
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

SET COVERING ALGORITHM,

A SUBPROGRAM OF THE SCHEDULING ALGORITHM FOR

MISSION PLANNING AND LOGISTIC EVALUATION

JOB ORDER 81--197

(NASA-CIR- 147551) SET COVERING ALGORITHM, A
SUBPROGRAM OF THE SCHEDULING ALGORITHM FOR
MISSION PLANNING ANC LOGISTIC EVALUATION
(Lockheed Electronics Co.) 79 p HC $5.00

CSCL 22A G3/12

NASA CRr,

IV75

N76-22225

Unclas	 -^
27397

i

Prepared by

Lockheed Electronics Company, Inc.

Aerospace Systems Division

Houston, Texas

Under Contract NAS 9-12200

For

MISSION PLANNING AND ANALYSIS DIVISION
e ̂vp

National Aeronautics and Space Administration

.LYNDON .B. JOHNSON SPACE VENTER

Houston, Texas
March 1976

LEC-6842

TECHNICAL REPORT	 ENOEX/ABSTPACT
(See ibatructions on revorse sidr.)

1 , TITLF	 ANO	 5UEITITLE OF DOCUMENT	 2.	 ,)SC NO.

US C-09:)50
SET COVERING ALGORITHM,
A SUBPROGRAM OF THE SCHEDULING ALGORITHM FOR

MISSION PLANNING AND LOGISTICS EVALUPTION

3.	 CONTRACTOR/ORGANIZATION NAME -.1,	 CUNT-+ ACT	 isle.	 ,RANT	 N. n.	 ...

Lockheed Electronics .Company, Inc. NAS 9-12200

5. CONTRACTOR/ORIGINATOR DOCUMENT NO. G.	 PUGLICATION	 DATE	 (74115	 ISSUE)

LEC-6842 March 1976

7.	 SE CURI - TY	 CLASSIFICATION	 -	 -	 -	 -	 - ^.	 OPR	 (OFFICE OF PR .JMARY RESPoN51R -ILITY)

Unclassified R. S. Davis

9 . ..	 LIMITATIONS	 -	 ••	 -

GOVERNMENT - HAS UNLIMITFRRIGHTS-	 r7i NG:
JO.,AIITHGR(5)

_i uYES.

H. Chang
1F	 Nn,.STATF	 LIMITAT.IONS.AN.D AUTHORITY

Il .,.DOCUMENT	 CQBT.RACT	 REFERENCES 12..	 HARDWARE	 CONFIGURATJOH

WORK BREAKDOWN STRUCTURE No. sY5TE3.f- 	 -

NA NA
CONTRACT	 EXHIUIT NO.	 - SUBSYSTEM-	 -	 -	 -	 -

DRL No.	 AND REVISION MAJOR EOUIPMENT GROUP

DRL	 LINE	 I	 thl NO

13.	 46.5TRACT	 -	 -

This-program uses Lemke, Salki n and Spiel berg' s (ref. 1) . Set Covering Algorithm
(SCA) to optimize a traffic model problem in the Scheduling Algorithm for Mission
Planning and Logistics Evaluation (SAMPLE).	 SCA fcrnis a submodule of SAMPLE and..
provides for input and output, subroutines, and an interactive feature for per-
forming the optimization and arranging line results i n a readily understandable
form for output.

P0a

14.	 SUBJECT	 TERMS

f 0 Form. @33 (Rev Sep 74Y. MASH-.J5G

CONTENTS

Section
	

Page

1:	 INTRODUCTION	 .	 •	 ,	 .	 .	 .	 ,	 ,	 •	 ,	 ,	 .	 .	 ,	 ,.	 .	 .	 ,	 , ,	 1 ^•1

2.	 PROGRAM DESCRIPTION	 ,		 2-1

2.1	 DEFINITIONS AND SYMBOLS .	 .	
.,

2-1

2.1.1	 DEFINITIONS	 , 2-1,!i.

2.1. 2 	 SYMBOLS		 ,.	 _ 2-2

2.2	 GENERAL DESCRIPTION .	 .	 ,	 .'. 2-4 !

2.2.1	 PROGRAM CAPABILITIES * 2-4

2.2.. :2	 OPERATIONAL CAPABILITIES	 :	 :`.	 . 2-7.
r

2:3	 TECHNICAL DESCRIPTION 2-8	 S

2.3.1	 ANALYSIS		 , .	 2-8	 f

2.3.2	 METHOD OF SOLUTION	 ,	
2-15

2.3.3	 THE ALGORITHM		 2-17

-2.3.4	 OUTLINE OF THE ALGORITHM 	 :	 :	 ,; ,	 ._ 2-1.9

2.3.5	 AN EXAMPLE	 2-21

2.3.6	 POSSIBLE'IMPROVEMENTS	 2w27

3.	 PROGRAM! USAGE	 .	 : 3-1	 '	
3

3.1	 I NPUT DESCRIPTION	 3-1

3.2	 PROGRAM RUN PREPARATION . .

3.2.1	 INTERACTIVE OPTIONS 3-2
i

3.2.2	 COST CRITERIA OPTIONS		 3--3

3.2.3	 CRITERIA FOR FLIGHT/COMBINATION SELECTION OPTION 3 3

3.2.4	 MANUAL FLIGHT/COMSINATION.OPTIONS . .	 3-3

3.2.5	 TRAFFIC MODEL INFORMATION OPTION	 .'. 3-4'3

3.2.6	 MISSION OMIT
.-
 OPTION	 .	 `.	 .	 . 3-5

3.2.7	 TERMINATE ` OPTION	 3_5

3:3	 OUTPUT DESCRIPTION_. 375:

3,3.1	 NORMAL OUTPUT	 o	 I
'
3-5

3.3.2	 ABNORMAL OUTPUT 	 .	
.	 .	 .	 .	

.	
.	 .	

.	 ` .: 3-6

4.	 EXECUTION CHARACTERISTICS -	 i

4.1	 RESTRICTIONS	 :	 `:	 ,.	 :	 .	 ':	 .	 `-• 4-i

!

LAIV KOTT 'ru,

f

i
i

4 SET COVERING ALGORITHM,

A SUBPROGRAM OF THE SCHEDULING ALGORITHM FOR

MISSION PLANNING AND LOGISTICS EVALUATION
1

1. INTRODUCTION
}

This documentation provides a general description of the Set Covering

Algorithm (SCA) computer program, and includes functional specifications,

functional design and flow, and a discussion.of the program logic. The SCA

program is a submodule of the Scheduling Algorithm for Mission Planning and

Logistics Evaluation program (SAMPLE) and has been designed as a continuation

of the .Mission Payloads (MPLS). The MPLS uses input .payload data to form a

set of feasible combinations which are collections of payloads that meet cer-

tain system constraints (e.g., Shuttle weight-to-orbit capability); from this

combination set the SCA selects a subset with minimum . cost such that all pay

loads are contained without redundancy. The subset of feasible combinations

is cal.led.a traffic model. To date, the program has had two main uses:

a. To provide input data for the Operations Simulation and Resource Scheduling

(OSARS) submodule, and

b. To provide the user a tutorial option 'so that he can choose an alternate

traffic model in case a particular traffic model cannot be scheduled by

the OSARS.

The SCA program was begun in 1974 with an input of less than 50 payloads per 	 9

year and the assumption of unity cost coefficients in the objective function.

Presently, this program has been expanded to solve 100 payloads per year with

an option of five different performance.criteria in the objective function. 4

1	 Since a general SCA program solves a problem with inequality constraints, an

appropriate change has been made to convert it to solve the traffic model

problem, which has all equality constraints.

is

1

2.	 PROGRAM DESCRIPTION

2.1	 DEFINITIONS AND SYMBOLS

2.1.1	 DEFINITIONS

Basis -• A basis for a n-dimensional euclidean space, En,
is.a linearly independent subset of vectors from

Eo	which spans the entire space

Canceled variable - A variable is said to be canceled if its value is	 i
set to be zero.

Ceiling. The lowest upper bound	 -

Decision variable - A zero -one variable which corresponds to a feasible
- mission	 i

Dominated column - In a matrix . A	 or {Aj I j --1, n.	 A	 is said to

be dominated by	 Ai	if	 A. < Ai	for	 1 # j.	 A.

is called a dominated column of 	 Ai	 and	 Ai	is

the dominating column of	 A..	 !

Extreme point - The corner points of a .convex polyhedron.

Fractional variable The nonintegral variable in the linear programming`
solution	 9

Free variable
f

w A variable which.has not been fixed at any value	 6

Level - The number of variables fixed at one

Minimum-cost-per- - In the sub-subproblem, for each variable the value
constraint-satisfied of its cost coefficient divided, by the number of
rule constraints is calculated.	 The variable with the

minimum of such value.is set to one first.

Occurrence table - A table for each.payload.of all feasible combi-
nations that include that payload

Partial solution - A set of variables fixed at one or zero	 9

2-1

-' ''0

Preferred row

Preferred set

Sl ack vari abl e

Subproblem

Sub-subproblem

Upper bound

.
2.1.2 SYMBOLS

A

c

e

F

I

i

The row containing the smallest number cf ones in
the current subproblem's constraint matrix

- The set of, columns in the constraint matrix which
contains the entry of one in the preferred row

In general, it is desirable to convert any in
equalities in the constraints into equations which
are much more convenient to work with in the linear
programming problem. The conversion is carried out
by introducing some additional variables which are
called slack variables.

- The problem contains only free variables with
certain constraints deleted from the main problem

, ,

by the satisfaction of the partial solution

- The problem contains the columns of A associated
with the positive fractional variables and the rows
corresponding to the constraints they ~atisfy

- A known value that the solution of the Set Covering
Problem will not exceed

An mxn matrix with zeros and ones as elements; constraint matrix

An mxl matrix of all positive numbers; cost coefficient vector

An mxl matrix of all ones

Indi ces of free vari ab', es

An mxm identity matrix

The row 'index of matrix A

The column index of matrix A

Level counter

2-2

~-"'-'L

r

M	 A oonnegative number in the objective function, set to be
very large to solve a linear programming problem with equality
constraints; in this program, set M 500

m	 Number of constraints in the set covering problem

IIIiIiI
2.2 GEN RAL DESCRIPTION

2.2.1 PROGRAM CAPABILITIES

The SCA program optimizes a traffic model problem over an objective function

which consists of a set of user-selected performance criteria such as Orbital

Maneuvering System . (OMS) weight, load factor, or Shuttle cargo bay utilization
for each feasible combination. This problem also includes a set of constraints
which assures no redundancy of payloads in the traffic model. For application,
a set covering algorithm developed by C. E. Lemke; H. M. Salkin, and
K. Spielberg (ref. 1) has been adopted. The main advantage of this algorithm

is that it permits a rather efficient and simple solution procedure that is
basically a (zero, one) branch and bound search logic coupled with linear

programming (LP) and suboptimization techniques. The suboptimization tech-

nique can construct very good integer solutions from the solutions to LP

subproblems.

