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SUMMARY

This report develops results pertinent to predicting the
performance of convolutionally encoded binary phase-shift keyed
communication links, The details of the development are
provided in four sections. These sections are concerned with
developing the bit error proﬁability performance degra&ations '
due to PN despreading by a time-shared delay locked loop, the
Costas demodulation process, symbol synchroni‘zaf;ion effects and
cycle slipping phenoimena in the C osta‘s\l‘oop. In addition, Costas
cycle .slippihg probabilities are studied as functions of Doppler
count tizne and signal-to-noise conditions. The effect of cycle
slipping in the symbol synchronizer is also studied as a function
of channel Doppler and other frequéncy uncertainties. -

Section one develops the model ofa suﬁpressed carrier tracking,
spread spectrum receiver/transponder in which the received
mgnal is a convolutional/Manchester encoded binary data stream
that is sp1 ead by a PN code to produce a binary phase-shiit keyed
{(BPSK) carrier. The combined signal-to-noise degradations of
the PN despreader's time-shared delay locked loop and the Costas
phase-locked loop are developed as functions of thé various
sysi.em pa.ra.rnei.els and channel conditions., In add1tmn, the theory
of cycle slipping in the Costas loop is developed in terms of the
channel Doppler dynamics, the additive noise, the minimum
sqﬁafing loss, the PN code tracking loop jitter..and the duration |
of the Doppler count normalized by the link data rate, Cycle
slippi-n_'g'.probabilitiés are developed as functions of the cnergy-

per -bit to noise ratio, the number of cycle slips, the Doppler

count time normelized by the link data rate and the receiver's

static phase error, Various cycle slipping probabilit-ies are
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-error and energy-per-bit to noise ratio.

' Lhwd convolutmnal code..

~ graphically demonstrated as a function of the Doppler count time.

Section two develops the bit error probability expression that
results from the noisy reference loss due to jitter in the PN
despreader's time—sh.:;xred delay-locked loop and the npiéy refer-
ence generated by the Costas demodulator, For the K=7 rate
one-third convolutional codé, bit error probability curves are
graphically displayed as functions of the data rate, static phase
‘Link performance
degradations are easily assessed from the curves; in addition,
any known losses due to filtering of the signals in the receiver
can be easily added to the loss indicated by the curves presented.

Sectmn three of this report is concerned with symbol synchro-
111zaf;1on in the Network Signal Processor when Manchester coding
is used, New and fundamental results pertaining to symbol
.synchrohizaﬁion for Manchester coded messages are derived,

The symbol synchronizer structures are found to be functions
of the signal-to-noise ratio and data transition density. The

minimum rms symbol sync jitter is determined, computed and

~compatisons are made for various phase detector characteristics.

A general theory for cyele slipping in symbol synchronizers
is gwen- it is shown that under most cases of interest, the
effect of slipping in the symbol synchronmer does not give
rise to a mgmfwanﬁ performance degradation. This section

is also used to study the effects of sy‘ﬁchrc‘mizer" stress (due to |
clock uncertainties and channel Doppler) on bit error probabilitjr
performance. ' '

Section four of this veport evaluates the degradations on bit

-error probability performance due to the noisy clock reference

created by the symbol synchronizeis. Particular graphical
results are pl’GS(.nt.t.d for the sPemal case o’E a K=7 rate one-

The effects of data tran51t1on density




on symbol Synch:conizer/decoder perforlnance is also studied and

graphical results for cases of greatest interest are presented,
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1,0 SUPPRESSED CARRIER TRACKING FOR SPREAD SPECTRUM
RECEIVERS OF MANCHESTER CODED MODULATION

1.1 Introduction

Various communication systems transmit information in the
form s(t) = ,,fZ—.ST.m(t.)sPN(t)sinfwot + B(t)'_[ where SPN(t) is a Pﬁ
modulation and m(t} is a linear modulation (coded or uncoded)
which possesses no dc componeﬁt in its power spectrum. Since
no residual spectral component exists at the carrier frequency
ub, it is not possible to use the conventional phase-locked loop for.
establishing the required coherent reference,

A number of methods have been proposed for generating a
reference carrier fi-om the rece{ved waveform which contains a
suppressed carrier signal component, Of these, the three most
popular are the squarmg loop. method (Refs‘ 1- 5), the Costas loop
method (Refs, 1,2, 4-6), which is theoretically equivalent to the
squaring loop, and the decision-directed feedback loop (Refs. 1,2,
7-9) which first estimates the modulation, and then uses this
estimate to eliminate the modulation from the carrier, leaving, as
nearly as possible, an unmodulated sinusoid which can be tracked
with a phase-locked loop. Each of these methods has advantages
and disadvantages (?facticwl o otherwise) with respect to the
other two, What ulhmately determines Wh‘LCh mef.hod is used in
a particular apphcatmn is a tradeoff between Lhe requlrements
on per:forrna,nce c:a.pa,blhty and the ease and cost of implementation.

" As is well-kriown from previously published documents (Refs,
10-12} suppressed carrier modulation is eniployed on both the
-TDRSS-to-Ol;bi-te_r-'(Fo_rWal'd_) and Orbiter-to-TDRSS (Return) -
S—band links, In the case of the forward link, the convolutionally

encode_d,_ time___hdivisio_n muli:ipl‘e;c}e_d (_'I‘DM).d_a,ta sequence is

-~
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converted from NRZ-L to Bi-phase-L format, modulo-2 added to
a PN NRZ-1 code sequence, and the resulting spread-spectrum
sequence used to biphase modulate the transmitted carrier, After
transmission through the TDRSS, the Orbiter receiver first
despreads the signal by acquiring and tracking the PN code.
Following this pJ_..focedure, the baseband data symbol sequence

is restored by demnodulating the suppressed carrier signal with a
Costas loop. In the return link, similar carrier modulation and
'deﬁlddulafioﬁ 'processes take place with the eﬁiception that the
signal is neither PN spread nor despread.

It is clear fromi the above that in order to assess the degrad-
ing effects of the carrier regeneration process on the overall
system performance (including the average error probability
performance of the data decoder), a thorough understanding of
the acquisition and tracking performance of Costas loops and -
their optimum design for use in the Shuttle relay link environment
is required, o

1,2 Performance Analysis of the Costas Loop in the Suppressed
Carvier Mode ~ Effect of Spread Spectrum Modulation

1,.2,1 Motivation

The tracking performance of a Costas loop in response to a
. biphaée modulated suppressed carrier input is Well;docu_rhentéd
in the literature (Refs, 1,2, 4-6), All of these analysis have
assumed that the in-phase and quadrature arm filters have
sufficiently wide bandwidths so as o pass the data modulation

. undistorted. In practice, the bandwidths of these filters are
more coﬁimonly chosen on the ordeyr of the data rate and thus the
above assumption is si;rictljr speaking invalid, In Refs, 13 and 14,

‘the effect of arm filter distortion has been studied in detail,
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graphically demonstrated, and compared with the resulis given in
the literature which have neglected this important effect, In fact,
careful control of the disiartion term in any design gives rise to
the highest noise immunity achievable with passive arm filters.
Even these analyses, however, have not included the degrading
effect of a si:réad spectrum modulation on the .s.ignal ‘be.ing tracked,
It is the purpose of this section to augment the previous work
on Coostas loops by including the effect of a PN .épre'ad épeéﬁ’i‘ﬂm
modulation on tracking performance. The approach will parallel
the development taken in Ref, 13 and thus much of the detail
given there will be omitred in the presentation here., Finally, the
results obtained will be adapted to covexr i:he case where the .

Manchester coded data is also convolutmnally encoded,

1.2,2 Costas Loop Model and Analysis

Consider the transponder illustrated in Fig, 1-1 where the
Costas loop portion is enclosed within the dashed outline, Since
our main interest here is in the perfo:t mance of the Costar loop
itself, it is sufficient for us to model i:he signal at its input and
concentrate on how the loop processes this signal, Refér’i’*ing to

Fig. 1-1, if the received signal x, (t) at point @ is modeled as
®(5) = JZ8 SPN(t):m(t) sin B(t) + ni(t) _ (1)

- then, using straightforward trigonometric manipulations, one

finds that the signal at the input to the Costas loop (point @ )is

- given by .
%, (t) = (t+fr ){JZS 55, (L)m(L)sm[a(t)_ m(L)]-I n (t)}
_ @)
In Eq. (1), q'?(_i:)' émot + B(t) with wD the radian carrier fréqﬁancy
~6- N -
I{Q f*lf?




¥ Pt [t
e -
""! u -4
Lo E )
e T SCIR PR L 43 S

m €C({:) Jﬁow z {£)
f e 288 c
1 ,"""JW‘ ) FGil"‘er Acquisition
! i W (®) Voliage
1 ) . : .
! i
§

4 : i

- Loop | 0 e~

- YW i S A
W “__fx;\i\ S ; i - VCO jezmy indicy Filter [=twe' 27 Ji
g = BPF — ‘ p _ '&wj. (o) y f,

A -
Iy : LOoW

i

!

I (t) (t)

b ' TELE Pass |2

, mﬁ@f—-—:’ Filter
] K  G(p) 3

]

]

' v...........‘-...-1I = |r SO _};‘N Lt

COSTAS L.OOP

E—.—-—n--—-,—-. —bam e At et ety trem Spered mm TRE M Rrrmm wvem e i SR

H

| FIGURE = 1-1. TRANSPONDER/ COSTAS LOOP BLOCK DIAGRAM,

1 50 ZIITIEIONAOUITE | = == = = e o= oo n e o e

[
i~
"1‘
3
55004 S #HVd TVNIDIUO

+

e R e A el e et i . .

