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FONARD

Satellites have provi ded mart with a vantag e point from which to
peer deeper 'into space as well as to retrospectively and spynoptically

view his home planet.	 The SKYLAB earth. orbital satellite has been the

first manned U.S. flight laboratory to be devoted principally to remote

observations and experimentation in the unique environment of space.

The project was conceived in the early 1.960's . as an extension of the

Apollo program which during that decade emphasized space exploration.

^.- During the period of the 60's, application studies were consummated

from which a proposed program for the conduct of solar observations i

and biomedical experiments evolved. 	 In early 1970, the Apollo 	 -

Applications Program was.redesignated the SKYLAB Program and at about

the same time the scope of the project .was enlarged to include earth

observation experiments. 	 Earth observations were to be conducted with a

Variety of sensors including photographic cameras, an infrared spectro-

meter, a muitispectral scanner (visible and infrared), and a.microwave

radiometer/ scatterometer and altimeter. 	 These sensors together with

onboard support equipment were designated the Earth Resources Experiment

Package (EREP).	 A total of 146 proposed investigations were selected to

comprise the EREP data-user program. 	 This paper reports on the conduct

and results of one of those investigations, specifically a study in the

utilization of EREP data for monitoring changes in the breeding habitat

of migratory waterfowl.

The authors wish to acknowledge Harvey K. Nelson who orginally

conceived and developed the ideas behind this investigation. 	 We are

grateful too for the assistance of several individuals in the conduct

of this work.	 In particular, we acknowledge the cooperation of our

NASA technical monitor, Rigdon aoosten, the administrative guidance

of W. Reid Goforth and the field assistance of A. T. Klett, the

latter two individuals both of the Northern Prairie Wildlife.Researeh

Center.	 Finally, but far from last, we are indebted for the efforts of L

Diana Rebel of the Environmental Research Institute of Michigan for her
f -.

labors with data processing and analysis.:
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CHAPTER 1

[

SUMMARY AND CONCLUSIDNS,

-

'To explore procedures which could enha^lce the capabi l7ties of the

[J;S. Fish and Wildl ife Service for moni tori ng the breeding'habitat of

migratory- waterfowls an evaluation of the SKYLAB-Earth Resources
Experiment Package (.EREP) has been conducted 	 A related study had

previously been carried out util izing data collected by the LANDSAT-1 E
satel lite 	The fact that ` the two studies have -overlapped both'
chronologically and geographically has.all:owed the r es ults of one to

reinforce the other and has allowed for a-comparison. of the tvwo sensor

systems.	 In particular, we have emphasized the use of data collected E

by muitispectral scanners and the processing of these data using

general pu,rpose.and' special purpose digital computers. 	 The use of.

automatic.data. processing techniques is uniquely suited to : this . type' of

task because of.the wide expanse of prime waterfowl breeding areas and'

because of the need to quickly assimulate`and collate parametric

information on habitat conditions.'

The specific objectives of both the LANDSAT and this' -SKYLAB study
were to map and tabulate statistics on surface water conditions and

to determine changes in wetness, between the spring breeding period and

the fledging period of July or early August in a glaciated prai rie

region in.east.central. North Dakota.: This study has . principally.

considered habitat conditions related to open surface waiver (i..e.,
a

ponds and lakes).	 The stud	 as ori ginall yy 	 planned envisioned the use

of two sets of data collected by the SKYLAB muitispectral scanner in

May and again in July or early August. 	 Because of operat io nal constraints,

the SKYLAB/EREP System was not able to achieve this repetitive coverage.

Instead a single observation occurred on 12 June 1973. 	 The timing of

the observation has allowed us to supplement the single SKYLAB obser-

vation with bracketing LANDSAT observations which did occur`.on 14 May

and 7 July of that year.	 This seri es of three sequential observations
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provided:an opportunity for tracking the dynamic water conditions

over nearly a two nionth.interval.	 Approximatel y the same areas were

observed on the three different dates.	 The study- area included portions,

of two different physiographic regions, a Coteau or Moraine feature

created by, stagnation ice, and a drift plain or low relief feature of l

numerous.=ground moraines. 	 Because of differences in wetland frequency

between them, these physiographic -features have served as a basis for

stratifying the numerical results obtained:in.tnis study

The mapping of open water has been carried out by two radically u'
JI

different techniques, a single-channel approach and a multiple-

a	 roach termed "	 ^^pp	 proportion estimation	 The si ngle channel approach
delineates waiver by'thresholding or level slicing. the scale of radiance
values in a s ngle near--;infrared .waveband	 Thi sapproach is effective i
because the radiance of water ref a.ti ve ,to other terrain features:.was

uniformly . l .ow.	 Proportion estimation processing involved the use of ri

multiple data channels and a computational algorithm for estimating:'

the fractions of pure materials present within the resolution cell of 	 -

a multispectral scanner:

For the water delineation a single channel of near-infrared data

was used to produce a. computer generated 'thematic map and ralated

statistics for an area encompassing .3833 km	 (1480 square miles).
i

This area included portions of both the Coteau and Drift Plain physio-

graphic.regions. 	 The results were produced with a . single near-infrared

waveband of data gathered by the SKYLAB multispectral scanner (instrument

experiment S-192).	 This multispectral scanner included a . total of five

near infrared. wavebands.. in the 0.78-to 1:.75-um ran ge, all of .which had

1

se characteristics.	 our experience has indicated that .good signal -to-n0ti

I
-

any one of these-bands would have been reasonably satisfactory for small

scale water mapping by satellite.` 	 Given a choice, however, the 1..55-, -

to 1,75-dm hand was less ambiguous for water recognition and was easier

to . utilize. to tenms.of training .the computer.	 .Use of the. 1.55-,to
I l

1.73-um band also held the promise -that shallow water . features when re-

solvable.in the small scale satellite data were more likely to be recog -
nized as open surface water.

y
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Although the maps whic h Were g .eberated in . thi s effort graphically

portrayed water conditions, without further in.terp.etati.on and quant-
.^fication, such :di splays do not fully sakisfy management. and research

i ., needs.. Quantification-of the data. was easily achieved when we, used, a

digital computer to tabulate the size and location o f each recognized

water feature and thence to summarize the 'results. ` The surma ry 	 nd i:cated t

that the : areal density of ;'ponds :in nearly all _ size. classes considered

al thru 50acres), was generally an o:rder:of magnitude greater in the.,_

:Coteau stratum than 'in the Drift .Plain stratum..	 The `data also indicatf.,

that the SKYLAB`enumeration of .ponds as a whole was consistent with

enumerations ma'ae-using"LANDSAT data.... This is to say; that.  -a decline

in pond numbersnoted from May to July indicated by the LANDSAT ob-

servations was alto reflected in the.intermediate.SKYl:AB data.` 	 When
y

d
individual `pands,.as^represente. 	 in .the SKYLAB.data were studied, however,

we saw that their areal display-did-not follow as consistent a pattern.
J.

•	 Approximately `30 percent :nf :the SKY 	 1 tikes examined . were larger than

expected whi1e;another 30 percenE were smaller than expected.	 We have

concluded that these deviations from the mean tended to balance eac4
1

other and that the.sourc.e.of the problem was -the conical scanning coil-

figuration of the , ..enso.r and the procedures used to subsequently convert

the data into a rectangular grid of scene el.ements.or pixels. 	 Both-the,

scanning format and.the associated techniques for data conversion

appear- to have had the net effect of slightly but systematically
J

altering areal measurements and the geometric fidelity of small scale y

Scene features such as prairie ponds. f,

t In,another,.phase of the study, the limited testing of a unique

technique for improving the apparent spatial resolution of multispectral` I
l

data was undertaken.	 The technique, termed "proportion estimation,"
_	 p	

1gInvolved the use of a' co l utational`.al gorithm ,tor - 'estimat n	 the fractions
E

!; of pure materials present within the .resolution cell of a multispectral

i

^.

i scanner.	 To be effective, proportion estimation processing requires a I	 a

i ral data channels: 	 o}y	 high degt^ee of spatial registration between spect 	
ur.

early Work . with SKYLAB multispectral_scanner,data in a line-,.straightened:

format (efter conversion from a.conical scan:f grmat) indicated the

 i

r
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i occurrence of frequent but random channel to channel LrAsregistration

of as much as one or several pixels. The bulk of these registration
errors were apparently introduced in the process of converting data.

from a conical-scan to a line-straightened format. Consequently all

of our multispectrai processing was accomplished with data in a conical--
scan format although these data proved more difficult to handle and
display.

Proportion estimation computations were applied to an area of 286
km2 (110 square miles). The resultant computer outdut was a set of
water proportions for each scene pixel. Results obtained from pro-

portion estimation processing indicated that the minimum discernable

pond size was four-tenths of the minimum size detected with the single-
waveband thresholding algorithm. Ponds smaller than this could be

detected, however, numerous errors of false recognition (commission

errors) also occurred when the finer degree spatial resolution was

attempted.

Proportion estimation processing of LANDSAT data had previously

been-applied to the same 286 km2 site, It should be noted that nearly

the same number of water features were identified in the LANDSAT data

of 7 July ;973 as were observed with the SKYLAB observation data

collected 25 days earlier on 12 June. If anything, this would indicate

that the SKYLAB data did.not yield as great a count of ponds as should

be.expected because some ponds should have diminished in size to the
point of extinction over the interval. However, because of the

deficiencies inherent in data which have undergone a format conversion,
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this improved recognition capability to the availability and utilization

of several wavebands.in the near-infrared spectral region. The SKYLAB

scanner provided six wavebands of near infrared information to a

maximum wavelength of 2.35 um whereas only two near--infrared wavebands

to a maximum wavelength of 1.1 pm were available from the LANDSAT

system.	 In particular, we feel that a waveband in the 1.5-to 1.8--pm

atmospheric window is important for the delineation of water and hygric

scene features in general.

Finally,'we should point out that it is difficult to state con-

clusively the results of this investigation because of numerous problems

which became manifest during its course. Specifically, the two FREP

observations upon which the measurement of habitat change was predicated

were never realized. The single observation, which was obtained, did

not occur during either the requested May or the requested duly time

periods. As a result the observation did not occur during an appropriate

phenological period, and it did not coincide with supporting aircraft

observations nor with the respective May and July breeding and production

surveys routinely conducted by the U.S. Fish and Wildlife Service (FWS).

These deviations from the originally planned experiment make it

unrealistic and impractical for us to attempt at this time to assess

the cost effectiveness of EREP data, as opposed to current techniques

for predicting waterfowl populations.

The diurnal timing of the observation was less than optimal in

that it took place at 06:19 local solar time, too early in the day for

sufficient illumination. As a result, the poor signal--to-noise ratios

in the visible and thermal infrared wavebands precluded the plenary use

of those spectral channels. Furthermore, the multispectral scanner

observation only marginally encompassed the study site and many areas of

environmental interest were not surveyed nor did the SKYLAB observation

spatially coincide with many of the supporting aircraft and ground

survey transacts. These were problems of an operational nature

occasioned by satellite system complications which arose during and

after launch and by the need to accommodate the requirements of both

this and many other investigations in a relatively short time. One
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'	 CONCLUSIONS .

I., Satellite remote _sensing techniquesha Id.considerable promise

for the rapid, synoptic assessment of waterfowl breeding

habitat:

2. A simply implemented technique, requiring a , .singl e near-

infrared waveband of data, exists for delimiting open surface j

water features.	 This capability with the use of automatic

data processing techniques has the potential for being

operationally incorporated into ongoing.:habitat assessment

programs in the near future:

3. Trends noted.in numbers and size distributions of water

-Features were consistent between LANQSAT and-SKYLAB data sets

when considering a large observation scene as a whole. d
.4`. Tile sizes of small	 individual water features were not,

however, consistently determined. 	 These area! inconsistencies

of being rendered either too large or too small appeared to be

due to the algorithm used to convert data from a curvilinear

scan-line format to a straightened scan-line format and tended

to average.out when a large group of water features as a.whole

were considered.

5. The proportion estimation technique,.utilizing the added

information content of multiple.spectrai wavebands, has allowed

for the recognition of a greater number of small ponds riot

previously identified and also greatly improved the area .and

peripheral shape definition of the larger ponds and lakes.
r°

The use of this technique has improved resolution capabilities y

^I
for mapping open surface water by a factor of between two to

three over the nominal resolution limit of the data.	 Further

I
E

testing and refinement of . the techni ue.will be. required.:q	 q ^

G. Spectral information in the reflective infrared (0.7 to 3.0 um)
4

is often unique and useful for the thematic classification of

terrain features.	 In particular, we feel that a waveband in
Ad

the 1.5-to 1.8-um u-mospheric window is important for the ^..

'[[{ delineation of water and hygric features in general. s
h F

i

i
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INVESTIGATION BACKGROUND

The primary breeding areas of North American waterfowl (primarily

ducks) are the Dakotas, the southern portions of the prairie provinces,

northwestern Canada and parts of Alaska (Figure 1). These areas of the

mid-continent are major contributors in sustaining the total continental
duck population which amounts upwards to 120 million birds. Small ponds

and lakes of the glaciated prairie region, commonly referred to as

prairie potholes, are the backbone of duck production habitat in North

America (Figure 2). The prairie pothole region, composed of the

southern portions of Alberta., Saskatchewan, and Manitoba and parts of

North and South Dakota, Miar.esota, and Montana makes up only 10 percent

of the total breeding area of North America yet produces 50 percent of

the continental duck crop in an average year (Smith, et al., 1964).

Because of the area's importance for waterfowl production the region is

monitored annually by intensive systematic surveys conducted by the U.S.

Fish and Wildlife Service in cooperation with the Canadian Wildlife

Service and various states and provinces. Aerial surveys made in May

and July are used with air-ground correction factors, to provide indices

of breeding population size, habitat conditions, and waterfowl pro-

duction. These indices serve to aid in making management decisions

relating to annual hunting regulations and to answer certain research

needs. Breeding ground survey data must be collected and summarized

before early August when various national and regional waterfowl

i	 meetings convene to formulate annual hunting regulations. In some

years breeding ground survey biologists are hard pressed to complete

this task by early August. Descriptions of the operational aspects

of the breeding ground surveys are given by Crissey (1957), Stewart,

et al. (1958), and, more recently, Fenny, et al. (1972): The use of

survey statistics for modeling waterfowl production is discussed by

Cooch (1969), Crissey (1969) and Geis, et al. (1969).



•w

Fish d Wildlife Service
P. S. Dept. of the Interior

Breeding Ducks
Per Square Mile

00-5

6-15

16 - 30

31+

Wintering Ducks

• = 25,000 Birds

d

FIGURE 1. AVERAGE DISTRIBUTION OF NORTH AMERICAN BREEDING AND WINTERING
14ATERF01dL

,jar01^UCTBILITY Or THE
OPbiUC^A:^ PAGE IS POOR



T^

I 

•

%;

	

	 Manitoba

Alberta

Ontario
Saskatchewan

...... .

Minnesota

Montana

... .. ..............
c

	

^i......	
.........................

••ti
South

Idaho	 Dakota

Wyoming	 } .....................	 ''^;
•f...•....... C	 Iowa

	• 	 Nebraska
•..•	 ...

FIGURE 2, THE PRAIRIE POTHOLE REGION OF MID-CONTINENT NORTH AMERICA,
(After Stewart and Kantrud, 1973.) The state of North Dakota is

indicated by shading.

d^

E



A comprehensive program to investigate the potential applications

of remote sensing techniques. as a tool.'_i . n, the management and scientific
study of waterfowl populations was developed in 1968 by the U.S. Fish

and Wildlife Service and the- Environmental: Research Institute of
Michigan (prior to 1972, known as the Willow Run Laboratories of the

University of Michigan),. From 1968 to 1970 this work involved a

series of airborne multispectral data collection and analysis. e.x

periments designed to 'assess waterfowl breeding habitat. The work.

was sponsored by the U.S. Department of the Interior's Earth Resources

Observation Systems . (EROS) Program and by the National Aeronautics

and Space Administration (NASA). Biological interpretation and site

coordination was provided by personnel of the U.S. Fish and Wildlife
Service`s Northern Prairie Wildlife Research Center at Jamestown,

North Dakota.

These . experiments emphasized data collection by airborne

multispectral scanners and data reduction and analysis with computer

aided techniques specifically developed for this task. This early

work was reported by Burge and Brown (1970), Nelson, et al. (1970);.

and Work and Thomson (1974). A moi^e recent program Work 1974, and

Work et al., in press) was conducted with LANDSAT-1 data.

The LANDSAT study was a natural extension of the earlier aircraft

program. Its goals were to: l) modify and utilize techniques which

i
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evolved from the aircraft program, and Z) develop new techniques which

_	 would be suitable for high altitude, wide area (synoptic) surveys.
Data were to be used principally to document the amount of surface

water present during a May and a successive July observation. Data
acquisition for the LANDSAT study was planned . for the spring- summer
of 1972. however, because of delays in the launch of the satellite,

Y s .̀	 the bulk of that investigation was deferred until a May-July sequence
of data was available from the 1973 season. As a result, the LANDSAT-1
program and the SKYLAB investigation with which this report is concerned	 s

have. utilized data observations which . have been nearly coincidential

in a temporal and spatial sense. Because of this unique situation we

have made occasional references and comparisons in this report of

data from both sensor systems.



DESCRIPTION OF THE INVESTIGATION ..

Our overall goal for this investigation was to develop and test

techniques for identifying and monitoring prairie waterfowl habitat
using 'the EREP sensors.	 This and subsequent work'is intended to bri :n

us to- . our Tong term goal. which is to define habitat quality indices

T which accurately relate to the dynamics of waterfowl production.and
which :are discernable with remote sensing techniques.	 The application
of high altitude (e.g., spacecraft) sensors and automated data handling
is uniquely suited to` monitoring waterfowl habitat becaose:`	 (1) .the.

survey is generally regional and international in scope, (2) the

seasonal and annual changes in habitat conditions require repeated

observations, and (3) the results are needed promptly for management

decisions.

