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,E SUMMARY i

This report develops results pertinent to predicting the

performance of convolutionally encoded binary phase-shift keyed l

communication links. 	 The details of the development are ^.

provided in four sections.	 These sections are concerned with

developing the bit error probability performance degradations r

due to PN despreading by a time-shared delay locked loop, the

Costas demodulation process, symbol synchronization effects and

cycle slipping phenomena in the Costas loop.	 In addition, Costas

cycle .slipping probabilities are studied as functions of Doppler

count tixne and signal-to-noise conditions.	 The effect of cycle 1

slipping in the syxnb.oi synchronizer is also studied as a function
1

of channel Doppler and other frequency uncertainties.

Section one develops the model of a, suppressed carrier tracking,

spread spectrum receiver/transponder in which the received
a

signal is a convolutional/Manchester encoded binary data stream

that is spread by a PN code to produce a binary phase-shift keyed .

i
(BPSK) carrier.	 The combined signal-to-noise degradations of

the PN desprea.der t s time-shared delay locked loop and the Costas

phase-locked loop are developed as functions of the various

system parameters and channel conditions.	 In addition,. the theory

of cycle slipping in the Costas loop is developed in terms of the

channel Doppler dynamics, the additive noise, the minimum

squaring loss, the PN code tracking loop jitter and the duration

of the Doppler count normalized by the link data rate.	 Cycle

slipping probabilities are developed as functions of the energy-

per -bit to noise ratio, the number of cycle slips, the Doppler
3

count time norm; lined by the link data rate and the receiver's

static phase error.	 Various cycle shipping probabilities ar e
'	 a
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graphically demonstrated as a function . of the Doppler count time.
Section two develops the bit error probability expression that

results from the noisy reference loss due to jitter in the. PN
desp-reader's time-shared delay-locked loop and the noisy refer-
ence generated by the Costas demodulator. For the K=7 rate
one-third convolutional code, bit error probability curves are
graphically displayed as functions of the data rate, static phase

error and energy-per-bit to noise ratio. Link performance
degradations are easily assessed from the curves; in addition,
any known losses due to filtering of the signals in the receiver
can be easily added to the loss indicated by the curves presented.

Section three of this report is concerned with symbol synchro-
nization in the Network Signal Processor when Manchester coding
is used. New and fundamental results pertaining to symbol
synchronization for Manchester coded messages are derived,
The symbol synchronizer structures are found to be functions
of the signal-to-noise ratio . and data transition density. The
minimum rms symbol sync jitter is determined, computed and
comparisons are made for various phase detector characteristics.
A general theory for cycle slipping in symbol synchronizers
is given; it is shown that under most cases of interest, the
effect of slipping in the symbol synchronizer does not give
rise to a significant performance degradation. This section
is also used to study the effects of synchronizer stress (due to
clock uncertainties and channel Doppler) on bit error probability
performance,

Section four of this report evaluates the degradations on bit
error probability perforrria.nce due to the noisy clock . reference
created by the symbol synchronize,-. Particular graphical

results are presented for the special ease o-f a K=7 raise one-
third convolution.a.l code. The effects of data transition density
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1. 0 SUPPRESSED CARRIER TRACKING FOR SPREAD SPECTRUM
RECEIVERS OF MANCHESTER CODED MODULATION

1. 1 Introduction

Various communication. systems transmit information in the

form S (t) A/z—s m(t) s 
PN 

msialrw 
0 
t + 0(t)] where s 

PN 
(t) is a PN

modulation and m(t) is a linear modulation (coded or uncoiled)

which possesses no dc component in its power spectrum. Since

no residual spectral component exists at the carrier frequency

wo, it is not possible to use the conventional phase-locked loop for

establishing the required coherent reference.

A number of methods have been proposed for generating a

reference carrier from the received waveform which contains a

suppressed carrier signal component. Of these, the three most

popular are the squaring loop.method (Refs. 1-5), the Costas loop

method (Refs. 1, Z, 4-6), which is theoretically equivalent to the

squaring loop, and the decision-directed .feedback loop (Refs. 1,'2,

7-9) which first estimates the modulation, and then uses this

estimate to eliminate the modulation -from the carrier, leaving, as

nearly as possible, an -Luunodulated sinusoid which can be tracked

with a phase-locked loop. Each of these methods has advantages

and disadvantages (practiczid or otherwise) with respect to the

other two. What ultimately determines which method is used in

a particular application is a tradeoff between the requirements

on performance capability and the ease and cost of implementation.

