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Some Results on Contractive Mappings
^r

Abstract

Several of the presently used techniques in pattern recognition can be

reformulated as the problem of determining fixed points of a function of the form:

f (x) = A(x)- x. If x0 is a fixed point of f and if f is contractive at x0,

then, for any y belonging to a sufficiently small neighborhood of x0 , the orbit

of y will converge to x0 . In this paper we develop several general results

regarding contractive mappings and, in particular, we study functions of the form:

f (x) = A(x) • x.

1. Introduction

Definition (1.1). Let (X, 11 il) be a normed linear space and let f : X -* X

be a function. We say f ;.s a contractive mapping of X provided there exists

a real number a, 0 < a < 1, such that 11f(x) - f(y)ll s allx - yll for all

X,y6X.

Definition (1.2). Let S be a set and let T : S -)- S be a function. We say

that s0 E S is a fixedop int of T provided T(s0) = s0.

If (X, it 11) is a normed linear space and if f is a contractive mapping

X having x0 e X as a fixed point, then x0 is the unique fixed point of
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f. For, if xl ,x2 e Yk are fixed points of f, then

11X  - 
x2 11 - 11f(xi

) - f(x2)II s allxl - x211

Thus, if x1 1 x2, we have that 1 _< a < 1, a contradiction.

If we impose the added condition that (X, 11 11) is complete (that is, a

Banach space), then any contractive mapping of X has a fixed point. Precisely

stated, we have the following well-known theorem.

Theorem (1.3). Let (X, 11 II) be a Banach space and let f : X 4. X be a

contractive mapping of X. Then, for any z e X, the sequence {fn(z))n=1

converges to a fixed point x0 a X. Moreover, x0 is the unique fixed point

of f.

In many cases it may be that f is not contractive on the whole space X

but rather only at certain points of X. We formalize the concept.

Definition (1.4). Let (X, 11 11) be a nonmed linear space and let f : X-* X

be a function. We say that f is contractive at x0 e X if and only if there

exist real numbers E and a, e > 0, 0 s a < 1, such that

11f(x) - x0 1) 5 allx - x0 11 for all x e S e (xo) = {x e X I Ilx - x0 11 < e). We

say that f is locally contractive on X provided there exists at least one

point x0 e X such that f is contractive at x0.

Observe that if f is contractive at x0, then

11f(xO) - x0 11 5 allx0 - x0 11 - 0, and hence x0 is a fixed point of f. The

following proposition is of prime importance in (2).

4
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Proposition (1.5). Let. (X, 11 11) be a normed linear space and let

f : X -> X be a function. If f is contractive at x 0 a X, with corresponding

real numbers a and a, then, for any y e S E (x0), fn (y) a Se (x0) for each

positive integer n, and the sequence {f n(y)}n _ 1 converges to x0.

Proof. Let y e S E (x0). Then llf(y) - x0 11 s ally - x0 11 < a , e < e

hence f (y) a S E (x0). Let k Z 1 and suppose that f k(y) a S E (x0) and

Ilfk (y) - x011 
:5

	 - x0 11• Then

Il
fk+l

(Y) - x011 = ll f ( fk (Y)) - x0 11 s allfk (y) - x011 :5 . ak llY - x011

= ak+1 11Y - x0 11 < ak+ : e < e .

Therefore, f
k+l (y) a SE (x0) and, since ak -* 0, as k -► + m, it follows

that l l f (y) - x0 1 1 -► 0, as k -)- -. Thus, the sequence {fn(y)lcon=l

converges to x0.

2. Conditions for functions to be locally contractive

Throughout this section (X, 11 11) will be a finite dimensional real

normed linear space and f : X -r X will be a function. Observe that if X

is n--dimensional, then f can be represented as:

xl	 f1(xl ,..., xn)

f

x 
	 fn(xl ,..., xn)

where each fi (xl ,..., x n ) is a real-valued function defined on X. We call



fi (xl ,..., x n ) the i-th coordinate function of f. We say that f e C'

in a region D (an open connected subset of X) provided each of the coordinate

functions of f possess continuous first partial derivatives in D.

The Frechet derivative of f at theop int P = (pi ,..., pn) E X is

defined to be the matrix of real numbers

afl (Pl , ... , P
n)	 afl(pl ,...^ Pn)

axl	 axn

df(P)

afn (pl , ..., Pn)	 afn (Pl ""' Pn)

axl	
ax 

Observe that df(p) determines a linear transformation df(p) : X ->X

defined by	 (df(p))(x) = df(p). x, where • denotes matrix multiplication.

