THE FRENCH ATLANTIC LITTORAL AND THE MASSIF ARMORICAIN

Prof. Fernand VERGER
Dr. Jean-Merie NONGET
Dr. Jean-Yves SCANVIC

ECOLE PRATIQUE DES HAUTES ETUDES
61, rue Buffon
75005 PARIS-FRANCE

March 1976

Type I Report for period
January - March 1976

CENTRE NATIONAL D'ETUDES SPATIALES
129, rue de l'Université
75007 PARIS-FRANCE

Original photography may be purchased from:
EROS Data Center
10th and Dakota Avenue
Sioux Falls, SD 57198

RECEIVED
APR 19 1976
SIS|902.6
15. Abstract:

This second progress report gives initial results on Landsat - 2 data received in the corresponding period. During this period 22 scenes were received and evaluated. Most of them covered the summer of 1975 and cloud cover was on the whole quite low.

Two more scenes have been ordered in CCT Format:
- Loire Estuary
- Islands of the bay of Biscay.

These have been chosen to complete or extend time-series covering significant test areas.

Part 2 of the report covers research done by the B.R.G.M.
1 - INTRODUCTION

This report covers the first quarter of 1976 during which a number of significant new techniques has been made operational using, LANDSAT-1 data.

Over the same period, LANDSAT-2 data has been received and reformated to our databank standard (assembly of 4 strips to single scene recording) on direct-access units.

Interpretation, classification and mapping of LANDSAT-2 data has been initiated, singly or in connection with LANDSAT-A data, with emphasis on coastal areas, extending seaward to the extent of coastal sediment transport and landward into saltmarshes, dunes and polders.
2 - TECHNIQUES

2-1 - Photographic: 70 mm B/W negatives were examined as received, and after enlargement to 1/1000 000 th scale. Particular attention was directed to scenes suitable for ordering in CCI format.

2-2-1: 4 strip records were copied on disk using 3240 pixel/line format to facilitate data processing, especially in areas bisected by strip borders.

2-2-2: Various improvements were carried out on our supervised automatic mapping procedures (using IBM 360 and Benson Offline Plotting System) to save program execution time.

2-2-3: Time sharing (Tektronix 4013 output linked to IBM 360): further development of the FRACAM package have no made this unsupervised interactive classification system fully operational.

2-2-4: The CLAMS unsupervised automatic classification program provides graphic output on Calcomp microfilm.

2-2-5: A test run for evaluation of the stand-alone GE-IMAGE-100 supervised system was conducted by Dr. J.M. MONGET at the NASA-JSC remote sensing facility. Sample color displays one shown in Fig. 2.2.5.1 and 2.2.5.2. Special attention was given to the software/hardware trade-offs.

2-2-6: A smoothing technique is being tested based on using each pixel in the mapped output from programs (2.2.2. and 2.2.3) as the centre of a rectangular or square matrix and replacing this pixel with the modal signature found in the surrounding matrix.

3 - ACCOMPLISHMENTS

3-1 - Ground truth: for LANDSAT-2 data, we have continued to draft maps of coastal areas showing directions of currents and tide heights (following pages). Times given are T.U. (Fig. 3.1.1. to 3.1.6).

3-2 - Mapping of offshore currents (Fig. 3-2)

The map of the Island of Jersey and surrounding marine approaches was obtained from LANDSAT-1 imagery by automatic mapping techniques described previously. Green areas are land, black and brown show clouds and cloud
shadow (a major interpretation hindrance). Blue and yellow show waters of increasing turbidity (symbols 1 through 4) and in particular the strange shapes found in the mixing area of the turbidity front. No explanation has been found for this phenomenon, actually under investigation, but it is a typical example of scientific observation which could not be obtained by any other means, and for which the scale if not the spectra of MSS imagery is ideally suited.

3-3 - Application of techniques developed with LANDSAT-1 data to the Fromentine test-site, chosen for its extensive homogeneous landscape.

Fig. 3.3.1 is an example of graphic output after supervised classification water was separated using MSS band 7 and then differentiated by turbidity detected in band 5 (symbols 1-6).

Shoreline sediment has been classified according to type: sand (symbol 8) and mudflats (symbols 9 through 12).