N T . T S T St T T R Sy N




.

A3 (0
f’w; (L OFIL

and 0(f) é Qot + 80 the input phase to be_estinmted, m(t) is the data

modulation (a x1 digital waveform), SPN(t) is the received PN

modulation, and ni(t) is the additive chamnel noise which can be

- expressed in the form of a narrowband process about the actual

frequency of the input observed data, i.e,,
n(t) = /2 {N_(t) cos B(t) - N_(t) sin §(t)] 3)

where Nc{t) and NS {t) are approximately statistically independent,
stationary, white Gaussian noise processes with single-sided

noise spectral density Ny, w/Hz (see Ref, 2) and two-sided band-
width B, < w'olzn. In Eq. (2), S?N(t-i"r ) is the PN reference signal

derived from the PN tracking loop, K = K?KZKE}K /2 is an equi-

valent loop gain, and
n,, () =JT{Nc(t)cos[@(t)~M"l @(t)] N (t)sm[m(t)-——- @{t)]} (4)

Also assumed in Eq. (2) is that the bandpass filter which precedes
the Costas loop is sufficiently wide as to pass the data modulation
m(t) undistorted, Denoting the in-phase and quadrature detector
(multiplier) gai_ns by Km’ then the output _ec(&) of the quadrature

phase detector is (ignoring second harmonic terms)
) J___ oy - R ey L | IR ‘. .
e (t) = K x,(t) J’K cos KeKlKng/s R o (7, Jm(E): NS(L)] sin (&)

+K KK N (D) co_s_cp'(t) (5)

. while the in-phase arm phase detector output is

| e (£) = K_x, (2K, sin elt) K KK _[ER, (7 )ImE)-N () eos olt)

MN

KKK N (B sing)  (6)
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reflect the filtering effect on the PN demodulation signal s

A (M+1)N+1 2

where o(t) = &(t) - —M—'N—“——@(t) is the loop phase error, RPN(TE) ,

= SPN(L}SPN(HTE) is the autocorrelation function of the PN process

which is approximately given by

1l

e

1 - '_E_ ] ITE‘SA

RonlTe) = | (7).
0.: elsewhere

where A denotes the PN chip interval, and Nl{t) and N;(t) are
equivalent noise processes defined by |

N;(t) = sPN(t+¢e)Nc(t)
. . . e (8

!, — .
N_i&) = SPN(HTE)NS(L)

In writing Eds, (5) and (.6), we have' again assumed that the data
modulation is passed undistorted by the bandpass filter following
point @ . Furthermore, we have assumed (and less justifiably) |

that this filter has no effect on the PN autocorrelation function,

' In practice, the autdcorrelation function of (7) is somewhat si:réad

by this filter and furthermore, the noise processes in (8) should

| PN({:-]-‘TE).
Without producing undue complexity into the analysis, we shall,

. to a first order approximation, ignore these effects,

After low-pas's filtex ng with the in-phase and gquadrature -

phase arm filters, the phase detector output signals become,

| respectifreljr,'
mt) Ng(®)
2 (5) = K K K. LR (r ) Glelm(t) - GRINL(¢)] sin oft)
NU(E)

+ KeKlefG(P)N;(t)] cos t) . (9)

REPRODUCIBILITY OF THE

ORIGTNAL PAGE 18 POOR -9-




(k) N_(E)

7 () = IceKllimEﬁ*RPN(we) Glplml(t) - G(PIN. ()] cos o(t)
N (5)

. Kezcle['G(p)N;(t)] sin ¢ (£) (10)

' Here the signal ﬁl(t). denotes the signal emerging from passage of -
the data modulation m(t) through the low-pass arm filter G(p}, and
likewise Ng(t) and N:;{f:) are the equivalently filtere_d versions of o
N::(t) and N'S (t), respectively. Multiplying the two low-pass filter

~ ontputs (assuming this multi_pl'ier has unit gain) gives the .dy;1a1nic

error signal

L . KiKiKlz _ T T SR _
zy(t) = z_(t)z _(t) = 5 INSR RPN(Te)m{t)-NS(t)] -NU"(6)} sin 20(t)
2 n o ~ "
o+ KzK X Nc-(f;)[,\/S RPN(TE_)In(t)-NS(t)] cos Zcp(t] (11}

The instantancous frequency of the VCO output is related to = 0(f:) by

= KVEF(p)zD(t)] + W {12}

and hence the stochastic integro-differential equation of operation

of the Costas loop becomes

LI 0 - rmores? | PREE
2 T = 2905 KF(p){SRPN(T )m (t) sin 2t v [f: 2:9(&)]} (13)
5 A2 2.2
wheve K = KeKlK:va’ and

[}: 2ep( i:)] [ N" +N”2 ZJSR (rre)r‘i;(t)N:(f;)]sin 20p(t)
4 [‘z,J’s‘ RPN(Te)ﬁ'l(t)N;(t) - 2N (N (£) Jeos 2(t) (14)

In arriving ai; .(14)., werhav-e made the practical assu_mpticn tha’

10~ o R )
| oo
2 Lin'_atn

:‘ﬂ:
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the data rate ,‘? — 1/'I' is la:. ge relative to the equma.len{, loop
'ba.ndv\ idth WL" and thus m (t) can be replaced by its mean-

squared value, i.e.,

with Sm(f) denoﬁing the power spectral density of the data modula-

tion m(t).:

1.3 Steady-State Tracking Performance

- Using Fokker-Planck techniques, the steady-state probability
.densﬂ,y function {(p.d.f.) 13(24)) of the modulo 21 reduced phase

erroy 24» can be determmed from (13) Assuming a 1001_3_ fllter_ of

the folm '
1+ST T .
. 2 . _ 2 o o S

-then, (Ref. 1, Chap. 2 and Ref, 2, Chaps. 9, 10)

2¢+2m _

p(2§) = C exp(B2¢ + acos zdp)j exp(-B2x-a cos 2x)dx  (17)
where Cq is a normaiization constant and

"\ T2 ' _ '

N B S

5 o _
. 1 A
B = (ii-) zw [zn SR;N(rre)mz(t)K(l-Fl)sinzc{,]m sin 2¢

with

‘v = second ordexr loop damping parameter =

2 PN(
= 4;§‘

1_;"%2&) é—f 8,0 |G 2me) ‘_de | e \

AL ©EFs,




c;-s;é:z(/g@m

€ = loop damping |
po'= effective 51gna1 to-noise ratio in the loop bandwxdth =
(9/4)
P= eqmvalent sipnal-to-noise ra,f:m in I.he loop bandwidth of

second-order PLL = ZSRZ ('i' )/N

2 2, 2 L
g, = sin 24 -(sin 24)
| w2 2.2
48N _(m (t)) R___ (7))
. 0 PN' e
= loop squaring loss = N
A [}
N, £2] R (mdr (19)

- “aqg

and

R ('r_)_év (£ 2¢)v, (t+7, 29) -4[SR o TR I}I(T)RNrI(T)‘*‘R;'i(T)] (20)

2 c c
whezre
A — =7 . NO ® JZTl‘f'r
Bygir) & NYENC(E47) = 3 j_m |G 2nn [Fe (21)
and o
R 2 () = f(t)mlttr) = jm s_(6) |a(izm) Fe™lqe (22

In arriving at (20) we have made use of the previous a,ssumptwn
- that the arm fllters are narrowband relative to the 1nput bandpass
(1) filter, The probability dens1ty function in (1 7) “'111 be useful
- .in what follows. ' ' ' _
The squaring loss ;ai can be. derived in terms of basic system
parameters Subshtutmg (21) and (22) into (20) and using the

defuni.mn of JL in (19) gives, a.ftel considerable manipulation,

the squaring loss formula
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A 2 ’ - .
where we have used D ém (t) to denoite the modulation distortion factor,
Bl 2 — P R .
RS-SRPN(TQ}TSINO uRSRPN(Te) is the effective data (symbol) signal-
to-noise ratio, Bi denotes the two-sided noise bandwidih of the

arm filter G(j2mi), i. e,

L

and K_. is a constant dependent on hoth the baseband data power

spectrum and the filter type, i.e.