As is well-known from previously published documents (Refs,

10-12) suppressed carrier modulation is employed on both the

TDRSS-to-Orbiter (Forward) and Orbiter -to- TDRSS (Return)

S-band links. In the case of the forward link s, the convolutionally

encoded, time.--division multiplexed (TDM).data sequence is

4A
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converted from NRZ-L to Bl-phase-Lforniat, modulo-2 added to
a PN NBZ--L code sequence, and the resulting spread-spectrum
sequence used to biphase modulate the transmitted carrier. AS-ter
transmission through the TDRSS, the Orbiter receiver first
despreads the signal by acquiring and tracking the PN code.
Following this procedure, the baseband data symbol sequence
is restored by demodulating the suppressed carrier signal with a
Cost-as loop. In the return link, similar carrier modulation and
demodulation processes tal-ce place with the exception that the
signal is neither PN spread nor despread.

It is clear from the above that in order to assess the degrad-
ing effects of the carrier regeneration process on the overall
system performance (ii:icluding the average error probability
performance of the data decoder), a thorough understanding of
the acquisition and . tracking performance of Costas loops and
their optimum design for use in the Shuttle relay link environment
is required.

1. 2 Performance Analvsis of the Costas Loon in the SuD-oressed
Carrier Mode Effect of Spread Spectrum Modulation

1 Motivation

The tracking performance of a Costas loop in response to a
biphase modulated suppressed carrier input is well-documented
in the literature (Refs. 1, Z, 4-6). All of these analysis.have
assumed that the in-phase and qijadrature arl'i"I filters have
sufficiently wide bandwidths so as to pass . the data modulation
undistorted. In practice, the bandwidths of these filters are
more commonly chosen on the order of the data rate and thus the
above assumption is strictly speaking invalid.. In Refs,. 13 and 14,
the effect of arm filter distortion has been studied in detail,

REPRODUCIBILITY Or' THE
ORIGINAL PAGE IS POOR
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jgraphically demonstrated, and compared with the results given in
the literature which have neglected this important effect. In fact,
careful control of the dis ^rtion tern in. any design gives rise to

the highest noise innm-anity achievable with passive arm filters.
Even these analyses, however, have not included the degrading
effect of a spread spect:7um. modulation on the signal being tracked.

It is the purpose of this section to augment the previous work
on Costas loops by including the effect of a PN spread spectrum
modulation on tracking performance. The approach will parallel
the development taken in Ref. 13: and thus much of the detail

-	 given there will be omitLad in the presentation here. Finally, the
results obtained will . be adapted to cover. the case where the
Manchester coded data is also convolutionally encoded..

0

1.2° 2. Costas Loofa Model and Analysis
Consider the transponder illustr aced in Fig. 1 - 1 where the

Costas loop portion is enclosed within the dashed outline. ilince

our main interest here is in the performance of the Costar, loop
itself, it is sufficient for us to model the signal at its input and

concentrate on how the loop processes this signal. Referring to

Fig. 1 ^l, if the received signal x l (t) at point d is modeled as

XI (t)- ,f^Sy sPN (t)m(t) sin 6(t) + n. (t) (1)

then, using straightforward trigonometric manipulations, one
W	

finds that the signal at the input to the Costas loop (point	 ).is
given by . .

(t) r K s	 (^ , )Nrz s	 (t)m(t)sin[^(t)-M+l m(t)] + n (W4	 e PN . e	 PN	 M	 4

in Eq (1), m (;) 
L1 

W 0 t + 0(t) with wa the radian carrier frequency

6
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and 8(t) A 00 t + 8 0 the input phase to be . estimated, m(t) is the data
modulation (a +l digital waveform), sPN (t) is the received PN
modulation, and n, (t) is the additive channel noise which can be

I
expressed -in the form of a narrowband process about- the actual
frequency of the input observed data, i. e.,

ni(t) _^Nc (t) eos (t} - Ns (t) sin(t)	 (3)

where Nc (t) and Ns (t• ) are approximately statistically independent,
stationary; white Gaussian noise processes with single-sided
noise spectral density N0 w /Hz (see Ref. 2) and two-sided band-
width B