In:undertaking this study our first objective was to monitor
r

changes in the breeding habitat of migratory waterfowl between.May,

the peak nesting season for several species of ducks, and July or

early August when most duckling broods have hatched.	 Proposed:indi

cators of 'habitat quality were surface water, the general degree of

terrain wetness, plant phonology, and land-use patterns:. 	 Primary

emphasis, however, was placed upon the observations of ponds and

lakes to include the assimilation of statistical data on their numbers,
areal extent, frequency, distribution, and aggregation.	 Information

r on ponds and lakes is immediately important because it is currently-

used in models for predicting annual waterfowl production.(Geis, et

al.	 1969) .
{

Consistent with earlier work (Burge and Brown 1970, and Work and
Thomson 1974)1 the use of data obtained by , a mu I ti s p.e ctra 1 . scanner:

Was stressed.	 Multispectral scanners offer the advantages of a multi-- a
,. .plicty of spectral wavebands and quantified data values in the form

of digital signals recorded on magnetic tape.	 The former advantage

broadens the data's information content while the latter allows for
E

a
{
1
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direct:,and rapid porcessi'ng a'nd anaiys- is ,by dig tai computers.: 	 In !^
addition to the primary role of . scanner data in 'this investzoation,

photographic ir^agery was utilized in a secondary capacity for the

selection of computer training data and for th e verification of recoa=

_	 nition:maps. resulting from automatic data. process-ng:;
The intended approach to carrying out this investigation was to. '

use EREPmul t^ spe-ctral : scanner data col l ected over the same s i to t n t^
a ` sequence of May and July

,
 observations.	 The resultant data were to

'be. processed for ` the recagnitioh of.surface water features and fora`

determination of habitat change as evidenced by changes in:surface

water conditions.' 	 expected output of the automatic data processing

was thematic raps ofponds and a tabulation of statitti cs on surface
water conditions. 	 From the onset of the program. it was recognized.

. that the 'EREP.scanner would not be.capable.of consistently delineating

ponds less than about two hectares (5.0 acres). 	 Therefore, in addition
I

to merely mapping resolvable surface water features : , estimates of the

presence of ponds smaller than the resoTution i`imit were proposed by

the use of a double sampling scheme. in which low altitude. :aircraft

data were to be collected at approximately the same time as each EREP

I	 ,data.. pass.,.	 1

Because. of o'perati orial ' delays in  the launch` and manning of the

#	 SKYLAB.space' station, 'data 'collection during the May- 1973 breedlng

period did not occur.. The subsequent compression of a large number of

i	 other planned earth observations into a foreshortened data acquisition )

eriod a l so	 cluded a second data observation as planned for July orp	 pre

earl'Aa ust of 1973	 Instead a single data.recordin	 overflightY	 g	 g	 q.

occurred, on 12 June 1973. 	 Previously an oyerfli.ght by supporting

aircraft had occurred on`12 . May 1973.and a-subsequent aircraft overflight

tooK place on 12 August 197.3 on schedules which coincided with both

-	 the waterfowl nesting and brood rearing seasons. 	 We had hoped=for

near:simultaneous SKYLABoverflight and data . observation.	 This

:failure iio obtain a repetition of seasonal observations and the un-
f

timeliness of the single observation in terms of both season and

Coordination.with supporting aircra t.necessi ated.a modification of
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project. goals .:and emphasis. . Originally the prog ram: had , been intended
as a.stand alone investigation.	 Because of the circumstances, however;

I'	 it seemed` appvopriate to integrate this investigation.with another

ongoing study which was'ut^Tizing LANDSAT--1 ,data. 	 ^.A^lDSATAata

- col Iected:.on 14. May.	 1, 971. and. 7. duly; .:1973 hadpreviously been obtained .

and analyzed.. It therefore was advantageous to utiize.EREP data as

a third reference. point in tracking the. dynamic surface water conditions
i	

from May into duly, '

iA
Our inability to obtain a temp"orally synchronized EREP and aircraft

data set also precluded our conducting a double stage sampling experi-

ment.... In. lieu.: of that experiment, we chose to uti1ize'the manifold

information of a multispectra7 data-set to systematically estimate

percentage of surface water present In each of a.scene`s resolution a

elements '(pixels)..This ., approach potentially resulted in the, detection

and tabulation of surface water i seatures::sma.11er than,the sensor.'s

nominal optical resolution limits.

The text which follows 	 ncludes"adescription o^f the ERE p mui't^

spectral. scanner and a description of the study area acid site data

coverage .(Chapter 4), fall owed by: the bulk. of the-technical report

which discusses the methods and results of several analytic: procedures

used in this investigation. 	 Chapter 5 is devoted to the mapping of ;

surface water bodies with :a single waveband of. near 7nrared data.

This processing resulted in the generation of , thematic_water maps and

siaatistics.on . water,canditions and changes in these conditions.

Chapter 6 is devoted to multispectral data analysis particul'arly`the

use of mu ltiple wavebands q f'data'for estimating within-pixel surface
water content,.	 Finally.phapter 7 cont ains a; summary of`investigation

results and the conclusions derived from these results,

A

1



r

f,

THE SKYLAB/EREP SURVEY OF WETLANDS
IN:.EASTERN.NORTH DAKOTA

This , ch	 o. 	 add''	 c	 d	 o	 r; a pt: 	 r ..provides_ 	'add i t ional back 	 informatio n regarding
.,

tie principal EREP sensor system utilized for this investigation and
`characteristics of the study site.

SKYLAB/EREP`Multispectral Scanner j

The SKYLAB/EREP: Multi spectral Scanner.` ( Instrument Experiment S-192)
was an optical Mechanical'scannei^ coupled-with a. s.peetra 	 :d^spe sing

and detector System. 	 The. scanner assembly;utiIized a rotating-mirror i.

.scanning in`,the image pl ane of the collector optic's to perform a conical

`.

scan ..of the.object plane (i.e.,.the.earth` s surface).	 The cone angle

was 5 0 32 .'-about the instrument axis (nominally: spacecraft nadir). 	 The
spectrally dispersed`el'ectromagnetic'energy.received from the earth's

surface 'simultaneously, irradiated .13 detectors .; each:detector being I,	 '

responsive to a unique spectral region. 	 The scan pattern consisting;`
it

:of the forward 116 015' of the 364° scanning cycle covered a curvilinear 1>

path on the earth's surface with a swath:or chord length. of approximately . 	.% :

72. 4 km (39;1 " nautical 'miles) And ,.any desired'length-along the ground

:.'track : of >the satel 1 i te_' (Fi g^are 3) , " . .Approximately 94: 8 scans occurred

each second' resul ti ng 7 n a scan: 1 i fie , to scan 1 . i ne forward :di spl acement

of approximately 72.Q m (238 ft).	 :The sensor instant	 f"

view was 79.3 m (26O ft 	 care:sq	 Thus. the instrument had':an overscan

of about 10%. -Each .of the 13 detectors'produced an electronic _output

signal corres pondi ng . to the average value of the . radiance being

received In its particular, spectral. band 'from a spot on. the earth's

"surface contained in the instantaneous--field-of`-view. 	 The spectral

range or waveband of:.each.detector is:gi"ven " in Table 1.	 The analog

video 'signals enamating from each of the 13 spectral detectors"were

sampled and digitized: at either . high or law rates with the exception
of the thermal infrared band (13) which was sampled at both rates

The low sampling rate corresponded to an approximate 72.6 m (238'ft.') {

17
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TABLE 1

SKYLAls/EREP MULTISPECTRAL SCANNER (S-192)
SPECTRAL RESPONSIVITY r^i

^	 f	 a

Band No. Description	 Nominal Spectral Measured Spectral SDO
Range	 (pm)* Range (um)** Channel No. !'

j

1 violet	 0.41--0.46 0.420-0.447 22 sr

- 2 Violet-Blue	 0.46-0.51 0.457.-0.503 18

3 Blue-Green	 0.52-0.56 0.50-0.55 1 & 2

4 Green--Yellow	 0.56-0.61 0.54-0.60 3 & 4

5 Orange-Red	 0.62--0.67 0.599--0.654 5 & 6

6 Red	 0.68-0.76 0.654--0.734 7 & 8

-	 7 Infrared	 0.78-0.88 0.770-0.890 9 & 10
a

8 Infrared	 0.98-1.08 0.930-1.050 19

9 Infrared	 1.09-1.19 1.030-1.190 20

10 Infrared	 1.20-1.30 1.150-1.280 17

11 Infrared	 1.55--1.75 1.550-1.730 11 & 12

12 Infrared	 2.10-2.35 2.10-2.34 13 & 14 a

13 Thermal Infrared 10.2-12.5 15,16 & 21

1	 *	 The nominal spectral range is referenced throughout this text.

* S-192 spectral response calibration per National Aeronautics and
Space Administration (1974).

r	
^

y
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center-to-center spacing and- was used for bands 1, 2, 8, 9, 10, and

13. The high sampling rate, equivalent to twice the low rate, approx-

imated a 36.3 m (119 ft.) center-to-center sample spacing. Sands 3,

4,-05 , 6, 7, 11, 12, and 13 were sampled at the high rate with even and

odd numbered samples being handled as two low rate channels thereafter.

The channels are referred to as SDO's (Scientific Data Output) in this

report. In theory, all even numbered SDO's were in spatial registration

with each other. Similarly all odd numbered SDO's were in spatial

registration but one-half pixel out of registration with the even SDO's.

For the convenience of those investigators who utilized S-192 data

and who desired data in a straight scan-line format, the conical data

were available in a transformed line-straightened format. The algorithm

used for this transformation was based on a nearest neighbor decision

rule.	 After scan-line straightening, each high rate band was separated

again into two low rate channels (SDO's) with the odd elements going;'?

into one SD0 and the even elementsoing into another SDO as with theg	 ^

conical data described above. 	 This investigation has utilized data ing 

both a line-straightened format (Chapter 5) and a conical format	 };,

(Chapter 6).

SKYLAB/EREP Mission Profile

fhe 1.%"'_.-,_> :,.ission consisted of series of four launchings -- the

first, to	 the large unmanned laboratory ii earth orbit and there-

after three serial launches to carry crews to the Orbiting laboratory.

Each crew, consisting of three men transited from earth to the space

laboratory, occupied the laboratory for an extended period, and sub--

sequently returned to earth. 	 The space laboratory was occupied for

periods of 28, 60, and 85 days with intervals of 36 and 51 days respec-

tively between the manned periods.	 This investigation utilized data

collected during the first manned period which lasted from 25 May 1973

to 22 June 1973.	 During each occupation, the crews conducted a series 	 1

of biomedical, astronomical, engineering, and earth survey experiments

all of which had to be closely managed to fit within a tight mission

schedule.	 In addition to the necessary imposition of a time budget,

i	 ,
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other factors also posed restrictions to the earth resources survey

program. They included spacecraft power limitations, the availability

of consumables such as film and magnetic tape, spacecraft orbit location

with respect to targets of interest, and the occurrence of suitable

solar illumination and atmospheric viewing conditions.

Throughout its useful life the SKYLAB Orbital Workshop circumvented

the earth in a circular orbit inclined at approximately 50° to the

equator. The orbit was controlled to yield a five--day repeating ground

track. However, it should be noted that the five-day orbital re-traces

progressed tnrough periods of darkness and daylight and that orbital

drift, which at times became considerable, did occur.

Typical orbital paths projected onto the earth's surface are shown

in Figure 4. The single earth observation made on behalf of this

investigation occurred on 12 June 1973 on atl ascending node of the

orbital track crossing the state of North Dakota from the northwest

corner thence east--south-east passing approximately over Fargo. Table

2 lists the parameters of this overpass. 	 '.

The North Dakota Study Area

The study site chosen for this investigation, although small

relative to the regional scope of the prairie pothole country was

extensive enough to provide an adequate -best of survey methods. The

specified intensive study area was centered on Woodworth Station* and

extended eastward to longitude 100 0 00'. The test site was situated

completely within the North Dakota prairie pothole biotic area but

did encompass two distinctly different groups of glacial landforms or 	 a1
physiographic divisions -- the Missouri Coteau and a 0lacial Drift

Plain. Figure 5 shows the biotic areas of North Dakota and the location

of Woodworth Station. The Coteau overlying approximately two-thirds

*Woodworth Station is a field research site operated by the
Northern Prairie Wildlife Research Center of 2the U.	 Fish and Wildlife
Service. The Station, approximately 15.5 km (G mi ) in size, lies 5
km (3 miles) east of the village of Woodworth, North Dakota or 48 km
(30 miles) northwest of Jamestown. The station coordinates are 47008'N
and 99°14'W.

Y 5
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TABLE 2

SKYLAB MULTISPECTRAL SCANNER (S-192) CHARACTERISTICS

Scan Format: Conical 	^..;

Scan Cone Angle: 5032'

Active Scan: Forward 116 015' of Scan

Scanner optical
Instantaneous-Field--of-View: 0.182 mrad ( 79.71 m @ Altitude Shown)

Scan, Rate: 94.792 Scans/Second

Altitude.: 4372 957 e-	 f

Ground Radius of Scan: 42427 m*	 w

Sampling Rate (Along Scan): Loti Rate Channels
72.6 m Center to Center

High Raze Channels --
36.3 m Center to Center

Number of Samples per Scan; Low Rate Channels - 1240
High Rate Channels - 2450

Ground Speed: 6866 m/sec%

Satellite Ground Distance
Forward Per Scan: 72.43 m*

3
Analog to Digital Conversion: 8 Bit Words

These parameters apply specifically to the North Dakota overpass 	 wr
of 12 June 1973.

23
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of the study area is characterized by the prominence of high underlying

bedrock which acted to buttress the advance of Pleistocene ice sheets

causing extensive glacial stagnation. 	 In addition, the ice had become

overlain with large quantities of superglacial till which caused

protracted and irregular.melting of the underlying ice. 	 The resultant

topography is hummocky, drainage is non-integrated, and lakes and
l

sloughs are abundant as is characteristic of an area of collasped ice

topography.	 The Coteau is said to contain some of the best waterfowl

breeding areas in the 48 contiguous states (Clayton, 1967). 	 The drift

plain was formed by glaciation that possessed a margin which retreated

in an orderly manner and which occasionally halted or readvanced.
I

Drainage in the plain is integrated only along the edges of the large

melt water channels. 	 Numerous shallow, marshy depressions are present

between these former channels.	 Relative to the Coteau, however, the

Drift Plain has fewer potholes and because of its low relief has been

subjected to numerous wetland drainage projects. 	 This difference in a

wetland occurrence warranted a stratification of the statistical results

in this investigation.

The areal extent of the multispectral scanner data utilized in

this study is shown in Figure 6.	 Generally data which were common to

three observations (two by LANDSAT and one by SKYLAB/EREP) are presented

in this report.	 For the EREP S-192 observation, the spacecraft's

ground track passed within 34 km (21 statute miles) of Woodworth
i

Station on a heading approximately 109°. 	 Because of the relatively

narrow lateral field-of-view of the EREP multispectral scanner and the

short data-take period, Bloodworth Station was on the extreme margin of

the scanner's coverage and scanner coverage only minimally included

areas lying within the Coteau physiographic division which lay generally

to the west and southwest of Woodworth Station. 	 It is unfortunate that
y

_ many of the sampling transects flown by the supporting aircraft were

also outside the area actually observed by the EREP S-192 scanner. 	 The

short along-track duration of the S-192 observation, however,'was

necessitated by the limited supply of-magnetic recording tape carried

aboard the spacecraft. a

=^i
i



.
, 
	

,..	 ^?*^^k`^P;i*^.'^$y.'s`°% ; F-^ ^ 7°^» IV"^+"'!`^??'s#' '+-^^ .. e ^ ^ ^,,,_: c°w	 ^^r'"^^-r•r.-.c^s:^¢'.^i. ^+arc	 eiT^Aner- -ar :e^x1-'.^,y n,r.wx^ ^:'",	 • ^	 s ^ .,y	 ^:'^y'^^'.	 :..r,
K	 p

1

	

SASKATCHEWAN	 I	 MANITOBA

	

a "T 	 q	 ,Y 0	 .-
f :	 CrosbY^	 ^I. 9	 ^	 a	 a4 ra	 .Rolla

D 1 V b D £	 I	 8w'Cegs ,h 11 , Afier^^;F	 t,, Bothneau °	I	 °

	

BU R,It$=^Jh	 ^'L °hy l a O T I,{H E A V	 R LETTE i	 C AcangdonL°
I E R j3 PEMaBINA

OWNE

If	 [...-- —t—E-- ! t^l' —_ rd	 ,^'r•.^ L-—^—'vJ _s Cando q^	 -- n
	

[•—^—_—^—

1 	
^ !	 [ ^ . T	 ^ 	y I t]	 ° ^	 ^ CI	 o	 ^	 I - -	 Qr Cflon

W I L L I A M S	 h e^	 I^„	 ^• ~. `_-- y	 7°wner^ ffug , ua	 I	 1	 W.A-L S H

^jl o AMSE
1 t Wdnston	 I	 Stanley [	 +. D ,,°o! M C H E R Y	 ^^^	 0	 ,{	

o	
°p o^^	 ~` ~ .,MOLINTRAI	 {	 T
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aDETECTION OF SURFACE WATER FEATURES USING A

SINGLE WAVEBAND 4i :' NEAR- INFRARED' DATA

Level thresholding of . a radiation signal in a single near--infrared

waveband is a.reliable and simple technique for delineating surface

water. This tec^^niue is effective because at near-infrared wavelengths

-	 the apparent radiation' of water is usual ly uniform and lower than for

other terrain objects. Thus using an appropriate near=-nfrared'waveband,

water may be delineated by accepting scene points with low radiance

values (classified as water) while rejecting all values above a certain

threshold (non-water).

In this text, we have termed this form of surface water detection

"thresholding". To appreciate the effectiveness of thresholding, it

is helpful to have an understanding of the interaction of incident

radiation* with water.

Spectral Radiance of Water

The apparent radiance of a body of water is the result of: (1)

reflections at the air-water interface, (2) reflections from particulate

matter suspended in the water, and (3) reflections from the bottom.