The formulation of a traffic model problem can be exactly fitted into the

mathematical model of a Set Covering Problem (SCP). Before a formulation
example is presented, a general understanding of the form of this model will

be helpful.

The SCA solves the SCP which has the form:

min	 c'x + Me's

subject to	 Ax Is = e, s > 0

and	 x = 0 or 1

When this model is applied to the traffic model problem, x j is taken as a

decision variable on a particular feasible combination j (or flight j).
Flight j is considered to be chosen when xj = 1, otherwise x.	 0. For
each payload, there is a correspondent constraint_ which insures he nonredon-
dancy of.this payload in the traffic model. Vector c stores the performance
e:riteria for all of the feasible missions; M is set to a large value to

t	
,assure that constraints are satisfied The application of SCA to the traffic

f

model. can be easily demonstrated by : the following.example

24

a

f

Assume that three payloads have to be launched in a particular month. After
checking all of the possible combinations, only five are considered to be
candidates. These candidate flights are called feasible combinations; a,
summary of the payloads they carry is given in the following table.

Feasible combination (j) Payloads

l No. A
2. No.	 A, No. B
3 fro.	 B,	 No.	 C
4 No.	 B
5 No.	 C

Assume that associated with each feasible combination j, there is a

cost factor cj . The problem is to formulate a mathematical model for

determining the traffic model which gives the minimum cost. In this

example, c 	 is set to unity, which implies that we are seeking a traffic

model which consists of the minimum number of feasible combinations. Let

xj (j = 1, 2, 3, 4, 5) be the decision variable over the selection of a

particular feasible combination j in the traffic model. A unity value

of x 	 implies that feasible combination j has been selected to be a

member of the traffic model. Since cost has been chosen . as a measure of

effectiveness, the object is to minimize

Z = xl + x 2 + x 3 + x - + x 5

subject to the restrictions developed in the following paragraphs.

The constraint in this situation is that the same payload cannot be contained
in more than one feasible combination in the traffic model. The mathe-
matical statements of the restrictions for three payloads are

Ac	 x +x2-1

1

3

2-5

C.

e'

x' = 1x l , x2 , x3 1 x4 , x51

s ` = Is l , s2' s31
I

B: x2'1-.x3+x4= 1

C: x3+x5=1

Finally, there are the binary restrictions, i.e., x j = 0 or 1. Therefore,
in summary, the mathematical model for this problem is the following. Minimize

z=x 1
+x2+x3+x4-rx5

subject to:

x + x2	 =1

X
+x+x

	

3	 4	 =1

	

x 3	 + x5 = 1

and x3 = 0 or 1, j = 1, 2, 3, 4, 5

	

,^,: F Y	 This formulation can also be written in a matrix form:
E3	

^

min	 c'x + Me`s

subject to Ax - is = e, s > 0

x.=0or1
J

2-6
,

a	 ^

i

1 1 0 0 0	 l 0 O

1	 0	 -A	 0 1	 1	 I^ 0 l 0
0 0 1 0 1	 0 C 1^

The three feasibl a solutions are x' --[1 , 0, 1, O, O j, [0; 1; 0; 0, 11, and

[1, 0, 0, 1, 11, but the optimum is either of the first two as they give the

minimum number of feasible combi nations. In this simple example, feasible

solutions can be easily noted by observation, but in dealing with a large-

size problem of 100 payloads and 500 combinations, there are 2 500 possible
i

solutions; so a more efficient approach such as the SCA must be employed-0

The details of this algorithm are given in the technical descri ption.

2.2.2 OPERATIONAL CAPABILITIES	 1

The operational capabilities of the SCA program were designed to permit the

user to specify his particular optimization problem according to his needs:	 I
s

One of the features is the user`s selection of performance criteria over obi
-	 t

jective function. For example, if the user likes to see a traffic model of a

minimum number of missions, he will have the choice of using unity as a per -

formance criterion, or.he . may use the surplus Shuttle bay length as a perform-

ance criterion to find a traffic model which gives the maximum utilization of

space. At present, the SCA permits the user selection of one of the
r

following performance criteria:

a. Unity	 minimum number of missions

maximum util ization of Shuttle cargo weightb. One mi nus load factQrT

	

	 -
allowance i

C. OMS weight:	 the minimum OMS,weighi: 9

d. Payload margin:	 ..minimum payload. margin

e. One minus payload length: 	 maximum uti lization of Shuttle cargo bay

This option . can be even more selective if the user has.other criteria to be

defined in the future. Another avai.l'ablf, option is the suppression or speci-

fication of certai n feasible combinations in the traffic model the program

gives the user an error message if he attempts to.su ress or.specify comb'-pp	 ^3

nations which would lead to an infeasible solution that is not a traffic

model.

2,7

I

2.3 TECHNICAL DESCRIPTION

2. 3.1 ANALYSIS

The analysis for this program is quite lengthy, For a thorough discussion of
the Set Covering Algorithm, the reader is referred to C. E. Lemke,
Ho M. Sal kin, and K. Spi el berg's "Set Covering by Single-Branch Enumerati orn
with Linear Programming Subproblems," Operations Research .Vol. 19, pp. 998-
1 . 022, 1.971 ,(ref. 1).

f 	 3

Before we discuss 'the algorithm, certain facts about the development of SCA

and the application of SCA to the set partition problem will be introduced,	 3

Compared to the problem (I),.an LP problem is defined as

(I LP
):
	 min
	 (c

x:	 Ax > e, x > 0)

1 • (i}	 is feasible if and only if	 0 p)	 is feasible.	 (P.,--re fea-sible

means that a feasible solution exists),

'	 2. Assume that	
Z*T	

and	 ZLP	 are the optimal solution values of (I) and

(I LP)	 ..respectively; then	 ZLP	 is always a lower bound of	 Zi,

z	 > ZLP •I
3. If (I) is solved and integral feasible, then (I) is solved and

LP

Zn _ zLP.I
4. if (I) does not give an optimal integer solution, i.e., some 	 x.	 ofLP

x^p	 are not i ntegral, then a rounded-up solution can always be obtained

by setting all the nonintegral variables to l	 (y. = 1 whenever	 x^ > I).

This rounded-up solution :is (I)-feasibla and an upper--bound of (I)

5. A rounded-up solution obtained from a non--integral extreme point 	 x	 of

(I
Lp

) can always be reduced to another (I)-feasible solution with a

smaller cost.	 We have	 Ax.> a	 and	 0 < x < e.	 Consider the columns of

A	 associated with the positiVe nonintegral 	 x^	 variables, and the rows

of	 A	 corresponding to the constraints that these variables explicitly.

satisfy.	 Identify thepart of fractional 	 x	 and the corresponding

matrix selected as above by a superscript *. 	 Then we have	 A*x* > e	 and

0 < x* < e; i.e., every row of	 A*	 has at least two 1 s. 	 Therefore,	 -^

setting some of the 	 x*	 variables to l and maintaining	 A*x* >, a	 gives

abetter integer solution than the rounded-op.solution which calls for

setting all	 x*	 variables to 1.	 This reduced integer solution is called	 ;.

a purified solution which is reached by suctcessively.setting fractional

Variables to 	 by the "mf nimum-cost- per-cons tra i nt-satisfied" rule until.
all variables are efttier 0 or l and all constraints are satisfied.

s

2..g	 ^

I

The procedure trs reduce the rounded-up solution°to a purified solution is

called !'purification."

f	 6, Let	 y , be any feasibl e solution to	 (I).	 If	 y	 Is, not an extreme point

for (I LA,); i.e.., the column of A corresponding to	 y_ =1	 and the columns

of -I corresponding to	 s 	 1	 from a linear dependent set, it car p be
i

reduced to a feasible solution	 yk	for (I), which is an extreme point

for (Ip) and yields a better value for 	 Z I .	 We demonstrate this because

the purified solution may. not be an .extreme point.	 Let, y	 he. any (I)-
feasible solution that is not an extreme point for (ILP)•	 Since

Ay - Is _ e, some of the slack variables mu's., be positive; otherwise,

Ay = e, which implies	 y	 is an extreme poi nt. for (Lp), since the columns

of A corresponding to 	 y	 = l	 will be linearly independent.	 Permuting

rows to get positive slack variables last, one obtains

Is2y(,

e)

tr

_	 with	 s -	 A:/s. > 1.::	 Then a permutation of columns to get posit 	 y.'s.^	 a
first, leads. to

1	 A	 ^	 A	 ^12	 ll

;

Y _(Al	 =	 e

A	 A	 A	 0)	 A 21.21	 ^P

a	 so that
77

Ay _ Is A17 e+	 Q	 s	 e	
ss e.e).

E

The last expression means that'(1)_ 	 A2 le - s = e	 (with s a e), i.e., each

row of	 Acontai ns 4t.. least two . 1is and 42)	 Al oe = e, i.e., each row of

r	 All contains exactly one 1. .Thus, permuting rows and columns further, one 	 a
may exhibit

a.

 i
i^

I

4

f

,:^
¢
p

i

,^
^,^ _ I

O

s.

cr^

and'	 l^

A
0

11A

M1

with the above, relation (i) may be rewritten as:

1

-

e

All 0 ^^ r	
0+ 5_	 a	

{ 7)

!1 e.
21 2l

Plow the . columns of

is 0

0

l	 T
^i

clearly -Form a

r

linear independent set, whereas those of

F

7

,

1	
0

a 3	 :.

A l	 0	 0

{

A21 -I
	 A.

2.11

i

are linearly dependent by the hypothesis that. Y	 is not an extreme point.

Therefore,	 Ali	 has at l east one column, say column	 A j . Than	 `s > e>. Ai.
demonstrates that deleting the A^	 column and-replacing

-

s	 by s` -	 - A^,

Yields a new feasible solution,. with cost reduced by the cost . of the deleted
column.

i

Now suppose the above procedure
i

is repeated.	 Then one is either aaain not at

an extreme point and may obtain another cost reduction, or one is at an ex-

Creme point by virtue of either (a)	 = 0, or (b)	 AZ l = 0.

