3) a 

spectrum widening mechanism was required to widen the spectra so that 

,.- ""',f , 
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fine spectral detail could be distinguished from photographic grain 

noise (in the Apollo concept the widening was to be accomplished by 

motion of the command mOdule). The basic designs for these modifica

tions were devised by F. G. Q'Callaghan at Northwestern University 

and a prototype of the articulated mirror system was constructed in 

the Lindheimer Astronomical Research Center shops. The construction 

of flight hardware and its testing was contracted to the Boller and 

Chivens Division of Perkin-Elmer Corporation. 

The construction and testing of flight equipment was completed 

in late 1972. At this time, the Principal Investigator (PI) trans

ferred his academic affiliation to the University of Texas at Austin 

and the remainder of the project was carried out there. Key personnel 

who contributed to the Northwestern University phase of the program 

included: Dr. James D. Wray, Deputy Principal Investigator (after 

\ 
I 

Dr. Henize became a scientist-astronaut in 1967), Mr. Fred G. Q'Callaghan, 

Chief Engineer, and Mr. Lloyd Wackerling, Staff Astronomer. 

A new staff was formed at the University of Texas under Dr. Wray 

who transferred from Northwestern University. This group was res

ponsible for planning the observing program, support of the operational 

aspects of each mission and for data reduction and analysis. In addition 

to Dr. Wray, this group included Dr. Sidney B. Parsons, Dr. George F. 

Benedict and Dr. Paul M. Rybski. 

The experiment was operated on each of the three Skylab missions 

and a total of ~2~ exposures were made on 219 star fields. The total 

number of spectra obtained was somewhat greater than pre-mission 

expectations. The volume of data and the complexity of measuring and 

correcting it to the desired accuracy are such that data analysis is 

only partially complete at the time of this report. 

B. Background 

The primary purpose of Experiment S019 was to obtain moderate 

dispersion stellar spectra in the wavelength region from 1300 to 3000 A 

with sufficient spectral resolution to permit the study of ultraviolet 

(UV) line spectra and of the spectral energy distribution of early

type stars. The data were expected to be of sufficient resolution 

and photometric accuracy to permit detailed physical analysis of 
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individual stars and nebulae, but an even more basic consideration 

was the expectation of obtaining spectra of a sufficient number of 

stars so that a statistically meaningful survey might be made of 

the UV spectra of a wide variety of star types. These should include 

nearly all spectral and luminosity classes of normal 0, B and A stars 

as well as statistically meaningful numbers of peculiar stars such as 

Wolf-Rayet stars, Be stars and Ap stars. 

The spectral resolution achieved (2 A at 1~00 A) is about five 

times grea'ter than that achieved by the first Orbiting Astronomical 

Observatory (OAO-A2) and is roughly equivalent to that generally 

achieved by sounding rocket spectrographs. The resolution is much 

less than that achieved by OAO-C but considerably fainter stars can 

be reached with the S019 equipme~t and the 1400 - 2000 A wavelength 

region is a region in which OAO-Cperformance is affected by serious 

noise problems. Thus: the S019 data are unique and serve in many 

ways as a bridge between the low resolution OAO-A2 data and the very 

high resolution data of OAO-C. 

Although the S019 data are competitive with the sounding rocket 

spectra it is noteworthy that up to the time Skylab was launched, spectra 

of only about 30 stars had been obtained by sounding rockets whereas 

the Skylab instrument obtained spectra of 400 stars giving useful 

information at 1500 A. A sample of th' spectra obtained and the spectral 

features visible in them is given in Figure 1. (See also Figure 2 of 

Appendix A and Figure ~ of Appendix F.) 

II. INSTRUMENTATION 

The instrumentation consisted of three basic components: the 

optical system, the film magazine (or canister) and the articulated 

mirror system (AMS). Taken together, the optical system and the film 

magazine are referred to as the spectrograph. Figure 3 in Appendix 

F shows a photograph of the assembled instrument with the articulated 

mirror extended. An explanatory diagram of this equipment is given 

in Figure 1 of Appendix A. 

Since a detailed description of the instrument is given in Appendix 

iI._ ... 
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. s indicated above the spectra of a and 1. Carinae and line identifications 
are noted belo these spectra . Spectral classifications and V (visual) 
magnitudes are given for each identified star. 
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F, only a brief summary will be given here. The spectrograph optical 

system consists of a l5-cm aperture f/3 Ritchey-Chretien telescope 

with an achromatized two-element (CaF2 and LiF) focal plane corrector, 

achieving 15 arcsec (34- 1Jrn) image~diameters over a flat 4-0 x SO field. 

Dispersion is provided by a 4-0 objective prism of CaF2 which gives 
-1 dispersions of 58, 350 and 1300 A mm at 1400, 2000 and 2800 A, res-

pectively. The resolutions achieved at these wavr-lengths in better
quality spectra are 2, 12 and 4-2 A. 

Interchangeable film canisters each contained 160 frames of Kodak 

101 film mounted on individual stainless steel backing plates. Ten 

frames in each canister were reserved for preflight and postflight 

calibration. 

The articulated mirror system was used to allow pointing the 

telescope line of sight at various parts of the sky while Sky lab 

maintained solar inertial pointing. The mirror system, with telescope 

attached, was mounted on the antisolar scientific airlock permitti~lg 

the 38- by 19-cm flat mirror to be extended outside the spacecraft. 

Rotation and tilt controls allowed access to a band of sky 30° wide 

and 360° in circumfet'ence. Widening of the spectra was accomplished 

by a mechanism that slowly tilted the rear of the mirror canister 

through an angle of 270 arcsec, thus producing a spectrum width of 

0.6 nun. This motion could be accomplished in either 270, 90 or 30 s. 

The slowest widening rate, one arcsec s-l, made possible the recording 

of useful flux data at 1500 A for nominally reddened BO stars with 

V = 6.5 

The spectrograph could also be operated without spectral widening, 

in which case the effective exposure was set by the rate of spacecraft 

drift. Drift rates as small as 0.1 arcsec s-l were frequently achieved, 

giving data on stars 2-3 mag fainter than the limit for widened spectra. 

Unwidened spectra were obtained in a total of 60 fields. 

The operation of the instrument was entirely manual. The astronaut

observers pointed the mirror, verified (during the first operation of each 

mission) the mirror pointing by observing stars in the finding telescope, 

advanced film, opened and closed the shutter and timed exposures. 
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III. FLIGHT OPERATIONS 
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A. Observation Planning. Basic planning for 8019 observations 

involved: (1) study of the Bright Star Catalogue (plus catalogues of 

peculiar hot stars such as Wolf-Rayet stars) to locate those fields 

rich in bright stars of classes 0 ~:;"d B wr.ich were particula.1.'ly 

suited to objective-prism spectroscopy and (2) devising ~ornputer pro

grams and graphical displays to decide what fields were observable 

at a given time and to compute AMS tilt and rotation angles. 

The selection of stars fields was begun at North~~estern Univer

sity by Mr. Lloyd Wackerling and final refinements were made after 

the move to the University of Texas, primarily by Dr. Sidney Parsons. 

A total list of about 200 fields was eventually submitted to NASA for 

incorporation into their computer data banks. However, provisions 

were made to enter new fields at any time, and this option was used 

several times during the three missions. 

Devising computer programs to calculate the position of any star 

field relative to the earth's horizon (i.e. altitude and azimuth) 

and relative to the AMS rotation axis (i.e. tilt and rotation angles) 

was a routine task. Two graphical aids to observational planning 

bear special mention, however. The first was a rectangular plot of 

the sky on which were plotted all star fields, the region of the sky 

at which the AMS can be pointed, the position of the earth's horizon 

at the times of sunset, midnight, and sunrise, and the moon!s position. 

Such plots, produced for each operation period of S019, provided an 

easy means of selecting those fields visible at any particular time 

during the operation and were generally used for this purpose. They 

also provided a rough graphical means for verifying the calculated 

tilt and rotation angles since the position of the field within the 

observable band could be translated to ~:il t and rotation with little 

difficulty. One of these plots is illustrated in Figure 2. 

The plotting program was first devised at Northwestern University. 

It was then"used at the University of Texas to provide detailed advanced 

planning as well as final selection of star fields for the individual 

, 

1 



o· r 
8J 

'.0 

1J 

?J 

:0 

J 

, 

. . , , 
, : ' I 1ft t 

, '" 1.1 ,"'!' Ii, t. , 
.I' 1,11 -, 

" I ~ , ... __ ~t 

. . , 
, 

I 

-7-

. • 

I 
I , 

.' . • 

I 
I • 

I • ~. 
• I . , 

, , , . , , , o-~ 

~"+" 
~~' "'" 

~ ~'~I " • 

I 

" 10 I .. . ,... " .+ 
. • • , " . 

" 20 " ... I....J .I, ... '" .... I 

~:I,I , I . 
~:l'" .. + •• .' , .... .I , 

' " 
, 

" 
" ' 

, 0 

.0 r 10 

BJ 

'10 

, 
0' 
" : 

" , 

""...... iii ' ... 

, . , . . 

I • 

Figure 2, Sky Distribution of All Fields Photographed by Skylab 
Experiment S019 . Fields photographed during Skylab 4 are shown in 
black. The fields are superposed on an operations planning plot 
for 23 March . The zone bet~een the circles and the triangles is the 
region observable with the AMS on th~t date . Crosses show the pro-
jection of the orbit plane on the sky. The arrows" and , , 
indicate the earth's horizon at sunset, midnight and sunrise res
pectively. 

observational ,periods . The plot was incorporated into the JSC 

planning system with minor modifications (more frequent plots of t he 

earth's horizon were included) and was thus made available to all users 

of the AMS system. 

The second planning system was a chart showing the observability 

of each field on each day of the mission. This facilitated broad 

strategic planning, e . g., identification of fields about to pass out 

of t he observable region, identification of dates when many f ields 

or few f i elds would be visible, etc . These charts were also used to 

i dentify dates on which observation of a given field were particularly 

desirable . These dates were set mainly by particular field orientations 
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which eliminated obvious overlapping of bright stars, but other 

factors such as presence of planets, phase of variable stars, etc. 

also entered occasionally. 

The basi~ operational sequence began during the semi-weekly 

science planning conferences. At this time, the S019 observing 

requirements (based on fields about to be lost, phase of the moon, 

etc.) were presented for the following seven days. On this basjs, 

several observation periods would usually be assigned to S019 

on several specific days. If these assignments survived the summary 

flight planning session (in which all the day's activities were 

juggled into discrete time slots 24- hours in advance) then planning 

was initiated to provide a set of observing information for tlle crew. 

The corollary staff support room (CSSR) would produce a visibility 

plot valid for the particular observing period. Using this the PI 
or his representative would select a set of fields to be observed 

(generally four or five) and designate the number of exposures on 

each field and their times of beginning and ending. With this 

information the CSSR personnel would then calculate rotation and 

tilt angleG and assemble them into a standard message format for 

transmission to the crew via teleprinter. An example of such a 

message and its explanation is given in Figure 3. 

B. l"iission Chronology 

Date CUT) 

6, 8 March 

10 March 

11 March 

14- May 

15 May 

17 May 

19 May 

25 May 

30 May 

31 May 

Event 

SL2 film calibrated (canister 004-) 

SL2 film loaded (canister 004-) 

SL2 film canister 004- delivered to KSC 

SLI latmched 

Replacement SL2 film calibrated (canister 005) 

Replacement SL2 film loaded (canister 005) 

Replacement SL2 film canister 005 delivered to 

SL2 latmched 

KSC 

First activation of AMS. Jamming of AMS ti~t control 

discovered 

Tilt control repaired by Paul Weitz 

T---
I 
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31 May 

:, June 

6 June 

17 June 

2S ,June 

2S ,June 

27 ,June 

22, 28 June 

29 ,June 

4 July 

9 ,July 

11 July 

12 July 

28 ,fuly 

4 Augus,t 

10 August 

13 August 

15 August 

16 August 

17 August 

20 August 

20 August 

21 August 

22 August 

23 August 

25 August 

28 August 

29 August 

30 August 

1 September 

3 September 

-9-

, 
First activation of S019. Twelve exposures attempted 

but failed due to improper actuation of film advance 

lever 

Operated for one orbit. First successful exposurC's 

Operated for one orbit 

Operated for two orbits with prism off 

PI received film canister 

SL3 film calibrated (canister (03) 

SL'3 film loaded (canister 003) 

SL3 film calibrated (canister 005) 

Post-flight calibration of canister 005 film 

Development of film from canister 005 

SL3 film canister 003 delivered to KSC 

SL3 film loaded (canister 005) 

SL3 film canister 005 delivered to KSC 

SL3 launched 

Operated for one orbit 

Oper.ated for three orbits 

Operated for one orbit 

Operated for two orbits 

Operated for two orbits 

Operated for one orbit with prism off 

Operated for two orbits, first with prism off 

AMS refused to retract after second operation 

AMS successfully retracted. Operated for one orbit 

Operated for two orbits 

Operated for two orbits 

Operated for .one orbit with prism off 

Operated for ;three orbits, first with prism off 

Operated for one orbit 

Operat;ed for thr'ee orbits 

Operated for two orbits DRlGINAD PAGE IS 
i 

Operated for one orbit OF POOR QUALITY 
5 September Operated for four orbits 

7 September Operated for one orbit 
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11 September Operated for one orbit 

15 September Operated for two orbits 

21 Beptember Operated for two orbits. Film canister 005 jammed 

after exposure of one frame on first orbit. Film 

canister 003 used on second orbit 

27 September PI received film canisters 

2, :, October Post-flight calibration of canister 003 film 

4 October Replacement AHS mirror aluminized at GSFC 

5 October 

9 October 

In Oc·tober 

18 October 

19 October 

26 October 

28 October 

Development of film from canister 003 

Post-flight calibration of canister 005 film 

Development of film from canister 005 

SL4 film calibrated (canister 003) 

SL4 film calibrated (canister 002) 

SL4 film loaded (canisters 002 and 003) 

SL4 film canisters 002 and 003 delivered to KSC. 

Replacement AMS mirror delivered to KSC 

16 November SL4 launched 

25 November Operated for one orbit 

26 November Operated for one orbit 

4, 5 December Operated for one orbit 

7 December 

8 December 

12 December 

13 December 

14· December 

16 December 

17 December 

19 December 

20 December 

24 December 

Operated for one orbit 

Operated for one orbit 

Operated for one orbit 

Operated for one orbit 

Operated for one orbit 

Operated for one orbit 

Operated for one orbit (Comet Kohoutek only) 

Operated for one orbit 

Operated for two orbits 

Operated for one orbit. Film canister 002 jammed after 

three exposures 

30 December Operated for three orbits 

2 January 1974 Failure of tens and hundreds digits of rotation 
I: \ 

5 Janua:r'Y 

7, 8 January 

counter of AMS 

Operated for two orbits 

Operated for one orbit. Canister 003 jammed. Jam was 

freed by force 

.< .• ~.------------------
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12 ,January 

12 January 

14 ,January 
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Operated for one orhit 

Operated for one orbit (Comet Kohoutek only). Can.ister 003 

jammed after one exposure. Attempt to free by force 

resulted in breaking drive shaft. 

Attempt to free canister 002 by force apparently 

successful (but not in reality) 

Operated for one orbit (Comet Kolloutek only). Shift 

on zero point of AMS rotation detected 

25 January Operated for two orbits 

30, 31 January Operated for one orbiL 

11 February PI received film canistt'::'s 

13, 14 February Post-flight calibration of canister 003 film 

15 February Post-flight calibration of canister 002 film 

21 February Development of film from canister 002. Development 

of film from canister 003. 

C. Equipment Malfunctions 

1. Jamming of AMS tilt mechanism (SL2) - During the first 

activation of the AMS the mirror tilt mechanism was found to be 

jammed. Diagnosis based on crew comments and study of the training 

unit indicated that a sealing plate added at the last minute to the 

tilt counter was probably touching a gear with a very high mechanical 

advantage thus preventing rotation of the tilt knob. Repair procedures 

for removing the knob and the gear housing and for free:i.ng the gear 

were transmitted to the crew. These were implemented hy Paul Weitz 

who found the diagnosis to be correct. He corrected the problem and 

restored theAMS to normal operation. 

2. Leak in film canister 005 (SL2) When canister 005 was 

opened after the flight to remove the film it was found to have lost 

its vacuum. Testing revealed a leak in the reticule seal of the 

finder eyepiece which was easily repaired. At first it was suspected 
I 

that this leak was responsible for the hole-pattern fog which appeared 

on the films. It was reasoned that contaminants from the spacecraft 

atmosphere had condensed on the metal plates and produced the fog. 