For the mudflats, varying degrees of wetness (decreasing from 9 to 12) have been identified. In the north-eastern corner, freshly ploughed polders show up as sandy areas. Finally symbols 13 to 18 show various types of vegetation, particularly 13 and 14 (psammophytes more or less covering dunes), maritime pine forests (15), and cultivated marshes (16).

The following illustrations are an example of data smoothing described in 2.2.6. From the original 1/80 000 scale classification, which used data from to LANDSAT-1 scenes, the FRALISSE program devises Fig. 3.3.3. (smoothing by retraining modal values in a 3 x 3 matrix round each pixel) and, further Fig. 3.3.4 where a 5 x 5 matrix was used.

Here again, darkening shades of blue show water of decreasing turbidity (1 through 5) and brown and yellow are mud and sand. For these last two types, data from 2 scenes have been used as an 8 band classifying instrument. The lighter symbols (5,7) show areas above tide levels at both dates and the darker ones (6,8) are areas uncovered on Sept 27, 1972 but covered on March 8, 1973.

Finally Fig. 3.3.5 is an example of 3 scene diachronic classification, using 12 MSS channels and whereas water was drawn from a single scene, it is now possible to identify 3 tide levels in sandy and mudflats areas and to drawn more accurate distinctions between 3 types of vegetation.

All these maps have been drawn up over a fairly long period due to data delivery, research and publication delays. But we are presently applying similar techniques to LANDSAT-2 data, particularly a scene covering the Fromentine test-site and preliminary results show that a 3 year span is sufficient to allow efficient monitoring of coastline dynamics.
Fig. 2.2.5.1

NOIRMOUTIERS ISLAND

SUPERVISED
5 TAXONS

FRALIT-B

Fig. 2.2.5.2

GE IMAGE 100 colour output for the Fromentine test site.
Tidal currents (1 cm = 1 m/s)

Tidal range and water level (2 mm = 1 m)

June 22, 1975

Maximum high water springs

High water

Falling tide

Rising tide

Chart datum

Low water

Fig. 3.1.1: Hydrological ground truth data.
Fig. 3.1.2: Hydrological ground-truth data.
Tidal currents (1 cm = 1 m/s) Tidal range and water level. (2 mm = 1 m)

Maximum high water springs July 28, 1975

High water

Tide level 10^13 TU

Low water

Chart datum 0

→ S H O M

Fig. 3.1.3. : Hydrological ground - truth data.
Tidal currents (1 cm = 1 m/s) Tidal range and water level (2 mm = 1 m)

July 25, 1976

Maximum high water springs

↑ falling tide ↓ rising tide ◀ High water ▲ Tide level 10 h r TL

Low water

Chart datum

Fig. 3.1.4: Hydrological ground - truth data.
Tidal currents (1 cm = 1 m/s)

Tidal range and water level (2 mm = 1 m)

Maximum high water springs

Fig. 3.1.5. Hydrological ground-truth data.
Tidal currents (1 cm = 1 m/s) Tidal range and water level (1 mm = 1 m)

Fig. 3.1.6: Hydrological ground-truth data.
FORMES DE TURBIDITE DANS LE GOLFE NORMAND BRETON,
DONNEES ERTS-1 DU 8 MARS 1973

Fig. 3.2. : Sediment transport round the Island of Jersey.
Fig. 3.3.1. The Fromentine test site: scale = 1/75 000.
Fig. 3.3.2. : The Fromentine test site : scale = 1/80 000.
Fig. 3.3.3. : The Fromentine test site : scale = 1/80 000, 3 x 3 smoothing.
Fig. 3.3.4. The Fromentine test site: scale = 1/80 000, 5 x 5 smoothing/
CARTOGRAPHIE DIACHRONIQUE À PARTIR DES DONNÉES NUMÉRIQUES DE LANDSAT 1

Fig. 3.3.5 : The Fromentine test site : scale = 1/50 000. 3 scenes diachronic map.
4 - SIGNIFICANT RESULTS

Diachronic use of LANDSAT data time series will in time allow us to study statistically submersion frequencies in tidal areas. This is an essential element of coastal geomorphology and of coastal zone management, being particularly useful in siting shellfish farms. The maps we are obtaining, at usable scales and simple, user oriented legends should become an essential document for coastal planning agencies.
5 : LIST OF PUBLICATIONS :

6 : DATA QUALITY AND DELIVERY.

