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Total and restricted energy loss rates are calculated for magnetic

monopoles of charge g - 137 a in Lexan polycarbonate. Range-energy

curves are also presented. The restricteJ energy less model is used

to estimate the appearance of a monopole track in plastic detectors.

The results are applied to the event observed by Prlee et al. and

identified by them as a monopole. These results should also be of

use to other investigators for both the design and analysis of

monopole experiments.
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It has been shown that one can describe the electromagnetic

interaction of magnetic monopoles of charge g, velocity Bc with matter

by the following procedure: solve the analogous problem for electric

charges of charge Ze,, velocity Bc and then make the substitution
ij

r
gB for Ze. 1,2 This leads to an approximately constant energy loss rate

[(Ze/B) 2 4 9 2 )l• I will advance further arguments for this prescrip-	 j

tion in this paper. 1 will also demonstrate that this result does

not imply that a magnetic monopole of charge g 	 137 a will appear

s	 ^
at all velocities like a minimum ionizing electric charge with Z = 137

in dielectric track recorders.	 31

1. Elementary Treatment of Energy Loss of
Electrically and Magnetically Charged Particles

Let us first consider the electron production spectra for

electric and magnetic charges. We will consider projectiles much

more massive than an electron so that the classical kinematic limit

of energy transfer is given by wm = 2 mec2 02 y2 . Letting dwdx

denote the electron production spectrum per unit length per unit

energy, we note that

do	 ON do	 (1)
dwdx w d2'

m

where N is the electron number density anddSt, is the differential

cross section for the scattering of a free electron by the heavy

particle in the center-of-momentum frame. dQ, can be expressed as a

function of a', the center of momentum scattering angle, by the

relation w - w sinmg 2
1	

,
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The specific energy loss can be immediately calculated:

dE ^ (wmax w do ,
dx J wmin dwdx

Atonic and quantum effects are taken into account by carefully

considering the limits of integration. 3 Clearly wmax = w(bmid'
wmin ' w(b max ) where b is the impact parameter because close colli-
sions result in the largest energy transfers. Classically, one expects

that wmax = wm - 2 mec2 e2 Y 2 • However, if b is small enough so that
the wave packet of the electron overlaps with the (assumed massive

and hence fixed) force center, then we expect quantum mechanical
,A

limitations of the energy transfer, corresponding to bmin = mm vy
e

the de Broglie wavelength of the electron in the center of momentum

frame. `=I wmax is the smalier of the two quantities wm and

h_w(b
min mevy).

The maximum impact parameter is determined by the adiabatic limit.

The fields of a moving electric charge vary like (b 2 + y2 v 2 t2)-a/2
where t = 0 when the charge is a distance b from the electron. 3 The
symmetry of Maxwell's equations implies the same dependence for mag-

netic charges.

Hence, for both magnetic and electric charges, the fields at the

electron are appreciable for a time t - Yv . When t >_	 ( being a

typical orbital time for an atomic electron), the force turns on and

off so slowly that the electron is adiabatically perturbed with no

net change of state. So energy transfer requires:

b < Y—v s b
W	 max

B^GINAL P OGE 01
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and w
min w(bmax)'

Using the classical Rutherford cross section for an electric
2 4

d
w

dr,charge in equation ( 1) yields the familiar result 	 dx a = m e c B w
2 	e2

(using the more correct Mott cross section 4 would modify this result

by a factor 1 - SZ —w).  Hence for electric charges, the results can
m

be summarized as:	 f

2
2V 2

41E	
wpp Z e ^ 	

wmax where m = 
4ttNe 2	 ?^

dx^e	 27-0f In 'min
	 p	 me

2 4	 l
W(b) - mmb-z (for Rutherford scattering).