However, a similar fog appeared on film from all canisters subsequently 

flown and it was therefore concluded that the leak was in no way respon

sible for the hole-pattern fog. 
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3417 S019 PAD 34/242 
-----------------CDR----------------
NUZ -4.1 CASS 003 PRISM IN 
STRT ROT TILT FLD EXPOSURES 
] 24() 232.5 10.9 463 270/90/30 
1247 249.8 06.6 467 270/270V 
1257 031.2 13.5 065 270 
1301 057.4 28.3 III 270 
1306 049.6 21.0 100 270/90/30 

SUNRISE 1312 
REMARKS: NO STABILIZATION 
VERIFICATION REQUIRED 

'1---

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 

------------------------------------- 13 
3417 S019 PAD EOM 14 

Figure 3. Typical S019 Observational Data Message. 

'M.'_.'(~ 

Line 1 - gives message number (3417), experiment identification, 
mission day (34) and day of year 242 (30 Aug.) 

Line 2 - states crew member (commander) to carry out the observation 
Line 3 - gives NVZ - the assumed correction for spacecraft roll 

about the Z-axis (-4~ 1), the fill" cassette to be used 
(003) and whether the prism is to be in or out 

Line 4 - gives column headings 
Line 5 - gives time to start exposure 1 (1240 VT), the rotation 

setting (232~5), the tilt setting (10~9), the field 
number (463), and exposure times (270 sec, 90 sec, 
and 30 sec)· 

Lines 6 - 9 - give similar data for exposures 2 through 5. 
The "UTI in line 6 indicates that that exposure is to 
be unwidened 

Line 10 - states that the sun will rise at 1312. Exposures 
must be completed and the film hatch must be closed 
by that time 

Line5l1 and 12 - give a special message that the unwidened 
exposure may be taken without verifying the attitude 
drift rate of the spacecraft 

Line 14 - repeats the message number, the experiment identification 
and indicates the end of the message (EOO) 
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3. Failure of AMS to retract (SL3) - On 20 August, the AMS 

refused to retract after an operation. The diagnosis was that ice 

had formed on the AMS extension screws and had frozen the mirror 

in the extended position. This diagnosis was supported by the fact 

that just before the operation period when the mirror froze, the 

mirror and its extension mechanism,while still cool from a previous 

operation period, had been exposed to spacecraft atmosphere when the 

optical canister was removed from the mirror canis,ter to change the 

prism. This sequence of events made it very probable that moisture 

from the spacecraft atmosphere had condensed on the extension screws 

just prior to the mirror being extended again. The only evident 

solution was to wait for the ice to sublimate, then try to retract 

the mirror again. Approximately 24- hours after the malfunction occurred 

this was attempted and the mirror broke free. Thereafter care was 

taken to avoid the possibility of water condensing on the AMS mechanisms 

and no further difficulties were encountered. 

4-. Failures of the slide transport system - Film canisters jammed 

on three separate occasions - canister 005 on SL3 and canisters 002 

and 003 on SL4-. The film jam in canister 005 could not be remedied 

and approximately 28 frames of film were left unused as a consequence. 

It was found in the laboratory that a screw had backed out of position 

and interfered with the motion of the film carriage. 

The jams in canisters 002 and 003 were due to the slide transport 

systems. The proper adjustment of these systems is a delicate matter 

requiring two TTclaws TT to engage the outside edge of each new film 

slide and to pull it into the slide carriage, at the same time forcing 

the old slide into the stack of exposed slides. Abnormal friction 

caused by improper compression in either the fresh-slide stack or the 

exposed-slide stack, or by a roughness in one of the slides might cause 

a claw to slip in which case a slide jam could result. Every precaution 

was taken to adjust stack compression properly, to inspect each slide 

for smoothness, and to cycle each load of slides completely after loading 

to ensure that all adjustments were correct. However, for reasons which 

are not completely clear, both canisters on SL4 did jam. 

"~ 
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'1'11e firJ.t- to jam was canister 002 on 24 December after 5'1 slides 

had been used. It was put into storage and canister 003 was used for 

subsequent observations. On 7 January cani6ter 003 jammed after 7S 

frames had been transported. Ground analysis indicated that the 

only hope of solving the problem was to apply force to the film 

advance lever in hopes of freeing the jam. An attempt to do so was 

successful and eight more exposures were obtained b'efore a second jam 

occurred on 12 January. An attempt to free this ja'm by force was 

unsuccessful, resulting in a hard internal jam, loss of synchronism 

in the drive mechanism and free cycling of the film advance lever. 

An attempt to free up canister 002 was apparently successful and 

fifteen more exposures were made with this canister. However when the 

film was developed it was found that the film transport had not 

operated during these final fifteen exposures. 

5. Loss of luminescent material in the AMS tilt and rotation 

counters. During the Critical Design ~eview Skylab crew members 

requested that the AMS digital displays be illuminated so that the 

equipment might be operated without a flashlight. Since S019 

had no electrical connection to Skylab, and since it was considered 

undesirable to create such an interface, it was decided to use 

luminescent paint to cause the numbers to glow. The luminescent material 

chosen was promethium, a radioactive alpha particle emitter. Extensive 

testing had indicated that the paint adhered well to the dials but 

shortly before the launch of SLI one numeral on the training unit, 

which had seen excessive use, became detached. This led to the last 

minute adding of sealing plates to the tilt and rotation counters 

to ensure that no radioactive material could migrateintu the spacecraft 

atmosphere. Although this ac'tion was the cause of the' initial jam in 

the tilt mechanism (see section IIICl), it proved ultit\'Iately to be a 

wise decision inasmuch as the paint began to chip off the counters in 

the course of SIa and continued to do so until approximatt:'ly 50% of 

the numerals were lost by the end of SL4. ~ 
; 

Beyond the threat of radioactive contamination (which was successfull] 
4 

averted), the main impact of this failure was to make exact setting of t 
the counters more difficult for the crew and to require the use of 1 
flashlights for careful setting near the end of SL4. 
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6. Failure of the tens and hundreds digits in the AMS rotation 

display (SL4) - This failure was due to a breaking of the linkage 

between the units and tens dials within the counter. Since the units 

and tenths digits continued to operated properly, it was possible to 

overcome this failure by counting revolutions of the drive wheel to 

the nearest tenth of a revolution. This provided a setting accurate 

to ±3° and final setting could then be achieved by use of the units 

and tenths digits of the counter. This change in operating procedures 

required a revision of the uplinked data format and a slight slowing 

of the operational time line but, in general, gave results of the same 

accuracy as had been previously achieved. The solutions to this 

failure and to the following one provided an excellent example of 

manTs ability to work around minor equipment failures. 

7. Shifting of zero-point in the AMS rotation display (SL~) -

Late in the SL~ mission the crewmen detected shifts in the rotation 

readings at which the discone antennae could be sighted. These 

sightings were used subsequent to the failure of the lOTs and lOOTs 

digits of the rotation counter to confirm the rotational zero 

position at which the mirror could be retracted. After star sightings 

confirmed that a shift in zero-point had taken place, sightings of the 

antennae were used prior to each observation period to confirm the 

position of zero rotation. Although this procedure pr'oduced accurate 

results, the complication of crew procedures required by this and the 

above failures resulted in a loss in efficiency of about 30%. 

D. Sources of Data Degradation 

1. Film fog - Four types of film fog may be distinguished on 

S019 films: (a) fog resulting from bright moonlight or twilight 

illumination of the AMS mirror, (b) a hole-pattern fog on those 

regions of the film not protected by the nylon covers, (c) a weak, 

uniform fog in the regions protected by the nylon covers and (d) 

a random blotchiness in the hole-pattern fog. 

a. Fogging by moonlight had been anticipated and during 

SL2 a flight planning constraint required that S019 be schedUled only 
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when the moon was less than half illuminated. However, this 

considerably reduced the frequency and ease of scheduling S019 

and, when trial exposures made during SL2 with a bright moon showed 

no appreciable fog, this constraint was dropped. 

During SL3 one operation scheduled when the moon was near full 

and only 13 degrees off the axis of the antis-solar airlock resulted 

jh a complete fogging of all frames exposed. Another operation with 

the moon 19 degrees off the airlock axis resulted in the fogging of 

only one frame. These data suggp.sted that when the moon was very 

near the axis of the airlock, moonlight directly entering the airlock 

aperture around the mirror was producing intolerable fog. Therefore 

no SL4 operations were scheduled when the moon was less than 160 off 

the airlock axis. Other data suggested that appreciable fogging 

resulted whenever the moon shone directly onto the surface of the AMS 

mirror and such circumstances were avoided whenever possible during 

SL4. These measures eliminated problems with moonlight fogging during 

SL4. 

However there was no way to shield the AMS mirror from the bright 

twilight when Comet Kohoutek was being observed. As a result all 

exposures of Comet Kohoutek show discernible background fog and in 

two instances the fog is excessive. It is suspected that in these 

two instances the hatch of the film canister was not closed prior 

to sunrise. 

b. The hole-pattern fog duplicates the pattern of holes in 

the perforated stainless steel plates on which the films were mounted. 

Since it occUrs only in the area of the film not protected by the nylon 

snap-on retainers it. must be concluded that the fog results in some way 

from the proximity of the film to the stainless steel plate of the 

slide directly above it. (The metal areas are fogged and the holes 

show little fog, thus the effect cannot be due to light passing through 

the holes.) It is known that Kodak 101 etmllsion is fogged by exposure 

to bare aluminum but the physics of the process are not well understood. 

It was not known that stainless steel would produce such an effect but 

it seems likely that such an effect (although in a much smaller degree) 

is responsible for the observed fog on S019 films. 

L.... •• 
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It was reasoned that vacuum stowage would enhance the transfer 

of electrons from the metal to the film (if that were indeed the 

physical process involved) and that stowage with gas in the canister 

might surpress the effect. A laboratory test gave evidence that 

this was indeed the case but by this time the SL4- film had already 

been delivered to KSC with the film stowed in vacuum. However, once 

operations began, spacecraft atmosphere was admitted to the canister 

prior to stowage of the canister. Although the evidence is somewhat 

inconclusive, the fact that the hole-pattern fog of SL4- does not 

greatly exceed that of SL3 suggests that the procedure may have had 

some helpful effect. 

c. The weak uniform fog ob'served in regions protected by the 

nylon covers is presumably due to a combination of thermal fog and 

fog produced by radiation-belt particles. In Figure 4- the degree.of 
\\ 

such fog on film in each film canister flown is plotted against th~~ 

total radiation dose calculated for each canister. The proportionality 
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Figure 4. Density of Fog vs. Radiation Dose for S019 Film Canisters. 
This fog is measured in the regions protected by the nylon covers. 
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of fog to dose suggests that this fog is indeed due primarily to 

radiation-belt particles. However, there is also a proportionality 

(though with greater scatter) with mission duration (1. e., with 

exposure to adverse thermal environment) and it should he emphasized 

that these two effects cannot be clearly separated. 

The effects of the radiation environment were anticipated and 

operating procedures were devised to minimize the time intervals 

during which the film canisters were outside the film vault. Both 

intervals inside and outside the film vault are properly accounted 

for in the doses indicated in Figure 4-. 

d. The blotchy background fog tended to have a characteristic 

dimension of 10 to 20 mm and frequently had a form resembling a 

fingerprint at the edge of the frame. It was suspected -that this fog 

was due to contamination of the steel plRtes as they were handled 

during film loading. Precautions were taken to prevent this during 

all film londings and extreme care in this respect was exercised 

during the loading of SL4- film. However, the extra care made no 

appreciable difference in the frequency of occurrence of these blotches. 

It should be noted that research at the Naval Research Laboratory 

(NRL Report 7072) indicates that Kodak 101 film is prone to blotchy 

fogging (they note a characteristic dimension of 15x30mm) due to 

several environmental effects including vibration and long-term 

exposure at room temperature to ~ither normal atmosphere or to gaseous 

nitrogen. Thus the blotches observed may be due to a number of factors. 

2. AMS mirror reflectivity - After the condensation episode 

of 20, 21 August (condensation had been noted on the mirror' surface 

during these operations) it was suspected that the UV reflectivity 

of the AMS mirror may have been affected and approval was given to 

provide a replacement mirror for SL4-•. A fresh UV-reflective coating 

foy' this mirror was kindly supplied on an emergency basis by Goddard 

Space Flight Center. 

When the SL3 film was inspected, it was evident that the reflecti

vity at 1500 A had indeed decreased by a factor of 2 to 3 toward the 

end of the SL3 mission and final approval was given for the SL4- crew 

to carry the replacement mirror into orbit. They completed mechanical 

l 
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task of removing the old mirror and inserting the new one without 

undue difficulty. 

Do ta tied v('cI ['rom exper iment S20l indicate that this new 

mirror suffered appreciable loss of reflectivity at 120U A on about 

12 December. An analysis of S019 data concerning changes in mirror 

reflectivity is not yet complete. 

3. Pointing errors - Pointing errors of to.l to ±(}.2 degrees 

were generally experienced and had little effect on the quality of 

the data. However, larger errors were occasionally experienced and 

resulted in loss of data on a number of stars. The primary cause 

for this was inadequate knowledge of spacecraft attitude, especially 

roll about the Z axis. Although a star tracker was available to 

determine this aspect of attitude, recent data were not always avaliable 

and errors of ±l degrees in pointing occasionally occurred. 

A less frequent cause of pointihg errors was mistakes by the 

crew. In two instances, an erroneous value for the mirror rotation 

was set and used and in two other instances the correction for rotation 

about the Z-axis was applied with th2 wrong sign. 

4. Stabilization - At least 50% of the exposures obtained for 

S019 were affected by streakiness in the spectra and/or by non

orthogonality in their widening. The streakiness might be due either 

to spacecraft attitude jitter or to jumps in the motion of the widening 

mechanism. However, the fact that image excursions occur with about 

the same frequency in the direction of dispersion (producing non

orthogonal widening) as in the perpendicular direction (producing 

streaks) leads to the conclusion that the streakiness is mainly due 

to spacecraft attitude jitter. ATM measures of spacecraft stability 

tmder the impact of crew motions during SL3 confirm that normal crew 

motion created a continual jitter with excursions as large as ±60 arcsee 

frequently occurring. Since the image diameter produced by the S019 

optics is 15 arcsec, excursions for several seconds with ranges from 

10 to 60 arc sec are just the type required to produce the observed 

streaks. 

In general, the crews had been requested to avoid violent motion 

and exercise when S019 was being operated, but use of the bicycle 

( 
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ergometer (a smooth, cyclic motion) was not construed to be "v iolent 

motion!!. However, the ATM test indicated that significant excursions 

occurred when the er·gometer was in use and this activity was also 

banned during S019 observations on SL~. 

When the streaks were first observed subsequent to SL2 it was 

considered likely "that they arose from vibrations of the airlock 

in the spacecr~ft wall due to the crewmen touching the equipment 

during exposures. However, even though this was carefully avoided 

during SL3 and SL~, little or no decrease in streakiness was observed. 

Nevertheless occasional loss of resolution at the beginning of an 

exposure is seen in the spectra, giving evidence that such flexures 

did produce vibrations when the spectrograph was affected by forces 

such as the actuation of the film advance lever. 

Fortunately, the effect of streaks in the spectra and the non

orthogonal widening can be largely corrected by sophisticated data 

reduction techniques (see Section IV) and their main effect is the 

cost and inconvenience of this extra data processing. 

5. Variability in the rate of spectrum widening - Although the 

spectrum widening mechanism was absolved from the production of the 

streaks in the spectra discussed above, it did have one unfortunate 

fault - its widening rates were 10 to 20% faster than expected (thus 

resulting in an 0.1 to 0.2 magnitude loss in limiting magnitude) and 

the rate was somewhat variable. When set for a 270 sec exposure the 

widening mechanism would complete its motion in anywhere from 210 to 

270 sec. Since this interval was not predictable, the only method 

to obtain exact exposure times was via information given on the 

voice tapes. These are generally adequate although there are instances 

when the moment of exposure start or ending was not recorded or was 

lost in transmission. 

IV. DATA REDUCTION 

A summary of data reduction procedures is given in Section III 

of Appendix A. Only explanatory notes will be added here. 

A. Rectification of irregularly widened spectra. A step-by-step 

explanation of this process is given in Figure 5. The end result of 

this processing may be either the tracing shown in step 3 or the 
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B. D-Log I calibration. The graded exposures mentioned 

generally included 10 exposures at each wavelength at up to 13 

separate wavelengths. These exposures were monitored by a sodium

salicylate coated photo cell so that the sensitivity function of the 

film and spectrograph could be determined in order that relative flux 

curves may be derived from these spectra. It is expected that these 

data may be confirmed by observations of several stars for which flux 

curves are already well known. 

c. Wavelength scale. Due to the effects of lateral chromatic 

aberration and t:o optical distortion, the wavelength scale varies 

with position within the field. Knowledge of the empirical dispersion 

curve and its variation with position has evolved slowly as measures 

were made of more and more stars with easily identified spectral lines. 