Typical values of . for well-known filter types may be found in
Table 2-1 of Ref, 1, Chap. 2. For example, K. =1 for an ideal

. lo_w;—p_é,s_s filter while K
filter. Since, via Eds. (15) and (26), the modulation distortion
factor Dm and the con.stant K
baseband data power spectrum Sm(f), "'f:'_he format of the baseband

data encoding must be specified before these quantities can he

_ 'Dr'n -
4 = B./R | (23)
i s
Rp * %y, 551D
5 m

o '2
B, 2 [ |agenn|at EENCON

-3

HE>

is a constant dependent only on the filter type and is defined by

w

[ |G ane | 2az
K .‘2-._ o (@5)
| I oG tar

D

| s @|cuzms fas
A e ™
Ky = o (26)
| . 2
_f s_@®]azm "at
-3

L

I

1, = (_23_1-1)/_211 for an n-pole Butteiworth

D respectively depend on the

b L .-
LIRS BFIT
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computed, The case of interest here is when the modulation m(t)

is 2 Manchester coding of equiprobable, independent transmitted

‘symbols, The power spectral densily Sm(f) for such a data

modulation is, Ref. 1, Chap. 2,

s_ (& sin4('rffTS/2)'_ -
s . (nET_/2)

'Recalling that an n-pole Butterworth filter is characterized by

the transfer funcktion

lageng P = —1—s (28)

L+(E/E_ )
where £, the 3 dB bandwidth, is related to the two-sided noise
bandwidth B, of the filter by |

. llB. . T . o | o
f = Wi sin(2—n~> (29)

o

then, substituting (27) and (28) into (15), (25), and (26), the
modulation distortion factor D_, and constants KL’ and KD can be
computed by numerical integration as functions of the rafio

Biﬂ?s. Using these results, Fig. 1-2 illustrates the squaring

* loss QPL vs Bi;/'/?lS with R; as a parameter for a two-pole

Butterworth filter, i.e. s 0= 2, We observe that for a fixed

--R there exists an ophmum nmse bandwidth B fox Lhe arm

£11Lers in f:he sense af munmmzmg the squa.rmg loss. These

values of opt1mum arm filter bandW1dth occur in i,he vicinity of

' the Nyqulst bandm.dth

In demgnmg carrier tracking loops, the most commonly
used measure of pcrformance is mean-sguared tzl'ackmg jittewr,
This quantity is ordinarily defined as the variance of the

probability density function of the loop's modulo 27 reduced error

-14- "') ,2
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and foz large lcop'signal-tOQnoiSe ratios be'conies equal to the
“i-eciprocal of _f;hé effective 1obp signal-to-noise ratio. In the case
of interest here, the tracking performance of the carrier-tracking
loop depends, in addition, upon the timing error in the PN track-
ing loop which itself has a statistical characterization. Thus,
| the mean-s_quai'ed tracking jitter for Lhe Costas idoP of Fig, 1-1
is given by |
- | O3y = J_ﬂj AR (r /naRa /o G0

Whefe p(?c'p) is given by (17} and pT('re/A) is the probability density
fu.nction of the nqrmal_ized timing error T_e/ A in the PN tracking
loop. Although pT('re/A), in general, depends upon the specific
PN tracking loop implementation, e,g., a noncoherent delay-
locked loop or"fr?vﬁither.'lo'op, for large PN loop signal-to-noise

ratios, pT('re/A ) is approximately Gaussian distributed, i.e.

¥ p (v [A) = —=== exp |~ ——5— (31)
- T e _ .\/Eﬁ'rffi . 202 : S

and is thus characterized by a single parameter g, the standard

T

deviation of 're/A. Furthermore, for large Costas loop signal-to-

noise ratios,

2 .1 o P
'UZL%’ E—l' | ( )
where |
] o = [ orpir /nar /b . (63

" Bubstituting (7), (19), (23) aud (31) into (33) results in an expression

for the average effective signal-to-noise ratio in the Costas loop

T

o N : SR i o i i
s _ T - _ o L ELRN R




[

/;

b rAZEER

bandwidth, viz.

) ' 2 '
1~
t=2,J'1 28 ( Tr? Dm
0 ) N,W 4 Bi/I?s
*pL z( zs )6 (1- 'r) D_
W
No¥1,
2
1 : r"11
X exp | - —% dr, (34)
2o ZGT
1

where we have introduced the notation T & ff'e/ A and recognized the

fact that the symbol signal-to-noise ratio R_ canbe written as

28 )
R = =18
| S (NOWL
2

with 6 é _W_s_ the ratio of the symbol rate Lo single-sided Costas

loop ba.ndwmIEh The value of B, /}? to be used in (34} is that which
=R
5

(35)

minimizes /. (as in Fig, 1-2) £01 a given Rs' Smce R

when Ty = 0, these optimum values of B'i/f?s can be determined

from Fig. 1-2 and remain constant over the integration on i in

(34). . The values of Dm'and K

D
evaluated at these optimum values of Bi/ R,

Lt . .
plot p' vs Z,SI_NOWL l'£01 bs fixed and ¢

to be used in (34) are also -
Figs, 1-3 and 1-4
. 2 parameter, The dptted_
curve in each of these figures corresponds to the case of no

squaring 1osq or PN degradatwn, 1. €., p! (ZS/N )/4- Thus,

.Lhe distance betWeen th1s dotted curve a.nd the curve 1abeled '

o =0 repr esents the s-Lgna.Lto ~noise 3:ai:m degradation due solely
T

to the Costas 1oop squaring loss. The 1ema1mng curves represent

the additional degradation due to imperfect PN tracking. These

eurves are very useful in assessing the combined performance of

-17- V4,
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the PN despreader and the Costas loop.

1.4 Characterization of the Cycle-Slipping Probabilities
' In this section we shall characterize Lhe probability that the
2:£: process in the Costas loop slips one or more cycles in an

interval T seconds.™ To do this, we shall assume that the eycle

" slips which tend to increase and decrease 2 by 21 form independ- |

ent Poisson processes with rates of occurrence N-i- and N._
respectively. Then the probability that a net number, say N =n,-
of cycle slips occur in T seconds is given by (Ref, 2, ._C_:ha.lzao 9}

n

N O\& _ ,
P(N=n) =(ﬁi)z efo"_ST)In(ZT«/N+N_) 36)

-1

forn=0,+1,%42,.,. where :S-éN +N_is Lhe total numbel of cyclcs
-slipped per unit time 1ndependent of direction and I (x) is the
modified Bessel function of order n and argument x. The result
(36) is shown by forming the convolution of the difference of two
independent Poisson Proéesses. - The fact that the p,d.f, for
cycle-slipping can be approximated by a Poisson process has been
observed experimentally. |

To rewrite EQ. (36) in terms of the system parameters

previously defined we note from Ref, 2 that

N, o
5 = exp(Zmp)

- Wy [-EXP(MB)T
N = = J

+ 2 2 [. ' 2
TP lJ:J.B(fJ )]
hS

*We shall for simplicity omit i_:_he_: effect of PN degradatlion in these
calculations, Also a first-order loop will be assumed.
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Thus, from (37) we get

JN N = (38)

ek 2 2
z 1 1
TP leS(p )|

Substituting (37) and (38) into (36) and making use of the definition

‘b'f'és""féllo\#ing {35) gives the desired resuit

P(N=n}

| s
: 2 | =
exp | nn - (——-—-**ZS )(-—I-ﬂ I ( (TS)
s73P (39)
af X

o — . 2 cosh P ( T)Il (Ts) )

= exp | nnP - T I '

5 |

- /

2 73 7 7
ptm ﬁsleB{P')I phr 8, |L 1]

Various methods for evaluating leB(p')l numerically are given in

Appendices I and IV of Chap, 9 in Ref, 2, For example,

-

2 c TT . . .
th(P'H = m '[o exp(-—ZBz)IO(Zp' sin z)dz (40)

For a first-order loop, operating with steady-state phase error

. d’ss’ we have that

B =p'sin ‘bss : : (41)

 Also, from (19) the efféctive loop 'signall-to-n:oisé ratio .p i can be

expressed in terms of the symbol signal-to-noise ratio RS =

ST /N0 by

-19- R LA a8
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' b's ' -
t = .Cf
P 4y L (43)

Thus, subst{{:uting (41) and (43} into (39}, one obtains an expression
for the probability of N cycle slips in T seconds as a function of 65 ’
T/T_, R (o R, ), and 455' Figs. 15 to 1-10 plot P(N=n) vs T/T_

for 6 and (%: fized and Rb s a parameter. Values of n =1 and

n = Z are chosen as 1ep1'esenta,i;1ve of the physical situation since

the proba.b-ahty of three or more cycle slips is insignificant relative
to the other two probabilities, Also, the wrate 1/3 Shuttle code is
assﬁmed and R is allowed to range cver the values -1 dB to 4 dB.
The value of cPL used in all cases is the optimum as determined

from Fig, 1-2,

P ﬂ/)
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Fig., 1-3, Averagé Effective Signal-lo-Noise Ratio in Costas Loop Bandwidth -

vs. ZS/IQOI-IL with PN Loop rms Sync Errdr G. as a Parameter,
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Fig, 1-4, Average Effective Signal-to-Noise Ratio in Costas Loop
Bandwidth vs ZS/NO/WL with PN Loop rms Sync Erroy
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1 Fig, 1-5, Cycle Slipping Probabilities vs Normalized Time with
4 Evergy-Per-Bit to Noise Ratio a Pavameter,
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Fig. 1-6, Cycle Slipping Probabilities vs Normalized Time with
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Fig. 1-8. Cycle Slipping Probabilities vs Normalized Time with
Energy-Per-Bit to Noise Ratio a Parameter,
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-9, Cycle Slipping Probabilities vs Normalized Time
with Energy-Per-Bit to Noise Ratio a Parameter.
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Fig, 1-10, Cycle Slipping Probabilities vs Novrmalized Time with
Energy-Per-Bit to Noise Ratio a Parameter,
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2,0 AVERAGE ERROR PROBABILITY PERFORMANCE OF _
CONVOLUTIONALLY CODED SYSTEMS IN THE PRESENCE
OF IMPERFECT CARRIER SYNC

