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| SET COVERING ALGORITHM,
A SUBPROGRAM OF THE SCHEDULING ALGORITHM FOR
MISSION PLANNING AND LOGISTICS EVALUATION

1.  INTRODUCTION

. -This -documentation provides a general description of the Set Covering -

Algorithm (SCA) computer program, and includes functidha1ISpecifications,
funct1ona] des1gn and flow, and a d1scuss1on of the program Togic. The SCA
program is a submodule of the Schedu11ng Algorithm for Mission Plannlng and -
Logistics Evaiuation program (SAMPLE) and has been designed as a continuation
of the Mission Payloads'(MPLS).- The MPLS'uses_input_pay]oad.data to form a
- set of feasible combinations which are collections of payloads that meet cer-
tain system constraints (e.g., Shuttle weighf-to-orbit capability}; from this
- combination set the SCA selects a subset with minimum cost such that all pay-
loads are contained without redundancy. The subset of feasible combinetions
1s called a traff1c mode1 To date, the program has had two ma1n uses:

a. To prov1de input data for the Operat1ons S1mu1at1on and Resource Schedu]1ng
' (OSARS) submodule, and :

b. To prov1de the user a tutor1a1 option 50 that he can choose an a1ternate
traffic mode1 in case a particular traffic model cannot be scheduled by
the 0SARS. '

The SCA program was begun in 1974 with an input of less than 50 pay1oads per
year and the assumption of un1ty cost coefficients in the objective function.
Presently, this program has been expanded to solve 100 payloads per year with
an option of five different performance_criteriaxin_thefobjective function:
Since a general SCA program solves a problem with fneduaTify'conSthainfs, an.
appropr1ate change has been made to convert 1t to so1ve the traff1c mode]

- 5=prob1em, which has all’ equa11ty constra1nts

1-1



2.

PROGRAM DESCRIPTION

2.1 DEFINITIONS AND SYMBOLS

~2.1.1 DEFINITIONS

_Basis

Canceled variable
Ceiling

Decision variable

‘Dominated column

| _Extreme po1nt

'_Fract1ona] var1ab1e

‘Free variable
Level
Minimum-cost-per~
constraint-satisfied

- rufe

~ Occurrence table

Partial solution

[ . .. . . - -on
A basis for a n-dimensional euclidean space, E ',

- is a linearly 1ndapendent subset of vectors from

1

gn ~which spans the entire space

A var1ab1e 15 sa1d to be cance?ed 1f 1ts value is

- set to. be zero

The lowest upper bound
A zero-one variable which corresponds to a feasible
mission '

“In a matrix. A or A3 3 =1, n A; s said to
be dominated by A if A < A for 1 # j. Aj
s called a dominated co]umn of A and Ai 15

the dom1nat1ng column of A

The corner po1nts of a convex po1yhedron

The nonlntegra] varTab1e in the 11near programmxng
soTution

‘A variable which has not been fixed at any value

The number of variables fixed at one

In the subésub#robTem, for each variaﬁTe_thé vilue
of its cost coefficient divided by the number of
censtraints is caTcu1ated The var1ab1e with the _
minimum of such- vaTue is set to one first.

A table for eacﬁ payload of all feas1b]e comb1—

natlons that include. that pay1oad

A set of variab1es f1xed at one or zero



Preferred row
Preferred set

Siack variable

Subproblem

Sub~subprobiem

Upper bound

2.1.2  SYMBOLS
A

Loda

The row containing the smaliest number c¢f ones in
the current subproblem's constraint matrix

The set of columns 1in the constraint matrix which
contains the entry of one in the preferred row

In general, it is desirable to convert any in-
equalities in the constraints into equations which
are much more convenient to work with in the linear
programming problem. The conversion is carried out
by introducing some additional variables which are
called slack variables.

The problem contains only free variables with
certain constraints deleted from the main problem
by the satisfaction of the partial solution

The problem contains the columns of A associated
with the positive fractional variables and the rows
corresponding to the constraints they satisfy

A known value that the solution of tha Set Covering
Problem will not exceed '

An mxn matrix with zeros and ones as elements; constraint matrfx
An mx1 matrix of all positive numbers; cost coefficient vector
An mx1 matrix of all ones |
Indices of free variables

An th fdentity matfix

The row findex of matrix A

The column index of matrix A

Level counter

2-2



t

A nonpegative number in the objective function, set to be

very Targe to solve a Tinear programming prob1em with equality
constraints; in this program, set M = 500

" Number of constraints in the set covering problem

Number of decision variables in the set covering problem
An mx1 matrix of slack variables

The column vector of zero-one variables

‘Current value of objective functional, ie, cly

Upper bound for c'y

‘Reaching a point on a forward (backWard) step.

Iteration counter

The number of constraints of the level 2 subprob1em'

-variable j can satisfy

“Lower bound for the. m1n1ma1 functional of level & subprobliem

Sequence vector, record1ng nonzero components of ¥

e.TOTerance parametereahout z*

Number of constraintsein the current (level &) subproblem

, ..2__3. '7 o



2.2 GENERAL DESCRIPTION

2.2.1 PROGRAM CAPABILITIES

The SCA' program optimizes a traffic model problem over an objective function
which consists of a set of user-selected performance criteria such as Orbital
Meneuvering System (OMS) weight, Toad factor, or Shuttle cargo bay utilization
for each feasible combination. This problem also includes a set of constraints
which assures no redundancy of payloads in the traffic model. For application,

- a set covering algorithm developed by C. E. Lemke, H. M. Salkin, and

K. Spielberg {ref. 1) has been adopted. The main advantage of this algorithm
is that it permits a rather efficient and simple solution procedure that is
basically a (zero, one) branch and bound search logic coupled with linear
programming {LP) and suboptimization techniques. The suboptimization tech-
nique can construct very good integer solutions from the solutions to LP
subproblems.

The formulation of a traffic model problem can be exactly fitted into the
mathematical model of a Set'Eovering Problem (SCP). Before a formulation
example is presented, a general understanding of the form of this model will
be helpful. |

The SCA solves the SCP which has the form:

min c'x + Me's
subject to Ax -Is =e,s>0
and Xy = 0ori

Wheﬁ-this model is appliéd to the traffic model pfob]em, j is taken as a

decision var1ab1e on a part1cu1ar feasible combination j (or f1ight i).

: F]Tght 3 is cons1dered to be chosen when x. = 1. otherwise . = 0. For

each payload, there is a correspondent constraint which insures %he nonyedun-

. dancy of th1s payload 1n the traffic mode1 Vector ¢ stores the performance _

ariteria for all of the feas1b1e missions; M 1is set to a large vaiue to

assure that constraints are satisfied. The application of SCA to the traff1c
model can be easily demonstrated by the following examp?e

]



Assume that three payloads have to be Taunched in a particular month. Atter
checking all of the possible combinations, only five are considered to be
candidates. These candidate flights ave called feasible combinations; a.
summary of the pay]oads they carry is given in the following table,

Feasible combination (j) Payloads

No. A

No. A, No. B .
No. B, No. C
No. B .

No. C

3 I I

Assume that associated with each feasible combination j, there is a

cost factor cy- The problem is to formulate a mathematical model for
determining the traffic model which gives the minimum cost. In this
example, Cj is set to unity, which implies that we are seeking a traffic
model which consists of the minimum number of feasible combinations. Let
X (i =1, 2,3, 4, 5) be the decision variable over the selection of a
particular feasible combination j 1in the traffic model. A umity value
of xj impiies that feasible combination J has been selected to be a
member of the traffic model. Since cost has been chosen as a measure of
effectiveness, the object is to minimize

Z= X1 + X2 + XB + X4 + X5

subject to the restrictions developed in the following paragraphs.

The constraint in this situation is that the same payload cannot be contained
in more than one feasible combination in the traffic medel. The mathe-
matical statements of the restrictions for three payloads are |

2-5



C: Xg + Xg = 1

Finally, there are the binary restrictions, i.e., x, = 0 or 1. Therefore,
in summary, the mathematical model for this problem is the following. Minimize

Z= x1 + x2 + X, * x4 + X

3 5

subject to:

x] + x2 =1
x2 + x3 + x4 =
x3 + x5 =

and xj =Qori,j=1,2, 3, 4, 5
This formulation can also be written in a matrix form:

min c'X + Me's
subject. t0 Ax ~ Is=e, s >0

. =0 1
X; or
where
¢t =0,1,1,1, 1 x' = [xys Xps Xgo Xgs X
et =-l1, 1, 1 st = [s], S, 53]

2-6



0 10 0}
ol 1={0 1 0
1 0 0 1J

The three feasible solutions are x' =[1, 0 0, 0], [0, 1, 0 0, 1, and
{1,0,0,1, 1], but the opt1mum is e1ther uf the first two as they give the
minimum number of feasible combinations. In this'simp1e example, feasible .
“solutions can be easily noted by observatIUn, but in deal1ng with a- Targeu .
size problem of 100 payloads and 500 comb1nat1ons there are 2500 poss1b1e '
solutions; so a more efficient approach ‘such as ‘the SCA must be emp]oyed

The details of this algorithm are g1ven in the techn1ca1 descr1pt1on. 

