
NAS9-14739 

DRL T-4761D 
UN-003 

MA-129T 

FINAL REPORT
 
ANALYSIS OF THE SURVIVABILITY
 

OF THE SHUTTLE(ALT) FAULT-TOLERANT
 
AVIONICS SYSTEM
 

APRIL 1976
 

(NASA-CE-147660) AVAIYSIS OF THE E76-22288 

SURVVABILITY OF THY SHUTTLE (AL.T) 
FAULTTOERANT AVOICS SYSTEM Final Repot 

Irvine, Calif.) 165 p Unclas(Ultrasystems, Inc., 

CSCL 22B G3/19 26894
HC $6.75 




ANALYSIS OF THE SURVIVABILITY OF THE
 

SHUTTLE(ALT) FAULT-TOLERANT
 

AVIONICS SYSTEM
 

FINAL REPORT
 

DATA REQUIREMENTS LIST ITEM 3
 

prepared for 

Johnson Space Center
 
National Aeronautics and Space Administration
 

Houston, Texas 77058
 

Contract NAS9-14739 

by 

Ultrasystems, Inc.
 
2400 Michelson Drive
 

Irvine, California 92715
 

April 1976
 

76/6.43-9 



FOREWORD
 

This document is submitted as the Final Report on the
 
work performed under Contract NAS9-14739. The authors wish to
 
acknowledge the technical direction and assistance provided by

Mr. Allan E. Brandli and Mr. Curtis D. Warnick of NASA Johnson
 
Space Center. They also wish to acknowledge the cooperation and
 
assistance of Mr. Robert P. D'Evelyn of Rockwell International.
 

The Ultrasystems project manager was Mr. Ralph B. Conn.
 
Other Ultrasystems contributors were Dr. Phil M. Merryman,

Mr. Kim L. Whitelaw, Mr. Mark A. Wadsworth, and Mr. Richard H.
 
Brock.
 



FINAL REPORT
 

TABLE OF CONTENTS
 

PAGE
 

1.0 	INTRODUCTION AND SUMMARY............ ... 1-1
 

1.1 	 INTRODUCTION .I............... 1-1
 

1.2 	SUMMARY ..I................ 1-3
 

2.0 	BACKGROUND AND DESCRIPTION OF CAST .......... 2-1
 

2;1 BACKGROUND ................. 2-1
 

2.2 	DESCRIPTION OF CAST .............. 2-3
 

3.0 	SHUTTLE (ALT) DATA PROCESSING SUBSYSTEM ......... 3-1
 

4.0 	ANALYTIC MODEL MODIFICATION ............. 4-1
 

4.1 	 SHUTTLE AVIONICS SYSTEM PARTITIONING ........ 4-1
 

4.1.1 GENERAL ...............	 4-1
 

4.1.2 DETAILED PARTITIONING ........... 	 4-3
 

4.2 	GPC MODELING ................ 4-5
 

4.2.1 STATE DIAGRAM DERIVATION .......... 	 4-5
 

4.2.2 FORMULATION AND SOLUTION OF EQUATIONS ..... 4-7
 

4.3 	MCDS MODELING .......... ....... 4-9
 

4.3.1 STATE DIAGRAM DERIVATION .......... 	 4-9
 

4.3.2 EQUATION DERIVATION ...........	 4-11
 

4.4 	FLIGHT CRITICAL BUS MODELS ........... 4-15
 

4.4.1 GENERAL ...............	 4-15
 

4.4.2 DDU MODEL DERIVATION ...........	 4-17
 

4.4.3 FLIGHT-CRITICAL-MDM SURVIVABILITY-MODEL DERIVATIONS 4-19
 

5.0 	SIMULATOR*. .................. 5-1
 

5.1 	 SIMULATOR BACKGROUND AND MODIFICATIONS ....... 5-1
 

5.1.1 BACKGROUND - RCS SIMULATOR .........	 5-1
 

5.1.2 EXTENSION OF RCS WORK ........... 	 5-3
 

i
 



TABLE OF CONTENTS (Cont'd)
 

PAGE
 

5.2 GENERAL DISCUSSION OF THE SIMULATOR . ........ 5-5
 

5.2.1 SIMULATOR CHARACTERISTICS .......... 5-5
 

5.2.2 GLOBAL SIMULATOR ORGANIZATION ........ 5-7
 

5.2.3 SIMULATOR UTILIZATION ........... 5-9
 

5.3 SIMULATION OF THE GPCs ............. 5-11
 

5.3.1 OVERALL GPC SIMULATOR STRUCTURE .6....... 5-11
 

5.3.2 STATE DIAGRAM . ............. 5-13
 

5.3.3 FAULT GENERATION .. ............ 5-19
 

5.4 SIMULATION OF FLIGHT-CRITICAL BUS SUBSYSTEM 5-27
6...... 


5.4.1 GLOBAL APPROACH TO FCB MODELING ........ 5-27
 

5.4.2 FCB SUBSYSTEM STATUS REPRESENTATION ...... 5-29
 

5.4.3 ORGANIZATION OF FCB SIMULATION PROGRAM ..... 5-31
 

5.4.4 INTEGRATING FCB SIMULATION SUBROUTINES WITH THE
 
MAIN PROGRAM .............. 5-33
 

5.5 SIMULATOR UTILIZATION ............. 5-35
 

5.5.1 SIMULATOR INPUTS ..6........... 5-35
 

5.5.2 OBTAINING SIMULATOR INPUT PARAMETERS ...... 5-39
 

5.5.3 INTERPRETATION OF SIMULATOR OUTPUT ....... 5-43
 

6.0 DPS SURVIVABILITY ESTIMATES ............. 6-1
 

6.1 BASELINE PARAMETER APPROACH ........... 6-1
 

6.2 BASELINE RESULTS ............... 6-3
 

6.3 SELECTED SYSTEM OPTIONS ............. 6-33
 

6.3.1 USE OF ALTERNATE MDM PORT . ......... 6-33
 

6.3.2 TRANSIENT-FAULT RECOVERY OPTIONS ....... 6-39
 

6.3.3 VARIATIONS IN THE DETECTABILITY PREDICTION . . 6-49
 

6.4 SUGGESTED IMPROVEMENTS ............. 6-61
 

6.5 SYSTEM MODEL VERIFICATION ............ 6-63
 

ii
 



TABLE OF CONTENTS (Cont'd)
 

PAGE
 

7.0 CONCLUSIONS AND RECOMMENDATIONS .... ...... ... 7-1
 

7.1 CONCLUSIONS .......... ...... .. 7-1
 

7.2 RECOMMENDATIONS ............... 7-3
 

REFERENCES
 

iii
 



LIST OF FIGURES
 

PAGE
 

2.2-1' CAST ACTIVITY SEQUENCE AND INFORMATION FLOW ..... 2-4
 

4.2-1 FAULT OCCURRENCE/RECOVERY STATUS STATE DIAGRAM . . . . 4-6
 

4.3-1 SYMBOLIC INTERCONNECTION DIAGRAM OF THE MCDS . . . . 4-10
 

4.3-2 FAULT OCCURRENCE/RECOVERY STATUS STATE DIAGRAM FOR THE
 
MCDS .................. 4-10
 

4.4-1 FLIGHT-CRITICAL BUS CONNECTIONS (ALT) ....... 4-16
 

5.2-1 THE RCS SIMULATOR IS STRUCTURED TO PERMIT MULTIPLE RUNS 5-6
 

5.2-2 PRINCIPLES OF A FAULT DRIVEN SIMULATION (BOX 3 OF
 
FIGURE 4) ............ .. 5-8
 

5.3-1 SIMULATOR STATE DIAGRAM ........... 5-14
 

5.3-2 GENERAL ORGANIZATION OF THE FAULT GENERATOR ..... 5-22
 

5.3-3 GENERATION OF THE OCCURRENCE OF THE FAULTS IN ONE MODULE
 
(POISSON DISTRIBUTION) ............ 5-26
 

5.4-1 FLIGHT-CRITICAL BUS CONNECTIONS (ALT) ....... 5-28
 

5.4-2 STRUCTURE OF FCBFLT SUBROUTINE ......... 5-32
 

5.4-3 FIFAU OVERALL CONTROL SEQUENCE ......... 5-34
 

5.5-1 PARTITIONING THE AP-10 MEMORY ......... 5-40
 

5.5-2 PARTITIONING OF THE AP-1OI MEMORY STORAGE-PAGE . . . 5-42
 

5.5-3 Y-DRIVER ANALYSIS ............. 5-42
 

5.5-4 CONFIGURATION SUMMARY - PART 1 ......... 5-44
 

5.5-5 CONFIGURATION SUMMARY - PART 2 ......... 5-47
 

5.5-6 CONFIGURATION SUMMARY - PART 3 .. .... ... 5-48
 

5.5-7 CONFIGURATION SUMMARY - PART 4 ......... 5-50
 

5.5-8 SIMULATOR STATISTICS ............ 5-52
 

5.5-9 FLIGHT CRITICAL BUS STATISTICS ......... 5-54
 

6.1-1 BASELINE PARAMETER VALUES .. ..... .... 6-2
 

6.3-1 FAILURE PROBABILITY RESULTS FOR VARIOUS TRANSIENT RECOVERY
 
OPTIONS AND TRANSIENT FAULT RATES . ........ 6-40
 

iv 



LIST OF TABLES
 

PAGE
 

1.1-I CONTRACT CONCLUSIONS ..I........... 1-2 

3.0-I FAULT DETECTION, LOCATION AND RECOVERY ACTIONS 3-4 

4.2-I PARAMETER DEFINITIONS ............ 4-8 

4.3-I SYMBOL DEFINITIONS ..... ........ 4-12 

5.4-I BUS - BTU INTERCONNECTION MATRIX ......... 5-30 

5.4-I MDM - DEVICE INTERCONNECTION MATRIX ........ 5-30 

5.5-I REQUIRED SIMULATOR INPUTS - GPC PARTITION ...... 5-36 

5.5-II REQUIRED SIMULATOR INPUTS - FCB PARTITION ...... 5-38 

6.3-I LEAKAGE RESULTS FOR TRANSIENT RECOVERY OPTIONS 6-40 

6.3-II VARIATIONS IN TRANSIENT FAULT RATE FOR THE DELAY 
RECOVERY TRANSIENT RECOVERY METHOD ........ 6-41 

6.3-II1 VARIATIONS IN TRANSIENT FAULT RATE FOR THE DELAY 
RECOVERY TRANSIENT RECOVERY METHOD ........ 6-42 

6.3-IV VARIATIONS IN TRANSIENT FAULT RATE FOR THE ROLLAHEAD 
RECOVERY METHOD .............. 6-43 

6.3-V VARIATIONS IN TRANSIENT FAULT RATE FOR THE ROLLAHEAD 
RECOVERY METHOD .............. 6-44 

6.3-VI VARIATIONS IN TRANSIENT FAULT RATE WITH THE MEMORY 
COPY RECOVERY METHOD.. ........ ... 6-45 

6.3-VII VARIATIONS IN TRANSIENT FAULT RATE WITH THE MEMORY 
COPY RECOVERY METHOD ............. 6-46 

6.3-VIII VARIATIONS IN TRANSIENT FAULT RATE WITH THE ROLLBACK 
RECOVERY METHOD ...... ..... ... 6-47 

6.3-IX VARIATIONS IN TRANSIENT FAULT RATE WITH THE ROLLBACK 
RECOVERY METHOD .............. 6-48 

6.3-X FAILURE PROBABILITIES FOR IMPERFECT GPC DETECTABILITY . . 6-50 

6.3-XI FAILURE PROBABILITIES FOR IMPROVEMENTS IN DETECTABILITY 
FOR ALL DEVICES .... ....... ..... 6-50 

6.3-XII SIX HOUR SURVIVABILITY FOR INCREASES IN TACAN 
DETECTABILITY ............... 6-51 

6.3-XIII SIX HOUR SURVIVABILITIES WHEN GPC DETECTABILITY 
IS .999 999 999 .............. 6-52 

v 



LIST OF TABLES (Cont'd)
 

PAGE
 

6.3-XIV SIX HOUR SURVIVABILITIES WHEN GPC DETECTABILITY 
IS .999 999 9 ............... 6-53 

6.3-XV SIX HOUR SURVIVABILITIES WHEN GPC DETECTABILITY 
IS .999 99 . ............... 6-54 

6.3-XVI SIX HOUR SURVIVABILITIES WHEN GPC DETECTABILITY 
IS .999 ................. 6-55 

6.3-XVII SIX HOUR SURVIVABILITIES WHEN PERIPHERAL 
DETECTABILITIES ARE .999 9 .......... 6-56 

6.3-XVIII SIX HOUR SURVIVABILITIES WHEN PERIPHERAL 
DETECTABILITIES ARE .999 99 .......... 6-57 

6.3-XIX SIX HOUR SURVIVABILITIES WHEN PERIPHERAL 
DETECTABILITIES ARE .999 999 .......... 6-58 

6.3-XX SIX HOUR SURVIVABILITIES WHEN PERIPHERAL 
DETECTABILITIES ARE .999 999 9 ......... 6-59 

7.1-1 CONCLUSIONS ............... 7-2 

7.2-1 ALT-OFT DIFFERENCES .. ....... ..... 7-4 

vi 



DEFINITIONS
 

A/D Analog to Digital 

ADC Analog-to-Digital Converter 

ADI Attitude Director Indicator 

ADS Air Data System 

ADTA Air Data Transducer Assembly 

AGE Air/Ground Equipment 

AIU Avionics Interface Unit 

ALT Approach and Landing Test 

AMEC Aft Master Events Controller 

AMI Alpha/Mach Indicator 

ASA Aerosurface Servo Amplifier Assembly 

AVVI Altitude Vertical Velocity Indicator 

BCE Bus Control Element 

BITE Built-In Test Equipment 

BTU Bus Terminal Unit 

CD Commander Decoder MDM 

CN UNNWN Coverage (Probability System Recovers Given Fault 

Occurs) 

CPU Central Processing Unit 

CRT Cathode Ray Tube 

,CSE Computer Support Equipment 

D Discrete 

D/A Digital to Analog 

DB Data Bus 

DBI Data Bus Interface Unit - Launch 

DBN Data Bus Network 

DC Display Coupler 

DD Decoder Driver 



DDU Display Driver Unit 

DEU Display Electronics Unit 

DMA Direct Memory Access 

DPS Data Processing Subsystem 

DSKY Display and Keyboard 

DU Display Unit 

EIU Engine Interface Unit 

FCOS Flight Computer Operating System 

FDA Fault Detection Annunciation 

FDI Fault Detection and Identification 

FDIR Fault Detection Identification and Recovery 

FI Fault Identification 

FKB Flight Display Keyboard 

G&C Guidance and Control 

G&N Guidance and Navigation 

GN&C Guidance, Navigation and Control 

GPC General Purpose Computer 

GSE Ground Support Equipment 

HSI Horizontal Situation Indicator 

ICC Intercomputer Channel 

IDPS - Interface bigital Processor 

IMU Inertial Measurement Unit 

INTRPT Interrupt 

I/O Input/Output 

lOP Input/Output Processor 

IOM Input/Output Module-

IPL Initial Program Load 



IRIG B Inter-Range Instrumentation Group B
 

IU Interface Unit
 

KBPS Kilobits Per Second
 

KBU Keyboard Unit
 

KB Keyboard
 

Y N Transient Leakage (Probability of Failure of Transient
 
Recovery Given Fault is Transient)
 

LRU Line Replacement Unit
 

MCDS Multifunction CRT Display System
 

MCIU Manipulator Controller Interface Unit
 

MDM Multiplexer/Demultiplexer
 

MEC Master Events Controller
 

MIA Multiplexer Interface Adapter
 

MM Mass Memory
 

MMU Mass Memory Unit
 

MSBLS Microwave Scan Beam Landing System
 

MSC Master Sequence Controller
 

MSU Mass Storage Unit
 

MTC Master Thrust Controller
 

MTS Magnetic Tape System
 

MTU Master Timing Unit
 

MUX Multiplex
 

NASA National Aeronautics and Space Administration
 

OFT Orbital Flight Test
 

PCM Pulse Code Modulation
 

PCMMU Pulse Code Modulation Master Unit
 

PMAD-- Performance Monitor Annunciator Driver
 

PMS Performance Monitoring System
 

PROM Programmable Read Only Memory
 



RA Radar Altimeter 

RAM Random Access Memory 

RCS Reaction Control System 

RDDU e 

RG Rate Gyro 

RGA Rate Gyro Assembly 

RHC Rotational Hand Controller 

RM Redundancy Management 

e lT; Ml denotes MDMs 1 through 3 
RMI 

RM4 e'aM4T; M4 refers to MDM 4 

RMC Redundancy Management Control 

ROM Read Only Memory 

RPTA Rudder Pedal Transducer Assembly 

S(T) Survivability (Probability Hardware and Software 
Survives Over a Mission of Length T) 

S(k)
A 

Unit A Survivability with Initial Redundancy Level k 

SBTC Speedbrake Thrust Controller 

SCU Sequence Control Unit 

SIm Simulation 

SM System Management 

Smn(t) exp[-(m akm + n 6dn)t) 

SPI Surface Position Indicator 

SvC Supervisor Call 

TACAN Tactical Air Navigation 

TAEM Terminal Area Energy Management 

TBD To Be Determined 



TLM Telemetry
 

TVC Thrust Vector Control
 

TVCD Thrust Vector Control Driver
 

UN Detectability (Probability Fault is Detected Given
 
Fault Occurs)
 

Diagnosability (Probability Fault is Properly Isolated
vN 	 Given Fault is Detected)
 

WN 	 Recoverability (Probability System Recovers Given
 
Fault is Properly Isolated)
 

N uUNaN + (l-uN)at 	Rate of Faults Resulting in Failure
 
or Redundancy Degradation
 

xPermanent Fault 	Rate
 

aN x + ZNT Permanent and Leaky Transient Rate 

at X + T Total Fault Rate 

-	 Transient Fault Rate 



1.0 INTRODUCTION AND SUMMARY"
 

1.1 INTRODUCTION
 

OBJECTIVE
 

The objective of the work reported here was to provide an extension of
 

the Complementary-Analytic-Simulative Technique (CAST) so that it would be
 

applicable to the Shuttle Data Processing Subsystem (DPS). The accomplishment
 

of this objective is to be achieved using a two-step process. The first step
 

is to provide models, both analytic and simulative, for analysis of the
 

Approach-Landing Test (ALT) configuration. This document contains a report
 

of this ALT modeling and analysis. Since CAST had already been shown to be
 

applicable to multicomputer systems (NASA Report CR-132552), the emphasis
 

during this work was placed on extending the CAST concept so it is applicable
 

to computer systems including the multiplicity of input and output devices
 

found in a real-time control system application. The modeling and analysis of
 

the Orbiter-Flight Test (OFT) isyet to be undertaken.
 

ACCOMPLISHMENTS
 

The atcomplishments of Contract NAS9-14739 are described below and are
 

summarized in tabular form in Table 1.1-I.
 

The DPS mission-critical survivability for a six-hour mission was
 

determined to be 0.999863 for the Shuttle ALT baseline configuration. Thus
 

it can be said that for ALT, the survivability is adequate. However, the
 

fact that orbiting missions of up to 30 days are planned illustrates the
 

necessity of extending the ALT work to be applicable to OFT and actual mission
 

scenarios.
 

The above analysis led to the evaluation of three selected options
 

which identified two areas of possible improvement. These improvements would
 

result from use of a recovery technique which combines rollahead with memory
 

copy, and increased TACAN fault detectability.
 

The above analysis and resulting conclusions was made possible by:
 

extending the GPC analytic model to include imperfect detectability; creating
 

a new analytic model to handle configurations involving non-symmetrical inter­

connections (e.g. MCDS); creating a new analytic model to handle combinations
 

of dependent device sets (e.g. flight-critical bus and connected units);
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modifying the existing RCS simulator routines to achieve UNIVAC 1108 compati­

bility, and adding three routines to reflect transient recovery procedure
 

differences; and developing a simulation, consisting of 29 routines, for the
 
flight-critical-bus partition.
 

TABLE 1.1-1 CONTRACT CONCLUSIONS 

I. 	 CAST Extended Successfully to DPS A LT' (Step I---This 
Contract) 

2. 	DP5 ALT Mission-Critical Survivability Determined to 
be adequate, i. e., 0. 999863 (Step I---This Contract) 

3. 	OFT/Mission Survivability Unknown and much more 
Important to NASA 

* Mission 

* Mission Duration 

o System Complexity 

4. 	 OFT/Mission Survivability can be Determined Through 
an Extension of the ALT Models and Subsequent Analysis 

5. 	 Areas of Possible Improvement Determined to Date are: 

* GPC Transient-Recovery Procedure 

* TACAN Detectability 
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1.2 SUMMARY
 

The results reported here were obtained by use of the enhanced version
 

of the complementary-analytic simulative technique (CAST) developed on this
 

contract for application to the Shuttle (ALT) avionics system configuration.
 

These enhancements include modification of the previous analytic and simulation
 

models and development of new models for the configurations not considered in
 

The results are based on a six-hour mission and failure rates
previous work. 


obtained from, or authorized by, the NASA Project Monitor.-


Figure 1.2-1 presents a summary of the- Shuttle avionics DPS failure 

function of mission time for the baseline configuration.probabilities as a 


The curves behave as expected in one respect, i.e., the failure probability
 

However, it is seen that the GPC failure probability has
increases with time. 


climbed to very close to that of the MCDS, and will for longer mission times
 

approach the failure probabilities of the other units, e.g., flight displays.
 

This is explained by the fact that the GPCs have high fault detectability and
 

redundancy, but a high failure rate. The good detectability and redundancy
 

keeps the curve low for short missions, but the high failure rate ultimately
 

takes over and drives the curve up. The curves illustrate the necessity to
 

perform this type of analysis for OFT and mission scenarios.
 

Using CAST, the efficacy of each of three system options-was investi-


Itwas found that use of the alternate,MDM port for reconfiguration of
gated. 


GPC bus assignments will become useful during critical mission phases, when
 

TACAN and/or microwave scan beam landing system units with lower failure rates
 

become available. The use of a recovery technique consisting of rollahead
 

combined with memory copy has the potential of reducing transient leakage to
 

zero (i.e., no transient faults are mistaken for permanents). This compares
 

with the result of 70.3% when using the baseline technique of delay recovery.
 

This more sophisticated GPC transient-fault recovery technique ismost useful
 

in hostile transient-fault environments, or when GPC coverage is degraded.
 

Improvement inTACAN detectability offers the most promise of improving the
 

overall avionics failure probability. For example, improving the TACAN detect­

ability from 0.999 to 0.9999, will decrease the overall avionics failure prob­

ability from 7.7(10) "5 to 5.6(10)-5.
 

Consideration was given to use of laboratory tests to verify the CAST
 

models. Laboratory testing to verify the models presented here was found to
 

be feasible, but the testing must be carefully designed so as to obtain the
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maximum results ina reasonable test time. This test design, when performed,
 

must include both the test procedure and the test implementation, e.g., computer
 

programs for automatic fault injection.
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2.0 BACKGROUND AND DESCRIPTION OF CAST
 

2.1 BACKGROUND
 

A complementary analytic-simulative technique suitable for extension to
 
Shuttle applications was evolved on a previous contract.
 

The complementary analytic-simulative technique (CAST) evolved as a
 

result of a study performed for NASA Langley Research Center. The objective of
 

the study was to provide concepts and engineering data from which a highly­

reliable, fault-tolerant, reconfigurable computer system (RCS) fbr aircraft
 

applications could be designed. For the purposes of the study, an RCS was de­

fined to be a redundant configuration of off-the-shelf avionics computers which
 

achieved fault-tolerance through use of a variety of recovery techniques. A
 

principal study goal was the development and application of reliability and
 

fault-tolerance assessment techniques. Particular emphasis was placed on the
 

needs of an all-digital, fly-by-wire control system appropriate for a passenger­

carrying airplane.
 

As mentioned above, a complementary analytic-simulative technique (CAST)
 

for calculation of predicted failure probabilities of multicomputer systems was
 

evolved. In addition, measures of fault-tolerance applicable to general fault­

tolerant computer systems were defined. CAST was applied to 39 example computer
 

system configurations to provide insight into the important aspects of these
 

configurations, as well as demonstrate the efficacy of the approach. Also, a
 

set of customer-provided reliability-enhancement techniques (RETs) was expanded
 

and their individual effectiveness was evaluated.
 

A representative set of results obtained from applying CAST to an RCS
 

is shown on the opposite page.
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2.2 DESCRIPTION OF CAST
 

Fault tolerance measures can be produced through a combination of engi­
neering characterization of the system, simulation, and analytic modeling.
 

Analytic modeling and simulation each has its strengths and limitations.
 
However, when these two system evaluation approaches are combined are supple­
mented by an engineering characterization of the system, a very powerful tech­

nique results. The combination is illustrated inFigure 2.2-1.
 

This Complementary Analytic-Simulative Technique (CAST) evolved as it
 
became evident that neither analysis nor simulation alone could satisfy all the
 

RCS evaluation requirements. Analytic modeling providesflexibility and rapid,
 
economical data generation. However, the solutions for some configurations
 

are very cumbersome and, in certain cases, the mathematical model formulated
 

is intractable. Simulation permits computer system details to be included
 
easily, but data generation isslow and expensive. CAST permits the user to
 

obtain the best features of both analytic modeling and simulation.
 

The engineering characterization isperformed to provide six categories
 

of information to the analytic modeling and the simulation. These information
 
categories are: (1)configuration particulars, (2)fault environment, (3)system
 

failure criteria, (4)software structure, (5)recovery features, and (6)test
 

features. The individual items in these six categories are shown in the figure.
 

The following items are available as simulator outputs: (1)permanent­

fault coverage, (2)transient-fault coverage, (3)detectability, (4)diagnost­

ability, and (5)recoverability.
 

The analytic modeling provides the following measures of fault tolerance:
 
(1)computer system survivability (or failure probability), and (2)computer
 

system reliability.
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3.0 SHUTTLE (ALT) DATA PROCESSING SUBSYSTEM
 

The Shuttle (ALT) Data Processing Subsystem was modeled on the basis of
 
information in various Rockwell and IBM descriptive documents.
 

The Shuttle (ALT) Data Processing Subsystem is composed of five, ident­
ical, general-purpose digital computers. Each of the five are capable of com­
municating with the peripheral equipment to perform both flight-critical and
 

non-critical functions. During the approach-landing test, four of these com­

puters operate in concert, receiving the same input data, performing the same
 

flight-critical computations, and transmitting the same output commands. Re­
covery time during ALT is intended to be less than one second. The fifth GPC,
 

i.e., the one supplying signals to the back-up flight control system, is not
 

included since it is only used in ALT if a software error is detected and these
 

errors are not modeled during this phase of the work. The DPS is shown dia­

grammatically on the facing page.
 

As shown in the figure, communication among the GPCs, and between the
 

GPCs and/or the peripheral devices is effected through use of seven groups of
 

buses. The number of buses in each group is shown on the figure. Each of these
 

buses is a one 'megahertz, serial bus. Communications between units on a bus is
 

accomplished through use of command words, command data words, and response
 

data words. Each GPC is composed of a central processing unit (CPU) and an
 

input-output processor (lOP). All information transfers to and-from the GPCs
 

are handled through the lOP. Software control is used to instruct each bus
 
within a data-bus group whether it is to operate in the command or listen mode.
 

When operating in the command mode, data requests and commands are sent to the
 

peripheral equipment and the data is then supplied over the same bus. When in
 

the listen mode, data are only received on the bus.
 

The bus configuration allows each computer to have access to all flight­
critical data received or transmitted by the other computers. Each of the re­

dundant subsystems is connected to a different bus. Hence for data input, a
 
different computer requests data from each of the subsystems. The requested
 

data are then available to all other computers. Thus identical input data are
 

available to each computer in the DPS.
 

For data output, since each channel of the actuator subsystem is con­

nected to a different bus of the group, a different computer transmits command
 

data to each of the voting actuator channels. As a result of the bus-computer
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interconnections, each computer can-monitor the command data sent out by
 

each of the other computers.
 

When data is tobe transferred between computers, each computer
 

communicates with all other computers through the inter-computer communication
 

(ICC) buses. Only the GPCs are connected to the ICC buses. In order to avoid
 

data skew of either inputs or outputs, synchronization is accomplished in the
 

DPS through use of inter-computer discrete signals and synchronization software.
 