2.1 Introduction

Having thus characterized two sources of imperfect synchro-
nization that degrade system performance what remains is to
evaluate their effect on the average error probability perforimance
of the data decoder which in the case of the Shuttle forward and
return S-band relay links is a maximum-likelihood (Viterbi)
decoder of a rate one-third, constraint length seven convolutional
.code. A .general solution of this problem is indeed quite difficult;
however, depending on the relation among particular system
operaling parameters,. e, Z., symbol rate, decoder memory, loop
bandwidths, ete,, there exist approaches which yield veritable
results in the face of the underlying assumptions and approximations
made, |

_ One approach which has been taken by several authors (Refs.
1,2) with regard to evalualing performance degradation due. to.
imperfect carrier synchronization is as_follows: (a) determine
(by simulation studies) the ideall bit cr; oxr probability periormance
curve for the particular convolutional code under consideration,
(b) curve fit {(using pérhaps a least squarés approach) a mathe-
lzlna.!:ical function to the simulation data, {(c) degrade the signal-to-

noise ratio in this function by the cosine squared of the carrier

- synchronization phase ervor, and (d) average the resulting

function over the p.d.f. .of the phase error as determined from
the analyses performed pn.ﬁhe carrier synchronization loop,
Inherent in this approach,. is the assumption that the loop phése
errotr is approximately constant over the number of symbols
required f;o af}'ive at a siﬁgle bit decision, i.e., the Viterbi

decoder memory length in symbols, Typically, this memory
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runs on the order of five or sixz constraint lengths for whicha
constraint length seven code is about forty symbols, Thus a

- symbol rate of 216 Ksps would require that the two-sided carrier

L
- 100 or more) than 216/40 = 5,4 KHz,

tracking loop bandwidth, W_, be much less {e.g., a factor of

We begin by finding a suitable curve fit model for the
Shuttle X = 7, rate 1/3 convolutional code. This code, which is
the Ybest! rate 1/3, comstraint length 7 convolutional code (Ref, 3),

is characterized by the generator matrix,

1111001
g = 1100101 {1)
‘1011011 ' ‘

and is the identical code uvsed by the LINKABIT LV7015LR
Viterbi decoder which employs 3-bit soft quantization of the
received data. Using previously published simulation results
(Ref. %) we find that cver the range of bit signal-to-noise ratios
from -1 dB to 4 dB (corresponding to a r_a;ng_e of bit error

1

probabilities from approximately 2 x 107" to 10"5), 2 second-

order polynomial fit is quite accurate, i.e.

2
log, P = 2, (10 10g_10 R+ a, (10 log, Rb) tag, o (2)

b

where the constants a3, 2, and a_, are chosen to satisfy three

3
‘data points on the simulated curve, In particular, simultaneous

solution of the three resulting linear equations gives

;2 .= -.5. (3)
2, = -1.0706
.32 L ﬂn R
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Using this curve {it model, numerical résults can be obtained for
the noisy reference effect of the Costas loop on the bit error
probability performance of this particular code, The results will
be plotted with the ratio of bit rate to loop bandwidth held constant
and static phase error (caused by Doppler offset) as a parameter,

In all cases, the Costas loop is optimized in the sense of minimizing
the loop's squaring loss (or equivalently, its mean-squared jitter)
by proper choice for the arm filter .bandwidth relative to the symbol
rate. A two-pole Butl:er\#orth is chosen for the arm filters,

representing a reasonable compromise between filter complexity

and modulation distortion,

2.2 An Analytical Evaluation of Performance Degradation Due to a
Noisy Carrier Sync Reference

- Based upon the comments made in the introduction, we can
immediately evaluate the average bit error probability performance
in the presence of a noisy carrier sync reference from the following

numerical integration:
m

: _ 2 e
=zj‘ ] P (R, cos” 4)p(24)ad (4)

where from (2) and (3)
Pb‘(Rb cos 4)) =
(5)

and p(Zcb) is the p.d.f, of the suppressed carrier-tracking loop .
phase error. Implicit in (4) is the fact that the 180° phase

ambiguity, which is characteristic of 21l suppressed-carrier

tracking loops, has been perfectly resolved, Techniques for
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accomplishing this resclution are discussed in the scction on
avetrage symbol transition density of convolutional codes,
- When a Costas loop is employed for establishing the required

carrier sync reference, then the p.d.f, p(2¢) is given by

B | ¢+ .
p(24) = €} explpt cos 24+ 82T [ empl-o' cos 2y-Bizy)lay;
1ol = (6)
where Cl is a normalization.constan!: such that
)
) . 2 ,
j' p2dydd = zI p2d)dd = 1 (7)
kl - JL o . _ -
= _
and
N N T
e FE NoW,
| (8)
= gt gl
B p! sin d’ss
In {8}, the parameter ;J’L is the loop's squaring loss, WL is its
two-sided noise bandwidth, and d;ss is the static phase ervor
caused by Doppler offset, Defining the ratio of symbol rate to
single-sided loop bandwidth by
2R |
§ - —B . :
b, = W (9)
then
. R_B
b
= 1
p 5 (10)

where 1/\) is Lhe rate of the code,
' Flgules 2-1 and 2-2 1epresent plots of bit error probablhty

v energy per bit to noise ratio, These resulis were
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Fig. 2-1, Bit Error Probability Performance of K=7, Rate 1/3 -
Shuttle Code with Loop Static Phase Frror a Parameter;
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Fig, 2-2, Bit Error Prohability Performance of K=7, Rate 1/3 Shuttle Code

with Loop Static Phase Error as a Parameter; 6“ = 432,
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obtained via numerical integration of (4) using (5) and (6). These
curves are illﬁstrate.d for the Shuttle K = 7Tand v=3 convolutiénal
code, TFor Bs = 432 or 216, notice the degrading effects due to the
static phase error., In éddition, it should be m ted that other
degradations due to filters i the signal path can easily be
incorporated and Figures 2-1 and 2-2 used to indicate the total
loss due to the noisy carrier reference, when the various filters

in the receiver are assumed to be present,
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3,0 SYMBOL SYNCHRONIZATION OF MANCHESTER CODED
DATA

3.1 Introduction

The technical literature abounds with information relating to
the problem of establishing symbol synchronization in binary
baseband digital communication systems transmitting NRZ-L
.aaf:a {Refs, 1-15), By comparison, very little has been said
(Refs, 16-18) regarding the extraction of syﬁﬂ:ol sync from Bi-
phase-1, (Manchester coded) data, In many applications (e.g.
Shuttle relay links), however, the advantage of an increased
average transition densﬂ.‘y (a factor of thr ee for random data)
offered by Manchester coding ovarshadows its potential dis-
advantages such as the introduction of 2 half-symbol ambiguity
.requiring resolution and the approximately doubled bandwidth
occupancy, Thus, in these instances, the problem of providing

; symbol synchronization in the receivers of such systems requires

sracial attention,

3.2 Maximum A Posteriori (MAP) Estimation of Symbol Sync
' Repardless of the data format, the question of what is the

"optimum" symbol synchronizer is a natural one to ask. The

- answer to this question, of cour se, depends hlghly upon the

criterion of optimality one selects. The maximum a postenon

(MAP) estimation criterion represents one approach to the problem,

Although this a.iaﬁr oach unfortunately'avo'lds a dirvect attack on the

important problems associated with symbol sync acquisition time,

acqmmtmn range, and masimum probability of acquisition, it does,

however, afford a great deal of insight into arriving at closed
loop synchronizer configurations whose high and low-signal-to- '

noise ratio approximations are physically and practically
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“realizable, and yield good, if not the best, tracking performance.

- to those Whlch minimize its mean-squared symbol sync jitter,

symbols, we define the pulse shape_ps(i:) by

. T -
A(Vg g) =ln f(Y,‘e')- = Z]n P exp[N J _ k t)p [1: (5-1)T -c-]d{,]

be 1 Y8 Y

e Lt " I YT TH POOR

In fact, we shall demonstrate that, under certain practical con-
ditions; the rules governing the design of the symbol synchronizer

motivated by the MAP estimation approach are indeed identical

A devivation of the MAP estimator of symbol synec is given in
Ref. 1 where an arbitrary tnne—hnnted symbol pulse waveshape
.ps (t) of energy E_ = S'Ts and equiprobable symbols are assumed.
Furthermorg, the derivation assumed that the symbol length TS
is known (and remains constant over the observation interval),
and that a stored repliéa, of the transmitted signal waveshape is
available at the receiver. -

To apply this body of theory to the case of Manchester coded

| NC 0<t=T_/2
8 -5 ; T [2StsT_

Also, to allow for average symbol transition densities other than
one-half, we can assume a data stream of independent symbols |
with a priori probabilities p and g = 1-p and modify the derivation
accordingly. * Without belaboring the details, one can show that,
ana.logous to Eq. (9-14) of Ref, 1, the MAP estimate of e--i.ha,i. is, '

e- -is the value of e tha,t maximizes

0T

k=0 AL

+ g exp [—-1\-1-8 J.T (S)Yk(t)-ps.[t-(k-»l)’l‘s-e]d%l (Z)s:

stream' ho\vev31,_ the MAP estirmate solutmn becomes quite
complex for any model other than the one assumed above,
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¥(£) = Z akps[t-(k-l)TS-e] +n(t); 0st sk'I.'S (3)
k=0 .
is the recc; 1 symbol data .stream in noise ovér the observation
interval (0 < ¢ <kT ), 2 is the polarﬂ.y (1) of the k th transmltt:ed‘
symbol, and T (e) is the k th, subinterval defined by (k- 1)T +est =
k'I‘S+E: . Furthermm e, the additive noise, n(t) is assumed to be
white Gaussian with single-sided noise spectral density NO'