O =
o - O

1
A.: 0
'0

2.2.2‘ oPERATIONAL'CAPABILITIES_‘”

The operational capab1]1t1es of the SCA program were des1gned to pe~m1t the .
user to spec1fy his part1cu1ar opt1m1zat1on prob1em accord1ng to h1s needs
One of the features is the user's se]ect1on of performance criteria over ob-

jective funct10n For example, if the user Tikes to see a traff1c madeT of a -

minimum number of missions, he wil] have the cho1ce of- using unlty as a per-
formance criterion, or he may use the surp]us Shutt1e bay 1ength as a perform-_
ance criterion to find a traffic model which gives the maximum ut111zat1on of"“
space. At present, the SCA perm1ts the user se]ect10n of one of the
following performance cr1ter1a ' '

a. Unity U m1n1mum number of missions p o

b. One m1nus 1oad factqr, _ max imum. ut111zat1on of Shutt]e cargo we1ght o
R allowance _ o

c. OMS weight: R ]'the minimun OMS we1ght

d. Payload margin: - ”m1n1mum pay1oad marg1n

e. One minus pay]oad 1ength B max1mum ut111zat1on of Shutt1e cargo bay

Th1s opt1on can be eve1 more se]ect1ve if the user has, other cr1ter1a to be
defined in the future " Another ‘available opt1on is the suppressvon or spec1—
~f1cat1on of certain feasible combinations in the traffic mcucl, the program
gives: the user an ervor message if he attempts to suppress or. spec1fy comb1-?
nations which wou]d 1ead to an 1nfeas1b1e so1ut1on that is not a traff1c '
model. -

:2*7..



'r _ of the algor1thm s genera11ty

2.3 TECHNICAL DESCRIPTION ~

2.3.1 ANALYSIS

‘The anaiy51s for th1s program is qu1te 1engthy. Fof'a thorough discussion of
the Set Covering A1gor1thm, the reader is veferred to C. E. Lemke, | '
H.M. Sa1k1n, and K. Sp1e1berg s "Set Cover1ng by Single-Branch Enumerat1cn
with L1n9ar Programm1ng Subproblems, " 0perat1ons Research Vol. 19 PP, 9985_ :
' 1022, 1971 (ref 1) ' ' '

As this mode] is formu1ated the set covering pr0b1em is to minimize ¢'y -
constrained . by By 3'e, st{O 211 je{l,2,.. n}, which will be referred as. (I)
A= (a ) ~is an m by n matrix with 313 OQor 1, and e is an m by 1
column of a11 1's. Here ¢ 1s the cost coeff1c1enus wh1ch are to be p051t1ve'
'numbérs h e ' . ' '

- In the app11cat1on to the traffic model- prob]em, a smal] varqat1on ahout the,‘
.fbrmu]at1on shou1d be rea11zed Assum1ng that R '

_(a) A row of A, corresponds to a payload

(b) A column of A corresponds to a poss1b1e a551cnment for a feas1b1e ;::
combinat1on ' ' '

'(c)-'The ones in the co]umn denote payToads that cou]d be handled by such an771 ff
'ass1gnment ' ‘ : ' L

| (d):_In a part1cu1ar solut1on ¥ var1ab1e y 1 corresponds to actua11y ';
- .using such a acsagnment, whereas y D means that such an ass1gnmentg
"rW111 not be used, ' :

one w111 note “that the constra1nts Ay e do not requ1re the so1ut1cn of ?;_1?-.

-(I) to be a traff1c mode], 50 We are rea11y 1nterested in soTv1ng a set

"”*cnver1ng prob1em with equality constra1ntss i.e. s Ay =&, which- is usually *-T‘l<=ff

,cal1ed a set part1t1on prob1em However with a ]1tt1e mod1f1cat10n 1n the * 3ﬁ ’ff

_formulat1on, a set part1t1un prob]em can be solved by SCA w1thout any change  ‘



Before we discuss the algorithm, certain fatts'about the development of SCA
and the application of SC& to the set partition problem will be introduced,
Compared to the problem (I), an LP problem is defined as

(I,5): min (é'x; Ax > e, x > 0)
pl? M feu: AxZ e x20)

(I) is feasible if and only if (ILP) is feas1b1e (He -re feas1bTe

“means that a feasible solution ex1sts)

Assume that 7 7 and ZLP are the opt1ma1 sotution values of (I) and

_(ILP), respect1ve]y, then ZLP is a1ways a_ Tower bound of le i,

77 > Zp |

If (I P) is so]ved and 1ntegra1 feas1b1e, then (I) is soTved and
5= z

1 LP

If (ILP) does not. g1ve an opt1ma1 1nteger so1ut1on, 7. e., some X. of

'EP are not 1ntegra1 then a rounded-up solution can a1ways be obtaTned"' :
-by'settxng all the nonintegral var1ab1es to 1 (y = 1 whenever XJ > 1).

- This rounded-up ‘solution” is (I) -feasible and an upper-bound of (I‘.':_7'

A rounded-up solution obtained from a non- 1ntegra1 extreme point X of
(ILP) can always be reduced ‘to another (I) feas1b1e soTution with a

- smaller cost. we have Ax > e and 0 < x < e Cons1der the -columns of

A associated with the pos1t1ve non1ntegraT _ “variables, and the rows

of A correspondlng to the constra1nts that these variables exp11c1t1y
- satisfy. Ident1fy the part of fractional x and the correspond1ng
matrix selected as above by a. superscr1pt *, Then we have A*x* > @ and

O D<xt <o i.e., every vow of A* has at least two 1's.’ Therefore,'

 setting some of the x* variables to 1 and maintaining A*x¥ > e gives

- @ better integer solution than the rounded-up.solution which calls for
_1seft1ng all x* variabTes td 1. Th1s reduced 1nteger so1ut1on is ca]1ed
a pur1f1ed solut1on which is reached by success1ve1y sett1ng fract1ona1 -

variables: to 1 by the “m1nTmum—cost—per-constra1nt~sat1sr1ed“'ru1e unt11 e

.’ja11 var1ab1es are e1xher 0 or 1 and a11 cunstra1nts are sat1sf1ed

2



~ The procedure to reduce the rounded»up solution 1o a pur1f1ed solution. is
ca1ied "pur1f1cat1on. ) » : S

. -

6. Let y .be any feasible so1ut1on to (I) If oy is. not an extreme point

for (ILP)’ i.e., the column of A corresponding to yk _1] and the columns

of -1 correspondlng to 51 51 froma 11near dependent set, it can be

redyced to a feasible solution y* for- (I), which is an extreme point

for (ILP) and y1elds a better value. for ZI'? Ne demonstrate th1s because
~ the pur1f1ed solution may. not be an extreme. 901nt. Let y be any (I)—

fﬂas1b1e so]ut1on that 1s not. an extreme point - for (ILP) S}nce _

Ay - Is = e, some of the s1ack variables must be vositive; otherwise,

Ay ='e, which implies y is an extreme point.for (ILP)-since_thé'COlumns

::_of A correspond1ng to yJ 1 will be linearly 1ndependent Permuting L

}‘arnws to get pos1t1ve sTack var1ab1eb 1ast, one obta1ns

e (-0

with. s {A /s > 1} .Then-a;permutatjon3of¢co]umns~to get.positiue_ §j‘s,_
- first, Teads. te , | L . - |

A
Az.l "‘I, . ei‘ 3 2.8 i

The Tast express1on means that (1) A21e -5 = e (w1th s > e) -15e . éach
Yo, of AZ] .conta1ns at. 1east two 1's and {z) A 1e e,bj \Bas each row of .

.113:‘3; TR
<o
" _

50 that

A]] conta1ns exact]y one 1 Thus permut1ng rows and co]umns further, one'
may exh1b1t '






‘are Tinearly dependent by the hypothes1s that 'y is not an extreme point.

Therefore, AZT has at least one cn1umn, say column A ~ Thzn 3 >e> A22

_ demonstrates that de1et1ng the A co'lumn and repTac1ng S byst=5§ - A <5

' y1e1ds a new feasible’ so]ut1on, W1th cost reduced by the cost of the de]eted
column. Co '

" Now suppese the above procedure is repéated Then one is either again not at
an extreme po1nt and may obtain another cost reduct1on or one 15 at an ex-

treme po1nt by v1rtue of either (a) s = 0, or {b) A o1 = Q.

~ As an examp]e,_consider ct = (],2,1,1,2,3,1)_and

(co1umn) ‘172345 6.7
101 000 1F
A=1]01100071 0f
1o 0000 1}
T 001110
0 10 1. 0.0 0
L : S o

o= (1,1,0.0, 1 o 0) is (1) feasible with ¢'F =6 and s = (0,0,0,2,1).
Hence : ' o o : - : R

(uOiumn)

12 45367
M\ *17.'0 0 '0'3'1 'o‘f
01 00111 0of,
ot g 1.0 00i00 1|
1.0 1 1101 0
01 1 0i00 0



Therefbre, set y4 0' then (S ) = ( ) \1) ( ), or s" (0,0,0,1,0);

= 7(1,130,0,_]50,’0) and C“?'-—' 5.

VF1na11y, set y5

1
?A

Al

2?