0 
< W^ /ZTT. In Eq. (2), s PN (t+ ^) is the PN reference signal

derived from the PN tracking loop, K  = KIKZK3K4 /Z is an equi-
valent loop gain, and

N(t) = ^{Nc (t)c0s ^(t) _ ^Ml tl (t) - Ns (t) sin r? (t) - LI 
4 (t)a (4)

Also assumed in Eq. (2) is that the bandpass filter which precedes
the Costas loop is sufficiently wide as to pass the data modulation
m(t) undistorted. Denoting the in-phase and quadrature detector
(multiplier) gains by Km, then the output E c (t) of the quadrature
phase detector is (ignoring second harmonic terms)

A
ec (t} = K^ 4(t)^Kl cc  N KeKI K FAJ RPN e )m(t)-N5{t)] sin cp{t)

+K e KI KM N I  M cos cp (t}	 (5)

while the in--phase arm phase detector output is

E (t) K x (t)^K sin ^() K K K [199 R (T )m(t)-N' ( t)]cosep(t)
s	 m 4	 l	 MN e l m	 PN e	 s

-KeKIKz Nc(t) sin cp ( r)	 (6)

-S-

^	 r. 7

i^
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where cp(t) (t) - MN	 m(t) is the loop phase error, RPN ( ^}
sPN(t)sPN(t+ e) is the autocorr elation function of the PN process

which is approximately given by

I I T el ,	 I T I SAe

	

RPN(Te) =	 (7)
0. ;	 elsewhere

where A denotes the PN chip interval, and N.(t) and N S (t) are
equivalent noise processes defined by

	

Nc (t)	 sPN(t+ T)Ne(t)

(g)

NI rt) = sP^(t+ ,r )Ns (t)

In writing Eqs, (5) and (6), we have again assumed that the data
modulation is passed undistorted by the bandpass filter following
point ® Furthermore, we have assumed (and less justifiably)
that this filter has no effect on the PN auto cor3r elation function.
In practice, the autocorrelation function of (7) is somewhat spread
by this filter and furthermore, the noise processes in (S) should
reflect the filtering effect on the PN demodulation .signal s PN (t+ ^).
Without producing undue complexity into the analysis, we shall,
to a first order apprwnmation, ignore these effects.

After low-pass filtering with the in-phase and quadrat-are -
phase arm filters, the phase detector output signals become,
respectively,

^	 N"(t)trn(}	 s
. ---^------

	

zo(t) = KeKIK	 RPN(re) G (P)MM G(p)NI(t)] s in 9(t)

NO
+ K e K I ^ G(P)Nc(t)] cos P(t)	 (9)

^^-O

UPRODUCIBILITY OF THB
ORIG:VAL PAGE 113 'OOR	
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C^;,Iv 4t_,G-V'r  n
A

(t)	 Ns (^'}

s	 e	 m[,/S—RPNe} G(p)m(t) - G(p)Ns(t)] cos p(t)
N `c (t)

	

- KeKIKm[G(p)Nc(t) sin cp (t)	 (10)

Here the signal m(t). denotes the signal emewgin.g from passage of
the data modulation m(t) through the low-pass arm filter G(p), and
likewise N"(t) and N"(t) are the equivalently f iltered versions of

N'(t) and Ns(t), respectively.. Multiplying the two low-pass filter

outputs (assuming this multiplier has unit gain) gives the .dynamic

error signal

KZKZKZ	 Z .n.j	 za(t) _ z^(t)zs(t) _ e	 ^n 
&rS PN'( )m.(t) -Ns(t) -Nc (t) sin 2cp(t)

	

-t- KeKI KM.N".(t)V„ RPN ( ,r )rn(t)-N (t)] cos Zcp(t)	 (11}

The instantaneous frequency of the VCO output is related to z 0 (t)by

dLt)	 K^[F(p)zO(t) + ub	
(IZ)

--	 and hence the stochastic integro-diyferential equation of operation
of the Costas loop becomes

dat(t) - Zo0 - KF(p){SRPN ( e) m (t) sin 2cp( t )+v2 [t, ZCp(tM	 (13)

where K K K K K K ; Arid

vz [t, 2.zp(t)] ^^-Nc (t) -Ns (t) -- 2JSR PN( e)m(t)N"(t)]sin Zcp(t)

+ [2^/S RFN ('C e ) ((L:)N"(L) - ZN'I(t)NS (t)]cos ?p(t) 	 (I4)

in arriving at (14), we have made the practical assumption tha!
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the data rate	 Al/T
s
 is large relative to the equivalent loop

bandwidth W 
L2 

and thus m (t) can be replaced by its mean-

squared value, i. e.