As an example, consider	 c'. _	 (1,2,1,1,2,3,1) and

(column)	 1	 2 3	 4	 .5	 6 .	 7'
1	 0 1	 0	 0	 0	 1

A = 0	 1 1	 0	 0	 1	 0

1	 0 0	 0	 0	 0.	 i
F
l 1	 0 0	 1	 1	 1	 0;

0	 1 0	 1	 0..0	 0 r

f y	 = (1,1,0,1,7,0,0)	 is	 (1) feasible with	 c'y = 6	 and s =	 (0,0,0,2,1).

Hence

(coUimin)	 1	 2 4	 5 1 3	 6	 7
i

A	 A11	 12
1	 0 0	 0:1	 0'1` i.

.0	 1 0	 0	 1	 1	 0

A21 A22 1	 0 0	 0' 0 . 	0	 1

_r 0	 1 1	 0 1 0	 0	 0

2-12

Noticing the payload nonreQundancy requirement in the traffic model, we

now consider a set partition problem (Ay = e) in its relation to the cur-

rent problem (I). The actual slack cost is, of course, zero. However,

by assigning a "high penalty" cost M into all the slack variables, one

j.

v

will tend to get a minimal (I) solution with very few positive slack

variables. For M large enough, we can either find the minimal solution

or show that it is infeasible. Thus, the equality problem is equivalent

to

(I)F: miny(c'y + Me's: Ay - Is = e, y j = 0, 1; M large)

or a zero-slack cost problem by multiplying the rows of Ay - Is - e = 0

by M and adding the sum to c`y, or, (I) E is equivalent to

(I) E miny (c'y): Ay - Is = e, yj	0,1) - We (M large)

Here c = c' + Me'A; i.e., to each cost element c j one adds M times

the number of l's in the associated A columns,

As an example, consider

(i l)	 ,;in Syl + 4y2 + ly3 + 2y4

	

subject to y l	+ Y4 > 1,

Y2 + Y3	> 1

	

Y1	 + Y3 + Y4 > l

Yl , Y2 , y3 , Y4 = 0 or 1

Then the minimal y is (0,0,1,1) and c'y = 3 with s = (0,0,1). Consider

the problem with equality constraints, and set M = c'e = 12, (I 1) becomes

2-14

1
an,

I i

(I1)E: min 5y 1 + 4y2 + ly3 + 2y4 + 12s 1 + 12s2 + 12s3

	

subject to yi	 + y4	- s1	= i

Y2 + y3	 - s2	 = i

	

Y 1 	+ Y 3 + Y4 	- s 3	 -
Yl .) Y2' Y3 , Y4 = 0 or 1; s l , s 2 , s3 = 0 or 1

After each row of constraints is multiplied by 12 and added to the objective

function, we get

{I l) E min 17y 1 + 16y2 + 25y3 + 26y4 - 36

	

subject to y1	 + y4	 -s 1	 = 1	 1

Y2	 + y3	 --s2	 = 1	 I

	y i	 + y3 + y4	 -s3	 = 1

y1 , y2 , y3 , Y4 = 0 or l; si , s2 , s 3 = 0 or 1
i

3

i^

7

The minimal y is (0,1,0,1) and c'y - 36 = 6 with s=(0,0,0). The above

procedure permits the solution of the Set Partition Problem (SPP) by means of

an algorithm (SCA) oriented toward the set covering problem. It is recom-

mended that M be set to 500 in the traffic model problem.

2.3.2 METHOD OF SOLUTION

To solve problem (I), namely, (I): min (c'y: Ay y e, yj c {0,1},

j e {1,2,...,n}}, an enumerative single-branch scheme is employed.

i

2-15

^	 1

The search starts at the origin (node 0), with all y j "free", i.e., tenta-

tively considered to be either 0 or 1 and possibly to be fixed at value 1 on

a forward step. At the general node v (on "level" Z), k components of y

have been explicitly fixed at 1 on forward steps. Others may have been

"canceled" (fixed at 0) at level £, as one has ascertained that correspond-

ing forward steps would not lead to a solution.

The task at node v is to:

M	 Solve a basic problem (I Lp } with fixed variables substituted, and to

look for improved solutions as outlined in 2.3:1. If the objective

function of (I MP) exceeds an available bound on (I), or (I Lp) is

infeasible, one may "backtrack", i.e., the search reverts to the

predecessor node v-, linked to v by the branch j* (variable

y.
3*
 having been fixed at 1) and the search continues at node v-

with yj* canceled to 0. (If no predecessor exists, the search

terminates and the solution is the existing upper bound.)

(ii) Cancel whatever variables may be canceled from further consideration.

(iii) Select among the remaining variables a "branch" variable j* to be

fixed at 1 on the nex4- forward step. The state of search is

essentially recorded in an (Q + 1, n) n matrix: n(t,j) = 0 when

variable j was fixed (i.e., canceled or selected as a branch) at

some level up to and including the current level Q (i.e., at some

predecessor node of v, or at v). Otherwise, n(z,j) is the current

number of unsatisfied constraints that can be satisfied if the free

variable j is fixed at 1. Initially, n(O,j) = ^ a ij for all

j	 i =1
5

The current number of unsatisfied constraints is kept in a vector ^, i.e.,

0(o) = m and ^(Q) P ^(Z-1) - n(k w 1, j*). For any Y-J , the condition

{^} > n(2,j) > 0 is always held.T

a

a

2-16

it

Consider the search at level Q prior to a forward step. The following tests

may reduce the number of branch alternatives.
n

a. The subproblem at level Q is feasible only if	 E n(Q,j) >	 If

this is not met, a backward step may be taken.	
j=1

b. Let Zv be the current objective function (F cj over all j with yj
fixed at 1)and Z* the objective function of the best integer solution.

Let F be the set of free variables. Then the double ceiling test, i.e.,

z + ct + minweF-ft} cw > Z*
	

permits the cancelation of t if

c. If at a current subproblem, a variable column dominates another variable

and the dominated column has a higher cost than the dominating one, then

the dominated variable never need be considered as a branch candidate,

that is if for any level Q Q > 1	 % - 1 '* >	 Q - 1	 > 0 and

n(Q,j*) = n(Q , j l) = 0 with cj* < cjl , then set n(k - 1, j l) = 0 (i.e.,

cancel j l at level Z - 1). Here yj* is the branch from node v- to

v. The above is commonly referred to as the local column dom =inance test.

i
d. Let (0 be the level Z integer (set covering) subproblem. Define

(ILP)Q to be the corresponding continuous LP problem. Then as stated

in section 2.3.1:
i

(i) (ILP)z is feasible if and only if (I) P'is feasible.	
i

(ii) If (I LP)^ is feasible, then the value of the minimal functional

serves as a lower bound for the best (I)^ solution. Furthermore,

if (I LP 	 is integer feasible it solves (I)91

2.3.3 THE ALGORITHM 	 i

The algorithm is basically a (0,1) search embodying the elaborations discuss- .`

ed previously. At node v, level k, we attempt to salve the linear program

(I LP) Q . If it is infeasible or its objective function exceeds the current

ceiling (z	 initially set to c'e) the search reverts to v-. If the minimal

solution is (0,1) feasible, it is recorded and a backward step is taken.

2-17

f

Otherwise, we record the column (denoted by j*) associated with the smallest

value of the optimal variables, and then extract the sub-subproblem that

contains the columns of A associated with the positive fractional variables

and the rows corresponding to the constraints they satisfy, and obtain a

solution to this problem. This solution should be extreme point which is

obtained through the procedure introduced in 2.3.1. If the overall (I)-

feasible solution exceeds the ceiling z*, a backward step is taken.

If node v was just reached on a forward step, we construct the preferred
set P(i*). Preferred row i* is defined to be the first i such that

EjEF ai*j
< E jEF

aij for all i of which j*th entry is 1. P(i*) is

the columns containing 1 on the preferred row i*. We then cancel locally

dominated columns. The purpose of constructing the preferred set is if a
forward step fails, we cancel j* and select another branch from the pre-

ferred set.

If v was reached from v-, we branch j* to reach node v+. However, if

v was reached on a backward step (that implies " when we tried to reach v+
and found that we cannot generate an improved solution), we select a branch

by the minimum-cost-per-constraint- satisfied rule from P(i*) to define v+.
During the branch selection procedure, the double ceiling test is applied so

we can horefully exclude some branch candidate from further consideration.

If at any time every variable in the P(i*) is canceled, we take a backward

step.

When a subprogram contains no constraints, we have reached an (I)-feasible

solution. In all cases, a (0,1) solution is not recorded until it is reduced

to an extreme point of (I LP). The search terminates when the level counter k

becomes less than 0.

Linear programming is the crucial feature of this algorithm. Initially, the

sub-subprogram is always extracted if (I
LP)is

not integral feasible. A

solution of the sub-subproblem is reached by successively setting variables

2-l8

to 1 by the "minimum -cost-per-constraint-satisfied" rule. Once this solution

is reached, we branch forward by setting the minimal fractional variable of

the current LP to 1. The hope is that setting the minimum fractional vari-

ble to 1 will tend to give the largest alteration in the optimal Lf' solution

which is the lower bound of (I). When a node is reached for the first time

on a backward step, LP is performed with the minimum fractional value at 0.

This means that last branch link j* has been canceled.

The other tests, such as local dominance, double ceiling, and so on, were

incorporated more because of their simplicity and ease of applicability than

their actual usefulness in curtailing the length of the search. In dealing

with the usual large number of variables, search features designed to look at

individual variables appear relatively less than attractive as compared with

the linear programming part that tends to solve entire subproblems. This is

reflected by the fact that for each computer run, 90 percent of the computing

time is consumed in LP. The saving of search time because of successful

LP solution appears more important than the tests mentioned above; especial-

ly after we experienced most of the time that the (I)-feasible solution was

directly generated by LP.

4 general functional flowchart is given in section 5.1.

2.3.4 OUTLINE OF THE ALGORITHM

I. Initialization

1.1 Set	 n(IJ) -	 i =1m aij
for	 j - 1, ...,n;	 F = 	{1,2,...,n};	 s	 -	 e

1.2(1) = m,(1)	 W	 -1, a(1)	 = 0

1.3 k= 0, y = 0, z= 0, z* W c' e, a= 1
II. Point Algorithm

2.1 Updating counters	 k = k + 1, y = y + 1

2.2 Test for solution and lower bounds. If = 0, go to 4.1

(solution).	 If	 9(Z) > z* -T, go to 3 (backward step).