When df (p) is looked at in this manner (that is, as a linear transformation

of X into itself), we call df (p) or df (p) • x the differential of f

at theoE, int p. Despite its ambiguity, this distinction in terminology should

cause no difficulty in the sequel.

Observe that the condition that f is contractive at x0 is equivalent to

the condition: there exist real numbers 6 and a, 6 > 0, 0 5 a < 1, such

that IIf(x0 + ex) - f(x0)II - II f (x0
 + Ax) - x0 11 s aIIAXII whenever IIex11 < d.

The following theorem is well-known. (See, for example, [1; Theorem 17, p.264].)

Theorem (2.1). Let f e C' in the region D c X, let p e D, and let df(p)

be the Frechet derivative of f at the point p. Then

;t
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f (p t AP) - f (P) + df (P) . Ap + R (AP) ,

lim R n u -
where np+0 

IIap II	 0'

Theorem (2.2). Let f e C' in the region D c X and let x0 a D. Then f

is contractive at x0 if and only if x0 is a fixed point of f and there

I I
exist real numbers S and $, d > 0, 0 5 $ < 1, such that	

df(x ) • nxl I
0	 5

IInxII

whenever IInxII < d.

Proof. ( (-- ). Suppose that f(x0) x0 and that such a d and a exist. By

Theorem (2.1),

II df(x0) - nxII = 11f(x0 + Ax) - f(x0) - R(Ax)II > Ilf(x0 + Ax) - f(x0)II - IIR(ox)II-

Thus, for IInxII < d,

11 df (xo ) • Ax I I	 I I f (x0 + AX) - f (x0 )11	
I I R nx I I

1 '	 z	 IInxII	 IInxII	 -	 I ox I
	 , or

IR 
ox it
	 !If(xo + AX) - f(x0) 11

s + l Il oxll	
z	

IInxII

Choose e > 0 so that B + e - a < 1. Since	
X11 -'-0 IRnxI11	

0,

there exists Y > 0 such that I IR(°x II ; e whenever IInxII < Y . Thus,
11AXII

for T - min[S,Y} , it follows that if IInxII < T , then

Iif(xo + AX) - f(x0)II s (a + E)IInxII - aIIAXII

and hence f is contractive at x0.

14
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Suppose f is contractive at x0. Then x0 is a fixed point
%

of f and there exist real numbers Y > 0 and a, 0 S a < 1, such that

Il f(x0 + ox) - x0 11 = Ilf(x0 + Ax) - f (x0)II s allnxll whenever IIoxII < 
Y.

By Theorem (2.1),

II df(x0) - Ax ll = Ilf(x0 + AX) - f(x0) - R(AX)II S Ilf(x0 + AX) - f(x0)11 + IIR(Ax)II.

Choose e > 0 so that a + e S < 1. Since lim
	 R(©x)l) = 0, there exists

I I Ax I! -►0	 I I ax I I

T > 0 such thy:	
IR Ax II < e	 whenever Iloxll < T. Thus, for b = min{Y,T},
Iloxll

it follows that

i t df (x0) • ex I I	 I I f (x0 + Ox) - f (x0)1 I	 I I R ©x

II nx 11	
S	

Iloxll	 +	 Ilexl
^l

I 	 ` a + e = s < 1.

Definition (2.3). Let f e C' in the region D c X, let x0 a D, and suppose

that df(x0) exists. We define the norm of the linear operator df(x0)	 to be:

Ildf(xo) II = sup{lldf(xo) • x11 I IIxl1 = 1, x E x}.

Theorem (2.4). Under the hypothesis of Theorem (2.2), 11 df(x0) 11 < 1 if and

only if there exist real numbers d > 0 and $,0 s < 1, such that

Ildf(x0) 6 nxll

Iloxll	 - S 
B whenever IIox1I < S.

Proof. Suppose Ildf(x0) II < 1. Then 1 > f3 = Il df (x0) II =

Ax
= sup	 IIV(x0) . X 11	 Ildf(x0) •Iloxll II 

= Ildf(x0) • oxll for all Ax.
Ilxll = 1	 11AXII

e
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Ildf(x0) . oxI I
Conversely, suppose that	 (x0)	 s S < 1 whenever Ildxll < d.

Let x e X. IIxII - 1, and choose Y < d	 Then IIYXII - Yllxll - Y < S ,

so that

I Idf(xo) • x) I - I Idf(xC) • Y2I 1 - Y 
1ldf(xo) • YXI1 s Y S • 1 IYXI I - a .

Since x was an arbitrary vector of X of norm 1, it follows that

i t df (x0) I I:r- R< 1.

Combining Theorems (2.2) and (2.4), we have the following result.