M
. 

(t)	 SM(f) 0 0 2ITf) 
2 
df

with S 
m 

f) denoting the power spectral density of the data modula-

Lion m(t).

1.3 St_ ea4y-State Tracking Performance

Using Pokker-Planck techniques, the steady-state probability

-y fun-tion (p. d. f. ) p (Z	 lo 27 reduced phasedensi .t	 of t-he naodu.

error 4 can be determined from .(13). Assuming a loop filter of

the form

I+sr
	 T2

(S) I+Sr I	 T

then, (Ref. 1, Chap. 2 and Ref. Z, Chaps. 9, 10)

4+21T
PPO C0 exp.(024 

+ a cos 2. ^)	 exp(-Pzx-a cos 2x)dx	 P7)

where C. is a normalization constant and

+1	
1
-F1

P	 2
G

r+l z
L EZQ SR (T )rA

r	 2W	
n (t)K(I -F l )sin 27]+ a sin 2

L 
0	 PN e

with 

z second or.dea: loop damping parameter SR	 F
Pdq^.)m 

(L)K 1 TZ
z

4 C.

Z,'	 T
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11 C = loop damping

P r = effective signal-to-noise ratio in the loop bandwidth =.

_	 .
(A/4)9L

P = equivalent signal-to-noise ratio in the loop bandwidth of

1	 - second-order PLL = 2SRPN( ^)INOWL"
: 2 	 2	 2
ffG 	 sin	 24 -(Sin. z )

4SN0 (mZ (t))2 P, pN ( ^) F!
-

Q
loop squaring loss - NF

". s q

Nsq	 6 2	 RV (,r)dr	 (19)

and

_.

R	 (,T)d..v2(t, 2	 )tr2(t+^,.2	 ) = 4[SR	 (e)R	 (T)R	 n( ,r)+RNri(r)	 (20) -
_

2	

C	

C

where r^

-

_.:
N,

RN,^L ) d N"(L)N'(t+'r) = 7-0	
f G(j2 rf) 

^2e12`^^df	 (21)
c	 _^, , a

=. and y

_

Co
-	 - R,	 (T) - 3-nh (t)rn̂ (t+'rj _	 S	 (f) G (j2irf ) 2 ej2TfTdf 	 (22) .f

7.^	 -

7In arriving at (2O) we have made use of the previous assumption

that the arm filters are narrowband relative to the input bandpass

(IF) filter.	 The probability density function in (17) will be useful

An what follows.

The squaring loss W can be derived in terms of basic system

parameters.	 Substitutin	 2l. anal 22	 into	 20 and .usin	 Lhe
definition of , L̂ in (19) gives, after considerable manipulation,

the squaring loss formula

RzP -_RODUCn3ZLiTY or, TUE .

ORIGINAL PAGE IS POOR
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where we have used D,y^ A-m2 (t) to denote the modulation distortion factor,
E	 2	 GR -SRPN( ) $R -R sRP(T ) is theeffective data (symbol) signal

to-noise ratio, B, denotes the two--sided noise bandwidth of the
arm filter G(j2wfl, i.e.,

B.	 f	 G(j2,^f)12df	 (24)
Z w^

K  is a, constant dependent only on the filter type and is defined by
ca.

fG (j 2nf) 4 d
K  

2	

P5)
f1G(j-	 -if

and KD is a constant dependent on both the baseband data power
spectrum and the filter type, ic e.

f Sm(f) lG(jznf) I4df

fSm (f) IGaZTrf) zdf.

i

Typical values of KL for well-known filter types may be found in
Table 2-1 of Ref. 1, Chap. Z. For example, X  = 1 for an ideal

low-pass filter while KL (Zn--1)/2n for an n-pole Butterworth

filter. Since, via Eqs. (15) and (26), the mod-alati.on distortion
factor 1lm and the constant K  respectively depend on the

baseband data power spectrum Sm (f), the format of the baseband
data encoding must be specified before these quantities can be



l

^ rr.

computed. The case of interest here -is when the modulation m(t)

is a Manchester coding of egriprobable, independent transmitted

symbols. The power spectral density S.(f) for such a data

modulation is, Ref. 1, Chap, Z,

S (f)	 sin4(rffTsl2)