Because the fields-of-view of the LANDSAT and SKYLAB muitispectral

scanners have been limited to near vertical observations and because

water surfaces reflect specularly, radiation reflected by water to the

scanners must have emanated from a sky position near the zenith. Given

the northerly latitudes which characterize the glaciated prairies,

satellite scanners viewing only near nadir generally do not view water-

reflected direct solar radiation (i.e. the ground specular point is a

considerable distance outside the field-of-view of the scanner). This

leaves only that fraction of diffuse skylight which emanates from a

near-zenith sky location . to impinge Upon the water surface and thence

*This discussion excludes consideration of thermal or self-emitted
infrared radiation and is therefore limited to radiation in the visible
and near-infrared at wavelengths somewhat less than 4 um.
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angles, (. Figure 8.)..

In considering reflections emanating from particulates within the

water volume and From the bottom surface, water's absorptivity must be

considered. In the near-infrared, that fraction of radiation which

penetrates the air-water interfaces Ia.rgely absorbed, the_e tent of

absorption being dependent upon the wavelength-and the length of the

water path. This situation is shown quantitatively in Figure 9 which

illustrates the spectral transmission of pure water for a variety of 	 ^-

path lengths. Consequently, a sensor viewing a.water body in a. near-

infrared band receives little or no radiation that may have been re-
n

flected by the bottom,or volume suspended particulates.	 F ,.^

In an earlier study utlilzing aircraft data, Work and Thomson

(1974) evaluated the relative merits of various near infrared bands

for mapping surface water. They. compared bands in the.0.73- to 0,92-um,

1.0- to 1.4-pm, and 1.5- to 1.8-um ranges and concluded that all pro-

duced reasonably good results. Given a choice, however, the longer

wavelength bands did provide some marginal. improvement. Longer wave- 	 #

length alone should not predicate the choice of a water-mapping wave- 	 y

band however. For example, , the use of a waveband in.the .2.0- to	 F

2.6-um atmospheric window is not optimal because of the decreasing

amount of solar rad`iatiion at-these wavelengths. ` It must be remembered

that most terrestrial objects are relatively strong diffuse reflectors 	 ^r

and that with adequate solar illumination such targets will contrast

sharply with surface water features which consistently are darker. Work

and Thomson (1974) concluded that an ideal waveband for delineating

surface water lay within the 1.5- to 1.8-pm atmospheric window.

i
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A graphic illustration of the-relative utility of different

near-infrared bands for detecting water may be seen in Figure 10.

Illustrated is imagery acquired by an airborne multispectral .scanner
t

flown in support of this study. For the three infrared bands illustrated

(0.67 to 0.94--Pm, and 1.0 to 1.4-jim), standing water is rendered as a

dark feature in the imagery due to the low level of radiant energy

emanating therefrom. These wavebands are generally comparable to the

SKYLAB multispectral scanner bands 7, 10, and 11 respectively (0.78- to

0.89-pm, I.20- to 1.30-pm, and 1.55 to 1.75-pm).

The 0.67- to 0.94-pm imagery.of Figure 10 illustrates an anomalous

condition.for at least one pand. The pond labeled "a" contained several

light-toned, pincer-shaped features which occurred within the pond

perimeter but which did not appear in the imagery at wavelengths greater

than 1.0 mm. These features were due to a floating algal mat and

possibly to plant submergents (water-milfoil, Myriophyllum exaibescens,

and bladderwort, Utricularia vulgaris) which may have been exposed by

low water levels. In the 0.67- to 0.94-pm band, this vegetation was a

moderately strong reflector of incident radiation, and consequently a

light--toned rendition occurred in the imagery thus masking the under-

lying water.

In general, the radiance of vegetation is largell affected by the

critical reflection of incident light from cell walls within a leaf.

(Gates, et al., 1965, Gausman, 1974). Although radiation may be

reflected several times before leaving the leaf, most of the radiation

will be returned if there is little absorption by leaf tissues. This

would seem to be true for the floating vegetation in the 0.67- to

0.96-um waveband of Figure 10. However, beyond 1.0 pm, water's increasing

near infrared absorptance (per Figure 9.) appears to influence the

radiance of plant materials, In the 1.0- to 1.4--pm imagery of Figure

10, the floating vegetation was no longer discernable from its water

background due, possibly, to the high moisture content of aquatic

plant tissues. In addition,' the fact that the algal mat may have been

floating several millimeters below the pond surface would also have

precluded a str;ng return of radiation.

F
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Bare Soil

Video Reproduction of 1.0-1.4µm Scanner Data
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lV/
" -Shelterbelt	 "b" -Marsh

Video Reproduction of 1.5-1.8jim Scanner Data

^	 V

Water Recognition Map Produced By Thresholding 1.5-1.8µm Data

FIGURE 10. COMPARISON OF SEVERAL NEAR-INFRARED WAVEBANDS FOR RENDERING
STANDING WATER AND OTHE t MOISTURE RELATED CONDITIONS. The floating vegetation
at location "a" partly obscured the standing water in the 0.67-0.94µm data only. The marshes
at locations "b" and the shelterbelt trees at locations "c" had foliar vegetation containing liquid
water. Many of the upland herbaceous plants were highly desiccated. These hygric to xeric
conditions are discernible by tonal differences in the 1.5-1.8µm data. The above data were
collected by an airborne multispectral scanner operated at an altitude of 4500ft. above the Wood-

worth Station on 12 August 1973, 1633 GMT.
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Liquid water within a leaf is largely the cause of moderate ab--

sorption beyond 1.4 pm and according to Gates, et al. (1965) very

strong absorption beyond 2.0 pm. Other investigators including Olson

(1969), Rohde and Olson (1970), Myers, et al. (1970), and Gausman

(1974) have demonstrated the influence of leaf water in suppressing

reflectivity beyond 1.5 pm. This situation is illustrated at locations

"b" and "c" in the 1.5- to 1.8-um imagery of Figure 10. At locations

labeled "b", marsh vegetation consisting predominantly of bulrushes

( Scirpus sp2.) and cattails ( Typha sp2.) was present. Deciduous trees

comprised the sheiterbelts at locations labeled "c". Both of these

communities had received some moisture during the usually dry summer,

either because they were deep rooted (i.e., the trees) or because they

were rooted in standing water (i.e., the marsh vegetation). Gross

differences in moisture conditions did exist in the scene. Specifically,

an extremely desiccated condition is exhibited by much of the dry

herbaceous upland vegetation, most of which was dead. Reflections

from these materials were high, and they contrast sharply with the

marsh and sheiterbelt communities in the 1.5- to 1.8-pm imagery.

.The water recognition map included in Figure 10 was generated by

thresholding 1.5- to 1.8-pm data. The recognition map illustrates that

in spite of the apparent low radiance of water, marsh, and sheiterbelt

features, standing water was unique for its low radiometric signature.

Had water been mapped by thresholding the 0.67- to 0.94- pm band or any

of the SKYLAB multispectral scanner bands between 0.7 and 1.Opm, the

pond at "a" and other similarly occluded or shallow water features would

at best have been only partially recognized.

Methods

Implementation of the thresholding technique was accomplished by

observing radiance ..clues for known water features within a scene and
comparing these values with those of other terrain features also known
to exhibit relatively low radiance characteristics. A decision boundary

or threshold was then selected which effectively separated surface water
from all other scene objects on the basis of their relative brightnesses

v
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(i.e., differences in apparent radiance). Experience has shown that

various si.;-.^ne objects exhibit radiances that may or may not be close to

!	 the low radiance of water depending on (1) the specific near-infrared

band under consideration, (2) the geographic locale, and (3) the

phenologic state of some scene objects.

In eastern Borth Dakota, dark prairie soils, Mollisols (formerly

referred to as Chernozems), have consistently approached the low

radiance values of water in near-infrared wavebands of less than 1.4 um.

In the 1.5- to 1.8-um atmospheric window, vigorous green vegetation

most nearly approach water's low apparent radiance (these water, soil,

and green vegetation radiance characteristics were previously illustrated

in Figure 10). For our North Dakota study site, the practice was to

threshold or differentiate between water and either bare soil or

vigorous green vegetation depending upon the particular near--infrared

a
waveband utilized.

The SKYLAB multispectral scanner had five wavebands in the wave-

length range 0..78 to 1.75 um, any of which were potentially useful for

discriminating open surface water using the thresholding technique.

Thus the SKYLAB data offered a further opportunity to appraise the rela-

tive usefulness of several near-infrared wavebands. Such an evaluation

was conducted, the results of which are presented in Figures 11 through

14. In the waveband considered in Figures 11 through 13 (0.78-- to

0.88- pm, 0.98-- to 1.08- pm, and 1 .20- to 1 .30-- m respecti vely), u ^ 	 u 	 bare

soil was the terrain feature most likely to be mistaken for open surface

water. Each histogram represents a sample size of about 350 pixels

drawn from throughout the observation scene. The overl y of water andp	 I;,r

bare soil histogram tails generally decreases with increasing wavelength.	 =<-1

In the 1.55- to 1.75-um waveband (Figure 14), the terrain material most

likely to be mistaken for open water was vigorous green vegetation; but

there was no overlap of histograms in this waveband. Our conclusion, re--

affirmed by these data, was that the 1.55- to 1.75-um channel was the

least ambiguous for water discrimination. For this waveband a threshold 	 j

boundary of 10 volts and less was selected for the delineation of open

surface water. In affixing units to this threshold value, no inference';'

1
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1973 over eastern North Dakota.

a



37

•pant ,	
1A R:d4.+.. a _

J

of radiance values was intended. Indeed, we have only been concerned

with relative differences of radiance between target types and con-

sequently have made no attempt, using available calibration data, to

relate the digital (voltage) count recorded on the data tapes to

absolute radiance levels.

In this investigation, the selection of an appropriate threshold

boundary was manually accomplished, based upon a visual examination of

a computer generated statistical analysis (i.e., histograms or frequency

distributions). Given the limited amount of data to be analyzed and

the clear separability between terrain classes (i.e., open surface water

versus vigorous green vegetation), this manual interaction in the

recognition process has been satifactory. The procedure could have

been automated, however, and the computer could have been used to

perform a one channel linear recognition between two object classes

in a manner similar to maximum likelihood classification recognition

(or pattern recognition). Such an approach should be appropriate when

it is necessary to handle large amounts of data which represent a

variety of scene and illumination conditions.

Results of Single Channel Water Recognition

A computer-generated thematic map identifying open surface water

over a 3621 km2 (1397 mi l ) area as observed by the SKYLAB/EREP scanner

was produced by thresholding a 1.55- to 1.75-µm waveband (Figure 15).

The tract shown partially overlapped both the Missouri Coteau (25%)

and the Drift Plain (75%) strata. It is evident from this map that the

Coteau (lower left) had a considerably higher density of ponds and

lakes. The larger lakes in the Drift Plain were frequently the result

of major im,-.:andments on the James River watercourse (Jamestown

Reservoir, Jim Lake, Mud Lake, Arrowwood Lake, and Juanita Lake).

The SKYLAB/EREP observation of 12 June 1973 was interleaved between

two LANDSAT observations which occurred on 14 May 1973 and 7 July 1973.

Thematic water maps resulting from those LANDSAT observations are shown

in Figures 16 and 17 respectively, Only the upper 40 percent of each of

the LANDSAT maps is common to the area mapped by SKYLAB. Note, too,

3
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that the maps scales differ. The LANDSAT maps were initalIy generated-

'	 at a scale of l/24,000 using a general purpose, digital printer writing

i32 pixel columns per each l5-inch wide paper strip. The ^.ANDSAT maps

illustrated each consisted of six printed strips which were manually

abutted and subsequently photo-reduced to a convenient size. The SKY^AB

map was initally generated at a scare of I/i5F,000 using a computer

controlled, ink-jet printer. This format was of a more convenient size

and was considerably easier tv reproduce. Thus the ink-jet map repre-

sented a significant reduction in production time and labor.

The three sequential observations represented by Figures i5, l6,

and 77 .spanned a time period of law precipitation and progressive

desiccation. The diminishing of prairie ponds and Lakes is normally

to be expected during a May to ^lu1y period. Visually, however, it is

difficult to discern from the maps what the changes in surface water

conditions were, and without extensive manual interpretation it is
a

impassible to quantify these changes. For purposes of analysis,

therefore, the data are more conveniently assessed if they are assembled

in statistical form by automatic data processing techniques. Figure

I8 illustrates such a statistical tabulation as generated from tape

recorded data gathered 6y the 5KYl.AB scanner over the Coteau physio-

graphic stratum. The upper tabulation (only partially illustrated}

is an enumeration of all recognized surface water features white the

Iower tabulation summarizes the frequency of pond occurrence by size.

For the biologist concerned with the management of waterfowl populations

this summary provides a ready assessment of habitat conditions over

wide (synoptic} areas. The SKYLAB map and the related statistics have

been generated from tape recorded data which was made available to us

in a scan-line straightened format. Existing software and printers

were capable of handling data in only this format.

The statistical tabulations were produced by a software program

designed specifically for use with satellite data. The program was

•	 adapted from a pre--existing program which was used with wide field-of-

view, low altitude {aircraft} scanner data. These programs function

by the use of a threshold decision criterion for classifying a grouping

_	 _	 __	 ,.,,.
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}FIGURE IS. EXAMPLE OF COMPUTER PRINTOUT Or' POND AND LAKE STATISTICS FOR I
..:

-^
AN AREA WITHIN THE MISSOURI COTEAiJ PHYSIOGRAPHIC PROVINCE OF NORTH DAKOTA. L

':

The above sCatis^ics resul.eed Erom a SKYI.AB mult^.spectral scanner {5192)
observation of 12 3une 1973.
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ai' pixels as a water body aid thereaf^e^^ compu^^ng the area of each...

specific water feature. Perimeter and shape factor `(a measureof
^:.

shape camp.iex.i^Y:) calcula-^^ons ti^ere also pflss^bl^. ,Because of the 	 `
small size of many of the ponds and the potential; tha-6 i:he, shorelines
of Ianger:, ponds and lakes cauld.vary . widely in length at scales finer

than the resolution limit of the data, perimeter and shape factor
.,

calculations were not perfor^ed Appendix A of thin - report deserTbes

in detail the computer program used to generate these.statiet3cal.

data. while Appendix B includes a complete tabulation of surface	 ^ ^::

water statistics derived -From the SKYLAB scanner observation of l2 June

1973.	 ^

In the statistical. tabulations, we :identified each pond and Ial^e

and defined its. position with each of two. coordinate systems based on ;#
a scan-7ir^e acid point number scheme and a more conventional latitude 	 _;

- and longitude system: ThE scan-line and point number information was
p

inherently available from the digital tapes. Conversion to latitude
h

and ,longitude coordinates was accomplished by , a regression analysis	 ^ ŝ
:^

which used several control points located within the scene:.. 1'he

convention used to reference each water body was to identify the body 	 ^.,

by the number of the last scan-line with at least one pixel in the

water body and the point number of the greatest numbered water pixel 	 ^.,,^

of that scan-.Line..	 i-.

Graphical summaries of pond frequency far the two observed strata -^.'	 5
f

are shown in Figure 19. These data were normalized so that comparisons

between the different sized strata are possible. Mote that the ordinate	 ^_

or density seal es for the two strata are logarithmic and that the. two 	 ,^:-

density distributions differ between strata by approximately an order of 	 ;^`^^^.

magnitude in all size classes. A summary of seasonal change in pond

numbers over several consecutive time intervals is illustrated in
-^'	 3

Figures 20 and 2I. These changes were observed in the Coteau stratum

by the use of a combination of LA^OSAT and SKYLAB observations*. The:. 	 `^,̂:,

*A sir^iiar measure of surface water change for the Drift Plain
is not ayaiLable because the processed i^A^lnSAT data did. not represent
a Large enough sample in this stratum.

i .:	 ^	 . _	 - _-	 -- - -	 --	 - ---	 ^.
^=^

,^



02 3 4 6 S I{3	 15	 20	 2S	 30	 40
APPARENT POND SIZE (ACRES}

l	 ^
t	 i	 ,	 r-------^
^	 ^	

i	
i	 i

^	 ^	 I
I	 ^	 i	 ^	 ^
L__2	 ^	 ^	 l

I	 r
L ....__^....i	 E

I

L—___--_—^^^..... ^^..

FIGURE 19. SUMMARY OP SIZE AISTRIBUTION OF PONDS IN THE COTEAU AND
DRIFT PLAIN STRATA A5 DETERMINED USING SKYLAB MIILTISPECTRAL SCANNER
DATA COLLECTED 12 d13NE 1973. Where the pond size 3nerementS are
greater than one acre, the data have been averaged over the increment,

REPR^Di7C^BILITY OF THE
^Rx^x^^^^ ^.^^r rs ^c^o^:

- _. -^-^.

:;

.^

•.l

Ij • ^ ^ 1^^

^'y

^'... "^

a.aol
Ze
F*3

0.0001

^,'

'r

^yy

";

': ^
_;

F-:'

,^

;^

..	 .^

^.,

,,	 k ;

r	 'i

a.^

a

^ o.O1

0

..

:i



^
i:: ,,	 k _	 _

1..,.	 _:

,.

^.

Legend

---^---- 14 May 19'73 (^,ANDSAT)

W
-. 12 dune 1973(SKYLAB 5--192}^

^ ^

L .,

t

^^	 N

^_

' ^ ^.^ ..

-

^•

^

A

- '

L._

_ rte'

I -	 -'-

^: ^^. l

s

^
-

^. Fy L--
^

O ^.

r

r
^T

T ^..—....1-
--	 ^

-	 3'

^	 1

Yi

_
i r..

1

' ``^ D.01

^,. 17
---... ^.... '	

..

-	 -

^	 — -	 -

H

--	 ^

;.

D.ODl ^ ^1-}--^---^----

1 2 3 4	 6.

----4-^	 -4--

^̂ .
i--^-#

S	 1D 15	 20	 25	 3D	 ^	 4D	 50

! APPARENT POND ^ZE (ACRES) 3
FIGURE 20. SUMMARY OF Si2E DTSTRIBUTTON OF PONDS IN THE COTEAU STRATUM FOR
A 29-DAY.MID SFR^NG INTERVAL.	 ^dhera the pond size increments are greater

^

than

-

one-acre, khe: .daka have been averaged over the increment.