2.3 Update	 ^, F.	 Set	 c(k + 1) = ^(k), F =	 {jjjn(9,J)1a0).	 (Variables

with	 n(k,j) entries less than 0 are members of the preferred set

See 2.12).

2-19

r

2.4	 Feasibility test. If ^ 	 In(k,j)I q (k), go to 3.
i=l

2.5	 Linear programming. Solve the linear program associated with the

current subproblem.

(i) If infeasible or ceiling exceeded, go to 3.

(ii) If (O,1} feasible, record overall (I) solution, go to 4.1.

(iii) Otherwise, set ^(k) equal to the minimal LP objective function

added to the current value of z; and set j* corresponding to the

smallest fractional value of the LP variables.

Obtain the roundup solution if currently feasible, and go .o 2.6;

otherwise, go to 2.7 when a = 0 and go to 2.10 if a = 1.

2.6	 Sub-subproblem. Extract and obtain a solution to the sub-subproblem.

Record the overall (I) solution. Go to 4.2.

2.7	 Feasibility test. If any 	 0, set j* = j (solution

at next level), and go to 2.13.

2.8	 Double-ceiling test. If any j such that n(Q,j) > 0,

z + cj + minj cj > z* - T, set n(k,j) = 0 (i.e., cancel y. at the

level k); if n(k,j) = 0 for all j, go to 3.

2.9	 Select branch j(a = 0). If ' n(k,j) > 0 for all j (preferred set

null), go to 3. Set j* = first j to satisfy

^cj*/ 1n(k, j*) I] < [.j/J n(k,j)JJ for all j such that n(k,j) < 0

(i.e., for all j in the preferred set).

2.10	 Update 0, n. Set ^(k + l) _ ^(k + 1) - In(k,j*)la

n(k + 1,j) = In(k,j)J for j = 1,..,n. If ^(k + 1) = 0, go to 2.13.

For each i such that s i < 0 (i.e., for all rows of the subproblem)

and aij* = 1, set n(k + 1,j) to n(k + l,j) - l when a ij = 1

and j cF.

2.11	 Local dominance test. If, for any jJ , n(Q + l,j) = 0 and

cj* < cj , set n(k,j) = 0. If a = 0, go to 2.13.

2.12	 Construct preferred set. Set i* (the preferred row) to be the first

i such thatjEF ai*j	 ^jeF
a
ij

for all i with s i < 0. Set

n(k , j) to -n(kJ) for the j such that a i*j = 1.

2.13	 Update the slack column and other parameters. Set s 	 to s + aij*

for i = 1,...,m, z = z + cj* , a = 1, ^(k + 1) = &(k). Go to 2.1.

2-20

}

...

i

i
3

III. Backward Step

3.	 Set k=9, - 2. If Z < 0, go to 5 (termination). j* = cr(t + 2).

z = z - cj* , s = s - a ij* for i = 1,. , ,m. ^(Q + 2) - (Q -L l).

a = 0. Go to 2.1.

IV. Feasible Solution

4.1	 LP (0,1) feasible, or search reaches solution. Reduce overall

solution to extreme point. Record current solution y and

c'y = z. Set z* = z. Go to 3.

4.2 Search produced via sub-subproblem. Reduce overall solution to an

extreme point.. Record the overall y and c'y = z. Set z* = z.

If E(k) >. z* - r, go to 3. If a = 1 go to 2.10, otherwise

(a = 0) go to 2.7.

V. Termination

5.	 Optimal solution ascertained or no feasible solution exists.

2.3.5 AN EXAMPLE

The following example will demonstrate how the algorithm is applied to the

traffic model problem. The input obtained from MPLS is an occurrence table

which is as shown in table I.

The constraint matrix is displayed as in table II. Assume we intend to find

a traffic model with the minimum number of missions and the cost coefficients

are in the column matrix of all l's. Since the traffic model is a set

partition problem, we transform the cost function as indicated in section

2.3.1 with M = 100. The new cost column is as shown in table II. The

search follows the outline of the Set Covering Algorithm. As an example, the

enumeration of the problem in table II is demonstrated in table III. In each

level on the forward step, the LP subproblem is solved and the lower bound

is updated. Ceiling z* is recorded after the rounded-up solution of 	 LP

has been reduced to an extreme point. The search always branches forward

until it reaches node 6. At node 6, the lower bound is equal to the ceiling,

so a backward step is taken. In each backward step, it is found that

Z* - ",(Q) < z, so z* is the solution.

4

5

6

7

8

9

10

11

12

13

14

15

TABLF I.- OCCURRENCE TABLE

Feasible combinations

1,16,17,18,19,20,21,64,65,66,67,68,73,74

2,16,23,24,25,26,27,28,29,64,65,66,69,70,71,73,74

3,17,23,30,31,32,33,34,35,64,67,68,69,70,73,74

4,36

5,37,38,39,40,41

6,37,42,43,44

7,38,45,46,47

8,48,49,50,51

9,48,52,53,54

10,22,24,30,55,71

11,18,25,31,39.42,45,49,52,56,57,58,72

12,19,26,32,59,60,65,67,69,73

13,20,27,33,36,55,56,51,62,66,68,70,71,74

14,21,28,34,40,43,46,50,53,57,59,61,63,72

15,22,29,35,41,44,47,51,57,58,60,62,63,72

N
l
fV
W

TABLE II.- AN EXAMPLE CONSTRAINT MATRIX

[A blank entry in the constraint matrix means zero]

Col.	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14 15 •16 17	 18	 19	 20	 21	 22	 23	 24	 25

c'	 (101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 201 201 201 201 201 201 201 201 201 201)

Raw

1	 ^

2

3

4

.5

6

8

9

l0

I1

12

13

14

i5

i

i

TABLE II.- AN EXAMPLE CONSTRAINT MATRIX (Continued)

[A blank entry In the constraint matrix means zero]

Col. 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

c' (201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 -201 201 gal 201 201 201 201 201 201 201

Raw

1 1 1 1
i

-
1 1 1 l 1 1

1
1 1 1 1 1
1 l 1 1

1 ^ 1 1 l

1 l 1
l

1 _

1 .1 1 1 1
1 1 ^--_

1

1 1

1 1 1 l l 1
1. 1 1 1 7 -	 i

i

1

3
4
5

s^
	 6

7

B
9
10

it

12

13

14

15

TABLE II.- AN EXAMPLE CONSTRAINT HATRIX (Continued)

[A blank entry in the constraint matrix means zero]

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

01 2D1 201 201 201 201 201 201 201 201 201 201 301 301 301' 301 301 301 301 301 301 401 401)

1 1 1 1 l 1 1
1 i 1 l 1 ^ 1 1

. 1 t 1 i 1 1 3

1 1 1

l 1
1 1 7 1 1

1 l 1 1 1 1

1. ^ 1 1 1 1 1. 1 1

1 l 1 1 l l
1- 1 1 1 1 1

TABLE III.- ENUMERATION HISTORY OF EXAMPLE

N
IN

Enumeration diagram Algorithm parameters

(Initialization)
Z a C(fl Z Z* a(£) F^ ^*1 PO

0 1L -1 - 1010 - _ 1,2,...,74
set	 T = 0.998

029L:-^- 1 1 6.5 930 207 -
- -

1,2,...,74 22

0
2YL2 -	

2
y3B = 1 2 1 6.5 409 107 22 22 10,15 F1 - P 36

1	 x22	
2	

x38 -	
3	

x48 - 3 1 6.5 308 307 38 22,38 5,7,10,15,41,47 F	 - P 48-

1	 x22 y l	
2	

y30 - 1

	

3	
y4$ - 1	 4	 y°^ 1 4 1 6.5 308 107 48 22,38,48 5,7,8,9,10,15,41,47, F 1 - P 42

I 51,54

l	 Y
22 - 1
	

2	
x38 - l	 3	

x48 - 1	 4	
x42 - i 5	 y21 - 1 5 1 1 6.75 710 107 42 22,38,48 5,6,7,8,9,10,11,15,37 F	 _ P-

l
21

42 39,41,44,45,47,48,49
51,52,54,58

Y	 = 1	 x36 r l	 x48	
1	 y42 °	 y21	

.

l	 22 	
3	 4	 , 6 0 7 7 7 21 22,38,48,

42,P1
1,5,6,1,8,9,10,11,14,
15,18,37,,39,40,41,43,

"

- PF144,45,46,47,49,50,51,
52,53,54,51,58,63,72

y22 - 1 y38	 1	 y48 - 1 x42T -I^1	
2	 3	 4 5 0 6.75 - 7 - - - - -

1	 x22. - i	
2	

38	 y48 = l
	

4 4 03 .5
7

I ^y
22_2

x38 - 1	 3 3 0 76.5 - - - - - -

y	
- 1	 ^

1	 22	 2	 '3 ®
I 2 0 n'.5 y

7

-

-

1	 . `	
--	 -- --

"2$
1 .0 6.5. - -	 -

^
-

f

^"

I 	
?-1)

The following modificati ons may result in the improvement of program

efficiency.

1. Based on the fact that the rounded-up solution is always feasible, in

outline 2.5, after obtaining the rounded-up solution, control should

always go to 2.6.

2. In the outline 2.11,.the local dominance test may lead to an infeasible

solution unless we stress column j is dominated by column j*. For

example, consider the problem

min 5x + + x2 + 2x3

xI	
= 1

x 1	 + x2	 = 1

X + x2 + x3 	= 1

c2 = 1 < c l = 5 and assuming j* = x2 ; canceling x 	 will lead to an

infeasible solution which will not satisfy the first row of constraints.

3. In solving a set partition problem, any jcF such that A ° Aj * ^ 0
should be canceled on a forward step. By doing that, nut only can we

exclude more branch candidates, but also we can save the computing time

in solving the LP subproblem. For example, in tables II and III, in

the first level according to the algorithm we only canceled y l0 and

yi5 . However, noticing the equality constraints,
y24' y30 , y55' y71'

y29 5 y35' y41' y44' y47, y54' y58' y60' yfi2' y53 and y
72 should be

canceled also, since any of those variables not equal to zero will result

in an infeasible solution by branching on y22.