The dispersion curve is defined by: 

A = 0.258 + 0.102 xlf + O. 71+ - !:l 

where A is wavelength in microns, x is distance in mm measured from 

the long wavelength end of the spectrum, f is a stretch factor 

depending on field position and !:l is a small empirical correction 

depending on xlf. Values of!:l are given in Table 1. To facilitate 

computerized da-ta reduction an analytic function has been fitted to 

empirical values of f. This function has the form: 

f = a + alX y 2 2 y2 + a6 X !TXT 0 + a 2 + a3 xy + al+ X + as 

where aO = 0.9899 

al 
:::: -7.7882 x 10-1+ 

a2 
:::: -9.3673 x 10-6 

a3 = +6.1586 x 10-6 

al+ = +2.1+301+ x 10-1+ 

as = +1. 3290 x 10-1+ 

a
6 

:::: -3.6693 x 10-1+ 

X and yare distances in mm measured from plate center on the original 

film. Positive values of X are in the direction of s'lOrter wavelength. 
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Table 1 

Tabulation of Wavelengths and Wavelength Correction ~ As a 
Function of Distance From Long Wavelength End of Spectrum 

.----~, 

mm* ~ A ~ iVmm mm* A ~ 
0 

~ lVrnm 

0,00 +.092 5000 7720 
4.20 .038 1546.3 107 

.10 .036 4228 4230 
.30 .036 1535.6 103 

.20 .014 3805 2930 
.40 .033 1525.2 99 

.30 +.005 3512 2325 
.50 .031 1515.3 95 

.40 -.002 3280 1915 
.60 .029 1505.8 92 

.50 -.008 3088 1602 
.70 .025 1l~96. 5 89 

.60 -,.012 2928 1362 
.80 .022 1487.6 86 

.70 -.(J16 2792 1171 
.90 .019 ll~79.0 83 

.80 -.019 2675 1017 
5.00 .016 ll~70. 7 80 

.90 -.021 2573 891 
.10 .013 1462.8 77 

1. 00 -.()22 2484 788 .20 .010 14·55.1 74 
.10 -.023 2405 700 

.30 .007 1447.6 72 
, .20 -,022 2335 627 

.40 .004 1440.5 69.3 
~ .30 -.020 2273 .50 +.001 1433.5 

564 67.4 
.40 -.017 2216 511 

.60 -.003 1426.7 65.4 
.50 -.013 2165 467 

.70 -.007 1420. ::? 63.4 
.60 -.009 2118 430 

.80 -.010 1413.9 61. 5 
.70 -.005 2075 396 

.90 -.014 1407.7 59.7 
.80 .000 2036 367 

6.00 -.017 1401. 8 57.9 
.90 +.005 1999 342 

.10 -.021 1396.0 56.2 
2.00 .010 1965 319 

.20 -.025 1390.4 54.6 
.10 .014 1933 298 

.30 -.029 1385.0 53.0 
.20 .019 1903 280 

.40 -.033 1379.7 51. 5 
.30 .023 1875 .50 -.037 1374.5 

, 
~ 

, 

.40 .028 1849 262 .60 -.041 1369.5 
50.0 I 
48.6 > 

248 1 l 

.50 .032 1824 .70 -.045 1364.7 
, 
I 

.60 .035 1801 236 .80 -.049 1360.0 47.3 i l 
223 46.0 1 i 

.70 .038 1778 210 
.90 -.054 1355.3 44.8 l 1 

.80 .041 1757 7.00 -.058 1350.9 .;; i 201 43.7 ! .90 .043 1737 190 
.10 -.063 1346.5 42.6 

t 
3.00 .045 1718 182 

.20 -.068 1342.2 41. 5 1 .10 .046 1700 173 

.30 -.073 1338.0 40.5 
f .20 .047 1683 .40 -.077 1334.0 I .! .30 .048 1666 164 .50 -.082 1330.0 39.5 

i .lW • Ol~9 1651 156 .60 -;;087 1326.2 38.6 
'J< 

.50 .048 1635 152 .70 -.092 1322.4 37.7 i 

I .60 .048 1621 143 .80 -.097 1318.7 
36.8 I 138 35.9 ~r 

.70 .047 1607 132 
.90 -.102 1315.1 35.0 ill 

,80 .046 1594 127 
8.00 -.107 1311. 6 34.2 ~l 

.90 .044 1581 122 
.10 -.113 1308.2 33.4 

;1 
4.00 .042 1569 .20 -.118 1304.8 j 
.10 .040 1557.5 117 ~J 

112 i 
:~~ 

~·Distance must be measured in mm and divided by stretch factor f 
before entering the table. 
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D. Background subtraction. The subtraction of the hole pattern 

is an important consideration for those portions of the spectra with 

density less than one. Initially a sophisticated subtraction technique 
was devised in which the background in the region of the spectrum 

was estimated at 20 ~ intervals by a curve fitting process which joined 

the sky background data on one side of the spectrum to that on the 

other side with a smooth curve. Empirical testing indicated this 

method produced results accurate to about ±2%. However, the complexity 

of the arithmetic was such that it could not be performed in the PDP-8/e 

computer wllich operated on-line with the microdensitometer. It was 

necessary to transfer the data to the University of Texas CDC 64/6600 

computer. This was a time consuming process and made any sort of inter

active judgment almost impossible. Therefore a simple linear interpola

tion from one side of the spectrum to the other which can be performed 

in the PDP-8/e has been adopted for most spect":'B. The estimated errors 

of background subtr'iction by this process are on the order of ±4%. 

E. Mirror reflectivity. Changes in mirror reflectivity with date 

in the missions must be accounted for when stellar flux curves are 

studied. Preliminary data indicate that less of reflectivity shortward 

of 1700A is much more severe than in the longward region. A number 

of star fields were photographed repeatedly so that such degradation 

might be measured. However, a final derivation of the reflectivity 

changes has been postponed until other factors affecting flux calibration 

have been more completely determined. 

F. Vignetting. Geometrical studies indicate about a 30% loss of 

flux at the edge of the field compared to the center. It is expected 

that the vignetting function will be determined empirically by study 

of spectra in several oVt'1'lapping fields taken for this purpose. 

V. SCI ENTIFIC RESULTS 

During all three Sky lab missions prism-un observations were 

obtained in 188 starfields and prism-off observations in 31 starfields. 

The distribution of the prism-on fields is shown in Figure 2.1 In 

general the fields are concentrated in the Milky Way where the fre-

quency of hot stars is highest. These fields cover an area approximately I 
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3660 degrees and include roughly 24 percent of a band 30° wide 

centered on the plane of the Milky Way. 

A census of stars in the prism-on fields shows that nearly 6000 

stars have measurable flux data at a wavelength of 2600A, that 1600 

11ave measurable data at 2000A and that 400 show useful data at l500A. 

Obvious absorption or emission: features shortward of 2000A are 

visible in approximately 120 stars. 

This represents a veritable bonanza of data useful for statis

tical studies of stellar classification and of interstellar reddening 

as well as for studies of various types of peculiar stars. Since the 

Copernicus telescope of OAO-C functions very poorly in the l400-2000A 

region and since other survey instruments in this wavelength range 

(e.g. experiment S2/68 of the TDl satellite) give much lower resolutions, 

the S019 data are unique and so far unduplicated in the 1400 to 2000A 

range. 

Reprints or preprints of the first five technical papers based 

on these data are given in Appendices A through E to illustrate the 

various fields of astrophysics to which these data contribute. Appendix 

A shows how the strong lines of ClV and SilV in the UV may be used 

to provide more sensitive ~emperature and luminosity classification 

criteria for 0 and early B stars than are available in visible wave

lengths. The change in the ClV/SilV intensity ratio j~ the temperature 

range from Bl to BO is particularly dramatic. This change is illustrated 

in Figure 6 which also shows visible spectra of about the same resolution 

for these two spectral types. The visible spectra show only subtle 

changes in the weaker lines. 

Also noteworthy in Figure 3 of Appendix A are the changes with 

luminosity of the SilV lines at class 09 and the changes with luminosity 

of the ClV line at class Bl. These are the most striking luminosity 

effects seen anywhere in the spectrum at any spectral type. 

Another important result of this first quick survey of the spectra 

is the discovery that the emission-absorption profiles in the ClV and 

SiIV lines previously known to be characteristic of 0 and early B 
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Figure 6. A omparison of the Dramatic Changes in UV Line Strengths 
Between Spe tral Types BO and Bl with the Very Subtle Changes Seen in 
VJ. sible Wave12ngths . 

supergiant spectra, are found also in lower luminosity classes in 

the hottest stars . This leads to the conclusion that all stars 

brighter than absolute bolometric magnitude -8 . 4 show this line 

profile which is indicative of largescale mass outflow from these 

stars . 

Examples of how studies of peculiar stars have been advanced 

are given in Appendi es B C and D. In Appendix B data are presented 

on t he UV emission lines of 12 Wolf-Rayet stars . Most Wolf- Rayet 

stars are quite faint ano the OAO instruments have been able to 

produ e data for only 3 Wolf-Rayet stars . Probably the most important 
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aspect of this paper is the discovery that in those stars with known 

hot supergiant companion stars, the spectrum of the companion is more 

dominant in the UV than in visible wavelengths. This has lead (1) 

to new conclusions on the tenperatures of the Wolf-Rayet stars and 

(2) to the discovery of new companion stars from the UV observations. 

Appendix C illustrates how UV spectral characteristics may 

conflict with spectral classification based on visible radiation. 

In the particular case of these rapidly rotating stars it is demon

strated that the UV spectral data will yield significantly more reliable 

stellar temperatures than will the visible light data. It is also 

possible that further investigation of those stars which show the 

most marked discrepancies will reveal new, previously unsuspected, 

physical characteristics in these particular stars. 

Appendix D discusses a number of newly observed emission lines 

in the peculiar star e Lyrae. By astrophysical coincidence it appears 

that the predominant lines in the 1300 to 2300 A region arise from 

regions in this very complex system which are not easily observed at 

other wavelengths and that these data may provide interesting new 

insight into the outer halo of the e Lyrae system. 

Appendix E illustrates the leverage available in these spectra 

for finding new examples of binary stars with hot but faint (at visible 

wavelengths) secondary components. HR3080 is the most outstanding 

example discovered in a quick visual survey of the spectra. It is 

expected that other such binaries will be found when fully calibrated 

flux data become available from the S019 spectra. These flux data 

will also allow determination of the temperature of the hotter 

components in known binary systems of this type. 

The star HR6l64 in Figure 2 of Appendix A and most of the Wolf

Rayet stars shown in Appendix B show a sudden cut off at 2200A which 

is due to the interstellar reddening peak which extends from 2000 to 

2400 A. Nearly all hot stars show this feature in some degree and 

it is anticipated that the S019 data will allow statistical studies 

of this featul"e in stars fainter and more distant than has been possible 

up to now. The physical origin of this peak is not yet known and 
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questions concerning its correlation wi.th other interstcllal' 

absorption features and concerning .its variation in intensi:ty 

from point to point in the Milky Way are highly controversial. 

Another interesting aspect of the 2200A absorption feature is 

that, due to its great strength, it is expected that it may be used 

to estimate color excesses and total absorptions for peculiar stars 

whose intrinsic colors are difficult to determine because of their 

peculiarity. Such stars include the Wolf-Rayet stars, P Cygni stars, 

etc. 

It is to be emphasized that the results to date involve mostly 

qualitative, classification-type data analysis and that fully calibrated 

flux data have not been available. The data reduction procedures to 

achjeve fully calibrated fluxes are only just now becoming available. 

The availability of such data for large numbers of stars and the 

capability of comparing them with predicted data on a star-by-star 

basis will make possible many quantitative astrophysical studies. 
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ABSTRACT 
Objective-prism spectra at ultraviolet wavelengths extending to 1300 A were photographed during 

the three Skylab missions in a survey covering 9 percent of the sky. Several spectral features, notably 
resonance lines of C IV and Si IV, show striking variatior.,.; with stellar temperature and luminosity. 
Marked P Cygni profiles in C IV and Si IV, indicative of significant outflow of mass, appear in the 
spectra of all stars with .Mbol brighter than -8.4. 
Subject headings: eady-type stars - spectra, ultraviolet 

1. INTRODUCTION 

This is the first report of data obtained with a 1S-cm 
aperture objective-prism telescope (Experiment S-019) 
operated onboard the Skylab space station to obtain 
ultraviolet stellar spectra in the wavelength range from 
1300 to soon A. A total of 359 usable prism exposures in 
188 star fields were made in the course of the thref' 
Skylab missions. These cover an area of approximately 
3660 square degrees and include roughly 24 percent of 
a band 30° wide centered on the Gould belt. 

A census of stars appearing in these fields shows that 
nearly 6000 stars have measurable flux data at wave
lengths of 2600 A or less. Of these, roughly 1600 have 
measurable data at 2000 A or less, and 400 show useful 
data at 1500 A or less. Obvious absorption or emission 
features shortward of 2500 A are visible in approxi
mately 170 stars. 

II. INSTRUMENTATION 

The telescope used to obtain these spectra is a 15-cm 
aperture £/3 Ritchey-Chretien telescope with an achro
matized two-element (CaF2 and LiF) focal plane 
corrector, achieving 15" (34 p.) image diameters over a 
flat 4° X 5° field. Dispersion is provided by a 4° 
objective prism of CaF2, which gives dispersions of 64, 
365, and 1281 A mm-1 at 1400, 2000, and 2800 A, 
respectively. The resolutions achieved at these wave
lengths in better-quality spectra are 2, 12, and 42 A. 

Interchangeable film canisters each contained 160 
frames of Kodak 101 film mounted on individual 
stainless steel backing plates. Ten frames in each 
canister were reserved for preflight and postflight 
calibration. 

An articulated mirror system (see Fig. 1) was used \:0 
allow pointing the telescope line of sight at various 
parts of the sky while Skylab maintained solar inertial 
pointing. The mirror system, with telescope at.tached, 
was moun.ted on the antisolar scientific airlock permit-
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FIG. i.-Schematic diagram of the S-019 spectrograph and the 
articulated mirror system mounted on the scientific airlock. 

ting the 38- by 19-cm flat mirror to be extended outside 
the spacecraft. Rotation and tilt controls allowed 
access to a band of sky 30° wide and 360° in circum
ference. Widening of the spectra was accomplished by a 
mechanism that slowly tilted the rear of the mirror 
canister through an angle of 270", thus producing a 
spectrum width of 0.6 mm, This motion could be 
accomplished in either 270, 90, or 30 s. The slowest 
widening rate 1" S-1 made possible the recording of 
useful flux data at 1500 A for nominally reddened BO 
stars with V = 6.5. 

The spectrograph could also be operated without 
spectral widening, in which case the effective exposure 
was set by the rate of spacecraft drift. Drift rates as 
small as 0~1 S-I were frequently achieved, giving data on 
stars 2-3 mag fainter than the limit for widened spectra. 
Unwidened spectra were obtained in a total of 60 fields. 

The operation of the instrument was entirely manual. 
The astronaut-observers pointed the mirror, verified 
(during the first exposures of each mission) the mirror 
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pointing by observing stars in the finding telescope, 
advanced film, opened and closed the shutter, and timed 
exposures. 

A sample of spectra photographed with this equip
ment is illustrated in Figure 2 (Plate L6). 

III. DATA REDUCTION PROCEDURE 

The objective-p:cism spectra recorded with this instru
ment possess seyeral properties which must be carefully 
accounted for in reducing the data. The most significant, 
in terms of their effect on data reduction procedures, are 
the effect of Sf acecraft motion on spectral widening, 
and the presev~e of a moderate film fog showing a hole 
pattern 

Two types of spacecraft motion are frequently 
observed in these spectra: (a.) slow drifts producing 
curved or slanted lines and (b) frequent small random 
jumps with amplitudes on the order of 50-100 !l in the 
focal plane. The random jumps may be either along or 
perpendicular to the dispersion axis, and their basic 
effect is to produce streaky spectra with irregular 
lines. Qmtlltitative analysis of such spectra requires 
that each spectrum be scanned with a two-dimensional 
raster. Then conversion of density to intensity on a 
point by point basis in both ,r -and y removes the 
ambiguities inherent in the quantitative analysis of 
streaky spectra. Shifting the scans parallel to the wave
length a-xis by an appropriate amount allows correction 
for the effects of curved or irregular lines, thereby 
maintaining the spectral resolution quoted in § II 
above. 

For calibration, graded exposures at several wave
lengths 'were made on flight film before and after flight 
and on laboratory film which was not flown. In this wa\" 
the effect of the flight environment on the film could be 
deduced and accounted for. Preliminary ED, log I) data, 
based on sensitometric exposures on laboratory film, 
processed together with the flight film, have been nsed 
to reconstruct computer processed images of the spectra 
which are the principal subjects of this paper. 

The CD, log 1) calibration data are treated as a 
three-dimensional surface, the third coordinate being 
wavelength. This surface is entered into the computer 
as a two-dimensional array accessed by values of 
measured density and wavelength. In the spectra 
presented in this paper, wavelength is assigned on the 
basis of the system dispersion function referenced to 
some identifiable spectral line. 