-	 ..	 -
^

°`'`L.

^	 4

^.

.i	 - -

^^.^̂.

r;:.^s. J.aw.:..rLAW	 ....— ..



Legend

" i2 June 1973 {SKYLAD S-i92}

----------- 7 Jizly 1973 (LAATI^5AT}

,^

i
ii

L_^.._

^"'- 1

1 2 3 4 B 8 i0	 i5	 2Q	 25	 30	 40
r

APPARENT POND SIZE (ACRES} 	 !
FT.GURE 21. SUMPfARY OF SIZE DISTRIBUTION OF PONDS TN THE GOTEAU STRATUM POR A ^5-DAY	

IIII
i	 LATE SPRING/SUNNIER INTERVAL. [dhere the pond size increments are greater than ane 	 ^,

acre, the data have been averaged over the increment.	 ^

Q. QUi ^.^

5Q

kq.
_. _	 _... T-- _--_.__^ _^_ ._ .. 	--..	 _ _



;b=.
5t

^,

..; j°^

^^

^Y 
_ . ^^...

^L - _ __. .i _:

C^ •	 v, ^.,+^. M	 ....

`t

R

â .

r
r-}

5

^{,.r..t

J "f^y'y

graphical data indicate a progressive drying trend for May thru June

to July. However, the trend appeared to be protracted during the 14

May to 12 June interval after which ponds diminished in size and

numbers at a more rapid rate. On a synoptic basis, at least, it appears

that th^.:^ two sensor systems (i.e,, SKYLAB and LANDSAT) were consistent

in that both data sets indicated a decline in bath area and numbers of

I	 surface water features. It should be noted, however, that the data

.r" ^ are for sampled areas which were not specifically the same for each

of the three observations, As a result, the observed trends for the

larger ponds and lakes were oat always consistent because of the low

sampling frequency.

The trends, as noted above, appeared to 6e manifested in both

I	
the SKYLAB and L r̂ NOSAT observations when each of the data sets was

` I	 considered as a whole. One may then ask whether individual ponds

^

	

	 and lakes as observed by both the SKYLAB and LANDSAT scanner systems

also adhered to the group trend. To answer this question, 21 ponds

and lakes ranging in size from 2 to aver 190 hectares were randomly

selected for comparison. Figure 22 is an enlargement of a section

of the thematic water map shown previously in Figure 15. Indicated

in Figure 22 are the names and locations of the 21 ponds and lakes

studied. Table 3 is a listing of these water bodies along with their

geographic coordinates as listed in the computer output stream. Nota

that the coordinates are consistent between data sets but that slight

differences exist between the SKYLAB and LANDSAT observations. These

discrepancies can be attributed to the fact that the computed caardi-

nates from the SKYLAB data were for the northeastern corner of each

water body while the LANDSAT data were for the southeastern corner.

^	 This difference is particularly apparent for the larger water bodies,

Efor example, Barnes Lake.

•	 Table 4 is a listing of water body size for the same 21 ponds

and lakes. The LANDSAT data indicated a decline in pond size from May

•	 to Jul; in all but two instances, Lawrence Lake and Fish Lake, which

^	 virtually remained constant. On the other hand, the SKYLAB pond and

lake data which were collected intermediate between the LANDSAT

,^ ,^
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FIGURE 22, THEMATIC WATER MAP OF A TRACT LYING IN THE COTEAU PHYSIOGRAPHIC
PROVIt+CE AND OBSERVED BY THE SKYLAB MULTISPECTRAL SCANNER ON 12 JUNE 1973.

Approximate Scale: 1/62,500.
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TABLE 3.
COMPARISON OF COMPUTER LATITUDE & LONGITUDE COORDINATES

PER LANDSAT & SKYLAB OBSERVATIONS

Computed Latitude (Reg. 1^) Computed Longitude (Deg, W)
Per Observation o£: Per Observation of:

LANDSAT LANDSAT SKYLAB LANDSAT LANDSAT SKYLAB
5/14/73 7/7/73 6112/73 8/14/73 7/7/73 6/12/7

Barnes Lake 47.224 47.225 47.239 99.286 99.286 99.260

Narden Lake 47.255 47,255 47,260 99.258 99.258 99.255

Jerome Lake 47.246 47.246 47.248 99.261 99.261 99.259

3anice Lake 47.242 47.242 47.246 99.250 99.250 99.249

Calhy Lake 47.208 47.208 47.213 99.262 99.263 94.260

Northwestern
Lake 47.210 47.210 47.224 99.217 99.215 99.206

Alkali Lake 47.204 47.205 47.208 99.205 99.205 49.203

Trautman Lk. 47,177 47.178 47.179 99.200 99.200 99.207.

Ha 11 Lake 47.167 47.168 47.172 99.250 99.250 99.237

fla t Chkis s
Pond 47.151 47.151 47.153 99.263 99.264 99.262

Clark Lake 47.7.34 47.135 47,136 99.238 99,236 99.236

Fish Lake 47.130 47.130 47.130 99.234 99,231 99.229

Big Lake 47.135 47.136 47.138 99.229 99.227 99.226

Goldwin Lake 47.136 47.137 47,1.40 99.196 99.196 99.7.45

Limesand
Pond 47.139 47.140 47.140 99.182 99.182 99.182

Schelske Llc. 47.108 47.111 47.111 99,196 99,195 99.194

Hust Lake 47.200 47,201 47.206 99.293 99.294 99.289

Sdest Lake 47.203 47.204 47.209 99.232 99.231. 99.297

Lac^rrence Lk, 47.208 47.208 47.212 99.168 99.169 x}9.168

Eugene Pond 47.175 47.176 47.177 99.174 94.7.74 99.174

Woodworth
Marsh 47.134 47.135 47.135 49.300 99.300 99.302

nom.:

-^
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TABLE 4.

1

4	
..°V. ^

;^;;::-^ COMPARISON OF COMPUTED WATER AREAS PER ^`"

^^
LANDSAT & SKYLAB OBSERVATIONS

:-.
-Y^

{a) {b) {c) {d} (e)
_.	 `.	 ^ SKYLAB

Computed Surface ?•rater Departure
,:
_.^

Areas (Hectares) Per LANDSAT Observed from ,

Observation af: Mean Area LANDSAT
Mean -^

f	 .:	 ^^

LANDSAT SKYLAB LANDSAT {Hectares) (No.	 of (Na,	 of `^
'-^^i. 5/14/73 6/I2/73 7/7/73 pixels) Pixels)
,^

I
Barnes Lake 191.15 197.1.7 180,01 1.85.58 3t^8 +18.24 r

Norden Lake 33.11 35.76 30.67 31.89 63 +6.09 ^	 _^•^

Jerome Lake 1.6.78 1.7.38 13.78 15,28 30 +3.02

-°	
Janice Lake 17.66 ].7,38 16.45 17.06 34 +0,52

Colby Lake 22.07 23.84 20,45 23..26 42 +4.06 ^	 =^

^	 Northwestern Lk. 42.38 38.74 37.34 39.86 79 --1.76 .,^

Alkali Lake 29.14 26,32 24,45 26.80 53 -0.74

Trautman Lake 8.83 3.97 6.22 7.53 15 -5.59
5

Hall Lake 32,67 27.32 23.11 27.89 S5 -0.76

^,

Hotchkiss Pond 7.06 3.48 4.00 5.53 11 -3.23

Clark Lake 7.06 5.96 3.56 5.31 11 +0.99

Fish Lake 16.33 17.88 16.45 16.39 33 +2.34

Big Lake 13.24 11.42 12.00 12.62 25 -1.89

Gvldwin Lake
I

13.24 13,91 8.89 11.07 22 +4.47

Limesand Pand 5.30 2.48 1.78 7.08 7 -1.66
1,	 Schelske Lake 14.57 12.91 8.00 11.29 22 +L.S6

^'	 ;!

Hust Lake 38.85 37.75 31.11 34,98 69 +4.35 ^^	 ^

West Lake 32.67 30.79 31.56 32,12 64 --Z.08

Lawrence Lake 5.74 3.48 5.78 5.76 11 +3.59

Eugene Pond 7.06 4.47 4.89 5.98 12 -2.37 ,.^^-

[daodworth Marsh 4,86 2.48 1.78 3.32 7 -1.31 .+^

Totals 1034
^.^.....
+21.66 •'

50
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observations do not consistently follow this trend. Six of the water

features observed by the SKYLRB scanner had computed areas greater

than, six less than, and the remaining nine within the range of the

respective LANDSAT observations. Since the SKYLAB observations

occurred midway be een the two LANDSAT observations we hav^, far the

sake of compariso n. ' ssumed that the SKYLAB observed ponds should

have had areas aqua to the mean of the two LANDSAT observations

(column d of Table 4). We then tabulated the departure of the actual

SKYLAB observations from this mean and expressed the departure in terms

of equivalent pixels (column a}. An algebric summation indicated a

cumulative deviation of only 21.7 pixels for the 21 ponds whose summed

area was equivalent to a count of 1034 pixels. Thus it appeared that

the SKYLAB observed individual pond areas varied randomly and that

those ponds which were larger than expected tended to be balanced by

those which were smaller than expected. b!e have examined the data

including aerial photography and ground-truth photography in an attempt

to explain these individual variations in the SKYLAB observations. 1^1e

have not been able to relate these variations to differences in water

quality, to the presence ar absence of aquatic plants, to phenoiogical

circumstances, or to differences in the nearWinfrared wavebands which

were used to delineate surface water features*. U!e must conclude,

therefore, that such factors were not contributory, Furthermore, it

appears that far relatively small targets such as prairie ponds and

lakes, the SKYLAB multispectral scanner was not able to achieve as

consistent a measure of area as was obtained with LANDSAT. l^le

attribute this to the fact that the SKYLRB multispectral scanner

utilized a conical scan. L^lith such a system, problems of varying

pixel overlap and data redundancy were inherent (Figure 23). The

problems were further compounded when the data were ccnverLed into

a straight line format using a nearest neighbor decision rule. The

mapping of picture elements (pixels) of a conical scan--line into a

*Water was delineated in the case of LANDSAT data with a 0.8 to
1,i um waveband and, in the case of SKYLAB S-192 data, a 7.55 to 1.75 um
waveband was used.

^i	 '. `	 ^^_ .
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OF A CONICAL SCANNER. The figure depicts increasing pixel

overlap with displacement away from the ground track.
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straightened scan-line must of necessity result in the discarding of a

_	 certain number of data pixels and slight dislocation of nearly all

pixels from their true geographical position so that they can be fitted

into a rectangular pixel grid, 	 These actions havE the net affect of
°'.

slightly and systematically affecting areal representations and ^

I	 geometric fidelity.

_,,

tiJith regard to surface water area measurements, it is important

to stress one other paint. 	 The pond sizes listed by the computer
':

'^	 must in practice be termed "apparent size", because each pixel of

i	 data was examined and determined to be either totally water ar not ^`,^^

water.	 P4any pixels lying an the perimeters of ponds and lakes undoubtedly
,R

contained some unrecognized and untabulated water. 	 This caused the `,

surface areas of virtually a17 water features to be underestimated.

Percentage-wise, the errors were greater for the smaller ponds and

far those of irregular shape {i.e., those having a high ratio of A:^,

perimeter length to area). 	 The very small ponds, of course, would

not be recognized at all. 	 In theory a pond must have filled or nearly '.^
1

filled the sca^^n^r's instantaneous-field-of-view {IFOV} to be recoa-

nixed*.	 The IFOV of the SKYI.AB multispectral scanner was 0.635 hectares ,,_.

in size.	 Recognition of a pond of this size would have been dependent

upon whether the pond was wholly included in one digital sample or

fractionally distributed over several 	 samples.	 This would be c^averned ',

by both the size and shape of the pond, by the frequency response of ;;

the scanner ` s electronics, and by the random occurrence of the pond

with respect to the scanner's sampling grid (i.e.	 the occurrence of
i

i
the pond with respect to a scan--line and the digital samples along t,:=

that scan-line}. 	 In general, we feel that it is problematic whether ^	 '``g

ponds in the 0.6 to 2.5 hectare size class were recognized whereas '.;^
^-	 ;

3

•	 *Since there was some variability in the radiance signals received

7

I'
from water targets (per the histograms of Figures 11 through 1^}, it ,_
is possible that a water target did not completely fill the scanner's
instantaneous•-field-of-view but was nevertheless dark enough to be
classified as water. ^	 , s,

y^

' 	 N

Y
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above 2.5 hectares it is mass; probable that they were recognized but 	 i

nat necessarily recognized at their full areal extent. The next chapter

is devoted to the processing of multi spectral data and particularly to

the use of such data for detecting water elements smaller than the

nominal resolution limits of the Scanner. 	 ^^

E	 'k
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I As discussed in the previous chapter, signal 7eve1 thresho1ding

^^^^ of a single near-infrared waveband of data is a simple and effective

^;f method for delineating surface water. 	 1^lith the advent of satellite

'`^̀̂̂ ro rams, however, many workers in the field of remote sensin 	 haveP	 9	 g

^>_.s been uncomfortable with the diminished resolving capabilities inherent

_.r^ in the operation of high altitude sensors, particularly scanners.	 Be-

s^ cause prairie ponds are frequently smaller than one--half hectare (1.2F;

i acre}, it was apparent in both our LANDSAT and SKYLAB studies that many

water features were not delineated by single channel thresho1ding. 	 As

^` part of these Stud i es we have attempted to test a technique which takes
'^	 ^
^; advantage of the added information content of multiple spectral channels

^^'
^^^.

to estimate the proportion of materials present within a scanner`s

- instantaneous_field-of-view (IFOV}*. 	 The technique termed "proportion

^-
is estimation" or "mixtures estimation" was first outlined by Horwitz et

al.	 (1971) and further described by Nalepka et a1. 	 (1972).	 Before the

F=
'`

}.^
LANDSAT and SKYLAB studies, the application of this technique was

^^ largely developmental	 in nature.	 Its use in these studies must be

considered to be among the first attempts to test its applicability in

a limited operational context.

f	 ^.

';^

^'}.

i

i

.^

' =.t;^^General Theory

-	 CHAPTER 6

PROCESSING 0^ RrtJLTTSPECTRAL DATA ^'OR THE
-	 IMPROVED SPATIAL RESOLUTION OF 6dATER FEATl3RES

When the IFOV of a multispectral scanner is large with respect

to the scene objects being scanned, a single resolution cell may contain

*The terms "I r"+'^^'" and "pixel" are often used interchangeably.
However, ctre terms .;_ not synonymous for LANDSAT and SKYLAB data.
The SKYLAB multispectral scanner optics providR an IFOV of approxi-
mately 79 x 79 meters while the data are sampled and digitized at a
rate which equates a pixel to an area of approximately 72 x 72 meters.
in the strictest sense, a description of the proportion estimation
approach must make reference to the sensor`s optical IFOV. In the
actual processing and display of output data, however, reference viii
be made to the pixel or digitized sample.
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a number of different material classes {i.e., the IFOV may be composed

of a mixture of materials). The proportion estimation algorithm when

applied to such data provides an estimate of the proportion of objects

present within each of the scanner's IFOV`s.

A discussion of proportion estimation theory is beyond the scope

of this paper, however, the essence of the technique can be described

in geometric terms. Assume that a data set made up of two spectral

channels, a l and a2 , contains three pure and uniQUe materials ---

A, B, and C. This situation can be depicted as in Figure 24 where

the signature means for the three material sa are shown in two-dimensional

signal space. The signature simplex is thc; geometric figure formed

by the iir,as connecting each pair of signature means. In the non-

degenerate case, each pure signature is a distinct vertex of this

simplex. If an unknown scene element (IFOV) consists of a mixture

of aI7 three materials, the signature of this material, X, lies within

the simplex. An estimate of the pairwise proportion of pure materials

constituting the unknown element is obtained by drawing a Iine from a

vertex through the unknown signature to the apposite leg of the

simplex. The inverse ratio into which each leg is divided defines

the pairwise proportional composition of the unknown. In Figure 24,

the unknown happens to lie at the centraid of the triangle, and its

composition would be in the ratio of i/3, 1/3, and 1/3 of materials

A, S, and C, respectively. A case requiring special geometric inter-

pretation is shown in Figure 25. In this instance the unknown, Z,

lies outside or on the edge of the signature simplex. The unkown is

determined to be made up of only materials A and C in the inverse

ratio by which the simplex triangle's leg A-C is divided by a line

drawn from Z orthogonally to that leg, If the Unknown is quite

distant from the signature simplex (described in terms of a x2 distance)

the algorithm is capable of designating the unknown as an alien object

or an object composed of none of the simplex materials.

Although the above description has been limited to three pure and

unique materials in two-dimensional signal space, the concept is easily

expanded to situations where many object materials exist in spectral

I
^_ _	 - __	 ^	
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FIGURE 24. GEOMETRIC INTERPRETATION OF MEAN5 OF
SIGNATURE MIXTURES. In the case illustrated, the
unknown, X, is a mixture of three pure materials
--- A, 8, and C --- which form the vertices of the

signature simplex.
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FIGURE 25. GEOMETRIC INTERPRETATION OF ESTIMATE
FOR A SPECIAL CASE. The unknown, Z, lying outside
the signature simplex is a mixture of materials

A and C.
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hyperspace. In applying the algorithm, however, it is necessary to

observe two operational constraints. Firstly, at }east n-1 spectral

channels of information are required to satisfactorily estimate mixtures

of n-abject materials. Secondly, if the signatures far the materials

in a mixture are similar or if one of them comes too close to a weighted

average of the others, the estimates of the proportions may be poor.

The latter condition is illustrated by Figure 26. Picture 26a shows a

valid signal simplex for three signatures and two channels of data.

Here covariance matrices interpretable in terms of loci of constant

probability are shown. Figure 26b is a nearly degenerate signature

simplex in which the vertex of one signature has come close to the

weighted average of the other two signatures. A measure of what is

"too close" is dependent upon the size and shape of the unit contour

ellipsoid about the vertex or more specifically upon the covariance 	 '

matrix.