1.
11

(A

0
0

2
A21

03 then

1

column

row

-

_ _2
B 3
5

s"- 1-1=0 .or s" = (0,0,0,0. 0), and
-~ ¥ = (1,1,0,0,0) s an extreme po1nt for (ILP) and c y"

Repeatjng the procedure, we have

2 5

0! dT
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Noticing the payload nonrecundancy requirement in the traffic model, we
now consider a set partition problem (Ay = e) in its relation to the cur-
rent problem (f). The actual stlack cost is, of course, zero. However,
by assigning a "high penalty” cost M into all the slack variables, one
will tend to get a minimal (f) solution with very few positive slack
-variables. For M 1large enough, we can either find the minimal solution
or show that it is infeasible. Thus, the equality problem is equivalent
to

(I)E: miny(c'y + Me's: Ay - Is=e, ¥y = 0, 1; M large)

or a zero-slack cost problem by multiplying the rows of Ay - Is - e =0
by M and adding the sum to c'y, or, (I)E is equivalent to

(I)E miny {c'y): Ay - Is = e, yj = 0,1} - Me'e (M large)

Here ¢ = ¢' + Me'A; ij.e., to each cost element cj one adds M times
the number of 1's in the associated A columns,

As an example, consider

Then the minimal y is (0,0,1,1) and c'y = 3 with s
the problem with equality constraints, and set M = c'e

(14) nin ?y] Ty, ¥y, 2y,

subject to v, Y, > 1,
Yo *¥q > 1,
i t¥3 fyzh

y'!’ yzs y39 y4= Oor 1

i

(0,0,1), Consider
12, (11) becomes
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E. _. .
(I]) : min Sy, + 4y2 tlyg ¥ 2y4 125, + 1252 + 1253
subject to ¥4 + y4 - s.I = 1
Yo t* Y¥q - S, =1
: _ 1

Yi» Yp» Ygo ¥p = 0or 1 S1» Sp» S5 = 0 or 1

After each row of constraints is multiplied by 12 and added to the objective
function, we get

-

(1)F min 17y + 16y, + 25y, + 26y, - 36

subject to ¥ X + y4 _51 =1
Y2 Y3 ~S5 i
- =1
N Ty Yy S3
y1, y2’ y3, Yg = 0or T s], 52, 53 = 0

The minimal y is (0,1,0,1) and c'y = 36 = 6 with s=(0,0,0). The above
procedure permits the solution of the Set Partition Probiem (3PP) by means of
an algorithm (SCA) oriented toward the set covering problem. It is recom-
mended that M be set to 500 in the traffic model problem.

2.3.2 METHOD OF SOLUTION

~

To solve problem (I), namely, (I): min (c'y: Ay > e, ¥y € {0,1},
je{1,2,...,n}), an enumerative single-branch scheme is empioyed.
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The search starts at the origin (node 0), with all y. "free", i.e., tenta-
tively considered to be either 0 or 1 and possibly to be fixed at value 1 on
a forward step. At the general node v ({on "level" &), 2 components of ¥y
have been explicitly fixed at 1 on forward steps. Others may have been
"canceled" (fixed at 0) at level £, as one has ascertained that correspond-
ing forward steps would not lead to a solution.

The task at node v 1s to:

(i) Solve a basic problem (ILP) with fixed variables substituted, and to
Took for improved solutions as outlined in 2.3.1. If the objective
function of (ILP) exceeds an available bound on (I}, or (ILP) is
infeasible, one may "backirack", i.e., the search reverts to the
predecessor node v~, Tinked to v by the branch j* (variable
yj* having been fixed at 1) and the search continues at node v-
with yj* canceled to 0. (If no predecessor exists, the search
terminates and the solution is the existing upper bound.)

{ii} Cancel whatever variables may be canceled from further consideration.

(id1) Select among the remaining variables a "branch" variable Jj* to be
fixed at 1 on the nex®. forward step. The state of search is
essentially recorded in an (& + 1, n) n matrix: n(L,j) = 0 when
variable j was fixed (i.e., canceled or selected as a branch) at
some level up to and including the current Tevel & {i.e., at some
predecessor node of v, or at v). Otherwise, n{2,i) is the current
number of unsatisfied constraints that can be satisfied if the free
variabie j is fixed at 1. Initially, n{0,j} =A§b aij for all

j. : i=1

The current number of unsatisfied constraints is kept in a vector ¢, i.e.,
o{o) = m and o(L) = ¢{r-1) -~ n{2 - T, j*). For any £,j, the condition
#(2) > n(%,§) > 0 is always held.



Consider the search at level & prior to a forward step. The following tests
may reduce the number of branch alternatives.

a.

n .
The subproblem at level & is feasibie only if Z;]n(ﬂ,j) > o(e). 1If
this is not met, a backward step may be teken. =

Let z' be the current objective function (}:.cj over all j with yj
fixed at Nand Z* the objective function of the best integer solution.
Ltet F be the set of free variables. Then the double ceiling test, i.e.,
v . . .

7 + C. + min weF- {t} w2 > Z* permits the cancelation of t if

n{f,t) < ¢(2).

If at a current subproblem, a variable column dominates another variable
and the dominated column has a higher cost than the dominating one, then
the dominated variable never need be considered as a branch candidate,
that is, if for any Tevel 2(2 > 1), n(2 -1, j*) > n{2 -1, j]) >0 and
n{2,j*) = n(z,j]) =0 with Cj*-i Cj]’ then set n(& - 1, jl) =0 (i.e.,
cancel j1 at Tevel & - 1). Here yj* is the branch from node v~ to
v. The ahove is commonly referred to as the Tocal column dominance test.

Let (I)l be the Tevel & integer (set covering) subprobiem. Define
(ILP)Q to be the corresponding continuous LP problem. Then as stated

in section 2.3.1%1:
(1) (ILP)" is feasible if and only if (I)* is feasibie.

(ii) If (ILP) is feasible, then the value of the minimal functional
serves as a lower bound for the hest (I) so]ut1on Furthermore,
if (ILP) js integer feasible it solves (I)

2.3.3 THE ALGORITHM y

The algorithm is basically a (0,1) search embodying the elaborations discuss-
ed previously. At node v, level &, we attempt to solve the linear program

2
(ILP) .

If it is infeasible or its objective function exceeds the current

ceiling (z , initially set to c'e) the search reverts to v~ If the minimal
solution is (0,1) feasible, it is recorded and a backward step is taken.
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Otherwise, we record the column (denoted by j*) associated with the smallest
value of the optimal variables, and then extract the sub-subproblem that
contains the columns of A associated with the positive fractional variables
and the rows corresponding to the constraints they satisfy, and obtain a
sofution to this problem. This solution should be extreme point whicb is
obtained through the procedure introduced in 2.3.1. If the overall (I)-
feasible solution exceeds the ceiling z*, a béckward'step is taken.

If node v was just reached on a forward step, we construct the preferred
set P{i*). Preferred row 1i* is defined to be the first i such that
Eng Bk izjeF a;; forall i of which j¥th entry is 1. P(i%) fis
the columns containing 1 on the preferred row i*. We then cancel locally
dominated columns. The purpose of constructing the preferred set is if a
forward step fails, we cancel j* and select another branch from the pre-
ferred set.

If v was reached from v-, we branch j* to reach node v+, However, if
v was reached on a backward step {that implies when we tried to reach v7
and found that we cannot generate an improved solution}, we select a branch
by the minimum-cost-per-constraint-satisfied rule from P(i*} to define v*.
During the branch selection procedure, the double ceiling test is applied so
we can hofefully exciude some branch candidate from further consideration.
If at any time every variable in the P{i*) is canceled, we take a backward
step.

When a subprogram contains no constraints, we have reached an (;)-feasible
solution. In all cases, a (0,1) solution is not recorded until it is reduced
to an extreme point of (ILP). The search terminates when the level counter 2
becomes less than 0.

Linear programming is the crucial feature of this algorithm. Initially, the

sub-subprogram is always extracted if (ILP) is not integral feasible. A
solution of the sub-subproblem is reached by successively setting variables
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to 1 by the "minimum-cost-per-constraint-satisfied” rule. Once this solution
is reached, we branch forward by setting the minimal fractional variable of
the current LP to 1. The hope is that setting the minimum fractional vari-
ble to 1 will tend to give the largest alteration in the optimal LP solution
which is the Tower bound of (f). When a node is reached for the first time
on a backward step, I.P 1is performed with the minimum fractional value at 0.
This means that last branch 1ink j* has been canceled.

The other tests, such as Tocal dominance, doubie ceiling, and so on, were
incorporated more because of their simplicity and ease of applicability than
their actual usefulness in curtailing the length of the search. In dealing
with the usual large number of variables, search features designed to look at
individual variables appear relatively less than attractive as compared with
the linear programming part that tends to soive entire subproblems. This is
reflected by the fact that for each computer run, 90 percent of the computing
time is consumed in LP. The saving of search time because of successful

LP solution appears more important than the tests mentioned above; especial-
1y after we experienced most of the time that the (?)—feasib1e solution was
directly generated by LP.

A general functional flowchart is given in section 5.1.

2.3.4 OUTLINE OF THE ALGORITHM

I, Initialization .

1.1 Set n{1,j) = }:‘}‘ a5 for j =1, ....n3 F={1,2,....n}1 s = e

1.2 (1) = m,e(1) = -1, o{1) =0

1.3 £=0,vy=0,z=20, z¥=c'e, a =1

il. Point Algorithm

2.1 Updating counters & = &+ 1, y=vy + 1

2.2 Test for solution and lower bounds. If &{&) = 0, go to 4.1
(solution). If E(R) > z* -1, go to 3 {backward step).

2.3 Update ¢, F. Set o2 + 1) = ¢(2), F = {j]|n{2,j}}>0}. (Variables
with n{%,j) entries Tess than 0 are rembers of the preferred set
See 2.12}).
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2.4
2.5
(1)

(1)
(ii1)

Feasibility test. If 3  [n(2.3)[<6(2), go to 3.
i=]

Linear programming. Solve the linear program associated with the
current subproblem.

If infeasible or ceiling exceeded, go to 3.