2-27

3. PROGRAM USAGE

3.I INPUT DESCRIPTION

The two types of input data for the SCA program are the source input from a
file on logical unit 2 and the tutorial input data specified by the user.
All source input data are nonnegative integars. Logical unit 2 is built as a

temporary file in the main program to store the feasible payload combinations
from the MPLS. Because of the core storage limitations, the SCA is designed

to handle a traffic model problem with a maximum of 500 combinations and 100

payloads. If the number of feasible combinations exceeds 500, the MPLS will
reduce it to within that limit, Subroutine TABLE reads in the information on

each feasible combination from logical unit 2. Within the information combi-

nation ID, different payloads in that combination, and combinations cost co-
efficients are stored. All the inputs the SCA needs is a vector c, the vec-
tor of cost coefficients, and a constraint matrix A which is displayed as

an occurrence table. The cost vector is directly stored in the column array

KCJ. The matrix A is stored as two vectors, i.e., KARR and NOPERC. For
example, suppose A is

column 1 2 3 4

row

1

2 0 1 0 1

3 1 0 0 1

Then A is posed as a vector KARR

indices of rows of all nonzero ent

position vector, NOPERC (I) I=1,5 =
keeps track of the column interval

A starts in KARR (NOPERC(j)) and

example, we want to locate the I's

(J)
J=1,6 = (1,3;2;1;2,3), which contains the

Ties coiumnwise from left to right. The

(1,3,4,5,7) containing n + 1 elements,

in KARR. This implies that column j of
ends in KARR (NOPERC(j+l) - 1). For

in column 4.

Set j = 4, then KARR(NOPERC(j)) = KARR(5) =2,

3-1

KARR(NOPERC(J+l) - 1) = KARR(7-1) = KARR(6) = 3; so column 4 14<as two 1's,

on row 2 and 3, respectively.

The tutorial input data required for the SCA program can be either user-

specified data from a demand terminal or from card decks. These data are

read via logical unit 5 using a free field format. Sample input/output is

given in section 5.4 for the reader's reference.

3.2 PROGRAM RUN PREPARATION
i

The SCA has been implemented on the UNIVAC 1110 EXEC 8 system as a subprogram	 r

of SAMPLE. FORTRAN V standard logical input and output devices are used for

tutorial input (logical 5) and printed output (logical 6). For the source

input of the SCA, logical 2 is used.

In order to eliminate the reiteration of usage instructions which have already

been elaborated in the SAMPLE User's Guide (ref. 2), a discussion of the

natures of those different interactive options will be introduced as follows

instead.

3.2.1 INTERACTIVE OPTIONS

1: USE PREVIOUSLY DEFINED FEASIBLE COMBINATIONS

2: USE INTERACTIVE FEATURE IN TRAFFIC MODEL

3: NONE OF THE ABOVE

Option 1 will enable the user to use a data file input which contains previ-

ously defined feasible combinations for SCA execution. In this way, the

execution time of the MPLS can be saved.

Option 2 mainly supports the communication between the SCA and the OSARS. In

case the traffic model cannot be scheduled by the OSARS, or is not desired

for some other reason, this option gives the user the means of changing the

traffic model.

Option 3 implies that the user does not desire to select option 1 or 2.

3-2

3.2.2 COST CRITERIA OPTIONS

This option gives user the choice of one of the performance criteria against

which traffic model will be generated. The meanings of different criteria

have been discussed in section 2.2.2.

3.2.3 CRITERIA FOR FLIGHT/COMBINATION SELECTION OPTION

CHOOSE CRITERIA FOR FLIGHT/COMBINATION SELECTION:

1: MAXIMUM NUMBER OF PAYLOADS

2: MAXIMUM PRIORITY

3: MINIMUM COST

4: MI"tiIMUM COST PER PAYLOAD

5: NONE OF THE ABOVE.

These criteria help the user to make the decision about which mission he likes

to enter in the traffic model. If the user is interested in adding certain

feasible combinations which contain the largest number of payloads, he can

select option 1. Then the program will print out five feasible combinations

with maximum number of payloads. Presently, the priority is determined by

the number of payloads, so option 1 and option 2 give the same output. By

selecting option 3, the user will get a list of five feasible combinations

with minimum cost coefficient. Option 4 will give a list of five feasible

combinations cost coefficient per payload. Control goes to the Manual Flight/

Combination Option when 5 is chosen.

3.2.4 MANUAL FLIGHT/COMBINATION OPTIONS

The available options are:

N: ENTER rOMBINATION "N"

-1: NEW SELECTION CRITERIA ARE DESIRED

-2: CONTINUE ON TO TERMINATION

-3: VIEW ALL COMBINATIONS SPECIFIED SO FAR

-4: VIEW INFORMATION ON COMBINATIONS SPECIFIED SO FAR

-5: REMOVE LAST SPECIFIED COMBINATION

..A

3'.3-3
5

This part follows right after "Criteria for Flight/Combination Selection
Option" in which the user has viewed the relevant information on the combi-
nation he possibly adds in the traffic model. If the user would like to
add a specific mission in the traffic model, he responds by entering the
feasible combination number "N." The program will take that feasible combi-
nation into the SCR's partial solution. If the user still wants to see more
relevant criterion selection information, he gust enters -1. The control
goes back to Criteria for Flight/Combination Selection Option. Option -2
makes the control continue to find a traffic model with the specified
partial solution. A traffic model is built around the partial solution;

local optimality replaces global optimality. Option -3 gives the user a
chance to lgok through all the missions already specified in the partial solu-

tion so he will not enter any of those missions again. By selecting option

-4, the user will see a list of missions specified in the partial solution

and their relevant information on Shuttle sequence, in0 inat.ion, payload
margin, and so on. After the user looks through the detailed information on

those specified combinations and he is not satisfied with the mission he

just added on the partial solution, he can enter option -5 to remove it.

3.2.5 TRAFFIC MODEL INFORMATION OPTION

The tutorial of this option is

DO YOU WISH TO SEE INFORMATION ON THESE MISSIONS?

0: NONE

-1: PRINT ALL

-2: PRINT ALL AND SAVE ON SCRATCH FILE

-3: SAVE ON SCRATCH FILE ONLY

N: ENTER MISSION "N"

This option follows the solution of the traffic model. If the user does not
need to see any detail information on the traffic model, he just enters 0.

He can enter -1 to see them all or enter N, the combination number, to get

the information on a particular one. Options --2 and --3 provide the user an

opportunity to store the traffic model on a scratch file (logic unit 1) for

further analysis.

3-4

^ I

3.2.6 MISSION OMIT OPTION

The display statement is

WHICH MISSIONS DO YOU WANT OMITTED?

After the user viewed some information an the traffic model, he may need to

delete certain combinations by use of this option.

3.2.7 TERMINATE OPTION

The display statement is

SELECT AN OPTION: (3 TO TERMINATE)

Input 3 to terminate execution.

3.3 OUTPUT DESCRIPTION

3.3.1 NORMAL OUTPUT

Normal output for the SCA program can be classified into five basic types:

1. Source input data - The initial output of the SCA is the source input

data which is displayed in the occurrence table, The title of that table

is printed out as "n OCCURRENCE TABLE," where n is the year with which

the particular case is executed. This is immediately followed by

"PAYLOAD" and "COMBINATIONS." Under the column of "PAYLOAD" are printed

out the payload identifications. Under the column of "COMBINATIONS" are

combination numbers which carry that payload.

2. Tutorial instructions data	 These data are printed out in the alpha-

numeric format and provide the user a guide of various interactive se-

Lections during the execution of the SCA.

3- Criteria for flight/combination selection data - The output is written

out in two columns; the first column contains the payload identification,

and the second column displays the corresponding criterion.

4. Combination information data - The output of these data is in alpha-

numerical format and displays the relevant information about the mission

in an understandable form. This output is requested by the user in the

Manual Flight/Combination Option.

3-5

a

5. Traffic model data - These data give the total number of combinations in

the traffic model, the mission identifications, and the total cost of

this traffic model.

All of the five output types cah be identified in a sample input/output in

section 5.4.

3.3.2 ABNORMAL OUTPUT

Diagnostic messages from subroutines of the SCA are listed below.

Diagnostic Message Subroutine Description/Action

THIS MISSION IS UNACCEPTABLE SET In the flight/combi-
BECAUSE PAYLOAD XX IS DUPLI- nation option, the user
GATED entered more than one

combination which covers
the same payload.	 XX is
the payload ID.

ERROR, ALL ROWS ARE NOT SET The user wanted to omit
COVERED, RETURN TO PREVIOUS some combinations that
SOLUTION, PLS NOT COVERED will cause some payloads
ARE XX, YY, ZZ not to be covered.	 The

program will return to a
previous partial solu-
tion.	 If the user wants
to omit some combinations
this time, he should
refer to the occurrence
table and be sure all
payloads can be covered.
XX, YY, ZZ are the pay-
loads which failed to be
covered.

REDIMENSION KARR (XX) TO SET The total number of unity
KARR (YY) entries in the con-

traint matrix YY which
exceeds the dimensioned
space XX.

I

I

Diagnostic Message

AVAILABLE STORAGE EXCEEDED
AFTER ITERATIVE STEP NO. I

TABLE ERROR***INPUT TO
SCA IS CLOBBERED**

Subroutine	 Description/Action

SET	
Variable KXB (I,J)
should be redimensioned
by increasing the value
of 1. The value of
KTEST should also be
increased by the same
amount.

TABLE	 This message impliea
that more than one pay-
load in a feasible
combination have the
same ID. It could be
caused by the numbering
or naming method in the
MPLS .

4. EXECUTION CHARACTERISTICS

4.1 RESTRICTIONS

The SCA program has these limitations:

a. The largest traffic model problem the SCA can accept is 100 payloads with

500 combinations.

b. The level the SCA can reach is limited to a maximum of 6.

c. The program is valid only if there exists a feasible solution to the

traffic model.

d. The maximum number of iterations allowed in 1.P is 243.

4.2 RUNNING TIME

The run time for the SCA program may vary depending on the problem executed.

A rough estimate of the time needed for a run can be obtained from the plot

of the number of missions as a function of running time in figure 2. The
data from which this plot is constructed are from 12 cases with unity cost

coefficients.

4.3 ACCURACY/VALIDITY

The SCA program is written in single precision, and has been checked out

using small problems, in a range from 11 feasible combinations and 8 pay-

loads to 229 combinations and 97 payloads, with a maximum of 3 payloads

per combination. It is felt that the program is operating correctly and

is providing reliable solutions to the problems.