R Note About the Data Utilized Far h9ultispectral Processinn

In multispectral data processing, a necessary condition is that

all channels of information uti?ized must be spatially registered.

In accordance with the S1CYhAB scanner design, all the even numbered	 ^

SDO's as a group and all the odd numbered 5D0's as another ctroup should 	 ` -
4

have been in registration within a group but one - half pixel out of 	 j '

register between groups. Tn evaluating several near-infrared wavebands

as part of the single channel water mapping task ( Chapter 5), it be- 	 F,`

came apparent that misregistration existed not only between even and

odd SDO groups but also within groups. This condition was discovered 	
r

rr^	
^

during an examination of several maps of two carne lakes, each map 	 `^^'

generated by thresholding a different near- - infrared waveband. If any

two wavebands had beer spatially registered, all land/water interface 	 "^^

pixels should have occupied the same geographic position in each of
3

the respective threshold maps. The examination indicated, however,	 '-^
,^

that for any two 5D0's within either the even or odd numbered SDO
i

groups, between 30 and 50 percent of a lake's peripheral pixels were 	
r^

randomly out of register by one or several pixels.
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(a) Signature Simplex with Unit
Contour El^.ipsaids



^^

A similar lack of registration was independently discovered and 	 a

more rigorously documented by Morgenstern et a1., (1975) who used 	 - ^'

SKY LAB data collected over a Piichigan test site. Band to band mis-

registraiion could have occurred due to lags in the analog eleLtronics 	 -``

or due to data displacements in the digital electronics either onboard 	 ^^` ^^'

the spacecraft or during ground processing. Braithwaite and Lambecic

(1975) have shown that this source of misregistration was minor in most

Sd0's. Morgenstern et al. (1975), after examining data in bath a conic 	
.T

1

scan format and a line straightened format, concluded that serious 	 '

misregistration was created in the data by the scan-line-straightening

algorithm.

The above stated registration errors posed potential problems to 	 ``'

any multispectral processing and especially for proportion estimation

processing. Consequently, we felt it inappropriate to use the scan-

line straightened data which was currently on hand and which had been 	 `,^

utilized for the single-channel water mappinn task (Chapter 5). l^fe, 	 '^

therefore, requested data for the same observation only in a conic 	 -.

scan-line format. These data were subsequently supplied to us by the

Bata Cistribution Center of NASA/^lohnson Space Flight Center. The

remainder of this discussion will be devoted to the processing and 	 _

analysis of this conic scan-line data.

Proportion Estimation Processing

in this phase of the study, the primary objective was to delineate

open surface water in a mixutre of several scene materials. This

should have made it passible to both improve the size estimates of

larger ponds and to detect small ponds which would have been undetected.

Since models currently used for estimating waterfowl productiar ►

utilize pond numbers, we have emphasized the detection and enum^aration

of ponds rather than their areal measurement. 	 Secondarily, we were

interested in detecting wetland components which were characterized by

marsh vegetation, the canopies of which largely occlude standing

surface water. Such marsh conditions are usually peripheral to open

water and are often too small to be delineated in whole pixel recognition.

_..
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Before processing began, the multispectral data (in a conic scan

format) was evaluated by visually assessing electronic screening imagery

produced from the data tape. Table 5 presents a summary of that assess-

ment while Figure 27 presents examples of both good and poor quality

imagery. Note that in -terms of target contrast, only those bands in

the near or reflective infrared were of gaod quality. All visible

and thermal-infrared bands were of lesser quality in terms of contrast

and other forms of electronic noise. This condition can perhaps be

explained by the time of day during which the observation occur°reel --

12:56 Gf'1T or 06:19 local solar time. This places the observation at

about two hours after sunrise, at a time when the solar altitude was

less than 20°. It is conjectured that the near-infrared detectors

produced a cleaner output signal under these conditions than did the

visible detectors because; (1} with the longer atmospheric path

occasioned by -the law sun angle, infrared radiation was scattered

considerably less than was visible radiation, (2) the bandwidths of

the infrared detectors were broader than were the bandwidths of the

visible detectors, and (3} a vegetation dominated terrain has cienera1iy

a higher reflectance in tha infrared than in the visible. Furthermore,

the SKYLAB multispectral scanner was designed for optimal performance

at solar altitude angles in excess of 30° (National Aeronautics and

Space Administration 1973). The poor contrast in the thermal infrared

is again attributed at least in part to the time of the observation.

Generally, during a brief period shortly after dawn and again after

sunset, temperature differences between mast terrain objects will be

muted. This is due to the warming effect of the sun and the differinn

heat capacities of terrain features.

Figure 28 further illustrates characteristics of the data utilized.

!n this case, a one-percent systematic sample was extracted from the

-	 data set. The figure indicates the data value range of 95 percent of

the sampled pixels. Generally the samples had an approximate Gaussian

(normal} distribution between the extremes shown. For the observation

of 12 June 1973, the data values were generally depressed and lacked

dynamic ranee. These depressed data values can largely be attributed

^r	 ^;	 . _	 _....	 _ ._ _

°,\

,,^ a

,^;

^^

4	 ^ ^^_ _



BAND	 1^RANGF (µm^ SDO IMAGERY CONTRAST LOW FREQ. NOISE NOISE BANDING 1/f NOISE

1	 0.41-0.46 22 very poor yes yes no

2	 0.46-0,51 18 poor yes yes no

3 ^
D.52-0.56 1 poor to fair yes yes no
0.52-0.56 2 poor to fair yes yes no

4	 0.56-0.61 3 poor yes yes no
O,S6-0,61 4 poor yes yes nc

5	 0.62-0.67 5 very poor yes yes no
0,62-0,67 6 very poor yes yes no

0.68-0.76 7 good yes no yes
6

0,68-0,76 8 good yes no yes

7	 0.78-0.88 9 good no no no
0.78-0.$8 1D good no no no

8	 0,98-1.08 19 good na no no

9	 1.09-1.19 20 good no no no

10	 1,2Q-1.30 17 good no no no

11	 1,55-1.75 11 good no no no
1.55-1.75 12 good no no no

-2.35

12 ^
2•i0 13 good yes no no
2, 1D--2.35 14 good yes no no

13- 2
10.20-12.50 15 very Boor yes no no
10.20--12.50 16 very pocr yes no no

13-1	 10.20-12.50 21 very poor yes yes no

COMMENTS

some sync. dropout
some sync. dropout

some sync. dropout
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some sync. dropout

same s^^nc. dropout
some s;•nc, dropout

some sync. dropout
some sync. dropout

TaBLE 5. 1;VALUATION OT SiCYLAB MULTISPECTRAL SCANNER ELECTRONIC SCREENING
IMAGERY rOR DATA OF 12 JUNE 1973 COLLECTED OVER EASTERN NORTH DAKOTA
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^^aise handing is noise occurring in phase with the scan frequency. In these particular cases it Boas
evidenced by two cycles of alternate dark and light bands cahi.ch occurred throughout the imagery
parallel to the ground track.
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(a) SDO 3 (0.56 to Q.6i ,,m} -- an example or pc^c^n yudl=may wu^^•	 ^^•--

alternate light and dark scan line striping is low frequency noise.
3

(b)	 SDO 9 (0.78 tv (3.88 i;m) -- an examp^e cat gaoa qualx^v .,a^a.

FIGURE 27. EXAMpLE5 OF ELECTRONIC SGRE^:NING IMAGERY USED TO EVALUATE DATA
QUALITY AND Ti3 DETE73MINE SITE CDVEliAG3:. This SKYLAB multispectra l scanner

observation was made aver eastern Nvrtl7 Dakota vn ].2 .Tune 1973 at approx-

imately 12:56 GMT (06:7.9 local solar time).
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180 Observation of 12 3une 1973 (eastern North Dalcota)
---------- Observat^.on of 5 August 1973 (southern Michigan)
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0,41-0.46 0.52-0.56	 0,G2^0,67	 0.78-0,88	 1.09-1.19	 I,55--1.75	 10.20-12,50
0.46-0,51 0.56-0,61	 0.68-0,76	 0.98-1.08	 1.20-1.30	 2.10--2.35

rtdAVEBANA (gym) ,

FIGURE 28.	 DYNAMIC RANGES OF SKYLAB MULTI5PECTRAL SCANNER DATA COLLECTED OVER EASTERN
NORTH DAKOTA ON 12 JUNE 1973 AND, FOR COMPARISON, OVER SOUTHERN riICHIGAN ON 5 AUG. 1973.

The ranges are based on a 1% systematic sample taEcen throughout the data.
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to the low sun angle and the generally poor illumination conditions

which existed. For cmparison, the figure also includes similar data

samples obtained from a SKYLAB scanner observation made over southern

Michigan on 5 August 1973 at 15:00 G`1T or about 09:30 local solar time.

Note that these latter samples have much broader dynamic ranges in

nearly all spectral bands and that the ranges are not depressed.

The actual implementation of proportion estimation processing

involved as a first s}ep the securing of spectral si gnatures for object

materials occurring in the observation scene. P9ultispectral signatures

extracted from actual scene elements (training sets) for the SKYLAB

observation of 12 June 1973 are shown in Figure 29, Only even numbered

SDO's were utilized and, in addition, data in the 0.41- to 0.46-um

and 10.20- to 12.50-µm wavebands were discarded because of poor

quality. In selecting the training sets, care was taken to pick

R.^	 resolution elements that were pure in their constituency. In order

to obtain representative samples, however, the signatures were obtained

by combining several training sets which consisted of like materials.

For example, the water signature represents a combination of several

ponds and lakes which ranged in water quality from the relatively

clear to the moderately turbid. As a result, the sinnature for water

in this instance has a larger standard deviation than would normally

be expected. Similarly, other signatures represent a variety of field

and marsh situations. Note from the figure that the signatures are

not well differentiated in the visible wavebands -^ a further mani-

festation of poor contrast as observed for these bands in the electronic

screening imagery.

The deep marsh signature was obtained from several communities

of bulrushes {Scri us spp.} and cattails (Typha spp,). Bulrushes

commonly occur in solid stands and frequently in association with

cattails. Cattails occur less frequently in solid stands and conse-

quently were not as dominant in the deep-marsh composite sinnature

as were the bulrushes. Signatures for the shallow marsh class were

obtained from plant associations of whitecap { Scolochloa festucacea)

and sedges {Carex, spp.). 4dhitetop is a tall, lush marsh grass that
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00146-0.51 ^ 0, f56-0.61 ^ 0 68-0,76 ^ 1.09-1.19 ^ 2.10-2,35

0.52-0.56	 0.62-0.67	 0.78-0.88	 1.55-1,75

SPECTRAL BAND (^ m)

FIGURE 29. SPECTRAL SIGNATURES USED IN THE PROCESSING OI' SKYLAB MULTISPEGTRAL SCANNER	 '•
DATA COLLECTED 1? JUNE 1973 OVER EASTERN NORTH DAKOTA, The signature mean and plus and

minus one standard deviation are shown.
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often grows in solid stands and, in drier years, is cut for hay.

Haying stimulates the growth of whitetop al1owinc^ the Species, in

the lo^ig term, to become dominant over the sedges. On the other

hand, pasturing tends to suppress the whitetop and allows sedges to

become dominant. Both of these marsh classes frequently occur in

narrow concentric rings surrounding central areas of open water.

Continuous, large expanses of these communities are less common, Tt

is this latter situation which must be selected as a training set and,

as a result, the selection was often limited.

The small grain signature represented those grains typically nrown

in this area of North Dakota --- hard red wheat, durum wheat, barley,

and oats. These grains, all springplanted, were in an early growth

stage during the observation on 12 June. Grain fields throughout

	

•	 the region were represented by a wide range of phenologicai stages

because of variations in planting dates. Same fields had only recently

been planted, thus bare soil was predominant. Other fields had been

planted for up to one month and had reached a stage where a nearly

closed, homogeneous canopy existed. It is this latter condition

that is represented in the small drain signature. The "idle" signature

represents primarily grasslands (i.e., pasture, open ranee, and/or

native prairie situations). In general, grasslands in early June

were represented by a predominance of above ground, dead, herbaceous

standing or matted biomass remaining from the previous year's growth of

grasses and fortis. Few green plants had as yet emerged from this

standing or matted dead biomass.

The signa^ures selected were evaluated with an automated

statistical analysis program. The purpose of the analysis was to

determine whether the position of the signatures in multispectral

hyperspace permitted a meaningful mixture estimation. I •f, for example,

three signatu re means, A, B, and C, were in a line, then onE would

have no ^^ray of knowing whether a data point between B and C was a

mixturf: of Band C, a mixture of A and C, ar a mixture of all three

(an approximation of this situation was illustrated previously in Finure

26b). The results of our analysis of a set of six, five, and four
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signatures respectively are presented in Table 6. Tn the first;

case, where the full complement of six signatures was tested, the

separability of four of the six signatures was poor and for water

and bare soil was only moderate. Tn the second iteration the sha71ow

marsh signature was eliminated, but water's separability did not im-

prove. Finally the set was pared to four signatures, at which time the

separability of a1I signatures, but particularly of water, improved

drastically. (fur rationale in discarding the deep marsh signature

was that this signature probably contained some water along with

vegetation particularly due to the timing of the observation when

water levels were high and the new year's vegetative growth had not

^u11y developed. In eliminating the shallow marsh signature we felt

that its characteristics were duplicated by either the small grain

signature (if a flush of new growth had occurred) or by the "idle"

signature (if the present year's growth was still mashed by the previous

year`s dead biomass).

Rs a result of the analysis described above, we chose to perform

proportion estimation processing using four signatures -- water, bare

soil, small grain, and idle. For this set of signatures the small drain

signature had in essence become a surrogate far all green herbaceous

vegetation. (Woody plants at any significant scale were not present.)

The fact that the estimation was to be done without the deep marsh

signature a1 so meant that some of these marsh components would be

recognized and tabulated as open water. We felt it better to bias

the error in this direction as compared to drastically underestimating

water, particularly pond numbers. Tn fact, the transition between

open water and closed stands of emergent plants is often a continuum
.^,.

^ -	 Y^ t
_...__.	 .__...	 J	
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^-
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which can vary both with the season and with posi„ion within a wetland.

As a result, the delineation between open water and an emergent marsh

community is often a judgment decision.
{

The proportion estimation algorithm was applied to multispectral
}

information in a conical scan-sine format. The output of this processinn,

far purposes of display and statistical analysis, was then scaled and 	 ±^"^

converted into a scan-line straightened format. The line straic^i,eeninn



ARABILITY - A Test for the Uniqueness
portion Estimation Processing

Number of
Signatures Used
for Processing

Distance^^

lleep	 Shallow	 Bare
Water	 Marsh	 Marsh	 Soil

Small
Grain Idle

6 Signature Set 2.2788 0.7810 0.4534 2.4743 1.2150 0.9668

5 Signature Set 2.3477 1.6264 2.8670 4.6227 I. +359

4 Signature Sat 7.3618 3.2506 4.8842 2.7381

^^ The distance in standard deviation units of the signature mean
from the weighted average of the remaining signatures.
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algorithm was similar to that which had been used by the Forth Resources

Production Processing System of NASA/Johnson Space Center except that

compensation for the earth's rotation was not performed.

Results

For the proportion estimation computation, the output was a set

of proportions for each pixel. A water recognition map generated from

this output is shown in Figure 30. Far comparison a map generated with

the single-waveband thresholding algorithm is shown in Figure 3T. The

data in both figures have been scaled (so that the digital pixels have

a height/width ratio compatible to a line printer) and converted to a

line straightened format. Both maps represent the Identical 286 km2

(170 square mile) area. In the proportion estimation map, the symbol

density is related to the proportion of water estimated far :hat

pixel. In order far the map to accurately portray the scene, certain ,,d

percentage ar acceptance limits were determined for the output of the 	 ^

algorithm. For example, it seemed appropriate to count pixel values	 ^'

of 7.81 and above as totally water. This procedure tended to account	 ^^^

-ior the likelihood -that a value close to a signature mean (i.e., close

in terms of the probability contours) may in fact have been a pure

sample related to that mean. Similarly, pixels showing less than 0.40

water were assumed to be false alarms (i.e., nonwater pixels classified

as water), and they were excluded from any consideration as surface

water. These limits were established after an examination of a small

portion of the processed data and a comparison with multispectral
^:^.

scanner data and photography collected by supporting aircraft.	 ^^ ^^
^4

In general, a detailed comparison of the classification maps and

related imagery indicated that proportion estimation significantly 	 '^`^;,

improved both pond shape definition and the recognition of smaller

water features which otherwise would not have been detected. 	 ^^`

In the proportion estimation processing of I.AND5AT data, a	 ^'-

difficulty encountered was the inablilty to adequately delineate 	 `'^
,:

alkaline lakes. Such lakes are scattered throughout prairie areas	
'.h

of non or poorly integrated drainage but particularly in glacial

_,
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Norden Lake

Fish Lake

0	 5	 lOkm

FIGURE 30, WATER RECOGNITION OBTAINED BY THE USE OF THE PROPORTION
ESTI2yL1TION ALGORITHM APPLIED TO SKYLAB SCANNER DATA COLLECTED 12
JUNE 1973. The symbol density is related to the proportion of water

estimated for that pixel.
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FIGURE 31. WATER RECOGNITION OBTAINED BY THE USE OF THE SINGLE
CHANNEL THRESHOLDING ALGORITHM APPLIED TO SKYLAB SCANNER DATA
COLLECTED I2 JUNE 1973. The decision criteria is such that each
pixel has been classified as either totally water or not water.
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outwash areas of the Missouri Coteau. 	 A proportion estimation water ^
1

map which closely matches the areal coverage of our SKYLAB map {Figure

30) and which was produced from LANDSAT data collected 25 days after '	
T,,,a^

the SKYLAB observation is included here as Figure 32, 	 Both Alkali k

Lake and Narden Lake in the LANDSAT map were only partially recognized. ^^	 ^^`
^	 °„^,

Both lakes at the time contained large amounts of suspended solids

and possibly precipitated alkali bottom sediments. 	 These conditions ^	 `::}

are especially prevalent during periods of low water as was the

situation during the summer of 1973.	 The anomalous detection of these

lakes, we had felt, could have been improved had there been additional ?

spectral	 information available beyond what was available with the

LANpSAT multispectral scanner.	 Tn particular, we had thought that ;,'^

the additional near--infrared wavebands and especially the 1.55-- to
r.