Since the last report, 22 frames of B/W 70 mm imagery have been received. Despite certain delays we find that data has been reading us more regularly (2 to 3 months after coverage). Despite extensive inland cloud coverage negative quality has been good in coastal areas but too contrasted for photographic interpretation in marine zones.

The five CCTS ordered during the last quarter of 1975 have been received and treatment has begun using techniques described above and previously in connection with LANDSAT - 1 imagery. Delay was reasonable (2 months from order to reception) but one tape (scene no E 2133 - 10125, quality given as G, F, F, G) appears to be unusable since repeated attempts at reading it cause numerous parity errors.
<table>
<thead>
<tr>
<th>Date</th>
<th>Product ID</th>
<th>MSS (Quality)</th>
<th>Cloud Cover (%)</th>
<th>Tape Product Order Received</th>
<th>Orbit Number</th>
<th>Code of Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 April 75</td>
<td>078-10055</td>
<td>F P F F F</td>
<td>30</td>
<td>1083</td>
<td>FLANDRES (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>079-10062</td>
<td>F F F F F</td>
<td>40</td>
<td></td>
<td>PICAPOD (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>078-10064</td>
<td>F G G G G</td>
<td>70</td>
<td></td>
<td>BEAUCHE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>078-10071</td>
<td>G G G G G</td>
<td>60</td>
<td></td>
<td>ANJOU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>078-10073</td>
<td>G G G G G</td>
<td>60</td>
<td></td>
<td>CHARENTE-GIRONDE</td>
<td></td>
</tr>
<tr>
<td>3 June 75</td>
<td>132-10070</td>
<td>P P P P P</td>
<td>80</td>
<td>1836</td>
<td>ANJOU-VENDEE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>132-10073</td>
<td>G G G G G</td>
<td>60</td>
<td></td>
<td>GIRONDE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>132-10082</td>
<td>G C F C F</td>
<td>60</td>
<td></td>
<td>LANDES (L)</td>
<td></td>
</tr>
<tr>
<td>4 June 75</td>
<td>133-10113</td>
<td>G P F F G</td>
<td>40</td>
<td>1850</td>
<td>PYRENEES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>133-10120</td>
<td>F P F F F</td>
<td>30</td>
<td></td>
<td>ARTOIS (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>133-10122</td>
<td>G F F G G</td>
<td>60</td>
<td></td>
<td>BAIE DE SEINE (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>133-10125</td>
<td>G P F F G</td>
<td>50</td>
<td>1906</td>
<td>BAIE DE SEINE (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>133-10131</td>
<td>C F F F F</td>
<td>50</td>
<td>2087</td>
<td>VERDUN (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>133-10134</td>
<td>P P P P P</td>
<td>40</td>
<td></td>
<td>GIRONDE (L)</td>
<td></td>
</tr>
<tr>
<td>6 June 75</td>
<td>135-10233</td>
<td>F P F P P</td>
<td>20</td>
<td>1878</td>
<td>LANDES (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>135-10235</td>
<td>F F G G F</td>
<td>30</td>
<td></td>
<td>JERSEY-COTENTIN (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>135-10242</td>
<td>F F G G F</td>
<td>60</td>
<td></td>
<td>BAIE ST MICHEL (L)</td>
<td></td>
</tr>
<tr>
<td>8 June 75</td>
<td>137-10322</td>
<td>G F G G G</td>
<td>50</td>
<td>1903</td>
<td>MORBIHAN (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150-10050</td>
<td>G F F F F</td>
<td>30</td>
<td>2087</td>
<td>QUEGSANT (L)</td>
<td></td>
</tr>
<tr>
<td>21 June 75</td>
<td>150-10060</td>
<td>G F F F F</td>
<td>50</td>
<td>2498</td>
<td>FLANDRES (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150-10071</td>
<td>G C G G G</td>
<td>10</td>
<td></td>
<td>TOURAINE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150-10080</td>
<td>G G G G G</td>
<td>10</td>
<td></td>
<td>GIRONDE (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150-10083</td>
<td>G G G G G</td>
<td>10</td>
<td></td>
<td>ARCACHON (L)</td>
<td></td>
</tr>
<tr>
<td>22 June 75</td>
<td>151-10135</td>
<td>F F F F F</td>
<td>20</td>
<td>2101</td>
<td>GOLFE DE GASCOCHE (L)</td>
<td></td>
</tr>
<tr>
<td>26 June 75</td>
<td>155-10393</td>
<td>F F F F F</td>
<td>40</td>
<td>2157</td>
<td>ARCACHON (L)</td>
<td></td>
</tr>
<tr>
<td>9 July 75</td>
<td>168-10073</td>
<td>G G G G G</td>
<td>50</td>
<td>2338</td>
<td>MERE CELINE (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>163-10089</td>
<td>G G G G G</td>
<td>50</td>
<td></td>
<td>SAINTONGE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>168-10082</td>