The hole pattern in the background fog appears to be 
clue to exposure of the film to the perforated stainless 
steel backing plates. However, it is not clear whether 
the effect is due to the metal itself (Kodak 101 is known 
to fog rapidly when exposed to untreated aluminum) or 
to contaminants carried by or attracted by the metal. 
The average fog density in the regions between holes is 
roughly proportional to the time of exposure to the 
llletal, reaching a value of 0.60 during the 100-day 
exposure of Skylab 4. Areas of the film covered by a 
nylon retaining frame do not show a hole pattern and 
exhibit an average fog density of 0.39 during the Skylab 
4 mission. This lighter fog is assumed to be a combina-

tion of thermal and radiation fog. The estimated radia
tion dose during Skylab 4 that contributed to this effect 
was 1.91 rads. 

Subtraction of the background hole pattern is ac
complished by measuring background regions on both 
sides of the spectrum. The probable background in the 
region occupied by the spectrum is interpolated at each 
wavelength increment by a spline fit to the smoothed 
background data. The effect of bar.kground fog on the 
image of a calibrated step-wedge was found to behave 
linearly with effective exposure rather than with 
density, indicating that densities sho\lld be converted 
to intensities before the interpolation and subtraction 
are accomplished, a procedure we have adopted. 

When two ,)r more exposures are twailable on the 
same star, the individual spectra are combined in a 
weighted mean. The weight of each point in a spectrum 
depends primarily on its photographic density, those 
densities lirng on the linear portion of the (D, lo~ 1) 
curve Fcce111ing the highest weights. In addition, since 
noise is greatest where the weights are lowest, a smooth
ing is introduced which is inversely propor~~1rlal to the 
total weight at each point. 

The reduction of the data. is carried out primarily 
with a PDS 1010A microdensitometer controned by a 
PDP-8/e computer C\Vray and Benedict 1974). Correc
tion for background fog is accomplished with the CDC 
64/6600 computer of the University of Texas. Finally 
an arbitrary adjustment is made to the mean slope of 
the continuum to allow the data to be displayed 
photographically for visual inspection over the entire 
wavelength range of the observed spectrum. Thus the 
appearance of the continuum is not indicative of the 
continuous energy distribution. Quantilative spectral 
energy distributions will be presented in subsequent 
papers. 

IV. UJ.TRA VIOU:1' SPECTRA OF NORMAL STARS 

Sixteen stars with normal spectra in the visible 
region arc displayed in Figure 3 (Plate L7). Spectral 
types of stars earlier than 130 are those of '''alborn 
(1972), while spectral types for BO and later are on the 
revised MK system, from :Morgan and Keenan (197,1), 
Hiltner, Garrison and Schild (1969), or Lesh (1968). The 
ma.jor line features have been identified with the help of 
published rocket spectra by Morton et al. (1972). 

Four very prominent lines appear in this w,welel1gth 
region: C IV }"1549, Si IV }.A1394:, 1403, and C II }"1335. 
The striking variations in the absorption strengths of 
these lines mav be summarized as follows. The C IV 
absOlption strcngthel1S rapidly with temperature be
tween B2 and no and then remains more or less constant 
in the eurlier spectral types. At spectral class Bl the 
C IV strength shows an lillusually strong correlation 
with luminOSity, increasing from nearly zero in class V 
stars to very strong in supergiants. In 0 stars the 
correlation is still evident but the total change in 
strength is less e..xtreme. 

In luminosity class V stars, Si IV absorption peaks 
sharply at spectral class Bl and has virtually disap
peared ttt class 09.5. In luminosity class I stars, on the 
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other hand, Si IV remains strong in the 0 stars. This 
effect is unexpected since if the weakening of Si IV in 
main-sequence stars hotter than Bl is due to the 
ionization to Si v, then at temperatures equal to or 
greater than those of B1 dwarf stars the Si IV strength 
should decrease with increasing luminosity rather than 
increase. This phenomenon is added evidence for 
extended atmosphercs with cxtreme departures from 
local thf'rmodynamic equilibrium in 0 and early B 
supergiant stars. 

The ratio of Si IV to C IV in luminosity class V and III 
stars shows a dramatic reversal between classes B1 and 
BO and makes possible very fine discrimination of 
spectral classes in this range. This reversal is not so 
apparent in the supergiant stars because of effects 
mentioned above. In class V stars the X1335 line of C II 
shows remarkably little variation in strength from AO 
through 09.5 but appears to reach a peak in intensity 
in the B2-B5 range. Between B1 and B3 the C niSi IV 
ratio is an excellent temperature criterion. Although 
the C niSi IV ratios jllustrated in Figure 3 are felt to 
be representative, there are several instances in our 
spectra wherc this ratio deviates from the norm for a 
given spectral class. These stars will be a subject of 
future investigation. 

Emission on the longward side of the C IV and Si IV 
resonance lines together with increased width of the 
absorption appears to be a widespread phenomenon in 
the hottest and most luminous stars. Figures 3c and 3d 
clearly illustrate that when emission becomes evident, 
the C IV and Si IV absorptions show a large shift to 
shorter wavelengths whereas the weaker absorption 
lines and blends do not. This P Cygni phenomenon has 
been noted before in rocket spectra of 09 and BO 
supergiants (Morton 1967), but now a large enough 
sample of stars is available for more comprehensive 
studies. A borderline for its definite occurrence runs 
diagonally across the H-R diagram, from 07 V to 09.5 
III to B3 Ia. This result is consistent with the ground
based studies of Hutchings (1970) pnd Rosendhal (1973), 
which pointed toward a limiting bolomctric luminosity 
aboyc which significant mass outflow occurs. \Vith the 

new bolometric corrections and cffective temperatures of 
Code et al. (1975), the T,.rr scale of Conti (1974), other 
work scaled to these, and absolute magnitudes from 
Walborn (197,,) and Lesh (1968), we place this mass 
loss border at Mbol ::::: -8.4. 

A number of the weaker features show positive 
luminosity effects. The region from 1640 to 1720 A is 
discussed by Jenkins, i'dorton, and York (1974) over a 
limited spectral range (nO~2 III-V) in ,vbich they find 
sensitive temperature criteria, but no strong luminosity 
indicators except perhaps a blend near 1720 A. We 
find that the absorption blends in the 1620-1720 A 
region are enhanced in Some supergiants near no, 
especially in J.I. Nor. This strengthening is not apparent 
in all supergiants in the 09-B1 range and may be an 
indication of extreme luminosity. The 1720 A fea.ture, 
which indudes N IV and AI II, was first discussed by 
Underhill, Leckrone, and \,yest (1972) on the basis of 
OAO-2 scans, which showed the feature strong in 
supergiants from A2 to no. We confirm this result and 
find that the feature also is present in 0 stars, with 
maximum strength near 08 I. 

The concept for this experiment was originated at 
Northwestern University by Henize, where he, O'Cal
laghan, and 'Vray were responsible for the design and 
dcvelopment of the spectrograph, constructed by Cook 
Electric Co., and of the articulated mirror system, 
constructed by Boller & Chivens Division, Perkin
Elmer Corp. Weare grateful to the many individuals in 
NASA, especially the three Skylab crews, whose 
dedicated efforts contributed immeasurably to the 
success of the experiment. \Ve thank Dr. A. Strobel, 
lvlrs. Y. Strobel, and Mrs. L. Krizan for their help with 
the census of stars, and :Messrs. B. Cuthbertson and 
D. \Vest for their assistance in data reduction. We also 
wish to acknowledge the help of Mr. L. Wackerling of 
Northwestern University who contributed to the fornlU
Jation of the observing program. This project is currently 
supported at the University of Texas under NASA 
contract NAS 9-13176. 
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ABSTRACT 

Ultraviolet spectra showing emission lines in the 1300-2000 A region have been obtained of 12 
Wolf-Rayet stars. In the WN stars, lines of He II are dominant although N IV ,,1718 and N III ,,1805 
are also present. e IV ,,1549 absorption and a strong continuum in HD 151932, HD 93131, FlD 927-10 
and HD 190918 indicate that all four stars have companions. In the we stars, lines of C III and C IV 
dominate. N IV ,,1718 and N III ,,1805 emissions are probably present in HD 165763 and HD 156385. 
The ultraviolet spectra of 'Y Vel and 8 ~lus are dominated by supergiant companions. 
S11,bjecl headings: spectra, ultraviolet - Wolf-Rayet stars 

1. INTRODUCTION 

Ultraviolet spectra in the region from 1300 to 5000 A 
have been obtained from Sl~ylab with a 1S-cm aperture 
objective-prism telescope (Henize et at. 1975). Good 
quality spectra have resolutions of 2, 12 and 42 A at 
wavelengths of 1400, 2000, and 2800 A respectively. 

Of the 23 W-R stars brighter than V = 9.0 (Smith 
1967), observations were obtained of 20 stars. Most of 
these spectra exhibit large attenuation of intensity in 
the far ultraviolet, especially in the 2200 A region, due 
to interstellar (and possibly circumstellar) extinction. 
Twelve stars (6 WN and 6 WC) show emission lines at 
wavelengths of 2000 A or less, and it is those spectra 
which are discussed in this Letter. Calibrated flux mea
surements will be reported in a later paper. 

II. THE WN STARS 

Spectra of six WN stars are illustrated in Figure 1 
(Plate L12), and a tabulation ot the lines seen is pre
sented in Table 1. The emission intensities given in 

Tables 1 and 2 are relative values measured on micro
densitometer tracings and corrected approximately for 
the instrumental response. In the case of absorption 
lines the equivalent width is given in angstroms. The 
wavelengths given are laboratory wavelengths. Our 
wavelength identifications are based primarily on the 
published data of Smith (1972) and of Stecher (1970). 
Wavelengths for unidentifi·.·~ lines, in brackets, are 
measured relative to the easily identified lines with an 
accuracy which varies from about ± 10 it at 2000 A to 
±40 it at 3000 A. 

Emission lines of He II dominate the ultraviolet region 
of these stars. The He II line at ,,1640 is the strongest 
line shortward of 2000 A, and the n2Fu-32D series of 
He II is conspicuous in the 2000-3200 A region. The 
prominance of He II in Wi'r stars is also evident in 
infrared spectra (Kuhi 1968). The only other strong 
lines (except for C IV ,,1549 discussed below) are N IV 

,,1718 and N III A180S. Weak unidentified lines appear 
at ",,3000 and 2605. 

TABLE 1 

Ur.TRAVIOLET OBSERVATIONS OF WN STARS 

A(A) Ion HD 190918 191765 192163 151932 93131 92740 
-~---~--~.--------.....---. --------

1403 A ........ Sirv 3?A 
1403 E .... _ ... SiIV 2? 3? 
1549 A ......... C IV -!A (2)1\ 
1549 E ......... C IV I? 2 (6) (2) 
1640 E ......... Hen (8) (Hl,l 8 5 6 
1718 E ......... NIV J 6 8 
1805 E ......... Nnr 1 
2385 E ...... ". Herr 1 3 
2512 E ......... Herr 3 4 
[2605] E ....... 0+ 1 
2734 E ......... Hell 6 6 
[3000] E ....... 1 4 
3204 E ......... He II 9 20 
3482 E ......... NIV 5 8 

Classitication: 
Smith (1967) ............ \VN4.5+09.5Ia \VN6 \VN6 wm WN7 W!\7 
Revision ................ +O-Bl I +O-Bl T +O-Bl T 

NQTE.-( ) = estimated; A = absorption line; E == emission line. 

L173 

... ~ '1'--- . 



r 1 
l 
I 

I 

I 

L174 HENIZE, WRAY, PARSONS, AND BENEDICT Vol. 199 

There appears to be a strengthening of the He II 
X1640 line with earlier spectral type. Whereas this line 
is slightly weaker than N IV )..1718 in the WN7 stats, II 
is distinctly brighter in the WN6 stars. 

Carbon ),,1549 emission with shortward-displaced ab
sorption is present in HD 93131 and HD 92740. Strong 
C IV absorption is not expected in WN stars; C IV 
)"X5801, 5812 emission is strong but does not show 
absorption components in WN stars (Unde,hill 1968). 
The C IV )..1549 profile and suspected Si tV XX1394, 
1403 emission are typical of early-type supergiants 
(Morton 1967; Henize et al. 1975), and it seerr:s reason
able to attribute these feat1J.res primarily to companion 
stars. Finally, a strong ultta.violet continuum is present 
which washes out the other emission lines in these spec:· 
tra, further indicating the presence of hot companionEi, 
Underhill (1968) has suspected the presence of com
panions to both of these stars, Moffat and Haupt (1974) 
have suspected a companion to HD 93131, and Niemela 
(1973) has demonstrated that HD 92740 is a spectro
scopic binary, Our estimated spectral types for the com
panions are given in Table 1. 

HD 151932 also shows C IV ),,1549 emission and a 
continuum which is strong relath'e to the emission lines, 
evidence that this star also hdS a previously unknown 
companion. The fact that the only WN star in this 
group with a known companion, HD 190918, shows a 
strong continuum and suspected C IV emission also sup
ports the above conclusions. 

III. THE we STARS 

Spectra of six WC stars are illustrated in Figure 2 
(Plate L13), and a tabulation of the lines seen is pre
sented in Table 2. 

Emission lines of C III and C IV are the dominant 

features in the ultraviolet spectra of the WC stars. 
Except for X3204 and possibly X2734, the n2 F"-32D 
series of He II is not visible. The behavior of the ),,3204 
line is peculiar; it is strong in the WC8 star HD 192103 
but is very weak in the WC5 star HD 165763. 

The presence of weak to moderate emission lines near 
)..>-1718 and 1803 indicate the possib1 . presence of N IV 

and N III in HD 156385. The N IV ),,1718 line is also 
suspected in HD 165763 and HD 152220 and is present 
in Stecher's (1970) scan of 'Y Vel. No satisfactory alter
nate identifications have been found for these lines. 
Although Si IV and Si II lines fall nearby, they are not 
expected to have significant strength in WC stars. 
Underhill (1968) has suspected the presence of nitrogen 
emission in several WC stars, but it is generally blended 
with carbon lines (Kuhi 1968). Since N IV X1718 is the 
strongest line in the N IV spectrum longward of 1000 A, 
its presence or absence should give a defmitive answer 
to the presence of N IV lines in WC stars. Spectra in 
which wavelength can be measured accurate to ± 1 A 
should remove all doubt about the matter. 

In Figure 2 the differences between the ultraviolet 
spectra of (J Mus and HD 156385 are interesting. 
HD 156385 shows strong emission lines standing out 
above a weak continuum, as is expected for W-R stars, 
while (J Mus shows a strong continuum in which the 
most outstanding features are C IV ),,1549 and Si IV 

XX 1394, 1403 lines showing the marked P Cygni pro
files typical of early-type supergiants (Henize et ai. 
1975). Closer inspection of (J Mus shows very weak 
emission at C III )"X2297, 1909 and of He n )..1640. It is 
clear that the ultraviolet spectrum is dominated by the 
09.5 I companion and that the W-R emission lines 
barely show through its continuum. Considering the 
strengths of both its emission and absorption compo-

TABLE 2 

ULTRAVIOLET OBSERVATIONS OF WC STARS 

x(A) Ion Alternate Ion HD 165763 eMus 156385 152270 

1335 A ....... Cn 
1335 E ....... Crr 
1394 A ....... SiIV} (7) A 1403 A ....... SiIV 
1403 E ....... SiIV (7) (6) 
1549 t\ .. ..... CIV 13 A 6A 
1549 E ....... CIV 12 14 45 
1640 E ....... Herr 1645 C III 2 3 30 .'i 
1655 E ....... C IV 1657 C I 7 
1718 E ....... NIV 1724 Si IV 0+ 3 12 3 
1805 E ....... Nm 1812 Si II 1 7 
1909 E ....... [C m] 1908 N III 7 3 >.33 14 
[2005] E ...... 3 '4' 

4 
2297 E ....... Cm 21 36 14 
2406 E ....... C IV 8 8 
2530 E ....... CIV 2524 C IV 21 6 33 
2fi14 E ....... C III 2595 C IV (2) 
[2920] E ...... C IV? (2) 
3204 E ....... Hell 2 
3410 E ....... o IV 10 

Classification: 
Smi!~ (1967) ..................... WC5 WC6+09.5 I WC7 WCH05-8 
Revision ........................• 

t Vel 

21\ 
85 

fA SA 
65 
4A 

40 

WCS+07 
+BO:lp 

192103 

(2) 

7 
3 
9 
2 
4 

10 
5 

WC8 HOB) 
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nents, it seems probable that the C IV X1549 line arises 
mainly from the 09.5 star. This then raises a question 
as to the origin of the strong X1549 absorption in 
HD 156385 which is not typical of any of the other 
lines in its ultraviolet spectrum. The X1549 absorption 
is quite pronounced, as opposed to absorption compo
nents of lines such as C IV XX5801, 5812 sometimes evi
dent in visible spectra of WC stars (d. Underhill 1968). 
Although this suggests the presence of a companion star, 
the lack, of a strong continuum in the 1500-3000 A 
region does not. Perhaps it is possible for resonance 
lines of appropriate ions in the W-R envelope to produce 
strong absorption as well as emission. The definition of 
the intrinsic spectrum of a Wolf-Rayet star, separated 
from any possible effects due to a companion, remains 
an interesting problem for further study. 