If {(0,1) feasible, record overall (I) solution, go to 4.1.
Otherwise, set &{%) edual to the minimal LP objective function
added to the current value of 2z; and sef j* corresponding to the
smaltest fractional value of the LP variables.
Obtain the roundup solution if currently feasible, and go Lo 2.6;
otherwise, go to 2.7 when o = 0 and go to 2.10 if a =1,
Sub-subproblem. Extfact and obtain a solution to the sub-subproblem.
Record the overall (I} solution. Go to 4.2.
Feasibility test. If any J,o{2)-|n(2,j)] = 0, set j* = j (solution
at next level), and go to 2.13. _
Double-ceiling test. If any Jj such that n{2,j) > 0,
z+ ¢, * minjc. > z%¥ - 1, set n(%,j) = 0 (i.e., cancel Y at the
ievel &); if n(2,j) =0 for all j, go to 3.
Select branch j(a = 0}. If n(R,j) >0 for all j (preferred set
nuil}, go to 3. Set j* = first J to satisfy

cj*/ln(z,j*)l] < {}j/ln(z,j)(] for all j such that n(2,3) < 0
(i.e., for all j in the preferred set).
Update ¢, n. Set ¢(2 +1) = ¢(2 + 1) - [n{L,i*}],
n{2 + 1,3) = [n{2,j)| for j=1,..,n. If ¢(2+1) =20, go to 2.13.
For each i such that 5, < 0 (i.e., for all rows of the subproblem)
and 8% = 1, set n(& + 1,j) to n{2 +1,§) - 1 when a4 1
and jeF.
Local dominance test. If, for any jeF, n{¢ + 1,j) =0 and
C5n < €y set n{%,j) =0. If a=0, g0 to 2.13.

"Construct preferred set. Set 1i* (the preferred row) to be the first

i such that E:jeF 345 grfngF 8; 3 for alt i with 5. < 0. Set
n{%,3) to -n(g,i) for the j such that 8ay * 1.
Update the slack column and other parameters. Set ¥ to 5s + aij*

for i =T,...,m, 2= 2% Coyp 0 = T, £( + 1) = E(2). Go to 2.1.
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I11. Backward Step

3. Set fL=&-2. If 2<0, goto5 (termination). j* = o(2 + 2).
Z =2~ Cypr S5 7 Sy = Ausy for i=1,....m. E(2+2)=¢g(e=*1).
o =0. Go to 2.1.

Iv. Feasible Solution

4.1 LP (0,1) feasible, or search reaches solution. Reduce overall
sotution to extreme point. Record current sotution y and
¢'y = 2. Set zF =12z, Go to 3.

4.2 Search produced via sub-subprobliem. Reduce overall solution to an
extreme point. Record the overall y and c¢'y = 2. Set z* =z,
If g(&) >2z%¥-r, goto 3. If a=1 go to 2.10, otherwise
(o = 0) go to 2.7.

V. Termination
Optimal solution ascertained or no feasible solution exists.

2.3.5 AN EXAMPLE

The following exampie will demonstrate how the algorithm is applied to the
traffic model problem. The input obtained from MPLS is an occurrence table
which is as shown in table I.

The constraint matrix is displayed as in table II. Assume we intend to find
a traffic model with the minimum number of missions and the cost coefficients
are in the column matrix of ail 1's. Since the traffic model is a set
partition problem, we transform the cost function as indicated in section
2.3.1T with M = 100. The new cost column is as shown in table II. The
search follows the outline of the Set Covering Algorithm. As an example, the
enumeration of the problem jn table IT {s demonstrated in table III. In each
level on the forward step, the LP subproblem is solved and the Tower bound
is updated. Cei'ing z* 1is recorded after the rounded-up solution of LP
has beer reduced to an extreme point. The search always branches forward
until it reaches node 6. At node 6, the Tower bound is equal to the ceiling,
so a backward step is taken. In each backward step, it is found that

z* - () < 1, so z*¥ 1is the solution.
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TABLE I.- OCCURRENCE TABLE

Feasible combinations
i,16,17,18,19,20,21,64,65,66,67,68,73,74
2,16,23,24,25,26,27,28,29,64,65,66,69,70,71,73,74
3,17,23,30,31,32,33,34,35,64,67,68,69,70,73,74
4,36
5,37,38,39,40,41
6,37,42,43,44
7,38,45,46,47
8,48,49,50,51
9,48,52,53,54
10,22,24,30,55,71
11,18,25,31,39.42,45,49,52,56,57,58,72
12,19,26,32,59,60,65,67,69,73
13,20,27,33,36,55,56,61,62,66,68,70,71,74
14,21,28,34,40,43,46,50,53,57,59,61,63,72
15,22,29,35,41,44,47,51,54,58,60,62,63,72
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TABLE II.- AN EXAMPLE CONSTRAINT MATRIX

[A blank entry in the constraint matrix means zerg}

’
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TABLE 11.- AN EXAMPLE CONSTRAINT MATRIX (Ct.l.ntinued}

[A blank entry in thé constraint matrix means zero]

KL
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~ TABLE II.- AN EXAMPLE CONSTRAINT MATRIX (Continued)
[A blank entry in the constraint matrix means zerg]

v

57 58 59 60 61 62 63 64 65 66 67 68 69 70

(20 20 201 201 201 201 201 2001 201 201 201 200 201 300 301 3017 301 301 301 301

72 713 74
301 301 401 401)

1 1 1 1 1 1 1
1 i 1 1 1 1 1 1
1 i 1 i 1 1 1
3
1 1 1
1
1 1 1
1 1 i ] ] 1
1 1 1 1 1 1
i 1 1 1 1 1
1 1- 1 1 11 1




TABLE III.-

ENUMERATION HISTORY OF EXAMPLE

Enumeration diagram

Algorithm parameters

, p
' 3 A Z I* | o(’ P p 3 j*
{Inttialization) o (&2 |z, (2) 1 g 3 J
1,2,0.0,78
set T = 0.998 o {1 1-1 - 11019] - - - v
Vo3 = 1
111 6.5 {910 j207 | - - - 1,2,...,74 |22
6.5 |409 {107 | 22 22 10,15 Fp-P 38
6.5 {308 {107 | 38 22,38 5,7,10,15,41,47 Fi - p 48
@_; 6.5 |38 |107 | 48 | 22,3888 |5,7,8,9,00.05.41.47, |k —p a2
X L
(%]
°‘ 6.75 |710 | 107 { 42 | 22,38,48 |5,6.7,8,9,10,11,15,37/F . p. |21
42 329,41,44,45,47,48,49 | 1
51,52,54,58
7 7 71 2 22,38,48,!1,5,6,7,8,9,10,11,14,
, 42,21 15,18,37,39,40,41 43, F. - P -
44,45,46,47,49,50,51,) 1
52,53,54,57,58,63,72
5. 75 - 7 - - - - -
6.5 -1 71 - - - - -
6.5 - 71 - - . - -
5.5 - 71 - . - . -
65 _| - |71 - - - . -
3 H




2.3.6 POSSIBLE IMPROVEMENTS

The following modificatinns may result in the improvement of program
efficiency.
1.

c, =1« Cy = 5 and assuming j*

2

Based on the fact that the rounded-up solution is always feasible, in
outline 2.5, after obtaining the rounded-up solution, control should
always go to 2.6.

In the outline 2.11, the Tocal dominance test may lead to an infeasible
solution unless we stress column j is dominated by column j*. For
example, consider the problem

min Oxy + Xo ¥+ 2x3

X =
Xp ot X%, =1
X4 + Xy + Xq =1

1]

Xo3 canceling X1 will Tead to an

infeasible solution which will not satisfy the first row of constraints.

3.

In solving a set partition problem, any jeF  such that Aj . A;* F0
should be canceled on a forward step. By doing that, not onily can we
exclude more branch candidatés, but also we can save the computing time
in solving the LP subprobliem. For example, in tables II and III, in
the first level according to the algorithm we only canceled Y10 and
Y15 However, noticing the equality constraints, Yogr Y302 yss, Y12
Yag* Y350 Ya17 Yag» Va7, Y5a® Ysgr Ygo* Vg2: Vg3 AN Yyp Should be
canceled also, since any of those variables not equal to zero will result
in an infeasible solution by branching on Yoo

2-27



3. PROGRAM USAGE

3.1 INPUT DESCRIPTION

The two types of input data for the SCA program are the source input from a
file on Togical unit 2 and the tutorial input data specified by the user.

A1l source input data are nonnegative integars. Logical unit 2 is built as a
temporary file in the main program to store the feasible payload combinations
from the MPLS. Because of the core storage limitations, the SCA is designed
to handle a traffic model problem with a maximum of 500 combinations and 100
payloads. If the number of feasible combinations exceeds 500, the MPLS will
reduce it to within that 1imit. Subroutine TABLE reads in the information on
each feasible combination from logical unit 2. Within the information combi-
nation ID, different payloads in that combination, and combinations cost co-
efficients are stored. Al1 the inputs the SCA needs is a vector ¢, the vec-
tor of cost coefficients, and a constraint matrix A which is displayed as
an occurrence table. The cost vector is directly stored in the column array
KCJ. The matrix A 1is stored as two vectors, i.e., KARR and NOPERC. For
example, suppose A is

column T 2 3 4
row

25 B o IR
- O
o -

Then A 1is posed as a vector KARR (J)J=1,6 = {1,3:231;2,3}, which contains the
indices of rows of all nonzero entries columnwise from left to right. The
position vector, NOPERC (I)I=1,5 = (1,3.4,5,7) containing n + 1 elements,
keeps track of the column interval in KARR. This implies that column j of

A starts in KARR (NOPERC(j)) and ends in KARR (NOPERC(j+1) - 1). For
example, we want to locate the 1's in column 4.

Set j = 4, then KARR(NOPERC(j)) = KARR(5) =2,
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KARR(NOPERC(j+1) - 1) = KARR{7-1) = KARR(6) = 3; so column 4 has two 1's,
on row 2 and 3, respectively.