Alternately, the MAP estimator is that value of g which

satisfies

S : _ “e-1)T -2
Ay, €) | _=§(—, _g_{J- —_— a.Ps[t ﬁ(k _)TS E:-J di:
% est £=t Mo Ur (o oe |

+ (T _+e)p (T ) - V[(k-l)Ts-Pglvs'(O)}

A \ ’ 2 - ~
P expiﬁ—(;- . (_g) y(t)l_;s[t-(_k__l)’l‘_s-_-e]dt% -q expi._.&—_« J’_Tk(ay(t}ps[t-(sz1)'rs~e]d§‘_
o

PEXP% 2 “rT (B)Y(L)P [t (k-—l}T E:jdt& qexpi FIZ'J‘ (E)Y(t)PSEt_(k_l)Ts_Eldti :
. 0 0" | | | |

For any estimate of € other than the MAP estimate, the function

dA(y,e)/3e will be either positive or negative depending on-

whether €<¢ or e>¢ and hence can be used to provide search

direction., A s11np1e examp}.e of a closed loop symbol synchronizer

that incorporates dA(y, €)/de¢ as an errox signal is illustrated in

- Fig, 3--1, where foi"siinplicity we have assumed p {0} :ps('j’-) =0,

For large ES'[NO, the foilowing approximation can be made:
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¥ sgn%li' [ vt f-gs-1y7 —e]dt} | (5)

| 0 Ty @
where sgn( ) is the signum function, Likewise, for small ES/NO,
we have

pexpi IT (e)y (£)p, [t-(k-1)T —e]dt% —qexpi . J‘T e )y'(i:)p [t-(k-1)T -s]dt£
_ 0

2
PexP{ f T, (G)Y(t)p [f: (k-1)T -e]dL§+q expi N, jT ()Y(t)p [t~ (1:-1)T -e]dt§

N L o
= (p-q) +4pq [-N— J -, yiEp, ﬁt-(k-l)Ts~€]di{! (6) ;
_ _ 0 T (e , i

Using (5) and (6) in Fig. 3-1, gives the eqﬁivalent high and low
ES/NO closed-loop configurations illustrated in Fig. 3-2.

For the Manchester pulse of (1), the output of the minus one
drnphner followmg the differentiator in Figs.3-l or 3-2 is 111ustrated
in F1g. 3-3, The strength 1 of the 1mpulses at f:he edges of the
symbol pulse is, in general, a random variable and depends upon ¥
‘the polarity of the pr ecedmg and succeec’lmg symbol pulses., For
=a

k-1 k Pkl !

example, in the k . symbol interval, T'=1ifa
#a, anda # e Since the probability of a

and M= 0if a1 K Tl
~data symbol transition is Py = 2pq and the probabﬂﬂ.y‘ of no

transﬂnon is l-pt, then the average va.lue of 'ﬂ, namely 'ﬁ is ' _

g1ven b'}r

" Mo= O0xp, + 1 x'(lept) = 1,-pt RS - )
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Note that Bq, (7) is valid independent of the value of ESINO.

In practice, the impulse functions discussed above would be
approximated by finite width pulses, With regard to the impulsbes
at the edges of the symbol pulse, there are two natural ways of
making this approximation each of which leads to a different
closed loop symbol synchronizer configuration. In one case, the
cross-correlation reference signal at the lower phase detector in-
Fig. 3-1 or 2 might appear as the waveform illustrated in Fig,
3-4a, This reference signal has the effect of gating the integrate-
and-dump on for E'I‘ /2 sec at the beginning and end of the symbol
interval and twice as long at the mid- symbol position, According
t;o MAP estimation theory, Lhe fractwnal ”wmdow width, ' §,

| should be chosen as small as possible; Froria p1 actical stand-
point, however, we shall soon see that other considerations are
involved in the selection of its value. In the second case; the
same, crogs-correlation reference signal would appear as in Iig.
34b. Here, the edge gates overlap two adjacent symbols, _

Regardless of which impulse function appr ommatmn is adopted
in a practical symbol synchronizer implementation, the running
accumulator could be replaced by a digital filter whose memory
is chosen relative to the value of K (Ref, 6). Whereas, the input
to the bumpéd' phase oscillator was a linear combination of the
previous K+l outputs of the multiplier, we now have an accumula-~

" tion of the infinite past of these quantities each weighted by the
impulse response of the digital {filter, By adjusting the memory
of this filter, the input to the bumped phase oscillator can be made

to es*entially reflect only the previous’ K-f-l multiialier outpﬁts

| Smce in practme Lhe 51gna1 epoch will never 1'e:ma1n COnsLanf. in
time, a we1ghted sum of the data that accentuates the recent

- symbols and attenuates the oi.hers should be moze appropriate than a

.‘-4?"_ e . . . ;A ] f;/,‘_? :
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Fig. 3-4, Practical Approximations to the Derivative of the Manchester

'Symbol Pulse.' »
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pure linear combination; thus, the motivation for using a digital

filter.

3.3 Steady-State Performance of Symbol Synchronizer Implementa-
tions Motivated by the MAP Estimation Approach

On the basis of the foregoing information, we propose to study the

steady-~state tracking performance of the symbol synchronizer

implementations in Fig, 3-5. Those in Figs, 3-5a and 3-5b are based

on the approximation of Fig. 3-4a while those in Figs. 3-5c and 3-5d
make use of the approximation of Fig, 3-4b, The techniques

which will be employed ‘n carrying out this study are analogous

- to those given in Ref. 1 where they are used to characterize the

performance of symbol synchronizers with NRZ inputs, Namely,

“under the assumptions that the input timing offset ¢ is essentially

constant over a large nurnber of symbols and that the loop response
is very slow with respect to a n,,mbol 1nte1va,1 (W T <X 1 where
WL is the two-sided loop bandwidth), the symbol synchl onizers of
Fig, 3-4 can be modeled as the continuous phase-locked loop

giveﬁ in F‘ig. 3-6. Developing the equivalence between Fig. 3-5
and Fig, 3-6 relies on finding 1) the average loop S-curve g(A) as
a function of the normalized timing XA = (e—g)/Ts and 2) the two-
sided spectral density S(w, A} of the equivalent additive noise n}‘(t).

Once having determined these quantities, the steady-state

performance can be found by application of the Fokker-Planck

Lqua.tnon. _

The a.pproach Laken in fmdnlg g()\) and S(UJ n) follows that
gwen in Refs, 1, 7, and 10, In particular, if one replaces the
samnlers in Fig, 3-5 by sample-and-hold circuits, then the

input to the digital filter becomes the continuous staircase~type

. waveform e(t) defined by S - - e -
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e(t) = kT4e <t < (k+1)T + e - (8)

®k
whose statistical mean conditioned on fixed A is g()\) and whose

power spectral density conditioned on fixed A {s S(w,A). Mathe-
matically speaking,

ne-

0 £ Wl = £l ]

elt) - g(A).

e

1, (£)

S(w, 1) QJKR(t,'r;m};'R(t, TA) =E_ I (tn, (et P} (9)

- where En . represents the conditional expectation on A both with

2

respect to the noise and the signal (symbol sequence), the symbol
4 denotes the Fourier ﬁré,nsform operation, and the symbol | <>

denotes time vav_erage. Furthermore, to evaluate the autocorrela-
tion {R{t, T;A)D, it is sufficient to determine the discrete fﬁnction

Ro(m, Aym=0,%1,4,.,, defiilgd by

R (m,N = E  fee  |a}-gm) o (0)

0 n,s k kim
Then, since nx(i:) is conditionally cyclost’ationary (i. e. its auto- -
correlation function R(t, T;A) i.s, for fixed T and A, periodic in t

with period ’Té’ we have

R (m+l, A)-R

0
T
s

o, 1)

R, TNY = R (m, ) + (-mT ) (11)

mTS =< (m+1)T5
.. m :__,'0':' :1:1: :}:2: ¢ o.- c
The autocorrelation functwn R (m A) has the followmg propertles-
(1) R (m k} has nonz.ero value only at m = 0, %1, This is a

consequence of the 1ndependence assumpl:mn made

‘regarding the data symbols,

‘r
(‘-h

-B4. L (:0
' oz




-4

P

=tinl o

(2) Rylm,H=R (-m,l)
Thus, Eq. (9) combmned with (1 0) simplifies to

S(w, A)

1

zf CR(E, T 7\)> cos wrdr

ZI [R (0, %) + 0 Ts 0 fr:lcos wdr

R (1,%)

1l

+ ZI l- (1,% - —9,1-,——-"—- (T—TS)]cos wrdr  (12)

8

Since, as before, it is assumed that W 'I‘s <« 1, it is sufficient

ki
then to consider only the value of S{(W, ) at zero frequency--that
is, (0, \)--and assume a flat spectrum of this value for all & of

interest, From (12), we get
s(0,0 = T_[R 0,0 +2R (L,M]  (13)

Furthermore, since in any practical system little data degradation

 due to imperfect symbol sync can be tolerated, then extreme

accuracy is required in establishing symbol synchronization,

Since this implies very large loop signal-te-noise ratios, then

the value of S(0,; A) is essentially the noise spectral density seen

by the loop at A = 0, viz., S(0,0), see Ref, 1, Ch, 9.