The ultraviolet spectrum of 'Y Vel is also dominated 
by its companion star. The main features are strong lines 
of C IV, Si IV, and C II, all of which show conspicuous 
P Cygni profiles. Weak lines longward of X1550 which 
were recorded by Stecher (1970) are lost in the over
exposure of the strong continuum. The visual appear
ance of the C IV and Si IV lines is very similar to that of 
E Ori (BO 1a). Both the relative weakness of C IV com
pared with Si IV and the comparative sharpness of the 
Si IV absorptions indicate a spectral type later than 
09.5 (see Henize e{ at. 1975). The strength of Si IV leaves 
no doubt of the supergiant character. However, the 
presence of C II A1335 emission is anomalous since this 
emission is not visible in other 0 or B supergiant stars. 
Thus the ultraviolet spectrum must be classed as pecu
liar. The best classification to be derived f~om these data 
is BO: 1p which is to be compared with visual wave
length classifications of 07 (Smith 1967) and 09 I 
(Conti and Smith 1972). 

In both 'Y Vel and () Mus it is evident that the con
tinuum of the companion dominates in the \lltraviolet 
whereas the W-R radiation dominates the visible part 
of the spectrum. Thus both W-R stars must be cooler 
than their companions. In () Mus the W-R energy dis
tribution must be slightly cooler than that of an 09 
supergiant, and an effective temperature on the order 
of 31,000 K or less is indicated. In 'Y Vel, if we accept 
the BO: I class derived for the companion from the 
Si IV and C IV lines, then a temperature of 28,000 K or 
less is indicated for the W-R component. This is sig
nificantly cooler than the value of 32,500 ± 2500 K 
derived by Code et al. (1975) and suggests either that 
the ultraviolet spectrum of the companion is too pecu
liar to allow a temperature-related classification or else 
that special effects in the extended atmosphere of the 
W-R component result in an attenuation of its ultra
violet radiation. For example, Mihalas and Hummer 
(1974) find an intrinsic reddening of the energy distribu
tion of a hot extended atmosphere relative to a corre
sponding plane-parallel atmosphere. On the other hand 
Castor, Abbott, and Klein (1975) find that an extensive 
electron-scattering envelope will redden the light little, 
if any, but "will measurably increase the apparent 
angular diameter. 

Two unidentified lines appear in the we stars, one 
at 2005 A and the other 2920 A. The }..2920 line is very 
weak, but }..2005 is easily visible and appears con
siderably enhanced in the spectrum of the WC5 star 
HD 165763. This suggests it may be a good indicator 
of temperature in the WC stars. 

This work has been supported at the University of 
Texas under NASA contract NAS 9-13176. 
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FIG. 1.- Itraviolet objective-prism spectra of six \ star. ote the IV absorption and pre nc(' of continuum, pronounced in 
1-1 92740 and HD 93131 and also detectable in HD 151932 and HD 19091 , indicative of companion stars (see text). The pectral types 
given are from mith (1967). 
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Appendix C 

ULTHAVIOLET Si TV/C IV RATIOS FOR Be STARS 

Karl G. Henize*i, James D. Wray'#, S. B. Parsons t and 

G. F. Benedict f 

Abstract 

The intensities of the very strong lines of C IV A15~9 and 

8i IV AA139~, 1~03 observed in spectra obtained with Skylab 

experiment 8019 provide a sensitive discrimination of spectral 

type between BO and B2. Eye estimates of the Si lV/C IV ratio 

are tabulated for 33 BO-B2, class III-V stars of which 11 are 

emission-line stars. Seven of the emission-line stars show sig-

nificantly smaller ratios than normal stars of the same 1'-1K class. 

The most outstanding examples are 60 Cyg, 0 Pup, n Cen, and t 

Ara. 

* Astronaut Office, Code TE, NASA Johnson Space Center 

t Department of Astronomy, University of Texas at Austin 
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I. Introduction 

During this symposium Dr. Slettebak has already reviewed 

reasons why it is difficult to assign firm MI< classes to the> 

rapidly rotating Be stars, and Dr. Heap has noted how data on 

ultraviolet e IV and Si IV line intensities may be useful in 

providing improved classifications of such stars. This subject 

has also been on our minds as we carry out the analysis of UV 

spectra obtained with Skylab experiment S019. A preliminary 

survey of the behavior of the e IV and Si IV lines in early 

type main sequence stars (Henize et ale 1975) shows that the 

Si Iv/e IV ratio varies dramatically from a value of. about 10 at 

132 to a value of about I/lJ. at BO. This paper presents a more 

detailed study of the variation of the Si IVle IV ratio as a 

function of spectral type for 33 BO-B2 stars of which 11 are Be 

stars. 

II. The Observations 

The instrumentation with which these data were obtained is 

described by Henize et a1. (1975) and by O'Callaghan et a1. (1976). 

The basic instrument is an objective-prism spectrograph with a 

lS-cm aperture and a lJ.0 prism of CaF2 giving resolutions of 21\ and 

121\ at wavelengths of 11100 and 2000A respectively. 

1\ total of 1I0() spectra showing measurable fluxes at lS[)()j\ have 

been obtained and, of these, roughly 120 show evident absorption 01' 

emission lines. 
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Although these spectra are calibrated so that equivalent 

widths and flux curves may be derived, all factors entering tJle 

calibration are not yet completely analyzed and, as a consequence, 

the data presented here are based on eye estimates of absorption 

line intensities. These estimates are affected by the differing 

dispersions and effective exposures of l~OOA vs. 1550A and it is 

not to be expected that they will correspond to ratios of the 

equivalent widths. Nevertheless they represent a self consistant 

set of data from which stars showing anomalous behavior may be 

detected. 

Initially, spectra of all stars with spectral types 13U-112 

and luminosity classes III V wllich showed visible flux at llWOA 

were examined. This list of 98 stars yielded 3~ stars for which 

both the C IV and Si IV lines are well-exposed and in which rea-

sonably reliable line intensities can be determined. These stars 

and their Si IV/e IV ratios are listed in table 1. Since the Si IV 

doublet is well resolved in our spectra and the e IV doublet is not, 

the ratio given is defined as Si IV A1394/e IV AA15~8, 1551. The 

spectral types in table 1 are derived from Hiltner et a1. (1969) 

and Lesh (1968). 

III. Discussion 

The data of table 1 are displayed in figure 1. For the non

enission-line stars there is a clear cut trend for the Si IV/e IV 

ratio to increase from about 1/5 at BO, through ~ at Bl, to roughly 

8 or 10 at B2. The emission-line stars, on the other hand, 
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Table 1 

Si IV ,,1394/C IV A,,151~8, 1551 Ratios for BO-B2 Stars 

Desig. 

, Cas 

y Cas 

cp Per 

" Lep 
y Ori 

u Ori 

cpl Ori 

x. CMa 

HR 2855 

a Pup 

HR 3527 

a Car 

e Car 

0.1 Cru 

a. Vir 

HR 5206 

HR 5223 

cr Lup 

'Il Cen 

B Lup 

x. Cen 
HR 5661 

11 Sea 

cr Sea 

'f Sea 

IJl Sea 

tAra 

u Sea 

A Sea 

A Pav 

Sp. 

B2 IV 

BO.5 IVe 

B2 Vep 

nO.5 IV 

B2 III 

no V 

BO.5 IV-V 

Bl. 5 IVne 

BO.5 IVnpe 

Bl IV:nne 

BO III 

B2 IV-V 

BO.5 Vp 

BO. S IV 

Bl IV 

B2 Vp 

B2 IIIe 

B2 III 

Bl. 5 Vn 

B2 III 

B2 IV 

BO.5 V 

Bl V+B2 

Bl III 

BO V 

Bl. 5 IV 

B2 IIIne 

B2 IV 

Bl.S IV 

B2 II-III 

V819 Cyg BO.5 IIIp 

60 Cyg 

8 Lac 

cr Cas 

Bl Vne 

Bl Ve 

Bl V 

Si IV/C IV 

1/2 

1 

>2 

3/4 

10 

1/8 

1/4 

>4 

<1/4 

1/3 

1/6 

>4 

2 

4 

4 

>6 

5 

2 

>6 

>6 

1/2 

10 

4 

1/3 

4 

1: 

6 

10 

1: 

1/2 

1/2 

1: 

Remarks 

C IV very strong for B2 

Si IV very weak 

C IV very weak for BO.S 

with 0. 2 Cru Bl V 

Si IV very weak for B2 

UV spectrum unwidened 

Si IV very weak; C IV broad, Fe III? 

1600-2000 blends strong 

with HD214167 Bl. 5V; C IV broad, 
Fe III? 
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I r I I I 

10 +.-. + + 
SiISl 8 . +. 
em: f- ++++ 

+. 
4 +--+ ~ + 

2 + e ."Cen , 
I ~ e ,e)--+ 'et,e) .. Ara -

+ 8 Lac ~Pov 

1/2 I- +e e 60CY9 + tCai 

+ e 0 Pup " 

1/4 - +t 2855 " 

" ", 

+ 
1/8 + 

1/10 " 

I I I I I 

BO BO.5 BI BI.5 82 

Figure 1. The Ratio Si IV 1394/C IV ),),1548, 1551 Plotted as a 
Function of Spectral Type. Crosses indicate non-emission-line 
stars; dots indicate emission-line stars. Parentheses indicate 
uncertainty in the Si/C ratio. T indicates values which are 
lower limits of the ratio. ~ indicates that the spectrum is 
blended with one of slightly later type. 
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-5- Appendix C I 
show generally smaller ratios that the non-emission-line stars. 

In particular, seven of the eleven emission-line stars show ratios 

significantly less than those for normal stars. Of these, fou!' 

stars (60 Cyg, 0 Pup, 'll Cen and tAra) have a C IV intensi ty (2011-

spicuously greater than that of the normal stars of the same 

spectral class. Two of the remaining stars, A Pav and lIR 2RS 'J, ill'(' 

peculiar in that the Si IV lines are unusually weak for their 

spectral class. This peculiarity is also evident in ~ Per and 

HR 5223. 

For the four stars in which C IV is enhanced the data in figure 

1 suggest that they are hotter than the MK classes indica teo '['lle 

rough calibration of the Si/C ratio provided in figure 1 suggests 

spectral classes of BO.2, BO.5, BO.5 and BO.7 for 0 Pup, 60 Cyg, 

tAra and 1'1 Cen respectively assuming them to be main sequence stars. 

However, the Si/C ratio is also correlated to luminosity and at 

spectral class Bl the ratio ranges from about 0.1 for main sequence 

stars to about 1 for supe'l'giant stars (see figure 3d of Henize et a1. 

1975). Thus the enhancement of C IV may also be due to a lower than 

expected surface gravity. The Si/C ratio in 60 Cyg, for example, 

is also compatible with a classification of TIl II. Since these 

stars may be expected to show incipient shell absorption and since 

shell spectra generally show high luminosity character; sties, tll is 

Is the more attractive of the two possibilities. 

The suggestion that the enhancement of C IV absorption may be 

due to an incipient absorption shell leads to the further question 

as to whether these four stars show any indication of the extensive 
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blends of weak lines in the 1500-2000A region which are evident in 

spectra of the advanced shell stars 48 Lib and ~ Tau and also in 

many of the 0 and early B supergiants (see figure 3a, Henize et al. 

1975). A weak indication of such lines is present in 0 Pup and 

50 Cyg but in tAra and ~ Coen this region of the spectrum is over-

exposed. It should be noted in passing that these blended rihe] J 

(or supergiant) absorption features are strong in the star V819 Cyg. 

There is also a suspicion of weak emission present on the redward 

edge of C IV. Thus the W spectrum of V819 Cyg is more like that 

of a BO or Bl supergiant than that of a BO.S III star. 

The star C Cas also shows enhanced C IV even though it is not 

an emission-line sJcar• The spectral class suggested by the Si/C 

ratios in figure 1 is BO.S. The peculiarity of C Cas is further 

accentuented by the fact that it is an MK standard (Morgan and Keenan 

1973). The Co IV anomaly brings into question whether or not this 

star is a reliable standard star and further investigation of 

abundances in this star- would seem to be warranted. 

One further possibility for explaining C IV enhancement should 

be mentioned; i.e. the possibility that the C IV line is severely 

blended with Fe III as is suggested by Peytremann (1975) for all 

stars cooler than 30000o K. However, in the five stars discussed 

above the C IV absorption is sharp and distinct and there is little 

doubt that it is attributable to C IV. A broad blending of weak 

lines in the 1500 to 1500A region which probably corresponds to the 

blend studied by Peytremann is visible in many Bl and B2 stars on our 

plates, but at the resolution of the S019 spectra, it is not easily 

'" 
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confused with the C TV line. The question as to why tl1E' emp i r.ipn I 

data do }lot agree well with theory is a matter of interest and w U I 

be the subject of fUrther study in the S019 spectra. 

Two stars in table 1, A Pav and 8 Lac, do show a somewhat 

diffuse C IV line and in this instance it might be suspected that 

the feature is seriously blended with Fe 111. If so, then their 

Si/C ratio is somewhat greater than is indicated in figure 1. This 

would remove both stars from the anomalous group of stars so far as 

the Si/C ratio is concerned. However, the fact that A Pav (together 

with HR 2855, cp Per, and Hr 5223) shows abnormally weak Si TV 

bears further consideration. Inspection of figure 3 of lIeni7.e ct a1. 

(1975) suggests that the UV spectra of these stars are more llke 

those of B3 stars in which the Si IV and C IV have almost completely 

disappeared. The reason for such a trend of misclassification is 

difficult to understand, however, since in rapidly rotating stars 

the main effect is to obscure the weak lines required to establish 

a class of BO or Bl and to enhance the strength of He. Both effects 

tend to lead to classification of B2 and B3 for rapid rotators even 

though they may be considerably hotter. 
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SKYLAB ULTRAVIOLET STELLAR SPECTRA: 

EMISSION LINES FROM THE BETA LYRAE SYSTEM 

Y. Kondo,* S. B. Parsons,T K. C. Henize/~t J. D. Wray,1 

G. F. Benedict,i and G. E. McCluskeYf 

Received 

ABSTRACT 

Observations of R Lyr with the Skylab S-019 ultraviolet 

objective-prism spectrograph show numerous emission lines in the 

region 1400-2300~. Some variations in line strength between 

phases 0.25 and 0.50 are s€:'en, which probably explain the shallow-
o 

ness of the OAO-2 light curve at 1910 A. Many of the emission 

- lines are found to be intercombination transitions, thus confirming 

the concept that the emission is produced by collisional excitation 

in low-density clouds of hot gas. 

Subject headings: stars: eclipsing binaries -- ultraviolet: spectra 

* Johnson Space Center, Houston 

t Department of Astronomy, University of Texas at Austin 

t Lehigh University, Bethlehem 
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I. INTRODUCTION 

The close binary system 13 Lyr is currently undergoing a 

shortlived phase (103 to 104 years) of dynamic mass transfer 

during which the primary component is believed to be losing mass 

-5 1 -611, Th· t at the rate of 10 to 0 I)tQ per year. e prlmal~y componen 

is classified as a B8 to B9 object based on the visible spectrum. 

The spectrum of the secondary component has not been detected in 

any spectral region. The mass function derived from the spectro-

scopic observations of the primary is 8.5 'I,j (., (Struve 1958). Al-

though the mass function sets a minimum value for the mass of the 

secondary at 8.5 '}J1r.) , a value well above 10 "h! <) is probable. The 

invisibility of the spectrum of a star with such a large mass has 

long puzzled students of this binary. For recent discussions of 

this fascinating object, we refer the reader to Kriz (1974), Hack 

et ale (1975) and Kondo, McCluskey and Eaton (197~. 

The first ultraviolet observations of 8 Lyr were obtained with 

the photometer of the OAO-2 Wisconsin Experiment Package (Houck 1971; 

Kondo, McCluskey and Houck 1971). Studies of the light curve at 

several ultraviolet wavelengths gave the surprising result that the 

depth of secondary eclipse increased as wavelength decreased. A' 

further puzzle appeared in the 1910~ band (filter half-width == 2GOl\) 

where both eclipses were shallower than at any other wavelength. 

Copernicus high resolution spectra shortward of 1500 ~ (Hack et ale 

1975) showed that the far-ultraviolet spectrum of 8 Lyr is completely 

dominated by the low excitation emission lines of multi-ionized atoms. 