Result (2.5). Let f e C' in the region D c X and x 0 a D. f is contractive

at x0 if and only if x0 is a fixed point of f and Ildf(x
0 ) 

11 < 1.

Theorem (2.6). Under the hypothesis of Result (2.5),

lim	 I 1 df (x0) . Ax I I

11AXI l-+0	 I Iexl I	
exists if and only if

1im	 IIf(XO +
	 )fix - f(x0)II

IIaxII-*O	 AX)	
exists. Moreover, if either limit exits

(and hence the other), they are equal.

Proof. By Theorem (2.1)

(I l df (x0) • AX I I - I l f (x0 + Ax) - f (x0 )1 11

- 111f(x0 + Ax) - f(x0) - R(Ax)II - I1f(x0 + Ax) - f(x0)III

s IIf(x0 + ex) - f(x0) - R(ox) - [f(x0 + ax) - f(x0)111

- IIR(ex)ll,
f

d
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where li^ll-*0 
I (Ax 	 = 0. Thus, given e > 0, there exists 6 > 0 such

that

I I df (x0) . ox I I	 I I f (x0 + ex) - f (x0)1 I	 R Ax
Iloxl	 -	 Ilnxll	 s	 Ilan i 	 ` E'

whenever Ilerll < d . Thus, if one limit exists, then the other Exists and

the two limits are equal.

Lemma (2.7). _'qt (X, II II) be a finite dimensional normed linear space

limand let A : X + X be a linear operator. If 
llxll-►0 11

1 ll exists, then

lim	
IlAxIl = IIAII, where IIAII = sup{IlAxll I x e X, IIxI1 = 11•Ilxl1-*0 1IxlI

Proof. Since the unit hall = {x e X I Ilxll = 11 is a compact subspace of

X and A is continuous, there exists x  e X such that Ilxl ll= 1 and
IIAx II

IIAx1 11 = IIAII. Therefore, 
Ilx 

1 
1I	

IIAII. Choose an	= n for each

IIA(a x )II	 a II Ax II
positive integer n. Then 	

Ilanxl ll	 ^ an llxl ll	 = 
IIAII for all n,

lim	 IIA (anxI ) II	 lim	 Ax
and hence	

IIanxl 11-0	 anxl II 	= 
IIAII. Thus, if 

11X11--0 IIIIxxII exists,

lim	 IlAxll =
then	

IIx11-*0	 1Ixll	
IIAII

Observe that under the hypothesis of Result (2.5), df(x 0)	 exists and is

a linear function of X into itself. Thus, by Result (2.5), Theorem (2.6), and

Lemma (2.7), we have the following corollary.



9

Corollar_ Zr .8). Let f e C' in the region D c X and let x0 a D. If

lim	 (ldf (x0) . axll

Ilaxll -►0 	ilaxll	
= L < 0 (equivalently, if

lim	
11f(x0 + fix) - f(x0) II

I 1 ex 11-1-0 	 1 px I	
= L < W) , then f is contractive! at x0

if and only if x0 is a fixed point of f and L < 1.

While it does not seem unreasonable to expect that both limits of Theorem

(2.6) exist, the following theorem shows that the existence of the limits imposes

strong conditions on the linear mapping df(x0).

Theorem (2.9). Let (X, (,))	 be a finite dimensional inner product space with

induced norm I W I (^ and let A : X -► X be a linear operator. Then

A = aU for some non-negative real number a and orthogonal matrix U if and only

limes
if 

11x110 ^IX11	
exists.

Proof. Observe that a linear operator B defined on X is orthogonal if and

only if (Bx,Bx) _ (x,x) , or equivalently, if and only if 11Bx11 = 11x 11 for

all x e X. Note that the theorem is obviously true if A = 0. If A 0 0 and

if iixll;o Iil exists, then, by Lemma (2.7), 11x11-+0 
11x1

1 = IIAII and

lim	 11(IIAIIA)xIl	 1
therefore, 

llxli-►0	
1A11	

= 1. Let B = 1111) •4 and let y e X.

Choose an = n for each positive integer and consider the sequence of points

IIB(a y)II

to y}G	Since 11a yl I -► 0 as n -+ + m , then lim
	 n	 = 1.

m n=1	 ►̂ 	 ''CV 11-0 ''any''

i



10

	

JIB(any)II	 IIByll	 iim	 IIB(%Y)11	 IIByJI
But	 -	 for each n and hence

	

11	 11Pl y ll	 110,Y11-1-0	 Ilany ll	 Ilyll

Therefore, IIBy l1 - II y II, so that B is orthogonal, and thus, A - IIAIIB has

the required form.