3.4 Application of the Fokker-Planck Technique to Obtain

Performance

The sLochasI:w d1fferent1al equa.twn wluc:h des crlbes the loop

_11111strated in th. 3.6 1is

)\ = _;;vp(p)[g()\) +_:n}\(t)]'.“ - (14)

where p is the Heaviside operation and the dot denotes differentia-

'tio_n with respect to time, In writing the above, we have _a-ssmned N

L
| LI
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zero static timing error which is consistent with our previous
assumption that () ¥ 0, |
In dealing with equations of the above form one can, at best,

hope to find the probability distribution of A(t), viz., p(A,t) from
which the mean-squared Hming jitter oi(t) can be calculated,
Under the assumptions previously made regarding the equivalent
'additive noise process n?\(i:), t:h.e solution for p(A, t) can be founé

~ via the Fokker Planck method. In parti.cula.r for the :Eirst order
loop case, i,e. F(p) = 1 k(t) is a first-order Markov process '
whose probability density function sat1sf1es the diffusion equation; -

Ref, 1, %

3plhyt) 5 | 2
R T (K, g D00, 8] = _-z;?[ (A P £ (15)
‘ 0

where K{}\ t) and I{z( » £) are defined by the conditional expecta-

tions

K, (A, t) = lim 'M E{{neraty-2 ) ] A (t)=X } : (16)
ALH0 '
1 2
K,(A,t) = im — E{{iran)-2@)] A e)=3} (17)
v A | AL At ) : 0 v

Of intevest is the case where p(A,t) converges to with time to a

sta.h.ona.ry prob‘mbﬂﬂy density function independent of the initial

condition, whiclh can be used to evaluate the si.eady—sta!.e behavior
of the symbol synchronlzer Denoting

p(h) = lm p(h,E) (18)

#In terms of the time discrete symbol synchronizer configurations
of Fig. 3-5, the first-order loop assumption is equivalent to assum-
- ing a digital filter with unity weighting cocfficients,

-57- N2
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we obtain from (15) the stationary equation

2
”.C%.\“[Kl()‘-)P(M]': %--‘% (%, (\p(M)]
a

where from (9), {13), and (14), we obtain

Kl (k) . —Kvg(M

2 o P
K,(0) = K.S(OM) ¥ K_S(0,0)
Substituting (20) into (19), and solving, gives the probability

density function

p(\) = C, exp L M] ; 0sas}

;{VS(O, 0)
Cpl-A) = p(A)

where C:1 is a normalization constant chosen such that

[7 pvan = 1

poft

Now for large group signal-to-noise ratios, g(A) can be

approximated by

BENL . (Fig. 3-5a)

< Fig. 3-5b
s = | STK ) (Fig )
R ./S'K-g;\ - (Pig. 3-5¢)

STK ) | (Fig. 3-5d)

origin, Then defining the ratio of symboi rate ,?S =1/ ’I_‘S to

| REPRODUCIBILITY OF THE .
REPRO or T e n

L B o= - A i) S

(23a)

- {23¢)
(23d)

where Kg is the slope of the normalized S-‘rcurve, -gn(m, at the

(19

(20)

(21)

(22)

(23b)
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siﬁgie«sided loop bandwidth WL/Z by'.
b = we— (24)

" we have for large Rsbs (but necessarily laxrge RS) that

25(0, 0)/N,,

| - (Fig. 3-5a) (25a)
RsasKg -
ZS(0,0)/NzT . o
: (Fig. 3-5b) {25b)
1 2 2
2 A 2 Rsas Kg
J. lp(md)\: .
25(0, O)IN0 :
> {(Fig. 3-5¢) -~ {25c)
RSGSKg
2

25(0, O)INOT

T (Fig., 3-5d) (25d)
R & K : '

s 8 g

The value of symbol edge gate amphi:ude Y (see Fig, 3-5) may

2
now be selected to minimize o D1f£eren{.1atmg (25) W1Lh

Iy
respect to ¥ and equating to zero gives
1-2pq S (Fig. 3-8a) . (26a)
1-2pg (Fig. 3-5b) (26D)
2(1-2pa)-5( quw(R )/TTEXP (-R )/erfﬁ\_‘

¥ = - - _ -

opt 2
1+€R zpq)[l erf J‘“] z’é(zpq),f exp(-R )erms xp (-R )

_ _ (Flg. 3-5c)-

2(1+2R )[1 -2pq) - 4g(zpq)] (26c)

.1 +4(1 qu)RS ¢§L]_+4 2pq) Rs] {Fig. 3-5d) (26d)
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Note that the value of ¥ which minimizes % for Fig, 3-5a and

g, 3-5b is independent of Rs and is identical to the value of .‘ﬁ‘

see Eq, (7)| suggested by the MAP estimation theory, The
: gg b

values of Yo for Figs., 3-5c and 3-5d are, in general, functions

of RS, g€ a.nc?;zq. Fig, 3-7 ﬂluStra.tes Yopt of Eq. (26c) vs RS' for
fixed § and P, = 2pq as a parameter. Keeping in mind that Fig.
3.5¢ is intended for use at large signal-fo-noise ratios, we note
from Fig, 3-7 that over a wide range of RS, Yopt can well be
approximated by its value at Rs =% i,e, '

-‘YOPtR T 2(1 -2pa) A | '.(?7)
s
Again, note the similarity with the result predicted by the MAP
' estimation theory. Fig. 3-8 is a similar plot to Fig, 3-7 for
Yopi: as given by (26d), Here we see that over a similar range

of small signal-to-noise ratios, Y _, is well approximated by its

opt
value at Rs =0, i.e.
. 2l0-2pg)-f8@pa)] | _
Yopl: - L £ - (28)
R =0 4

S
From (25) and (26) we see that a comparison of the various

symbl synchronizer configurations on the basis of minimum

‘mean-squared timing jitter O‘i . can be achieved by studying‘t].ne
behavior of the two ratios . '
2
@y I
min rH(E, RS,qu) S
— . 2 (29)
(O, ) 1 +{l-2pq)"
“min ' -
and
(02 ) '
AP rL(E,;RS, qu)_ o
- = 5 (30)
(@, g =~ 1+-2pq)
~ min ,
s60- A e

R B I
elLbit g



P Cow@
) 2.1 .
LN R X B ) ] é - 0‘25
——— &= 0,50
’ Pi.z 0.05 £

0,10 - .

]c7 [ "-.v-ouu-.. 0-]5 ;-
_____ 0.20
o 0,25 ?

0.30

164 :‘!...OI....“...

0.35 P

0.40

e 7 0.45 r

seonevating

[EEY LR LA

l: | | E | - 0.50

b RN SO I S AN Lt 1Lt

I T L . BT : _1.(_)_1 Co 10
I : _ R, . .

2

Fig, 3-7. Optimum Yvs R_ for € Fixed and Transition Density as a

! L - ¢ Parameter (Lar?:ge. Signal-to-Noise Ratio Case).
!- S 261



B A

yopf.

T 2.2

1.5
1.4

103

1.2

1.1

1.0

0.9

i, :
@an C@:m f

sessesees £ = 0,25
- § = 0,50

j
sescassRANEbaage (LT T P TP
Teag
™ ""-o..
‘e
PIRPRIPRERRIES IRy oct.uuon.,....'..
LE ¥
003 ""----
"...
L .o . .y
0.35
-luv'It'lu.lllote-ooucco.--t--uuo-...
LA 'Y
- toae,,

0.40

ll.'l."..ll.ll.‘..‘...l.ll.'l...'.'”l.'
Ll R}

L. . .

0,45

"".‘.""""“"""""'!lvvui—.::“_—'
- LE X N ¥
. . Fliagy
L
ey

TesasRCsEasvEREIRRRS
. L}
....

0.50
0.50 - :

| R I i R R RN B i N A

R

5

Fig, 3-8, Optimum Yvs. R_ for E Fixed and Transition Densﬁ;y as a
' . Parameter (&maﬁ Signal- Lo-Nmse Ratio Case). '

=62~ -



. et . . N teoaz e v L
WP e e 40 L0 5O S

Yot

b_'J“' " ! 4

e T (& : |
o "\min a ~ 14 2(1__2_pq)2 | 2
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min
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where
v (5, R, 2p0) = 1+
. (31a)

. . - z
e e [(I-ZPq)erf,JR—-%g(qu) f —-5 .exp(_RS)‘l .

”"'\

erf JET'{a-P*%R (2pa){l -ext -\/_—‘]+§(3PQ) - eXP( -R )elfF ~——exp (~R )3

: 2z
2(1+2Rs)[(1—2pq) - 48(2pq) ]
14+4al-2pg)R_+ZE[1 + 4-{2pqr)RS]

. ri‘(g,RS,qu) =1 + {31b)
Figs. 3-9 and 3-10 illusirate these two ratios (in dB) as a function

of Ré with § fixed and Py = ZPq as a parameter.. ‘We observe from
Fig. 3.—9 i:hat over a large range of values for Rs, E, and P.s the
minimum mean-squared timing jitter associated vith tie synchro-
nizer implementation of Fig, 352 is larger than that associated with
Fig. 3-5c. In fact,‘ofer a wide range of large signal-tq_—-noise-'ra;i:iosr,:

the ratio given in (29) can be approximated-by”

_ S1m11a11y, from Fig, 3~ 10, we observe that over the range of
parameter values consu:'tered the symbol synchromzer conﬁgura-
_twn of Fig, 3-5d outpelforms that of Flg. 3- 5b

To complete the picture,we compale the mean-squared jitter

performance of Fig, 3-5a with Fig. 3-5b and Fig. 3-5¢ with Fig.