The tutorial input data required for the SCA program can be either user-
specified data from a demand terminal or from card decks. These data are
read via logical unit 5 using a free field format. Sample input/output is
given in section 5.4 for the reader's reference.

3.2 PROGRAM RUN PREPARATION

The SCA has been impiemented on the UNIVAC 1710 EXEC 8 system as a subprogram
of SAMPLE. FORTRAN V standard Togical input and output devices are used for
tutorial input (logical 5) and printed output (]ogical 6). For the source
input of the SCA, logical 2 is used.

In order to eliminate the reiteration of usage instructions which have already
been elaborated in the SAMPLE User's Guide (ref. 2), a discussion of the
natures of those different interactive options will be introduced as follows
instead.

3.2.1 INTERACTIVE OPTIONS

1: USE PREVIOUSLY DEFINED FEASIBLE COMBINATIONS
USE INTERACTIVE FEATURE IN TRAFFIC MODEL
NONE OF THE ABOVE

Option T will enable the user to use a data file input which contains previ-
ously defined feasible combinations for SCA execution. In this way, the
execution time of the MPLS can be saved.

Option 2 mainly supports the communication between the SCA and the 0SARS. In
case the traffic model cannot be scheduled by the OSARS, or is not desired
for some other reason, this option gives the user the means of changing the
traffic model.

Option 3 implies that the user does not desire to select option 1 or 2.



3.2.2 COST CRITERIA OPTIONS

This option gives user the choice of one of the performance criteria against
which traffic model will be generated. The meanings of different criteria
have been discussed in section 2.2.2.

3.2.3 CRITERIA FOR FLIGHT/COMBINATION SELECTION OPTION

CHOOSE CRITERIA FOR FLIGHT/COMBINATION:SELECTION:

MAXIMUM NUMBER OF PAYLOADS
MAXIMUM PRIORITY

MINIMUM COST

MINIMUM COST PER PAYLOAD
NONE OF THE ABOVE

These criteria help the user to make the decision about which mission he 1ikes
to enter in the traffic model. If the user is interested in adding certain
feasible combinations which contain the largest number o7 payloads, he can
select option 1. Then the program will print out five feasible combinations
with maximum number of payloads. Presently, the priority is determined by

the number of payloads, so option 1 and option 2 give the same output. By
selecting option 3, the user will get a 1ist of five feasible combinations

© with minimum cost coefficient. Option 4 will give a 1ist of five feasible
combinations cost coefficient per payload. Control goes to the Manual Flight/
Combination Option when 5 is chosen,

01 4 W N~

-

3.2.4 MANUAL FLIGHT/COMBINATION OPTIONS

The available options are:
N: ENTER COMBINATION "N"
-1: NEW SELECTION CRITERIA ARE DESIRED
-2: CONTINUE ON TO TERMINATION
-3: VIEW ALL COMBINATIONS SPECIFIED SO FAR
-4: VIEW INFORMATION ON COMBINATIONS SPECIFIED SO FAR
-5: REMOVE LAST SPECIFIED COMBINATION
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This part follows right after “Criteria for Flight/Combination Selection
Option" 1in which the user has viewed the relevant information on the combi-
nation he possibly adds in the traffic modei., If the user would like to

add a specific mission in the traffic model, he responds by entering the
feasible combination number "N." The program will take that feasible combi-
nation into the SCA's partial solution. If the user still wants to see more
relevant criterion selection information, he just enters -1. The control
goes back to Criteria for Flight/Combination Selection Option. Option -2
makes the control continue to find a traffic model with the specified
partial solution. A traffic model is built around the partial solution;
local optimality replaces giobal optimality. Option -3 gives the user a
chance to lgok through all the missions already specified in the partial solu-
tion so he will not enter any of those missions again. By selecting option
-4, the user will see a list of missions specified in the partial solution
and their relevant information on Shuttle sequence, intlination, payload
margin, and so on. After the user Tooks through the detailed information on
those specified combinations and he is not satisfied with the mission he
Jjust added on the partial solution, he can enter option -5 to remove it.

3.2.5 TRAFFIC MODEL INFORMATION OPTION

The tutorial of this option is
DO YOU WISH TO SEE INFORMATION ON THESE MISSIONS?
0: NONE
-T1: PRINT ALL
-2: PRINT ALL AND SAVE ON SCRATCH FILE
~3: SAVE ON SCRATCH FILE ONLY
N: ENTER MISSION "N"

This option follows the solution of the traffic model. If the user does not
need to see any detail information on the traffic model, he just enters O.
He can enter -1 to see them all or enter W, the combination number, to get
the information on a particular one. Options -2 and -3 provide the user an
opportunity to store the traffic model on a scratch file (Togic unit 1) for
further analysis.
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3.2.6 MISSION OMIT OPTION
The display statement is
WHICH MISSIONS DO YOU WANT OMITTED?

After the user viewed some information on the traffic model, he may need to
delete certain combinations by use of this option.

3.2.7 TERMINATE QPTION
The display statement is
SELECT AN OPTION: (3 TO TERMINATE)

Input 3 to terminate execution.

3.3 OUTPUT DESCRIPTION

3.3.1 NORMAL OUTPUT

Normal output for the SCA program can be classified into five basic types:

1. Source input data - The initial output of the SCA is the source jnput
data which is displayed in the occurrence table. The title of that table
is printed out as "n OCCURRENCE TABLE," where n 1is the year with which
the particular case is executed. This is immediately followed by
"PAYLOAD" and "COMBINATIONS." Under the column of "PAYLOAD" are printed
out the payload identifications. Under the column of "COMBINATLONS" are
combination numbers which carry that payload.

2. Tutorial instructions data - These data are printed out in the alpha-
numeric format and provide the user a guide of various interactive se-
rections during the execution of the SCA.

[£3]

Criteria for flight/combination selection data - The output is written
out in two columns; the first column contains the payload identification,
and the second column displays the corvresponding criterion.

4. Combination information data - The output of these data is in alpha-
numerical format and displays the relevant information about the mission
in an understandable form. This output is requested by the user in the
Manual Flight/Combination Option. '
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5. Traffic model data - These data give the total number of combinations in
the traffic model, the mission identifications, and the total cost of

this traffic model.

A1l of the five output types can be identified in a sample input/output in

section 5.4¢

3.3.2 ABNORMAL OUTPUT

Diagnostic messages from subroutines of the SCA are listed below.

Diagnostic Message

THIS MISSION IS UNACCEPTABLE
BECAUSE PAYLOAD XX IS DUPLI-
CATED

ERROR, ALL ROWS ARE NOT
COVERED, RETURN TO PREVIOUS
SOLUTION, PLS NOT COVERED
ARE XX, YY, 7Z |

REDIMENSION KARR (XX} TO
KARR (YY)

Subroutine

SET

SET

SET

3-6

Desdription/Action

In the flight/combi-
nation option, the user
entered more than one
combination which covers
the same payload. XX is
the payload 1D.

The user wanted to omit
some combinations that
will cause some payvlioads
not to be covered. The
program will return to a
previous partial solu-
tion. If the user wants
to omit some combinations
this time, he should
refer to the occurrence
table and be sure all
payloads can be covered,
XX, YY, ZZ are the pay-
Toads which failed to be
covered.

The total number of unity
entries in the con-
traint matrix YY which
exceeds the dimensioned
space XX.



Diagnostic Message

AVATLABLE STORAGE EXCEEDED
AFTER ITERATIVE STEP NO. I

TABLE ERROR***INPUT TO
SCA IS CLOBBERED**

Subroutine

SET

TABLE

Description/Action

Variable KX8 (I,J)
should be redimensioned
by increasing the value
of 1. The value of
KTEST should also be
increased by the same
amount.

This message fimplies
that more than one pay-
load in a feasible
combination have the
same ID. It could be
caused by the numbering
or naming method in the
MPLS.



4. EXECUTION CHARACTERISTICS

4.7 RESTRICTIONS

The SCA program has these limitations:

a. The largest traffic model problem the SCA can accept is 100 payloads with
500 combinations. ‘

h. The Tevel the SCA can reach is limited to a maximum of 6.

¢. The program is valid only if there exists a feasible solution to the
traffic model.

d. The maximum number of iterations allowed in LP is 243.

4.2 RUNNING TIME

The run time for the SCA program may varv depending on the problem executed.
A rough estimate of the time needed for a run can be obtained from the plot
of the number of missions as a function of running time in figure 2. The
data from which this plot is constructed are from 12 cases with unity cost
coefficients.

4.3 ACCURACY/VALIDITY

The SCA program is written in single precision, and has been checked out
using small problems, in a range from 11 feasible combinations and 8 pay-
loads to 229 combinations and 97 payloads, with a maximum of 3 payloads
per combination. It is felt that the program is operating correctly and
is providing reliable solutions to the problems.

Problems used in checkout included three data sets and 36 probiems. Fach
of these probiems has been tested on four different sets of cost coeffi-
cients with a maximum of three payloads per combination. ATl solutions
have been checked and were found to satisfy the constraints and to be
optimal. Some other problems with more than 400 combinations which have a
maximum of four payloads per combination were also run and resulted in an
indication that no solutions were possible. The reason for this has not
been thoroughly analyzed.
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5, REFERENCE INFORMATION

5.1 FUNCTIONAL FLOWCHART

Figure 2 illustrates the flow of the controlling subprogram logic. Refer
to section 2.1 for the definitions of those symbols used in this functional
flowchart .
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‘ START }

¥
Set n(]vj) zdj,j='|, «any N
Set Fj 2§ d=1, ...,

- Set 5 = -1, i=1, ..., m

’ (1) = m, (1) = -1, o(1) =
£=0,vy=0,z=0, 2¢=r¢c'e

Y

update counters

Set ¢(2 + 1) = ¢{r)
set F = {j : /n(2,§)/ > 0}

Is

n

2; /Mm(r.3)/
Tap(e)

?