<td>G G G G G</td>
<td>40</td>
<td></td>
<td>ARCACHON (L)</td>
<td></td>
</tr>
<tr>
<td>14 July 75</td>
<td>173-10352</td>
<td>G F F F F</td>
<td>30</td>
<td>2498</td>
<td>GOLFE DE GASCOCHE (L)</td>
<td></td>
</tr>
<tr>
<td>27 July 75</td>
<td>186-10071</td>
<td>G G G G G</td>
<td>30</td>
<td>2539</td>
<td>CUESSANT (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>186-10080</td>
<td>G G G G G</td>
<td>10</td>
<td></td>
<td>CHARENTE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>186-10083</td>
<td>G F G G G</td>
<td>40</td>
<td></td>
<td>ARCACHON (L)</td>
<td></td>
</tr>
<tr>
<td>28 July 75</td>
<td>187-10111</td>
<td>F P G G X</td>
<td>30</td>
<td>2603</td>
<td>COT D'ARGENT (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>187-10114</td>
<td>F F F G G</td>
<td>30</td>
<td></td>
<td>BAS-DE-CALAIS (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>187-10120</td>
<td>G F G G G</td>
<td>30</td>
<td></td>
<td>ETIQUETTE (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>187-10123</td>
<td>G G G G G</td>
<td>20</td>
<td></td>
<td>BAIE DE SEINE (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>187-10125</td>
<td>G G G G G</td>
<td>20</td>
<td></td>
<td>ANJOU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>187-10132</td>
<td>G G G G G</td>
<td>20</td>
<td></td>
<td>CHARENTE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>187-10134</td>
<td>F F F F F</td>
<td>10</td>
<td></td>
<td>ARCACHON (L)</td>
<td></td>
</tr>
<tr>
<td>29 July 75</td>
<td>188-10172</td>
<td>F F F F F</td>
<td>10</td>
<td>2617</td>
<td>GOLFE DE GASCOCHE (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>188-10181</td>
<td>F F F F F</td>
<td>10</td>
<td></td>
<td>MANCHE/BAIE DE SEINE (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>188-10183</td>
<td>F F F F F</td>
<td>10</td>
<td></td>
<td>ESTUAIRE LOIRE (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>188-10190</td>
<td>F F F F F</td>
<td>10</td>
<td></td>
<td>VENDRE-CHARENTE (L)</td>
<td></td>
</tr>
<tr>
<td>30 July 75</td>
<td>189-10230</td>
<td>F F E E E</td>
<td>10</td>
<td>2631</td>
<td>LARGES LANDES (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>189-10233</td>
<td>F F F F F</td>
<td>10</td>
<td></td>
<td>N CEIEN (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>189-10235</td>
<td>F F F F F</td>
<td>10</td>
<td></td>
<td>GOLFE ST MAICO (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>189-10242</td>
<td>F F F F F</td>
<td>10</td>
<td></td>
<td>NOREBIAH (L)</td>
<td></td>
</tr>
<tr>
<td>4 Sept. 75</td>
<td>225-10222</td>
<td>G G G G G</td>
<td>50</td>
<td>3133</td>
<td>GOLFE DE GASCOCHE (L)</td>
<td></td>
</tr>
<tr>
<td>20 Sept. 75</td>
<td>281-10129</td>
<td>F G G G G</td>
<td>50</td>
<td>3356</td>
<td>ANGLETTERRE/COPTENTIN (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>281-10123</td>
<td>F F F F F</td>
<td>40</td>
<td></td>
<td>CHARENTE-GIRONDE (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>281-10125</td>
<td>F F F F F</td>
<td>30</td>
<td></td>
<td>ARCACHON/LANDES (L)</td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>PRODUCT ID</td>
<td>BLACK AND WHITE PRODUCTS</td>
<td>CLOUD COVER (%)</td>
<td>TAPE PRODUCT NUMBER</td>
<td>ORBIT CODE OF FRAM (L = Littoral)</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>20 sept 75</td>
<td>E2 241-10125</td>
<td>F F F F</td>
<td>30</td>
<td></td>
<td>3356 ST JEAN DE LUZ (L)</td>
<td></td>
</tr>
<tr>
<td>8 oct 75</td>
<td>E2 259-10110</td>
<td>F F G G</td>
<td>20</td>
<td></td>
<td>3607 BAIE DE SEINE (L)</td>
<td></td>
</tr>
<tr>
<td>8 oct 75</td>
<td>E2 259-10113</td>
<td>G G F</td>
<td>50</td>
<td></td>
<td>" ANJOU</td>
<td></td>
</tr>
<tr>
<td>25 oct 75</td>
<td>E2 279-10060</td>
<td>F F F F</td>
<td>50</td>
<td></td>
<td>3844 DORDogne</td>
<td></td>
</tr>
<tr>
<td>28 oct 75</td>
<td>E2 279-10215</td>
<td>F F F F</td>
<td>30</td>
<td></td>
<td>3886 COTENTIN NORD (L)</td>
<td></td>
</tr>
<tr>
<td>" " "</td>
<td>E2 279-10222</td>
<td>F F F F</td>
<td>10</td>
<td></td>
<td>" G. NORMAND-BRETON (L)</td>
<td></td>
</tr>
<tr>
<td>20 déc 75</td>
<td>E2 332-10165</td>
<td>F F F G</td>
<td>10</td>
<td></td>
<td>4625 OLONNE (L)</td>
<td></td>
</tr>
<tr>
<td>" " "</td>
<td>E2 332-10171</td>
<td></td>
<td>0</td>
<td></td>
<td>" LANDES (L)</td>
<td></td>
</tr>
</tbody>
</table>
PART 2 : FIRST PRELIMINARY REPORT ON LANDSAT 2