1.75-um waveband available on SKYLAB would provide improvements in `;.

the recognition of these anomalous lake features. 	 A comparison of '
$.

Figure 30 and 32 indicates that a dramatic improvement was, in fact,

realized.	 We are unable, however, to determine in a quantitative }^	 '^;

sense how accurately the areas of the two lakes were estimated since

na current law altitude planimetric data for the lakes were available.

Quantitative comparisons were made of certain other surface ^	 ''^

water features which coincided with an aircraft data transect located

in the vicinity of the Woodworth Station. 	 Tne strip maps of Figure 33

were plotted from processed SKYLAB scanner data while still in a conic ,	 ^”

scan-line format.	 The data were quantitatively analyzed in this format

in order to avoid errors which would be introduced by the scan-line

straightening algorithm. 	 The map symbols used are plotted at the ^.

areal centroid of the respective pixel, the symbol	 size being equivalent ^	 "y%-
^r^',E

to the proportion of ti^rater found in that pixel. 	 Note that the symbols

are not equally spaced. 	 This is due to the overlapping of adjacent ':

_	 pixels in a direction orthogonal	 to the ground track of the satellite

and in direct proportion to the distance of the pixel from the around "^

track {see Figure 23). ^?

Figure 33a resulted from the thresholding of a single waveband of
^:

data	 (1.55 to 1.75 um).	 Figure 33b is a proportion estimation map

f

i ^ ^.	 _
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FIGURE 32. WATER RECOGNIT ION OBTAINED BY USE OF THE PROPORTION

ESTIMATION ALGORITHM APPLIED TO LANDSAT DATA COLLECTED
7 3iiLY

1973, The symbol density is related to the proportion of water ;;.^

estimated for that pixel. ^
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(a) Water Recognition by Thresholding 1.55-- to 1.73-1^m SKYLAB Scanner
Data Collected 12 ,Tune 1973.
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(bl Water Recognition by Proportion Fstimation Processing of SKXLA$
MultispectraZ Scanner Data Collected l2 June 1973. The minimum frac-

tional acceptance limit far water coos 4O% per pixel.
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(c} Water Recognition by Proportion Estimation Processing of SKYLAB
Multispectral Scanner Data Collected Z2 .Tun g 1973. The minimum frac-
tional acceptance limit for water t,ras 3l% per pixel. Pixel water
fractions in the range 31 thru 39% are indicated by small open symbols.

FIGURE 33. WATER RECOGNITION IN THE VICINITY OF WOODWORTH STATION,
NORTH DAKOTA. The prapartion estimation recognition maps (b and c)
differ only in the minimum fractional acceptance Iimit used in plot-
ting the map. In both cF the pxopertion estimation maps, symbol size
is related to the percent of water detected in that pixel. The symbols

1alie11ed "E" are confirmed commission errors. Scale: 1/62,500.
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which uses a minimum acceptance level of 40 percent ('.e., p^';,ors

tabulated as containing less than 40 percent vrater ►mere assumed to

contain nc^ vrater at a71). In this map, it is appa r^:rst that a major
improvement in both the detection of sma11 ponds and the detection

of peripheral pond features was realised. The map ca ptains two con-

firmed commission errors at locations "E". Many other smaller ponds

were not identified as may be attested by a comparison vrith the

electronic aircraft imagery of Figure 34.

Referring again to Figure 33b, the smallest confirmed recognized

water feature was Sargent Fond. Figure 33c is also a proportion map

similar to the previous map except that an acceptance level of 31

percent was utilized. (Pixels in the 31- t^ 39-percent range are

indicated by small open symbol 5. The map differs only from the

previous map vrith the incl^asion of these symbols.) Clearly many of

thes? added symbols do represent vrate^, , but it is equally evident

that many also vrere cnmr.,ission errors as at locations labelled "E".

It eras because of the proliferation of these errors that the minimum

acceptance level was set at 40 percent. In addition to these maps

which can only qualitatively illustrate a range of proportions, the

areal Extent of each of the several ponds an y lakes named in Figure

32b, was calculated based upon the exact proportion of water listed

in the algorithm output stream (and excluding pixels containing .ass

than an estimated 40 percent water).

Before descr;ding the results, however, vre present here a brief

discussion of the areas which vrere assigned to each pixel. The IFOV

of the SKYLAB multispectral scanner was 80 x 80 m but, since the

scene was overscanned in the direction of the satellite`s velocity

vector and since the data vrere aversampled in a direction arthac^anal

to this vector, there vrac overlap in the ground patr-h coverers by

adjacent pixel samples. In calculating the water area of a pond or

lake, one nEeds to consider the actual area vievred by each pixel. In

other words, if a bond smaller than 80 x 80 m is contained within

one pixel, the pond 4rea is 50 percent of 80 x 80 m (i.e., the If011)
and not 50 percent of the smaller effective area. r^avr if this same

.^
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(a);.0- to 1.4- ;,m Electronic Imagery -- I2 Play 1973 from 137C m Altitude.
(The imagery appears skewed due to a pronounced aircraft crab angle.}
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(b)1.0- to 1.4- ^m Electronic Imagery -- 12 Aug. 1973 from 1370 m Altitude.

FIGURE 34. AIRCRAFT MULTISPECTRAL SCANNER VIDEO COLLECTEb ON A TRANSF.CT OVER 1,'OObIdORTH
STATION, NORTH DAI:OTA. Approximate along track scale: 1/2b,000.
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pond was seen in the overlap area of two adjacent pixels it would

be inaccurate to usG the 8O x $O m area for each pixel since some

portion of the pond would be counted twice. To account for problems

of this sort, allowances for adjacent water pixels ►^rere made when

calculating estimated pond and lake areas. {Any pixel containing

water may have been overlapped by up to a maximum of six other pixels

containing water - as many as two in the direction of the satellite's

velocity vector and as many as four orthoyr^rrtal to this vector.)

In addition to the pond and lake areal measurements obtained with

SKYl.AB scanner data, more precise measurements of area were also

obtained with the single channel threshalding algorithm applied to

low altitude aircraft scanner data. These latter data were used to

compare the SKYI.AB proportion estimation results against. In Table

7 the results are presented for comparison. Note that neither of the

two aircraft observations coincided with the satellite observation

but preceded and followed it by 31 and 6O days respectively. From the

comparisons, six of the SKYLAS observed water features were reasonably

close in area to the aircraft observations (Gig and Fish lakes, Pond

8-14, Glen's Pond, Sargent Pond, and Koening Pond). One water body

was underestimated in area (Clark lake). The remaining six grater

features vrere overestimated in area. Thus it would appear that the

proportion estimation results tended to either approximate or somewhat

overestimate the actual areas of ponds and lakes. This would seem

to bear out our earlier suspicions that areas of emergent marsh

plants, may in certain cases, be tabulated as open water areas. In

particular, Goldwin Lake, Carl's Pond, and ldoadworth Marsh are known

to have had extensive peripheral deep marsh areas, and the areas of

all of these features were notably overestimated. 4^Je feel that efforts

to effectively estimate open surface water and more especially areas

of marsh corrununities were compromised by inadequate data quality in the

visible bandwidths. As noted previously, this lack of quality appears

to have peen occasioned by the early hour of the 5KYl.AP observation.

Finaliy 3 we present the results of areal water tabulations for

the 28b krn2 scene of i'ic^ures 3O and 31. These tabulations arere
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TABLE 7. TABULATION OF AREAL MEA5T7R1^fEN'fS OF OBSERVED POND AND LAKE FEATURES

m

Computed Areas (Hectares)

Aircraft Observation SKYLAB Observation Aircraft Observation
of i2 May 1473	 (1) of 12 June 197(2) of 12 Aug.	 1973	 (1)

Limesand Pond Not Available 6.15 4.49

Goldt^in Lake 16.13 23.59 13.78

Pond 9-1 2,41 3.20 2,67

Big Lake 17.56 18,90 16.81

Fish Lake 24.42 24.76 23.53

Clark Lake 11.43 8.36 4.04

Pond 8-14 2.08 1.15 Dry

Glen's Pond 2.43 2.14 Dry

Sargent Pand 0.34 0.28 0.06

Sadie Pond 2.36 2.90 2,53

Koenig Pond 1.25 0.80 Dry

Carl's Pond 1.10 3.43 Dry

[doodtaorth Marsh 5.75 6.88 3. E16

Notes: (1) Pond areas ware computed by thresholding a 1.5- to 1.8- um taaveband of
scanner data. Observation was made from an altitude of 1370 m.

(2) Pond areas were computed by proportion estimation pro.:essing of SKYLAB
^iultispectral scanner data.
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accomplished using the computer program described in Appendix A.

This program is not a61e • to take account of differences in area 	 ,

represented by the scanner's TFOV and the digital sample (pixel)

oar of pixel overlap. Therefore, the results can be compared only

in a qualitative sense. Table 8 presents a comparison of numerical

and area tabulations of water features for the 2$6 km 2 test area

using both the threshold and proportion estimation algorithms.

This comparison indicates that the total number of ponds and lakes

delineated by proportior^ estimation processing was 189 percent of

the total number obtained with the single channel threshold algorithm.

The results of proportion estimation processing of LAN pSAT data for

the identical scene are also tabulated in Table 8. It is significant

to note that proportion estimation processing of both SKYLAB and

LANDSAT data delineated nearly an equal number of water features.

The distribution of pond numbers within size Classes particu1ari ,v the

smaller classes differs because the basic pixel sues were different*;

this difference allowed the ponds to be clustered somewhat differently

into the size classes shown in the table.

^.,

*Pixel size for the LANDSAT data was 57 x 79 m. The SKYLA[3 pixel
after we had line straightened and scaled the data was 58 x 71 rn.

_	 • '^
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Gomputed Bsing the Computed Using the
T;^resholding Algorithm Proportion Estimation Algorithm

Area (Acres)'` Frequency Area (Acres)" Frequency

a,25 to D.SD o.z5 to D.sD 109

0.51 to 1.D0 56 0.51 to I,00 35

1,01 to 2.00 26 I.O1 to 2:DD 52

2.01 to 3.00 11 2.01 to 3.00 33

3.OI to 4.00 11 3.01 to 4.00 1$

4,01 to 6.00 16 4.01 to 6.00 24

6.01 to 8.00 10 6.01 to 8.00 21

s.al t^ lo.oD 9 s.o l tp la.aD 6

10.01 to 15.00 10 10.01 to 15.00 15

_.^.Ol to 20,OD 13 15.01 to 20.00 10

20.01 to 25.00 5 20.01 to 25.00 7

25.01 to 30.00 O 25.01 to 30.00 5

30.01 to 40.00 3 30.01 to 40.00 2

40.01 to 50.00 6 40.01 to 50.00 $

OVER 50,00 17 OVER 50.00 19

TOTAL 193 TOTAL	 364

Computed Usir:g the
Proportion Estimation Algorithm

Area (Acres)'` Frequency

0.25 to 0.50 72

4.51 to 1.D0 71

1.01 to 2.00 62

z.01 to 3.00 31

3.01 to 4.00 19

4.01 to 6.00 2l

6.01 to 8,00 20

8.01 to 10.00 lI

10.01 to 15.00 15

15,01 to 20.00 7

20.OI to 25.00 5

25,01 to 30.00 3

30.01 to 40.00 4

40.01 to 50.00 6

OVER 50.00 14

TOTAL	 361

J

r
r
r

TABLE $. COMPARISON OF TABULATIONS OF PONDS AND TAKES
LANDSAT

SKYLAB Observation of I2 3;,ne 1973
	

Observation of 7 .Tt=ne 1973

'Although Metric un i ts of measure are gene^ral.ly used throughout this text, the computer software in current
use clustered water features according to English units of areal measure (acres},
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APPENDIX A

DESCRIPTION OF COMPUTER PROGRAM
FOR GENERATING WRTER BODY AREA AND PERIMETER STATISTICS

The software program, APSTAT (Area, Perimeter Statistics}, is

designed to delineate bodies of open surface water and to generate

statistics (area, perimeter, and shape factor) on these water bodies.

APSTAT has evolved from an older program, MAP^KS, also developed by

the Environmental Research Institute of Michigan. Both programs

utilize the same decision criteria for classifying a grouping of

pixels as a pond or lake. Both programs compute the area of any

specific closed feature (i.e., a pond or lake) one line at a time,

summing the areas in each scan line to determine the area of the

specific feature. MAPl.KS takes account of increases in the spatial

field of view (and thus an increase in pixel area) as scan angles

increase from the nadir position. APSTAT does not take account of

variations in pixel area but instead assumes that all scene pixels

are of a constant area. Thus APSTAT is suitable far use with

satellite data where scan angles subtend na more than 12 ar 15

angular degrees. Specifically, APSTAT has been designed to operate

on data collected using EANDSAT and S';"frAB/EREP scanners both of which

have approximate lateral fields of view of 11°.

Rlthough APSTAT was developed primarily for the tabulation and

analysis of pond and lake occurrence, application of the program

need not be limited to water bodies. Tts statistical enumerating

capability can be applied to any scene feature having a closed peri^

meter such as forests ar agricuItural crops provided there exists

digitized data in which the scene feature of interest can be dE-

lineated on the basis of a discrete voltage range in a single data

channel (as, for example, a classification tape or water features

which exhibit uniquely low radianc y values in a near infrared waveband}.

Specifically, APSTAT can identify any class of data which may be

defined by one of two modes of operation defined by the following level

slicing algorithms:

85
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--	 1. ., t	 O < (pixel voltage count on channel ICODE) < VHI,

^:	 the pixel is assigned to the scene class of interest.

Otherwise: the pixel is assumed not to belong to that class. 	 ^ ^^:

2. If: VOLTS() < (pixel voltage on channel ICOD}_ VOLTS(7},
,^, ;

'i	 the pixel contains PC(^}% of the class of interest.
^_`

'	 If: VOLTS{7} < (pixel voltage on channel ICODE} ^ VOLTS(2),

the pixel contains PC(i)% of the class of interest. 	

'^..

If: VOLTS(2) < (pixel voltage on channel ICODE) < VOLTS(3), 	 -

'^	 the pixel contains PC{2}% of the class of interest.

Ii': VOLTS(3)	 (pixel voltage on channel ICODE) ^ VOLTS(q.},
t

the pixel contains PC(3)% of the class of interest.
.^	

Otherwise: the pixel does not belong to that class.

Where ICODE, VOLTS(0).	 .VOLTS(4} and PC{1}. 	 .PC{3) are	 `^*

user specified.

The first algorithm is the normal (default} mode of classification.

The second is the "proportion estimation" mode and must be called by

the user. The proportion estimation mode assumes the availability of

multiple channel tape with each material present in the scene re-

presented by one channel ---- the integer scale on the channel being

representative of the proportion of that material present within each

pixel. Only one channel {i.e., one material class} of a proportion

estimation tape can be processed at a time.

RPSTAT also incorporates the following features:

(a) The program will accommodate up to 1040 points per linear

scan line.

(b) The program can accommodate multiple channel input {to a

maximum of 13} but must operate on only one of these channels.

(c) A maximum of 32b0 lines of data may be processed each time

the program is run.

(d} The program lists the position of each identified feature

by the last (highest) scan line an which it appears and the

last {highest) point of the feature on that scan line,

Optionally, the feature may also be identified by the 	 `

latitude and ionc-;tude of that point.
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In the normal (default) mode of area calculation, the area of

a feature (such as a IaEce) is equal to the number of feature pixels

times the area of a pixel (always constant). Tn mathematical terms: 	
^6.

Feature Area ^ fVuraber of Feature Pixel s x Pixel Length x Pixel Width

where pixel length and width are user specified.

in the proportion estimation mode

Feature Area = Pixel Length x Pixel Width

3
x L (number of feature pixels which are PC(i)^)

=a

z) PERIMETER

The foT1owing examples illustrate the definition of perimeter:

Each pixel identified as the specified featr^re is shown as an X. 'fhe

calculated perimeters are shown by the solid darEc lines, and the

arrow points to line segment whose lengths are counted twice. The

foi]owing characteristics are noted:

(a) Perimeter measurements are made from pixel centers, not from

pixel margins.

(b) Perimeter calculations cannot be performed in the proportion

estimation mode.
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QRSGIN^L P^ii^l^; ^S POOR

perime^er of features which overlap a scene (or

verse cf interest} boundary will include a false

indary. For example;

r	 -
S

r

.
Y

'^

^^I
SCENF

BauNaA^v
x ^+

-xxxxxXx
xx^cxxxxxxxxxx x

XXXXXXXXXX -?{

xxxxxxxxx xxx
XXXXX x

Al though the above lake continues beyond the Scene

boundary, the perimeter is c4lculated as the sum of the

line segments shown.

3} SHAPE

The shape factor is defined as the ratio of the perimeter to

the square root of the area nor ►r^alized to one (1.0) far a round lake.

The larger the shape f<^^;.^:,r, the more Irregular is the lake's shore-

line. Mathematically tt^;: shape factor may be represented ar follows:

Shape factor = Perimeter 
x 1

i
Are 2

^#	 where ? is the normalization factor:

2 ^^

Because perimeter measurements are made from pixel centers, not

from pixel margins, shape factors for lakes of size less than l0 or 12

pixels may not be valid.

^^
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4} LATITllDE/LONGITUDE

The latitude and longitude of a feature are defined ^s the 	 _

Iatitude and ]ongitude of the ]ast (highest numbered} point of that

feature on the last (highest numbered) scan sine on which the

feature occurs. Transformation coefficients to convert from sine

and point coordinates to geographic coordinates are input by the user

and are obtained by a linear regression analysis externa] to ^:nis

program. (Because the coefficients current7 ,y in use are first order

terms and because lines of latitude converge toward the poles, the

area] extent over which one set of coefficients can be app]ied

snouid be no greater than 25 x 25 nautical ^:?les. In order to

preclude this problem in future usage, the use of the Universal

Transverse Mercator coordinate system is contemplated.