The ultraviolet spectrum of 8 Lyr is not at all like a late B-type 

star, and is, in fact, unlike any other object observed with Copernicus 
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or wJ tll the Skylab S-Ol C) sTH'ctrograph. Recently, Hark (197'1) 

reported lower resolution (35 ~) observations of this binary 

with the S2/68 experiment onboard the TD-l satellite and suggested 
o 

line identifications in the 1~00-2500 A spectral range. 

The present paper reports spectroscopic data in the 1300-

o 2500 A wavelength region obtained with the Skylab S-019 ultra-

violet objective-prism spectrograph. Ground-based spectrograms 

taken at about the same time are also described. 
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II. OBSERVATIONS 

Three spectra of e Lyr were obtained during the second Skylab 

mission with the S-019 spectrograph. This instrument (see lfenize 

et a1. [197 5b] for a more complete description) has a 1 S cm aperture 

and achieves a wavelength resolution of 2, 12 and 42 l\ at ll~()O, 2(]O!) 

and 2800 ~ respectively. Exposure data for the S Lyr spectra are 

given in Table 1. 

The competjtion for observing time on Skylab and the basic 

survey objective of experiment S-019 made it impossible to obtain 

more than a few spectra of this particular star. Tl1erefore a spC'C'inl 

effort was made to obtain observations during secondary eclipse (phasE' 

0.5) and midway between eclipses (phase 0.25). Moreover, it was 

possible also to schedule two of the exposures (SL3-230 and SLJ-2G3) 

to be simultaneous with Copernicus observations. 

Figure 1 illustrates relative intensity traces of the three 

plates of S Lyr, compared with p Leo CBl lab) and lID 156385 (WC7). 

The intensities, based on preliminary characteristic curves, represent 

intensity per unit wavelength but are not corrected for instrumental 

transmission and film sensitivity. The abscissae are proportional to 

plate position and therefore the wavelength scale is characterized 

by the prismatic dispersion function. Our wavelength identifications 

are based on rocket spectra for early B-type stars (Morton et a1. 1972) 

and for the solar chromosphere (Burton and Ridgeley 1972), with the 

aid of the tables by Moore (1950, 1970) and by Kelly and Palumbo (1973). 

Interpolation among known lines is accomplished with averaged residuals 

from a Hartmann fornrula; this results in a relative wavelength scale 

accurate to ± 1 A at 1500~ and ± 3 ~ at 2000~. It is not always possih10 
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Plate No. 

8L3-034-

8L3-230 

SL3-263 

-~~'-~.~-'-'~-........... -.~~.--'....-.-. ..... ____ .....,..,...,..~_ 7' _, ,_ 

TABLE 1 

TIME OF OBSERVATIONS 

Date & Time Exposure Started 
(1973) 

Aug. IOa21h52m54-s 

8ep. 5dl4-h4-lmOSs 

Sep. 21d09h56m32s 

Exposure 

227s 

956s 

232s 

Phase 

0.25 

0.25 

0.50 

Remarks 

>
";j 
';j 
ro 
::l 
0. 
)-'. 

>< 
c 

Well exposed from 1320 to 19QO A. 
Overlap from 1560 to 1700 A. 

Well exposed from 154-0 to 1900 1\. 
Overlap from 154-0 ~ shortward. 

Well exposed from 1500 to 2300 ~. 

I 
U1 
I 

--".",. 

._ ... ~---i 

--1 
! 

j 

j 
i 

~------------ --~----- -J"--, 
,,- titl "Ii.... it ,~-...... "-"", ... 

,l; 

'--~.~ .... ~", ..... ~"",~,,,,<_'i."'."""""'&._. __ .~ ,~."_., ___ .... ,_' __ ,~'~~ .......... _~ __ .~._. __ ~ 



• • v .. 

'iii' 
o 

III Ii • 
tii 0/1 0/1 

o--~------------~~--

0-----------

o 
I 

~ ~ 

0--------

• ;;; 111- •• 
u u uu 

.. -- c u 
... .. B!!IIi 'i' 
u l:::c i ztJI z 

i\JlI'f'llClix n 

.. • ail 
~ C ¥tV 
I 

-----0 

------0 

Figure 1 Relative Intensities in the ectified Spectra of Lyr, 
p Leo (Bl lab) and HD 156385 (We7) . The three exposur of Lyr 
are plotted with the same zero-point: SL3-03~; • • • •• S 3-
230; ----- SL3-263. Regions of slight overexposure or overlap are 
indicated by thinner curves. Suggested line identifications are 
indicated; strong emission lines in the solar chromosphcric spectrum 
are m rked with " " 
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to line up different traces perfectly, due to small second-order 

changes in the dispersion function with field position. Thus some 

of the apparent wavelength shifts in Figure 1 may not be related 

to Doppler shifts. 
o 

Several conspicuous emis.sion features shortward of 2200A 

are listed in Table 2. Less prominent features which appear in 

at least two of the three spectra are listed separately in Table 3. 

The line identifications given are frequently at variance with 

those of Hack (1974) which were based on lower resolution data. 

After noting several coincidences between strong emission lines in 

the solar chromosphere and emission features in ~ Lyr, we gave high 

weight to chromospheric lines in making the identifications. In 

general, preference was given to lines of the lighter elements 

lying closest to the measured wavelengths. We found that a large 

fraction of the mid-ultraviolet emission lines in S Lyr are most 

reasonably identified as due to intercombination (TTsemi-forbiddenTT ) 

~ransitions. 

Two interesting characteristics in the behavior of the emission 

lines should be noted. Although each plate has a restricted wave-

length range in which reliable spectrophotometry can be carried out, 

some real differences are seen in the line strengths. First, the 

C IV doublet around 1550 ~. is probably weaker at phase 0.5 than at 

phase 0.25. This variation agrees with the Copernicus observations 

at wavelengths shortward of about 1420 ~, which showed that the 

emission lines are generally weaker at phase 0.5. Second, some of 
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~vavelength (A) 

..---~...........-.--

1335 

1394 

1403 

1549 

1855 

1892 

1994 

2081 

TABLE 2 

PROMINENT EMISSION LINES 

Identification Term 

C II (1335.71, 34.53) 2p 2po _ 2p2 2D 

Si IV (1393. 76) 3 2 2po s S - 3p 

Si IV (1402.77) 3s 2S 3p 2po 

o IV multiplet 2p 2po _ 2p2 4p 

C IV (1548.18, 50.77) 2s 2S _ 2p 2po 

Al III (1854.72, 62.79) 3s 2S _ 3p 2po 

C I (1855.4) 2p2 ID _ 2p3 3Do 

(Fe II multiplet 7) 

(Fe III multiplet 63) 

Si III (1892.03) 3s2 IS _ 3p 3po 

(Fe III multiplets) 

C I (1993.62) 2p2 lD _ 3s 3po 

(Fe III multiplet 81) 

Al II (2081.5, 87.0) 3p 3po _ 3p2 ID 

(Fe II multiplets) 

(Fe III multiplet 48) 

Upper State 
E. P. (ev) 

9.3 

8.9 

8.8 

8.8 

8.0 

6.6 

8.0 

6.6 

7.5 

10.6 

Ratio of emission 
at Phase 0.5 to 
Phase 0.25 

(0.7) 

2.3 

2.1 

(1. 4) 

(2.5) 

1 
~ , 
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Wavelength (A) 

1578 

1591 

1620 

1692 

1750 

1909 

1940 

2058: 

2143: 

2228: 

2297 
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PROBl\BLE E:MISSION PrJ\'l'URBS 

Identification 

C III multiplet 12.03 

C III (1591. 44) 

C III (1620.07, 20.33) 

? Ni III (1692.51) 

N III (1748.61, 49.67) 

N III multiplet 19 

C I (1751.83) 

C III (1908.73) 

? 

Cr II multiplet 1 

N II (2142.8, 39.0) 

? P I multiplet 3 

C III (2296.9) 

Term 

3d 3D - 3d' 3Fo 

3s IS _ 3s' Ipo 

3p 3po _ 4d 3D 

a 5F - Z SGo 

2p 2po 2p2 4p 

2p2 2p _ 2p3 2Do 

2p2 IS _ 3d Ipo 

2s2 IS 2p 3po 

6S 6po a - Z 

2p2 3p _ 2p3 5So 

3p3 2Do - 4s 4p 

2p 1po - 2p 2 ID 

1 'ppe!' S I:n lE' 
E. P. (e\) 

39.9 

13.9 

7.1 

25.2 

9.8 

6.5 

6.0 

~.H 

6.9 

18.1 

1 
1 
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On the Skylab plate of best quality, SL3-263, there is some 

indication of bifurcated emission lines. In the ground-based 
o 

spectra, we see Hfl at 4861A as bifurcated emission in both plates 

and no absorption component is seen. In the June 16 data from Kitt 

Peak, the shortward component is much weaker, while in the September 

27 spectra both emission components are nearly equal in intensity. 

The He I A4471 line appears with a P-Cygni profile in June; the 

same line observed in September appears as a rather complex feature 

with relatively weak emission at both ends and near the center of 

absorption. The same is true for He. The He I line at 402SJ\ has a 

P-Cygni profile with a weak emission wing in June; in September, the 

lr.mg\'J'ard emission is even weaker and there is a possible emission near 

the center of absorption. Whenever there is emission near the center 

of absorption, the absorption width itself becomes noticeably wider. 

The He I A3888 line has a prominent P-Cygni profile in the June data; 

in September, the P-Cygni profile persists but with a weaker emission 

component on the shortward side of the emission as well. The He I 

line at 3819~ in June is essentially an absorption line with a 

suggestion of its being a very weak P-Cygni line; it has an appearance 

of a normal absorption line in September. The remaining Balmer lines 

shortward of He appear as noronal absorption lines in both plates. To 

summarize, in the June spectrum, the shortward emission is considerably 

weakened or non-existent, whereas, in the September spectrum, the 

shortward emission is present wheneveI' the longward emission exists. 

The longward emission tends to be strc:nger in June than in September; 

in P-Cygni features, an emission is also present inside the absorption 

in the September spectrum and the absorption itself appears wider. 
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~le emission lines in the vicinity of 1900~, notably A1855 and 

A1892, are stronger at phase 0.5 than at phase 0.25. This will be 

discussed further below. 

The general flux level drops rather abruptly shortward of 

about 1700 ~ for phase 0.5 while no such decrease is seen at phase 

0.25. Although some change in slope might be expected on the basis 

of the OAO-2 filter photometry for this binary (Kondo et ale 1971), 

most of the decreased intensity at shorter wavelengths on plate 

SL3-263 can be accounted for by the decreased reflectivity of the 

articulated mirror during the second Sky1ab mission. This is con-

firmed by the spectra of non-variable stars in the same field. 

The C II A1335 emission feature (Hack et ale 1975) which is irre-

gular1y variable in S Lyr (Bless and Eaton 1975) is clearly visible 

on plate SL3-034; the other plates are not usable in this region. 

At least two absorption lines are found in the Sky lab spectra 

of 8 Lyr. One at 1463 ~ is probably due to a C I transition from 

a metastable state. The line at about 1565 ~, especially strong 

and broad on plate SL3-263, is not easily identified. 

Ground-based spectra in support of the Sky1ab observations 

were obtained by Abt at the coude focus of the 84-inch (2.1 m) 

telescope at Kitt Peak National Observatory. The exposures were 

made at the dispersion of 16.8 A mm-'covering the range from about 

o dhm m dhm Tn 3S00 to 5000 /" on 1973 ,Tune 16 6 19 -22 and 197'3 September 27 2 q., -IfC; 

1 (U. '1'.) • The phases at the time of these observations were computed 

t 
as (J.98 and 0.93, respectively. ThE!se phases as well as the phases 

, 
': 
5 given in Table 1 were derived from the recent light elements by 

Herczeg (1973). 

1 
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III. DISCUSSION 

It is not clear if these changes in spectral features in the 

coude observations are due to the small differences in phases 

and/or to the changing pattern of the mass flow in a Lyr. (That 

is why we have preferred to refer to the data by date rather than 

by phase.) It does demonstrate that a turbulent gas motion on a 

massive scale is going on in this binary. Disappearance or weaken-

ing of shortward emission components at phase 0.98, which are present 

at phase 0.93, indioates stratification of the gas streaming and/or 

the presence of several emitting regions with different characteristic 

velocities. Such a picture of the circum-binar'y gas is basically in 

accordance with the ultraviolet results including the current study. 

The broad absorption feature longward of the C IV A151t8, 1551 

doublet at phase 0.5 might be interpreted as due to a stream rich in 

C IV moving away from the observer, perhaps re-entering the binary 

system in the line of sight to the primary. The center of this 
o 

absorption is displaced from the emission peak by nearly 20A implying 

that the velocity of the gas stream would be ~OOO km s-l. On the 

other hand, the feature might be due. partly to C 1)"1561. This would 

add to a complex pattern of C I absorptions and emissions which appear 

to be present in B Lyr: absorption at A1463 flanked by emiss:ion at 

),,1470 and probably ),,1459; possible time-dependent absorption or 

emission at )"1561; probable weak emission at )...1657 (strong in the 

solar chromosphere); and strong emission at ),,199 .. 4-. 

Although the spectrum ofB Lyr is unique, it is of interest to 

compare it with two classes of stars which h:.'1ve at least some of the 

lines in common; early B supergiants and WC stars. Therefore the 

8-019 and HD 156385 are displayed 
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There is almost an inverse correlation between the spectra of 

p Leo and 8 Lyr; many absorption lines in the supergiant, notably 

\i855 and A1892 as well as the Si IV and C IV resonance lines, 

are found in emission in 9 Lyr. At the present resolution, however, 

we cannot be sure that the very same transitions are involved. For 

example, Fe III is probably more reasonable than C I] for the A1994-

absorption feature (which happens to be more prominent in the Bl 

Ib star C Per than in p Leo). The \1892 feature is probably due to 

Si II!], in the extended atmosphere of the supergiants as well as in 

the S Lyr syst2m, since the lower state is the ground state. The C IV 

profile in p Leo indicates the rather strong mass outflow. The 

strong C IV emission in ,S Lyr,confirms Copernicus observations indicating 

the existence of a substantial emitting region with a rather high degree 

of I ·iGmization. 

The C IIIJ A1909 emission)strong in HD 156385 and requiring a 

gas density ~ 1010 cm- 3 or less. (Osterbrock 1970), is possibly present 

in e Lyr with fairly constant intensity, while the nearby Si III] 

line changes strength~ Also, He II \164-0 emission which is strong 

in the we star is weak or absent in S Lyr, a surprising result, yet 

one which is consistent with the null result for He II ).1085 from 

Coprirnicus (Haok et a1. 1976). C III \ 2297 is probably present in .-
A Lyr at both phases. Some of the most definite coincidences between 

6 Lyr and the WC star are weaker features not previously identified 

in the WC stars (JIenize et ale 1975a). The A1994- feature was listed 

by these authors with an estimated wavelength at 2005 'fA. The 

strong emissions in S Lyr in the range 1994-;,..2143 seem to be present 

in the WC star. Si III A 1501 emission may be present both ;ill e Lyr 

and in HD 156385. We note that the A 1724- (Si IV) and A1808-1817 

HD 156385 had been considered more 
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N IV A17l8 and N III A1805 by Henize et a1. (19750). However, the 

S-019 wavelength calibration is now firm enough to suggest that the 

silicon identification is more likely than nitrogen. Si IV A1724 

or metastable Al II A1725 may be in absorption in ~ Lyr; on the 

other hand, there may be emission from N IV A1718. 

The behavior of the emission lines in the vicinity of 1900~ 

appears to explain the unusual behavior of the OAO-2 light curves for 

~ Lyr. The light curve at 19l0~ shows a lesser amplitude than those 

at longer and shorter wavelengths (Kondo et ale 1971). It was speculated 

that the emitting gas clouds which contribute significantly to the tntal 

light of the system are located in the Lagrangian triangular' points Ll4 

and L5 (Kondo et a1. 197 -.J • If the light variation of ~ Lyr in the 

ultraviolet, at least shortward of ahout 2200~, is due.1 to a significant 

I 
> 

extent, to the viewing angle effect of an emitting gaseous cloud surround-

ing the binary which l'llay h~ve the appearance of a dumb-bell or ellipsoid 

(Kondo and McCluskey 1974), additional clouds located at L4 and L5 can 

have the effect of making the eclipses shallower. 