Sensors and actuators are connected to the appropriate bus through
 

multiplex-demultiplex (MDM) units. Analog display units are connected to their
 

bus through display driver units (DDU), while the multifunction CRT display
 

system (MCDS) is connected through display electronic units (DEU). The mass
 

memory units (MMU) and pulse code modulation master units (PCMMU) are connected
 

directly to their respective buses.
 

The actual free-flight portion of ALT lasts approximately 172 seconds.
 

However, for mission success probability calculations, the mission time can be
 

thought of as starting 4.5 hours before takeoff of the Shuttle carrier aircraft
 

(SCA) and lasting until 86 minutes after takeoff for a total time of just under
 

six hours.
 

Fault detection in the Shuttle DPS GPCs is accomplished through use of
 

the five techniques shown in Table 3.0-I. The compare-word-sum-check involves
 

summing critical GPC actuator-command outputs, and each GPC comparing its sum
 

with that of the others. This check is performed each computation cycle. This
 

comparison is performed by use of the Fault Detection Identification Program.
 

If the difference is greater than that allowable and has occurred the maximum
 

permissable number of times, then the fail-discrete of the faulty GPC is set.
 

There are two recovery approaches available in the Shuttle GPC config­

uration. The first of these is one in which the crew identifies a failed GPC
 

through use of the "failed-discrete" and may either switch out the failed
 

machine or try an initial program load (IPL). The IPL approach is used when
 

there is reason to believe that a transient fault has been experienced. The
 

second recovery approach is to crew-enable inhibition of transmission of out­

puts from the failed GPC. This inhibition is accomplished automatically once
 

it has been enabled by the crew. It should be noted that restoration of a GPC
 

that may have suffered a transient is not attempted during the action portion
 

of ALT. This is because of the stringent recovery time constraints and the
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fact that restoring and adding a computer to the redundant set during time­

critical mission phases requires a significant amount of computer memory and
 

time and introduces greater than desirable operational complication.
 

Fault detection in the peripheral units of the DPS isaccomplished by
 
a combination of BITE and GPC-supervised tests. The recovery approach used
 

depends upon the particular unit.
 

TABLE 3.0-1 FAULT DETECTION, LOCATION 
AND RECOVERY ACTIONS 

Function 	 Action/Indication 

Fault Detection 	 Compare word sum check 

Bus channel timeout test 
Built-in-test equipment 

Self-test programs 
Watchdog timer 

Fault Location 	 Failure-vote-discrete output 

GPC-fail-discrete output 

Recovery 	 Try crew-enabled IPL 

Inhibit output transmission 
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4.0 ANALYTIC MODEL MODIFICATION
 

4.1 SHUTTLE AVIONICS SYSTEM PARTITIONING
 

4.1.1 GENERAL
 

Partitioning the Shuttle avionics system has a two-fold purpose. First,
 
the system must be subdivided into independent module sets. Second, the module
 
sets should be sufficiently simple for mathematically tractable solutions.
 

By independence of module sets, we mean independence with respect to
 
the impact of faults from one set to the other. A definition of independence
 
is as follows: Given a collection of module sets, the sets are independent of
 
each other if a faulty module within one set does not incapacitate modules with­
in any other set. However, within each independent module set, a failure of one
 
module type has an effect on other module types. For example, a CPU fault would
 
cause its lOP to not function properly, and an MDM failure would prevent access
 
to the devices itservices.
 

Having defined the independent partitions, the survivability of each
 
partition may be determined independently and the system survivability is the
 
product of the survivabilities of the partitions.
 

The first-cut partitions are along the lines of the bus groups. These
 
groups are: the four general-purpose computers (GPC); the flight-critical buses
 
and connected equipment (FCB); the two mass memory units and their buses (MM);
 
the display equipment and their buses (MCDS); the payload operations equipment
 
and buses (PLO); the launch-related equipment and buses (LE); and the flight
 
instrumentation and buses (PCM). The back-up system is not considered here.
 
Modeling it involves consideration of the probability of a software fault and
 

its detectability.
 

A failure of one of these groups has a different impact on the Shuttle
 
mission depending on the group. There are two levels of failure criticality:
 
safety critical and mission critical. Safety critical failures threaten the
 
Shuttle vehicle and the lives of the crew while mission critical failures affect
 
the accomplishment of mission. A bus group falls into one of these two cate­
gories. The safety critical partitions for ALT are: the GPCs, the flight­
critical bus group, and the MCDS. A safety critical failure isalso mission
 
critical since a lost vehicle implies an unsuccessful mission. Therefore,
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safety critical partitions are also mission critical. The flight instrumenta­

tion is mission critical, while the remaining bus groups are not applicable
 

to ALT.
 

" GENERAL-PURPOSE COMPUTER GROUP 

" FLIGHT-CRITICAL-BUSES AND RELATED EQUIPMENT 

" MASS MEMORY EQUIPMENT GROUP 

" DISPLAY EQUIPMENT 

* PAYLOAD OPERATIONS EQUIPMENT 

* LAUNCH-RELATED EQUIPMENT 

* FLIGHT INSTRUMENT EQUIPMENT 

THE SHUTTLE AVIONICS SYSTEM HAS BEEN PARTITIONED 

INTO THESE SEVEN INDEPENDENT EQUIPMENT GROUPS 
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4.1.2 DETAILED PARTITIONING
 

The approach utilized inarriving at the partitioning described in the
 

previous topic involves first a partitioning along functional unit boundaries, and
 
then a checking for fault interactions. Iffault interactions are not found, the
 

partitioning stands. Otherwise a re-partitioning is required. It is desirable to
 

refine the partitions into as many smaller parts as possible to make the analysis
 

of each as simple as possible.
 

THE GPCs
 

The GPC iscomposed of a CPU, memory, and IOP. A failure inany one of
 
these areas interferes with the correctness of program execution or output data.
 

One may say that an individual MIA failure inthe IOP affects only the associated
 

bus, and thus the GPC is still capable of performing functions that do not require
 

the services of the affected bus. However, the present recovery prodedures do not
 

take this into account at the present time. Also, an MIA represents a very small
 

portion of the total GPC failure rate. Thus to a reasonable approximation the
 

set of GPC's is a partition.
 

THE FLIGHT 'CRITICAL BUSES AND RELATED EQUIPMENT
 

The flight critical bus system consists of 8 buses connected to 4 forward
 

MDMs, 4 aft MDMs and 2 DDUs.- Failures inone of these module groups does not affect
 

the other module groups. Bus failures do affect more than one module group, but
 

the bus failure rate is very small compared to those of the modules. Because it is
 

small, the bus failure rate can be included with each of the module groups with
 

a very small resultant error. The result is a slightly pessimistic estimation
 

of the survivability. Therefore the forward MOMs, aft MDMs, and DDUs, with the
 
buses attached to each, constitute three more partitions.
 

FLIGHT INSTRUMENTATION
 

The flight instrumentation consists of the PCM masters, 01 buses, and OF
 

and OA MOMs. An 01 bus isdedicated to a PCM master while each of the OF and OA
 

MDMs may use either bus. Thus the partitions generated are: PCM master plus 01
 

buses, OF MDMs, and OA MOMs.
 

OTHER PARTITIONS
 

There are four additional partitions. These are the mass memories, the
 

displays (MCDS), the payload operations equipment, and the launch-related equipment.
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Because each of these have independent buses that are not used by other module
 

groups, they can each be considered as independent partitions. Only the MDCS is
 

used in ALT.
 

The safety critical and mission critical survivabilities are the product
 

of the individual partition survivabilities.
 

Ss SGPC x SMCDS x SFF x SFA x SDDU 

and SM = S x SPC M x SOF x SOA ­

where Ss = Safety critical survivability 

SM = Mission critical survivability 

and the remaining subscripts pertain to the mnemonics of the partitions. 

SAFETY CRITICAL 

1. GPCs and Intercomputer Buses 
2. FF MDMs and All Flight Critical Buses 

3. FA MDMs and FC Buses 5-8 
4. DDUs and FC Buses 1-4 

5. MCDs and Display Buses 

MISSION CRITICAL 

1. PCM Master and 01 Buses 
2. OF MDMs 
3. OA MDMs 
4. Safety Critical Group 

SHUTTLE PARTITIONS FOR ALT 
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4.2 GPC MODELING 

4.2.1 STATE DIAGRAM DERIVATION 

The GPC model isdirectly applicable to all of the partitions except for 

the flight critical bus partitions and the MCDS. Specifically, itmodels the case
 

where a fault anywhere in a string fails the entire string. It is also useful as
 

an approximation when this is not the case.
 

Prior developments of this model assumed a detection probability of unity
 

because fault detection was in all cases (except residual simplex) accomplished by
 

voting or comparison. The use of fault detectors such as BITE or self test re­

quire the addition of imperfect detectability to the analytic model.
 

The state diagram shown in Figure 4.2-1 demonstrates the sequence of event
 
taking place in a module set undergoing faults. We begin-at time T=O in the N
 

fault-free modules state and find the probability of the module set failing as a
 

function of time. Faults occur at a rate X+t, the sum of the permanent and tran­

sient fault rates. After a fault occurs, we move to the detection state. With
 

probability UN, the detectability, the fault is detected, and we move to the
 

transient recovery state. Failure to detect the fault is assumed to pollute the
 

system with errors resulting in a system failure. After detection, a transient
 

recovery is attempted. Iftransient recovery is successful, the module set is
 

restored to N working units. Transient recovery isunsuccessful if the fault is
 

permanent or with probability zN (transient leakage) if the fault is transient.
 

The unsuccessful transient recovery leads to a permanent recovery procedure where
 

either a spare is added or the module set redundancy is reduced by one. Failure
 

of permanent recovery results in system failure.
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4.2.2 FORMULATION AND SOLUTION OF EQUATIONS
 

The probability of system failure is the sum of the probability of failing
 

through three mutually exclusive failure paths. The three ways to fail are:
 

1. Failure to detect
 

2. Incorrect isolation or faulty permanent recovery
 

3. Failure from N - 1 fault-free modules
 

The probability of failure as a function of mission time then becomes:
 

FN(T) = (Cl-uN) f Nate-NaNtdt
 

0
 

" (1-V WN) u N NOe-Ndt
 

NN NaNt
 

+ UNvNWNfTNaNe FN-l(T-t)dt
 

0
 

where the terms used in the expression are defined on the opposite page. Integrat,
 

the first two terms, replacing t with T-t in the third term, letting CN : UNvNwN
 

and simplifying, we have
 

FNC(T) = (I- aN)(-e~NN 

-N&NT T
 

+ NCNONe N f eN&Nt FN-l(t)dt 

0 

Replacing FN(T) and FNI(T) with 1-SN(T) and 1-SN_(T), respectively and rearrangir
 

terms, we have
 

SN(T) = e-NNT + NCNONe, N 	T eNNtSNl(t)dt 

0 

4-7
 



This integral equation may be solved recursively by assuming SN(T) is a sum of
 

exponentials
 
N 
 -kSKT
SN(T) Z 'Nk e
 

k=1
 

Substituting for SNi(T) inthe above integral equation, performing the integration
 

and simplifying yields
 
1 N-1 NCNU aN-1k e-NSNT
 

SN(T) E N e
k=1 a a
 

N-1 NCNONcN-lk e-kskT
 

k=1 NN'k6k
 

From this we can identify the recussive definition of the a's as follows:
 

NCNNaNIk
 
aNk -NN-k=k k = 
1,..., N - 1
 

N-1
 
CNN =1- 2aNk
 

k=1
 

These equations show the parameter set required for the analytic model.
 

TABLE 4.2-i PARAMETER DEFINITIONS
 

9N = Transient leakage (probability of failure of transient recovery given
 

fault istransient)
 

uN = Detectability (probability fault is detected given fault occurs)
 

v = Diagnosability (probability fault isproperly isolated given fault is

detected)
 

WN = Recoverability (probability system recovers given fault isproperly isolated) 

CN = UNVNWN Coverage (probability system recovers given fault occurs) 

at = x + T Transient plus permanent failure rate 

aN = x + ZNt Permanent and leaky transient rate 

6N = uNON + (1-uN)at Rate of faults resulting infailure or redundancy degradation 
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4.3 	 MCDS MODELING
 

4.3.1 	 STATE DIAGRAM DERIVATION
 

The multifunction computer display system (MCDS) is a special case to
 

be modeled. Itconsists of the display electronics unit (DEU), display unit (DU)
 

and keyboard (KB). The DU isdedicated to the DDU, so we consider it a part of
 

the DEU for analysis purposes. There are two KBs connected to three DEUs by a
 

switching arrangement. The switches allow three configurations as follows:
 

1. KB A -. DEU A
 

KB B - DEU B
 

2. KB A - DEU A
 
KB B - DEU C
 

3. KB A - DEU C
 

KB B i-. DEU B
 

This connection arrangement is illustrated in Figure 4.3-1. The fault
 
occurrenc6/recovery status state diagram is given in Figure 4.3-2. At the begin­

ning of the mission, the MCDS is in the no faults state. If a keyboard fails, one
 

of the DEUs will be permanently deprived of a keyboard. The mission continues witt
 

a simplex keyboard and duplex DEUs. If DEU C fails, then KB A will be dedicated tc
 

DEU A, and KB B will be dedicated to DEU B for the remainder of the mission. If
 

DEU A or B fails first, then one KB is dedicated to DEU C while the other may be
 

connected to either DEU C or B (we assume A was the failed DEU). There are four
 

possibilities for the next failure: (1)Ifthe dedicated KB fails then the common
 

KB may serve the remaining DEUs. We have a simplex keyboard and a duplex DEU.
 

(2)If the common keyboard fails, then DEU B has no access to a KB. We complete
 

the mission in simplex. (3) If DEU C fails, the dedicated KB has no DEU to serve
 

or (4) If DEU B fails; then we complete the mission with duplex KBs and simplex
 

DEU.
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4.3.2 	 EQUATION DERIVATION
 

The quantities used in the derivation that follows are given on the oppo­

site page. The survivability is the sum of four mutually exlcusive probabilities
 

as can be seen from the state diagram of Figure 4.3-2.
 

1. No failures occur.
 

2. The first failure isto DEU A or B, the system survives any
 

subsequent faults.
 

3. The first failure is to a KB, the system survives any
 

subsequent failures.
 

4. The first failure is to DEU C, the system survives subsequent
 

faults.
 

By using the general expressions for simplex and duplex survivability, S(T)
 

then becomes
 

T
 
S(T) = S23(T)+ 2 Cd3ad3S23(T)f SDEU FAILED(t)/S23(t) dt
 

0 

+ 2 k2k23(T dI 	 2 Cd2 s 2 (t)]/S23 (t) dt+ 2 Ck 	 2 S2 3 (T)fT[2F22_Cd2ad2 S11(t) + (1 26d26d 12('2 

0 

, T2 (Ck2Gk2 +Cd2d2) 	 2(Ck2ak2+Cd2'd2 ) $2Mt(T T (T 	 S /$S(t 
+ Ca3 d3 S23 ( f [2( dS + I1- _6k /(t)2(sk2+6d2d) s 

0 2Ck2+6d2) - l 11 T 
6k16d1 2dk1 Ck2+6d21 

The problem isto find SDEU FAILED* It is the sum of four mutually exclusive
 

probabilities:
 

1. No more failures.
 

2. The next failure is to the common KB or to DEU C, and
 

the system survives.
 

3. The next failure is to the dedicated KB, and the system
 

survives.
 

4. The 	next failure is to DEU B, and the system survives.
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TABLE 4.3-I SYMBOL DEFINITIONS
 

* x = Permanent Fault Rate 

t = Transient Fault Rate 

u = Detectability 

** v = Diagnosability 

** w = Recoverability 

Ck= 	 uvw
C Coverage, i.e., 


** z = Transient Leakage 

at = X + T Total Fault Rate 

** : XX + ZT Effective Permanent Fault Rate 

** a = ua + (l+u)at 

Smn(t)= exp[-(m akm + n 6(dn)tJ
 

* 	 Quantities marked with an asterisk have a subscript k or d to indicate 
association with a keyboard or DEU + DU, respectively. 

**Quantities marked with a double asterisk have a double subscript kn
 
or dn to indicate n keyboards remaining or n DEU + DUs remaining,
 
respectively.
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So 	SDEU FAILED becomes
 
T
 

SDEU FAILED(T) = S22(T)+ (Ck2ak2+Cd2ad2) s22 (Tr/ Sl(t)/S22(t) dt 

0 

T 2Cd2d 2 d2 d2 \ s(t) 

+ 0k2 k2S22T![ 2Cd2 6dl S11(t) + (2 ad2 dd 

11(t) 	 S 1 iS dt+ Cd2Od22CTf[26k2 S +\(1 20k2-0k 21(t) 22(t) 
0 

+ 	2 [s CT)-S

2d2+Z 1k2-1 2dl1 2 

$S(T) Ck2k 2+Cd2ad2 22 T)]
 

5 2 Ck2ak Cd2ad2 SI(T ) (T)]
 
(2d2-dd(a 6k+2 2d2kl-tdl)
 

S2T)1Ck2 ak2 (1 2 Cd2 ad2 Fs12cT) - () 

+ 2 	6k2-ak1 2 Cd2-d2 l/ 

+ 2 Cd2 d2 Ck2ak 2 [Sll(T ) - (T)
(2 6ak2-6 kl}( 2 'k2+ 2 6d2-6 kl-'dl 	 S22'I
 

Cd2ad2 ( 2 Ck2ak2 ) S2(T)
L 212 6d2- \dl 2 6k2 6 kl/ S22 I 

Substituting SDEU FAILED into the expression for S(T), we have the following result
 

S(T) = S23(T) 
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(2 4 Ck2aR2Cd2ad2 	 [Sll(T) - 23(T)] 

(2ad2-6dl )(2 5k2+3 6d3-kl-adl)S
 

(T )l
+ 	 2 Ck2ak2 1 2 Cd2 d2 [ (T)­

6 6d2-6dI 12 23
6k2+ 3 d3-'kl- 'd2 \2 


6k2+2 ad2-6kl-adl)3 'd3+2 6k2-'dl-'klT[() S2
++(2 4 Cd3ad3 Ckd(ak2+ad2) 	 - S23(T)] 

2
+ 3(ki-	 d2 2~ k2+ k2 dvklL S1(
 

+ Cd 3ad3 4 Ckd(k2+d2) 
6 

rLd(( S
23 - 23 -2 k2 6d 6 22-+ 26kl-3 


S23 (T)]
[Sl(T) - 23(T) s22(T)­
+ 4 Cd3ayd3 Ck2ak2 Cdad2 	 3(d- d+~ ~ dZ\ 2 dlL dlk2- -22k-Sk d 	 3 S26 d3 2 6 k2
(26d2-Sdl)(2 ak2+2 ad2-kl6d)'L	 -ddk 3 'd3-2 ad2
 

Cd ad Ck~k 2 Cdd [ 512(T) - 523(T) s22C(T) - s23(T)J2
 

36k2-6k1 2 6d2'dL 6d3+2 6k2-6kl- 2 6d2 li6d3 2 6d2 J 

+ 4 C 3ad3 Cd2ad2 Ck2ak2 S11(T) - S23(T)) S22 C(T) - 523CT)1 
2 	 2+(2 6k26k1)( 2 6k2+2 Sdzkrd1 [3 6d3 6ak2-dfk1 3 'df3* 'd2 

2 Cd3ad3 Cd2-d2 2Ck20 k2 \ S21(T)- S23(T) S22(T)- S23(T)
3
 

-+ d2-6dl (1 2 6k2kl / 3 d3 - dl 	 d3-2 d2 
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4.4 FLIGHT CRITICAL BUS MODELS 

4.4.1 GENERAL 

The flight critical bus partitions present a difficult modeling problem 

due to the fact that an MOM or DDU failure fails the entire string, while a
 

device failure does not necessarily mean a string failure. For example, if MOM
 

FFI fails to function, the GPCs are no longer able to access the devices dedi­

cated to FF1. On the other hand, if accelerometer 1 fails, MOM FFI may still
 

communicate with the remaining devices in the string. Thus the device types are
 

dependent in pairs, but are in actuality dependent through the MDMs or DDUs.
 

The modeling technique used in the previous sections results in mathe­

matically intractable formulations when applied to this situation. However an
 

approximate model becomes appropriate to cross check with the flight critical
 

bus simulation, and to provide rapid and economical results after a successful
 

cross check. There are two approximations possible with the previous modeling
 

technique. One approath involves assuming complete unit independence and the
 

other is to assume total unit dependence. These represent an upper and a lower
 

bound, respectively to the true survivability. An intermediate solution that
 

provides realistic, usable results may be obtained by taking each of the mutually
 

exclusive cases of MDM or DDU failure combinations and modeling the remaining
 

device's survivability, given that failure combination. Each possible combina­

tion that can result in a successful mission ismodeled. As an example of one
 

of these combinations, suppose MOM FF1 fails and the other FF MDMs survive, then
 

the ADTA must survive the mission in triplex while the other device types must
 

survive in duplex.
 

By fixing the failure conditions of the interfaces (MDMs and DDUs) that
 

make the devices dependent, we have removed the cause of the dependence of the
 

devices. A further exposition of this method is contained in the sections that
 

follow.
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4.4.2 	 DDU MODEL DERIVATION
 

The flight display partition consists of the display drive units (DDUs)
 
driving the altitude vertical velocity indicator (AVI), alpha/mach indicator
 
(AMI), horizontal situation indicator (HSI), and the attitude direction indi­
cator (ADI). There are duplicate display strings. Inthe modeling of this
 
partition there are two, mutually-exclusive failure conditions of the DDUs that
 

can result inthe survival of the displays: none fail or only one fails. If
 

no DDUs fail during the mission then each indicator must survive independentty
 
in duplex. And ifone DDU fails, each display associated with the non-failed
 
DDU must survive. The display partition survivability becomes the sum of these
 

two survival conditions as follows:
 

2 (2)xS(2) xS(2) s(2)
 
SDDU = RDDU x sAVI x AMI x S x DI
 

( 1) x S(1 )+ 2C2 RDDU(l-RDDu) x 	 S)(l)
AVI x AMI HSI " SADI 

where the superscript on S represents the redundancy level that the display must 
survive from. 

The quantity, C2, is the coverage associated with one DDU failing some­
time during the mission. This coverage is not simply the DDU coverage because
 
one or more of the displays on the string may have failed before the DDU. Of
 
course, display failures after the DDU fails have no impact. We need to find
 

PA = Pr [device A fails before the DDU, given the DDU fails before T].
 

The quantity C2 then becomes
 

C2 = CDDU Cl-PAvI + CAVI PAVI)(-PAMI + CAMI PAMI ) 

(I-PHs I 	+ CHS I PHSI(I-PADI + CADI PADI) 

where the subscripts on P correspond to the mnemonics of the displays.
 

Now PA is the joint probability of A failing before the DDU and the DDU
 
failing before T, all divided by the probability of the DDU failing before T. So
 

= Pr [A fails before DDU and the DDU fails before T]/(1-eXDDUT)
PA 


= pA/(l-e aDDUT ) 

The quantity PA isthe integral over the mission time of the product
 
of probability of A failing by t and the probability of the DDU failing between
 

t and t+dt.
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T e- At) DDU e-aDDUt dt 

~A f (- ) e0 d 
0 

âA (1-e-cDDUT )DDDU e T -eOAT 

A A + cDDU
 

Sginto the expression for
Substituting AA i t th ex r s on f r PA and then letting A be the AVI, AMI, 

HSI, and ADI in the expression for C2 yields the desired expression for SDDU. 

X 	 = Permanent failure rate
 

= Transient failure rate
 

DDU XDDU + IDDU TDDU
 

-ay T 
RDDU = e 

C2 	 = u2V2 w2 

Sk) = Unit A survivability with initial redundancy
 
A 
 level 
k 

A - = Either AVI, AMI, HSI, or ADI 

DEFINITION OF SYMBOLS
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4.4.3 FLIGHT-CRITICAL-MDM SURVIVABILITY-MODEL DERIVATIONS
 

The forward and aft flight critical MDMs present a more complicated
 

situation to model. Here the first three MDMs (denoted type 1) serve several
 

identical flight critical devices, while the fourth serves only'one device
 

(see Figure 4.4-1). In this case, we consider the survival conditions with
 

six, mutually-exclusive MOM failure configurations as follows:
 

1. No MOM failures
 

2. No MOM type-i failures, MOM 4 fails
 

3. One MOM type-i failure, no MOM 4 failurE
 

4. One MOM type-i failure, MOM 4 fails
 

5. Two MOM type-l failures, no MOM 4 failure
 

6. Two MOM type-l failures, MOM 4 fails
 

In each of the cases, the set of devices served by the non-failed MDMs
 

must independently survive the remainder of the mission. Also, the coverage
 

associated with each MOM failure must take into account device failures on the
 

string prior to the MOM failure. In the flight forward case, MDMs l-4'serve
 

the ADTA while only MDMs 1-3 serve the remaining devices. The resulting flight­

forward-survivability expression is as follows:
 

R: S(4) S(3) S(3) S(3) S(3) S(3) S(3)
 

SFF RMI RM4 ADT IMU TAC MCS RHC RPT SBC
 

R3 ((3) S(3) S(3) S(3)S(3) S(3) S(3)
" c4 MI (I-RM4) ADT IMO TAC MLS RHC RPT SBC
 
" 3C Rl (l-RM) S(3) S (2)S(2)S(2) S(2)S(2)S(2)
 

3 RMl R IMU MLS RPT BC
ADT TAC RHC S
4 

3Cp 2 (2) S(2) S(2) S(2) S(2) S(2) z(2)
 

"C3 C4 RNi (1-RM4)(lRMi) ADT IMU TAC MLS RHC RPT SBC
 

" 3C3 C2 RI RM (,RM1)2 S(2) S(1) S(1) S(1) S(1) S(1) S(1)
 

C2 RMl RN4 ADT IMU TAC MLS RHC RPT SBC
 

+34 C CR 1 (I4)IRMI)2 S(1) S(I) S(1) S(1) S(1) S(1) S(1)
 
3C4
3 2 M 
 M4 ADT IMU TAC MLS RHC RPT SBC
 

where each term corresponds to an MOM failure condition given above. In the
 

flight aft case, MDMs 1-4 serve the ASA while only MDMs 1-3 serve'the rate
 

gyros. Similarly, the aft survivability becomes:
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SFA = Ml RM43(4)ASA S(3)GNR 

+c4 ASA GYR

* CR S() (3) S2
 
4 Ml RM4 (l-Rl) A GYR
 

* 3 C3 RC2 RMlI (I-RM4) ASA GYR 2
303R 	 (3-M)S(2)  


+ 3 C C M RM 4 (l-RM ) (2)S(2)
 
34Rl (1-RMl ASA GYR
 
*C3R R (-R )2S2) S(1) 

+33 C2 RMl RM4 (RMl) ASA GYR
 
S34C C2 lRM
(-RM 4)(I-RMl) 2 S(I) S(I)
 

03 R M4ASA GYR
 

RMI = 	e MlT; Ml denotes MDMs 1 through 3
 

RM4 = 	e ; M4 refers to MDM 4
 

S(k) 	 is the survivability of the device with
A mnemonic A with initial redundancy level k.
 

Ck 	 is the coverage associated with an MDM
 
failure, taking into account devices failing
 
defore the MDM at redundancy level k.
 

C4 	 is the coverage associated with MDM 4 failing.
 

DEFINITION OF SYMBOLS
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5.0 SIMULATOR
 

5.1 SIMULATOR BACKGROUND AND MODIFICATIONS
 

5.1.1 BACKGROUND - RCS SIMULATOR
 

The RCS simulator was developed to provide parameters, which could not
 
be estimated directly, to the analytic model.
 

The use of simulation studies to investigate the behavior of computer
 

hardware/software systems iswell-established. Simulation isused for those
 
situations which are intractable to an analytic approach, or for which the essence
 

is lost when the prerequisite abstractions and simplifying assumptions necessary
 

to the analytic technique are made.
 

Much attention has been given to improving the mission success probability
 

(MSP) of computer systems by the addition of protective redundancy. Such re­

dundancy allows the system to continue correct operation in the presence of one
 

or more failed components. The efficacy of this improvement ismeasured by the
 

MSP increase.
 