Ts	 .r {^fTsr2)2
(27)

Recalling that an n-pole Butterworth filter is characterized by
the transfer function

	

l	
{2 8)^G(jZTif 2) ^ =	 ^^.l^- (f/^c)

where f , the 3 dB bandwidth, is related to the two-sided noisec
bandwidth B. of the filter byy

nB ,	 r
fc = - -- sin [ 2n
	 P9)

then, 'substituting (27) and (28) into (15), . (25), and (2b); the

modulation distortion factor Dm and constants K  and X  
can be

computed by numerical integration as functions of the TA:Uo

B/1? . Using these results, rig. 1-2, illustrates the squaring
i s

los s 9L vs B IR
S
 with R1 as a parameter fox a two -pole

Butterworth filter, i. e,, n = Z. We observe that for a fixed

R  .there exists an optimum noise bandwid.th . B. for the arm

filters in the sense of ininimi.zin.g the squaring loss. These

values of optimum arm filter bandwidth occur in the vicinity of

the Nyquist bandwidth.

In designing carrier tracking loops, the most commonly

used measure of performance is mean- squar ed tracking jitter.

This quantity is ordinarily defined as the variance of the

probability density function of the loop's modulo ZIT reduced error

	

.-14;,	 f^	 .
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and fog large lcop ,signal-to-noise -ratios becomes equal to the
reciprocal of the effective loop signal-to-noise ratio. R1 the case
of interest here, the tracking performance of the carrier-tracking
loop depends, ire addition., upon the timing error in the PN track-
ing loop v;ihich itself has a statistical . characterization. Thus,
the mean-squared tracking jitter for Lhe Costas loop of Fig. l-I
is given by

Q2	 d 
1T

f
l (2 4 )2p ( 2 4)pT( T IA)d (2 J )d ( r

e /A)	 (30)
-17 -I

__.	 whew p (2^3 ) is given by (17) and p T( /A) is the probability density

function of the normalized timing error T e /A in the PN tracking

loop. Although p i 
('re

/A), in general, depends upon the specific

PN tracking loop implementation, e. g., a noncoherent delay-

locked loop or r--dither loop, for large PN loop signal--to-noise:
ratios, p

,r
('r^hA is approximately Gaussian distributed, i.e.

l	 ( e/A)2
p T ( o /A) =	 2

^` 
exp	 2	 (31)

and is thus characterized by a single parameter o'^ the standard

deviation of 
e 

/d. Furthermore, for large Costas loop signal-to-

noise ratios,

tt2 "' l
	

(32

where

A'	 A I p (T /A)d (T /A)	 (33)

	

^ e	 e

Substituting (7), ( 1 9), (23) and (3I) into (33) results in an expression

for the average effective signal -to -noise ratio in the Costas loop

L
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bandwidth, viz.

l Dm

HW

(1^^riZ
 4	 B

S K

D
+K L	

IJ W ) s s (l- n)2Dxn
0 L

27
X 1 exp	 2
	

do	
(34)

ZITo	 26
1	 Ir

where we have introduced the notation n A .1e /Q and rei.ognized the

fact that the symbol signal-to-,noise ratio Rs can be written as

Rs =
 (^TOWL

 Ss	 (35)

ZR
with 61WT the ratio of the symbol rate to single-sided Costas

loop bandwidth. The value of B.1 /Rs to be used in (34) is that which

minimizes 9 (as in Fig. 1-2) for a given Rs . Since R' = Rs

when e = 0, these optimum values of B i I Rs can be determined

from Fig. 1-Z and remain constant over the integration on rin

(34).. The values of Dm and KD to be used in (34) are also

evaluated at these optimum values of B. /R . Figs. 1-3 and 1-4
^.	 s

plat p t vs ZS/N OWL for bs fixed .and 6^ a parameter. The dotted

curve in each of these figures corresponds to the case of no
squaring loss or PN degra.dation, i.e., p l = (2SINOWL)/4. Thus,

the distance between this dotted. curve and the curve labeled
a = 0 represents the signal-to-noise ratio degradation due solely

to the Costas loop squaring loss. The remaining curves represent

the additional degradation due to imperfect PN tracking. These

curves are very useful in assessing the combined performance of

r
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the PN despreader and the Costas loop.