How do we explain the requirement that the gas clouds located at 
o 

L4 and L5 emit mostly near 1910A? After examining the second round 

of Copernicus observations obtained in 1974, Hack et ale (1976) conclude 

that the far ultraviolet emission lines are not radiatively excited bl~t 

collisionally excited. Their results indicate localization of different 

emission lines which is interpreted as being due to the characteristic 

energy of electrons in a particular zone which may preferentially excite 

certain lines because of their optimized excitation cross-section. One 

may then speculate that those lines around 19l0~ have excitation Cross-

sections that are optimized for the characteristic electron energy that 

prevails in the neighborhood of the 14 and 15 points. 
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The lines in this wavelength region represent somewhat lower 

ionization energies than the far ultraviolet lines identified in 

the Copernicus scans. Most of the strong solar chromospheric lines 

in the 1900~ region (the main exception being Si II AA 1808, 1817) 

are present in S Lyt'. Although the relative strengths are different, 

this suggests some similarity in electron densities, which al"'e in the 

10 11-3 range 10 - 10 cm in the solar transition region (Gingerich et a1. 

1971; Dupree 1972). The several intercombination transitions identi-

fied in the present study offer additional evidence that the energy 

levels are collisionally rather than radiatively excited. Most of 

the emission lines arise from levels lower than 20ev; if recombinations 

were significant in the gas around S Lyr, the high-excitation He II 

'A1640 (48 ev) and Al085 (52 ev) emission should also be seen. Apparently 

the gas responsible for most of the lines seen in the Sky lab spectra 

h d 't' ~ 1010 -3 d . 8 0 th th ° ° to as enS1 1es ~ cm an mean energ1es ~ ev, W1 e 10n1za 10ns 

being due to the high-energy tail of the electron velocity distribution. 

IV. CONCLUSIONS 

The ultraviolet spectra of S Lyr obtained at phases 0.25 and 

0.5 from Skylab show that n:ost of the emission lines near 19l0~ 

are stronger at phase 0.5 than at phase 0.25. This i6 possibly 

because these emissim lines arise from the clouds located around 

the Lagrangian triangular pOints, L4 and LS. This behavior of the 

emission in the vicinity of 19l0~ explains the shallowness of the 

OAO-2 light curve at that wavelength. collisional excitation of 

emission lines by electron streams with different characteristic 
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energies may give rise to segregation of various emission lines ill 

the ionized gas surrounding this binary. 

Moderate to high spectral resolution observations are needed at 

all possible wavelengths in order to continue to unravel the physical 

processes in the R Lyr system. The current observations were obtained 

only at phases 0.25 and 0.5. Observations in this spectral region 
o 

(1400-2500A) at other phases, especially at phases 0.0 and 0.75, are 

needed to verify th~~ results presented in this report. Such observations 

are being planned with the International Ultraviolet Explorer (IUE) 

scheduled for launch in 1977. 

We express our thanks to the Skylab II crew who obtained the 

observations for us and to the many personnel at Johnson Space 

Center who assisted in the flight planning and scheduling of these 

particular observations. We also wish to express our sincere 

appreciation to Dr. Helmut A. Abt for obtaining numerous coude 

spectra in support of the Skylab S-019 observations. We thank Drs. 

G. Shields and D. Lambert for their comments on the manuscript. The 

S-019 data reduction and analysis at the University of Texas is 

supported by NASA contract NAS-8-3l459. 
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SI<Yf,AB nT.'I'HJ\VIOr.E'l' STELLI\R SPJ;CTHI\: 

COOL STARS WITH HOT SECONDARI ES 

S. B. PARSONS*, J. D. WRAY*, Y. KONDO t
, K. G. HENIZE*t, and 

G. F. BENEDICT* 

Received May, 1975 

ABSTRACT 

A hot companion to the G5 III star HR 3080, a single-line 

spectroscopic binary, has been discovered from spectra in the 

vacuum ultraviolet. The companion must be a subdwarf or pre-

whi te dwarf. A list of previously known (; Aur- and W Cep-

type systems observed with the ultraviolet spectrograph on Skylab 

is also given. 

Subject headings: spectroscopic bina:des--subdwarfs--white 

dwarf stars--spectra, ultraviolet--stars, individual 

*Department of Astronomy, University of Texas at Austin 

fJohnson Space Center, Houston 
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1. TNTRODUCTION 

/\n ob.jective pr.isllI Sl1l'VC'Y oj' ~)~~ of' Ll1(~ sky to wilvelengL-hs 

as short as l300~ was cnrr.lpcl out durIng the three ?1~~1.C)!? miss tonti. 

The instrumentation and representative spectra for stars of type 

B5 and earlier are described by Jlenize et al. (1975). We report 

here preliminary results of a sea:'ch for cool stars with anomQ-

lous excess brightness in the far ultraviolet. All stars with 

spectra observed to shortward of 2600~ have been catalogued, and 

although a detailed comparison with available stellar catalogs is 

still in progress, a few outstanding anomalies have already been 

detected and are discussed below. Flux data together with derived 

temperatures and absolute magnitudes for the companions will be 

reported later. 

II. HOT COMPANION TO HR 3080 

HR 3080 (= a Pup = HD 64440, V = 3.70) clearly shows a stronger 

ultraviolet continuum (figure 1, Plate ~ than is normal for a 

G5 III star. This spectral classification is by Woods (1955) at a 

resolution of about l~. The star is known to be a single-line 

spectroscopic binary (Wright 1905; Christie 1936) with P=2660 days, 

but even in the near UV there is no photometric evidence of a hot 

companion. In fact, l3-color photometry (Mitchell et al. 1974), 

which includes magnitudes at 3370 and 3530~, shows an energy distri

bution similar to that of the G8 III star :It Aur (Mitchell and ,Johnson 

1969) and redder than that of most other G giants. Allowing for 

possible interstellar reddening, these data indicate that the second-

ar.y·in HR 3080 is fainter than the G primary by at least 2 1/2 mag. 
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o Tau G8 m 3.57 

HD 65440 86 m 8 .0 

HR 3080 GS m ? 3 .70 

26 Aur GS m A3 V: S.40 

HD 57091} {84 nz : 9 .3 

-240 5177 GOm : 9.S 
I I I I I I I I 

0 

1600 18 20 24 30 5000 A 

- 26° 4 165 8 1- 2 V: 9.S 

HR 2786 / ~GOn 5.27 

HD 57326 - - - AO 8 .7 

Figure 1 . Ultraviolet Objective-Prism Spectra of some of the Stars 
iscussed and Comparison Stars. Visual magnitudes are given after 

the spectral types which in some cases are newly derived . HR3080 
shows radiation from a subluminous UV companion probably B6 or 
earlier. HD 57091 overlaps a G-type star and has too flat a spectrum 
for its HD type of AG . Apparent excess flux from HR 2786 may be due 
to overlap from a B-type star' a nearby AO star demonstrates the 
normal unwidened spectrum width and the characteristic slope for 
early A-type stars . 
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in ll. A McDonald spectrogram (see section III), well-exposed in 

the near UV, shows perhaps a hint of contamination by a B-stal' 

spectrum. The Ca II K-line is weaker than usual, \vhereas Bnlm(~l' 

lines appear slightly enhanced and other lines appear normal. 

The Celescope photometry (Peytremann and Davis 1974) shows 

anomalous brightness in the U3 band (Aeff"'" 16001\), but this fact 

has not been commented upon. The U3-V value j s simi lar to tlHlt 

for HR 2786, shown in section III to have a hot star nearby. There 

are no other Durchmusterung stars near HR 3[)8() and the Palomar Sky 

Atlas southern extension (red print only) shows no stars in tlle 

vicinity which are lil<ely to be contaminating the measurement. 

Our SkyJ-aq observations of HR 3080, obtained on 3() December 

1973, extend to about l700~ and show, shortward of about 2600~, 

fluxes similar to the stars HD 65440 (m = 8.0, type B8) and 65656 
v 

(mv = 7.9, type B5) which are on the same exposure. A McDonald 

spectrogram of HD 65440 gives an MK type of B6 IV. The reddening 

of these stars is apparently small. The UV energy distribution of 

HR 3080 shows a definitely higher temperature than that of the A3 V 

companion (m """ 5.4) to 26 Aur. On the other hand, the IN spectrum 
v 

is not dissimilar to an unwidened spectrum (not shown) of tlle ex-

tremely hot 10th mag. suhdwarf CPD-3lo170l (Garrison and Hiltnel' 

1973). This leads us to conclude that a definite temperature und 

visual magnitude should not be assigned to the hot companion of 

HR 3080 until a more accurate measurement of the flux distribution 

is made. However, for discussion purposes a preliminary estimate 

of spectral type ~ B5 (Teff ~ 15000K) will be assumed for the secondary, 
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giving U-V s; -0.6. Combined with the above constraint on the 1]('.'11' 

UV brightness of the secondary and the measured U-V = 1. 80 for' 

\lR 3[)Hfl, th is gives fI dlff('l'enCe in visual mag. 6 V ~ 4.9, OJ' \~ 

~ 8.6. The far nv flux appears to indicate V 2 ,,::; 9. 

Both the parallax (O~f023) and luminosity class give a visual 

absolute magnitude of about +0.5 for the G star. The ultraviolet 

companion thus has M ""' +5.5, which is approximately 6 mag. below v 

the main sequence at class B6. This star' is evidently a subdwa'd' 

lying somewhat above the normal white dwarf sequence. 

I 

Since the mass function of the system is known to be 0.35 I}' ~I 

(Batten 1967) we may estimate the mass of the secondary by assundng 

a reasonable mass for the primary. According to Popper (1966), 

G giants range in mass from 2 to 4 'J) 10 which leads to a lower linli l" 

for the secondary of 1. 7 ?lt0. This is greater than the Chandrasekhar 

limit and suggestslthat this star might be a Population I analog 

of the extended horizontal branch stars (Greenstein and Sargent 

1974). However, the lower limit for the mass of the secondary is 

reduced to 1. 4 ?-,/ (,J (within the Chandrasekhar limit) if the primary 

mass is reduced to 1.4 ~G. In view of the uncertainties in the 

masses of G giant stars and in view of the further uncertainties 

introduced by the evolutionary effects discussed below it is possible 

that this star is a partially degenerate star on its way to the white 

dwarf sequence. 

Following current theories of stellar evolution, it is reasonable 

to assume that the hot subluminous component has evolved through a 

""! 

I 

1 , 
! 

I 
I 



r -~ _._,----
! 

J 
I 
I 

I 
I 

J 
, 

.. 

I 
J 

-6- Appendix t 

giant or supergiant phase. Since the orbital radius is 5 - 7 All 

for any reasonable value (2 - 7'1;') of the combined mass of the system, 

mass transfer probably took place in this system when the present 

secondary reached its giant or supergiant stage. If the ~econdary 

became a supergiant, mass transfer must have been significant. 1'h~ 

effect on the evolution and properties of the companion receiving 

the mass is, however, poorly understood at the moment (~, Kondo 

1974) . 

The high eccentricity of this binary (e=().4) suggests that the 

secondary may have experienced a supernova explosion. Although an 

eccentric orbit does not necessarily call for u supernova exp10siol1, 

such an event almost inevitably turns an originally circular orbit 

into an eccentric one with a greater orbital radius (~, McCluskey 

and Kondo 1971). In this case, the explosion would probably strip 

away part of the envelope of the current primary and result in its 

current mass being less than normal. 

The question of the masses of these stars may be resolved by 

radial velocity measures in ultraviolet spectra of the secondary 

and by observations of a possible eclipse effect on the secondary. 

We are proposing to perform such observations with the InternationllL 

ULtl:'aviolet Explorer (IUE) satellite scheduled for launch in lCJ77. 

Radial velocity observations in the blue are aLso Meded·to update 

the spectroscopic orbit in order to refine the date of next periastron 

passage, estimated to be in late 1978 • 

III. CATALOG ERRORS AND DEFICIENCIES 

Several apparent cases of anomalous G stars turned out to be 
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due to errors or deficiencies in the star catalogs. In some cases 

an early-type star, not contained in the SAO Star Catalog on which 

most of our identification work is based, is close enough to the 

G star to produce the observed spectrum. In other cases the listed 

SAO spectral type appears to be in error. A few instances are worth 

noting here. 

When possible, where there is insufficient or nom~xistent 

previous spectral information on the UV source, we are obtaining 

ground-based spectral classifications to aid our tie-in with visible-

wavelength studies. The spectrograms, photographed by Wray with tile 

91 cm reflector at McDonald Observatory using the Meinel spectrograph 

with Bowen Schmidt camera and two~·stage RCA image tube, are DormaDy 

widened to 1.2 mm with a dispersion of 82~mm and resolution nearly 

the same as that of the Kitt Peak Atlas (Abt et ale 1968). 

HD 57091 (= CoD -2~05178, m = 9.3, type AO) is not in the SAO 
v 

Star Catalog and was originally identified by us as the SAO star 

CoD -2~05177 (m = 9.5, type G) less than lT away. However, nrter' 
v 

proper identification some discrepancy still exists, the UV flux 

(figure 1, Plate ~ being considerably too bright for an AO star 

of that magnitude. Slightly-widened (0.3 mm) McDonald spectrograms 

give spectral classes of about B~ IV and GO III for HD S7091 and 

- 24-0 5177, respectively. Thus the HD class AU is inaccurate and the 

UV energy distribution is now accounted for, although the flux level 

suggests that m is -D.5 mag. brighter than given for HD 57091. 
v 

HD 20~185 (=BD +6002234-, m = 8.1) has an HD spectral type of 
v 

GO but is far too bright in the ultx'aviolet. We find from Bidelman T s 
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spectral data file that Petrie and Pearce (19Gt:!) classified it <t!-i 

B:1e. The HD class thus appears to be in error. 

1m 36781 (= I3]) -OJ ° 948, m = 8.5) is erroneously listed Ily 
v 

the SAO Star Catalog (star no. 132266) as having spectra 1 type' 

F2, whereas the HD type is I39 and the ]11K type :,is 136 V (Scbild and 

Chaffee 1971). 

HR 2786 (= HD 57146, V = 5.27), a GU II star, was noted by 

Parsons and Peytremann (1973) to be abnormally bright in the 

Celescope U
3 

band, but since no companion was known they suspected 

chromospheric emission ClS the cause. The unwidened exposure illllS-

trated in figure 1 (Plate __ ) shows that a strong UV contirl'lum 

exists which may be due to lIR 278G and/or a faint star nearby. 

Further research shows that it is most likely due to the other stnr', 

CoD -26°4165 (= CPD -26°1974, m = 9.5, not in SAO or HD), separated 
v 

by 2!2. There is nothing abnormal evident in a near-UV McDonald 

spectrogram of HR 2786, while a slightly-widened (0.25 mm) spectrum 

of -26°4165 shows it to be an early I3 dwarf, probably Bl-2 V. Thus, 

although the ultraviolet observations do not rule out a hot, faint 

companion to the GO II star, they are best explained by contamination 

from the nearby 13 star. IUE observations can settle this question. 

IV. OBSERven COOL GIANTS WITH KNOWN HOT SECONDARII:S 

We list in table 1 the known (. Aur, W Cep, and similar systems 

which were photographed from Sk~lab, along with the times of the 

exposures and an approximate measure of the extent of the spectrum. 

The spectral types are taken from the literature. These systems will 

be discussed in detail later, and we solicit recent observations and 

other relevant information. 
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TABLE 1 

OBSIJ{VI~D SYSTEMS WITH KNOWN HOT S r:c: ON ])J\ R 1 T~S 

Name lID Spectrum Obs. A>}: Time 
JD 24-4-0000+ 

-!D 4-4-92 101379/80 GO + AO 2200 1839.3S 

-lR 64-97 157978/79 G2 Ib + AO 2000 1916.1[J 

\X Cir 130701/02 G3 IIv.+ B8: 24-00 1910.LJ6 

~6 Aur 37269 G5 III + A3 V; 1800 2031.16 

·rR 5667 13534-5/4-6 G5 Ia + B (24-00) 1907.55 

Per 18925/26 G8 III:+ A3: 1700 1925.11 

-lR 3385 72737/38 KO III + A3 1800 2037.25 I 
II Cyg 192577/78 K2 II + B3 V 1600 184-0.4-0, 1905.34- i 

'I 

32 Cyg 192909/10 K5 I + B3 V 2000 184-0.4-0, 1905.34- 1 
I 
1 

Aur 32068j69 K5 II + 136 V 1600 1937.22 ~ 
213310/11 MO Ir.lb 2000 1910.4-6 

1 Lac + B I Sco 14-84-78/79 Ml Ib+B + B4- V 1300 1911.4-9 1 

203338/39 
j 

IR 8164- Ml Ibep+B + B2 V 1700 1917.39 

I IR 2902 604-14- M2 Iep + B2 V (2000) U 2013.16 
1 

IV Cep 208816 M2ep I + B 2200 1917.59, 193(J.53, 2U37.2l 1 
1 

'Shortest wavelength at which definite flux was recorded in-4 min. 'widened exposure, 
or L~ 1/2 min. unwidened (U). 
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SKYLAB ULTRAVIOLET STELLAR ASTRONOMY 
EXPERIMENT S-019 

Fred G. OTCallaghan, Karl G. Henize, and ,James D. Wray 

ABSTRACT 

An objective-prism stellar spectrograph of IS-cm aperture 

was flown on all three Sky lab missions. The wavelength 

region fro~ 1300 to SOOO~ was covered by a special dptical 

system containing a combination of reflecting telescope 

optics, a CaF2 objective prism and an achromatized field 

corrector lens system of CaF
2 

and LiF. Observations of 

188 star fields, each covering 4.0 x 5.0 degrees, were 

conducted at the Skylab antisolar airlock with the aid of 

an articulated mirror system CAMS) which allo\led acquisition 

within a 30 degree by 360 degree band of the sky. 