The mission success probability isdefined as the probability that, given
 

that there were no failed components or erroneous memory information present at
 

mission inception, the hardware and software are operating correctly at the end
 

of the mission. Thus the system must be able to survive both permanent and
 

transient faults.
 

Inorder to make an accurate analytic determination of the MSP of this
 

type of system, all fault-tolerance processes (e.g., detection, recoveries, etc.)
 

must be modeled. However, for even a reasonable approximation to a real-world
 

implementation, a mathematical model soon becomes intractable. Simulation is
 

then the alternative solution.
 

The goal in the RCS work was an approach that isapplicable to a wide
 

variety of computer designs, and one which reflects the hardware-software inter­

action. Thus, a logic-level simulation would provide needless detail, in addition
 

to sacrificing versatility. Hence, a modeling level of detail was chosen that
 

permits description of system details, but isversatile enough to accommodate
 

different computers and configurations.
 

Translating these ideas into RCS simulation objectives yielded the
 

following three items. The simulator should produce: (1)the fault-tolerance
 

of each of a wide variety of reconfigurable computer system configurations;
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(2)global parameters for use in analytic modeling; the (3)the behavior of a
 

configuration in various fault environments.
 

The requirements imposed on the simulator design by these three objec­

tives are examined in the following paragraphs.
 

The simulator should be able to produce the desired measures of fault­

tolerance for a wide variety of configurations. This requirement can be satisfied
 

in a reasonable way by structuring the simulator such that the various fault­

detection and recovery algorithms are implemented as subroutines. Thus a con­

figuration can be described by specifying the applicable set of subroutines,
 

plus the necessary parameters. This simulator structure provides versatility
 

and modularity, and minimizes the impact of addition of new subroutines.
 

Global parameters are those required when using the analytic model
 

for analysis of a configuration. For example, the transient coverage intriplex,
 

CT, has been defined as the conditional probability that a triplex system
 

recovers, given that a transient has occurred. If a configuration isanalyzed
 

by mathematical modeling, CT isone of the input parameters of the model.
 

However, it is difficult for the designer to evaluate CT, since itmay depend
 

on: the location of the transient fault; their occurrence rate r; the time
 

between occurrence and detection of a fault; and the recovery algorithm used.
 

By introducing these factors into the simulation and gathering statistics
 

describing the computer system reaction to transient faults, CT can be estimated
 

by computing the ratio of the number of successful recoveries from transient
 

faults to the total number of transients.
 

Thus, for the configurations where the mathematical modeling is appli­
cable, one simulation run gives an estimate of these parameters of the modeling.
 

Then using the model, the MSP of the configuration can be easily determined
 

for any given time t.
 

The fault environment provided in the simulator should be sufficiently
 

versatile to provide all expected possibilities to test the recovery algorithm
 

utilized in the configuration under simulation. Thus low or high failure rates,
 

existence and duration of transient bursts, long transients, mathematical fault­
distribution functions, etc., must be provided. Implementation of this fault
 

environment should be accomplished so as to provide maximum flexibility of
 

environment choice by the user.
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5.1.2 	 EXTENSION OF RCS WORK
 

The simulator for the Shuttle Data Processing Subsystem is based on the
 

RCS simulator. The basic simulator structure is the same, but nearly all of
 

the programs have been modified and 32 programs have been added. The major
 

effort was spent on the flight-critical bus partition simulation, as this had
 

to be developed from scratch. The shuttle DPS software utilizes a transient
 

recovery procedure that was not postulated in the RCS simulator. A methodology
 

for the simulation of this recovery procedure had to be developed. The flexi­

bility of the simulator was increased by making all transient recovery procedures
 

optional. Other changes include improvements to the simulator I/0 format and
 

the replacement of most source statements that are incompatible with the UNIVAC
 

1108 Fortran compiler.
 

The flight-critical bus subsystem was partitioned into six classes for
 

separate simulation of faults occurring in: the flight-critical buses, the bus
 

terminal units (MDMs and DBUs), devices directly interfaced with the DDU,
 

dedicated devices directly interfaced with the FF-MDMs, non-dedicated devices
 

interfaced with the FF-MDMs, and devices interfaced with the FA MDMs. A main
 

routine determines inwhich equipment group the fault occurs and transfers
 

control to the appropriate simulation routine. These routines utilize FCB
 

redundancy and interconnection arrays to determine the impact of the fault on
 

the system. The arrays are then updated to reflect the new system status.
 

The RCS STATE simulation subroutines were modified in order that the
 

FCB simulation could be included with GPC simulation. Here a routine FIFAU,
 

which is always invoked upon a fault occurrence, was modified to invoke the
 

FCB simulation routines for faults located in the FCB partition. Itwas
 

necessary to modify the interface to FIFAU in all of the state simulation
 

subroutines.
 

FCOS uses a different recovery procedure than was postulated in the
 

RCS work. Upon the occurrence of a fault, it is recorded, but no recovery
 

action is taken. Ifthe fault recurs within a certain time window, it is
 

assumed to be permanent, and the system-is reconfigured. With this procedure,
 

transient faults whose ill effects disappear after a small time interval do not
 

cause unnecessary system degradation. This recovery procedure had to be modeled
 

and implemented in the simulator program. Itwas implemented by modifying
 

STATE 2 and STATE 8 of the simulator programs. In addition, the simulator was
 

given more versatility by making all recovery techniques optional.
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The simulator input deck had to be modified because several new param­

eters were introduced. In the process it was set up to use a more uniform
 

structure in order that the chance of error could be decreased. The output
 

format has been modified to include only the pertinent parameters in the
 
configuration summary and to include confidence intervals for simulator
 

statistics.
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5:2 GENERAL DISCUSSION OF THE SIMULATOR
 

5.2.1 SIMULATOR CHARACTERISTICS
 
2 

A fault-driven simulation that permits multiple simulation runs with one
 
submission has been designed.
 

Certain aspects of the general approach to the design of the simulator
 
are implicit inobjectives 1 and 3 listed inSection 5.1.1, namely the need for
 
versatility and flexibility. There is a third, as-yet-unstated requirement, and
 
that is for an efficient implementation that results in a reasonable computer­

cost per run.
 

The versatility and flexibility requirements can be satisfied by de­
signing a modular simulator that-Is easily modified (flexibility), and that
 
models many configuration and fault-environment possibilities (versatility).
 
Since we are concerned with behavior of the computer system following occurrence
 
of a fault, we can obtain an efficient implementation by designing a "fault­
driven" simulator, rather than one that simulates the continuous operation of
 
the system. Thus, a fault-driven simulation is one that moves from fault occur­
rence to fault occurrence, simulating the response of the system to each fault,
 
but not simulating the operation of the system in between.
 

The modularity of the simulator has been demonstrated as it was con­
verted from the RCS simulator to the GPC simulator. Its versatility is indi­
cated by the fact that it can model eight GPC configuration types, and eight
 

fault-environment possibilities.
 

The simulator program consists of a collection of FORTRAN IV computer
 
programs (tobe run in a CDC 6600 CYBERNET computer environment) organized and
 
designed to satisfy the simulation objectives. The gross organization of the
 
simulation is presented in Figure 5.2-1. The main routine in charge of directing
 
the processing flow of the simulation is designated the Driver. A collection of
 
subroutines are accessible to the Driver via FORTRAN CALL statements. Each of
 
the computer system states are represented by a subroutine. Other supportive
 
subroutines perform statistics gathering and probability generating functions.
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FIGURE 5,2-1 	 THE RCS SIMULATOR 15 STRUCTURED TO PERMIT 
MULTIPLE RUNS 
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5.2.2 GLOBAL SIMULATOR ORGANIZATION
 

The simulator program is structured to simulate the detection of faults
 

within a computer system and the computer system's successful/unsuccessful re­

covery actions taken in response to the detected faults. Each simulated mission
 

is assigned a mission time. A simulation run consists of the repetitive con­

tinued simulation of a designated number of missions (each with the same mission
 

length).
 

A simulation run consists of several phases. First the system is ini­

tialized by obtaining the tnput parameters and initializing fault counters.
 

Next the system simulation begins. Faults are randomly generated for several
 

missions and placed in a table. The fault table is searched to determine the
 

next mission in which a fault occurs. After the mission parameters are ini­

tialized, the handling of faults is simulated. Then the statistics for the mis­

sion (i.e. final state, number of faults, causes of failures, etc.) are gathered.
 

This process is repeated until all missions are simulated, and then estimates for
 

analytic model parameters are calculated and printed along with the simulator
 

statistics. Figure 5.2-2 illustrates the process for simulating the required
 

number of missions.
 

Simulated faults occur in either the GPC partition or the FCB partition.
 

If the fault occurs in the GPC partition it is simulated by one of a set of sub­

routines dependent upon the current GPC redundancy level and the recovery proce­

dure in progress. This set of subroutines will be identified as the GPC simula­

tion programs in following topics. They are described inmore detail in Section
 

5.3. Faults occurring in the FCB partition are simulated by a subroutine depen­

dent upon the FCB component inwhich the fault occurs. The status of the FCB
 

subsystem is represented by a set of tables. An approach like that chosen for
 

the GPC simulation was impossible because of the large number of possibilities
 

involved. Section 5.4 describes the FCB simulator programs in detail.
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From box 2 of figure S.2-1
 

Figure. 5.2-1 Determine
 

mission in 

which the 
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the fault 

.4
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5i 

fault in 
the same

" ,mssior 

FIGURE 5.2-2 PRINCIPLES OF A FAULT DRIVEN SIMULATION 
(BOX 3 OF FIGURE 4) 
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5.2.3 SIMULATOR UTILIZATION
 

The simulator provides the capability for estimating the fault handling
 

abilities for a large number of configurations. In order to use the simulator,
 

it is necessary to define the configuration and fault environment in detail,
 

specify the simulator input parameters, set up a data deck, run the simulator
 

program, and interpret the simulator results.
 

The system configuration is defined by the software characteristics,
 

recovery procedures, hardware redundancy, and the recovery parameters. The
 
fault environment is specified by the transient and permanent fault distribu­
tion functions. The software characteristics primarily affect parameters re­
quired for GPC simulation such as minor cycle duration, the major cycle duration,
 
the time between inter-computer comparisons, the iteration period and the execu­
tive structure. The software characteristics indirectly affect other parameters
 
such as recovery procedure performance parameters and fault coverage for FCB
 
faults. The recovery procedures specify the method of transient recovery if­

any. Rollahead, rollback, memory copy, delay before reconfiguration and system
 
restart are the possible recovery methods. The hardware redundancy is specified
 
by the number of each type of system component, and their interconnections.
 

Recovery parameters such as BITE detection probability and program survivability
 

are determined by a detailed analysis of the system hardware. The fault environ­
ment is defined by the probability distribution functions of permanent faults,
 

transient faults and transient fault durations. Permanent fault inter-arrival
 
times are assumed to be exponentially distributed. Transient fault inter-arrival
 
times can be exponentially distributed or burst distributed (see Section 5.3.3).
 
It is necessary also to specify the parameters for the distributions (e.g. failure
 

rates if the fault inter-arrivals are exponentially distributed). The input para­

meters are described inmore detail in Section 5.5.1.
 

Once the input parameters are defined for the configurationb the simu­

lation control parameters must be specified and the input deck must be set up.
 
The parameter NMIS defines the number of missions to be simulated. The number
 
of missions simulated has a bearing on the accuracy of the results; better ac­
curacy is obtained by simulating a larger number of missions. The Flight Criti­
cal Bus partition and the GPC partition can be simulated together or separately
 
because they are nearly independent. Thus if the effectiveness of several
 
transient recovery procedures is being investigated it is only necessary to
 
simulate the GPC partition in order to determine transient leakages. The input
 

deck setup is given inAppendix B.
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The simulator is then run and produces a configuration summary and some
 
simulation statistics as output. The configuration summary includes a specifi­
cation of the GPC configuration, the GPC fault environment, the FCB device
 
failure rates and the FCB coverages. The simulation statistics includes the
 
number of faults - both transient and permanent, the number of system failures,
 
the number of "leaky" transients, and estimates of the mission failure proba­
bility and certain analytic model parameters. The simulator output is described
 
indetail in Section 5.5.3.
 

INPUT DATA DECK
 

Configuration Particulars 
sSoftware Characteristics 

* Recovery Procedures 
* Hardware Redundancy 
* Recovery Parameters 

SIMULATOR 

Simulation Control 
* 	 Number of Missions 
* 	 Partitions to be Simulated 

Fault Environment 
" Permanent Fault 

Distribution ,
 
" Transient Fault
 

Distribution 

PROGRAM 

l 	 SIMULATOR OUTPUT 

Configuration Summary 
* GPC Configuration 
* GPC Failure Rates 
* 	 FCB Failure Rates 
* FCB Coverages 

Simulation Statistics 
o 	 Number of Faults 
* 	 Number of System Failures 
* 	 Mission Failure Probability 
9 	 Analytic Model Parameter 

Estimates 
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5.3 SIMULATION OF THE GPCs 

5.3.1 OVERALL GPC SIMULATOR STRUCTURE 

The GPC simulator isorganized as an "event driven," e.g., fault driven, 
simulation in order to minimize user computer costs.
 

The approach taken inthe formulation of the GPC simulator is an exten­

sion of the approach described in KRUU 63. Formulating the simulator permits
 

the computer system to be viewed as a finite state automaton. Thus, the system
 
isdescribed by the states itmay assume and the possible transitions between
 

states.
 

The computer system states are defined by two conditions. The first
 
of these isthe function being performed by the system. Examples of these are:
 

1. Normal Operation;
 

2. Recovery Operation,
 

3. Reduced Capability Operation,
 

4. System Restart; and
 

5,.System Failure.
 

The second of the system-state defining conditions is that of the number of
 

permanent faults that the simulated system has suffered during the particular
 
simulated mission under consideration. Obviously, the system that has not yet
 
encountered a fault will be in normal operation, while a system that has
 
encountered faults may be in recovery operations, reduced capability operations,
 
system restart, or may have failed.
 

Transitions between states in the simulated GPC system will be caused
 

by either of two events. The first event that may cause a transition is the
 

detection of a fault. For example, the first detection of a fault in the
 
Shuttle GPC set causes a transition to the delay-reconfigurable state which
 
simulates the FCOS transient-recovery method. Later detections of faults will
 

cause a state transition in the simulated system. The second event, the comple­
tion of a recovery procedure, will definitely cause a transition to another
 
state. What state is the destination of this transition depends on the type
 
of recovery procedure attempted. For example, the successful completion of a
 
normal recovery procedure when four GPCs are operating will return~the simula­
tor to the normal operations state. However, a recovery procedure that requires
 
deactivation of one of three GPCs will cause the simulated system to transition
 

to the duplex state.
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An important aspect to be noted when considering the organization of
 

the GPC simulator is that it is an "event driven" simulation. Thus, the
 
initial state transition is only made when an event, inthis case either a
 

permanent or transient fault, occurs. Use of this type of structure provides
 

a significant saving incomputer time.
 

* 	 System is Described by the States it May Assume and 

the Possible Transitions Between States 

* 	 States are Defined by: 

* 	 The Function Performed by the System 

* 	 The Number of Permanent Faults Assumed 
by the System 

* 	 Transitions are Caused by: 

* 	 Detection of Faults 

* 	 End of Recovery Procedure 

• 	 Resulting Simulation is Event Driven 
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5.3.2 STATE DIAGRAM
 

A state in the state diagram is defined by the number of properly­
functioning computers and the action performed by the computer system at a
 
given time.
 

Figure 5.3-1 presents the simplified state diagram of an adaptive NMR
 

configuration that employs rollahead, rollback, and memory copy for transient­

fault recovery. The algorithms involved in States I, II,III, and VII do not
 

redundant states by maintaining a count in the simulation of the currently
 

active computers.
 

NORMAL OPERATION (3OR MORE UNITS)
 

Inthe normal operation state with three or more computer units, the
 

outputs of the computers are periodically compared. Disagreement of one or
 

more computers constitutes fault detection and requires exit from this state.
 

As long as two computers are fault-free, the rollahead recovery proce­

dure is used and, if it is not successful, the memory copy. Ifall computers
 

disagree at the same time, a system restart is initiated.
 

ROLLAHEAD (OR STATE VECTOR TRANSFER)
 

The rollahead state isentered to simulate the computer system's
 

attempt to recover from a detected single fault. The state vector (consisting
 

of program variables and all register contents) of one good computer is used to
 

replace the non-agreeing computer's state vector. However, all transient
 

failures are not corrected by this procedure since a bad instruction cannot be
 

restored. The approach taken in the simulation is to provide for the specifica­

tion of a rollahead success probability. This probability can be formally
 

defined as:
 

Psuc = Pr [fault is corrected fiven that a fault has occurred,
has been detected, and its physical cause has dis­

appeared when correction begins]
 

An analysis, which gives consideration to the type of memory (e.g., 2 1/2D, 3D,
 

DRO, NORO, etc.) and the consequences of memory faults, will yield an estimate
 

of the rollahead success probability (or program integrity).
 

MEMORY COPY
 

This recovery procedure is entered after a specified number.of roll­

aheads have been completed unsuccessfully. The memory contents of one good
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memory are transferred into the faulty memory. In order to avoid interruption
 

of computation, the transfer is effected on the basis of cycle stealing. It
 

ends with the updating of the state vector of the faulty computer.
 

Since, during a memory copy, normal application routines continue, it
 

is possible that a new fault shows up. The following (conservative) assumption
 

has been made in order to simplify the simulation. Upon detection of a second
 

fault during a memory copy, the memory copy procedure is abandoned and the
 

computer for which this memory copy was intended is discarded.
 

It is assumed that memory copy provides recovery from transient faults
 

which have disappeared when the memory copy began with a probability equal to
 

the memory copy efficacy.
 

SYSTEM RESTART
 

The system restart state is entered when all computers disagree upon
 

comparison. The recovery procedure from this state may consist of a memory
 

verification. Relevant memory locations are read, voted upon, and restored.
 

Extensive'diagnosis may also be run. Finally, if a backup memory is available,
 

reloading may be possible. Then the application program is reinitiated from
 

the restart point.
 

After a successful system restart, the system returns to the normal
 

operation state. However, since all computers stop their normal computation
 

during a system restart, this recovery procedure is time critical.
 

Note that in a benign fault environment, the probability of having a
 

system restart is quite small (cl for 1 million faults). However, system
 

restart is necessary if the fault environment is so harsh that bursts of faults
 

can hit several computers at a time or if the probability of a short power
 

failure is not negligible.
 

INTRODUCTION OF A SPARE
 

If a spare is available, it should be activated once a permanent fault
 

has been recognized. As part of the activation process, the spare is checked
 

and conditioned by one of the good computers. In the situation depicted in the
 

state diagram of Figure 5.3-1 spares are not available for the duplex and
 

simplex simulation. This is thought to be compatible with the expected
 

applications.
 

OF THEREPRODUCIBILITY 
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NORMAL OPERATION (2 UNITS)
 

The normal operation (2 units) state is entered upon the determination
 

that a permanent fault exists in one of the three computers on the computer
 

system. This state is quite similar to the normal operation (N units) state,
 

except that the only available recovery procedure is program rollback.
 

ROLLBACK
 

The rollback state is entered upon the detection of a fault when the
 

computer system is in the normal operation (2 units) state. Rollback is the
 

term used to describe repetition of the program segment executed just prior to
 

the detected output disagreement. The state vector at the beginning of each
 

program segment is maintained in order that the rollback procedure may be
 

accomplished.
 

After the program segment has been repeated, the outputs of the two com­

puters are compared; if the correction is successful, the computer system
 

switches back to the normal operation (2 units) state. If the output differs,
 

the system rolls back again; this unsuccessful recovery process continues a
 

predetermined number of times before changing the computer system state to
 

diagnosis.
 

Since both of the active computers remaining in the computer system
 
must stop their normal computations during a rollback, this computer recovery
 

procedure may be time-critical. However, if comparisons are frequent enough,
 

a rollback should not last more than a few milliseconds.
 

DIAGNOSIS
 

In triplex, voting provides a very easy and efficient way of isolating
 

the faulty unit. Unfortunately, a disagreement upon comparison in duplex does
 

not indicate which of the computers produced the wrong value. That iswhy the
 
main recovery procedure in duplex is the rollback since there is no transfer
 

of information from the good to the bad computer for such a procedure. But,
 

if the rollback does not succeed, the bad computer must be isolated. For that
 

purpose, self-tests are run. If they are successful, the faulty computer is
 

isolated and the system switches to simplex. If unsuccessful, the system is
 

unable to decide which computer is faulty and the system fails. Diagnosis pro­

grams are obviously time critical. Note that it would be possible to include a
 

memory copy which would take place once a diagnosis had been successful: the
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memory of the good computer would be copies into the bad one. However, this
 
improvement is not so good as itwould seem since many transients cannot be
 

detected through diagnosis.
 

NORMAL OPERATION (SIMPLEX)
 

In simplex operation, comparison is no longer available for detection
 

of faults. We must rely mostly on the RETs to detect faults. CPU transients
 

are difficult to detect. Some may be caught through go/no-go counters and
 

storage protection. Memory faults are easier to detect. Parity check is
 
especially useful. When a fault is detected, a rollback is initiated. If the
 
fault isnot detected, a failure occurs.
 

ROLLBACK IN SIMPLEX
 

This is the same procedure used in duplex. Since it is the only
 
recovery algorithm available in simplex, it is repeated as long as it is not
 

successful. If recovery from the fault cannot be effected, a system failure
 

will occur when the system has been down too long.
 

SYSTEM FAILURE
 

The system failure state is entered with the system is unable to run
 

properly and longer or when computational requirements have not been met for
 
too long a period of time. Upon recognition of the condition of a system
 

failure, the DRIVER program discontinues the simulation of a mission.
 

Causes of failures are:
 

1. Excessive time in rollahead, memory copy, or rollback:
 

It should not happen since the system must be designed
 

so that a recovery procedure does not endanger it. However,
 
it might happen that the continuous repetition of such pro­

cedures be fatal for the successful completion of the mission.
 

2. An overly-long system restart: A system restart is a very
 

rarely called procedure. But it is long (afew seconds), and
 

may not always be tolerable.
 

3. Diagnosis incomplete when available recovery time expries:
 

Normally, diagnosis follows rollback. It is possible that
 

these two recovery procedures sometimes take too long.
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4. Undetected faults in simplex.
 

5. A too long rollback in simplex: This happens when a
 
permanent occurs or when a non-recoverable transient occurs.
 

6. EEM failures: In the case of non-dedicated EEMs, the system
 

fails when all EEMs fail or when all but one fail and the
 

computers are unable to decide which is the good EEM.
 

7. Bus failures: The system fails when all buses fail or when
 

all but one fail and the computers are unable to decide which
 

isthe, good bus.
 

8., Actuator/sensor failures.
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5.3.3 FAULT GENERATION
 

A flexible approach to the generation of faults was chosen for use in
 
the RCS simulator
 

A major portion of the simulator is dedicated to the generation of
 

faults according to mathematical algorithms which describe the occurrence of
 

faults in the various components of the computer system. Two approaches to
 

handling this problem were considered:
 

1. 	Generation of one fault at a time.
 

2. 	Generation of a fault table describing the faults which
 

occur in the computer system between 0 and a time T.
 

The first approach is suitable if we consider only single faults and
 

if we simply describe fault occurrences within the computer system, e.g., the
 

fault-arrival rate in the system is X and the probability that a fault is in
 

the ith part of the computer system is Pi" This procedure is described in
 

LYON 62.
 

Since we must deal with transient failures also, we want to know how
 

the computer system behaves in case of multiple faults. Furthermore, if the
 

faults do not occur according to a Poisson law in all modules (burst of tran­

sient failures for example), the method described in LYON 62 is not readily
 

applicable.
 

A more efficient and more general approach is to generate a fault
 

table prior to simulation. This also makes the simulation program more func­

tionally modular since, once the simulation has begun, we have only to scan
 

the fault-table to determine when and where the next fault occurs.
 

PARAMETERS
 

The parameters necessary to generate the fault table for a simulator
 

run are a part of the parameters of simulation which are input by the simulator
 

user for each simulator run.
 

DESCRIPTION OF THE COMPUTER SYSTEM
 

The computer system to be simulated is composed of n identical computers,
 

each composed of m modules.
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DESCRIPTION OF THE FAULT DISTRIBUTIONS
 

For each of the m modules, the distribution functions to be used in
 

generation of both permanent and transient faults must be indicated by the
 

simulator user. Specific subroutines for the chosen distribution functions
 

are then called and the parameters of the distribution are passed to these
 

subroutines.
 

For permanent faults, only the Poisson distributions have been
 

implemented. This is generally considered in the literature to be most
 

realistic.
 

For transient faults, Poisson and burst distributions have been con­

sidered. Poisson distributions are considered because of their tractability
 

and acceptance for the permanent fault case. Burst distributions are thought
 

to be important because many transients likely are caused by components
 

working near the limits of their tolerance specifications. As long as the
 

conditions do not improve, faults will occur often in these conponents. A
 

burst of transients is defined by its duration and the rate of transient
 

occurrence during the burst. Bursts occur according to the burst rate.4
 

DESCRIPTION OF THE FAULT DURATION
 

For each of the m modules, the distribution function of the transient
 

failure durations to be used by the simulator programs must be indicated by
 

the simulator user. Specific subroutines for the chosen distribution functions
 

are called by the Driver and the subroutines receive the parameters of the
 

distributions.
 

At the present time, the uniform and the exponential distributions
 

have been implemented.
 

1. 	Uniform Distribution -- The transient failure duration is
 

uniformly distributed between a minimum and a maximum duration.
 

2. 	Exponential Distribution -- The transient failure duration is
 

exponentially distributed. The mean duration is l/y.
 

DESCRIPTION OF THE FAULT TABLE
 

The fault table consists of 300 records ordered according to the
 

occurrence time of each fault. This table can contain up to 150 permanent
 

faults and 150 transient faults. It has the following record format:
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Occurrence
 
Duration Module Computer
 

Time
 

Permanent failures are identified by a duration longer than the
 

mission time.
 

GENERAL ORGANIZATION OF THE FAULT GENERATOR
 

The first step consists of generating a table of permanent failures
 
and a table of transient failures for each module in the computer system.
 

Then these tables are merged into one sequentially-ordered (master) fault
 
table. The general organization of the fault generator is presented in
 

Figure 5.3-2.
 

DETERMINATION OF THE OCCURRENCE TIME OF THE FAULT ACCORDING TO
 
A POISSON DISTRIBUTION FUNCTION
 

Faults occurring by a Poisson distribution process have a probability
 

that one fault occurs during a small interval of time, dt, as follows:
 

P1= Xdt. (See PARZ 60).
 

The probability of no faults, Po' occurring during the time interval 

dt is,Po = l-xdt, and the probabi.lity of more than one fault occurring is 0. 

A Poisson distribution process has two very important properties:
 

1. It is memoryless: This means that the probability of a fault
 

occurring between times t and t+dt is independent of fault
 
occurrences before time t.
 

2. The probability density function for the random variable, TT,
 

i.e., 	the interarrival time between two consecutive faults, is
 

xe-xt
fT (t) = 
T 

Thus the probability distribution function of T is:
 

t
 

P[TT -t] = (T
f Cu) du 

te-
e 
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Thus the probability of having no fault at time t is:
 

-
e Xt
R(t) = 


A difficulty arises at this point since the random number generator
 

(function) available in the CYBERNET system produces outputs which are-uniformly
 

distributed on the interval 0<U <l. The outputs of this generator canbe con­

verted using the approach described below. (HILL 70, SHRE 66).
 

We are concerned with the random variable T., the interarrival time
 

between faults, whose distribution function is given above as
 

-Xt
 PET <t] = 1 - e 

For the purposes of the simulation we wish to obtain values of t. We now note
 

two important facts. First, 0<P< 1.Second, by algebraic manipulation it is
 

possible to solve for t, e.g.:
 

t= -- n (l-P) 

Thus, for any value of P in the valid range, a value of t cdn be calculated.
 

By generating values of P using the random number generator, which produces
 

uniformly distributed numbers between zero and one, t can then be calculated.
 