@RIGNAL PAGE‘E,TYIS{ Salve linear program associated
DE EOOR G.QUAL with current su_bpmhlem

Figure 2.- SCA functional flowchart.
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Record over

all integer
solution

problem feasible
or ceiling exceeded

LP solution
{0,1) feasible

?

Set £{2) equal to z + (minimal LP
object function). Set next branch j*
Fcorresponding to the smallest frac-
tional value of LP variables. Obtain
a round up solution, Extract the non
integer variables and associated
constraints to form a sub-subproblem.

Y

In subroutine PURIFY, obtain a solution of
the sub-subproblem. Record the overall
integer solution. Reduce overall solution
to an extreme point. Record the solution
y and c'y = z. Set z* = z,

Yes

Figure 2.~ Continued,
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a=1

Is

o{2) =/n{2,3)/
for any J

: Set j* =]

For any
Je is n{2,j) > 0

and 2 + ¢, * min.c, >
3 JJ-

Yes

Set n{%,j) = 0,
i.e., cancel yj
at level 2

for ail j, i.e.
preferred set

Set j* to be the first j to satisfy

Ci* P Cs for all
ISR S e

j such that n{&,j) <0, i.e., for all
J in the preferred set

R

1

d{941) - /n(e,3*)/
/{2, d)/ for j=1,...,n

Set &{e+1)
n(2 + 1,5)

Figure 2.- Continued.
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Yes
ettt —
For each i such that'-si <0,
(i.e., for all rows of the
subproblem) and B = 1, set
n(2 + 1, i) to n(e + 1,§) -1
when eij =land jeF
If, forany je F, n{L + 1,j) = 0
and Cix < €4 set n(2,j) = 0
a=0
fouc]m -
Construct preferred set, set i* (the preferred
raw) to be the first i such that
5 e F Bqug SE o op 3y for all i with
s; < 0. Set n{2,j} to -n{2,j) for the j such
that €xy © 1.
e

ol

Update the slack column and other parameters.
Set s, to S, + LI for i =%, ..., m,
z=z+c.,a=1, g2+ 1) = g(n).

ol + 1) = j*

Figure 2.~ Continued,
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LP (0,7) feasible, record
current solution y and
c'ly=1z. Setzt=2

Sore

OEmGﬂMgﬂ

¥

Backward Step.

Set £ =¢ -2

Set j* = ol +2),z=2~c,,

sy = §
gls + 2)

Set a =0

5 - aij*’ =1, vissm
= g(2+ 1)

PAGR 15

"' POOR quaz gy,

Figure 2 .- Concluded.
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5.2 SYMBOL DEFINITIONS

Table IV defines a list of parameters specified in DATA statements in the
SCA subprogram. Table V gives the description of all variables used in
labeled COMMON.



TABLE IV - PARAMETERS IN DATA STATEMENTS

Parameter e e

name Dimension Type Value Description

KSTR1 1 I 1(0) When KSTR1 = 1, the
algorithm aiways extracts
and gets a (0,1) solution
from the sub-subproblem.
Otherwise, the sub-subproblem
is explored only when the
LP roundup solution is
currently feasible.

KSTR2 [ I 1 (0) When KSTR2 = 1, the
algorithm wiil attempt to
reduce (0,1) feasible
solutions to (0,1) feasible
extreme points of the
associated continuous
problem. Otherwise, this
attempt will not be made.

KSTR3 , 1 1 1{0) When KSTR3 = 1, the search
will select branches by
the minimum-cost-per-
constraint-satisfied rule;
otherwise it uses the
maximum-number-of-constraints-
satisfied rule.

KSTR4 1 I 1(0) When KSTR4 = 1, the search
will ignore other criteria
and branch on the minimum
fractional LP value when
available. Otherwise, the
branch selection rule is
determined by KSTR3.
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TABLE IV. - PARAMETERS IN DATA STATEMENTS - Concluded

Parameter .
name Dimension Type
KSTRS 1 I
KSTR6 1 I

5-9

Description

When KSTR5 = 1, the
algorithm supposes that
the user will supply a
slack cost, either by
setting it directly to MM
or by supplying MAXCST, in
which case MM is set to 5*
MAXCST. If KSTRS = 0, the
atgorithm automatically
takes the slack cost as 0.

When KSTRE6 = 1, LP is
performed after forward

and bhackward steps. Other-
wise LP is performed only
after forward steps.



TABLE V. - VARIABLES IN LABELED COMMON

& COMMON Block Name: €9
Description: C9 retains the information about the interactive selection of

the cost coefficient of the objective function and the output of the occur-
rence table.

Location* Name Dimension Type Descriptinn
2 MM 1 I Total number of feasible combi-
nations generated by MPLS
51 COSTOP 1 I Indicator of the choice of cost
coefficients on the objective
function
54 - NOTAB 1 I Indicator of Tisting or suppressing

the occurrence table output

¢ COMMON Block Name: (€13
Destription: C13 retains information about the structure of the constraint
matrix which defines the traffic model probiem and a flag to trigger the 0SARS.

Location Name Dimension  Type Description
1 - 501 NOPERC 501 I . The position vector indicating the

number of ones in each column of
the constraint matrix

502 - 2501 KARR 2000 I The position vector indicating the
rows which correspond to one entries
in the constraint matrix

2502 KM 1 I The number of rows of the constraint
matrix

*The unspecified cells are used for the 0SARS.
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TABLE V. - VARIABLES IN LABELED COMMON - Continued

e COMMON Block Name: C13 - Continued

Location Name Dimension  Type Description

2503 4] 1 i The number of columns of the
: constraint matrix

2504 NOSARS 1 I A flag indicating the user's
choice of the use of the 0SARS

# COMMON Block Name: Ci6
Description: C16 contains information about the location of testing range of
each combination.

Location Name Dimension Type Description
T - 500 .OCEQW 500 A A vector to store alphanumericai

identification of testing site
where a particular mission is to be
launched

e COMMON Block Name: Ci8
Description: (18 contains information about the coefficients and the priorities
of those variables in the objective function.

Location Name Dimension Type Description
1 - 500 KCJ 500 I The cost coefficients of the ob-

jactive function is to be mini-
mized in the SCA. They may be
defined as feasible combination's
OMS weight, one-load factor, or
one-payioad length

501 - 1000  KPRIOR 500 | The weight factor to determine
each feasible combination's pri-
S ority.



TABLE V.- VARIABLE IN LABELED COMMON - Continued

® COMMON Block Name: (27
Description: C27 retains various information about the branch-and-bound
algorithm used in the SCA.

Location Name Dimension  Type Description
1 - 50 ZLB 50 F The -lower bound of the

branch~and-bound method

51 - 3550 KB 7 x 500 [ The number of unsatisfied
constraints of each variable
at different levels

3551

1
[ 78]
(2]

50 KYS 100 I The value of the slack variabie

4150 KCOM 500 I A vector to store the column
numbeyr of those variables in
the preferred set

3651

4151 4651 KPREF 501 I A vector to store the row
number of the infeasible

constraints

5151 LBSC 500 I An indicator of 2 decision
variable's value in the LP
solution. LBSC({K) negative
means variable K is one,

4652

5152 - 5651 LPBTA 500 [ A vector to store the pivot

row of each LP iteration

1

6252 LIDRY 601 1 Scaled cost coefficients of
the objective function

5652



TABLE V.- VARIABLE IN LABELED COMMON - Continued
o COMMON Block Name: (28
Description: (€28 %transmits information between thie SET routine and the

SIMPLX routine.

Location Name Dimension Type Description

1 KPV 1 I Indicator of the number of
elements in the preferred set

2 KHP 1 I Level indicator of the SCA

3 KTEST 1 I The highest Tevel allowed in the
SCA '

4 MM 1 1 Cost coefficients of the slack

variable of the objective function

5 NLP 1 I An indicator of the number of
times subroutine SIMPLX has been
called

6 KSOL 1 I Indicator of the number of
improved solutions reached in the
SCA '

7 KUNF 1 I A variable to indicate the feasi-
nility of the LP solution

8 KFEAS 1 I An indicator of the binary feasi-
hitity of LP solution

9 KZS 1 I Current value of the objective
function

10 KZSTR 1 I Current upper bound of the

objective function

11 J2 ] I Branching variable in the SCA



& COMMON Block Mame:

TABLE V.- VARIABLE IN LABELED COMMON - Continued

€28 ~ Continued

Location Name Dimension  Type
12 K1 1 I
13 NEP 1 I
14 NEPSC 1 I
15 NOGO 1 I
16 LD7 1 I
17 KSUM 1 I

5-14

The number of variables in the
preferred set

The number of times an extreme
point reduction option is used

The number of times an exireme
point reduction is successful

A flag indicating infeasibility
in subroutine PURIFY

A flag to print out final infor-
mation for subroutine PURIFY

Current value of the objective
function in a sub-subproblem



TABLE V.- VARIABLE IN LABELED COMMON - Concluded

¢ COMMON Block Name; €29

Description: C29 retains various informz%ion about the partial solution of
the SCA.