Fred G. OTCallaghan - Bollr;>r & Chivens Division of Perkin
Elmer Corp., 916 Meridian Ave., S. 
Pasadena, CA 

Karl G. Henize - The University of Texas at Austin, Austin, 
TX, and Johnson Space Center, Houston, TX 

James D. Wray - The University of Texas at Austin, Austin, 
TX 
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I. Introduction 

Objective-prism and objective-grating spectrographs are ideal 

instruments for obtaining large numbers of moderate resolution 

stellar spectra which are useful for classification purposes and 

to search for peculiar stars. It is particularly desirable to 

obtain a large statistical sample of such spectra whenever a new 

wavelength interval is being explored. Therefore, when the UV 

region became accessible with the advent of orbiting spacecraft a 

number of such instruments were devised and employed to explore the 

characteristics of UV stellar spectra. This paper describes an 

objective-prism spectrograph which has been used to survey stellar 

spectra in the 1300 to 3000 1 wavelength region to a limiting V 

magnitude of about 6.5. 

In 1965 a study was undertaken at Northwestern University to 

design a compact spectrograph which could operate through the 

scientific airlock then planned for the hatch of the }\...RQl.l.Q. command 

module. Practical limitations were set by the aperture of the air-

lock (8 x 8 inches) and the very limited volume available for the 

stowage of the instrument. The stowage location was the volume later 

to be used for one of the lunar rock boxes, it being expected that 

the spectrograph would be flown only during the early earth-orbiting 

phase of b.E01lo. These limitations .Led to a IS-cm aperture J:'/'1 moc1j-

fied Ritchey-Chretien optical system employing a qO objective prism 

of caldum fluoride (CaI'2) as the dispersing element. The manufac

ture of five units was begun in 1966 and completed in late 1067. 

Unfortunately, the l\)2o_LLo fire in ear] y 1967 resulted in therernovCl L 

of the scientific airlock from the Command Module hatch and it vws not 

possible to carry out the anticipated observing program jn tlE early 
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phases uf .ill?.2l1o.. Instead, the proj ect was transferl'ed to the 

Skylab program and was eventually operated on all three of the 

~ky~ab missions. Operation from Skylab required slight modifications 

to the spectrograph (mainly a quick change mechanism for film magazines) 

and the addition of an articulated mirror system (ANS) which would 

allow the spectrograph line of sight to be pointed over a large area 

of the sky since maneuvering Skylab for experiment pointing \'Jas not 

feasible. 

II. Spectrograph Optical System 

The basic optical components of the spectrograph comprise an 

objective prism and a camera. Auxiliary optical systems include a 

finding telescope and a focussing microscope. 

The camera consists of an f/3 RitcheY-Chretien system with a 

two-element achromatized astigmatism corrector and field flattener. 

Dimensions are listed in table 1. Both the primary and secondary 

mirrors are of fused quartz. The surfaces are hyperboloidal and 

are coated with aluminum overcoated with magnesium fluoride cptimized 

to provide maximum reflectivity in the 1300 to 2000~ regioT'.. 

The front COl'rector element is CaF 2 and the rear element is 

lithium fluoride (LiF). The front cox'rector surface is a free aspheric, 

the two inner air-spaced surfaces are spherical and 1'21lr surface is flat. 

Longitudinal chromatic aberration in these elements is negli~ible from 

1400 to 3000A but significant lateral chromatic aberNltion is present. 

At a distance of 10 mm off axis the 1600A and lll-GOA images are displaced 

73 and 185 \l m tOi>lard the plate center relative to tl~ 200GA image. 

When operated without the prism the system produces low dispersion spectra 

for whic11 the orientation and dispersion vary with field position. Such 

a mode was occasionally used during the ~kylab observations to obtain 

information on very faint objects. The image quality obtained by the 

bHSiC' design is illustrated jn fiS'1.lI'e 1. 
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Table 1 

Dimensions and Performance Data For The S-019 Spectrograph 

Objective prism aperture 

Primary mirror aperture 

Secondary mirror aperture 

System EFL 

Plate scale 

Field size 

Image diameter (maximum) 

Wavelength resolution 
(corresponding to 33 \J m) 

,0 ~ 

14fHlA 

15.88 em 

15.21+ em 

7.62 em 

1+5.72 em 

1+51 arcsec/mm 

1+.0 x 5.0 deg 

33 \Jm @1600A (= 15 arcsec) 

2A @ 11+00A, 12A @ 2000A, 1+2A @ 2800A 

10 aresee 

• 
I rlJOA 

.~ oI ....... l ~ 0 

·4..)"~ .. II.I.,I" .. ·l 

l ... "olou., .. ,,~ .. v.~ 

"'-'1I>11"""\H"o.\""'''' 
.... ,"'-" ",u-,.Il' 

't...." "..,4 i.. .,f' 
'Y,~.V 
'\:q~ 

• 
• HJIIO" 

figure 1. Ray Tracing Diagrams Showing the Theoret:ical Image Quality 
at Several Wavelengths and Several Field Angles. 
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The 4° objective prism is fabricated of CaF2• The procurement 

of suitable material for these prisms was one of the greater challenges 

of this project. A facility was established at Northwestern University 

to measure the UV transmission of the CaF2 prior to its acceptance 

and a cooperative effort was undertaken with Harshaw Chemical, the 

supplier~ to test their entire stock of 8-inch boules. Only one was 

found to provide the uniformly high transmission desired but this was 

not sufficient to supply all the elements required. A year's experi-

mentation and the construction of a new, larger furnace by Ha~shaw 

was required before a second satisfactory boule was obtained. 

Problems with mounting the objective prisms were also encounter/ad 

since CaF2 is an easily deformed material. The initial method of 

mounting using special silicon rubber gaskets was not successful since 

the gaskets introduced sufficient strain to warp the elements. The 

solution to this problem Nas found by potting the prisms in their 

aluminum cells with an RTV compound. 

Another technological challenge was the figuring of a free 

aspheric on the front surface of the CaF2 corrector element. This task 

was und~rtaken by the optician, Frank Cooke, who, after considerable 

experimentation, evolved a fabrication method which produced corrector 

elements of high quality. 

A finding telescope of 2.54--cTTl aperture, 7X magnification and 7° 

field was provided for visual confirmation of telescope pointing by 

the astronaut. A pressure seal window was provided at the rear of the 

optical canister. The lamps illuminating the reticle are powered by a 

rechargeable nickel-cadmium battery so no electrical interface to 

spacecraft power was needed. 
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A ,OX :focus mioroscope was incorporHted into the film maga~dne 

to allow for visual verification and adjustment of camera focus. This 

system was useful in initial laboratory optical testing and it was also 

anticipated that it could be used for refocussing the camera in orbit. 

However, the mechanical and thermal stability of the camera was such 

that such refocussing was never required. 

Howard Padgett of Cook Electric Co. was the optical engineer res-

ponsible for the design of these optical systems and their translation 

into an operating instrument. 

III. Spectrograph Mechanical Components 

The spectrograph consists of two major components - an optical 

canister and a film canister. The optical canister houses the prism 

and camera optics as well as the objective section of the finding 

telescope. The film canister houses the film slides, the shutter and 

film transport system, the eyepiece of the finder and the focussing 

microscope. The general configuration of the spectrograph is illustrated 

in Figure 2. 

Both canisters were fabricated from aluminum castings. Since these 

canisters became a part of the spacecraft pressure llull when the airlock 

door was opened, their structural integrity was subject to stringent 

specifications. It was required that the casting meet class 1 x-ray 

specifications as well as dye penetrant and vacuum leak tests. However, 

meeting the x-ray specifications was found to be impossible and finally 

class 2 castings were accepted and a hydrostatic pressure test to IOO 

psi was accepted by NASA as sufficient proof of structural integrity. 

The canisters were sealed to each other and the optical canister was 

sealed to the AMS by vacuum flanges incorporating double row Viton ItOI! 

rings and special Gask-O-Seals designed for the purpose. Vacuum tight 

covers were provided so that both canisrers could be evacuated for stowage. 
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Figure 2. Diagram showing the Optical and Mechanical Components of the 

Objective-Prism Spectrograph. 
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These assewJlies were tested with a helium leak detector to a specifi

cation of 1 x 10-6 standard cc/sec (0
2). 

The prism and mirrors were mounted in the optical canister with invar 

cells and spacers which effec tively elimiH8 ::~~d any thermal effects on 

focus. The prism cell was removable in orbit so the instrument could 

be operated with or without the prism as desired. 

The film transport system consists of a lever-operated mechanism 

which positions successive film slides on the optical axis, moves tllem 

into the focal plane, then opens and closes the shutter. The film 

was mounted on perforated stainless steel platens by means of snap-over 

nylon covers. These platens were then mounted in the film canister in 

two stacks with the stainless steel of each platen bearing directly on 

the nylon cover of the slide below. Each canister held approximately 

162 slides, but since the reliability of the transport system was found 

to depend critically on the compression forces within the stacks, this 

number varied by ±2 from canister to canister. 

A complicating factor in the optical design was the fact that it 

was impossible to place the focal plane so that it cleared the back 

surface of the primary mirror. Thus:i t was necessary to design a 

!!carriage" which would first receive a fresh film slide, then transport 

it forward to the focal plane. Positive focal plane registration was 

accomplished by butting the film carriage against a definitive stop 

ring in the optical canister. Focus adjustment was accomplished by 

mounting the stop ring on a precision screw mechanism which could be 

driven by an external knob. 

The design and construction of the spectrograph mechanical com-

ponents was carried out by Cook Electric Co. of Murton Grove, Ill. 
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IV. The Articulated Mirror System 

When the S-019 spectrograph was assigned to the Skylab mission 

it was necessary to design a means for pointing the line of sight 

over a large area of the sky. A mirror system for this purpose was 

designed by F. G. OTCallaghan and Norman Page, and a prototype unit 

"-

was constructed at Northwestern University. Final design and construction 

of flight units was carried out by the Boller & Chivens Division of 

Perkin-Elmer Corp. This system consists of a large flat mirror, gear 

systems for extending it through the airlock and then tilting and 

rotating it, and a spectrum-widening mech3nism. Its general configura-

tion is illustrated in figure 3. 

The mirror is fabricated from CER-VIT. It is elliptical with major 

and minor axes of 38 and El cm respectively. It has a ribbed structure 

supporting a face plate 1 cm thick. The surface was finished to 1/8 

wave accuracy at 6300A and its coating is similar to that of the 

camera mirrors. 

Extension of the AMS mirroI' out of the canister, past the airlock 

door, into space is accomplished via a manually operated extension 

mechanism. The mechanism is a double telescoping device which is guided 

and extended by four ball screw nut combinations. The use of ball screws 

in thjs way reduced friction to a very low value and made reliable 

manual operation possible. The AMS mirror was mounted on a fork which 

in turn was mounted on a pair of very thin ball beArings. Rotation of 

the fork on the bearings through a range of 3600 allowed for the rotation 

movement of the mirror. tilt was accomplished by rotation of the mirror 

about the fork tines via a tangent arm mechanism. A total adjustment 

range of 150 of mirror tilt (300 of change in the line of sight) was 

available. Tilt and rotation adjustments were made through a single 

dynamic member by me8ns of two pinion gears and a differential gear train. 
,," ,", "c, ,L". ,,~_ ... u.,," "_c_k,=,,, ............ ,iiiiIiIIIA 
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Figure 3 . Photograph of the Articulated Hirror System with tJ-e Spec
trograph Attach ed . The mirror is shown in its extended position . 
The cylinder on the top of the mirror canister is the control and 
drive mechanism for spectral widening . 
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When the pinions were driven through the same angle, rotation of the 

mirror resulted. Differential motion of the pinion gears resulted in 

tilt of the mirror. Torque was transmitted via splines, gears and 

manual crank handles. Gear driven counters, reading to O.lD, were 

provided to enable the astronaut to point the AMS mirror to the 

desired star field by means of pointing angles calculated on the ground. 

Spectral widening was accomplished by rotation of the rear nest 

assembly which carried the spectrograph. A total widening of 270 

arcsec was obtained by a spring motor drive which could be operateq 

at any of three rates; 30, 90, and 270 sec for full 270 arcsec 

widening. Vacuum seals between the static canister and the rear nest 

airlock assembly were double TlOT! ring seals sliding on a flat surface. 

The rear nest airlock assembly is a manually actuated 8-point 

pivot 'roller assembly that locks and seals the experiment flange in 

place. Compression of a double line Gask-O-Seal gives metal-to-metal 

contact thus providing electrical bonding across the interface. This 

is similar in design tothe original scientific airlock clamping me

chanism except for certain improvements including use of roller bear

ings to reduce friction. These improvements were later incorporated 

by NASA into the airlock design. 

To ensure that the failure of one instrument would not block the 

use of other instruments in the airlock, NASA required the incorpora

tion of a jettison system which could eject all mechanisms which ex

tended beyond the airlock door line. A CO2 gas-powered system was 

developed which met this requirement. The system waS activated by CO2 

gas pressure which first detached the main mirror carriage by delatch ing 

the heads from specially designed two-piece bolts and the pressurized 

four pistons located within the ball screw shafts to -impart a ~ 2 meter/ -
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In contrast to the cast construction of the spectrograph canisters, 

the AMS canister se:ctions were machined from solid billets. The latter 

method proved to be a more effective way to obtain canisters with the 

required structural integrity. All rotary penetrations through the 

canister walls were sealed with triple Viton "0" ring seals. This 

technology provided a simple means of meeting the NASA structural 

integrity and vacuum leak requirements and no difficulties were encounter-

ed in meeting such requirements. 

The AMS proved to be a useful general purpose facility which allowed 

1 
several othe!l. experiments (S-063, S-073, S-183, and S-20l) to also 

achieve some flexibility of pointing through the anti-solar scientific 

airlock. 

v. Photographic Film 

The UV sensitive, Schumann-type Kodak 101-06 Estar-base film was 

used in this program. The method of supporting this pressure-sensitive 

film on steel platens is described in Section III. 

A special problem with this emulsion is its tendency to fog when 

in close proximity to bare metal. Although such sensitivity to aluminum 

is known it was believed that stainless steel pI'oduced no such results. 

J-IU,;Jever we encounterEd a weak fog on nearly all frames which showed a 

hole pattern corresponding to that of the stainless steel platens. 

Since this fog.does not appear on the regions of the emulsion protected 

by the nylon covers we conclude that cause of the fog is associated with 

long exposure to stainless steel in vacuum conditions. An average£og 

density of :f!Pproximately 0.6 was reached during the 100-day exposure 

(from canister loading to unloading) of Skylah 4. The areas protected 

by the nylon show a lighter fog that reached a density of 0.39 during 

tho Skylab 11 mission. This lighter fog :LS assumed to be Q combinati on of 

thermal and radiation fog. The estimated radiation dose that contributed 
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to this effect was 1.91 rad. 

A calibration facility was established at Northwestern University 

and later moved to the University of Texas where all flight film 

received both pre-flight and post-flight calibration. This system 

consisted of an H2 microwave discharge lamp, a 3/4 meter monochromator, 

a beam sample photometer with filter assembly, a Mg F2 field len1=; 

assembly, and a 5-inch f/15 Cassegrain coll:imator, all mounted in a 

high performance vacuum system. A ~hellows assemblY'! was used to mount 

the spectrograph. This system , with appropriate modifications, was 

also used to produce and test the high-reflectivity UV coatings used 

in the experiment. 

VI. Experiment Results 

This experiment was operated, on all three Skylab missions and a 

total of 188 star fields were observed in the prism-on mode. It was 

found that widened 270 second exposures produced measurable fluxes at 

1500A of unreddened 130 stars as faint as V= 7.0. A total of 1600 stars 

show measurable fluxes at 2000A and 400 show measurable fluxes at 1500A. 

Of these, about 170 show evident absorption or emission lines. Spectra 

in a representative field are illustrated in figure 4. 

These spectra are being analyzed at the University of Texas in 

Austin by means of a PDS 1010A microdensitometer controlled by a PDP-

8/e computer. Preliminary scientific results include a study of the 

intensities·of the strong C IV and Si IV lines over a wide variety of 

spectral types and luminosities, 2 studies of 12 Wolf-Rayet stars which 

show emission lines shortward of 2000A,3 detection of a previously un

known blue subdwarf companion to a G star4 and the identification of 

several unusual emission lines in the spectrum of !3 [,yrae. :) 
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