A more formal description of the process follows. Using the random
 

number generator which gives a number U uniformly distributed on the interval
 

0< U< 1,we have to compute T which is exponentially distributed. That means
 

that we have to find a function f(U) such that:
 

T = f(U)
 

= P[U<u] = u (uniform distribution) P[T < t] 1-e - At 
and 


(if 0<u<l) 

If T = f(U), we can define the inverse function g(T ) such that 

U : g(T )-


Thus, we have:
 
-At
 = l-ePET <t] 


= P[f(U) <t]
 

= P[U<_g(t)]
 

= g(t)
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The last equation is true since U is uniformly distributed on the
 

interval, 0 <U<l. Thus we know that the unknown function f(U) isthe inverse
 
-Xt.
of the function g(t) = l-e


Hence:
 
-Xt
 u = g(t) = l-e 

t - n (l-u) = f(u) 

Since we have just found the function f,we can write
 

T 1 n -U)

T - C-U 

But we can have a simpler expression: U is uniformly distributed on 

the interval, O<U <1. Hence 1-U is also uniformly distributed on the same 

interval. This implies that the distribution of TI does not change if we 

replace 1-U by U. 

Finally, we have shown that if U is uniformly distributed on O<U< 1,
1 
then T = T in U is exponentially distributed, the parameter of the distribution 

being X.
 

Using the random number generator provided by the CYBERNET system,
 

we determine the different interarrival times and thus the occurrence times.
 

The flowchart of the generation of the occurrence times of the faults in one
 

module is presented in Figure 5.3-3.
 

DETERMINATION OF THE DURATION
 

As stated earlier, both exponential and uniform distributions of
 

transient fault duration are available in the simulator. Ifthe transient
 

duration is exponentially distributed (parameter y), we determine a duration
 

DT for each transient:
 

= - zn U using the same general procedure described for the
T Y 

­

occurence time. If the duration is uniformly distributed on 0 <DT< Dmax 
the duration DT is DT = Dmax x U. 

DETERMINATION OF THE OCCURRENCE TIME OF THE FAULTS ACCORDING TO A
 

BURST DISTRIBUTION FUNCTION
 

The occurrence time and duration of the bursts is determined as
 

described above for faults having a Poisson distribution function. Then,
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for each burst, the occurrence time and duration of the transients are
 

determined.
 

SUMMARY OF FAULT-GENERATION POSSIBILITIES
 

From the above discussion, it can be seen that there are a number of
 

fault-generation possibilities that can be used in the simulator. With respect
 

to permanent faults, the standard fault generator isone that generates faults
 

according to a Poisson distribution function. However, as a result of the­

presence of the uniform distribution random number generator, it is possible
 

to use other distributions that are expressible analytically. For transient
 

faults of the non-burst variety, the occurrence rate and the duration are
 

modeled and each of these may conform to either a Poisson or another distribution.
 

Burst faults are characterized by four parameters, i.e., the burst-packet occur­

rence rate, the burst-packet duration, the fault occurrence rate within the
 

burst packet, and the duration of the individual faults. Each of these rate
 

durations can be modeled using either Poisson or other distributions.
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5.4 SIMULATION OF FLIGHT-CRITICAL BUS SUBSYSTEM 

5.4.1 GLOBAL APPROACH TO FCB MODELING 

For survivability assessment purposes, the Shuttle Data Processing 

Subsystem was partitioned into seven independent equipment groups, as follows:
 

the five general-purpose computers (GPC); the flight-critical buses and con­

nected equipment (FCB); the two mass memory units and their buses (MM); the
 

display equipment and their buses (DIS); the payload operations equipment and
 

buses (PLO); the launch related equipment and buses (LE); and the flight in­

struments and buses (FI).* The input-output partition (1-0) includes all of
 
the above equipment groups except the GPC partition.
 

The diagram on the opposite page shows the layout of the flight criti­

cal bus partition which is the most complicated input-output equipment group.
 
The eight flight-critical buses, FCl - FC8, are interfaced with all GPCs. Each
 

dedicated display unit (DDU) is interfaced with three buses by means of three
 

redundant ports. The flight-forward MDMs are each interfaced with two buses by
 

means of a primary port and a secondary port. Ifthe electronics associated
 

with a primary port fails, the backup port is switched in. Each interface unit
 

(MOM or DDU) controls several dedicated and/or non-dedicated devices (non­

dedicated devices are shaded and can be accessed through more than one MDM).
 
These devices are redundant (e.g., ACCELl, ACCEL2, and ACCEL3 perform identi­

cal functions), thus one of them can fail without causing a system failure.
 

The I-0 partition simulation modeling is different from the GPC parti­

tion simulation modeling, in that the state of the 1-0 partition is represented
 
by a set of tables rather than a procedure as for the GPC partition. This
 

method was chosen because the I-0 partition requires many more states than the
 

GPC partition, and the simulation of a particular I-0 state ismuch simpler
 

than the simulation of a GPC state since no software considerations need be
 

taken into account.
 

The behavior of each equipment group in the I-0 partition is represented
 
by several tables and a procedures. The tables define the current state of the
 

system; i.e., the partition status, the device interconnections, and the par­

tition's recovery capabilities. The procedures define the fault-induced system
 
action, the resulting table modifications (i.e., state transition), and the
 

*See Section 4.1 for an explanation of the DPS partitioning.
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successfulness of the recovery. Both the built-in test equipment and the redun­

dancy management software are factored into the implementation of these pro­

cedures, since they define fault detection, isolation, and recovery success
 

probabilities. The next topic discusses the simulator representation of the
 

flight critical bus partition.
 

INU=Tw IND~cmc IIS 

ASAAFLIGHT-CRITICAL BUS CONNECTION S (ALT) 

REPRODUCOIBLTYm OF THEORIGINAL PAGE IS POOR 
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5:4.2 FCB SUBSYSTEM STATUS REPRESENTATION
 

The status of the flight-critical-bus partition is represented in
 

memory by a set of tables like the ones on the facing page. Table 5.4-I indi­

cates the interconnection between the flight-critical buses (FCl - FC8) and the
 

IUs (interface units, i.e., MDMs and DDUs). Table 5.4-11 reflects the relation­

ship between the flight-forward MDMs (MDMs FF1 - FF4) and the dedicated sensors
 

and actuators. Additional tables relate the MDMs and DDUs to the other devices.
 

A procedure is invoked to determine and record the effects of a fault in the
 

flight-critical bus partition on the system.
 

The interface between the flight-critical buses and the IUs is reflec­

ted by Table 5.4-1 on the facing page. Each row corresponds to a flight­

critical bus and each column corresponds to an IU. An element that is indexed
 

by a particular bus and IU (row and column) is assigned to a number according
 

to the following scheme:
 

0 --The bus does not have a functional interface with the IU.
 

1 - The bus has an active interface with the IU.
 

2 - The bus has a functional, but inactive, interface with the IU
 

(i.e., this represents a secondary port).
 

Thus from Table 5.4-1, it can be inferred that MDM FF1 is interfaced with flight­

critical buses FCl and FC5. FC1 is connected to the primary (active) port of
 
MOM FF1, and FC5 is connected to the secondary port. Note that each DDU has
 

three active ports. Here it is assumed that display information is transmitted
 

on buses FCl - FC4, and the actual bus used by a DDU is selected by a manual
 

switch on its control panel.
 

The interface between MDMs FF1 - FF4 and the dedicated sensors and ac­

tuators they control is indicated by Table 5.4-11. Each row corresponds to a
 

flight-forward MOM, and each column co responds to devices of a particular type.
 

An element corresponding to a particular MDM and type of device has a value of
 
"0" or "I"which indicate:
 

0 - A functioning device of this type is not associated with the MOM. 

1 - A functioning device of this type is connected to the MOM. 

Thus Table 5.4-11 indicates three accelerometers with ACCELl interfaced to MOM
 

FF1, ACCEL2 interfaced to MOM FF2 and ACCEL3 interfaced to MOM FF3.
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Interdependence Matrices
 

DD 
DDFF FFF FF 
UU FF F F A A A A 
1 21 23-4 1 2.34 

FCI 1 1 1 o0 00 0 00 
FC2 1 110 1 0 a a001 
FC3 1 00011 0 0 0 010 
PC4 0 1 0 010 1 0 0 0 0 
Fc5 0 0 21010 0 1 0 0 0 
Fc6 0 0 2 00o1 010 
Fc7 0 oo 02 0 1 0

FcIo oo
Fc8 0 0 0o02o 0 0o 0oi 

TABLE .5.4-1 Bus - BTU Interconnection Matrix 

AA TM 
DC AS R 

A E L
 
1LU NS T 

FF1 1 1 1 1 1 
FF3 1 1 1 0 

FF4 0 0 0 0 '0
 

FF410
 

TABLE 5.4-11 MDM - Device Interconnection Matrix 
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5.4.3 ORGANIZATION OF FCB SIMULATION PROGRAM
 

The effects of faults occurring in the flight critical bus partition
 

is simulated by the subroutine FCBFLT, which is flowcharted in Figure 5.4-2.
 

This routine first-determines the fault location, and then calls the appropri­

ate fault simulation routine. Ifthe fault results in a safety-critical failure,
 

then system failure is indicated. Otherwise, a status vector is set to indicate
 

the loss of any functions that have an effect on GPC performance (e.g., the
 

MTU). Control is then passed back to the calling program, FIFAU.
 

The six FCB fault simulation routines are: BUSFLT for simulating the
 

occurrence of a fault on a flight-critical bus, MDMFLT for simulating faults
 

occurring in the flight-critical bus terminal units, and DDUFLT, DFFFLT,
 

NFFFLT, and DFAFLT for simulating faults occurring in the device interfaces
 

with the bus terminal units. Each routine has similar program logic. The
 

status of the unit in which the simulated fault occurred is first checked. If
 

the unit has already failed, the fault is ignored and control passes back to
 

FCBFLT. Otherwise, the fault counter is incremented and control .ispassed the
 

appropriate program segment determined by the fault type.
 

If the fault is transient, the transient-fault counters are first in­

cremented and then transient recovery is simulated. Ifthe fault corrupts data
 

and is undetected, it is assumed critical. Ifthe fault disappears within a
 

certain time period (the time required for transient recovery, i.e., a RETRY)
 

and causes no permanent damage, transient recovery is assumed successful and
 

control is returned to FCBFLT. Otherwise, the fault is handled as a permanent
 

(it is assumed that FCOS mistakes the transient for a permanent and acts
 

accordingly).
 

Permanent faults result in replacement, or deletion with redundancy
 

masking of the fault unit. If the unit is removed, all devices that depend upon
 

itare also removed. Thus,-if one of the flight critical buses permanently
 

fails, it is removed from the system (all I/O transactions requiring it are ter­

minated). All bus terminal units using the faulty bus, switch to thei-r backup
 

ports interfaced with other buses. If no backup ports are available to a BTU
 

(Bus Terminal Unit), it is indicated as failed and thus removed from the sys­

tem. Thus, all devices connected to it can no longer function, and must be
 

removed from the system. If the status now indicates that a necessary device
 

is no longer available, a flight critical failure is indicated.
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5.4.4 INTEGRATING FCB SIMULATION SUBROUTINES WITH THE MAIN PROGRAM
 

The Input-Output fault simulation subroutines are integrated with the
 

GPC simulation routines by means of the subroutine FIFAU, which is invoked for
 

every simulated fault to determine how it is to be simulated. FIFAU distinguishes
 

between three classes of faults. Those occurring in a GPC's CPU or Memory are
 

simulated by the GPC state simulation subroutines. Faults occurring in one of
 

the I/0 equipment groups are simulated by the I/0 simulation subroutines. Those
 

faults appearing in the GPC's 1OP are simulated by the GPC state-simulation
 

routines or the I/0 simulation-routines, or both depending on its impact. Most
 

IOP faults result in a GPC failure, because the.lOP is needed as an interface
 

to the I/0 network; however, it is possible that an IOP fault could also disable
 

a bus (.g., a fault occurring in an lOP's BCE could appear to be a bus fault,
 

to FCOS, thereby resulting in bus replacement, effectively disabling the bus).
 

The overall control sequence for the subroutine FIFAU is shown in Figure
 

5.4-3. FIFAU first determines where the simulated fault occurs and jumps to the
 

corresponding program segment (illustrated by DO CASE statement in Box 1 of the
 

flowchart). If the simulated fault occurs in the CPU or Memory, the program
 

sequence follows the CPU/memory branch (branch 2); if the fault occurs in the
 

lOP, control follows branch 3; and if the fault occurs in the I/0 network, con­

trol follows branch 4 and executes the I/0 simulation routines. Upon completion
 

of the program segment, control returns to the statement following the DO CASE,
 

and then returns to the calling program with two parameters IN and NEXT. IN
 

indicates to the calling program if it is necessary to simulate GPC recovery
 

for that fault. NEXT is set if a system failure has occurred as a result of
 

an I/0 fault.
 

The CPU/Memory program segment first determines if the unit in which the
 

simulated fault occurs has already failed. If it hasn't, then IN is set to indi­

cate that simulation of GPC recovery is necessary, and control is returhed to the
 

calling program. If the GPC has already failed, the fault is ignored by setting
 

IN to indicate that no GPC recovery-simulation is necessary.
 

The lOP program segment determines the impact of the 1OP fault on the
 
bus and GPC. If the bus is impacted, a routine is invoked to simulate recovery,
 

and then status indicators are set to indicate the resulting system status. If
 

the CPU's capability for receiving cotrect data is affected, theh IN is set to
 

indicate that GPC recovery is still necessary, otherwise, the bus recovery
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routine (e.g., switching the bus connected to a faulty BCE) isassumed to have
 

corrected the fault, and IN is set to indicate that further processing for this
 
fault is unnecessary. Ifaccess to critical devices were lost as a result of
 
bus replacement, NEXT is set to indicate the occurrence of a safety critical
 

failure.
 

Program segment 4 first determines which equipment group the fault occurs
 
in,and them invokes the appropriate simulation routine (e.g., if the fault occurs
 
in the flight critical bus partition, the routine-FCBFLT is invoked). If a safety
 
critical function was lost, NEXT is set to indicate such, otherwise, IN isset to
 

indicate that no further simulation is necessary for this fault.
 

FIGURE 5.4-3 FIFAU OVERALL CONTROL SEQUENCE
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5.5 	 SIMULATOR UTILIZATION
 

5.5.1 	 SIMULATOR INPUTS
 

The inputs required by the simulator are summarized inTables 5.5-1
 

and 5.5-11. The detailed simulator input deck set-up is given in Appendix B.l.
 

The use of some of these inputs is discussed below.
 

The detection probabilities are the probabilities that a computer detects
 

its own faults (except through diagnosis). This is not significant for N-M-R
 

configurations (N 3) since all faults are detected and located through voting
 

or comparison. However, these probabilities become critical in duplex and
 

simplex. Induplex, faults are detected through comparisons. However, BITE or
 

self-test is needed to isolate the faulty computer. In simplex, BITE is
 

necessary, since it provides the only means for detecting transient faults.
 

For simplex operation the detection probability of CPU faults is low.
 

Faults in the CPU usually cause only a wrong output which will not be detected
 

by BITE. However some will be detected. Those are the ones which cause a for­

bidden address to be computed or those which modify the computing'sequence in
 

such a manner that a go/no-go counter detects them. IBM estimates this detec­

tion probability to be about 35%.
 

The main technique to detect a memory fault is parity encoding. When
 

it exists, the probability of detecting a memory fault is usually better than
 

80%. When it does not exist, this probability is quite small.
 

Self-test programs (diagnosis) are run in a duplex system where a fault
 

has been detected but not isolated. Note that if the fault is transient, the
 

self-test wi.ll probably not diagnose it,since it usually dissipates before the
 

test is run.
 

Ifthe configuration includes some additional hardware for the Input-


Output Processor, the consequence of faults in this hardware has to be assessed.
 

We partitioned the configurations in two classes. Inthe first class (dedicated
 

lOPs), we assume that a fault in the lOP is equivalent to a fault in the computer
 

and sometimes on the corresponding bus. Inthe second one (non-dedicated lOPs),
 

we assume that IOPs are, independent from the computers. The system can work as
 

long as one computer and one lOP are good. Note that the dedicated case includes
 

software TMR.
 

In the present simulator, the recovery procedure for a NMR system is
 

the state vector transfer. Memory copy is optional.
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TABLE 5.5-1 REQUIRED SIMULATOR INPUTS - GPC PARTITION 

NUMBER OF SIMULATED MISSIONS
 

MISSION DEPENDENT PARAMETER
 

Mission Time
 

MACHINE DEPENDENT PARAMETERS
 

Permanent Failure Rates
 
BITE Detection Probability of a CPU Fault
 
BITE Detection Probability of a Memory Fault
 
Self-Test Program Efficiency
 
Self-Test Program Duration
 

CONFIGURATION-DEPENDENT PARAMETERS
 

Number of Computers
 
Number of Spares
 
Dedicated/Non-Dedicated IOPs (Input-Output Processor)
 
Probability that an IOP Fault Hits the Bus
 
Number of Non-Dedicated lOPs
 
Applicable Recovery Algorithms
 
Recovery Algorithm Characteristics
 
Duration
 
Unacceptable Recurrence Interval
 
Maximum Number of Rollbacks
 
Program Integrity
 
Memory-Copy Efficacy
 

SCHEDULING PARAMETERS
 

Iteration Period
 
Time Between Comparisons
 
Major and Minor Cycle Durations
 
Asynchronous/Sunchronous Mechanism
 

ENVIRONMENT DEPENDENT PARAMETERS
 

Transient Failure Rates
 
Transient Failure Duration
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Once a recovery procedure has failed for a certain fault, it is useless
 

to attempt to recover through the same procedure. Some other one has to be
 

chosen. Ifafter completion of a recovery procedure, a fault recurs in the
 

same computer after a time less than the unacceptable recurrence interval, the
 

system decides that the recovery procedure was unsuccessful and attempts some­

thing else. Usually, the recurrence intervals will be chosen equal to the
 

duration of one major cycle. The rationale isthat the memory is thoroughly
 

exercised in one major cycle.
 

The Program Integrity is listed with the other recovery algorithm
 

characteristics because a transient recovery algorithm not involving memory
 

refresh cannot succeed when there is a program memory damage. Program integrity
 

isstrongly linked to the type of memory: an NDRO memory ismuch better in this
 

respect than a DRO memory. The fact that there is no need to restore the infor­

mation makes it very unlikely that a transient fault damages instructions or
 

constants. In addition, inmost NDRO applications, the write voltage for the
 

program memory is disabled except when altering the program under AGE control.
 

The memory copy-efficacy is the probability that a memory copy corrects
 

a transient fault. The only reason why it should not succeed is that the tran­

sient had hit the little (micro) program initiating the memory copy. This is
 

very unlikely since this program should reside in a read only memory or micro­

store.
 

Table 5.5-11 lists the required simulator inputs for the FCB partition.
 

The redundancy and interconnections between FCB components are specified by five
 

arrays. Ingeneral, an array element equal to one indicates that a connection
 

between the devices, indicated by the row and column indices, exist, and a
 

zero indicates the opposite. These matrices are described inmore detail in
 

Section 5.4. Device names, which are used for identifying components on the
 

simulator listings, are specified in the input deck to allow more flexibility.
 

Because of the large number of devices on the FCB bus, recovery characteristics­

are specified by transient fault detectabilities, transient leakages and cover­

ages, rather than by specific recovery procedures. Eighty-nine cards are
 

needed to specify the FCB configuration and failure rates.
 

REPRODUCIBI$ITY OF THE 
0QRIGhiAL PAGE IS POOR 
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TABLE 5.5-11 REQUIRED SIMULATOR INPUTS - FCB PARTITION 

CONFIGURATION-DEPENDENT PARAMETERS
 

* Number of I/O Devices 

" Redundancy of I/O Devices 

* Interconnections Between I/O Devices
 

DEVICE DEPENDENT PARAMETERS
 

* Device Identification Names
 

* Transient Fault Detectabilities
 

* Transient Fault Leakages
 

* Fault Coverages
 

FAULT ENVIRONMENT
 

* Permanent Failure Rates
 

* Transient Failure Rates
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5.5.2 	 OBTAINING SIMULATOR INPUT PARAMETERS
 

An important point inthe application of CAST to the shuttle data
 
processing subsystem is the determination of simulator input parameters.
 
There are several methods for obtaining them if their values are not obvious:
 
Failure 	rates and built in test detection probabilities are usually obtained
 
from the 	manufacturer. Parameters affecting transient fault recovery such
 
as the PROGRAM INTEGRITY or transient leakages can be determined by engineer­
ing analysis or by logic level simulation.
 

Parameters that couldn't be obtained from the manufacturers were esti­
mated by an engineering analysis. One of the required simulator inputs is
 
called program integrity (PI). This simulator input is the probability that
 
a transient fault in the GPC memory does not alter a program word.
 

We use a "top-down" approach by subdividing the GPC memory into func­
tional components and then in turn further partitioning these functional compo­
nents. For each transient failure mode within a component we determine whether
 

memory will
 

* Always be corrupted,
 

* Be corrupted only if the component isused, or
 

* Never be corrupted.
 

The expression for the program integrity can be written as one minus the
 
probability that a transient fault alters a program word. Thus PI iswritten
 
as
 

Pl = 1I- niEBijij/ E-niE i 
\i J )A i 

where: 	 Tij is the rate of occurrence of transient failure mode j in component i,
 

5ij is the probability that transient failure mode j in component i
 
corrupts memory, and
 

ni is the number of components of type i.
 

The first partitioning of a 16K - 2 1/2D core memory as found in the
 
IBM-4 AP-lOl basic configuration is shown in Figure 5.5-1. This partitioning
 
divides the memory into the timing page and four storage pages.
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Further partitioning continues as shown in Figure 5.5-2 for a storage
 

page. We see from this partitioning that a transient in the output buffer will
 
only corrupt the memory output, but a transient in the data register would
 

surely corrupt memory during the restore cycle as well as the memory output.
 

Consider the case of a Y-driver as shown in Figure 5.5-3. If a tran­

sient strikes a powered Y-driver, then any Y-driver failure mode will corrupt
 

memory during the read and/or restore cycle. The quantity 0ij for a Y-driver
 

then becomes the probability that it is selected while a transient is active.
 
The Y-driver on the page has a 1/32 probability of being used, and for a 16K
 

memory, the page of the driver of interest has a 50 percent probability of being
 

used. Ifwe assume program words are accessed every 3 vs, then the quantity
 

ij for one Y-driver becomes
 

= = W P(Td=3n Ps)n=i'4
 

where Td'is a discrete random variable representing transient duration. If we
 

assume it is uniform from 3 ps to 300 ps at intervals of 3 vs for ease of compu­

tation, then aij becomes
 

BIj- 100__3,64, = .57 

=1 =1 64n
 

Computing the a's as above for the remaining functional components and finding
 
the Oij's as is done for permanent faults, program integrity is found to be .30.
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5.5.3 INTERPRETATION OF SIMULATOR OUTPUT
 

The simulation results are only meaningful when examined with the
 

system configuration defined by the input deck. Thus, of the six pages of
 

simulator output, four pages are devoted to describing the configurations of
 

the software, GPCs, and flight critical devices. Figure 5.5-4 on the facing
 

page shows a simulator produced summary of the GPC configuration forthe base­

line simulator run.
 

The top line (inthis case "QUADRUPLEX") indicates the basic config­

uration of the GPCs. In this case, "QUADRUPLEX" indicates that there are four
 

GPCs, all of which perform identical operations and compare the results for
 

fault detection and isolation. "TRIPLEX WITH 2 SPARES" would indicate that
 

the redundant set consisted of three computers; but inaddition, two spares are
 

included that are either powered down or perform non-critical computations until
 

a failure occurs in one of the redundant computers. A spare is then chosen to
 

replace the faulty computer. The "TRIPLEX WITH 2 SPARES" configuration could
 

be used for non-critical mission phases. The next two lines indicate that
 

500,000 6-hour missions were simulated.
 

The next section of output is headed by "TRANSIENT RECOVERY PROCEDURES."
 

It lists the transient recovery procedures in use and their performance
 

characteristics. The baseline system uses two transient recovery methods.
 

"DELAY RECONFIGURATION" indicates that reconfiguration doesn't occur unless two
 

faults within a specified time interval. Thus, transients causing data errors
 

which are compensated by the control loop calculations after an iteration will
 

not cause the loss of a computer. The DURATION indicates a 1.0 millisecond
 

overhead to do this recovery procedure. The RECURRENCE INTERVAL indicates that
 

iftwo faults occur in the same computer within a 1280 millisecond period, the
 

second fault is assumed to be a recurrence of the first fault and will cause
 

system degradation. An EFFECTIVENESS of 0.5 indicates that half of the tran­

sient faults that do not cause damage to the program can be "corrected" (i.e.,
 

not cause unnecessary system degradation) by this procedure. A SYSTEM RESTART
 

which is invoked because of multiple faults where the faulty computer cannot
 
be isolated. One thousand milliseconds is required for a SYSTEM RESTART.
 

MEMORY-COPY, ROLLAHEAD, AND ROLLBACK can also be incorporated into the system
 

configuration as transient recovery procedures. If they are, they will be
 

listed inthis section along with their characteristics.
 

REPRODUCIBILITY OF THE
 

ORIGINAL PAGE IS POOR 
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QUADRUPLEX
 

NUMBEP OF MISSIONS 500000
 
MISSION DURATION 6.O000 HOURS
 

TRANSIENT RECOVERY PROCEDURES 

DELAY PECONFIGURATTON 
DURATION 
RECURRENCE INTEPVAL 
EFFECTIVENESS 

t2
95

1.00 
80.00 
00000 

MILLISECONDS 
MILLISECONDS 

SYSTEM RESTAPT 
DUPATION 1 ,00.00MILLISECONDS 

RECOVERY PAPAMETERS
 

PROGRAM SURVIVABILITY .100000
 

PROBAFILITY OF FAULT DETECTION BY BITE 
CENTRAL PROCESSOR .458 
MEMORY .981 
I/O PROCESSOR -0.000 

STP EFFICIENCY 9919000
 
MEAN DIAGNOSIS TIME 6o50 MILLISECONDS
 
DELAY BEFORE RECOVERY 0.00 MILLISECONDS
 
ISOLATION DURATION 0.00 MILLTSECONDS
 

SOFTWAPE PARAMETERS
 
ITERATION PERIOD 40.00 MILLISECONDS
 
MINOR CYCLE DURATION 40.00 MILLISECONDS
 
MAJOR CYCLE OURATION 32 ITERATIONS
 
TIME BETWEEN COMPARISONS 40.00 MILLISECONDS
 
MAYIMUM DOWN TIME 1000.00 MILLISECONDS
 
MINOR CYCLE PROGRAM SIZE .500000
 
ASYNCHPONOUS EXECUTIVE - INTERRUPT RATE 100.0 PEP SECOND
 

DEnICATED I/O PROCFSSORS
 

FIGURE 5.5-4 CONFIGURATION SUMMARY - PART 1
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"RECOVERY PARAMETERS" heads the next section of the GPC configuration
 

summary. Here the program survivability, the BITE fault detection probabil­

ities and the Self Test Program (STP) characteristics are listed. The PROGRAM
 

SURVIVABILITY represents the probability that the program survives given that
 

a memory transient occurs. Since the main memory is CORE DRO, every word read
 
from memory must be re-written into memory by the hardware. Thus, if an error
 

occurs during the read cycle of an instruction, it is written back into memory
 

corrupting the program. This is reflected by a low value of program surviv­

ability (0.1). According to the listing, BITE has a probability of 0.458 for
 

detecting CPU faults and a probability of 0.981 for detecting memory faults.
 

Negative zero indicates that the parameters was unspecified. The STP EFFICIENCY
 

indicates that the probability of detecting a fault by means of a computer self
 

test (software) is 0.919. If a computer is faulty, this fact will be detected
 

in-an average duration of 6.5 milliseconds. The ISOLATION DURATION of zero
 

indicates that once a fault is detected, its isolation of nearly immediate.
 

DELAY BEFORE RECOVERY indicates the amount of time transient recovery is
 

delayed in order to allow the transient to become inactive. In this case there
 

is no delay.
 

Under "SOFTWARE PARAMETERS" are listed the assumed values for the
 

ITERATION PERIOD, the MINOR CYCLE DURATION, the MAJOR CYCLE DURATION, the TIME
 
BETWEEN COMPARISONS, the MAXIMUM DOWN TIME, the relative MINOR CYCLE PROGRAM
 

SIZE, the the type of executive structures. The ITERATION PERIOD, which spec­

ifies the time between consecutive major control loop calculations, is assumed
 

to be the same as the MINOR CYCLE DURATION, which is 40 milliseconds. The
 

major cycle consists of 32 minor cycles and thus lasts 1280 milliseconds. It
 

was assumed that there is one comparison every minor cycle; thus the TIME
 
BETWEEN COMPARISONS is 40.00 milliseconds. The MINOR CYCLE PROGRAM SIZE indi-"
 

cates that half of the computer time is spent executing minor cycle calculations.
 