SPATIAL IMAGES INTERPRETATION : L'ARMORIQUE

I : TECHNIQUES

A - Photographic processing

We have generated black and white imagery products from negatives sent by Professor Verger, principal investigator. The chosen scale is 1 million.

B - Work procedure

B. 1. - Interpretation of the different available spectral bands (on overlay), generally bands five and/or seven was carried out under a mirror stereoscope (Wild ST4), not to have a stereoscopic effect, but because it allows a binocular study; we feel it is a good way to do the interpretation.

First of all we do the interpretation in using two similar spectral bands, for instance band five. Then we compare, always under a stereoscope, the results obtained on different spectral bands.

As far as possible, we also compare and complete the interpretation done on adjoining images, using the stereoscopic effect.

B. 2. - Identification of the Landsat image is obtained by reference to the 1 million scale topographical and geological maps of France. Unfortunately on the later edition of the geological map coordinates are in grades out but this is a minor problem since images can generally be located at a glance.

Then, to obtain an accurate location of observed data we trace on the overlays all visible hydrographic detail.

B. 3. - "Ground truth" techniques utilized mainly consist, in this first stage, in a search of available scientific papers concerning proposed subjects and new data found in the area of interest. This point concerns, geology, geophysics, drilling, etc... as points of interest are raised interpretation and correlation, field geologists mapping the area at a 1/50 000 scale are advised.

II : ACCOMPLISHMENTS

The actual french atlantic coast is often a cloudy area and good quality images are not numerous. Nevertheless we have been able, using both Landsat 1 and 2 images, to investigate some of the problems we proposed to N.A.S.A. for investigation with space data.
1 - Structural analysis

a - Boundaries between folded and not folded Cadomian area in central Armorique: this point is not yet investigated with the received documents because of the lack of complete coverage of the area.

b - Mapping of fractures is in progress in the process of being. The main lineament known in southern Armorique are visible well observed on ERTS 1 imagery. New directions of fracturing are also visible. (see fig.)

c - Some of the granitized axes known through ground mapping in the northern Armorique show very typical tone and pattern on Landsat 2 images and locally allow a differentiation between younger and ancient granites.

d - Several small sedimentary basins (Tertiary in age) exist in the "Massif Armorican". A first attempt to map them, between the towns of Rennes and Nantes, on Landsat images, was unsuccessful.

e - Extent of fracturing - The gravimetric map of France (1 million scale), recently published by B.R.G.M., geophysical department, reveals several extensions of the southern Armorican lineament toward the south east, to the Massif Central. South of Nantes, gravimetric data cannot indicate which of the three observed geophysical discontinuities corresponds to the above mentioned lineament. A careful interpretation of four ERTS 1 and 2 images gives a preliminary answer to the question.