I

2mec 2S 2y 2 if Z/B > 137

2Z2e4y2mwmax	
-h2	

a 
if Z/B < 137

2Z2e4w2
minmev4y2

for Z/B < 137, the case we will be considering,

dE	 W 2Z2e2	
Mec2aY

dxi e - Rc2V In
	

fiw

This result approximates the more accurate Bethe-Bloch relation

which includes the effects of atomic or molecular binding and rela-

tivistic corrections

	

dE W  2 ZSe2	 2m c2S2y2

dx C2.p 
(1n ( eh<W' ) - S21

The scattering of an electron by a magnetic monopole can be

treated in a straightforward manner using relativistic classical

-4-
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mechanics 5 : there are no bound states and the orbit of the electron

Is a spiral on the surface of a cone. The center-of-momentum

differential cross section is5:

da = 4 b2	 64

do	 74-
(sin' 6 - d cos d sin d) [(nd) z - 1)

where	 cos Y - n sin 6126

r2
and	 6 = 2 (1 + 137 2 s2— yam)}

where r  is the classical electron radius, b is the impact parameter,

and the charge of the monopole is taken to be g = 137 e. One can find

^, as a function of w by direct computation:

do _ 2 tNe3	 (1 + ^)
dwdx m c w

e

with ! -- .08 near 
wmax 

(always determined by the quantum mechanical,

rather than kinematic, limit) falling rap€dly to zero as w goes to

zero. This result is independent of velocity (from a = .05 to

S = •95). Thus, we can approximate:

do I __ 2nNe`'(137)2
dwdx m	 m c2wz

e

with an error no greater than 0.5% in d€/dx. We should note that for

small scattering angles in the center-of-momentum frame, the cross

section for a magnetic charge approaches the Rutherford cross section

for an electric charge with the replacement gs for Ze.

-5-
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. 20 2 e 2 W 2
Hence	 min mev2c2y2

For .05 < 0 < •95 it is fond that wmax ` .69 w
m so

di	
Ŵ 2e2(13^7)2 .83 mec282y2

dx^m	 c"	 In	 hm

where we have used ge = h c. This is virtually identical to the

electrical case except for the replacement of Ze by gs.

Since our ultimate goal will be to try to estimate what rela-

tivistic electric charge will mimic a monopole (this is the appro-

priate question one must ask if one is analyzing an event in which

• particle apparently does not slow) we should attempt to formulate

• consistent way of looking at the relativistic ionization of electric

and magnetic I-harges. The method given above does not take into

account the microscopic polarizability of the medium (i.e., the

density effect) since it is based only on the microscopic collision

cross section.

Since these effects are important at relativistic energies, we

now consider the more accurate but less intuitive approach due to

Fermi which includes these effects. Fermi's 6 treatment of the energy

loss of a moving electric charge in a medium which can be characterized

by its low frequency dielectric constant (e) incorporates these

macroscopic effects, based as it is on Maxwell's equations for the

fields of the moving charge. Fermi obtained for the energy loss due

to collisions with impact parameter greater than b:

RIT--RODUC113ILITY OF T'T'
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W zZzez
[in (1.123 (3cY^) _Szl ^ if (3<E^

c^ SZ 	2
dE	 w bra

(dx) b

z z zJ.W 	
[In  ( 1.123 tic ) - 1-Sz ]	 if s> e"i

c
Z

B
—

wb ' 2 E-1

By utilizing the symmetry of Maxwell's equations, and extending

Fermi's treatment to include permeability effects (this is essential	 II
since the transcription of electric results to magnetic results

requires an interchange of a with p) Tompkins ] obtained the analogous

result for monopoles:

W xg2

-P= [In 
( 1.123bWCY	 )- ]	 if B < e }

P
dE
(dx)b

w_z- (In 
( l. bw c) * 1- 1/a2

 ] , if g > E"k

P

This applies to nonabsorbing, (e is real) non-permeable (p = 1) media.