The software structure is ASYNCHRONOUS with an average rate of a hundred inter­

rupts per second. The system must recover in less than a second in order to
 

avoid system failure. This is specified by the MAXIMUM DOWN TIME being 1000
 

milliseconds. DEDICATED I/0 PROCESSORS indicate that an input-output processor
 

is dedicated to each of the computers.
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t
OJAD qUPL X 

NUMER OF MISSIONS 5)0000 
MISSION DURATION 6.0000 HOURS 

TRANSIENT RECOVERY OROCEDURES
 

DELAY cECONFIGURATTON 
DURATION 
RECURPENCE INTEPVAL 
EFFECTIVENESS 

1.00 
1280.00 
.500900 

MILLISECONDS 
MILLISECONOS 

SYSTEM RESTART 
DURATION 1990.00 MILLISECONOS 

RECOVERY PA 0 AMETERS
 

PROGRAM SURVTVABTLITY .10C000
 

PPOBA9ILITY OF FAULT OETECTION BY BITE
 

CENTRAL PROCESSOR L159
 
MEMORY .91
 
I/O PROCESO -O.loo
 

STP EFFICIENCY .3190C0 
MFAN DIAGNOSIS TIME 6.50 MILLISECONDS
 
PELAY 	REFORE RECOVERY 0.00 MILLISECONDS
 

0.f,0 MILLTSECONOS
TZOLATION DURATION 


SOFT~APE PARAMNETERS 

ITERATION PERIOD 40.30 MILLtSECONOS 
HINOR CYCLE DURATION &0.00 MILLISECONOS 
'AJOR CYCLE OURATION 32 ITERATIONS 

TINE BETWEEN COMPARISONS 46.00 MILLISECONDS 
MILLISECONDS
MAXIMUM DOWN TIME 100-00 


MINOR CYCLE PROGRAM SIZE .500000
 

ASYNCHPONOUS EXECUTIVE - INTERPJPT PATE 100.0 PEP SECOND
 

DEIICaTED I/O 0ROCESSORS 

FIGURE 5.5-4 CONFIGURATION SUMMARY - PART 1
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Figure 5.5-5 lists the failure rates for each of the GPC devices.
 
NOTATIONS defines what ismeant by MODULE 1, MODULE 2 and MODULE 3. The impact
 

of I/0 processor faults represents the probability that an lOP fault affects
 
the computer, a bus, or both the computer and a bus. Here itwas assumed that
 
all 1OP faults affect the computer but not the bus. The DESCRIPTION OF THE
 
FAULTY ENVIRONMENT lists the permanent failure rate, the transients failure
 
rate and the average transient duration for each of the CPU, the TOP, and the
 

memory.
 

The failure rates of the devices for the flight critical bus partition
 
are listed in Figure 5.5-6 which is Page 3 of the simulator output. The NET
 
PERMANENT FAILURE RATE represents the total failure rate of all of the devices
 

taking into account their redundancy. Thus, the ADTAs failure rate is included
 
four times inthe net failure rate calculation because there are four ADTA. All
 
failure rates are listed in number of failures per million hours. The ADTA (Air
 
Data Transducer) has a permanent failure rate of 250 failures per million hours.
 
The MDMs and DDUs each have two 'permanent failure rates associated with them.
 
The first number indicates the failure rate of the main body of the MOM and the
 

second number indicates the failure rate of the redundant portion of the MOM
 
associated with each FC bus interface. For the baseline run, all flight criti­
cal device transient failure rates were assumed to be zero. This was done be­
cause nearly all transient faults will not cause system degradation. The -0.00
 
in each column indicates that the input was not specified.
 

NOTATIONS 
MOPULE i - CENTAL PROCESSIG UNIT 
'OnULE 2 - I/l PROCESSOR 
mODULE 3 - MFMORY 
MODULE 4 - EXTERVAL DEVICES 

TNOACT OF I/0 P OflqSOR rAULTS
 
ON COAPUTER t.OGO0co
 
ON IUS 0.000co0 
OM Ot11 ANn CO'IPUTEP 0,*00000o 

OeF'PrPTION OF 
MOUULE I 

THF FAULT ENVTOONHENT 
O0 FRtAt'NT OATE .i2E-93 PER HOU 
T'ANqTENT oAVE .12E-03 PER HOUP 

MnPULE 2 
TF4NqIcNT DURATION 
0 ERMANENT RATE 

,IGE+O0 
.44 E-03 

MILLISECONOS 
PEQ HOUP 

(EXPONENTIAL) 

TPANVIENT RATE .44E-03 OFP HOU O 

TPANSIFNT DURATION iOE+10 HILLI3ECONDS (EXPONENTIAL) 
MOnUL 3 PERMANrNT RATE 

TPANSTPNT PATE -
.44E-23 PEq HOUP 
.4E-03 PEP HOUP 

TPANSICr1T nU9ATTO'I i.l:GO0 MTLLI3ECONDS (EXPONENTIAL) 

FIGURE 5.5-5 CONFIGURATION SUMMARY - PART 2
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PL[GHT CRITICAL QUS PARTITION --- FAILURE PATES
 

NET PF'MANFNT FAILURE PATE 9998.qs PER 11ILLION HRS 

NFT rPINSTENT FATLUPE PATE 0.02 PER MILLION HRS 

n'VTCE PSPHAIFNY PATE TRANSIENT RATE 

FC-iUS 2
Fr-rluj ? 

.10
°t0 

-0.00
-0O.00 

FC-nUS 3 .10 -0o00 

FC-qU 4 . tG -0.00 
FC-nUS (5 
ro-nus 6 

10 
to 

-0o00 
-0.0o 

FC-'3FUS 7 .10 -O.00 

FC,-AP"S 8 .19 -0.90 

-nu r5.6 5,09 -0.CO -0.00 
q'fU 2 

t5lM C5 
55,r0 

.tC)S 
5.00 

74t.1G 
-0.ca 
-0 .ca 

-0.90 
-0 .0 

CM Fr-2 15;.95 74.1G -0.00 -0.00 
M, 
tinv 

Fr-3 
Fr-h, 

i5.q5
87.2-5 

74.16 
74,16 

-0.00 
-0.00 

-0.00 
-0.00 

M",% F41--t 144. 4? 74.16 -c.00 -0.00 

M"'I cq-2 144 .42 74,16 -0.c0 -0.00 

"1 F-311,)'1 Fa-4 144.42125.57 74.i6-74.16 
-0.00-0,. -0 

-0.00-0.00 

A VVT 7 .79 
,93.21 

-o.30 
- °-i.00 

HSI 4.00 -0.00 

Anl 56.50 -0.00 

ArT A 250.00 -0,00 

Ar EL lOq .50 -0,00 
14U1 285 .70 -0.00 
Ta"AN 1.000.00 -0 .00 
'COLS 500.00 -0.80 

0.00 -0.00 

MITU 0.00 0.00 -0.00 -0.00 

RHO .1O 2,00 -0.00 -0.00 
RpT A .10 2.00 -0.30Q -0.00 
SPTr .10 2.00 -0.0 -0.00 

a1a I.OG-00 -0o00 

96y00 66 .70 -0,00 

FIGURE 5.5-6 CONFIGURATION SUMMARY - PART 3 

5-48
 



Figure 5.5-7 illustrates the fourth page of simulator output. It lists
 

the assumed transient leakages, permanent coverages, and fault detection prob­
abilities for each of the devices in the flight critical bus partition. Two
 

leakages and coverages are specified for the MDMs and DOUs. The first column
 

represents the leakage/coverage for a fault occurring in the non-redundant
 

portion of the BTU. The second column represents the leakage/coverage for a
 

fault cocurring in the redundant portion of the BTU. The DDU devices (i.e.,
 

AVVI, AMI, HSI and ADI) have two transient detection probabilities associated
 

with them: the first number of the transient detectability when two devices are
 
active. Similarly, the dedicated devices on the flight forward MDMs have four
 

transient detectabilities associated with the probability of detecting a fault
 

in when one, two three or four devices are active respectively. There are three
 

permanent coverages for each device: the first is the probability of recovery
 

from a permanent fault when two devices are active; the second is the coverage
 

when three devices are active; and the third is the coverage when four devices
 

are active.
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0 

COVEPAGE PARAMETFRS --- FLIGHT CRITICAL 9US PARTITION
 

BUS TRANSIENT LEAKAGE 0.000000
 

BUS PFRMANFNT COVERAGE .999000
 

BTt] NAME TRANSIENT LEAKAGE PERMANENT COVERAGE
 

oU 1 0.0o0000 o.oooooo .999000 .999000 
DDU 2 o.oooooo 0.oooooo ,99ooo .999000 

MOH FF-1 0.000000 0.000000 999000 .999000 

MN FF-3 0.000000 0.000000 .999000 .999000 
MON FF-3 0.000000 0.000000 .999000 .999000 C) 

MOH FA-. 0.00000C 0.08000 .999000 .999000 
MnN FA-2 0.000000 0.000000 .999000 .999000 

MOM FA-? 0,000000 0,000000 .999000 .999000
 
MOM FA-3 0.000000 0.000000 .999000 .999000
 

nti DEVICE TRANSIENT DETECTION TRANSIENT LEAKAGE PERMANENT COVERAGE
 

AVVI 950000 .999000 0.000000 .999000
 

ART .950000 .99900g 0.000000 .999000
 

HST .950000 .999000 0.000000 .999000
 

ADT .950000 .999000 0.000000 .999000
 

OFVTCE TRANSIENT DFTECTION TRANSIENT LEAKAGE PERMANENT COVEPAGE
 

ADTA .950000 .999000 .999000 .99000 0,900000 .950000 .999000 .999000 

ACCEL .950000 .999000 .999000 .999000 0.000000 .950000 .999000 .999000 

Imu .950000 .999000 .9000 .999000 0.000000 .950000- .999000 .999000 

TACAN .950000 .999000 .999000 .999000 0.00000 .950000 .999000 .999000 

HSLS .950000 .999000 .999000 .999000 0.000800 .950000 .999000 .999000 

C.000000 0.000000 0.000009 0.0000000.000000 0.000000 0.000000 0.000000
 

DEVICE TRANSTFNT DETECTION TRANSIENT LEAKAGE PERMANENT DETECTION PERMANENT COVERAGE 

HTU qqqqg0 .999000 0,000000 0.000000 .999000 .999000 

RHC .999000 .999000 0.000000 0.o00000 .999000 .999000 
RPTA .999000 .999000 0.000000 9.000000 .999000 .999000 

SBTC .99000 .999000 0.00008u 0.000000 .999000 .999000 

DFVICE TRANSIENT DETECTION TRANSIENT LEAKAGE PERMANENT COVERAGE 

ASA oqgqooO 0.000000 .950000
 
RGYRO .999000 0.00000 .950000
 

FIGURE 5.5-7 CONFIGURATION SUMMARY - PART 4
 



Figure 5.5-8 shows the first page of output statistics that was gener­
ated by the simulator. The top four lines indicate the number of faults that
 

occur inthe entire system including both the GPC partition and the FCB parti­
tion. Inthis case, a total of 53,595 faults occurred during the simulation
 

of 500,000 missions. Only 35 system failures occurred as a result of all of
 
these faults.
 

The next section which isheaded by "GPC FAULT AND RECOVERY STATISTICS"
 

lists several statistics for each state of the configuration (i.e., for quadru­
plex, residue triplex, residue duplex, and residue simplex). The columns headed
 
"PERMANENT FAULTS," "TRANSIENT FAULTS," and "TOTAL FAULTS" list the number of
 
faults that occur for each of the GPC configurations. The "SYSTEM FAILURES"
 

column lists the number of flight-critical failures that occurred for each GPC
 
configuration. The number of transients resulting in system degradation are
 
listed inthe column entitled "LEAKY TRANSIENTS." The "DEGRADATIONS TO" column
 
lists the number of times the configuration degraded to each GPC' redundancy
 
level as because of a fault. Thus, while the GPCs were in the initial con­

figuration (quadruplex), they sustained 11,546 permanent GPC faults and 11,752
 

transient faults. Of the 11,752 transient faults, 8,179 of them resulted in
 
system degradation. Thus there were 8,179 + 11,546 = 19,725 system degradations
 
from quadruplex. By examining the "DEGRADATIONS TO" column, it can be seen
 
that all degradations from quadruplex were to triplex. For this calculation,
 

itwas assumed that all 8,179 leaky transients and 11,546 permanents resulted
 

insystem degradation. The GPC recovery procedure statistics list the number
 
of times each of the transient recovery procedures was invoked.
 

The estimated mission failure probability, transient leakages, and 
coverages all have a confidence interval associated with them. The mission 

success probability is calculated by finding the ratio of the number of system 
failures to the total number of missions. The simulation statistics indicate 

that the mission failure probability is0.000072 * 0.000024. This indicates 
that the system failure probability falls between 4.8xi0 "5 and 9.6xi0 "5 with a 

95% confidence. This is not the exact confidence interval, but a close esti­
mate that assumes a large number of tries (see [FREU 62] for details).
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V 

S I HU L A T I N ST A T IS T IC S 

NU'9RF, OF PErmANZNTS 4i667 
NU'MI; P OF TRANSIENTS 11928 
TOTAL NUMNER CF FAULTS 53595 
NUM'ER OF SYSTEM FAILUPES 34 

GPO FAULT ANn RECOVERY STATISTICS 

CONFIGUPATION PERMANENT. FAULTS TRANSIENT FAULTS TOTAL FAULTS
 
OUAOQUPLEX 11546 1±752 23298
 
T0 IPLFX 164 174 358
 
DUPLEX 0 2 2
 
SIMPLEX 0 0 0
 

SYSTEM FAILUCES LEAKY TRANSIENTS OEGRAOATIONS TO
 
QUAOSIIPLEX 0 t17Q 0 
TPIPLX 0 ±23 19725 
nUPLEX 0 2 307
 
ST MPLEX 0 0 2
 

GP'! FECOVERY PROCE'2URE STATISTICS 
NUMnFR OF OELAY-RECOVFRYS 23712
 
NUMRF0 OF SYCTEM 0 ESTARTS 0
 

0 ROPOPTION OF MTSSED ITERATIONS .107E-08
 
LONGrST 3EPIES OF MTSSEO ITEPATIONS i
 

MISSION FATL!CE PRORABILITY .00207200 + - .00002366 

LEAKAGFS
 
MULTTPLEX .69606?5 +1- .02842197 
nUPLEX .6C,666667 +1- .33333333 
STMPLEX *.0000000_+/- *.O000000
 

COVF 4FS
 
PULTIPLEX .99n900±8 +1- .00009982 
DUPLEX .66666667 ./h
o3733333
 

FIGURE 5.5-8 SIMULATOR STATISTICS
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Figure 5.5-9 shows the mission statistics generated for the FCB parti­

tion. The number of flight-critical failures indicates that 35 system failures
 

occurred because of faults in the FCB partition. Of these, six occurred
 

because of uncovered faults (i.e., faults that were not detected), and twenty­

eight occurred because of faults that were detected, but not covered. The
 

latter number was obtained by adding the number in the "UNCOVERED PERMANENTS"
 

column. For each device, the number of transients, permanents, leaky transients,
 

and uncovered permanents are listed. Here, the number of transients and leaky
 

transients for each device is zero, because the transient failure rate was as­

sumed to be zero. The number of permanent faults and system failures occurring
 

in a specific device type are listed in the appropriate row. Thus, 9,027 faults
 

occurred in the TACANs, and there were 13 system failures because of inadequate
 

TACAN coverage or TACAN redundancy.
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FLIGHT CRITICAL lIPS PARTITION --- MISSION STATISTICS 

TRANSIENT FAULTS 
PERMANENT FAULTS 

TOTAL FAULTS 

liq?8 
41667 
53595 

NUMBER OF FLIGHT CRITICAL FAILURES 34 

UNCOVEPED SYSTEM FAILURES 6 

nUs
f3TU 
nOU OFVICE 
FF-MOM DCVTCE 

'DEDICATED 
NON-DEDICATED 

FA-MOM DFVICE 

0
5 
I 

0 
a 
0 

UNCOVERED UNCOVERED 

TRANSIENT PEPHANENT TRANSIENT PERMANENT 

Bus 0 4 0 a 

'f 
i 

OIU 
AVVT 
ANT 
HSI 
AOT 

0 
0 
0 
0 
a 

t19 
405 
543 
249 
3?78 

0 
0 
0 
0 
0 

0 
0 
± 
0 
I 

FF-MOM 
AOTA 
ACCrL 
THU 
TACAN 
MSRLS 

0 
0 
0 
0 
a 
0 
0 

3472 
2955 
1026 
2547 
9027 
1 

89 
0 

0 
0 
0 
0 
0 
0 
0 

0 
4 
1 
4 

13 
4 
0 

MTU 
Rp 
RPTA 
SRTC 

0 
a 
0 
0 

0 
35 
40 
37 

0 
a 
0 
0 

0 
0 
0 
0 

FA-MOM 
ASA 
RGYRO 

0 
a 
0 

2596 
1142 
623 

0 
0 
0 

0 
a 
0 

NUMN13ER IF FAULTS/MTSSION I ? 3 4 5 6 7 8 q to 

NUMOEP OF MISSIOIS 2H241 845 18 1 0 0 0 0 0 a 

NUqER OF SYSTEM FAILURrS 23 to 1 0 0 0 a 0 0 0 

FIGURE 5.5-9 FLIGHT CRITICAL BUS STATISTICS
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6.0 DPS SURVIVABILITY ESTIMATES
 

6.1 BASELINE PARAMETER APPROACH
 

In order to make mission success probability calculations using the
 

analytic models described inSection 4 and the simulation models described in
 

Section 5, it is necessary to obtain values for the various parameters required
 

inthese models. The approach taken was to obtain a baseline set of parameters
 

and then vary these parameters to reflect the ,several options investigated.
 
Because the Shuttle ALT configuration has been approved through the various
 

design reviews and is in the process of being brought into being, this configu­
ration was chosen as the baseline from which variations would be made.
 

The parameter values used for the baseline configuration were obtained
 

using four different approaches. These are: (1)contractor's direct estimate;
 

(2)NASA estimate; (3)Ultrasystems direct estimate; and (4)Ultrasystems
 

estimate. One might wonder why approach 1,contractor's direct estimate, was not
 

used for all parameter determinations. Itwas not used beacuse MTTF, or its
 

reciprocal, the failure rate, was not required for each unit. However, there
 

were contractors who had supplied this information and thus where available, it
 

was used. The adjective "direct" isused to indicate that the estimate was
 

obtained by a detailed analysis, e.g., use of individual part failure rates when
 

estimating an overall unit failure rate. Estimates not labelled "direct" were
 

obtained by comparison of comparable equipment. All contractor direct estimates
 

and NASA estimates were obtained from the Project Monitor for this contract.
 
Ultrasystems direct estimates were made for corroborative purposes for selected
 

units. Ultrasystems estimates (non-direct) were made where other estimates were
 

not obtainable.
 

The two primary categories of parameters for which estimates were
 

obtained were unit permanent failure rates, and unit self-test program effec­

tiveness. Where unit permanent failure rates were not available from either
 

contractor direct estimates or NASA estimates, Ultrasystems estimated the values
 

using the assumption that equipments that were mechanized using similar tech­
nologies would have failure rates that are proportional to weight. It is
 
thought that this is a reasonable assumption. All estimates of unit self-test
 

program effectiveness were from contractor direct estimates.
 

A computer listing of the baseline parameters isshown in Figure 6.1-1.
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CON TGUOATION PR2TIULAPS
 

UNIT 

NAME 

mcqSnU 

MCnSKn 

GoC 

FF "n1 
AQTA 
ACCEL 
TI U 
TACMN 

MSALS 

oHr 

RPTA 
SRTC 
FA mnM 

ASA 

RGYCO 
onU 

aVVI 
A/MI ­

4S! 

4O 

PC"MU 
OF MOM 

O Mall 

SUS'RIPT 


MCDSOU 2 
rpSOU 3 


MCflSK 2 
C 2 


GPoc 2 


GPC 4 

9c MOM 2 

FF mI) 3 

FF -OM 4 

AnTA 2 

4OTA 3 

AOTA 4 

ACCEL 2 
ACCEL 3 

U 2 


I MU 	 3 
TACN 2 
T3raN 3 
MSqLS 2 
4SELS 5 

qHC 2 

0HC 3 

PPTA 2 

RDTA 3 

SqTC 2 

S3TC 3 

FA MOM 2 

Fa M94
I 

Ft 4M 4 

AA 	 2 
ASA 	 3 

ASA 	 4 

PGYRO 2 

RGY'O 3 

0U 	 7 
AVVI 2 

A/MI 2 

H 	 ? 

An, 
PCMM'J 2 

OF MOm 2 

04 'uN 2 


arRMA4FNT 
RATE 

.2210000E-03 


.t'8COOOE-05 


.9iOOCCE-03 


.2'CZOGE-03 


.25G0GO0E-03 

,tG0030F-03 

.2690OOE-03 

.io0000oC-02 
.5000CE-03 

.2300000r-35 

.21030DOE-05 
.Z3OG09E-05 

o220c02-3Q13 

.IOI3OOOE-03 
.667COOOE-04 
.560OOE-04 
.7570000F-34 
.9320000E-04 
.4089000E-04 

.5650000%-4 
.3620000E-03 
.1500000E-03 

.i0000DE-33 


DETECTABLITY 


.99900co 


.qgo99000a

±,aoaooo01. 0000000 

.aoo00clo 

,.0000000 

oqqqocc3 
.q9go000 
.999000o 
.9993009 

.9990000 
.9990000 
.9990000 

.9990000 

.9q9oOO9 

.q99000 

.9 9Q0 000 
.99900co 
.gqoa 
.9990000 

.9990000 

.9090000 

99900o 

.9990o0 

.99900G0 

.999cooo 

q9qcoaa0 

.9991003 

oggaol 

.999000 

q999O00 

q99oG33 

gql9ooo 

.9990000 

oqq9g00 
.9990003 

.go00 


o2qnq000 
,qqgooro 

9qqOOcU 

.9990O0 


TRANSIENT
 
RATE 	 PO1iODUOmhITY OF TRIM 

'ORIGINAL PAGE IS POOP 
0.
 
0.
 
,ggiOODOE-03
 

0.
 
a.
 
0.
 
0.
 
.	 FIGURE 6.1-1
 

0. 
0. 
0. BASELINE PARAMETER VALUES
 
0. 
a.
 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
O.
 
0. 
0. 

LEAKAGE
DIAGNOSASILITY RECOVERABILITY 


.9770000 1.0000000 o.ooo0000
 

.o030oO0 .o000000 o0ooo0oo 
±aO0o0OOa ±.oao000o 0,OOOOO0O
.040000 1.000000 o703000 
003030 1.0000000 .7030C00 

1,0000000 10Oc000 .7030000 
.95-33000 i.0000002 0.000000 

1.00O0000 1.000oc .0000000 
1.0330000 ±.oOacooao OoOOOO0 

.9538000 .o000o0c 0,0000000 
1.0000000 1,0000Q0O 0,0000000 
1.oo0oc0 c 1.0000000 C.0000000 
.9530000 .0800000 0.0000000 

1.00300 ±o1.0000003 0.0000600 
.95000tO 1.0000000 O.0000600 

1.0000000 i.0000O00 0.020000 
.g500000 .o0000000 o.o00000O 

1.0030000 1,0000000 0.0000oo0 
qsjoOOo i.o000300 a.0o000[IOU 

1.0000000 1.000000 OO00000 
.9500000 1.0000000 .0O000000 

1.0090009 i.0000000 O.00000 
.9500000 1.0C000 o.O000000 

1.0000000 1.006089O O.000OOo 
.9530030 1o0000000 0.0000000 

1.0030000 1°0000000 0.000000 
.9530000 1.0000000 0.0000000
 

1.0330030 1.000000 0.0000000
 
00cG 1.00o00 1.0000000 0.000000
 

.9500000 t.0000000 0.O0000 
1.00oO000 1.000002 0.oO00o09 
1.0030030 .000COO e.0000000 
.95000oo 1,0000000 0.0000OO
 

1.0000o00 1.0000000 0o0000000
 
.99000o 1.0660000 0.0000000 
'.9?g3O00 10000000 0.0000030 
.990030 1.0000000 0.0000000 
.69qqagoo.9000D 1.000000 0.0000000 
.993000 1.9000000 0.O000000 
q9q1OcOO 1.000GOOO 0.0000000
 
.9qgooo 1.0cooo oOO0
.000000 

.9918000 1.0000000 0.0000000
 

6-2
 



6.2 BASELINE RESULTS
 

The flight-critical-bus simulation and analytic model are cross-checked
 

using the baseline parameter set as a basis on which to verify their accuracy.
 
Agreement between these two approaches means that the modeling approach dis­
cussed inSection 4.4 isa valid approximation. For the baseline parameter
 
set, the forward flight-critical-bus analytic model predicts a survivability
 

of .9999423 while the simulator yields a result of .9999437. Thus they differ
 
by only 14 parts in lO. These results certainly agree within the accuracy of
 

the Monte Carlo simulation.
 

The survivability results for the baseline configuration are given in
 
the listings that follow. In these listings, survivability and failure proba­
bility versus mission times from one to twenty hours is given for each parti­
tion and flight critical device. (Failure probability is the converse of sur­
vivability, i.e. FP(T) = 1 - S(T).) There are twenty-seven printout pages in
 

all.
 

There are several interesting features of these results that are sum­
marized on the opposite page. The GPC set, with a detectability of 1, has a
 
failure probability two orders of magnitude better than the TACAN set, with a
 
detectability of .999, the design goal. The GPC and TACAN have similar failure
 
rates. Variations of detectability will be studied in a later section.
 

The TACAN and MSBLS, with relatively high failure rates, account for
 
57% of the forward flight critical failure probability. The hand controls add
 
only a miniscule amount to the total failure probability. The forward flight
 
critical MDM system contributes 71.6% of the total safety-critical failure
 
probability, a very significant amount that is primarily due to the large TACAN
 
and MSBLS failure rates.
 

The aft flight critical MDM system partition, the flight displays, and 
the MCDS contribute a much smaller percentage to the overall safety critical 
failure probability, i.e. 11.1%, 11.8%, and 5.1%, respectively. The GPC contri­
bution is a miniscule .4%. 

Mission critical functions are not as important in ALT as they are in
 
orbital flights. About the only loss sustained would be some telemetry data.
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SUMMARY OF SHUTTLE (ALT) AVIONICS SURVIVABILITIES
 

FOR A SIX-HOUR MISSION
 

Percent
 
of Total
 

Failure Safety
 
Unit Probability Critical
 

GPC 3.5(10) -7 .4
 

-5
TACAN 2.3(10) N/A
 

MSBLS 1.(10)-5 N/A
 

FWD FLIGHT CRITICAL 5.80(10) -5 71.6
 

-
AFT FLIGHT CRITICAL 9.0(10) 6 11.1
 

FLIGHT DISPLAYS 9.58(10) -6 11.8
 

MCDS 4.1(10)-6 5.1
 

SAFETY CRITICAL 8.10(10)-5 100.0
 

-4
MISSION CRITICAL 1.4(10) N/A
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REPRODUCIBILITY OF THE
 
ORIGINAL PAGE IS POOR
 

S!JOVTV23ILITY COD "4COS 

MISCION VONFISIIATION FAILURE 
TIIE ( WURS) SURVIVA3ILITY PROBA6ILITY 

I.scoo .Q9999qq .666320E-0E 
2.0*C90 q999q9 .133q2E-g5 
3.COG003 .999308 .201915F-05 
L.Oq2g999Q7 .27J557E-25 

.uCC .999q97 .339895E-05 

.~. ?C .99996 .409922E-35 

7.[~CG ,q9~999 .4836LSE-05 
.?99994 .552571E-05 

9.C2C]3 
10.0o2GOQC 

.9999q4 
*iqqQa 3 

.624293E-05 

.697948C - 0 5 

i1.CCccic .9999Q2 .77J611E-05 
12.39'390 999992 .84489E-05 
13. 3C1-0c .999991 919916E-65 

14.201)33 .999990 .995668E-05 
15.CC00G .99999 .107216E-04 

.999989 il494CE-O0 

17.P3C0U*099951 .19.122739E-04 

ie.Ccs:2 .999937 *1336±Lr-04 
1OuStJ3 .999986 .138565E-04 
C,003313 .999985 .146593E-04 
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SUqVIVAC!LITY C()D 

MISSION 

TTME(HOURC) 


!.00C03G 
?.O1C.o? 