2 - Mineral exploration

a - Pb - Zn - Ba deposits.

Pb, Zn, Ba deposits are found, outside Massif Armorican and Massif Central, in the sedimentary levels of the Poitou area. Three of them are important: Melle Alloue-Ambazac and Nontron-Chabrinas and this last one is located along a fault trending NW-SE, the main Armorican direction. Our purpose was to look for similar faults in Melle and Alloue-Ambazac, and to find similar directions which could direct new prospection. First results outline such faulting in Melle and Alloue-Ambazac, according to ERTS - 2 image interpretation. This faulting is parallel to the main Armorican trends.

b - Sn deposits are located in or near Cadomian and Hercynian granite, along first order lineaments. Landsat 1 image show, near Nozay, one of the main deposits, why ore occurrences are disappear eastward: an unknown north-south fault cuts the Sn bearing formation, disturbing the continuity of the deposit.

The problem of mineralized Cadomian granite - Hercynian sterile granitedifferentiation is on the way (see above).

c - Kaolin deposits.

Kaolin deposits are known everywhere in the Armorique. We plan to test the ability of colour composite imagery to enhance. Crumelin process is to be used. The work is in progress in the northern part of Armorique.
3 - Ground water

We have proposed to survey water supply possibilities in two types of structure.

- The sandstone layers: their water bearing ability partly depends on their. The first results obtained in this domain confirm Landsat image mapping possibilities of fractures in this formation.

- Tertiary basins, where thick, could have important water bearing possibilities. We have seen they are not differentiated by tone on the ERTS images but, if they are linked with north-south fractures, as mentioned by Jaeger, the similar directions outlined by space data are promising to direct future water supply research.

4 - Other results

Circular structures detected in the vicinity of Limoges on Landsat 1 image: (Structural investigation in the Massif Central using ERTS - 1 multispectral imagery - N.A.S.A. report 1974) are also visible on ERTS - 2 images (2186 - 10071 - July 1975). We would like to point out specially the Rochechouart meteorite, this new image confirming its possible southern extend and its general shape, as visible on ERTS - 1 image and mapped on the field.

III : SIGNIFICANT RESULTS

The main results concern:

- The extent of the armorican southern lineament toward the south east until Montalembert where north 20 faulting disrupts it: On a global tectonic point of view this is a significant result.

- The existence of armorican fractures directions near the Malle and Alloue-Ambazac Pb, Zn, Be deposits, new data confirming genesis hypothesis.

- The discovery of similar other possible faults which can be a guide for further Pb-Zn prospection in the Poitou area.

IV : PUBLICATIONS

No publications are in progress on these first results but since the B.R.G.M. prepared the final N.A.S.A. report (ERTS - 1) on the Massif Central some papers were published, using ERTS - 1 image interpretation results. They concern:

V : DATA QUALITY
- Bande 7 is often unusable along the sea side (very pale), by contrast.
- On some scenes, for instance 2186 - 10071 - 27 July 1975, covering both sedimentary and basement formations, while the sedimentary area is a very good quality image the basement area is generally too dark to be well interpreted.

VI : CONCLUSIONS
Having used Landsat 1 imagery to investigate tectonic features we can assume it is a useful complementary tool: comparison between Landsat tectonic interpretation and geophysical, air photographs and ground data seems to be the right method to improve our global knowledge. First Landsat 2 results in the tectonic domain confirm this idea. Practical applications of the method is in progress:
- Establish a sismo-tectonic map of France, to select power station sites.
- Characterize the location of ore deposits.
- Complete photogeological studies realized as a preparation for geological mapping of France at a 1/50 000.

The technical impact of this new data source on the B.R.G.M. activities is evident: engineering geologists, mining geologists and mapping geologists ask for ERTS interpretation and have already found in the field some evidence of its practical interest.