1.4 Characterization of the Cycle-Slipping Probabilities
In this section eve shall characterize the probability that the

21^ process in the Costas loop slips one or more cycles in an
interval T seconds. ``` To do this, we shall assume that the cycle
slips which tend to increase and decrease Zep by Zw form independ -

ent Poisson processes with rates of occurrence. N^ and .N._
respectively. Then the probability that a net number, say N = n,
of cycle slips occur in T seconds is given by (Ref. 2, .Chap. 9)

N n

P(N=n) = N+ Z exp(-ST)In (ZT .. N)	 (36)

for n = 0 1 4:1 I :h2, , where S N+ + N r is the total number of cycles
slipped per unit time independent of direction and In (x) is the
modified Bessel function of order n and argument- x. The result
(36) is shown, by forming the convolution of the difference o.f two
independent Poisson processes. The fact that the p. d. f. for
cycle-slipping can be appro%-imated by a Poisson process has. been
observed experimentally,

To rewrite Eq. (36) in terms of the system parameters
previously defined we note from. Ref. 2 that

N+
N	 exp(ZnP)

L	 eEp(:hTT$ ) 1
Nf	

ZTZ P `	^I. (A') ^2
J^

I	 cosh y

*We shall for simplicity. omit the effect of PN degradation in these
calculations.. Also a first-order 'loop will be assumed.

z
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Thus, from (37) we get

W
N N	

L	
(38)_

+	 zilZPtIfs (P,) 1
2,

Substituting (37) and (38) into (36) and making use of the definition
.of S s -following (35) gives the desired result

2 T

_	 2S	 T	 Ts
n

	

P (N--;l) _ exp n^'}^ - W 5
	 T	 Z	 Z	 2

	

L s	 s	 IP 	 b	 (At)

	

j	
^

Z	T 	 (39)

	exp n^ - . 2 cosh ^$	 T I	 Ts

P t^z s Tj ^(p r) ^Z 
(TS—)_ n P =Tr s 1I j  opt ) iZ

Various methods for evaluating IIA(P1) ^ z numerically are given in
Appendices 11 and IV of Chap. 9 in Ref. Z. For example,

2 _	 1
G(PI)^	 e p(-3^[) 

Tr
e •̂p(-2Pz)T (ZP I sinz)dz	 (40)

jo

For a first--order loop, operating with steady--state phase error

^ss we have that

	

P' s in	 (41)
ss

Also, from (19) the effective loop signal-to-noise ratio P s. can be
expressed in terms of the symbol signal-•to--noise ratio Rs
STS /N0 by

R 5
At	 sL	 (4Z)

or for convolutionally-encoded data of rate 1 /v

9
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,f

4v	 L

Thus, substituting (41) and (43) into (39), one obtains an e.,tpression

for the probability of N -,ycle slips in T seconds as a function of s,

T/Ts ,. R s (.or Rb ), and 4ss 0 Figs. 1-.5 to 1..10 plot P(N=n) vs T/Ts
for & s and 

^ss 
fixed and Rb as a parameter. Values of n = 1 and

n = 2 are chosen as representative of the physical situation since
the probability of three or more cycle slips is insignificant relative

1

to the other: two probabilities. .Also, the rate 1/3 Shuttle code is
assumed and Rb 1s allowed to range ever the values -1 dB to 4 dB.

The value ofrL used in all cases is the optimum as determined
from Fig. 1--2.
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Fig. 1 -4. Average Effective Signal-to-Noise Ratio in Costas Loop
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it	 {	 Fig. 1--5. Cycle Slipping Probabilities vs Normalized Time with 	 5
Erergy--Per. »Bit to Noise Ratio a Parameter.
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Fig. -b. Cycle 5lippiazg Probabilities vs Normalized Time with 	 .^
Energy-Per-Bit to Noise Ratio a Parameter.
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1-7.	 Cycle Slipping Pi obabilities vs Normalized Time with
Energy -Per-Bit to Noise Ratio a Parameter.
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Fig. 1-8. Cycle Slipping Probabilities vs Normalized Time with
Energy-Per-Bit to Noise Ratio a Parameter.
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J	 Fig, 1-9.	 Cycle Slipping Probabilities vs Normalized Time
.j

with Energy-Per-Bit to Noise Ratio a Parameter.
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Fig. 1-10. Cycle Slipping Probabilities vs No Innalized Time xvith
Energy-Per-Bit to Noise Ratio a Para-meter.
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Z. p AVERAGE ERROR PROBABILITY PERFORMANCE OF
CONVOLUTIONTALLY CODED SYSTEMS IN THE PRESENCE
OF IMPERFECT CARRIER SYNC