5} CLASSIFICATIO^i

Recognized features (lakes) are de]ineated by certain ruses of

c]assification algorithms. The following examples illustrate the

rules by which pixels are grouped into an area]Ty limited feature

{lake):

Xxx
xxxx	 xxxxx
xXxxxxX 	 Xxxxxxx

XXxXXXXXx	 ^{xXi^xXXx
XXxi^^{XXXX	 tiXXXX
xxxxxxxxxxxxXx

XXXxxXXXXX

Xx;iXxXXXXxXx

XXXXxXXXXXXXXXXXXx

X2{nXXXXXXXX	 XXXk

XXriXxx	 xX

r. ? ){1{

L41+^JjJ

lJ[ti^IdIJW[ti^[dlJlJ[^ttJ

LJIJlJ^J4d

4dSJSJ	 lJSJ1J

jdW

^:^
^:,^:

`^
.s a
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Each letter (Q, R, S, T, V, ^+1, X, Y, Z) represents a pix^7. 	 groups
.0

of the same.Ietter . represent regions which would be classified -^o-
1

gether as forming one_ - Take'(ii= this 7s the Feature bein g recognized). -
:^

:.

Briefly the rules used to group the pxets are as follows:
_^

1

(a) R continuflps series of pixels-on a,scan Tine will 	 ba ^
^

consitiered as constituting a ^a[ce as 7n Lake. Z„ or a part..,:.
^

of-a Take as in Y, V. W, and S,	 R discontin^^ty in water. ;^

pixels may . be bridged and counted as water onTy .ii= the ,^

bridging option	 is	 uti`7i,zed	 (-see 6.-.below).
..

--- (b) Pi xe7 s in a subsequent scan Tine a;re agai o grouped i f -(a')
above applies, and the water segment wiTi be LTnked.ta

pixels iti the previous scan line if any; some, or all of

the pixels are-verti'call'y or ^^agonally adjacent to any,
-a

same.. or all of the,: water pixels in the pravious scan Line.

Lake R illustrates the simple case of a Take consisting of

one pixel	 in each of two. - adjacent lines, the pixels being

_ vertacally adjacent.	 Lake q ^s a .two p7xeT	 Take cons7si;zng

o-F one pixel	 in each:.©^' tiuo adjacent Tines, -.the pixels being

di agonal Ty adjaceni:.	 By means of, thi s a7 gori thm i t i
possible for several arms of ore Take to be connected as ,	 =i

i n Lake X.

6)	 BRIf1^'ING

Pixels not originally`identified as water by Ieve1 slicing : may

be redefined as water by the: bridging algorithm, where the user

specifies:. 	
_	

- 1

(a) the maximum number of adjacent non-water pixels on a single ^	
<

{^

scan l ine which may be bridged and ^	 ^	 ^.

(b) the minimum number of adjaceni: water-pixels on a single

scan line which must ^e in the water intervals on each side

of any non-water segment for the non- water^ segment: to be ^

bridged. r^'^s

NOI'E5:	 (i) Bridging is not possible when the proportion

M	
'^i'

estimation mode of classificat = an is specified.

^ ^:.^
^ ^

^:^p
;:

^	 ,:^	
.^	 .^	 r	 ,	 _. _

.	 _

^t	 .,
,.^



.1,540

STRATUM "C"	 STRATUM "b"

In the above example stratum "a" consists of one rectangle,	 ':^.,.

stratum "b" of an aggregation of four rectangles, and stratum "c" of
;r

two rectangles. The size of each stratum is limited only in the	
a

number of rectangles which may be grouped to comprise a stratum {ten),

and by the maximum number of scan lines (32.50) and maximum number of

paints within a line {1040) which the program can handle. Appendix B

•^	 exemplifies a typical ARSTAT statistical listing for twa strata of data. 	
3̂t	 Y

+^

(-

f

E

1

a	 ^^^"	 _^'



'^	 ^ APPENDIX.B

,, TAB(ICATIDN OE POND RND LAKE STATISTICS

This appendix .includes a tabulation of recognized ponds, and.

lakes identified throughout the study area using S^CY^.AS/ERE p multi-

spectra^ scanner dada collected on 12 dune 1973. Based fln physio-

graphic differences, the study area was divided into :two strata --..

the Coteau stratum and tie drift plain s-^ratum respectively, The

drift plain stratum was further subdivided in^a units labeled

"dri ft plain west" and "drift plain east". ThiS subdivision was

necessary because the -raw data were divided between two -separate

computer ca^pa^Eib7e tapes which could not be abetted for pro-

cessing. The fallowing diagram and table indicates the vertices

_.	 in geographic coordinates of the several strata and substrata.
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^	 !^^

'^

.VERTEX = A.,	 ^ _ ,;

^-

_
- DRiET.PLAiN

-	 ^	
8

.	

-

(WEST)	 ^ t.
_	

^ / f
^ ^	 f,	 x

a

P ^	 ^ ^ .^
^ DRTFT PI:AIN

_, M.	
,.

r

L	
K	

1_	 l	 -.. 	 `` 	 COTEAI^ ^3 ^

T

D /
^.

D

E ^..

a

C	 - ,

'STUDY AREA - ACID STRATA GE^^ORAPHI.0 COORDI[VATES ,	 .,.

Ver-^ex -Code Verfiex Coordinates	 degrees)

Lai, •^^ide	 Langi •dude

A 47.595.	 99.401
.:	 '

B 47.356	
_	

98.48`7` :f	 :,

C 46..972.	 98.648
D 47.210-	 99.618
E. 47.069..	 99.043.
^ _	 47.453	 '98.526 -,:

0 47.729	 99.x09

r	 v

H 47-;147.	 99.08D
,^	 I 47.201	 _	 99..050,

,^ 47.224	 99 ..144 _ ;	 ,^
,^	 ^	 K 47.265	 _	 99.121 ^

L
^

47.288	 99:215
^^ M , 47.317	 99.199

^.

N,.^,	 ^;^	 _ 47.3-^	 99.293'
0.,^ 47.350.	 99.287
p

(^ 47.374-	 9.9..382;
Q 47.396	 99:369

j`	 R,f 47.427	 99,495
^;

. __,^	 .W._	 ..._.
^.	 f	 ^

.. _	 _.	 ..,	 .^.	 --	 -	 -	 -	 - -

i 	 -
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5192 hGf<TF CdKC1'd CdTd K* . 2 ^*	 Q*

r
`8 GNT* 1Z.*5"b*.0354	 1^2 06-73 -.. +^

GOCOGOGC.CCCCCCCCCCCCCCCCCCCGCCCCCC{CCCCCCCCCCCCCCOCCC^CQCCCC{}CCCCCOCDCCCCCCCCCL

^^	 ^^f_

" TdBUtliTICkV. CF:REC4C^IZEC MATER: BCCI:1:5

dREA dREd
LAS tCN .0	 SGaA	 l. IhE PCIhr ( ACR$S) ik-ECTdRES}

.
47:w3C35 SS..5E51 2E^	 :' 1Ey 1..227 .447	 -
47.Z2EQ SS.ECS@ iE7 2S 6.136 2.483

^ 

^^'

'
47.3272 55.5455 251 2GE 47.Sb1 i4.:3.65:. 47.2iiE SS:E;.57 252 ` 1.227 .497

;	 . ;^ .^

47,.2403 SS.:S^Ec52 . ..5E 3b:8IE 14.$55
47..2113 55,EC7S : 254 E . 1.:zZ7 .597:

,

47.3E8E 55.5C47 257 31E 1.227 .497'
47.2SOS 55.S.5E5 25'8 147 44.179: 17.875
47.2L5^ 59.5ST5 3Cc 1E 15.6.35 7.94b
47.2367 . 55.5 .844 . 3 C: 5^ .1.22:7 .,497
47.2345 5S.5P73 3C6 5Z 5..8.i$ 3..'x.7? ^	 -'
47r^134 55w537C 3.C7 15C 1 »227 .^t97 ^ w^^

- 47.?377 SS..'eZi	 ^ 3C8 233 1.227 .497. j

-

47w3925 SS.SCB$ 324 Z3C 7.363 Z.S$0 ^^
47.2012 54 - .5759 327 I. 1,227 .497

^

:. 47.ZC07 55.578.1: . 3eS	 ...'..:. 1: 1.227. :497:'
-,

...:.
47.2§37 SS.525F 3eS lb4 29.453 L1.S15 ^;;	 '.
4T.23.1fl 55.:5E5 ?,' 57 1.227 .497 'r
47.271$ -531845. 33'5 12E i4Z.355 57:611
.47.2765 S5.S1.25 345. 14C I.^2.7 .497

_.	 4727b0'.. SS.5.171 ,..47	 .. 1±;G 1.227 ..497 ^,
'^ 47.37b2 5S.44b^ 3E1 321... 2.454 .593

h

_47.2097 59,.5?.$2 .	_3&3 3C 7..353.. 2.SSC - ,:	 -
47.3552 55.4:61 3E3 2$5 L.ZZ7 `.497
47.2423 r5.5C5E 373.- 5I 3.682 1.=i4^

_ 47.1957. 85.533.4 375 .iC. 7.363 Z:9$C
47.2435 S9.5C6E 375 5.4. 4.5C9. 1..947

,

47.ZGfi5 SS.5I5E ^$3 3Z 3.682 1.44C ``	 `
..47.2$72- 55.473C 3$4 17^s 4.909 1`.48T - _ "	 .
47.2.215 5S.5C5E 3$2 bl' 3..682 1.490

' 47.2:C91_ SS.51.2C ,85 35... 2.454: .5^J3
47.36 L4 55,.4Z5S 3$9 3C^ 1.Z2T .497. ^^
47.373a 55..4174 35i 327 3I3.h8^ 12.41E ;,
47.:.1855 55.51YC 4C3 3 1.?27 .49.7

- 47:2602 5S.4E$$ 4C3 L3.4 1.G3wC84 41.71$ L.^
47w-1915 ^5.5LE.5 4C4 L4 1.,227:.. ...497-	 471e79 54..C7E 4C5 E b.'136 2.48.3

,

47.T$$5 5.55C51 4C7. 1C 4.4C9. 1.-967:' "^
47.332E 4S.4Z^E' _ 41C 254 - 6.136 -	 2'4E3 '	 :	 : _ '	 ;
47x36b5. S54Clb k1C 323 $:590, 3.477
47:2591 55.43bE 4I?.. 2Lb L : 2z.7 .49:7	

.
_:	

47w2199 59.432C 4.17.. 2C.4 1.227 .k97 P

- 47.,.2857 55 . 43k5 4c2 lEE:. 3 . bE32 •:	 I.49C 4
47.2751 S5wS3E3 4"ek 17 C` 6.33 -

2.483
^i7.3CS7 55.4185 427 223 2..454 .593.. 47r2g86 ' SS..4^S2	 '. 435:: 'Sb:. 12,27:2 4.S.L^	 ...	 .	 ..:. '..

^,	 ..
3

_. -
R`+' ROD^C^^G^^'S?' C^^` THE
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^.^- OR^GINA,L PAGE :^S pOQR E'
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.	 47.25 i2 i' SS_:k"ye.l ` 436 ^: 131..-

-

4.5C9

-

1.9H:7

i	 1

_	 _ ;	 4T-218.5"' . : . S 5..45 1r2.	 .. ` 4 4 C..:. 7E	 -_ Zk54 .593-.. 47::•47?:". ,...c51yr5E : -' 44r .`	 ,.	 214	 .._ 1.227_ »497. j	 .`..	 .
"	 .`.	 `:	 k7.'Z8.1.2., 55.4-17C ^s:42.. :::	 Lib	 .;.. 4,:5C9 1.,87

47-2517 ..	 . .497 ,,
.	 47.3478 55^71cc	 ^ ^^ 448 3C^- 7_ 1.2ZT .497
_,	 47-.2415' :: c S..:y^23 445.... 11S ,.6.23i^ 2:»ti83 ^	 ^

4T.2^CC. 55..«,4,47C ' 4^2"' --:..	 E_.'	 -: '33..134` `:.,L3.,4CS. ^	 '
47:2S1b:. S:S. .?558 4c7 21C _	 30:.259 125..155 ':;.	 47'.174 :,. ^SS.4=57	 '" 4E2 LC	 -.	 :: -2E»2^5 ^12:.42'. __.	 ;:.	 ^^-
47.2bI2 SS - 4 i:'6E 4b3: `	 :	 15S 4.SC'3	 :: `.	 1:.987 :;^	 =	 :	 "^
47.2375, SS.f^:275... : kE5 115 1.;227' :^r57 ^
-'47..2847	 .. SS.'3.8b^ .:,:` ..47,... 2,r3.:; _ 2.227 .497

. , -.	 4`.7..2744
_..',E"c4

471: 1:54	 :_ ^"	 8.597^	 . 3`a77
47'c29^ 55.4.143	 :...' 473 ' -..	 1,L.F:	 ._ ^ 25:.771 iC.43C -
4Z.:2597 -	 S.S»?S:4

4 t.5 1.E 1,,	 . 1.:227: .^r9"7.
4.T;«Z53.5:- .SS •' SEE 4a7 '.	 15i, 3..6.82 1.49E:..
kT.2821 , :.	 °5.3^C7 ^:; 4`r7 ` 2t1"	 ;, 1.227 .497 -	 ':	
ti7.2042:.:.SS.52^.@ yEl

.
E6 1.227. ,.	 ^ .k5.7

-,.	 t
-	

47 223:4- SS.^;CCE:`	
.._ kE7 ':	 1.C2	 _ Z :454 -.: 9 S ?

,.
^	 ;,^

47.2551 SS.3E47 4F8-: 15^ 7.3fi3 .2.98C
4T.17Z4 55.4211 4.SE 17 1.227 .44?
47.Z45C, : 44.'7^C-. ^[5. 147.. 17»Ie.L b:553

R.	 47,iT73 S'S.4Ci2.. ^^.47. 24 •.ZGC.G3'3 ae'C.S5.^r ..	 47.15'_3 ., 5`5:4L!'^	 .: 5C7-, '7 17.182 6..953
` ^i7.2C "G7 ' ^5.34bC .C'7 TC 31,967: LZ.42`,
47..3232 'S^i,3,2a7 5.2C 28E 2H.225 ^	 11.423 -;

47.328,.. , SS.°Z44 51C: ".	 =	 2SE ..2.454 :.55:3. r..
47.253:4 55:3E21 511 lE4 7.353 2»4EC
47.1957 ^SS:3EE5 51S -	 EE. 6.135, 2,:4Q°
47:3071 . , 55:3125 7c1 2E2- 5b :krl	 - 2c'.f4E

,,.	 47x.1747. 55,35?? 524 ,^: '14.72b '.5.9E.0 `:
-	 `;	 `	 47.94', -	 55.3.ZQ1 5^^" €7	 .. -,	 ?-,363	 ,, ^.SS.C..

47.IBSS 55»3785 {3C ^C 44.1'.79 17	 87=9
'47..1540 -	 c 5.s734	 _ 530 7E- 18.4 G.8 7:450,

-	 47._1844
.

S"S.37E7" c3^ EC ^1.C45 4.470
.a

^'
47..2.S3.S." SS»34C^ 5?2 173 L.22T .49'7,.	 .

"	 ':	 _	 : 47.3618 ,:. 55.3.1'2 "?2 .;'. 267,.	 ,:. ?.	 1,227.- .49:7.
47:2753

....
SS.3T75 5_S' y.E` 1.227 .457

47.LE83 5S3FC5 540 28 3.68'2' 1.490
47.2COb 453b1i 5^+1 E3. 7S.768 32:2.82
47.204.2 55.3513 54 E, 1CC 3 S.Z7G 15.8.,.3_.
4.7.1945 SS:3^7. ^4E',.. Z^.': ,52..7E9 21.3.56 .
47:3C4^ .. 55.:25G^ ..3 Z7G 1.227 =	 »k9:7

_:47.214;2 :	 SS.?4CG ^54 112 31.5!'7 12.51: .:
47.3160 5S<.28:I `` 557 Z^`1- 3b&2 1.450

:.	 47.2097 55.3?7E
-c^

10E. 87.13.1 35.262
47.32E .4, S'S	 210E .	 ^^^ g^4 3 . ^az T.49C ^^	 .
4T.'sZ4b 55.333.E -SEC.... 115 2::45!a '..993 -

;:	 47r^23 +4 SS,.2714 SE1 3CE ^4,:9C9 1..4E,7 `'^
'	 $T.21^r2- S5»:'3321 - 5@^.: LI5 ,	 .2.;434 » x,43

;•
..	 '°

47.3641 55.2662 5E3 Z73 1.227 o=^97.::: 47.3^i52:: 55.2070 5:E3: 34.0.. 3.b82 ^	 1."+9x.
47.2297 SS.3cIc x@4" 143.. '..55	 4.03 '::4a	 2LE
47.285C.SS.2,CC rE4 240 Z5	 77.1 16.4.E

Y	 47.2367 SS.^T5a" 5fE 25E 126."401 51.155 "
-47.3422. SS.2;5b 5E&. 341 2.454 .9'93.. ^:" 1. .	

"47:249E -' ,	 5:5.5;3065 . 5E.7 17.g	 ,:. ,,	 .11..¢4.5 k-k7:G c

4T.,33?3 SSr2:E6 S7C.. '327. 1.227 _	 A97 -
47.2762 59.:3.44:. _	 57]. _	 52 _	 1"5 .554. 6.4.56 _	
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^S':47	 Ifr84 .54.34b7 5:73 i.Z27 .447:,.:	 47,.28ZE - . ;:5S:2EIG 5:74 24C 7i:.136 2.483.:
47.IE85

^'	 ^
54.34^i5

5.T5
_

4C :1.22:7 .447
4T.294C 45.27 ?7 ...	 ".... 575. 26C b5.S54 28..309.:.

1	 -"	 •-	 ^	 ^ `47.3"D 58 -S.S	 2E6: 5?b .2.E1 __	 3«bBZ : i.49G
.-	 47 ,724:	 '.:	 .