3.CG000? 


7.6G0n10 

8.*aoy0 


.
 
!rogqaZ0a 
II.CCC 

1?. 

17.ccLJ 

1L.OJCJ'p 

1*.o1 :Sl 

i6.0*n30 

17.C3CO3n 
! l.SCg 
19 ? 

GDC
 

CONFIGURATTON FAILUOE
 
SUqVIVABILITY PROBABILITY
 

I.COO0 *1616S5E-08 

ioo00cO .131978E-07 
1.0000§0 .444936E-07 
i.00000 .105336E-06 
1C00O .235493E-06 
1.000003 .354674E-06 
.99999q .562545E-06
 
.99qggq .8 3 872rE-6
 

.999999 .119279E-95
 
g). .163426E-05 

.999991 .217261E-05 

.999997 .291723E-05 

.9999c0 .357764E-05 

.9(999)6 .446304E35 
gqgq5 .548277E-05
 

.999993 .6Ek605E-05 

.9999Q? .796219E-05
 

.999991 .94400E-05
 

.09999 .11389GE-04
 
*0999-7 .129i8E-04
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ORIGINAL pAGE IS POOR 
REPROD~cThBI1" OF THE 

S'IPVIVAJILIT Y cOR F M9' 

\ISCUON 
TIME(HOUDS) 

CONFIGURATION 
SURVTVAWILITY 

FAILURE 

PROBABILITY 

ICG2'3 
2.G0CGJG 
3,3Gno00 
,-0Coo9 

5,LOC 303 
f,.tiC0" 

9q9909 
.9999q8 
.999097 
°999906 

.999995 
*999904 

9ig89E-96 
.183960E-35 
.275911E-O5 
367846E-05 
.453765E-95 
.55E71E-05 

7.CC003 n 

,% 1C3JO 
9.OQCOOl 
1GocCOJ 
15 

.099994 

.999993 

.99992 
.099901 
999990 

.64355LE-05 

.735446E-05 

.827319F-95 

.919194E-05 

.10t114E-04 

12.CPcO6 
13.9220,51 
14.03005 
15.oncoaG 

1E.aOCJ3G 
17.59669e 
18,0oo0aC 

lo.CSQJ 
20.002920 

.q99989 

.999988 
,a99Q7 
.099986 

.99Q985 

.999984 

.999983 

q99983 
.999982 

.i/329JE-04 

.119475E-OL 

.123659E-04 
,137344r-G4 
.147G29E-34 

.155214E-04 

.i6400E-04 

.1745'SE-OQ' 

.183772;-04 
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StJPVIVIPILITY FOP A2Ta 

MISTf 

TimE (HOUrJS) 


.00:100 
2.9110%O 

3,3S0132 


S * 0ZcJ0 

7.G C3G 

8.C.ClG3 

I~3OOOJdC 
116.g99989 


2.9!r29 

1L0aCIJ3 
14. 0e10: 
15*O]c 

16J.GCO033 
17.0C00c 

I . 

CONFIZURaTION 

StIIVIVABILITY 


,)9999q 
.q99993 

.999997 

C 99996 

.q999q5 
*cnGLC
q99994 

*q99903 

.q999q2 


n,q9I 01 
.q9O99° 


9qg9q89 

.99q95 7 
*0999%6 
.9999A 5 
.0999T4 

q99q3 


.99q982 


.999980 


FAILJRE
 
PROBARTLITY
 

.99987PE-06 

.199952E-05
 

.299896E-05
 

.39q819E-35
 

.499726E-05
 

.593616E-05
 

.699493E-05
 

.799358E-05
 

.B9214F-C5 

.999061E-O5 

.98990E-04 

.119874E-04
 

.129857E-04
 

.139841E-04
 

.1482&E-& 

.159838E-04
 

.169793E-04 

.17977,9 -34
 

.199752E-04
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REPRODUCBLTY~ OF THEORIGINAL PAGE IS POOR 

SURVIVABILITY POR aCCCL 

MISSIO C0'1FISUpATI0N FAILURE 
TTMF(OUR') SURV ITVA ILITY PRO8&BILITY 

1.200i3iS000000 .331794E-06 

2.00000 .999q99 .667189E-06 

.03000g 
%4.g00 

.999999 

.9qg99 
.10gg66E-05 
.134875E-95 

5.CoG)30 ,q99998 .169495E-G5 

6.0003ig 
7.0CC30 

999998 
.999999 

.294476E-05 
*23981AE-05 

*.CM230.9999Q7 .2755?4E-05 

0.010003 .999q97 .311592E-35 

13.005005 ,q999q7 .343025E-05 
11.000033 .999996 .38482IE-05 
12.00CG03 .99qq6 .429?E-G5 
13. 0GGr *1o99905 .459308E-05 

la.9GG93 *999oq5 .497431E-d5 

15.000oUc *q999q5 .535659E-Th 
16,000003 *099994 .574235E-05 

!7.03fOn *199914 .613278E-05 
1*,005000 999903 .65-639E-J5 

196.oZGj20 .99R9q3 .692369E-05 

29.000900 .999993 .73?458E-05 
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SUYVIV RILITY rOR VU
 

MISFTO1 

T'IF(SHURS) 


2.Q3C33C 
3.COCC3Q 

6.C)0J' 
7 .C3UiJC 

8.0C-O3']9 

9.OGo03 


IL.OZCSJL 

12.CCl' 

i3.OOEOC 
14.QCCJC 


16.c0C233 

17.0Cn20 


1a.:C3c23 
2O.GPC0 


CONFIGURTIIN F LU0 E
 
SURIIVAh3ILITY PROPABILITY
 

.999999 .873138E-06
 

.999993 .173462E-a5
 

.999997 .26-354E-05
 

.999996 .362699E-05
 

.999905 .4595RE-C5
 

.'q999o4 .551791E-C5
 

.9999q3 .663556E-35
 

.99c9q2 .764813E-05
 

.999991 .871573E-05
 

.999990 .9 3Th&E-O5
 
*90O]G .1fl32>j&F-P4
g9939 


.09998? .123696E-04 

. 9 9 9oq7 .132323F-04 

.99935 .144324E-04 

.5.'I05_C .1'555?2E-C4999984 

99qo13 .168976E-04 
.999982 .8t63JE-04 
.8.0nC015 .194659E-04999991 

.999379 .207890E-C4
 
.999978 .22138E-04
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REPaRODUcEBIThy OF TMORIGINAL PAGE IS POOR 

SUPVIVARILITY FOr T'CAN 

HI STON CONF TGURAT ION FAILURE 

T'IE (HOURS) SUR'IIVABILITY PROBABILITY 

1." ng .999997 .314839E-05 

U .9999Q3 .659835E-05 

4.."103 
0ogq9ac

999916 
.103525E-04 
.144155E-04 

5.c.r] 99998i .1879±lE-04 

6.G3]0C .999977 .234844E-04 

7 . Cfl­-C .099972 .2849879-04 
9.09000C .a99q66 .333372E-04 

C60G ..999960 .395G52E-O4 

IC.)00000 .999954 .45506E-04 

ii.co.OC .99994A .513439E-04 

12.00-.].a9o99 I .585224E-04 
.999934 .655456E-64 

.999927 .729173E-04 
00"g0 ..999919 .806413E-O4 

5.300.3_3 .99991± .887214E-04 

17.ecoJc .999903 .971 U3F-34 

iS. nzze- .99q8q4 .105965E-03 

19.03G900 .999885 .115i36E-03 

2G.OO000G .999875 .i246?8E-03 
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SUPVtVIPILITY FORilSqLS 

ISCiON CetIGU I N F4IIW0 E 

TTI'I(HnURS) SURVIVA;ILITY PRO919ILITY 

1.jCaO% 
2.09C69 

.9999q8 

.9q9997 
.t53714E-05 
.314889E-05 

. qGjC .o99qq5 .483579E-05 
.65)3-999305 

033, ...99992 .8437 9E-C5 

.9999qo .1O3525E-4 

7.9209.) .99q988 .123452E-94 
A.0Cu2]6 .99998699 .... .14'155E-041!63641E-P4 

IQ.COC " )0,2 .9999'31 .137915E-Q4 

a±.CCCa3r *90q979 .213qCE-34 
1999977 .23484LE-U4 

13 .3 C *099974 .2535i9F-04 
1&.623_3 9q9qgq? .284993E-_4 

IE.C0OPC .09999 .311269P-04 

,01qqqor6 .333772E-04 
qqa,;)7 C.36o523E-,4 

S.Q 9Qc .395952E-04 
19.iJOCJ2 q99Q958 .424638E-04 
2%.COCCQ .999994 .453061E-04 
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STRVIV6PILTTY FOP 0 HC
 

MISFt9H 
TTMEl(HOUPS) 


O.CCtN C 
,.OPCOJC 


4.0CG033 

5.ceeoCC 

s.ocgJJ% 

7 *COO 3)0, 

Qc-rli 

1C.cecC0GS 

4I1.QQ12 

12.CO9%JQC 
13 *.0 C fl, lj 


14 ,S091 
ItcO.09CODCO 

16.900000 

17.000)51.030 


1~.0u02 

19.00302 

CONFIGU3ATION FAILURE 
SUR\JIVASITTY PRO94I31LITY
 

1.0000012 .603053E-08
 
1.000000 l123G24E-07 
1.00000 i803E9
 
1.0300330 .240095E-07
 
1.900co0 .3Qd148E-97
 
1.f'200GOO .36J214E-37
 
1.e90010 .423290OE-07
 
1gc,"0 *48J380E-07
.C09000 

1.30900 .S4J4BOE-'7
 
1.003c0c .603593E-07
 
1.0000%"G .663?IZF-037
 
1.900000 .7228154E-07 
1I. coo3JIM .781002E-07 
. 000N,0 .841162E-07 

1.00)500 .qD374E-07 
1.300000 .96151 E-07 

%clu .iC2i7lE-,J3F
 
.00003a .103192E-06
 
.e00000 i14214E-06 

1.009660 .123237E-0 
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SUPVIVABTLT-Y FOP OflTA
 

'IIIsON 

TI MECHOUDS) 


1.9Ce03& 

2 CGC03C. 
$.S00Th0 

4.n009S 

5.C00IC9 


0CO130. 

7.0 C-09 

8.905)00 


13.OO 

11 


12.OG00 

13 3'rA] 


1&.0002 
150029c" 

1G.OGCOC 

17. %CO]f 

1A .uc-!0 

10.062]% 
2C.OCGCOc 


CONFIgURATION FAILURr 
SURVIVABILITY PROBARILITY 

1.G00300 .600G63E-08 
1.6000C .121024E-07 
I 00C203 t83353E-07 
1.'00050 .241C95E-]7 

1.COOO00 .3G148E-07 
i.00JCaC .36124E-07 
1.000co0 .422290E-07 
1.o00g2 .48138E-07 
1.00000 .542480E-07 

.OSIS.10090 .600593E-07 
f00,01.2O09 .662717E-07 

i.000010 .720954E-07 
1.0G000 .7810)2E-27 

0031c0 .841162E-07 
1.000900 .901311E-07 
1.30 00 .96151SE-07 
1.0n0000 .102171E-J6 
1.000050 .108192E-06 
1,0.occo II4214E-c6 
1.Ci)OCOO .123237E-06 
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REPRODUCIBILITY OF THE
 
ORIGINAL PAGE IS POOR
 

S3jcVIVa!LTTY FOq S1 Tr
 

TI T 0N, CONFICURATION FAILUDE 

TI!IE(HOUC) SURVTVAILITY PROBaBILITY
 

1.303iii 1.000000 r600063E-08 
2.C00033 i.CGO300 .129024E-07 
3.COG0o3 1.500j03 .180053E-07 

4.]0233 icacSo .243O95E-07 
5.O00333 1.000000 .3GJ14RE-07 

i.0ooco
 

7.3C000 I.O0anqCO .4232qOF-07
 
1.g .48J380E-07
i.OCQJJ3 


9.323')00 1.001003 .540480E-07 
$0.'COS]OO 1.00o .63353E-07o00 O 
1.03]32 i-.Po000 .664717E-07 
12.000)2J9t.00102 .723854E-37 

13.0a3c I .I aC0'0 .781052E-07 

1 ,O0C 0 I.1.O0 00v.841162E-07 
i 1 u C 11 0 1. 0000 .901334E-07 
! 0C'300 1.001000 .9'1518E-07 

i17fl9C .CO3C0J .102171E-06 
18.0-C~3G0 !0o0cC .108142E-06
 

19.*960, 1 0039C0 .114214E-06
 

P.Go6o00 00S0. .123237E-06
10. 00 
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SIZVIV6'TLTTY FOI 

,ISSt'N 
TIME(HnIJ%) 

1 

2,Oa% 

7.3C] 
l.jOcl 


5.00030¢ 

N.C053J0 


9.QQC00C 
io.00C29 

11.003011 

12.COCC,1 

13.2C3£3 

14.GC0£ 
ES.SCGo2C 
jt.as9q"J 

17.COJij 

IA.CCOJ O 

r
-Q.OO~j~

2.0, 


A 10l 

CONFTGUPATION FAILUc E 
SURVIVABILITY POOBIBILITY 

.999999 .87992SE-06 
*c.q9q9q .175963E-05 
.9999q7 .263918E-C5 
.99q9q9 .35185IC-C5 

.999990 .4397, E-95 

.Q*99995 .5276977-05 

*q99q4 .615598E-35 
.9999q3 .79-3438E-35 

.999902 ,7q1370F-J5 

.9999) .879243E-05 
,q999qg .96711±E-05 
.q999i9 .105497E-04 
099999 .114283E-O4 
.9 995 .123G69E-04 
.999987 .13185E-14 
.99998 .143639E-04 
.999985 .149425E-04 
.099984 .15321!E-04 
.999933 .16'907E-04 
.999982 .175784E-04 
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SURVIVAPILITY FOP ASA
 

MISSION 

TIVE(HOUPS) 

I *30Cc 031 
2.000C00 

h.j0300S 

6.09O93C 


3.53OS1 

O.O0200C 


1L.03C03 
±1.30 3o 
12.33t0 
1i7 .
 
14.CCQ291 

15.00230; 

1r .003 J 

17,O00233 

1.COCOOC 

jo.0030 


2C0.CC2 


CONFIGUD4TION FATLUPF
 
SURIV48ILITY PROBBOILITY
 

.0911000 .399980E-06
 
*qg9q9 .799921E-06
 
.999999 .Ilq992E-05
 
*99999$ *1599;9E-05 
.999999 .199952E-05
 
.999993 .233q32E-05 
*.ClU-OC .279909E-05.999907 

.999907 .319882E-05 
.990996 .359852E-35 
,a9q906 .3998±E -05 
.99o96 .439784E-05 
.19 995 .479746E-O5 
q99995 .5197'-5E-05 
99,99f .559662-65
 
q9904 .599616E-B5
 

.639569E-05
.9 9 9 q94 
.9999q3 .679519E-05 
.999903 .719467E-05 
.9q9902 .7594i4-05 

,99999 .79335A--05
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REPRODUCIBILITY OF THE
 
ORIGINAL PAGE IS POOR
 

SURJTV'PtLIT v FOR ?GYOC 

MIo sf)N 
TT'E (HOUO) 

CONFIGURATtON 
S'JRV IVA2TLI T Y 

F4ILU 0 E 
PROBAgILTTY 

1.21C003 1.3000 .203759E-36 
2,CCC2JJC

3.003.999999 
1.IiJOCO .4C2879E-06 

.633239r-06 

L.C321)'I99qq0q .81Jq62E-C 

5.20 313 .9q999q .117015-05 
t.C3U 31: *9q90 .122438E-05 

7 .C9r36q *99099 1431;E-Cc 

8.GOGJOj 
q ocri]n 

.999993 
990~3 

.1F4310F-05 

.185445E-05 

12.arOO
1,C%12 ] 

*0 9 9 90a
*999093 
1*0]C.99q9g 

.2Co74E-05

.229115E-35 

.24965TE-05 

13 .C3Co3 .qq99q7 .271318E-05 

i".00:109 . 9 9 9a7 .2931!qE-05 

15.061333 .99q997 .315054E-35 

F.OJ3(J]) .999C07 .337123F-05 

17.OCC03 .999Rq6 .35q326E-l5 

1R,50t200 .g99996 .38t652E-35 

19.3030O0 .99996 .40413I5-Cq 

.999qo6 .42673$E-05 
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SUPVIVAnTLITY P02 OOU 

MISSTOI 
WT E (HfJOU 

CONCIGURATION 
SURV IVABILI T Y 

FAILURF 
PROBABILITY 

I. 9CjJQ3 .225361E-06 

2.OGCJqO0 1.20096G 
.0OO,.999999 

.456868E-06 

.694517E-06 

4.o3~1 .099Q99 .93 33qE-C6 

5.0C002 .999999 .i133?4E-05 
q99qq9 .144432E-25 

7 * 593C .999998 .173653E-O5 

?.G0C933 .9999 .197488E-05 

.99999?' .224937E-C5 
*Q99q97 .253G3CE-G5 

1i.JOCOJ3 * 9 9q97 .281676E-05 

I2.CCCO~J .999997 .31396cE-e5 

13.38000 .999907 .349860[-95 
14.CCI .9999Q6 .371315E-051 

! ,ogCall .099996 .4G2514E-05 

16.*0C OC .999996 .434256E-05 
17.* 13 .q9qqq5 -. 46361IE-05 

18.90CS3 .9g9gq5 .499930E-05 
0..1 In .999995 .5331t5 E-95 

23. OO0O *.9999q .567354E-35 
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S'RVTVAPILITY FCR AVVI 

LISCo"I £ONPTGUPATTON FAILIJE 

TTHc(SUJRIVAqILITY PROABILITY 

5. F9 .3 .30O344E-06 

2.01OJO-C .999999 .628078E-06 
3.r, zOOC 9999.959qE­

90 *GG,.99q999 .13J170E-05 

5 9 0CO] r .qggl .1695E9E-05 

060.)9999q8 .202086E-05 

7 . 0 03CPC .%99R8 .239750E-IE 

3.OLSC'%. .00'1997 .2731552E-05 
o*O9O3l 
•3.3fK332 

999oq7
.9359567E-05 

.3ia491E-05 

1I.3E ~3_2.999906 .40t77qE-05 

12.03EOQ .999936 .445i?8E-05 

7.0OO)3- .Q9995 .489613E-O5 
..99995 .535234E-65 

15.e0ooJ0 .99999& .581990!-05 
9196C03S.qgq904 .629882E-05 

17.03C0f .999q93 .67190q-05 

18. 091.0l .999903 .72T07QE-C5 

19.6CtcJr .099992 .780367E-05 
2C.00JGjC .399q92 .832797E-05 
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'IIS'I0 rPnFIGURaTIOn FATLU0O
 
TIMECHnURIP SURVIVASILITY 0Q0BABILITY
 

l. 0]O 	 .35!2U7ZF-06
"1.30330a 


2.G*90O0 .999q9 ,773757E-G6 
3.3O000) .99qi19557E-G5 

L.200630 .99q998 162655E-05 
.9999A .207812C-05 

e.az o3 .999907 .254634E-05 
7*.Og3 .9999q7 .3031'9E-05 

.99996 .353338E-G5 
9.CO)32Z .999996 .405230E-05 
I2.22%)3 *099995 .451875E-35 
1i. OOno c .999q95 .514241E-95 
i?.O*e03P .99 0 9q4 .571329E-05 
Iz.uu , *999Q04 .3)133E-05 
i 3.J2C3i] *ggqqq7 .69d3'7E-05 
15. COGC? .099902 .752917E-C5 
iF.OflflCO *990Q .B168Ar6E-05 
17 * c 999qi .882574E-05 

q i99991 .9&S981E-05 
19.OQ%)1 	 *09999n .101911E-04
 

*C- .10395E-04
0999% 
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SJRVIVA9ILITY 


iZSFIOM 
TIME(UPIUS) 


2.00CCI0 


L.CCj30 

5.i Mo 

6.CC0QI9 

7.C0030 

A1ooq 0 

o.0c oo 


ic.ccc 


*3.Oacooc 


15.GCCJO 
16.CC63 

17.00o039 

i8.OG JO 
!9MLYC 
2C.OVC6OU 

OV -ST 

CONFIGURATION FAILUPE 
SURVIVAILITY PORABILITY 

1.0000i .i64773E-06 
i.0oaaa .332855E-06 

*.C9999M .9504245E-06 
.999999 .671944E-06 

.999999 .856956E-06 

.q99999 .103826E-05 

.999999 .122298E-05 

.999999 .i4IO8IE-05 

.99q998 .16320UE-05 

.999993 .173658E-05 

.9990011 .199443E-05 

.9990A .219557E-05 

.09qq98 .243093E-05 
*40C012.099997 .26077E-05 
.999907 .28l$35E-05 
.*909M7 .303321E-05 
.099907 .325OA8E-05 
qQ99q7 .347135E-25 
.999996 .369612E-05 
.999996 .392369E-95 
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SUPVIVfILITY FO P AOI 

'ITSSI1)N 
TIMF (HOUQS) 


1.200] 


7.CCC99 


5.LC212J 

7.CC 


G9 C9999q3 
12.23%53 
1t.C2>J'0 
I?.6CQ339 

* G, 

1L..O;G2; 

i6.9c;ogc 

18.OCQI0J 
19.GaIJIj 

%O.O032t 

ONFIGURATTON FAILUDE 
SURVIVA9ILITY POBRTLITY 

1.3o0oo0 .229306UE-06 
1.CiIDa0 .46t4655-16 

.,99q99q .705214E-U6 
QqgSq.99 .954306E-06 
.999999 .12J8 7 4E-05 

.. .14695?E-0599999 
.99"98 .1736 53E-05 
.99998 .2C0109E-05 
*o .228q37E-35 
993997 .25763OE-05 
.999997 .286846E-05 
.999907 .316726E-05 

.999997 .347230E-05 

.9999o6 .371383E-05 
.59qa91.gqq5 .413165E-95 

.99q996 .44?577E-05
 

.999905 .475623E-?5
 

.999995 .509331E-C5
 

.999905 .*5351!E-05
 

.099994 .576555E-05
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3'JPVTVAO LTTY FO3R PrMlUtu 

TSSION CONC!GURATION FAILU0 E 

rTtErHnUP%) SIJ-RVIVILTTY PRO B RLITY 

*.gggq99 .411423E-35 
2,9aC -999990 .9841tE-05 
3,* 0 ,0999R3 .163689E-04 

4.OCCJJ' .999974 .255613E-04 
c. 0 qgC99964 .356166E-04 

,9900,3 .471295E-94 

7.0SCr r .9*9060OCg E-04 

.099925 .745147E-34 

o.00C J1 .999qia .903795E-04 
e c 0 .999892 IC7S7E-C3 

1q99974 12b43&E-03 

12.OGCIO .999P57 .146617E-03 
I3.03C 1G .9993'2 .163231E-03 

.99989 .191?7E-03 

IE.JSC'J .9997a4 :215741E-03 
.999758 .241629E-03 

17.3.2CC lq9971'
.9997?2 

.268933E-03 

.29 7 651E-03 
4 Z.tCn]i> 0Q99072 .32777 8F-03 

.999rLI .359312E-03 
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ShJRVEVARILTTY FOP OF MX 

1ISS1nN 
TIlE (HOUS 

CONFTr URTION 

SURVIVASBILITY 

FaILUPE 

PROBABILITY 

13CS124 
2.0600] 

. §0i35$ 
5.oqc?0:

6 OOO.999906 

.999999 

.999999 
Q09qoo3 

*q999Q7 
0.9999q6 

.622062E-06 

.129883E-05 

.26J"2q E-05 

.275643E-g5 

3S5721E-OS
.443252E-C5 

7.0030% 
.Cs)0Q 

9.CGs0oc 
15.3JCJC2 
!I. CUt2OG 
!2.00C*J1 

13.00Cloo 
i4.06(03: 
15.0003 
15.6coOc 

.999q 3 5 
,999904 
.99q993 
.999992 
.A9990 1 
P99910 

.999983 

.9999A7 
.999936 
.9999F5 

.529264E-05 

.62?725E-05 

.723642E-05 

.823015E-05 

.929841E-05 

.104112E-04 

.113634E-04 

.1277)1E-04 

.143163E-04 

.153069E-04 

17.CSOOC' 
1.OGO0%J 
iq.0g00 
2C.0COgai 

.999qR3 

.9909R2 

.999qg1 

.999979 

.166419E-04 

.180217E-34 

.194451E-04 

.209132E-94 
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SIJRVIVA9ILTTY FO o 0A fh' 

"TSSTn' GONFTGUrATIPN FAILUJE 
TIME(ROU) SURVIVABILITY P0B091LITY 

.9gg99q .622902c - 0 6 

2.69Pcs .qq9999 .23813E-35 
*.999 1 .29o?9E-05 
.999907 .275647E-35 
9999Q5 .3557?iE-05 

6.COQJOp q9g9qqs .440252E-95 

7.0006G- qo9905 .52926&E-05 
%.GD%313q .09q9q4 .622725E-'j5 

9.OC%00 3 .999993 .723642E-05 
1C.OCJ33 .999 2 .3230I5E-05 

.999991 .929841E-G5 
12,O(COCS ,qgqqQo .104112E-04 
11 * iPJ9 .9993 .15614E-04 

*99q9 7 .127731E-04 

1 J. 0 999086 .lO1B3E-&4 

I. 000C>C 999985 .133069E-Q4 

17.00C03n .9999Q3 .166419E-34 

18.On34C .999932 .183213E-04 

lq OCCJQ .?99991 .194451E3-4 
22.00000 .999979 .203132E - uQ 
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SURVIVAPILITY POP AFT FC 

MISSTON COMOIGUOATION FAILURE 
TIMF(HOU0V) SURVIV4BTLITY PPOBABILITY 

I.COCOOC .99999q .1433?5E-05 
2.60lCO' .P99997 .289090E-05 

.ScCOOo .999906 .437307E-05 
4.0009C .999994 .587988E-35 
5.900M .999993 .7411&1E-05 

6. 6G0o .991991 .895793E-g5 
7.GC0OJQ q99q9 .195494E-04 

8.90C300 .999988 .121561E-34 

9.90030 .q99% .137879E-04 
19.009009 .999985 .154452F-04 
11.j053g .999997 .171280E-04 

12.0 323 .9Q993t .189365E-04 
I?.Soi05S 2MO(9? .2057C7F-34 
l4.0603j3 *999978 .?23308E-04 
15.03co.gqg76 .21168E-04 

q.25521.99974 .259291E-94 

17.CCGJQ r .090972 .277675E-04 

18.00023 .99qq70 .296324E-04 
19. GOOOi .9999&9 .315238E-04 

23.00C30 .999967 .334417E-34 
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Sl'PVTVAFTLITY FOP S 

M,5ISCq 

TIMr(RNCRIS) 

2.OCJGC 

c 

A.OGCGJ1Oj 

P .OOCl1% 

9.00330] 
lO.Ooooc 

1i.S>1_3J 

12,3C-.00 

1 .GCCGOC 

C9
1h.C, 1 
15.0003i 


17.&3Cg05 
1.CIG30C 
iq.01 302 


2C.C50]J: 


CP I T 

CCNFIGUPATION FAILUPF 
SURV TVA91LITY P0O8A9ILITY 

.99999 .13743E-04 

.999976 .23577&E-04 

.0q99963 .366292E-QL 
2..999.9 ,SC5495E-04 
qQ9ao75 .653501E-04 

.999919 .813744E-04 

.Sa999002 .977179E-04 

*99Q$85 .11 30ES-03 

.o9q9r6 ,133864E-03 
99947 .153404E-03 

.9999?6 .173940 E-03 

q99124 .105516E-03 

999732 .213124E-03 
97 .241792E-03 

.999733 ,266537E-53 

.099708 .292386E-33 

.999G81 .319337F-33 

.9996C3 .347L27E-03 

.99q623 .375667E-33 

.999593 .407375E-13 
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RPRODUCIBILITY OF THD4 
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SUPVIVl'LT T v FOR ' COIT 