For total energy loss we let b be given by mhvy which was previously
e

shown to take precedence over the kinematic limit for monopoles. To

obtain a we note that for 8 < E-1 , with b = 
mh

ŷ , Fermi's formula
e

reads:

dE wp zZ zez	 1.123 mecYY2 S2

dx = czgz	
[in	 E	 2- 1

hwP(e-1)

which is identical to the Bethe-Bloch formula with 1.123 hwp(7_0

} h <w> (aside from the $ 2 /2 term instead of S z ). Here we will only

be Interested in Lexan polycarbonate which has h«,» = 69.5 eV (the

-7-
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logarithmic mean excitation energy). For Lexan, hwp = 22.8 eV, so

e	 1.52. (This is quite different from the true low frequency

dielectric constant for Lexan, E = 3.178 , showing how poorly a single-
:

oscillator model describes this complex polymeric material. However,

t
we can safely apply this "fitted" a to the description of the energy

loss of a monopole, because E relates to the properties of the medium,

not the particle.) Using g = 137 e, we obtain for the total energy

loss rate of a monopole in Lexan:

3.00 GeV/(gm/cm 2 ) [9 . 3 1 + 2 In 0yl, 0 < .81

dE
dx

3.00 SeV/(gm/cm 2 ) [ 11.09 + In 0y - .96/0 2 1, 0 >.81

11. Formation of Etchable Tracks in Lexan

The reader is referred to ref. 9 for a complete description of

the principles of particle detection and identification by means of

observations of their tracks in dielectric solids. Unless stated

otherwise, the following information on tracks is extracted from that

reference.

When heavily ionizing part Iles pass through certain dielectric

solids they leave semi-permanent records of their passage by the

formation of tracks: localized regions of intense radiation damage.

These latent tracks, being smaller than the wavelengths of visible

flight, can be made observable by chemical etching which causes the

damaged region to be removed at a rate V T which is greater than the

general rate of removal V G . This results in the formation of a cone

of half angle a given by sin 8 = v G/VT . The cone can be observed

-8-
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through an optical microscope. The length of the cone is used to
x

determine VT which is then used to identify the particle.

Many %i•adels have been proposed for the description of track

formation, but none has enjoyed great quantitative success. Table

i
1-5 in reference 9 lists the more attrative models. At present no

particular model fits observed data over all atomic numbers and
i

velocities. For Lexan polycarbonate detectors, power laws of the

form VT = A(Z */6) a are used to fit the data. (Z * is the effective

)	 *
charge of the nucleus; Z 	 Z for large a) . Since this is not derived

from some physical model it is not surprising that 6 varies from

batch to batch of Lexan, from exposure to exposure, and even as a

function of VT . Even though no firm track formation model exists,

several qualitative features are known. It seems that the primary

mechanism for track formation is electronic excitation and i	 ^tion

rather than atomic displacement, although the latter may be relevant

at energies of the order 1 keV/amu. It is also known that the size

of the latent track is very small. Transmission electron microscopy

has been used in the thickness contrast mode to measure a latent track

diameter of -60 A for fission fragments in mica. Electrical conduc-

tance measurements of freshly etched cylinders at the time of break-

through give a pore radius of 33 A for fission fragment tracks in

mica and -50 A for fission fragment tracks in Lexan.

Using these facts we want to make the best guess as to the

nature of the t;-aek formed by a monopole with g = 137 a and velocity

Sc. It is not sufficient to replace S with 137 in the power law fit

mentioned above. This would give an etch rate totally independent of

velocity, a
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result which cannot be correct since as 	 + 137 ionization, and hence

r,:4 1 ation damage, must cease (of course, if d = SO) then VT = VT (S) ).

Rather than do this, we want to find the property which characterizes

a track, to calculate the nature of this property for monopoles, and

to determine the corresponding electric charges which would produce

the same etch rate.

The restricted energy loss model (see Table 1-5 of ref. 9) is

convenient in this regard. This model holds that the character of

the track is determined by the energy loss which contributes to delta

rays with energy less than some fixed amount. This model is attractive

because it is consistent with the observed narrow track widths. For

Lexan the value of the fixed amount is typically taken to be w o = 350 eV.

(This number comes from empirical fits of accelerator data.) 10 The

restricted energy loss model neglects the effects of high energy delta-

rays. Strictly, this is inappropriate. However, a 500 keV electron

deposits only -2 eV in a typical Lexan track core, whereas a 350 eV

electron will execute a random walk and deposit all of its energy

in the core. These notions are consistent with those involving a

critical dose for track recording. It is well known in radiation

chemistry that organic so4ids suffer degradation (chain scission, for

polymers, formation of free radicals, etc.) when subjected to intense

doses of radiation. 11 Typically, if the dose is less than some criti-

cal value, little change in material properties is observed, whereas

doses exceeding the critical value lead to extremely rapid deterioration

(this is even true for human be'ngs; there is a fine line between

apparently mild radiation sickness and almost certain death). If one

-10-
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assumes that latent track formation is determined by the size of the

cylinder in which a critical dose is attained, then it seems reasonable

that high energy 6-rays can be neglected in evaluating track formation.