Conversely, suppose that A - (XU for some positive real number a and

orthogonal matrix U. Then IIUxII - Ilxll for all x e X, and hence

lim	 Ax- lira	 I I aux I I - a lim	 I IUXI-a 1 -a • IIUII - IlaUll - IIAII.
I Ixl I-P0 TI x1	 11x1 I-►O I Ixi I	 I Ixl 1-00 1 Ixl I

Corollary (2.10). Let (X, (, )) be a finite dimensional inner product space

with induced norm Ilxll - x,x) , let f e C' in the region D c X, and let

lim	 I l df (x0) . Ax I I
xO E D. If 

IlAxll-*0	 IlAxil	
exists, then f is contractive at x0

if and only if x0 is a fixed point of f and df(x0) - aU for some real

number a, 0 < a < 1, and orthogonal matrix U.

We end this section with an example to show that the condition that

lim	
Ildf(x0) • AXII

IIAxII-+O	 IIAXII	
exists is required in Corollary (2.10).

Example (2.11). Let E2 denote real 2-space and let f : E2 - ► E2 be deftned

by f(x ,x ) - ( 3x1 , x2 ). since Ilf(x ,x ) - (0,0)11 5 2 11(x 11(x ► x2 ) - (0.0)11
	1 	 1 2	 1

for all (xl ,x2) a E2 , and since (0,0) is clearly a fixed point of f,, then

f is contractive at (0,0). However,	 df(x1' x2) at any point (x l ,x2) a E2

is equal to [ 3014 X0 J	 and it is easily verified that [ 304 10
 J cannot

be written in the form aU, where a is a scalar and U is orthogonal.

Q
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3. A matrix representation of df x

Let En denote real or complex n space and let f : En ♦ En be

defined by f (x) = A(x) • x, where A is a function from E n into M 
nxn,

xl

the space of n x n matrices. For any x =	 E En , write

x
n

fl

Thus, for each i = 2., ..., n, f  : En -. El is the

fn
(X)¢

projection of i(x) onto its ith coordinate. Let A e C' in the region

R c En (hence f e C' in R). Then, for any point x e R, the Frechet

derivative of f is

afl(x) . . . afl(x)

	

axl	ax 

d f (x) _	 •

	

afn (x1	 afn(x)

axl-

1

a11 (x) . . . aln(x)

Let	 AN)

and W . . . ann(x)

t
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Therefore, fi (x) = En aik(x) ' xk for each i and
k-1

afi (x)	 n a[aik(x)l

axj = ^k-1	 axj	• xk + aij(x)

is the (i,j)th entry of df (x). If we denote the matrix

n a[alk (x)l	 n a[alk(x)l

k1l	 axl	 xk . . . kEl	 axn	 xk

n a[ank (x)l 	 n a[ank(x)l

k!l 3x  xk	 kEl 9x  "k

by B (x) , then df (x) = B (x) + A(x).

Since A : En -+ MnXn , it follows that dA(x) can be represented by

the n2 x n matrix

a[all
(x)]

a[all
(x)l

axl
ax 

a[aln(x)l
a[aln(x)l

ax  ax n.

3[a 21W] 3[a21(x)l

ax  ax 

a[an1 (x)l atanl (x)l

ax  ax 

a[ann (x) l a[ann (x)l

ax
 ax
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If we let D(x) be the n x n2 matrix

xl 	x 

xl	
x 

x 
	

x 

then B (x) = D (x) dA (x) so that	 df (x) = D (x) . dA(x) + A(x) .

Although D(x) and dA(x) are not self maps, it is straightforward

to show that

II df(x)II s IID(x)dA(x)ll + IIA(x)il s IID(x)ll • IIdA(x)II + IIA(x)II ,

where we take the usual sup norm on the linear functions df(x), D(x), dA(x),

and A(x). (For example, IID(x)ll = sup {IID(x)• y ll n I Il y ll 2 =	 Y E Ent}
n

where II IIn and II II 2 denote the Euclidean norms in En and Ent , respectively.)
n

We next show that IID(x)ll :9 Ilxll for all x E En. For, if y e Ent,

then

n

yl	 J1 xiyi

yn	 n

J1 xiyn+i
D (x) • y D(x)	 yn+l

y'ln

n

yn2	 J1 xiyn2-n+ij`
.	 1



and hence,

f

	

n-1 	
2

IID(x) • Y I1	
kE0	 in + i

By the Cauchy-Schwarz-Bunyakovskii inequality,

n	 2	 n	 n2	 2
i

j

1 xiykn + i	 5
 (im

Zl xi	
J ykn + i

and hence,

for any k = 0,1,...n-19

n-1	 n	 2
I ID (x) . y l 12	 kL0	 iE1 xiykn + i

n-1	 n	
2	

n 2

5 k0	 (,=l xi
	

• iZl ykn + i

= n	 n-1 n 2

i^l 
2

xi 	 kE0 ill ykn + i

n	
2	

n2 2
ill 

xi	
ill yi

-	 11X11 2• Il y ll 2	.