Problems used in checkout included three data sets and 36 problems. Each

of these problems has been tested on four different sets of cost coeffi-

cients with a maximum of three payloads per combination. All solutions

have been checked and were found to satisfy the constraints and to be

optimal. Some other problems with more than 400 combinations which have a

maximum of four payloads per combination were also run and resulted in an

indication that no solutions were possible. The reason for this has not

i^

80

70

60

Ln 500
0
U
L+J
th

LU 40

H
F-

30

^^ r

20

5. REFERENCE INFORMATION

f

5.1 FUNCTIONAL FLOWCHART

Figure 2 illustrates the flow of the controlling subprogram logic. Refer

to section 2.1 for the definitions of those symbols used in this functional

flowchart .

i

1

START

i
S

I

Set n(1,j) _

	

	 a^ j , 3 = 1, ..., n
Jce]

SetFj=j,j=],...,n

Set sl

00) W m, C(l) = -1, Q(1) = 0

i
R=O, Y = O, z = 0, z*=c'e

update counters

°^	 1, Y = y+ 1	 5

Yes	
^`R)Is 0\

No

Yes	 Is

(D
7

Ewa	 ., '^

r'	 Set ^(, + 1) _ ^P(R)	
I

Set F	 /rl(Q,j)/ > 0)	 1

Isn
3	 ^	 Yes	 ^ /T1(Q,j)I

No

Solve linear program associated

1 ,®^^! with current subproblem

]

Fi gure 2.-- SEA functional flowchart.

5-2

I

Is \

oo
problem feasible

Yes
(3 } or ceiling exceeded

No

Is

Record over Yes	 LP solution

ail integer
(0,1) feasible

solution ?

No

4
Set ^(Q) equal to z + (minimal LP

object function).	 Set next branch j*

corresponding to the smallest frac-

tional value of LP variables. 	 Obtain

a round up solution.	 Extract the no

integer variables and associated

constraints to form a sub-subproblem.

In subroutine PURIFY, obtain a solution o

the sub-subproblem.	 Record the overall

integer solution.	 Reduce overall solutio

to an extreme point.	 Record the solution

y	 and	 c'y = z.	 Set z* = z.

a=0

a=1

^	 J J —
Z* - T

set rj (I,])	 ^,	
No

_

i.e., cancel yj

at level t

Is

n(R , j) ? 0

3	
Yes	 for all j, i.e.

preferred set
n.u17

7

No

Set j* to be the first j to satisfy

C"*	
<	

C.

	
for all

A It,j*

j such that n(R,j) < 0, i.e., for all

j in the preferred set

Set W+1) _ 4h(91+1) - /nl(Q,j*,

n(R + 1, j) _ /n(EJ)/ for j = 1,..., n

7

Figure 2.- Continued.

5-4

ls^^

Is

Yes	 ^(k + 1) = 0

No

For each i such that -s i < 0,

(i.e., for all rows of the

subproblem) and a ij* = 1, set

n(p. + 1, j) to n(L + l,j) -1

when e 	 1 and j e F

If, for any i e F, n(k + 1,j) = 0

and c i * < cj , set n(2,j) = 0

a-0
cx = ?

M=1

-,	 Construct preferred set, set i* (the preferred

row) to be the first i such that

j s F ai *j ^ F-j c F a i j for all i with

s i < 0. Set n(Q,j) to -n(R,j) for the j such

that ei*j	 1.

Update the slack column and other parameter?

Set s to S
i
 + a ij* for 1 = 1, m*

Z = z + cap; , a	 + 1) _(^,1•

a(z + 1) = j*

5

Figure 2.- Continued,

5-5

i

a
3

LP (0,l) feasible, record
current solution y and
c'y = Z. Set z* = z

3

Backward Step. Set E W Q - 2

1

Yes	
Ys

End	 k < 0

Set j* = a(z + 2), z = z - cj*

S = S i - a i j* , i = 1, ,.., m

CCE + 2) = ($ + 1)

Seta = 0

5]

Figure 2.- Concluded.

y
")F'

POO'k PU	 jrrk

5.2 SYMBOL DEFINITIONS

Table IV defines a list of parameters specified in DATR statements in the

SCA subprogram. Table V gives the description of all variables used in

labeled COMMON.

'	 1	 ^

1

i

TABLE IV - PARAMETERS IN DATA STATEMENTS

Parameter
name

KSTRI

KSTR2

KSTR3

KSTR4

Dimension	 Type	 Value Description

1	 I	 1 (0) When KSTR1 = 1, the

algorithm always extracts

and gets a (O,l) solution

from the sub-subproblem.

Otherwise, the sub-subproblem

is explored Only when the

LP roundup solution is

currently feasible.

1	 I	 1	 (0) When KSTR2 = 1, the

algorithm will attempt to

reduce (0,1) feasible
1

solutions to (O,l) feasible

extreme points of the	 j

associated continuous

problem.	 Otherwise, this

attempt will not be made.

1	 I	 l(0) When KSTR3 = 1, the search

will select branches by

the minimum-cast-per-

constraint-satisfied rule;

otherwise it uses the

maximum-number-of-constraints-

satisfied	 rule.

1	 I	 1(0) When KSTR4 = 1, the search

will	 ignore other criteria

and branch on the minimum

fractional LP value when

available.	 Otherwise, the

branch selection rule is

determined by KSTR3.

5-8

I

Parameter
name	 Dimension	 Type	 Value

KSTR5	 1	 I	 I

5-9

TABLE IV. - PARAMETERS IN DATA STATEMENTS - Concluded

Descri tion

When KSTR5 = 1, the

algorithm supposes that

the user will supply a

slack cost, either by

setting it directly to MM

or by supplying MAXCST, in

which case MM is set to 5*

MAXCST. If KSTR5 = 0, the

algorithm automatically

takes the slack cost as 0.

When KSTRb =; 1, LP is

performed after forward

and backward steps. Other-

wise LP is performed only

after forward steps.

'	 I	 i

1

I

TABLE V. - VARIABLES IN LABELED COMMON

a COMMON Block Name: C9

Description: C9 retains the information about the interactive selection of
the cost coefficient of the objective function and the output of the occur-

rence table.

Location's Name Dimension Type Description

2 MM 1 1 Total number of feasible combi-

nations generated by MPLS

51 COSTOP 1 1 Indicator of the choice of cost

coefficients on the objective
function

54 NOTAB 1 I Indicator of listing or suppressing

the occurrence table output

s COMMON Block Name: C13

Description: C13 retains information about the structure of the constraint
matrix which defines the traffic model problem and a flag to trigger the OSARS.

Location Name Dimension Type Description

1	 - 501 NOPERC 501 I The position vector indicating the

number of ones in each column of

the constraint matrix

502 - 2501 KARR 2000 I The position vector indicating the

rows which correspond to one entries

in the constraint matrix

I I S^

++

TABLE V. - VARIABLES IN LABELED CWHON - Continued

s COMMON Block Name: C13 - Continued

Location Name Dimension	 lype Description

2503 KiV 1	 I The number of columns of the

constraint matrix

2504 NOSARS 1	 I A flag indicating the user's

choice of the use of the OSARS

COMMON Block Name: C16

Description:	 C16 contains information about the location of testing range of

each combination.

i
Location	 Name Dimension 7y P	 Description

1	 - 500	 LOCEOW 500 A	 A vector to store alphanumerical

identification of testing site

where a particular mission is to be

launched	 3

® COMMON Block Name: C18

Description:	 C18 contains information about the coefficients and the priorities

of those variables in the objective function.

Location	 Name Dimension Type	 Des^t,ion

1	 - 500	 KCB 500 I	 The cost coefficients of the ob-

jective function is to be mini-

mized in the SCA.	 They may be

defined as feasible combination's

OM5 weight, one-load factor, or

one--payload length

501 - 1000	 PRIOR 500 i	 The weight factor to determine

each feasible combination's pri-

ority.

i 	 ,
I	 ^

i	 I	 i	 i

TABLE V.- VARIABLE IN LABELED COMMON - Continued

a COMMON Block Name: C27

Description: C27 retains various information about the branch-and-bound

algorithm used in the SCA.

Location	 Name	 Dimension	 I^Rt	 Description

1 - 50	 ZLB	 50	 F	 The-lower bound of the

branch-and-bound method

51 - 3550	 KXB	 7 x 500	 I	 The number of unsatisfied

	

3551 - 3650	 KYS	 100	 I

	

3651 - 4150	 KCOM	 500	 I

4151 - 4651	 KPREF	 501	 I

4652 -	 5151 LBSC 500	 I

5152 - 5651 LPBTA 500	 I

5652 - 6252 LIDRW 601	 I

constraints of each variable

at different levels

The value of the slack variable

A vector to store the column

number of those variables in

the preferred set

A vector to store the row

number of the infeasible

constraints

An indicator of a decision

variable's value in the LP

solution. LBSC(K) negative

means variable K is one.

A vector to store the pivot

row of each LP iteration

Scaled cost coefficients of

the objective function

a

TABLE V.- VARIABLE IN LABELED COMMON - Continued

A COMMON Block Name: C28

Description: C28 transmits information between tt,e SET routine and the
SIMPLX routine.

Location Name Dimension T)-e . Description

i KPV 1 I Indicator of the number of

elements in the preferred set

2 KHP 1 I Level indicator of the SCA

3 KTEST 1 I The highest level allowed in the

SCA	 j

4 MM i I Cost coefficients of the slack

variable of the objective function

5 NLP i I An indicator of the number of

6	 KSOL	 i	 I

7 KUNF 1	 I

8 KFEAS 1	 I

9 US 1	 I

in KZSTR 1	 1

times subroutine SIMPLX has been

called

Indicator of the number of

improved solutions reached in the
3

SCA

A variable to indicate the feasi-

5ility of the LP solution

An indicator of the binary feasi-

bility of LP solution

Current value of the objective

function

Current upper bound of the	 i

TABLE V.- 'VARIABLE IN LABELED COMMON - Continued

a COMMON Block Name: C28 , Continued

Location Name Dimension lype

12 K1 1 I The number of variables in the

preferred set

13 NEP 1 I The number of times an extreme

point reduction option is used

14 NEPSC 1 I The number of times an extreme

point reduction is successful

15 NOGG i I A flag indicating infeasibility	 3,

in subroutine PURIFY

16 LD7 1 I A flag to print out final infor-
mation for subroutine PURIFY

17 KSUM 1 I Current value of the objective
function in a sub-subproblem

TABLE V.- VARIABLE IN LABELED COPRION - Concluded

0	 COMMON Bloc: Name; C29

Description; C29 retains various info-M!tion about the partial solution of
the SCA.