MISSION CONFIGU9ATION FA!LUPE 
TIIF(POUP?') SUPJVTIaLITY PROBABILITY 

1.3C[303 
2.0CoJ0I 

.9999 3 

.9999C4 
.163G26E-04 
.3599e6C-04 

93OOC6 .999942 .575979E - 9J 

4.G2J03C Ooqqlg .815224E-04 

5.26r.31C .999392 .I03G3SE-33 

s.0Jc3J- .999P63 .1370r4E-03 

7.000C3G .999832 .18392E-G3 
C9.7'00o997I8 -23226rE-03 

a .999761 .233641E-03 

13.10C1OC .990722 .277531E-03 

11.300]I0] .999681 .313952E-93 

12.00C0O3 .999677 .36?919E-03 

13.0C-91-3 99950j .041,6"-03 
14.OCC3C q9951l .453548E-93 

15.0.0300 999499 .51240F-03 

1E.,C0Cc0 .999435 .564575E-03 
17.*fl0:3 q99379 .621448E-93 

18.CO3Q3 .9993!9 .68,1993E-33 
.990217 .743184E-03 

20.60U33 .999192 .8G3035E-03 

6-29
 



SURVIVOPTLI TY COP VT QTS 

HISSION- COFIjUR8TION 
TIME(HOURS) SUIJVARTLITY 

!.NGac .9999q9 

2.SOGC36 .999997 
3SCSSV p9q6 

4.ICII0C .999on4 
*03.99902 

6.00COMg M999990 

7.CCCOJI *093938 

Q.C~rj? .999956 

9.oCOo% .999984 

I2.CeCoj3 .099932 
II.cocooc M99980 

W?.00:9: .999977 
13.00c3Cr .999q75 
!4.W033 .099972 

lt.OgoC *099909 
K.GH00O .Q9 09 6 6 

17.GCCO5l .999963 
lp.GG3C .99qq6o 

19.000SG0 .999Jq7 
20.90QOM3 * 9 9 9q54 

FAILUME
 
PROBABILITY
 

.133823E-05
 

.277977E-J5
 

.&3?455E-05
 

.597252E-05
 

.77236E-a5
 
95777?E-05
 

13349F-04
 
.13595%E-04
 
15753OE-14
 

.103238E-O& 

.203023E-94
 

.226MME-04
 

.254374E-34
 

.281139E-04
 
,39ME-04
 
:317743E-04
 

-.367531E-04
 
.393442E-04
 
.433326E-04
 
.4S3232E-04
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SUPVIVASILITY FOP FWO FG 

MISVION CONFTGURATION FAILU 0 E 

TIME(HIJPS) SURVIVABILITY PROBABILITY 

S0OOcOa0 *09Q092 .793492E-05 

2.00313 *Q99%3 .Bt65544E-04 

1.11.3 .999974 .251694E-04 

4.CqCOJC .999964 .356868E-14 

.999 r3 .466195E-04 

F.0CCL1J .999qL2 .583753E-04 
7.Cp.999930 .702668F-04 

3.OCC'3G .q99917 .832006E-04 

q.oC3Ig .999qP3 .968872E-0& 

10. CS 01 .99988.9 .11133r-E-03 

11.0002 *q993577 .126557E-03 
12. C0QOG .99987 .142558E-03 
1. o999C41 .1593349E-03 

.q99823 .17694E-03 
1 .OCOS .9995 .19537qE-03 

l*.009200 999705 .214555E-03 
.7.00C0339997c5 .23459RE-03 

18.?Cr00 .999745 .255475E-03 

iq.0 0CC q99723 .277196E-03 

2.00000 .999700 .2997692-03 
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6.3 SELECTED SYSTEM OPTIONS
 

6.3.1 USE OF ALTERNATE MOM PORT
 

The first option is to reconfigure GPC bus assignments to use the alter­
nate flight critical MEM ports. This prevents the loss of an MOM due to a
 

failure of the MIA, A/D, or SCU portions of the MOM. The effect of this is to
 
internally duplex that portion of these MOM modules. The failure probability
 

of an internally duplexed module isapproximately
 

F(T) = (XT)
2
 

This isa very good approximation for XT < .01. The failure rate of these MEM
 
submodules is 74 per 106 hours. So for a six-hour mission, XT becomes
 
.00148 << .Ol,'and F(T) is 2.19(10)-6. Ifwe divide F(T) by 20 hours, we have
 
an effective failure rate of .11 failures per 106 hours, certainly very small
 
compared to the remaining MOM failure rate. So for mission times less than 20
 
hours, we can neglect the failure rate of the MIA, A/D, and SCU when we use the
 
alternate port.
 

For the purpose of illustration, we assume the four GPCs have access
 

to the alternate aft flight critical MDM ports. This istrue of OFT, but not
 

for ALT. The results for a six-hour mission are summarized on the opposite
 
page. Five pages of printouts of the results for I to 20 hour mission times
 
follow. There is considerable improvement in the individual MOM and aft flight
 
critical failure probabilities, but very little improvement inthe forward
 
flight critical. As the baseline failure rates stand, there is little to be
 
gained from this option. But ifthe TACAN and MSBLS failure rates are overly
 

pessimistic, this option should be studied further.
 

FAILURE PROBABILITY
 
UNIT WITH WITHOUT 

ALTERNATE PORT ALTERNATE PORT 

FWD MM 3.7(10)-6 5.5(10) 6 

AFT MOM 3.5(10)-6  5.3(10)-6 

FWD Flight Critical 5.5(10)-5  5.8(lO)-5 

AFT Flight Critical 

Safety Critical 

7.0(10) -6 

7.6(10)-5 
9.000) 6 

8.1(10)-5 

SUMMARY OF THE ALTERNATE MOM PORT OPTION 
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.249527E-05
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.374241E-35
 

.433587E-05
 

.49q397E-05
 

.561260E-35
 

.62,3538&-05 

.685911E-95
 

.743229E-D5
 

.813543E-G5
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SUVIIPPILITY FaD Fa NO" 

MISSION CONFIGURATION FaILURE 

TIAE (HOUDS) SURVIVABILITY PROBABILITY 

* ,QQJJ 2 .999999 .583958E-06 
2..0 00 .£99999 116733E-95 
).Goo3; .999q98 .175163E-05 
1.0co0 .999998 *233536E-J5 
5.0C~~qq .099997 .2919JiE-05 
6,CO.9999n6 .350260E-05 

1 .999906 .409612E-05 
8. 0Czuc .999995 .66958E-05 
q*occ^3q .Q99905 *52S299E-05 

I0.C0090c q99904 .583635E-05 
1E.OGCQ0 .999994 .641966E-05 
12.30C032 *Q99993 .7J,292-05 
13.30033; 99q992 .7586tSE-95 
14.2C3Z0 .9 99 9q 2 .816934E-05 
15.000320 .a9990Q .875249E-G5 
I..OCO0% *a9990 .933562F-05 

17.OC'3JC) .9999c0 .9918'2E-05 
1Q.O2001 .99q9q9 .iGS019E-04 
19. 690036 .999989 ,iIJ849E-04 
2o.06C330 .999913 .1i5679E-04 
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SUFVIVaBILITY FOP FNO FC 

MISSITON CONFIGUaTTON FAILURE 

TIME(H-OUOZ) SUOVTVAqILITY PROBABILITY 

1. 9%ai]O .g99992 .75924.E-05 

2.00%9: .9999A4 .157790E-04 

3.GOG00l .999975 .?45557E-04 

L.30C201C .999q66 .33794?6E-04 

.9999C6 .433435E-34 
qc99945 .545663E-04 

7.0GCUJu .099934 .653187E-04 

8.00OuO9 C%9qQ22 .777034E-04 
.999010 .902h3tE-04 

1tO05G),) .990 q7 .10343CE-03 

II.~f0Li q99813 ,11727qE-03 
.999863 .131793E-03 

13.000]0C .99Qt 53 .14l693E-03 

14.'OLOU .9999Z7 .162855E-03 
,9O .q999821 .179417E-03 

16.Oe00 C c099803 19567FOE-03 
i7.rfOO)- .q9978r .21+64aE-03 

ItGF2L'3O ,999767 .233314E-03 
19.000C.999747 .252707E-03 

2.OQCuO .999727 .272825E-03 
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SUPIVT I4BILITY FOP AFT FC 

MISSION CONIrURaTI0N FAILU 0 E 

TIME(HOUDc) SURVIVABILITY PROBABILITY 

1. 002 fl 9 .999999 .11317AE-05 

2.G3-301 .999998 .227696E-05 

3.0012003 P99997 .343559E-05 

4.COC90 .99qgqq .463772E-05 

5.dOCOoC .9999q4 .57934!E-05 
t JOCOJG .999993 .699271F-05 

7.S0[300 .999992 .823563E-05 

B.00000 *qqgooi .943236F-05 

9.00300 999989 i06728E-04 

10.0o0000 *0998%3 "i1927iE-04 

11 . :C .999937 .131953E-04 

1? 00230 .099986 14477ZE-34 
13.C20nC o9q994 157734E-04 

4.'UC0 G .999983 170835E-04 

.999982 184077E-04 

E.0f000 .999980 .i9746tE-04 

17.0000C
!,0fOoou 

.999C79

.199q78 
.2139,6E-04
.224654E-04 

i0.9J1O31 .99q976 .233465E-J4 

23.GOCji30 .999975 .252419E-94 

RERODP OI OF TEit
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T'JPVTVA eI LITY FOP S ( RIT 

F9A I 
MtSCIONI c)NrTGU? TInN FATLUOE 

TI E(HOUS1 SURVIVA3TLITY PROBABILITY 

1. UDhJ .99qap9 .107304E-04 

2.GnCc0> .999978 .2218&IE-Oli 
?.0r il .090966 .343791E-04 
4,000022 ,q99953 .473312E-04 

.999039 .612641E-04 
6.00caoc .9999?4 7558qhE-04 

f70003* Q99 .99264E-04 
p.f)900 .999893 .107093E-03 

.CjC3o0 ,999876 .12415E-3 
1C6CCO29 .9998rq .141912E-03 

CS0J0C .9a9839 .1S673QE-93 
!2.C03C,]0 .99120 .180393E-03 

13.C09Q0 Q99799 .23i962E-03 

IL..qSJ0 .999778 .222&61E-03 

15Cl030 .999755 .24490qF-03 

1 .CCCJ1 .999779 .268321E-03 
C1.99977 .292713E-03 

iA .OCCJJC .99q632 .3181035-03 

19 .*G200 .d93655 .3445CqE-03 

2C.0G0900 .99962A .371937E-03 
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6.3.2 TRANSIENT-FAULT RECOVERY OPTIONS
 

The baseline transient-fault recovery option, which isa delay before
 

attempting a permanent-fault recovery, is quite effective for transient faults
 

occurring external to the GPCs. This is due to the filtering of the processing
 

algorithms and the slow response time of the actuators and displays. This
 

recovery method isnot as effective for transients within the GPC. It is easy
 

for a program to be altered by a memory transient during a restore cycle. Also,
 

CPU and IOP transients can alter data. Thus, a GPC can be left with a "permanent"
 

fault actually resulting from a transient.
 

The three alternate transient-fault recovery options studied here are
 

rollback, rollahead, and a combination of rollahead and memory copy. Rollback
 

is defined as the procedure where the current program segment isrerun following
 

fault detection. Rollahead is defined as the procedure where the fault-free
 

GPCs pass the current machine-state and data points to the indicated faulty
 

machine and continue computation. Memory copy isthe procedure where the
 

contents of the memories of the good GPCs are passed to the faulty GPC at a
 

low duty cycle on a cycle-stealing basis. Memory copy is followed by a rollahead
 

after completion to bring the faulty GPC on line.
 

The effectiveness of each of the transient recovery options is generated
 

by the simulator. The simulation provides the transient leakage parameter for
 

the model. Since transient-fault parameters for the Shuttle GPCs have not been
 

established, the model results are given for a wide range of transient environ­

ments. The baseline GPC transient rate was made equal to the permanent, i.e.,
 

T/X is unity. The results presented in the printouts that follow, in the case
 

of the delay recovery option, show the results of considering both more hostile
 

(z/X>l) and more benign (T/X<l) transient environments.
 

The transient recovery options results are summarized on the opposite
 

page. Table 6.3-I lists the options and the resulting transient leakages.
 

Delay recovery exhibits the highest leakage except for the case of rollahead
 

and memory copy with two GPCs remaining, where these recovery options are not
 

applicable. Memory copy has the best leakage because memory transients are
 

corrected. Figure 6.3-1 illustrates how these differences become amplified
 

in a hostile transient environment. Listings of the complete results are
 

presented on the following eight pages. They are denoted Tables 6.3-II through
 

6.3-IX.
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TABLE 6.3-I 


OPTION
 

Delay Recovery 


Rollback 


Rollahead 


Memory Copy 


10-
4
 

-j­

0 10 


10 -T. 

10 - 8 

FIGURE 6.3-1 

LEAKAGE RESULTS FOR TRANSIENT RECOVERY OPTIONS
 

TRANSIENT LEAKAGE 

4 GPCs 3 GPCs 2 GPCs
 

.703 .703 .703
 

.403 .403 .403
 

.398 .398 1
 

0 0 1
 

DELAY RECOVERY 

ROLLA HEAD
 

MEMORY COPY 

2000 4000 6000 8000
 

TRANSIENT RATE (FAULTS/106 HOURS) 

FAILURE PROBABILITY RESULTS FOR VARIOUS TRANSIENT 
RECOVERY OPTIONS AND TRANSIENT FAULT RATES 
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TABLE 6.3-11 VARIATIONS IN TRANSIENT FAULT RATE FOR THE
 

V'PYTNS UNTT T GPC 

MISSION TINF IS 


TAU 


*.909999 


,O06012 
. &OG21C 

.*OOCiOC 
.Og 490 

.0OC C 

* 2CC6 
*•3C§0 
*•o ~oc 
*.o0CaJ 
.00I3£c 

SFCTv CRITICAL 

TAU 

.OCOGo0 
.002125 
* 32: 
,* j30 , 


.*£02400 

.00050C 
.C 132£ 


.*C 7C, 


.293RG 

.o3391 


DELAY RECOVERY TRANSIENT RECOVERY METHOD
 

.SOoOOcE0E+i HOURS 

ClnNFIGURATTON FAILURE 
SURVIVABILITY PROBABILITY 

.7248427E-07 
.9999199 .3894629E-07 
.9999)99 .1077165E-06 
.9999999 1289433E-C6 
.999998 .1527744E-96 
.9999998 .1793567E-06 
,i9999998 .2088369E-05 
.99q9999 2413609E-06 
.9999997 .2770742E-06 
.9gq9q97 .3161216E-06 
.9999q96 .3586473E-06 

SURVIVABILITY 

CO%!FIGURATTON FAILUDF 
SURVIVaBTLTT y PROBABILITY 

.9999192 .8679221E-04 

.9999192 .8G09867E-04 

.999919? .8082744E-04 

.99q91op .8054866E-04 
.999919i .8087249E-04 
.9qqgt9 .89907E-3& 
.99o9l91 .8092855E-94 
.99o919C .809r107E-04 
.lq99190 .3099678E-G4 
.99qqt9 B1035;3E-e4 
.999918q .810735E-94 
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TABLE 6.3-Ill VARIATIONS IN TRANSIENT FAULT RATE FOR THE
 
DELAY RECOVERY TRANSIENT RECOVERY METHOD
 

VAPYThPG UWIT Tc CP' 

'ITSZIN TT' I, 	 .FSOlGOE+OI HOURS 

TAU 	 rONFI GURA TION 
SUVlVPBILITY 


^"QoOC 	 999999% 

32]3 C.9q99q93 

0030> .9999978 

04139 	 *9909q 6 1 
009C0 *9q99o3c 

0C0 aq99q9o1 

0 0Q73J .999956 


OCPO ;.999380C 

*.qqoc .9999732 


.9999550 


SAFETY COTTICAL SURVIVWIILITY 

TAIJ 	 CONFTGIIRATION 
SUcVTVABILTTY 

C1O3& .9999184 

*092010 .999917P 

S7C6 .999166
%' 

C14115 qq9914A 


*0050Zc o99927 

.O>23C *999q9Ct 

S.9c7999gg 49563950E-94 
*1;3.999898A 

*%0 J, 3q9992P 

.0ol02 	 *99 8S3F 
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FAILUPE 
PROBABILITY
 

.3586473E-C6
 

.10C6559E-05
 

.2156908E-05
 

.7944939E-05
 

.6501-595E-05
 

.9948654E-05
 

.1442AS6E-04 

,1999606E-04 
.2682e33E-04
 
.3498710E-9&
 

FAILURE
 
PROBABILITY
 

*5j59043E-C4 
.3223F29E-Qt
 
.8338855E-li
 
.8517643E-04
 
A7731ME-04
 

.D'17966E-04
 

.lG22P3E-J3
 

.130500E-33 

.1162161E-23
 



ORIGINAL PAGE IS POORRBPRODTJO$1ThLT OF THJIJ 

TABLE 6.3-IV VARIATIONS IN TRANSIENT FAULT RATE FOR THE
 
ROLLAHEAD RECOVERY METHOD 

VERYING UNIT TS SPC 

'ITSSION TTME VS .rGO303E+01 HOURS 

T1 CONFIGURATION FAILURE 
SURVIV/aBTLITY PROBABILITY 

On 9oa .9999990 .7?48427E-07 

30M0G 9999099 .8627534E-07 

0CC203 .9999990 .10152'41E-06 

OC03G' .999999 .1182983E-C6 

.060430 .9999993 .1366650F-06 
0*C5G6 .9999998 .1566914E-06 
C0£ SO .9999998 .1784445E-06 

.00.703 9999099 .2019908E-Cb 

OOCROC .999999? .2273969E-06 

.00090i .9999997 .2547294E-G6 

.01 100 *9q9907 .2840540E-C6 

SAFETY CPITTCAL SURVIVARILITY 

TAU CONFIGUR TION 
S'oVIVABILTTY 

FAILURE 
PROBABILITY 

£.oi02000 .9999187 .8130429E-0 4 

.OQCIo .9999187 .8131808E-04 
*OO2% .9909187 .9133333E-04 

S200300 .9999196 .8135010E-91 

*aoC43C .999918E .136847E-04 

.930502 .999918C .8138849E-14 

.0006C3 .9999186 .$141024F-04 

.90673P .999918b .143379E-04 

.60862 .9999185 .8145919E-54 

.03293r .99q918' .8143652E-04 
* 05120 .99q9185 .81515q5E-C4 
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TABLE 6.3-V VARIATIONS IN TRANSIENT FAULT RATE FOR THE
 
ROLLAHEAD RECOVERY METHOD
 

JAMYI'G UNITT IS 3Dr 

"ISSION TIMF IS .6eoo000E +0 WOUoS 

T 81 CONFIGURATTON 
SURVIVaBILITY 


* .9399997 
* 0 .9q9999' 
S0303? .999q8E 


.
*999997F 


.9999962 

*0E330 999994-

u97CC .999991 


.0083*o 9Q99G 

CC9q 3 q999Q54 

.C999912 


SAFFTY CRITICAL sIIPVIVPnILT TY 

TAU CONFIGUPaTION 

SU'VIVBTL T TY 

•001003 .9999185 

.999918i 

.9999174 


*02-C Li .9999164 
.00§0r0 .9909140 


00 OC .C99931 

* 17n13 .9999t07 

.30P'3S .9999:7 7 


ICEc932 .999,A2 

.CiC30a .9qaqq9n 
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FATLURE 
DROBABILITY 

.28405GE­

.7012847E-06
 

.1389054E-05
 

.2410340E-CE 
*382626fE-35
 
.5696104E-C5
 

077374E-C5
 
.110258IF-94
 
1459545E-04
 

.1883862E-34
 

FAILURE
 
PCOSABILITY
 

.6151555E-54
 

.3193304E-^4
 
R262076F-04
 
8364l 0 6E--4 

*,505776E-04
 

.86927t6F-04
 

.8933853F-94
 

.9225673t -C&
 
95826 AE-3& 

*1%0689E- 3 



TABLE 6.3-VI VARIATIONS IN TRANSIENT FAULT RATE WITH THE
 
MEMORY COPY RECOVERY METHOD
 

VCRYING UtIT r 'PC 

MISSTON TTMC IS .60]O0CE+PO HOURS
 

TAU 	 CONFIGURaTION 

SURVIVAPILITY 


,0A59QC .9999999 
. .9999999 
0c :3o .990999 o 

• .9999999 

.0c50: .9999q99 

*QCoJG .9999Qg9 
C•£O7eC .*qo9q9q 
.0OC8OO 	 .9999999 


q
.ocng9 	 .999999

•'AiX 3.9999999 


SAFFTY rUTICIL SU0 VIVAITLI T Y
 

TKU 	 COIFIGURdTION 


SURVIV58ILTTY 


.0.0CC)3 .9999187 
9*013L9 .q187 

•£, 23, .9999187 

Cr 3G C .q999187 
.GC490 .9999187 

00I5an .9990187 
.99987 

*&7er c.9999186 
r asC.qqqg8r 
auC9f .9999186 
*L01222 .9099186 
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TI 
ORIGINAL PAGE IS POOR 
uRPRODUOIBh OF THE 

FATLURE
 
PROBABILITY
 

.7241427E-67
 

.7977431E-07
 

.8706095E-07
 

.9434278E-07
 
*1016203E-96
 
.1088950E-86
 
.1161622E-06
 
.1234268E-06
 
13O687iE-06
 

.1379430E-36
 

.1451954E-'6
 

FPILURE
 

PROBABILTITY
 

.8130429E-04
 

.s131158E-Ca
 

.8131887E-04
 

.8132615E-04
 

.8133343E-04
 

.8134070E-90
 

.813470 7F-04
 

.81355?3E-C4
 

.8136249E-04
 

.8136975E-C4
 

.81377C0E--4
 



TABLE 6.3-VII VARIATIONS IN TRANSIENT FAULT RATE WITH THE
 

VAOY'MG UNIT TV PC
 

MISSION TIME IS 


TAU 


.3Q % 
.202GC 
00 


&~O&. 


g
00ln 
OCEOO 

3'7230 
*00 001999909& 
*0 0 030 


.3123 

R1FFTY CPTTTCAL 


TA'J 


S1C31900 

*0Q2ESC 
. ef7 3)P 

*Jh00 
*0503 

00o30 

C7]00 


.0C923O 


.%0913 

* 61300 

MEMORY COPY RECOVERY METHOD
 

.59OOQ0OE+01 HOURS 

CONFIGURATTON FAILURE 
SUOVIVABTLTTY PROBABILITY 

.99q99990 .iL5q54E-C6 

.9999998 .2174736E-06 

.OO*0999907 .2893246E-C6 
,9999996 .36075C5E-06 

9*99996 .4317544E-C6 
999999 .50233 0 4E-06 

9999994 .57250S4E-06 
.6422643E-06 

o999q93 .711iGiC2E-06 
.9999992 .7805488E-06 

SURVIVAqILITY 

rONFIGURATTON FAILUFT 
3URVIVABILITY PROBABILITY 

.9999186 .8137700E-74 

.990986 .P!44927E-C4 
.q9991815 .8152112E-K4 
.9999184 .8159254F-04 
.9999183 .8166353F-24 
.*99919 .173411E-34 
.9909182 .B30428F-E4 
.99q9981 .8187403E-C4 
.9999181 .8194337E-OL 
.9999180 .8201230E-34 
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TABLE 6.3-VIII VARIATIONS IN TRANSIENT FAULT RATE WITH THE
 
ROLLBACK RECOVERY METHOD
 

'
 VARYi,"G UnIT -7 PC 

MISSION TIq 	 .%,OGOOCCE+C1 L4OURS
 

TA U 	 SONFTDUaTTON FAILUPF
 
SUrPVIVAbTLITY PPOS4BILITY
 

*.C'.9999990 	 .7248427E-C7
 

*JIL ,999999 .sAi47r59E-07 
.SCC[20 .9999999 .9154864E-67 

.00070, .99Q9999 .1022154E-06 
*004)G .9999990 .1136759F-C8 
I Cc50 *9999999 ,1259579E-0 

.9a1q999c 	 .1393892E-n6
 
* .J 	 *qogqoqql .1530977E-06 
O0c OG .9999998 .i6131IGE-06
 

.G2GlnC .999909b .188567E-CE
 

*GOn 	 .9999q9p .2006624E-06 

'3Zc TY £RITICAL SURVIVIAeILITY 

TAU 	 CONFIGUPATION FaILUPE
 

SUPVIVABILITY 'ROBARILITY
 

G.GCaoOC .9999187 .8130429E-C4 
.0oG1'J 999917 .8131346E-34 
CJ 230 .9999187 .3132336E-Ck 

.,u .9999187 .8133432E-04 

*0C4 53 9q9187 *8134548E-04 

.OCEj *99q9i86 P135776E-04 

.0613C 9q99186 .1137089E-C4 
, 37 	 999981M *R138490E-04 

9 g Rq9t81E-04*SqI86 


*crcq2o 	 .9993186 ,814i566E-84 
.C0132 3 .9qggts6 .8143246E-C4 

6-47
 



TABLE 6.3-IX VARIATIONS IN TRANSIENT FAULT RATE WITH THE
 
ROLLBACK RECOVERY METHOD 

VARYING UNTT I GPC 

MISSION TmE 1S s0;00C37+01 HOURS 

TEIl CONFIGURATTON 
SUPVIVABILITY 

S5 9qqoqlqR 

,012io2 .9099096 
.06310C .9409992 

c45CZ .9999987 
.0C50% .9999980 
.*C.aiC .9999Q71 
,0073 *999996c 
.C~PC2C .99q9947 
,GocrO . 9 999930u 

.9999t1 

ctpFiTy CPTTICaL SURVIVARILITY 

TA'J 3O JFIGI:RAT!ON 
SIARVIVabILITY 

.O ,Of .o99188, 

.CC020G .9999183 
003 3 .:99O18C 
:014000 .999917F 
.005030 .999916A 

oCIh20C .9949J5c) 
*G079T,9qo914p 

c*3 0J0
.IYo300 

.39991& 
,94!13 

* G1030 ,qq9398 
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FAILURE
 
PPOBABILITY
 

,200662&E-C6
 
.4275409F-CS
 
.7802943E-66
 
.1285497E-oE
 
.196913F-C5
 
.2856598E-05
 
.3972723E-05
 
.534176BE-05
 
.69874 7 6E-C5 
.99321A3E-05
 

FAILUPE
 
PROeABILITv
 

.8143246E-0-k
 

.8i65932E-l 4
 

.82012'5E-q4
 
A251721F-n4
 
.8720079E-94
 

,340981BE-04
 
.85204?tE-Oh
 
.f67315E-04
 
.88218S8E-&4 

*q215397E-04 



6.3.3 VARIATIONS IN THE DETECTABILITY PREDICTION
 

In the baseline parameter set, the GPC detectability is chosen to be
 

one because no uncoverage has been identified by the manufacturer. However,
 
there is a l-out-of-232 chance that a set of incorrect computations sums to
 
the correct result for the output comparison. Thus, it is of interest to obtAin
 
results for GPC detectability values other than unity. The detectability for
 
devices where a coverage analysis was unavailable was chosen to be .999, i.e.,
 

the design goal value. This section presents the results of an examination of
 
the effects of imperfect GPC detectability and what happens if .999 is too
 
pessimistic for the peripheral devices.
 

Table 6.3-X summarizes the effects of imperfect GPC detectability. We
 
feel that the cooperative detection techniques used by the GPCs achieves a
 
detectability of at least .999 99. This results in more than a three-fold
 
degradation of the estimated GPC survivability from that estimated for unity
 
detectability, but it doesn't affect the overall safety-critical survivability.
 

A GPC detectability of .999 is shown for completeness. The resulting increase
 
in GPC and safety-critical failure probability is dramatic.
 

The next question iswhat is to be gained by improving the flight­
critical device detectabilities. In Table 6.3-XII, TACAN detectability is
 

varied from .999 to .999 9. This results in a three-fold gain in TACAN surviv­
"
ability and a gain from 7.7(10) 5 to 5.6(I0)-5 in safety-critical failure
 

probability. Further increases in TACAN detectability add little to the safety­

critical survivability.
 