' 3.5d so as to determine their relative behavior in the region =~
between small and large signal-to-noise ratios. The motivation

- behind such a -comparison is the fact that in this rg:g,ion,of medium .

signal-to-noise ratios, the appropriate nonlinearity to be used at

- fthe output of the in-phase arm integrate-and-dump circuit as .
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suggested by the MAP estimation theory ié neither the signum
nor the linear functien [see Ed. (4)] . Thus, it is not immediately
evident which implementation is preferablé in this in-between
signal-to-noise ratio region. Figs, 3-11 and 3-12 illusirate,

2 2 2
/oy ), end oy .n)d/ SN

min i min

respectively, the ratios (0'}2L

vs., RS with € and P, 28 paraﬁ?ﬁgters.

c

3.5 Further Wumerical Resulis

The S-curves (phase detector characteristics) for the four
symbol synchronizer implementations of Fig. 3-5 are illustrated

in Figs.3-13t0 3-16 respectively for P, = - 5, various values of

window width £, and R_ as a parameter, We observe from these

illustrations that over a certain range of signal-to-noise ratios,
the various loops exhibit a stable lock point which is one half
symbol (A= ..5) away from the desired lock point at A= 0.
Although, this midsymbol lock point is less probable than the

one at A= 0, an attempt should be made to resolve it whenever

'po-s'_sible. For sufficiently large signal-to-noise ratios, viz.,

greater than 10 dB, the midsymbol lock point vanishes for the
synchronizer implementations of Figs. 3-5a and 3-5¢. On the

other hand, the S-curves for Figs. 3-5b and 3-5d are (for

P, = . 5) independent of Rs. For smaller and smallex transition
densities, Py the S-curves become more and more symmetrical and
in_the Iimit of zero transiti.pn _density, i.e. a square-wave data
waveform, the S-curves are periodic with period equal to 1/2,

and thus, the midsymbol and desired lock points are equiprobable,
"Theréforé; éome 'forn.z. of ambiguity resolution circuit will be

required with the use of these phase detectors,

3,6 er'cle Slipping’ Performance

Up until now, we have treated the normalized timing error

~ process, A(t), in the symbol synchronizer as a stationary -

-
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T C‘L“-ﬁﬂ@ﬁl% o




Limemiiorss | st 4~ e}

0.7500
0.6250
0.5000

0.3750

8,(3)

0.2500

uégu

0.1250
0.0000
~0.1250

-0.2500

|
L : .
S . R . - e . ‘. - : [N .ty :
: J
Y 3 y i .o 1 . X
R T T T \"-“L\mﬁ‘- N Y . X T T ) | 1 L

1 : ] 1 : Pt L ' v : - o rooas I 1 " 1

L Coom

1 ] 3 ' ] L 1 ' ; 1 i

0.00 0.05 0.10 0.15  0.20 0.2 0.30 0.35 0.40 0.45

' A :
F'ig." 3.13a, S-Curves for Symbol Synchronizer of ¥Fig, 3-5a; Pp = e 5, 5= .5, Y= Yopt~

0.50

gy o

S

RE




~0L-

. ey

0.3125
©0.2500
0.1875

gn_.( A)

0.0625

10.0000

-0.0625

~0,1250 1 i - 1 | I

‘ R i 1 1 )
0.00 - 0,05 0.10 . 0.15 0.20  0.25 0.30 0.35 0.40 0.45 0.50
FU— o . ‘_..m "

e T iTTILNR

e e R I




1 r z [RR s
B L P L i i
CEI.IQ Com

© 0.2500 -
0.1875 | 3 f ALL VALUES OF R_
0.1250

- 0.0625 -

g, (N

J

- 0.0000:

=0. 0625 '

-~0.125 | :' L l | 1 | I b L.
777000 0.05 0 0.10 0.15 0.20 0.25 0.30 0.35  0.40 0.45 0.50

Fig. 3-14, S-Curves for Symbol Synchronizer of Fig. 3-5b; P, =« 5,5=.125, .25,.50, y= Yopf:'

—. S ' Y s "YU ST S .- ’ : .
i o i s S NPTV R PO T W S o S N P DUOrs. S Y - T S V) e o o




{Bnin{

_ZL.'.

T T,
e S
F— hY
P .o .
i .

f

e e

fosrmmars g o

Lo L R

©0.6250

~ 0.5000

- 0.3750

g. (A)

0.2500

. 0.1250

0.0000

- =0,1250

1
0.00  0.05 0.10 0.15

0.25  0.30 0.35
A

Fig. 3-15a, S-Curves for Symbol Synchronizer of Fig, 3-5c¢; P,=.5 E=.5 Y= Yopt: .

Lood

B -+
T T ke e s e 2 e e

-



{ onmeng [ oiomad i i

0.3750

e P oL A

0.3125
0. 2500
0.1875

0.1250

1 ' L

goddsd

ST HOVa TVEoRe
0N

WHT, J0 AL

"00d

i~
e
] D ’
gﬂ 0.0625
0. 0000 £
-0.0625
~0.1250
-0,1875 L 1
0,00 0.05

0.10 = 0.15

0,20

] 1 i
0.25 0.30 0.35 0.40 0.45 =~ 0.50

A

Figs 3-15b, S-Curves for Symbol Synchronizcr of Fig, 3-5c; P = 5 E=,25, Y= Yopi:'

I P TN T T S YL

mr



- . . o - P - e : 4 rooLo T - 4 s ' s . r ¥ T 4 r 3 o - ey :

0.2500 —

ALL VALUES OF R,

0;1875
.o,i250
9}0625
0.0000

-0.0625 |—

| ~0.1250 b | L L 1 l l ] |
T °70.00 0.05 0.10 ~ 0.15 0,20 0.25 0.30 0.35 0.40 0.45 0.50
. _ | N .

‘Fig. V3-16. S~-Curves for Symbol Synchronizer of Fig. 3-5d; P, = .5, E=,125,,25,.50, Y= Y,

pt

I : "
\L 3 Ny ] o \'-—-
™ " e i . o 2. T mé&m X oy goabe b N T § g o

f Oce st




AR TS AR 4 e S iemt e T R . L R SR

"—"oﬁna)m
Lo process possessing a bounded variance [see Eq, (25)]. This
resvlted from the fact that we have in reality been discussing

the be}lavior of the timing error reduced modulo TS ; or
equivalently, the normalized timing error reduced modulo 1, To
completely describe the A(t) process, one must account for the
component of its variance that results from diffusion, that is,
cycle slipping, The .steady-sta.i:.e effect of cycle' sli?ping is

""" perhaps best described by evaluating the diffusion coefficient,
that is, the rate at which the variance of the timing ertor is
approaching infinity, or equivalently, the total average rate of
cycle slips, S. The cycle slipping phenomenon in symbol
synchronizers is not unlike the same phenomenon in phase-
locked loops, .In fact, with appropriate normalizations, the
expressions for s given in Ref, 1 for the phase-locked loop cé.n
be easily generated to apply to the symbol synchronizers of

Fig. 3-5, In particular, it is straightforward to show that

2 . e . (33)
w 3 z A 8
L
pJO exp | -p gno(x)dx d)\jo exp pJ' gno(x)dx dA
where \ gn(m
. | B o) & F— (34)
L ' ' and L Ch ' '
| AL
.
min

| with ci . detefrr.ined from (25). The expressions for the loop
S;cﬁrw}g?%iveﬁ in (14) can be integrated in closed form; however,
the remaining integrals in (33) must be perfoimed numerically
on a digital computer, When this is done, one finds that for all-

;- values of'Rs z.1, 68 2100, £E<,5, and B, 2z .05, the normalized
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average rate of cycle slipping as computed from (33) is below
10_10. Thus, for most practical applications, cycle slipping'

will not be a problem,

3.7 Symibol Synchronizeér Performance in the Presence of Clock
Frequency QOiffset

In deriving the results given thus far, we have made the
assumption that the unknown epoch, €(t), of the input symbol
data stream is constant with time., Quite often in practice, e(t) =

eo-%-e:lt/ ‘. Under these con&itions, the stdcha.sﬁc differential

equation of (15) becomes

A= ey - K F)E0) +n,0)] (36)

and the symbol synchrorﬁzer operétes in the presence of a clock

frequency offset, Applying the Fokker-Planck f:echmque to (26),

" we obtain a generahzatlon of (21), namely,

2e M 2 jg(k)d?\
- 3
P\ = Gy e=pi g 5(0 0) " E_5(0,0) BT
- where CZ is a normalization constant., For large Rsés’ Vth‘f-‘
mean-squared timing jitter is still given by (25); howevéi‘, the
- stress in ﬁhe loop caused by ¢ has, as we shall see shortly,
a pronounced effect on symbol error prpba'biiity perfofrniance. :
Tl ) ﬂ
T sl LR
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4,0 AVERAGE ERROR PROBABILITY PERFORMANCE OF
CONVOLUTIONALLY CODED SYSTEMS IN THE PR'F‘SENCE
OF IMPERFECT SYMBOL SYNC

4,1 Introduction

Digital communication systéms which, by necessity, require
symbol synchronization for successful operation, suffer a perform-
ance degradation due to the timing jitter associated with the symbol
synchronizer, Accurate assessment of this degradation is essential
in predicting overall end-to-end system bit error rate performance.