Location Name Dimension Type Descrigtion
1 - 500 KSEQU 500 I A vector to store the partial
solution
501 KSC ] I Level ipdicator
502 KANDO 1 I A flag indicating that the OSARS

can schedule the traffic model when
it equals one

503 KNSKD1 1 I A flag to choose the solution
output format for the SCA or
the 0SARS '

504 - 553 KPSKED 50 I A vector to store the missions

scheduled by the 0SARS
554 KPRMAX 1 I Best attainable mission priority

555 KNOSKD 1 1 The number of missions scheduled
by the 0SARS '



5.3 SUBROUTINE DOCUMENTATION

Individual subroutine documentation appears in alphabetical order on the
following pages.



SUBROUTINE BISRCH

IDENTIFICATION
Name/Title - BISRCH (Binary Column Search)
Author/Date - Han Chang, July 1975

UNIVAC 1110
FORTRAN V

Machine Identification
Source Language

t

PURPOSE

Subroutine BISRCH searches and positions particular row entries for the
given column of a constraint matrix. It was written to update the n
matrix, generate a preferred set, test for an extreme point, etc.

USAGE

s CALLING SEQUENCE
CALL BISRCH ($,K,J)

Arguments:
Parameter
Name In/Qut Dimension Type Description
$ Out 1 I Nonstandard return signal
when a particular entry
has been found.
K In 1 I The column index on which
a particular row entry is
to be searched
J In 1 I Row index on which an entry
is to be positioned at
a given column X
BISRCH-1
5/75
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6 Data In/Qut
Labeled COMMON (refer to the labeled COMMON description section):

Block Name Input Output
" C13 1 - 507
502 - 2501
METHOD
@ Model

Subroutine BISRCH searches over a column interval of the constraint matrix
to locate a particular entry. The output consists of a nonstandard return
whenever this entry has been found.

BISRCH-2
5/75



SUBROUTINE FNDFLT

IDENTIFICATION

Name/Title - FNDFLT (Find Flight)
Author/Date . - Han Chang, July 1975
Machine Identification - UNIVAC 1110

Source Language -~ FGRTRAN V

PURPOSE

Subroutine FNDFLT provides the necessary information about a combination
by the interactive request from the user. It also saves that information
from the traffic model in a scratch file of the user's choice.

USAGE

¢ CALLING SEQUENCE
CALL FNDFLT (KZS,LIDRW,IPONT)

Arguments:
Parameter
__Name In/Out Dimension Type Description
KZS in 1 I Total number of missions to
be output
LIDRYW In 1 i A vector to store the mission
numbers
IPONT In 1 I A flag to trigger the output
of the statistics of the
current flight schedule
8/75 FNDFLT-1
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e DATA In/Out
Labeled COMMON (refer to the labeled COMMON description section}:

Block Name Input Output
c13 2503

METHOD

Subroutine FNDFLT searches over a data file (logic unit 2) to locate parti-
cular missions specified by the user. Detailed information on those combi-
nations are output in an understandable format by calling subroutine DISPLY.
Information about the combinations in the traffic model is saved on the
scratch file (logic unit 1) at the user's request.

8/75 FNDFLT-2
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SUBROUTINE PURIFY

IDENTIFICATION
Name/Title - PURIFY (Purification of LP Solution)
Author/Date - Han Chang, July 1975

Machine Identification UNIVAC 1110

Source Language FORTRAN V

PURPOSE

Subroutine PURIFY purifies noninteger linear programming solution into an
improved rounded-up integer solution.

USAGE

o CALLING SEQUENCE
CALL PURIFY

¢ Data In/Out
Labeled COMMON (refer to the labeled COMMON description section):

Biock Name Input Output

C13 T - 501
502 - 2501
2602
c18 1 - 500

C26 .
27 3557 ~ 3650
4151 - 4652
453 - 5154
5165 ~ BBA”4
5655 - 6255
5/75 PURIFY-1
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Block Name Input Qutput

28 1
2
6
9
10
13
15 15
17 17
€29 1 - 500 1 - 500
501 501
METHOD
@ Model

Whenever the Tinear programming solution is not integrally feasible, a sub-
problem is created by eliminating the columns associated with variables
having an integer value and those constraints satisfied by these variables.
In the subproblem, PURIFY successively sets to one the variable corresponding
to the minimum~cost-per-constraints-satisfied ratio until all constraints
have been satisfied.

REFERENCE

€. E. Lemke, H. M. Salkin, and K. Spielberg, “Set Covering by Single
Branch Enumeration with Linear Programming Subproblems," Operations
Research 19, pp. 998-1022 (1971).

5/75 PURIFY-2
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SUBROUTINE RiIDMOD

IDENTIFICATION

Name/Title - RIDMOD (Read Input and Mod)
Author/Date - Han Chang, July 1975
Machine Identification - UNIVAC 1110

Source Language ~ FORTRAN V

PURPOSE

Subroutine RIDMOD provides the selection of flight/combination information
for user's reference when he goes through the SCA interactively. Based on
this information, the user can make his judgment as to which combination
he would add or delete from the traffic model.

USAGE

e CALLING SEQUENCE
CALL RIDMOD

# DATA In/Out
Labeled COMMON {refer to the labeled COMMON description section):

Block Name Input Qutput
€31 1 -4

METHOD

Subroutine RIDMOD collects the user's numerical choices on flight/combination
option and sorts them out by using a MOD fur ~tjon. Then subroutine SET uses
this information as input to generate the p. 3pr flight/combination information.

/73 RIDMOD-1
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SUBROUTINE SET

IDENTIFICATION
Name/Title - SET {Set Covering Algorithm)
Author/Date - Han Chang, July 1975

UNIVAC 1110
FORTRAN V

Machine Identification

Source Language

PURPOSE

Subroutine SET is the main driver of the SCA. SET determines the feasibility
of the intermediate solution from subroutine SIMPLX on each level and decides
whether it should go forward or backward from the existing node.

USAGE

e CALLING SEQUENCE
CALL SET (IMODE)

Arguments:
Parameter
Name In/0ut Dimension Type Description
IMODE In ] I Indicator of whether the

interactive feature is
needed in SET

® DATA In/Out
Labaled COMMON (refer to the labeled COMMON description section):

Block Name Input Outout
C13 1 - 501 1 - 501
502 - 25017 502 - 2501
2502 2502
2503 2503
8/75 SET-1



Block Name Input Output

€13 2504 - 2504
2505

c18 1 - 500 1 - 500
501 - 1000

C26 1

2

3

4

5

6

7

8

9

10

c-27 1 - 50 1 - 50

51 - 3550

3551 - 3650

3651 - 4150

4151 - 4651

4652 - 5151

5152 - 5651

5652 ~ 6252

C-28 1

2

3

4

5

6

7 7

8/75 SET-2



Block Name Input Output
28 8

8
9
10
11
16

€29 1 - 500
501 501

502

METHOD

In each level, subroutine SET determines the subproblem of free variables

and sends it to subroutine SIMPLX. SET tests the result of the subproblem
which has been solved by SIMPLX, vhen directs the program to branch forward
if there is a possibility of getting a better solution; otherwise, a backward
step will be taken.

REFERENCE

C. E. Lemke, H. M. Salkin, and K. Spielberg, "Set Covering by Single Branch
Enumeration with Linear Subprobiems," Operations Research 19, 998-1022 (1971)

8/75 SET-3
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SUBROUTINE SIMPLX

IDENTIFICATION
Name/Title - SIMPLX (Simpiex)
Author/Date - Han Chang, July 1975

Machine'Identification

UNIVAC 1110

Source Language FORTRAN V

PURPQOSE

Subroutine SIMPLX solves the 1inear program associated with a subproblem
defined by subroutine SET. This subroutine provides the LP solution over
free variables and the information about whether subroutine SET will take a
forward or backward step.

USAGE

e CALLING SEQUENCE
CALL SIMPLX

e Data In/Out
Labeled COMMON (refer to the labeled COMMON description section):

B]dck Name Input Qutput

€13 1 - 501
502 - 2501

2502

2503

2504

€18 1 - 500

€26

~ o 0 P

5/75 SIMPLX-]
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Block Name Input . Output

cz7 1 - 50.
51 - 3550

3551 - 3650

3651 - 4150

4151 - 5151

4652 - 5151

8152 - 5657

5652 - 6252

cz8

00 ~N o O PR —

11
12
15
16
17

€29 501 T - 500
502 501

METHOD

A revised dual simplex method has been employed in this routine for optimizing

a Tinear program. This method was designed to accomplish exactly the same
function as the original simplex method, but in a way which is more efficient

for execution on a digital computer. It computes and stores only the infcrmation

5/75 SIMPLX-2
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that is currently needed, and it carries along the essential data in a compact
form. In fact, all relevant information at each iteration can be obtained
immediately after the inverse of basis has been found. The bookkeeping of

a huge conventional simplex tableau becomes less attractive.

Another advantage of this method is that the basic inverse is stored in the
product form rather than a matrix form at each iteration to keep the minimal
usage of core storage.

REFERENCE_

G. Hadley, Linear Programming, Addison-Wesley Co., Inc., Reading,

Massachusetts, 1963.

5/75 SIMPLX-3
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SUBROUTINE TABLE

IDENTIFICATION
Name/Title - TABLE (Form Occurrence Table)
Author/Date - Han Chang, July 1975

UNIVAC 1710
FORTRAN V

Machine Identification
Source Languege

1

PURPOSE
Subroutine TABLE prints the feasible combination payload occurrence table

in a particular year by user's request and transiates this table into
input format for subroutine SET,

USAGE

@ CALLING SEQUENCE
CALL TABLE (IYEAR)

Arguments:
Parameter
Name In/Qut Dimension Type Description
IYEAR In 1 I The year indicator
on which data case is
based

@ DATA In/Qut
Labeled COMMON (refer to the Tabeled COMMON description section):

Block Name Input Qutput
co9 Z
51
b4
TABLE-1
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Block Name Input Qutput
C13 1 - 501

502 - 2501
2502
2503
2505

Ci6 1 - 500

cis , 1 - 500
501 - 1000

METHOD

Subroutine TABLE determines and prints a 1ist for each payload of all fea-
sible combinations which include that payload by reading the relevant infor-
mation from a data file (logical unit 2) which has been generated by the MPLS.