In particular, if Il y ll - 1, we have that IID(x)• yll s (1x11 and hence

IID(x)ll - sup (IID(x). y ll I Il y ll - 1, y e Ent ) <- II X II .

Summarizing the results thus far developed in this section, we have the

following theorem.
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Theorem (3.1) . Let f En -► En be defined by f (x) - A(x) . x, where

A is a function from En into MIXn . Suppose that A c C' in the region

R c in (hence f e C' in R). Then, for any point x e R,

df (x) = D (x) • 4A(x) + A(x),  where D (x) is the n X n2 matrix

xl . . . x 

x xl

x 

xl

Moreover,

11 df(x) l l 4 I ID(x) l l• I IdAA(x) I I+ I IA(x) I I s I lxl l• I IdA(x)11 + I IAW 11.

It should be noted that the above norm inequality is not sharp enough

in seeking points at which f is contractive. For, if f is to be contractive

at x0, then x0 is a fixed point of f. But then 11x0 11 = 11f(x0 )11 =

IIA(x0) • x0 11 < IIA(x0)II • I1x01I, so that (if x0 # 0) IIA(x0)I1 Z, 1.

Hence, 11x0 11 • IIdA(x0)11 + IIA(x0)ll ? 1 and the above inequality cannot

be used to show that 11 df(x0)ll < 1.

Finally, we close the paper with some observations relating to the work

of B. C. Peters and H. F. Walker in [2]. A major result of [2] is that

a function 0C is locally contractive at a consistent maximum-likelihood

estimate x0 for sufficiently small values of c > 0. Since 0C (x0) = x0,

it suffices to show that lldO C (x0)II < 1. It is easily verified that 0C

Qi
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can be considered as a function from En into itself and that tE can

be written in the form: @E ' (1 - E)I + E.f, where I is the identity

map on En and f : in -► in is defined by f (x) = A(x) • x, where A is

a function from En into Mnxn . (That is, f is a function of the type

considered earlier in this section.)

Since dt (x) _ (1 - E)I + e df(x) at any point x for which the

differentials exist, then

JIMe (x) 115 (1 - E) + E 11 df(x)ll

Thus, if it df(x)ll < 1, then

IIdIt E (x)II s (1 - e) + ell df(x)ll 5 1 - (1 - II df(x)ll)E < 1.

Therefore, since the set of fixed points of f is the set of fixed points

of 0E for any E > 0, it follows that if f is contractive at y 0 , then

0E is contractive at y0 for any e > 0.

Conversely, observe that df(x) 1d 0 (x)[ e	+ ( E - 1)IJ, so that

11 df(x)ll 15-1 II0 E (x)Il + IE 
E 

i1	 Thus, if II0E (x)II - a, then

I df(x) i l < 1 if' E (a + I E - 11) < 1. For 0 < E 5 1, 
a 

(a + I E - 1 I ) < 1

is equivalent to a < 2e - 1,

11 df(x)ll < 1. (Note, the as

a< 1 for 0< E 5 1.) Thus,

110 E (y0)ll < 2e - 1, then f

and thus, if 110 E (x)ll < 2E - 1, then

sumption a < 2e - 1 implies that

if 0E is contractive at y0 and if

is contractive at y0.

Observe that if e ? 1 and if 1100 (x)ll - a, then

1
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II df(x)II 5 E 
(a + E - 1). Thus, since the condition E (a + E - 1) < 1

is equivalent to the condition a < 1, it follows that if 110 (x)II < 1,
E

then I) df(x)II < 1. Therefore, for E Z i f f is contractive at y0

if and only if 0E is contractive at y0. We remark that Peters and Walker

have recently shown that 0 
E 

is contractive at a consistent maximum-likelihood

estimate x0 for 0 < E < 2.

We summarize these final comments.

Theorem (3.2). With the notation and hypothesis of the preceding discussion, if

f is contractive at y0 , then $E is contractive at y0 for all e > 0.

If 0 < E < 1, I1d¢E (y0) II < 2E - 1, and y0 is a fixed point of 0E (hence

^E is contractive at y0), then f is contractive at y 0 . If 1 5 E,

f is contractive at y0 if and only if 0 E is contractive at y0.
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