There are relatively low numbers of these high energy electrons and

their energy is dissipated over much larger volumes than is the energy

of low energy electrons.

We let dE1350 denote the restricted energy loss for a monopole

In Texan. The impact parameter corresponding to 350 eV bt: 
bmin - h

e o
where w  = 350 eV. This is so because if the impact parameter were

smaller than this, the uncertainty principle would imply that we couldn't

know that the energy transfer was less than wo . In order that we treat

electric and magnetic charges consistently with respect to each other

wc- will take b
min - 

1.123 h	
The factor 1.123 is introduced to get

mewo

agreement with a quantum mechanics` treatment of restricted energy loss

for electric charges (see ref. 3, P. 442). Since the minimum impact

parameter is determined from quantum mechanical kinematic constraints,

it is the same for both electric and magnetic charges.

Inserting this value for bmin into Tompkins' formula we have for

a monopole in Lexan:

bmin : 0.117 A

3.00 GeV/(gm/cm 2 ) 15.90 + In Syj , 6 < .81

dE
(dx)350

3.00 GeV/(gm/cm2 ) 17.68 - .96/$ 21, B > Al

For relativistic electric charges we obtain from Fermi's formula:

(

(dE (ee)) — 
1.08 z 2 MeV/(gm/cm2)

x) 350

RLPRODUCIBILM OF THL"
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This result is in agreement with Eq. 13.80 of ref. 3.

We now define the effective electric charge Z  by

1.08 Ze e MeV/(gm/cm 2 )	 (dE 350 (S)' Ze
 is the atomic number of a

relativistic nucleus whit,i'r would produce a cone identical to that of

a magnetic monopole of speed a.

Figure 1 gives the functional dependence of Ze on a. In Figure 1

we also plot the restricted and total energy loss rates for monopoles

with 9 = 137 a in Lexan. It is seen that at a = 0.01 ionization

reaches a very low level. The precise way in which d 
approaches zero

is difficult to calculate. Nevertheless, at these low velocities

energy losses due to collisions with nuclear Coulomb potentials and

with the diamagnetic repulsive potentials of the inner core electrons

of atoms dominate. It is these elastic collisions which rapidly ther-

malize the monopole. The curve for total energy loss may also be in

error at large S: at B = •95; b = b/m evy = 0.33 h/mec < h/mec, so

our treatment of close collisions is suspect if relativistic quantum

effects are important.

dE
By Integrating (x_)total we can find range ene-gy curves for

monopoles of various masses:

R W = Mc2 f.01
	 S ds

S	 (1—$2) 3/2 dX (^)

We choose S = 0.01 as the lower limit on velocity since this is the

effective limit for ionization. For any ionization-sensitive instru-

ment, this is the effective end-of-range, since further motion will

not register.

M
	 -12-
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In Figure 2 we plot R(13) /Mc2 as a function of y -1. Note the

slight upturn in this function at low velocities due to the decreased

energy loss rate.

If one assumes the restricted energy loss model to be accurate,

then the principal sources of error in our calculations are uncer-

tainties in w  and a as well as the usual problems with calculating

dE
dx (are close and distant collisions treated properly?). Jackson 12

s	 has estimated that these model independent errors cause an uncertainty

in Z  of ± 5 charge units at every velocity. Of course, we cannot

place a numerical degree of uncertainty on the model dependent errors,

since we don't know what the true behavior is. Hence, knowledge of

the true track formation mechanism is needed to evaluate the overall

accuracy of our results.

Ill. Applications to the "Monopole" Event

Prlc^, et al. 13 have recently reported a cosmic ray event which

they interpret as a moving magnetic monopole (1 = .5) traversing their

detectors. Figure 2 of ref. 
13 

indicates the apparent atomic number

Ze to be-137. Subsequently, experimental calibrations with iron cosmic

my nuclei have reduced the measured effective charge to -121.