Location Name Dimension Type Description

1	 - 500 KSEQU 500 I A vector to store the partial
solution

501 KSC 1 I Level indicator

502 KANDO 1 I A flag indicating that the OSARS

can schedule the traffic model when

it equals one
i

503 KNSKDI 1 I A flag to choose the solution

output format for the SCA or
the OSARS

504 - 553 KPSKED 50 I A vector to store the missions
scheduled by the OSARS

554 KPRMAX 1 I Best attainable mission priority

555 KNOSKD 1 I The number of missions scheduled

3

by the OSARS

4

5.15

5.3 SUBROUTINE DOCUMENTATION

Individual subroutine documentation appears in alphabetical order on the

following pages.

5-16

IDENTIFICATION

Name/Title	 - BISRCH (Binary Column Search)

Author/Date	 - Han Chang, July 1975

Machine Identification	 - UNIVAC 1110

Source Language	 r- FORTRAN V

PURPOSE

Subroutine BISRCH searches and positions particular row entries for the

given column of a constraint matrix. It was written to update the n

matrix, generate a preferred set, test for an extreme point, etc.

USAGE

a CALLING SEQUENCE

CALL RISRCH ($,K,J)

Arguments:

Parameter
Name	 In/put	 Dimension	 Type	 Description

$	 Out	 1	 I	 Nonstandard return signal

when a particular entry

has been found.

K	 In	 1	 I	 The column index on which

a particular row entry is 	
;s

to be searched

J	 In	 1	 I	 Row index on which an entry

is to be positioned at

a given column K
,s

3

BISRCH-1

5/75
5--17

a Data In/Out

Labeled COMMON (refer to the labeled COMMON description section):

Block Name	 Input	 Output

C13	 I - 501'

502 - 2501

METHOD

Model

Subroutine BISRCH searches over a column interval
of

the constraint matrix

to locate a particular entry. The output consists of a nonstandard return

whenever this entry has been found.

BI

5/75

IDENTIFICATION

Name/Title	 - FNDFLT (Find Flight)

Author/Date	 - Han Chang, July 1975

Machine Identification	 - UNIVAC 1110

Source Language	 - FORTRAN V

PURPOSE

Subroutine FNDFLT provides the necessary information about a combination

by the interactive request from the users It also saves that information

from the traffic model in a scratch file of the user's choice.

USAGE

CALLING SEQUENCE

CALL FNDFLT (KZS,LIDRW,IPONT)

Arguments:

Parameter

	

Name	 In/Out	 Dimension	 ly a	 Description

KZS	 In	 1	 I	 Total number of missions to

be output

	

LIDRW	 In	 1	 I	 A Vector to store the mission

numbers

	

IPONT	 In	 1	 I	 A flag to trigger the output

of the statistics of the

current flight schedule

8/75
	

FNDFLT-1

5-19

I

a DATA Wout
Labeled COMMON (refer to the labeled COMMON description section):

Block Name	 Input	 Oust

C13	 2503

METHOD

Subroutine FNDFLT searches over a data file (logic unit 2) to locate parti-

cular Missions specified by the user. Detailed information on those combi-

nations are output in an understandable format by calling subroutine DISPLY.

Information about the combinations in the traffic model is sacred on the

scratch file (logic unit 1) at the user's request.

f

IDENTIFICATION

Name/Title - PURIFY (Purification of LP Solution)

Author/Date - Han Chang, July 1975

Machine Identification - UNIVAC 1110

Source Language - FORTRAN V

PURPOSE

Subroutine PURIFY purifies noninteger linear programming solution into an

improved rounded-up integer solution.

USAGE

* CALLING SEQUENCE

CALL PURIFY

a Data In/Out

Labeled COMMON (refer to the labeled COMMON description section):

Block Name Input	 Output

C13 l	 - 501

502 - 2501

2502

C18 1 - 500

C26 4

C27 3551 - 3650

4151 - 4652

4653 - 5154

5155 - 5654

5655 - 6255

s

t
1

SUBROUTINE PURIFY

3

i

1

Block Name	 Input	 Output

C28	 1

2

6

9

10

13

	

15	 15
	

3

	

17	
17

	 i

C29	 1 - 500	 1 - 500
501	 501

Whenever the linear programming solution is not integrally feasible, a sub-

problem is created by eliminating the columns associated with variables

having an integer value and those constraints satisfied by these variables.
In the subproblem, PETRIFY successively sets to one the variable corresponding

to the minimum-cost-per-constraints-satisfied ratio until all constraints

have been satisfied.

REFERENCE

C. E. Lemke, H. M. Salkin, and K. Spieiberg, "Set Covering by Single

Branch Enumeration with Linear Programming Subproblems," Operations

Research 19, pp. 998-1022 (1971).

i

I

IDENTIFICATION

Name/Title

Author/Date

Machine Identification

Source Language

SUBROUTINE RIDMOD

RIDMOD (Read input and Mod)

Han Chang, July 1975

UNIVAC 1110

FORTRAN V

PURPOSE

Subroutine RIDMOD provides the selection of flight/combination information

for user's reference when he goes through the SCA interactively. Based on

this information, the user can make his judgment as to which combination

he would add or delete from the traffic model.

USAGE

* CALH NG SEQUENCE-

CALL RIDMOD

DATA In/Out

Labeled COMMON (refer to the labeled COMMON description section):

Block Name	 Input	 Output

C31	 1 - 4

METHOD

Subroutine RIDMOD collects the user's numerical choices on flight/combination

option and sorts them out by using a MOD fu g -tion. Then subroutine SET uses

this information as inppt to generate the N,)^^r flight/combination information.

5/75	 RIDMOD-1

l
;9

5-23

SUBROUTINE SET

IDENTIFICATION

Name/Title	 - SET (Set Covering Algorithm)

Author/Date	 - Han Chang, July 1975

Machine Identification 	 - UNIVAC 1110

Source Language	 - FORTRAN V

PURPOSE

Subroutine SET is the main driver of the SCA. SET determines the feasibility
of the intermediate solution from subroutine SIMPLX on each level and decides

whether it should go forward or backward from the existing node.

USAGE

e CALLING SEQUENCE

CALL SET (IMODE)

Arguments:

Darama+ar

Name	 In/Out	 Dimension	 ape	 Description

IMODE	 In	 1	 I	 Indicator of whether the

interactive feature-is

needed in SET

® DATA In/Out

Labeled COMMON (refer to the labeled COMMON description section):

Block Name	 Input	 Output

C13	 1 - 501	 1 - 501

	

502 - 2501	 502 - 2501

2502	 2502

2503	 2503

8/75	 SET-1

i

5-24

{ 1!

r

r	 1
`

t	 ^

!}	 1.

I

Block Flame Input O^^t^ut	 +

C13 1'504 2 504

2505

1

C18 1	 — 500 1 — 500

501	 — 1000

C26
1

2

3
a

4	 s

5

6

7

8

10

C-27 1	 -	 50 1	 -	 50

51 - 3550

3551 - 3650

r .^ 3651 - 4150

4151 - 4651

4652 -	 5151

5152 5651

5652 6252

C-28 1	 3

2

3

4

5

6	 a

Block Maine	 Input	 Output

C28	
8	 8

9
10
11
16

C29	 1 - 500

	

501	 501

502

METHOD

In each level, subroutine SET determines the subproblem of free variables

and sends it to subroutine SIMPLX. SET tests the result of the subproblem

which has been solved by SIMPLX, zhen directs the program to branch forward

if there is a possibility of getting a better solution; otherwise, a backward

step will be taken.

REFERENCE

C. E. Lemke, H. M. Salkin, and K. Spielberg,"Set Covering by Single Branch

Enumeration with Linear Subproblems," Operations Research 19, 998-1022 (1971)

SUBROUTINE SIMPLX

IDENTIFICATION

Name/Title	 - SIMPLX (Simplex)

Author/Date	 - Han Chang, July 1975

Machine Identification	 - UNIVAC 1110

Source Language	 - FORTRAN V

PURPOSE

Subroutine SIMPLX solves the linear program associated with a subproblem

defined by subroutine SET. This subroutine provides the LP solution over

free variables and the information about whether subroutine SET will take a

forward or backward step.

1

USAGE

® CALLING SEQUENCE

CALL SIMPLX

* Data In/Out

Labeled COMMON (refer to the labeled COMMON description section):
1

Block Name	 In	 Output

C13	 1 - 501

502 - ?501

2502

2503

2504

C18	 1	 500

C26	 4
5

	

6	
e

7

5/75	 SIMPLX-1

5-27

Block Name L9 ut	 Output

8

9

10

C27 1	 -	 50,
51 --	 3550

3551 - 3650
3651 - 4150
4151 - 5151
4652 -	 5151	 i
5152 - 5651
5652 - 6252

C28 1

2

5

6

7

8

9

10

11

12

15

16

17

C29 501	 1	 500

5Q2	 501

METHOD

A revised dual simplex method has been employed in this routine for optimizing

a linear program. This method was designed to accomplish exactly the same

function as the original simplex method, but in a way which is more efficient

for execution on a digital computer. It computes and stores only the information

5/75	 SIMPLX-2

5-28

5/75	 SIMPLXW3

that is currently needed, and it carries along the essential data in a compact.

form. In fact, all relevant information at each iteration can be obtained

immediately after the inverse of basis has been found. The bookkeeping of

a huge conventional simplex tableau becomes less attractive.

Another advantage of this method is that the basic inverse is stored in the

product form rather than a matrix form at each iteration to keep the minimal

usage of core storage.

REFERENCE

C. Hadley, Linear Programming, Addison-Wesley Co,, Inc., Reading,

Mas sachusetts, 1963.

5--29

SUBROUTINE TABLE

IDENTIFICATION

Name/Title	 - TABLE (Form Occurrence Table)

Author/Date	 - Han Chang, July 1975

Machine Identification	 - UNIVAC 1110

Source Language	 FORTRAN V

PURPOSE

Subroutine TABLE prints the feasible combination payload occurrence table

in a particular year by user's request and translates this table into

input format for subroutine SET.