TABLE-2
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5.4 SAMPLE INPUT/QUTPUT

This sample input/output is to provide the reader with an exampic of
executing the SCA interactively, The procedure to sign on the demand terminal
and execute tie MPLS is detailed in the SAMPLE User's Guide (ref. 2) and will
not be repeated here. All the underlined tutorials are the options which the
user may encounter in the SCA execution. Each of the underlined tutorials

is accompanied by a section code referring to the location of the option's
explanation. The alphabet prior to the section code on each underlined
tutorial will correspond to the short description of the user's response.

The descriptions are as follows:

(a) The user wants to execute SCA interactively.

(b) The user wants unity cost coefficients so he can get a traffic model with
minimum numbeyr of missions.

(c} The user wants to see the missions with maximum number of payloads.

{d) Thc user needs feasible combination number 5 to be included in the
traffic model.

(e) The user wants to see the display of Manual Fiight/Combination Options.
(f) The user wants the program to continue to find traffic model,

(g) After the traffic model is found, the user needs to see the information
on flight number 7.

{(h) He does not want to see any more, so he enters zero,
(1) The user wants to have another traffic model,

(j) He wants flights 10 and 11 to be excliuded from the traffic model; the
missions with maximum number of payloads have been changed.

(k} The user wants the program to continue to find a traffic model as he
specified (Notice: flights 10 and 11 did not appear in the traffic
model. )

(1) The user is not interested in seeing the information on fraffic model,
(m) The user does not want another traffic model.

{n} The user terminates the execution of the SCA.
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PRUN MELALIE, 12390~K01 J-0s FM3~L73137

DATE: 032279 TIME: 170746
IUSE TEMPOR. s FD3-L73435+TEMPOR
RERDY

>PMAP TEMPOR. MAP s« SAMPLE
MAP 0025-03.-22~-17209 (13D

ZTART=0135323: PROG SIZECI DX=14225-50334
3Y3heRLIBE. LEYEL 70-1
EMD OF COLLECTION - TIME 3.371 SECOHDE
SP¥AT SAMPLE
INPUT TUG CHRARACTERITTICS AND MISTION MODEL IATA:
LFOR EXAMPLE PADD SAMPLE. DATADP)
SPADD TEMPOR. DATALS
SELECT AN OPTIOM: « 2 TO TERMIMATE o

f%ELECT DISPLAY OPTIONS: & ? FOR ALL & 5 FOR NOWE -

TEELECT AM OFTIOM: « 3 TO TEPMINATE & |

f%ELEBT AN ANALYIIS TYPED 14 FOP NHOME:

J?HPUT YERR FOR ANALY31S: « 73 TO 31 .

’géLECT INTERACTIVE DFTIONE: (3 FOR NONE (a) 3.2.1

- SELECT PERSONMAL DATH BASE TO GENERATE FEAZIBLE MILSZION: <% FOR HOME.
>567

INPLT MAXIMUM HUMEER OF PR-LDAT.. ALLOMED I OHE COMBINATION:

- §
SELECT MIEZION TYPE:
1 FOR IMPLT CHANGET TO LIIT
ar MO CONSTRARINTS APPLLED
=13 APPLY COMETRAINTS UZIMGE LIZT
-1
SELECT DISTIPLINE MIH:
1: FOR INPLT CHRMGEZ TO LIST
J: NHO COMTTRAINTE RAPPLIED .
~1t APPLY COMIZTRAINTT WZING LIZT
=1
INPUT 1 TO PRINT MISSI0N CLAZE CODE LIZTS OTHERMIZE ZUIP 4 L1INE
» 0
IMPUT 1 TO PRINT PAYLOARD DITCIPLINME MIXK LIZTY OTHERWISE ZLRIP &3 LINE
=3 .
soe+ MPLZ Z7RRTED esesotosssrs
stostebbpoonsserase ATATISTICAL ANALYEIS FOF 1930 #6644 9464 0505004209

TOTAL MOMEER OF COMBINATIONT GEMERATED: et
HUIMBER OF FERZIBLE COMBIMATIONE: 11
HUMBER OF INFERTIBLE COMBINATIONS: 13
TAOTRAL ELAPZED TIME: 47
EaLL TIMES [#RPE IM MILLISECONDS)
WYERAGE TIME PER FEASIBLE COMMINATION: 3
IERAGE TIME PER SENERATEYD COMBINRTION:G 1
, pAGHE B 5.33



ZHODSE 03T COEFFICIENT FOR EACH FLIGHT!

{b) 3'.'2.2_

“T

1930 OCCURRENCE TABLE
PAYLORD  MIZII1ONS

1+ 1999 1 310
2y 19%7 2 1
3 2080 3 311
4r 2050 4 10
s 300t 5

Tar o @p02 6
3081 7

3 3852 0B
oo MAX NO. SINGLES = 2

OCCURRENCE TRBLE AND SCA INTERFARCE RECOUIRED 25 HiLLISECDﬂSS

)
¥YOU WILL GET TUTDRIALS IN NDDE 1.

* AYAILABLE MISSIONS WITH MAXIMUM NUMBER OF PAYLOARDS:

MISSION PAYLDADS

3

10

11

i

2

CHODSE MANUAL FLIGHT COMEINATION OPTIDN:

e e Tt {0 T

CHOOSE CRITERIA FOR FLIEHT’CDHBINHTIDN aELECTIﬂN' 5 FOR NONEJ

(c) 3.2.3

{d) 3.2.4.

5 :

AVAILAMBLE MISSIONS WITH MAXIMUM MOMBER OF PAYLOADS:
MISSION PAYLOADS

.2

10

11

b3

4

P R : ) i ; H

= = Fo fU O

THBLE FOR MANUAL FLIGHT’CUHBINHTIUH DPTIDH
9% LIST OF MANUARL FLIGHT-COMBIMATION ﬂPTIﬂNh
H: ENTER COMBINATIOM "N
=1t HEW SELECTION CRITERIA ARE DESIRED.
-2% CONTINUE DN TO TERMINATION. _
~31 YIEW ALL COMBIMNATIONS SPECIFIED 20 FAR, ,
~4t YIEW INFORMATION O COMBIMNATIONS SFECIFIED =0 FAR
~%5: REMOVE LASY SPECIFIED COMBINATION
FHOOSE MRNURL FLIGHT-COMBINATION. OPT ION:

_(e) 3.2.8

-3 ’
ALl PAYLOADS CAN BE ;CHEDULED IN THE FBLLBMINf -6 MITRIOME.
p.] B 7 3 19 11
. TRARFFIC MODEL COST 1S B e e .
-~ TOTAL ELAPSED TIME IN SET= ? a5
TIME PER MISIION IN MILLISEC.= 15
HIGHEST LEVEL RERCHED = @& L
0 vOU W1sH TO ZEE INFDRMH?IDN onN THEbE MI IDHS?

3T HORE
-1t FRINT HLL
-2t PRINT ALL AND SAYE ON ICRATCH FILE
-3 SAVE O SCRATCH FILE UHL?
H 1 ENTER MI3Z IUN “H'
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FLT. N, ? LAUNCH SITEs ETR
PRYLORDS? L3=01 LCR A

3051
SHUTTLE SEQUENCE 3-R
ALTITUDE 300,
INCLINARTION 23.5
TOTAL LENGTH DOWNS 13, TOTAL WEIGHT DOWN:

PAYLORD MARGIN: 34313, LDAD FACTORT .01049

SHUTTLE DELTAY: 1275.
K

h\

)

ro [l
o |MLtn

(i)

4HICH MISSIONS D0 YDU WANT OMITTED 7
711 o

19

>0

MISSION PHELUHDS

-hwru--@
Ll [

1
CHOOSE MANUAL FLIGHT-COMBINATION DPTION:

AYAILABLE MISIIONT WITH MAXIMUM NUMBER OF PRYLOADS:

(k) 3.2.4

‘\.—3

ALL PR?LBHDS CHH RE SCHEDULED -IN THE FDLLUWINr
4. 5
TRAFFIC HDDEL COs3T 13 7
TOTAL ELAPSED TIME IN 3ET= 172
TIME PER MISSION IN MILLISEC.= 24
HIGHEST LEVEL FMERCHED = |

D0 ¥OU WISH TD SEE INFORMATION ON THESE nMISTIONS?

? MISSIONS.

(2) 3.2.5

T HONE
=1% PRINT ALL

-2 PRINT ALL AND SAYE OM SCRATCH FILE

‘-3t AVE ON SCRATCH FILE PNLY
t ¢ ENTER MISSION "N

STATISTICS FOR CURRENT FLIGHT SCHEDULE i

>0

‘AVERAGE NUMBER 0OF PRAYLORDS PER FLIGMT = 1.14

TOTAL HUMBER OF TUuSE REQUIRED = f

TOTAL HUMBER OF INITIAL OMS KITS REQUIRED =
TOTAL HUMBER OF 3ECOND AND THIRD DM3 KI1T3 PEQUIRED =
INPUT § IF YOU WANT R DIFFERENT ICHEDULE] OTHERWISE

. :

(in) 3.2.6

SKIP R LINE

(n} 3.2.7

' SELECT AN QPTION: ¢ 3 TO TERMINATE

g
;{K§B§Pﬁﬁ Egéjjﬁﬂ
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