_
55 .2.E L2 -577 ZS? Ii.C45 4.47C

''	 _ k7_.^42C `,;^,.S.^CGC -^78 I7C -	 ^,."227 -	 .497 '
4T.?I48. `-,.5S.2G7E 575 25"8 1.227 .-497

r..	 47.3187 95.2525 5E2 3.CE 1.227 .457
^_'	 4732D4 . 'SS.2:^1E '582 3CS 2..454 :.493. ,

47.3,47. S5 c435 5F2 334 2...454 .55?
4T 272-2 5.8.27k7 ^.8b Z2E 12.272 4",4EE
47+254E ^ "_ ^5.5.c':5^ 5EE" 274 3,8E2 i.,49C ^
47.1567 SS ?'?85 5E7 24 1.227 49.7:...,_	 .. ..,..:47:3299 SEZ: .32E".	 .: 4.5G.4..: `1.S"E7	 '
47 FESE SS 2^4r 5E5 2:I 13.444 .,5.463	 -
47.3'18^ 4S 245E 5.85 3CE 1.227 .447::
47.I9?7 5S.3I5C' G5C 5C .1.227.. .447

_	 47.253'_ 45.2577 `5SL z65, 1.227 .8.97.
`_	 -	 ,.	 _:47^L87C 55.31.67 5,52 75 i^37.S93 4^.7C.5.

47 33U:C -,.55.Z'^iS 55^ 33C 1.227. .497 ;

47.29.78 _55.2`cT 55.4 274 4.-509 '1.,9.87
`I:,	 47.2^E5. 55.25b3 5S5	 - :258 3..6$2 1..490 ^
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40.OG TC:	 :L.CG LE.15 7C	 eC.23 LC i
5G.CC TC	 7F.CC "eC.23 TC	 ?C..° 7 C
75.00 TC	 ICC.CG 3C.3: TC 4047 B

,

I	 ^^
j	 LCC..CC TC	 15C.CC 4C.47 rE	 EC.7c 5
I	 15a.CQ TC 2CC.CC E.C.7C TG	 EC.54 C ,	 .:::,'

CVER 2CO.CC CVER tC.54 3 j

'	 i
.	 -	 ;;i.,;
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CCCC00CDCfiCCCCCCCCCCCC{CCCCCCCCCCCCCCCCCCCCCCCLCCCOCLCCu''CCCCr:CCGCCCCCCCCCCCCCCC

TAEtlLAT ' ICh CF RECC' GAIZEC hATrR RCC[E5

lAi LLM1G StA7^ L IM1E PCIAT
47.4&35 55.3550 34E ^C4
47.4157 5S.4L5S 3^1 474
47.4761 59.35EC 3.3 453
47.47D2 55.4003 3;4 4t?
47.4E88 55.4001 355 421
47.5315 C5.2ES7 4e E 620
47.5347 5S.2EC0 43E E2°
47.4542 55.25Ee" 454 520
47.4483 SS.2`!0 5!2 :CE
47,5032 55.IE27 5E8 624
47.5Q28 SS.lEi,9 570 E24
47.3817 55.1E27 E3. 437
47.4b23 55.IICC fi4c 5FI
47,3782 SS.15E5 E43 434
47.3594 55.1354 F74 413
47.3814 SS.l1E2 EBB: 4.4
47.'_335 55.CE2E 7°_4 351
47.4396 55.CIi2 752 5E4
47.4114 52.SbE8 E1C .,7
47.3114 SE.SS44 E37 343
47.3SI: SE.54°_4 E44 535
47.4484 52.8°C7 SC3 65@

AREA ARCA
(btHE51 (i-EC7ARE^}

4.9v^ 4 1.9E7
2.454 .59.^

25.453 11.515
1.227 .k97
1.227 ^	 .497
2.k54 .993
6.136 Z.4F3
1.227 .497

30.584 12.41E
1.227 .497
1."e27 .497

ZZ.GSD 8.940
15.535 7.94E
51.542 2C.E59
13.459 5.4E3

117.811 47.fi72
1`x.554 6.45E
1.227 .497
1.217 .497
1.227 .497

360.795 146.014
6.136 2.483

SCENE	 • CRIFT	 PLbIN	 kc"S'(	 LIIVFf 285 THRI. 425 pCIhTS 381 7hRU 675
LIKES 426 7NRL 53^? FLIATS 342 ThRU E75
L[AE^ 531 ihEti, 635 PCInTS 325 IFR1; E75
LIh@S E36 ThR{, 740 PCIhTS 274 ThRI: E75
L[hE5 741 THr^I. 845 FCIhTS ZG2 T!-RU E75
LIAES 246 THRt, S24 PCIhTS 1L7 TFR(,^ 675

SCEhE AREA=	 4EG 5C. NT.
= 1244 SC. KN.

F[XEL LEt^GTh= 71.544 NETER5	 F[xEL hICTh = ES.C31 METERS

NCCE= hCRNAL
ptIHTS LLI.kiE,L IP VtLTAGE IS GREATER ihAh tR EGUAL TC 	 C AhC
LE£5 ThAh CR ECE.AL TC IC;
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CCOCCOCCGCCGCCCCCCCLCC CCCCCCCCC CtCCCCCCCCCCCCCCCC CCCCCCaGe?CLC.G000CCCGCCCCCCCCCC -	 ^^
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^^

5CEhE CRIF7	 Pl^pIN hEST i.IRES 'eES TFRL k25 PCihTS 381 Ti-RU E75 °^ ^.^
LIhEE 426 Th^L 53G PCIATS	 '342 ThRU E75 ^
L[AE5 9?1.TFRL b:5 FCfhTS 3Z5 Tk-RU E7: ^
I.IhE$ E36 ThRI 74C {'LINTS 274 TI-RU E75
LiAE^

LihE.
741	 Tt• ^tL

:4b TM^L
a45

72k
PCIhTS .

FCThT5
2G2

-107
TERU

ThRU
E75

E7: ^

^'

^^^

.CISTRI@l.TIOA Cf RECCGhIZEC MATER	 dCCIES ih	 Tl,E	 SGEhE
,^

t

^

t^
8Y AREA

•^^AREA IACRES) AREA lhEG7ARE5^ FRE6lEhCY ^

.50 TC	 1.00 .2C•TC .4C 0 ^'
1.Oa TL	 2.CC .4C TC .E1 8
2.00 70	 3.GG .E1 TC I.21 2
3.00 TE	 4.CG 1.21 TC 1.E< L'
4.00 TC	 E.CC I.E.G TC c".G, 1
4.00 TG	 F.CC ee".4^ YC ..24 2
$.CO TC	 iC.CC ?.24 TC 4.L5 0
lO.CC TC	 1r.CC 4.C5 TC E.C7 1
15.x0 TG	 2C.CC E.C7 7C E.E4 2

^' ,
2C.00 TO	 25.CC E.CS iG 3.C.12" L ^'^
25.00 TC	 :C.GC 10.12 TG 12. T4 L

,,'^^O.GO TC	 4C .CC .12.14 TC LE.1S 1
40.G0 TG	 SC .CG 1E.14 TC eC.23 0 ^
50.00 TG	 75.CC iC.23 iC 3C.^5 1
75.Q0 TC	 1CC.CC ^;,.35 TC 4C.47 G

_
- .^"

100.00 TC	 1`C.CG 4C.47 TC EE.7C 1 ^
`4

15a.00 FG 2CC.CC EC.7C TG EC.54 0 ^^^
CVER 2CO.CC CVER EC.54 1

I^

k

+	 I1 X

-" i }

"	 }`_

-

`'^

i

i
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`CCCOOGCCCOC`CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCOOCCCCCOOCCCCCCCOC

}.

_
f

r`;'

Tp EULATICK C.F	 RECC!CAIZ^G HATER BCEIEfi ^,	 ,^;

r.3
a	 -

dRF p dREQ
LAT LCNG SCdN LINE FCIl^T ( aCkE51 IFECTARESf
47-.0785 45.C92I 530 2C 1.Z27 .497 '
47.0641 SS.C3?'_ 534 ° I.227 .457 ^
47.4128 .5E.824E. ^4E 613 4S.C88 19 r8EE ^_
ri7.35S5 SE.E?13 545 5SC 3.b82 i.49C w	 _
47+4155 SE.E145 554 E27 3.682 I.49C j
47x2795 5E.E53C 5:5 3E2 lIrC45 4.470
47.IE54 SE.554I 458 lE4 1.227 .457
47.1E7i 5€.551.3 5EC iE7 i.227 .497 ^.	 -i
47.4427 5E .7957 9EC b7C 3.682 1x440 ^
.47.3253 SE,E54E SE7 4E7 4.509 i.4@7 ^
47.0743 SE.SE3: 5EC 32 1.227 .497 `^
47.3297 58.ES25 SEE 4E2 6.136 2.483 ^:^
47.2600 5Q.8C•92 SE5 3E1 1.227 .457
47.2587 SE.dEE2 452 360 1.227 .447 'tl
47.2kI6 5@.8E52 5Se 3E. 1.2Z7 .497 ,F
47.2577 58.EE53 554- 355 3.bEZ I.49C }
47.2b34 9E.8E2I S54 3E5 1.227 .457 ^
47.4178 5E.7EE2 ILCC E42 3.b82 1.490
4T.3 aa.5 SF.EI43 1CC^ 45: 2.455 .593
47.3347 5E.e137 1002 457 1.227 .497 ^^^
47.1706 S2.9C22 ICE Z11 12.272 4.9EE
4T.312i SE.8172 1011 4E1 15.554 E,45E
4.7.273E 5E,E345 IC15 355 15b7.12.8 b34,217
47.3428 SFr753E iC17 517 4.SC9 1.987

^

47rZ683 9E.E9I7 3.021 3E8 3.682. 1.4SC ?	 !
47.2544 SE.8I31 1Cc2 443 1.227 .497 ,
47.-11.07 5E.5I7E 1Cc"4 113 1.227 .497
47.27E2 SEr8242 1Cik 403 1.227 .497 ''r

4?:2773 SE.E23E 1CZ4 405 1.227 .497 -
47.1446 SE.E514 IC3! 17: 3.682 1.49G ^?
47.2278 SE.8443 1031 321 2.454 .593
47x22.55 5E.8^44 1032 31E IE1.b25 7.3.504
47.262E 5E.E22E iC33 3E3 6.136 Z.4E? ^''
47..2005 5E:85E: 10;4 275 1.227 .497 ^`	 :'^^.
47.2409 SE..@3?S IC34 345 28.225 11.42: '
.47.2@02 5E.8117 IC34 414 1.227 .457
47..15.28 S8.E5`E 103E 272 6.13F. 2.483
47.2342 SE .8357 iC3E 334 31.907 12.91?
47.242.7 SE.b:CE 1C'°E 345 3.bP.2 1.490
47.I7D4 5E.8t9E 1038 223 4.909 1.587
4?.2195 5E.83IE ;C4E 313 1.227 .497 >
47.2421 SE-.8175 1045 353 23.317 5.43E ^
47.1637 SE.8E11 lCSC 2i6 1.227 .457
47.2251. 5E.@2x4 I05i 324 4rSC9 1.9E7
47.2310 SE,8C1E 1071 342 1.227 .497
47.2218 5E.7ECc' 1057 336 1.227 .457

.^

.^,-^,RDD^C^B^	
or ^iY^
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^	
47x2203 SE,77r9 iI01 335 5,13E

_ 47.1684 SE.727F 11 .15l.l 765.765
47.0846 SE .81 EP L137 111 F.:?i

. 47.1353 SE,:731: 1152. 223 31.50 1

47.2ZA2 4E.E.7^7 Ii55 3F7 I.22i
k7,2291 SE.E727 lISE 3Ec 3,681
47.2323 SE•EESS 1155 ^§4 3,bac

•	 47.0742 5E.7561 LZC2 LlE l.22i
47. p 72E 9E•<'.5S IZC3 llt 1.221

'	 4?.0705 SE.7:41 12[E IL3 1.2.21
'	 47.0679 SE .7545 I2: 7 LCS I.22i

^• R 47,0642 52.75,26 1211 104 1.221
47.195E 5E.677Z 1212 :35 3.bEi
47.Cb15 SE.75ZC le'I_° LCC Z.45^
47.0593 SE •7524 1214 S•^ 1.221
47..2330 58.6542 12L4 401 1.221
47.1292 9E.7C77 1211 221 I.Z2i
47.22b5 Sl.E517 12c""; 352 7.36:
47.1848 SE.67i2 1223 320 I.22i
47. i5 i8 58.EEE7 1"e25 2E'J 17.1Ei^
47.2329 SE.537E 1230 407 1.22;
47.26CG SE.E215 1231 45°_ 2b.59E
47.1318 SE.bS15 iZs3 231 4S.C8!
47.2534 58.6211 12_5 44: 3.b8^j

^	 47.2600 SE.EIE3 123E 457 1.2Z^
47.2522 SE.E1B7 1Z?8 444 6.13!
47.2309 SE.Ee"58 1235 4C7 1.22'
47.2552 SE.6I2F 1240 4F7 4.905
47,1S2^ SE.E474 1248 341 11.04'.
47.2454 5E.E171 L24? 43^ Z.45^

47.1$4: SE.E387 1cZ56 332 25.77'.
- 47.1800 58e637C 12E% 32E 13.495

47.2277 58,EC35 1eE6 412 85.9 0
47.227: 9E.6C2i I"eE8 412 1.22'
47.0739 SE.6F3E 1273 145 3.68.
47.1595 48,5250 12E3 259 1.22'
47,1612 SE.E2k1 12E3 302 4.SC^
47.LCC^ 5E . E57E leE4 15; Z15.98^
47.2090 5E.554C 12EE 3E7 18.4Ca
47.3445 58.5134 12SG EZr Z.45^
46.9886 58.705'. 1255 4 597.701
k7.1587 58.5112 1157 3C? 1.22'
47.2263 5E.5EE5 !3[1 423 I.2Z'
4b.9$64 48.7033 1302 3 2.45
47.1897 SE.58E5 1304 3EC 7.36:
47.1531 58.EC41 13[7 257 11.E4'
47.0954 58.6285 1315 155 1.22'
47.-1.775 9E.574C 13e3 346 1,22
47.1707 5E.5757 13e"5 ?35 3,68.

47.083E 5E.615E 13=ti LE6 122.71'
47.1045 SE•SESS 134@ 2ZE 9.E11

E	 47,0312 9E . ElE7 1?EC 104 3.b8^
47.0794 58.5E74 13E4 1SC 2C3.71^

I	 47.1125 58.5E87 i3@4 24E bi.3bi

i,

.	 -
'i7'	 J/_^

?'^^
{^'
J ,

^	 2.483
305.907 '?>.«

.497
12.-91.3

'	 ..447
1..490 ,

!	 1,490 F_
.497
.497 F

.457 ^..-	 ;-

.447

.497
1.490 - -_':

. 9.9 3 1
'	 .497
'	 .497
'	 .4 S 7
I	 2.S$G

.

'	 .497 :' ^
E.953

'	 .497
I	 10.92E
l	 19.E66
!	 1.49u'
'	 .497
^	 2.483 ^?^	 ,497

1.987
i	 4.470
r	 .593

•

L	 1G.43C

1	 5.463
^	 34.765

^	 .497

1.490

r	 .497
1	 1.987
i	 87.41[
3	 7.450
't	 .593
^	 493.773
e'	 X497 ;
r	 . 497 ?

's	 .553 -	 ^^::

i	 4.470 ,,	 ^
t	 .49 7
^	 .497
?	 1.490 ^	 ;°.;^
3	 4 9.6 5 5 ^	 ^^'"._,
3	 3.473
?	 1.490
i	 82.443
7	 24.832 ,
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5LEA5 nK^d=	 5e4	 SG. N[.
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=	 1475	 5C.	 KN. t'2
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^

P[XE! lEAGTH=	 71.4ti4 METERS	 F1XE! WICTh=	 E5.C^1	 METERS ^ a

i4

NCGfi= ACRNdL
PCIATS CCLM1YEO	 1F	 VCLTd6e	 15 CREdTER	 ThdA CF	 ECUd!	 TC	 C	 AhC
LE « ThdA CR ECLa!	 7C	 LC '`
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SCENE	 CRIFT PLAIN EAST	 LIKES 925 ThR4	 I35k	 PCIhTS	 I TYRU	 E75

i

^i
f^ i

C[5TRIE4TIOh CF RECL;GhIZEC MATER BCGicS 	 Ih THE SLEhE

BY AREA .;

1 ^	
r.^

AREA	 {ACRES!
.25 TC	 ,:C

RREA	 {t-ECTARES!
.IC	 TC	 .2C

FRECLEACY

C

:#]

'	 ^;	 1

.5C	 TEi	 I.CC .2C	 TC	 .4C 0

°iI.00 TC	 2.CC .40	 TG	 .EI 40
2.40 TC	 :.CC .EI	 TC	 1.21 E
3.00 TG	 4.CC 1.21	 TC	 1.E2 I5

a k.CO TO	 E.CC 1.k2	 TC	 a".4? 6
^ 6.00 TC	 B.LC i.43	 TC	 3.i4 7

:y

B.GO	 TC	 IC.CC 3.24	 TC	 4.0°_ I
^ IC.CO TC	 15.CC 4.C5	 TC	 E.CT 5

15.00 TC	 2C.CC E.C7	 TC	 E.CS 3 '
2.00 TC	 "e:.CC E.CS	 TC	 1C.I2 1

'^ 25.00 TG	 3C .CC 1C.I2	 TC	 12.14 3
30.00 TC	 4C .CO Ie'.14	 TG	 IE.15 2
40.OG TC	 :C.CC IE.15	 TC	 2C.2? 2 '^
50.00	 TC	 75.CC ZC.23	 TC	 ?C.35 I
75.00 TC	 1CC.CC 3C.35	 TC:	 4C.47 1
IC9.00 TG	 ISC.CC 4C.47	 TCr	 6C.7C I
15C.00 TG 2CC.CC EL.70	 TC EC.54 I
CVER 200.CC C4ER EL. S4 5 •^
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