USAGE

a CALLING SEQUENCE

CALL TABLE (IYEAR)
4

Arguments:

Parameter
Name	 In Out	 Dimension	 ape	 Description

IYEAR	 In	 1	 I	 The year indicator

on which data case is

based

® DATA In/Out

Labeled COMMON (refer to the labeled COMMON description section):

Block Nave	 Input	 Output

C9	 2

51

54

TABLE-1
	 5

5-30

Sri

I	 j	 i

Block Name	 Input	 Output

C13	 1 - 501

502	 2501

2502

2503

2505

C16	 1	 500

C18	 1 - 500

501	 1000

METHOD

Subroutine TABLE determines and prints a list for each payload of all fea-

sible combinations which include that payload by reading the relevant infor-

mation from a data file (logical unit 2) which has been generated by the MPLS.

a

5.4 SAMPLE INPUT/OUTPUT

This sample, input/output is to provide the reader with an example of

executing the SCA interactively. The procedure to sign on the demand terminal

and execute V,e MPLS is detailed in the SAMPLE User's Guide (ref. 2) and will

not be repeated here. All the underlined tutorials are the options which the

user may encounter in the SCA execution. Each of the underlined tutorials

is accompanied by a section code referring to the location of the option's

explanation. The alphabet prior to the section code on each underlined

tutorial will correspond to the short description of the user's response.

The descriptions are as follows:

(a) The user wants to execute SCA interactively.

(b) The user wants unity cost coefficients so he can get a traffic model with

minimum number of missions.

(c) The user wants to see the missions with maximum number of payloads.

(d) Th-- user needs feasible combination number 5 to be included in the

traffic model.

(e) The user wants to see the display of Manual Flight/Combination Options.

(f) The user wants the program to continue to find traffic model,

(g) After the traffic model is found, the user needs to see the information

on flight number 7.

(h) He does not want to see any more, so he enters zero.

(i) The user wants to have another traffic model,

(j) He wants flights 10 and 11 to be excluded from the traffic model; the

missions with maximum number of payloads have been changed.

(k) The user wants the program to continue to find a traffic model as he

specified (Notice: flights 10 and 11 did not appear in the traffic

model.)

(1) The user is not interested in seeing the information on traffic model.

(m) The user does not want another traffic model.

(n) The user terminates the execution of the SCA.

a

5-32

^	 E

F

i

3RUN HCL;; I-E 123 66-W 01 J-Q FM3-L79197
DATE: 092275	 TIME: 170746
>aUSE TEMP0R. p D3-L?3436*TEMPOR
READY
>TMAP TEMPqR.MAPsSAMPLE
MAP 0026-09/22-1009 -(19s)

TART=013533, PRqG TIZEA10Y=14225150324
3YSS*PLIB'$. LEVEL 70--1
END OF COLLECTION - TIME 3.571 SECOND:
=QT lAMPLE
INPUT TUG CHARACTER I ST I CS AND MISSION MODEL DATA:
OR EXAMPLE fADD SAMPLE. DATA99)
• ADD TEMPOR. DRTA15
SELECT AN OPTION: 	 3 TO TERMINATE ?

>1
SELECT DISPLAY OPTIONS: +. 7 FOR ALL Q 3 FOR NONE
4
SELECT AN OPTION: n 3 TO TERMINATE : s>2

SELECT AN ANALYSIS TYPE: (4 FOP HON&
:, 2

INPUT YEAR FOR ANHLYSI•^: 	 "± JO -31
>30

--; !ELECT INTERACTIVE qPTICf 42: Q F OR NONE)	 (a) 3.2.1

SELECT PERSONAL DATA B83E TO GENErRTE FEATIBLE MI01ON; Q FOR HONE.'
>567

INPUT MAK I MUM NUMBER OF PA 'L% T. v &L qME- D 10 O"a COMB I NAT I OR's :
3
3ELECT MISSION TYPE:

1: FOR INPUT CHANGE= TO LI=.T
1: NO CONSTPRINT3 APPLIED

-^	 T 1 -1: MPPLY CON_TRHINT_• ZING LI3T

3ELEGT DISCIPLINE MIX:
1: FOP INPUT CHANGE: TO LI;T
']: NO CONSTRAINT APPLIED

-11 APPLY CONSTPRINTi Lilts LI TT
-1
INPUT 1 TO POINT MISSION CLA S.• CODE LIST! OTHERWISE :VIP R LINE
r^

INPUT 1 T4 PRINT PRYLOAD T+1201PLINE MIX LIST? OTHERWISE SKIP A LIH
0
®saa MPL 3 S_ .RPTED aaoaeaaaaaa
^aaaaaaaio4!a1Paaa• STATI STICAL ANALYSI S FOR 1931 ► aasaaaaaaa+aaaa•aa ♦
TOTAL NUMBER OF COMBINATIONS GENERATED:	 34

NUMBERROF FEASIBLE COMBINATIONS: 	 11
NUMBER OF INFEASIBLE C qMBINATI qN3:	 13

TOTAL ELAPSED TIME: 	 47
QLL TIMES ARE IN MILLISECOND'S!
AVERAGE TIME PER FEASIBLE C qMBINRTI qN=	 4
AVEPHGE TIME PER GENERATED COMBINATION: 	 1

HOOSL P:O:T COEFFICIENT FOR EACH FLIGHT : (bl	 3.2.2

1930	 OCCURRENCE TABLE
PAYLOAD	 MISSIONS

i. 	 19`x!?	 1	 ^.
	
to

► ?	 I059	 4	 11
^^. j..	 3!	 ,'U^U	 3	 3	 11 ^	 '

4?	 205U	 4	 10
5?	 G491	 5
!	 awm	 b

j	 7)	 3951	 7
a?	 a mi a

s
w' ♦* MAX HO.	 INGLES

OCCURRENCE TABLE AND SCR INTERFACE V40UIREII 	 36 MILLISECONDS i
3 CHCIO^E	 FOR FL. IGHT •'COMBINATION SELECTION: 	 t5 FOR NONE). +CR.I:TERIA ^	 3.2.3
k

YOU WILL GET TUTORIALS IN MODE 1.
r AVAILABLE MI SS IONS WITH MAXIMUM NUMBER OF PAYLOADS I

V

MISSION	 PAYLOADS

2
11

1	 1
9	 1

Q'Hfl05E MANUAL FLIGHT!COMBItifITION OPTION: d	 3,2.4'	 Y•

AVAILABLE. MISSIONS WITH MAXIMUM NUMBER OF PAYLOADS:
MISSION	 PAYLOADS

11	 ^ A

1	 1
I

1, a	 3.2.4^,

i_
TABLE FOR MANUAL. FLIGHT/COMBINATION OPTIONS:

j	 7: LIST OF MANUAL. FLIiGHT!COMSIVITIOti OPTIONZ,
ti: ENTER COMBINATION "N"
_I: NEW SELECTION QPITERIA ARE DESIRED.

CONTINUE ON TO TERMINATION.
— 3: VIEW ALL COMBINATIONS 'SPECIFIED O FAR.
--4: VIEW INFORMATION ON COMBINATIONS SPECIFIED 10 PAR
—5: REMOVE LAST SPECIFIED . COMBIHATION

CHOOSE MAHUAL FLIGHT /COMBIHATI .ON OPTION: f	 3.2.4

FALL PAYLOADS CAN BE SCHEDULED IN THE FOLLOWING	 n MISSIONS.
11

TRAFFIC MODEL: COST ISG . a
TOTAL. ELAPSED TIME IN SET= 	 95
TIME PER MISSION IN MILLISEC.=	 15

r HIGHEST LEVEL REACHED =
r DO YOU WISH TO SEE INFORMATION ON THE SE MI-SZ I ON S? 3.2.5

TIME
-1: PRINT ALL
—21 PRINT FILL AND SAVE ON SCRATCH FILE,
•-3: SAVE ON 'SCRATCH' FILE. ONLY

F if :	 ENTER MISSION "ti"

i't. 5-34

FLT. NO,	 7	 LAUNCH SITE$ ETR

PAYLOADS1	 LS-01	 LCR A
3451

SHUTTLE SEQUENCE	 3—R
ALTITUDE30!3.
INCLINATION
	

23.5
TOTAL LENGTH DOWM: 13.	 TOTAL WEIGHT DOWN: 	 63x.0
PAYLOAD MARGIN: 6430. 	 LOAD FACTORt .01349
SHUTTLE DELTAV: 1275.

3.2.5

4AHICH MISSIONS DO YOU WANT OMITTED 7	 3.2.6
: 11
"10

AVAILABLE MISSION; WITH MAXIMUM NUMBER OF PAYLOADS.:
MISSION	 PAYLOADS

1	 1
1

3	 1
4	 1

CHOOSE MANUAL FLIGHT/COMBINATION OPTION:	 {k} 3.2.4
-a
ALL PAYLOADS CAN BE SCHEDULED -IN THE FOLLOWING 7 MI-33113VS-.

4	 5
TRAFFIC MODEL COST IS	 7
TOTAL ELAPSED TIME IN :SET-
TIME PER MISSION IN MILLISEC.=
HIGHEST LEVEL REACHED = 1

DO YOU WISH TO SEC INFORMATION ON

w.	 7	 .3.	 31

17.2.
?4

THESE MISSIONS?

-1: PRINT ALL
PRINT ALL AND SAVE ON SCRATCH FILE

-3: SAVE ON SCRATCH FILE PNLY
:i : ENTER MISSION "N"

}0
STATISTICS FOR CURRENT FLIGHT SCHEDULE

,AVERAGE NUMBER OF PAYLOADS PER FLIGHT = 1.14
TOTAL NUMBER OF TUGS REQUIRED = 0
TOTALNUMBER OF INITIAL OMS KITS REQUIRED -
TOTAL 14UMBER OF SECOND AND THIRD OMS KITS REQUIRED

INPUT 1 IF YOU WANT A DIFFERENT S•CHEDULEJ OTHERWISE 'SKIP A LINE

SELECT AN OPTION: C 3 TO TERM.INKE_ 'i 	 fin} 3.2.7 -
.3

5-35

is	 ,:

6. REFERENCES

1. Lemke, C. E., Salkin, H. M. and Spielberg, K.: Set Covering by

Single-Branch Enumeration with Linear-Programming Subproblems,
Operations Research, Vol. 19, 1971, pp. 998-1022.

2. Williams, J.: SAMPLE User's Guide, Rev. 2, LEC-6642, Aug. 8, 1975.

3. G. Hadley, Linear Programming, Addison-Wesley Co., Inc. Reading,

Massachusetts, 1963.