Next, it is appropriate to ask what happens if all the devices detect­
abilities are improved. Table 6.3-XI summarizes the improvements achieved in
 
this case. Safety-critical failure probability has achieved nearly a four-fold
 
improvement by increasing the device detectability from .999 to .9999. Further
 
improvements bring smaller gains.
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TABLE 6.3-X FAILURE PROBABILITIES FOR IMPERFECT
 
GPC DETECTABILITY
 

GPC FAILURE PROBABILITY
 

DETECTABILITY GPC SAFETY-CRITICAL
 

-
.999,999,999 1.8(10) 8.2(10) 5
 

.999,999,9 1.8(10) 7 8.2(10) 5
 

.999,99 6.5(10) 7 8.2(10) 5
 

-4

.999 A.8(1O)-5  1.O(lO)


TABLE 6.3-XI FAILURE PROBABILITIES FOR IMPROVEMENTS IN
 
DETECTABILITY FOR ALL DEVICES
 

FAILURE PROBABILITY
DETECTABILITY

FOR EVERY
DEVICE TACAN 
 MSBLS FLIGHT- SAFETY-


FORWARD 
 CRITICAL
 

-5 -5
.999 2.3(10) -5  1.0(10) 5.'8(10) -5  8.1 (i0)


.999,9 7.3(10) 6 2.3(10) 6 1.7(10)-5 2.2(10) 5
 

.999,99 5.7(10) 6 1.5(10)-6  1.4(10)75 1.7(10) 5
 

-5
 
.999,999 5.6(0)-6  1.4(10) 6 1.3(1O) 5 1.6(lO)
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ur 1nREpRODUCIBI±-£Y 
ORIGINAL PAGE IS POOR 

TABLE 6.3-XII SIX HOUR SURVIVABILITY FOR INCREASES 
INTACAN DETECTABILITY 

VARYING UNIT IS TACAN 

MISSION TIME IS .6000000E+01 HOURS 

DETECTABILITY CONFIGURATION FAILURE 
THREE SURVIVABILITY PROBABILITY 

.999000 .9999765 .2348436E-04 

.999100 .9999783 .2170103E-04 
,990200 .9999801 .1991770E-04 
*999300 .9999819 .±813437E-04 
.999400 .9999836 .i635104E-04 
.999500 .9999854 *1456770E-04 
.999600 .9999872 1278437E-04 
.999700 .9999890 .ii00104E-04 
.999800 .9999908 .9217709E-05 
*999900 .9999926 .7434377E-05 

1.000000 .9999943 .5651045E-05 

SAFETY CRITICAL SURVIVABILITY 

DETECTABILITY CONFIGURATION FAILURE 
THREE SURVIVABILITY PROBABILITY 

.999000 .9999228 .7722200E-04 

.999100 .9999246 .7544488E-04 

.99q200 .9999263 .7366776E-04 

.999300 .9999281 .7189064E-04 
999400 .9999299 .70±1352E-04 
.999500 .9999317 .6833641E-04 
.999600 .9999334 .6655929E-04 
.999700 .9999352 .6478217E-04 
S999800 .9999370 .6300505E-04 

.999900 .9999388 .6122793E-04 
1.000000 .9999405 .5945081E-04 
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TABLE 6.3-XIII SIX HOUR SURVIVABILITIES WHEN GPC
 
DETECTABILITY IS .999 999 999
 

MTSSTON TIME IS .6COOO0E+Oi HOUPS 

U IT BASELINE 
NAME SUOVIVBILITY 

MCnS *99q9947 


GPC .9999999 


Fr 40M q999q45 


.T
,99R994C 

ACCEL .qgqg980 

VIIU .9999944 

TICAN .9999765 

M BLS .9999896 

CHC. 1.003o000 

PrTi i.OoflOODO 

SPTC 1.000000 

FA MDM .9999947 


ASA .9999976 


RfYRO .9999988 


OEU .9999986 


AVVT .9999980 


A/MT .0999975 


HSI .9999990 


AOI .9999985 


PCMMU .9999c29 


or MfnM )999928 

Oft MUim .399928 

AFT FC .99999i1 

S GRIT .999918+ 

M CQIT .9908q69 

FT OS .9999904 

FWD FC .99q9423 
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FAILURE
 
PROBABILITY
 

.5329936E-05
 

.6290993E-O
 

.5516707E-05
 

.5996164E-05
 

.2044755E-05
 

.5587907E-05
 

.2348436E-04
 

.i035253E-04 

.3662135E-07
 

.3602i35E-07
 

.3602135E-07
 

.5276966E-05
 

.2399321E-05
 

.1224380E-05
 

.1444317E-05
 

.2020859E-a5
 

.2546337E-05
 

.iOZ8263E-05
 

.146951SE-05
 

.4712953E-04
 

.72C6424E-05
 

.7206424E-05
 

.89Oi980E-05
 

.8158558E-04
 

.1431222E-03
 

.9577756E-05
 

.5771456E-04
 



REPRODUIBILTY OF''ki
 
ORIGINAL PAGE IS POOR
 

FABLE 6.3-XIV SIX HOUR SURVIVABILITIES WHEN GPC
 
DETECTABILITY IS .999 999 9
 

MISSION TIMF IS .6000000E+01 HOUPS 

UNTT BSFLINF FAILURE 
NAME SURVIVABILITY PROBABILITY 

MCOS .99Q1947 .5329q36E-05 

GPC .9999999 .666794iE-07 

FF MOM .9999945 .5b16707E-05 

ADTA .99q9946 .5996t64E-05 

ArCEL 99qq980 .2044755E-05 

THU .99Q9944 .5587907E-05 

TACaN .9999765 .2348436E-04 

MSPLS .9999896 .1035253E-04 

opC 1.OOCO00C .3602135E-07 

OPTA 1.30Co00o .3602135E-07 

SOTc 1.0000060 .36G2i35E-07 

FA 4OM .9999947 .5276966E-05 

AA .9999976 .23q9321E-05 

RGYRO .9999988 ,1224380E-05 

"fU .9999986 .14443i7E-05 

AVVI .99Q9980 .2020859E-05 

A/MI .9999975 .2546337E-05 

HSI .9999990 .1038263E-05 

ADI .9999985 .1469515E-05 

PCTIMU .9999529 .4712q53E-04 

OF MOM .9999928 .7206424E-05 

Ot MOM .9999928 .7206424E-05 

AFT FC .999991i ..901980E-05 

S CRiTT .9999184 .8158935E-04 

M CPIT .9998569 .i431260E-03 

FT DIS .9999904 .q577756E-05 

F' FC .9999423 .5771456E-04 
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TABLE 6.3-XV SIX HOUR SURVIVABILITIES WHEN GPC 
DETECTABILITY IS .999 99 

MISSION TIME IS ,JO3JOOOE+O1 H9URS 

UNIT BASFLINE FAILURE 
N ME qURVIVA8ILITY PROBABILITY 

MC. .9999947 .5329936E-05 

GPC .9999996 .44362735-06 

CF MOM .9999945 .9516707E-05 

AfnTa qgggq40 .5996164E-05 

ACEL .9999980 .2044755E-05 

TMU .9999944 .5587907E-05 

TACAN .9999765 .2348436E-04 

M$nLS .9999896 .ig35253E-04 

ppr 1.00( 000C .3602135E-07 

PPTA 1.900000 .3602135E-07 

SPTC 1.005000 .36G2135E-07 

FA M3J .9999947 .5276g.66E-05 

ASa .9999976 .239932iE-05 

RGYRO .9999988 .1224380E-05 

DOU .9999986 .144431TE-05 

AVVI .99q9980 .2020859E-05 

A/MI .9999975 .2546337E-05 

PSI .99q9993 .1038263E-05 

ADI .9999985 .1469515E-05 

PCMMU .999529 €4712953E-04 

OF MOM .9999928 .7206424E-05 

CA MOM .9999929 .7206424E-05 

AFT FC ,99q9gi .890i980E-05 

S COIT .9999180 .8196627E-04 

M COIT .9993565 .1435029E-83 

FT IS .9999904 .9577756E-05 

FWD FC .9999423 .5771456E-04 
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REPRODUCI3ILITY OF TIM 
TABLE 6.3-XVI, SIX HOUR SURVIVABILITIES WHBEjR AL PAGE IS POOR 

DETECTABILITY IS .999
 

MISSION TIME IS 


UMIT 

N41MF 


Hncos 


SPC 


FF M0M 


InTa 


ACCEL 


ImU 


TC ki 


MSrltS 

RHC 


QPTd 


SBTe 


FA MIM 


As& 


RGY1O 


DBU 

AMJ I 

A/1I 


HSI 


ADO 


PrM4J 


OF M. 


OA m'fM 

AFT FC 


s rolT 


v GRIT 


FT tIS 


FWO FC 

.6C00o00E+0 HOUPS 

BASrLIN: FAILURF 
SURVIVA9ILITY PROBABILITY 

q9g947 .5329936E-05 

.9999524 .4755363E-04 

.9999945 .55iTOZE-05 

.9q99940 .5996164E-05 

.9999A0 .2044755E-05 

99qgq44 .5587907E-05 

.99q9999 .7214457E-07 

.9999896 .1035ZS3E-04 

.0f00000 .3502135F-07 

i.acconoo *!6G2135E-07 

1.oCcooo0 .3602135E-07 

.9999947 .5278956E-05 

.99P9976 .2399321E-05 

.99q9988 .1224380E-05 

.9999986 .1444317E-05 

.9q9qg99 .2026859E-05 

.9999975 .2546337E-05 

.9999990 .1038263E-DS 

.999998V .I4695iE-05 

.9999529 .472953E-04 

.9999928 .7266424E-95 

."99q28 .7206424E-05 

.9999911 .*aqo±80E-05 

.9998q67 .1033202E-03 

.9993351 .1548555E-03 

.9999q04 .g77756E-05 

.9999680 .3196053E-04 
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TABLE 6.3-XVII SIX HOUR SURVIVABILITIES WHEN PERIPHERAL
 

MISSION TIME IS 


UNIT 

NAME 


MCDS 


GPC 


FF MOM 


ACCEL 


TMU 


TACAN 


MSRLS 


RHC 


PPT 


SBTC 


FA MOM 


ASA 


PGYRO 


OOU 


AVVI 


A/MI 


HSI 


ADT 


PCMMU 


OF MOM 


OA MOM 


AFT FC 


S CRIT 


M CRIT 


FT DIS 


PW FC 


DETECTABILITIES ARE .999 9 

.6QOOOOE+t HOURS 

BASELINE FAILURE 
SURVIVABILITY PROBABILITY 

.9999990 ,ii4979E-05 

.9999996 .3546683E-06 

.9999994 .5521464E-06 

.DTA.9999994 .6002274E-06 

.9999997 .2634626E-06 

.9999990 .9594941E-06 

.9999927 .7343147E-05 

.9999977 .2267179E-05 

1.0000000 .3621601E-08 

1.0000000 .36216011-08 

1.0000000 .3621601E-08 

.9999995 .5281i29E-06 

.9999998 .2399712E-06 

.9999999 .1441000E-06 

.9999998 .1779385E-06 

.9999997 .2969821E-06 

.9999996 .424276iE-06 

.9999999 .i088544E-06 

.9999998 .1826476E-06 

.9998697 .1302685E-03 

.9999810 1896295E-04 

.9999810 *i896295E-04 

.9999987 1300337E-05 

.9999779 .2209754E-04 

i9998097 .1902829E-03 

.9999977 .2254238E-05 

.9999828 .1717341E-04 
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TABLE 6.3-XVIII SIX HOUR SURVIVABILITIES WHEN PERIPHERAL
 

MISSION TIME IS 


UNIT 

NAME 


McOS 


GPC 


FF MOM 


ADTA 

ACCEL 


IMU 


TACAN 


MSBLS 


RHC 


RPTA 


SBTC 


FA MOM 


ASA 


RGYRO 


ODU 


AVVI 


A/MI 


HSI 


AOI 


PCMMU 


OF MOM 


OA MOM 


AFT FC 


S GRIT 

M CRIT 

FT 0IS 


FWD FC 


DETECTABILITIES ARE .999 99 

.6000000E+01 HOURS 

BASELINE FAILURE 
SURVIVABILITY PROBABILITY 

.9999993 .6553418E-06 

.9999996 .3546683E-16 

.9999999 .5568932E-07 

.9999999 .6063254E-07 

.9999999 .85333i8E-07 

.9999995 .496652iE-06 

.9999943 .5729017E-05 

.9999985 .1458642E-05 

i.OOOo000 .3816183E-09 

1.0000000 .38±6183E-09 

.OOOOO00 .38i6183E-09 

.9999999 .5322666E-07 

1.0000000 .2403605E-07 

1.0000000 .3607195E-07 

.9999999 .1179205E-06 

.9999998 .2152818E-06 

.9999997 .3237044E-06 

.9999999 .6480658E-07 

.9999999 1216586E-06 

.9998706 .1293540E-03 

.9999812 .1880278E-04 

.9999812 t±880278E-04 

.9999995 .533575iE-06 

.9999835 .1653373E-04 

.9998165 .1834853E-03 

.9999981 .1907151E-05 

.9999869 .1308304E-04 
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TABLE 6.3-XIX SIX HOUR SURVIVABILITIES WHEN PERIPHERAL
 

MISSION TIME IS 


UNIT 

NAME 


MCoS 


GPC 

FF MOM 


AOTA 


ACCEL 


IMU 

TACAN 


MSBLS 


RHC 


SPTA 


SPTC 


FA MOM 


ASA 


RGYRO 


ODU 


AVVI 


A/MI 


HSI 


ADI 


PC MU 


OF MOM 


OA MUM 


AFT FC 


S CRIT 


H CRIT 


FT DIS 


FWD FC 


DETECTABILITIES ARE .999 999
 

.6000000Ef0i HOURS 

BASELINE FAILURE 
SURVIVABILITY PROBABILITY 

.9999994 .6193781E-06
 

.9999996 .3546683E-06
 

i.000000 .6043571E-08
 

1.0000000 .6673055E-08
 

-.9999999 .6752025E-07
 

.9999995 .4503679E-06
 

.9999944 .5567604E-05
 

.9999986 .1377788E-05
 

1.00900 .576179E-i0
 

1.0000000 .576179IF-10
 

1.aOOOo0 .576i79iE-t0
 

1.0000000 .5738038E-98
 

1.0000000 .2442555E-08
 

1.0000000 .2526914E-07
 

.9999999 .1119187E-06
 

.9999998 .2071117E-06
 

.9999997 .3136473E-06
 

.9999999 .6040180E-07
 

.9999999 .1155597E-06
 

.9998707 .1292625E-03
 

.9999812 .i878677E-04
 

.9999812 .1878677E-04
 

.9999995 .4568989E-06
 

.9999840 .1597734E-04
 

.9998172 1828055E-03
 

.9999981 1872442E-05
 

.9999873 ,12674O0E-04
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TABLE 6.3-XX SIX HOUR SURVIVABILITIES WHEN PERIPHERAL
 
DETECTABILITIES ARE .999 999 9
 

MISSION TIME IS 


UNIT 

NAMF 

MCOS 

GPc 


FF MOM 


ADTA 


ACCEL 


IHU 


TACAN 


MSBLS 

RHC 


PPTA 


SETC 


FA MOM 


ASA 


RGYPO 


OnU 


AVVI 


A/HI 


HSI 


AOr 


PCHMU 


OF MOM 


OA MOM 


AFT FC 


S CRIT 

M GRIT 


FT OIS 


FWO FC 

.6000000E+01 HOURS
 

BASELINE 

SURVIVABILITY 


.9999994 


.9999996 


i.o0000000 


1.0000000 


.9999999 


.9999996 


.9999944 

.9999986 


1.609000 

i.O000000 


1.0000000 


1.0000000 


1.0000000 


1.0000000 


.9999999 


.9999998 


.9999997 


.9999999 


.9999999 

.9998707 


.9999812 


.9999812 


.2999996 


.9999841 


.9998t73 

.9999981 


.9999874 


FAILURE -

PROBABILITY
 

.6157817E-06
 

.3546683E-06
 

.1079030E-08
 

.1277073E-08
 

.6573895E-07
 

.4457395E-06
 

.5551462E-05
 

.1369702E-05
 

.2523137E-iO
 

.2523137E-10
 

.2523137E-iO
 

.9891608E-09
 

.2831939E-09
 

.2418886E-07
 

.1i13185E-06
 

.2062947E-06
 

.3126416E-06
 

.5996132E-07
 

.1149498E-06
 

.1292534E-03
 

,1878517E-04
 

.1878517E-04
 

.4492313E-06
 

.1592170E-04 

.1827376E-03
 

.1868972E-05
 

.12633i0E-04
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PRECEDING PAGE BLANK NOT FILMED
 

6.4 	 SUGGESTED IMPROVEMENTS
 

The Shuttle orbiter avionics system was designed using the discrete
 

fault tolerance criterion. Namely, the DPS can tolerate two faults (FO/FS)
 

with a coverage of .999. This provides a feeling of confidence to the user of
 

the orbiter. The other major fault tolerance criterion for system design is
 

the survivability (or reliability or mission success probability). The frequent
 

goal using this criterion is a balanced design where each module set contributes
 

a portion of the total failure probability as nearly equal as possible to other
 

contributors of failure probability. Thus, improving the highest failure
 

probability device adds the most to system improvement. A variation of this
 

technique isone where a calculation of the change insurvivability per unit
 
weight (or power) ismade for each subsystem, and then the redundancy increase
 

ismade in the subsystem showing the largest quotient.
 

The elements that influence the system survivability prediction are the
 

partitioning of the system and the parameters of the analytic model. The parti­

tioning is a function of the system design and isdifficult to change. Of the
 
modeling parameters, mission time is fixed. Parts selection can improve failure
 
rate, while improvements to fault tolerance methods can enhance the components
 

of coverage.
 

The baseline Shuttle avionics system survivability for the ALT mission
 

time is "driven" by the peripheral device detectabilities. Improvement of this
 

parameter adds a marked improvement to the Shuttle survivability prediction.
 

Increasing the detectability from .999 to .9999 gives four-fold improvements
 

infailure probability. Further improvements add less. The system survivability
 
isstill dominated by the high failure rate forward flight critical bus devices.
 

At a detectability of .9999, increasing the redundancy could help, but this
 
doesn't seem feasible at this stage of development. An interesting point is
 

that at a detectability of .999, the predicted failure rates and the ALT mission
 

time, redundancy increases are counter-productive. For example, the IMU with
 

a redundancy of 3 has a better survivability prediction at six hours than the
 

ADTA with a smaller failure rate and a redundancy of 4. This isnot true for
 

a detectability of .9999 or for a mission time of 20 hours.
 

In the baseline parameter set, GPC recoverability was chosen to be 1.
 

Ifswitching off a faulty GPC is done manually by a human operator, then fault
 
recovery time is governed by human reaction time, and the correctness of the
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recovery action taken isdegraded by a panic situation during time-critical
 

phases. We know that ifthis degradation results in a GPC recoverability as
 

small as .999, then it becomes a very important factor to be considered. If
 

this is the case, other GPC options such as transient recovery become important.
 

Perhaps a way of obtaining sufficient memory space and GPC operations rate to
 

allow automatic switchout of a faulty GPC would be to commit more of the 1OP
 

operations to microprogram.
 

Automatic use of an alternate MDM port during time-critical phases is
 

not useful. However, for orbital flight, the use of alternate ports for recon­

figuration at the beginning of deorbit will enhance the probability of beginning
 
descent at full redundancy.
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6.5 SYSTEM MODEL VERIFICATION
 

The modeling presented here isthought to be a true representation of
 

the Shuttle avionics system for ALT. Certain laboratory tests are possible to
 

verify the model. Faults may be physically injected into the system, and the
 

resulting recovery may be observed. Since the model presented here is proba­

bilistic, the faults should be chosen at random according to the failure rate
 

of the parts. The system fails if it is no longer capable of performing all
 

its critical functions. Protective redundancy used by the system means that
 

more than one fault may be sustained before the system fails. But a single
 

uncovered fault may cause the system to fail.
 

The first approach is to generate faults for a series of six-hour
 

missions, inject the faults, and record the results. The resulting failure
 

probability is the number of failed missions divided by the total number of
 

missions. This approach is straightforward but can't be done in a reasonable
 

amount of time in practice. The reason is that system failures occur approxi­

mately once every 10,000 missions, on the average. One or more faults occur
 

in about one out of ten missions, so that, on the average, 1000 missions would
 

have to besexperimentally checked for each system failure. About 200 system
 

failures should occur for an approximate system model verification. The
 

resulting 200,000 experiments are a formidable task.
 

A method to reduce the magnitude of this is to extend the mission time
 

to where the probability of failure ismuch greater, say .1or .2. This only
 

tests a generally uninteresting extreme prediction.
 

Methods should be sought to reduce the size of the task. The number
 

of experiments can be reduced by concentrating on a portion of the system.
 

This eliminates the sizeable number of missions that have several faults, but
 

only a single fault in each device.
 

Another method, which can be used in conjunction with the first, is to
 

realize that the probability of exactly k faults occurring in a mission of
 

length T on a system or portion of a system with total failure rate X is
 

is P(k) = e- T (?T)k/k. Experiments are then run 1,2, 3, etc. faults to
 

obtain failure statistics on the number of faults per mission. The resulting
 

failure probability is then
 

n Number of failures with k faults 
F(T) = E P(k) Number of missions with k faults 

k=l 
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The GPCs would be a desirable unit to apply this kind of experiment. 

With a coverage of 1 for the first two faulty GPCs, we can concentrate on 

missions with three or more faults. Evaluating P(k) for k = 3, 4, 5, X = 

4000/106 hours and T - 6 hours.
 

P(3) z e- 024 (.024)3 2.3(10f 6
 

-8
 
P(4) 1.8(10)
 

P(5) 6.6(10)-il
 

Three fault missions have a large impact on the GPC failure probability of
 

3.5(10)-7 ; four fault missions, at most, affect the failure probability by
 

*2 in second significant digit; and five fault missions have little impact
 

on the failure probability prediction. Therefore, experimentation can be
 

confined to three fault missions. We would expect about 5 to 10 percent of
 

the three fault missions to fail. One thousand missions should result in
 

50 to 100 failures. Fault patterns where the three faults occur in at most
 

2 GPCs need not be performed, and may be counted as a non-failed mission. In
 

performing the experiments, any failure after one or two faults indicates the
 

GPC coverage is less than one.
 

The next question is how to inject the faults into the system. The
 

first method is for a technician to physically open or short the electrical
 

points chosen by random number generation, and record the results. This
 

is a tedious job, but requires the least development of specialized equipment.
 

A more elegant and rapid method would be to electrically inject the faults
 

under minicomputer control. This has the added advantage that the random
 

faults may be generated by the minicomputer. The disadvantage of this method
 

is the development time and-expense of this additional, specialized test
 

equipment.
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7.0 	 CONCLUSIONS AND RECOMMENDATIONS
 

7.1 	 CONCLUSIONS
 

Five significant conclusions were drawn from the work performed on the
 

Shuttle avionics survivability analysis project. These are presented in prose
 

in the following paragraphs, and summarized inTable 7.1-1 on the facing page.
 

The accuracy 6f the prediction of the components of coverage for the
 

various avionics subsystems is crucial with respect to the accuracy attain­

able in the overall survivability prediction. This is particularly true for
 

units whose coverage components, e.g., detectability, are inthe region of
 
0.999. For example, a change from 0.999 to 0.9999 lowers the safety-critical
 

failure probability by a factor of four-


Use of the alternate MOM port for reconfiguration of GPC bus assign­
ments will become useful when TACAN and/or microwave scan beam landing system
 

units with lower failure rates become available.
 

The use of a recovery technique consisting of rollahead combined with
 
memory copy has the potential of reducing transient leakage to zero (i.e., no
 

transient faults are mistaken for permanents). This compares with the result
 

of 70.3% when using the baseline technique of delay recovery. This more
 
sophisticated GPC transient-fault recovery technique ismost useful in hostile
 

transient-fault environments, or when GPC coverage is degraded.
 

Improvement inTACAN detectability offers the most promise of improv­
ing the overall avionics failure probability. For example, improving the
 

TACAN detectability from 0.999 to 0.9999, will decrease the overall avionics
 
failure probability from 7.7(10)-5 to 5.6(10) -5 .
 

Laboratory testing to verify the models presented here isfeasible,
 
but the testing must be carefully designed so as to obtain the maximum results
 

in a reasonable test time. This test design includes both the test procedure
 

and the test implementation, e.g., computer programs for automatic fault
 

injection.
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TABLE T. 1-1 CONCLUSIONS 

" 	 Overall survivability accuracy depends critically 
on coverage-component accuracy 

" 	 Reconfiguration using the alternate MDM port is 
efficacious for lower failure rate units 

* 	 An alternative GPC recovery technique can reduce 
transient-fault leakage to zero 

" 	 Improving TACAN detectability offers the most 
promise for decrease of overall failure probability 
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7.2 RECOMMENDATIONS
 

The principal recommendation resulting from the performance of this
 

study is that both the analytic model and simulator portion of CAST be further
 
enhanced so that the OFT mission configuration can be modeled. This enhancement
 

is required because of the ALT-OFT differences discussed below and summarized
 

inTable 7.2-1.
 

The mission time-line of OFT consists of the ascent, orbit operations,
 
and return portions, each of which is divided into more detailed phases. ALT
 
encompasses only the late TAEM and approach and landing phases. These differ­
ences cause two aspects to need to be taken into account in the OFT modeling
 
and simulation. First, it is necessary to adjust the planned CPS configuration
 
as each new phase is entered. For example, during orbit two GPCs are operated
 
in concert, while during return four GPCs are used. Second, it is necessary to
 
model the fact that phases subsequent to the first may be entered with fewer
 
than the planned complement of units operating. This results in probabilistic
 
initial conditions for the second and later phases. It is thought that modeling
 
work will be applicable here. In the simulator, this problem is approached by
 
beginning each phase with the fault conditions encountered at the close of the
 

previous phase.
 

The MCDS required a special model for ALT. The addition of an extra
 
DEU for OFT will require new analytic and simulation models.
 

The GPC model applies to the ALT configuration of DDUs, but in OFT the
 
additional DDU with only an ADI attached leads to a modeling situation similar
 
to that encountered in the flight-critical MDMs. Thus, the flight-critical MOM
 
model is applicable here. The addition of the EIU and MEC to the flight­
critical bus leads to a change in the simulation of the flight-critical bus
 
and additional models for these.
 

The remaining partitions can be modeled by the "standard" GPC model.
 

However, there is an impact on the simulation. New programs are required from
 
mass memory for changes inmission phase. Therefore, there is a strong inter­
action between MM and the GPC for OFT and this must be modeled. Also, the
 
survival of the return phase programs becomes an important issue.
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ITE 

Mission Time 
Line 


MCDS 

DDU 

FFMDM 
FAMDM 

GPC
PCMMU 
MM 
PLDMDM 

EIU 

MEC 
MCIU 
SRBMDM 

ITEM 


Mission Time 
Line 

MCDS Partition 

FCBUS, Partition 

OPC Partition 

Mission Critical Devices 
MM, PCM 

TABLE 7.2-1 ALT-OFT DIFFERENCES
 

ANALYTIC MODEL 

ALT 

Single Configuration
Deterministic Initial Conditions 

Special Model 

) 
Special Model 

GPC Model Applies 

Not Used 

SIMULATOR 

ALT 


Only One Phase Is Simulated 

Simulated by Separate
Subroutines 

Model Includes: 
DDU, FF-MDM, FA-MDM 
dnd Their Associated 
Devices 

Quadruplex Configuration
SM Functions in Redundant 
Set 

Not Used 
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OFT 

Several Configurations
Probabalistic Initial Conditions 
For Each Phase 

New Model Required 

Adaptation of Special Model 

GPC Model Applies 

'GPC Model May Apply 

OFT 

Several Phases - Each with 
Different Configurations. 
Initial Conditions for Each
Phase Dntermined by Status 
of Previous Phase. 

New Model Required 

Need to Add Simulation 
Models for EIU' s and 
MEC' s 

Configuration Varies Depend­
ing on Mission Phase 

SM Function Removed from 
Redundant Sett 

Software Reconfiguration
from MM at Phase Changes 

Simulation Required 
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