Figure 2 of this paper indicates that this latter value is consistent

with a monopole which has S = .5•

In Figure 3 we plot the data of Price, et al. with a slight

modification. The scale for the depth has been changed to agree with

corrections subsequent to ref. 
13 

involving the construction of the

detectors. Also, we make no distinction between the triangles and

is
ft^

.,
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solid black dots (20 hr. and ?0 hr. etch times) since the respective

Iron calibrations area reported to show no systematic differences

between the two sets of data. 14

If one assumes that the curve which fits the data best is

smooth (i.e., that the event is not a fragmenting nucleus, which case

has been treated elsewhere) 15 then the best fit curve is the straight

line:

'-	 VT = (2.91 - .0406 9m;^) h r (X = depth)

The error at I standard deviation on the slope is ± .0658 m/hrz
gm/cm .

if the event truly was a monopole, one can place limits on the

mass (which are considerably more stringent than that of 200 m  in

ref. 13 by requiring tha t the slope be within an appropriate co n -

fidence interval. We have

dVT = dVT dg dE

dx	 da dE dx'

If we assume VT
	

(dx)350 consistent with power law fits of the

form VT - (Z) 4 (ref. 13) then: VT = K(5.9 + In 3y) 2 where K is a

constant determined by the data.

Y2
dBT = 

2K(5.9 + In RY)	
and dE Mcz i3y 3 with

d =
-3g

G [9.3 1+ 2 In ay],

assuring 6 < .81, which is greater than the limit demanded by the

published interpretation of the Cerenkov film evidence. 13

-14-
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dV 

T -2K(5.9 + In By) S Mks X 3 gmcm 19.31 + 2 In syl

dV 

T
dx ' -1 

Mcz 8.7 8, 1—y3 (9.31 + 2 In S 1 gm'— m2

If the event is a monopole, its slope must be less than 0. At

the 84% confidence level, its slope cannot be less than -.106 p/hr^
gm/cm

2
This means that GeV > gy3 (9.31 + 2 In Sy) at the 84% confidence level.

Some examples are:

1200 GeV if 0 = .4

875 GeV if s = .5
Mc2 >

611 GeV if 8 = .6

_ 396 CeV if	 _ .7

These large masses -are consistent with the suggestion by 't Hooft16

that certain gauge theories imply the existence of monopoles with rest

mass on the order of 137 Mw , where Mw is the mass of the weak intermedi-

ate vector boson.

In Figure 3 we sketch approximate curves of V T vs. X for various

masses at 5 =

IV. Revelance of Results to Monopole Search Experiments

The results of this paper have direct bearing on two classes of

monopole experiments: those which look for moving magnetic monopoles

with ionization sensitive instruments and those which look for trapped

monopoles by extraction from minerals with magnetic fields (which

-15-
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invariably use ionization sensitive instruments for the detection

of the monopoles after extraction). For both types of experiments,

care should be taken that gains and thresholds of the ionization

sensitive detectors are adequate for the conditions of the experiment

(for example, Lexan polycarbonate would not even detect monopoles if

0 4 .05, because of the reduction of specific energy loss at low

velocities). One should also consider the effects of the possibly

huge mass of the monopole with regard to an extraction type experi-

ment. If the mass is large there could be two consequences: 1) The

monopole would not follow field lines if it was rigid enough;

2) extracted velocities might be insufficient to trigger ionization

detectors.

-16-
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' Figure Captions

Figure 1. Total and restricted energy loss rate for monopole with

x•

M	
} charge g - 137 a in Lexan.	 Ze((3)	 is the electric charge
j

with 0 - 1 which would produce a track identical to that

r of a monopole with velocity ac.

Figure 2. Range - Energy curve for a magnetic monopole with g = 137 e

G

in Lexan.
r _

Figure 3• Data of the event observed by Price, et al. 	 Superimposed

are curves of etch rate vs. depth which one would expect

for a monopole with mass 200 GeV, 600 GeV.
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