Regardless of whether the ssrstem is coded or uncoded, proper
design of the symbol synchronizer loop plays an important role in
reducing the degradation to 2 minimum. For a given symBol
signal-to-noise ratio, R, symbol rate f?s = 1/Ts, and Iéop band-~
width WL, it is desirable to select a configuration which yields
minimum mean-squared timing jitter and is coramensurate with
the requireﬁenté on implementa.ti'on. complexity. Several such -
configurations for Manchester coded symbols were described in
‘the previous section,

When the system is uncoded, it is sufficient to know the
probability density functon, p(M), of the normalized timing error
A in order to analytically evaluate the error probability perform-
ance degradation due to a noisy symbol sync reference, In
particular, assuming that the timing crror is eésentially éo’nstant

over the symliol dur a.tmn T o’ then the bit error probability P,

b
is g,wenby :
1
-"é‘ .
where
P =3 e el /R_(2] T4 -;_(3-I)t)erfc[J”f{;'(l_4|x1] : 2)
REERDT\UCIBT Y “ f.;;
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and P, 1s again the symbol transition density.

For convolutionally coded systems, the effect of imperfect
symbol syné on bit error probability performance is, in general,
more difficult to evaluate analytically and, indeed, in many cases
must be determined by either simulation methods or hardware

measurements, Fortunately, howevér, for the Shuttle S-band

relay links, suitable assumptions regarding the bzhavior of the

system can be invoked and an approximate analytical evaluation is

possible, In the next part of this section, we describe such a

.techni'que and pr.eseni: numerical results for the Viterbi decoded

K=7 rate 1/3 Shuttie code,

4.2 An .Analytica.l Eiraluaﬁion of Pérforﬁuance Degradation due fo a
Noisy Symbol Synec Reference '

Generally speaking, the presence of a timing error in the
symbol synchronizer causes a reduction in ﬁhe signélo-to-noise
ratio available per symbol at the Viterbi decoder input, If the
loop bandwidth is large relative to the symbol rate, so that the
timing error process varies rapidly over the duration of a single
symbbl,_ then the degradation in average symbol signal-to-noise
ratio is é, good measure for estimating it error rate degradation
in Viterbi decoding. Unfortunately, in mo st practical convolutionally

coded systems, the loop bandwidth of the symbol synchronizer is

considerably narvower (perhaps by several order of magnitude)

than the symbol rate, and thus a more direct approaclh, namely
direct computation of the bit error rate, is required.
If we examine the symbol sj,rnchi'oiﬁz'e_fc configurations

previously diécussed, we observe that the output of the in-phase

 arm integrate-and-dump when passed through a soft quantizer

| produces the soft decisions reguired at the Viterbi decoder input,
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For simplicity of presentation, we shall assume an infinite bit

quantizer and, thus, the integrate and dump outpuﬁ is fed directly

" into the Viterbi decoder, Using previously defined terminology

the integrate-and-dump output z(t) at time kTs-}E is given by

R X . Ik’I‘{-; : .
z = (kT +e) = - . Y(tp_lk-(k-1)T-c}dt
K i Tsfw-nyrgae © 5
JSla (1-31aD-ay , [T+ 0520
={ : : (3
Jg'[ak(l-i’) N)da’k..l Pl ]+ n A0
where
kT te :
A1 s ~
= — - a)p _[t-(k-1)T-¢]dt (4)
nk 'I‘S J.(k-l)Ts-i-e s . ]
and
N
2 2
Efo,} = 0; o 2 By} :_—ﬁf’; ] (5)

Letting k = £v+m (1 /v is the code rate), then a c specifically

k
represents the Vrnth (m=1,2,.,.%) encoder output symbol
£
corresponding to transmission of the £ b information bit. -
The Viterbi decoder, being a maximum-likelihood decoder,

computes the test statistic {(metric) _
4= 2 ,Zkak = E :[2 / zﬂv-!—ma.e\;-i-m:l (6)
k=1 4=1 tm=1

for all possible sequences of encoder output symbolé corresponding

" to the transrmssion of L information bits and chooses the input

message that yields the largest value of q, The brackets in.(6)
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indicate that the computation of q s done ore .ree branch at a
time as one sequentially steps thvough the L branches of the tree,
By choosing the value oi.L to be several times the. constraing
length of the code, the selected path through the tree can be used
to decode the first bit in the sequence of L.,

Using the decoding metric of Eq, (6), a tight upper (union)
bound to the average bit error probability is (Refs, 1,32)

Pb = E njijj . _ (N
j=d__. ‘
min

| where P, denotes the probability of error in comparing the

correct path to an incorrect one which differs in j symbols from

of paths at distance j (differ in j symbols from the correct path)
and nj iz the number of bits each of these paths differs from the
bit sequence corresponding to the correct path, In the absence of '

symbol sync error, Pj is given by
Pj = % erfc A/jRS‘ o (8)

for each of the mj paths at distance j. When symbol sync t:iining

error is present, the specific location of the j symbols which are

in error along the incorrect path at distance j also affects the

: xca.lcula..l_:iqn of P,. Thus,. Pj is, in general, different for each of
the m, different incorrect paths at distance j,° To see this, let

' {al'c(i)}J, k=1,2,...,L,i=1,2,..., mj denote the sequence of
s;rzﬁb‘dls albn’g the. ith incorrect path at distance j. Such an
incorrect path will be chosen if and only if its metric is larger

- than that of the correct path, i.e.
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Lv (4) v
\ :
2‘ ; zkak > E : Zkak (9)
k=1 k=1 .
or
Iy ) '
E- P (a’ -ak) =0 _ (10)
k=1 ’
Let Si(j) further denote the set of locations where alim # Ay

Cleaxrly Si(j) contains j elements, Thus, from (10}, we get that

t
the i incorrect path will be chosen if

2y 0 . ooan
ke, (j) ' |

or equivalently,

E : "1k <0 (12)

keS, ()

 Substituting (3) into (12), we find that the probability of selecting

.th .
the i incorrect path at distance j from the correct path is

P.() = Pr JS‘Z [1-3\K|—akakﬂl}.!]<z mat (19)

ke8, (1) keS; (3)

where Lhe +is determined by the sign of A in accordance with (3).

Since, fr om (5} the 1a.ndom variable Z nkrezl,1 is Gaussian wu:h

zero mean and variance JNO/ZT kesi(J) get that
) ) [1'-3 |}Ll-akakkl ‘}‘H _
P,(i) = § evfe | /iR, ke5; () (14)

Finally, then, for a given value of normalized timing error A s

" the upper bound on bit error probability analogous to Eq. (7)is - |
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ORI BEN DA (15)
jrd_ . i=l
min
The surmamation in (14) is up'per and lower bounded by
ja-2lp s S Besidaga,, MIsia-4D (16)
ke$, (j)
and for reasonably large j is well approximated by .
o [-sIneagayy WD 50310 Rl -p+ (Al ]
keS_(j). o ‘
= jl-4|Al+2|x]p,) (17) ,
with the approximation improving as j increases, Since in comput-
ing the upper bound in (15), the minimum value of jisd . , and
since d_. =14 for the K=7, =3 Shuttle code {Ref, 3), we shall ;
use (17} in (14). When this is done Pj(i) becomes independent of i 7:
and (15) simplifies to ' o
. b | ‘ . :
P () < "ZT ; njmj(%,; erfe{ JJR_[1-4|a|+2]2p,TH (18) ¥
‘J:dmin . "
which is identical to (7) (after substitution of (8)) except that ,./_Rs' h
is replaced by A!RS (-4 l?x|+2 'lMPi:)' The average bit error
probability p, is then upper bounded by 7
P s j }“* nm, ¥ erfc{AR_[1-4|1[2|alp, Ipar  (19)
b 1 =t J ] 8 t
' 2 '.jzdmil;l o : ' ' . P
Since the union bound of (7) is very tight over a relatively wide
 range of bit signal-to-noise ratiocs 'Rb ='\JRS at low decoding ervor’
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rates, the polynomial curve fit to the simulation results may be
used in place of Pb(k) of (18) by making in it the substitution
VR (1-4] r2 |Alp,) for VR . Finally, then,

L 1

F)
P, ¥ X iP{)(?\)p(Md?\. - (20)
=2

- where

_ , _
log, o P{(\) = -.1206.(10 log, (RI () ~.50(10%og; RI(\))
' -1,0706 (21)
and

) A . 2 . )
RI(A) = Rb(1-4i}.\+z|x]pt) : (22)

Using the symbol synchronizer confi'gﬁr‘ation in ;'[*;ig. 3-5a,

Figs. 4-1 to 4-5 illustrate Pb’ as determined by the numezrical

for P, = .5, £= .25, and values of
=0,,.02,,04,.06, and .08,

normalized clock frequezcy offset A5/B,
The ratio of symbol rate to loop bandwidth is a parameter on each
of these curves. The limiting curves for & +® are determined
from (21) with the substitution X = Af/tl:BL. For all practical

purposeé, this limiting performance is obtained with a & of 2000,

. Figs. 4-6 and 4-7 illustrate the bit error probability performance

for other values of transition density and no clock frequency offset,
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