Z.1 L-itroduction
1-laving thus characterized two sources of imperfect synchro-

nization that degrade system performance what remains is . to
evaluate their effect on the average error probability performance
of the data decoder which in the case of the Shuttle forward and
return S-band relay links is a maximum-likelihood (Viterbi)
decoder of a rate one--third, constraint length seven convolutional
code. A general solution of this problem is indeed quite difficult;
however, dependiaag on the relation among particular system
operating parameters, e.g., symbol rate, decoder memory, loop
bandwidths, etc., there exist approaches which yield veritable
results in the face of the underlying assumptions and approximations
made.

One approach which has been taken by several authors (Refs.
1, Z) with regard to evaluating performance degradation due to
imperfect carrier synchronization is as follows; (a) determine
(by simulation studies) the ideal bit error probability performance
curve for the particular convolutional code under consideration,
(b) curve fit (using perhaps a least squares approach) a mathe-
matical function to the simulation data, (c) degrade the signal-to--
noise ratio in this function by the cosine squared of the carrier
synchronization phase error, and (d) average the resulting
function over the p. d. f. of the phase error as determined from
the analyses performed on-the carrier synchronization loop.
Inherent in this approach, is the assumption that the loop phase
error is approximately constant over the number of symbols
required to arrive at a single bit decision, i. ea , the Viterbi
decoder memory length in symbols, Typically, this memory

-31-
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runs on the order of five or sb.- constraint lengths for which a
constraint length seven code is about forty symbols. Thus a
symbol rate of Z16 lisps would require that the two-sided carrier
tracking loop bandwidth; W L, be much less (e. g., a factor of
100 or more) than. 216/40 = 5.4 KHz.

We begin by finding a suitable curve fit model for the
Shuttle K = 7, rate 1/3  convolutional code. This code, which is
the "best" rate 1/3, constraint length 7 convolutional code (Ref. 3),
is characterized by the generator matrix.

1111 001
C	 l l 0 0 1 0	 1	 (1)

1011011

and is the identical code used by the %LINKABIT LV7015LR

Viterbi decoder which employs 3-bit soft quantization of the
received data. Us : ng previously published simulation results
(Ref. 4) we find that over the range. of bit signal--to--noise ratios
from -1 dB to 4 dB (corresponding to a range of bit error
probabilities from approximately 2 Y. 10 -1 to l0 - ), a second-
order polynomial fit is quite accurate, L e.

2log l0 Pb = a l (10 log .10 Rb )	 + a2(10 log10 R b ) +a 3	(Z)

where the constants a l , a2, and a3 are chosen to satisfy three
data points on . the simulated .curve. In particular, simultaneous
solution of the three resulting linear equations gives

al	1206.

az = -.5	 (3)

a3	-1.0706
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Using this curve fit model, numerical result; can be obtained for
the noisy reference effect of the Costas loop on the bit error
probability performance of this particular code, The results will
be plotted with the ratio of bit rate to loop bandwidth held constant
and static phase error (caused by Doppler offset) as a parameter.
In all cases, the Costas loop is optimized in the sense o.f minimizing
the loop's squaring loss (or equivalently, its mean--squared jitter)
by proper choice for the arm filter bandwidth relative to the symbol
rate. A two-pole Butterworth is chosen for the arm filters,
representing a reasonable compromise between, filter complexity
and modulation distortion.

2 0 2 An Analytical Evaluation of Performance Degradation Due to a
Noisy Carrier Sync Reference

Based upon the comments made in the introduction, we can
immediately evaluate the average bit error probability performance
in the presence of a noisy carrier sync reference from the following
numerical integration;

Tr

2
P  =2^ Pb (Rb cost	 (4)

Tr_z

where from (2) and (3)

P (	 cos2 } W 10-°1206(10 log7,0 Rb cos 2 c}2-,5(101og1QRbcos2c)-1.070G
b

(5}

and p(24) is the p.. d. f. of the suppressed carrier-tracking loop .
phase error. Implicit in (4) is the fact that the 180° phase
ambigui.ty, which is characteristic of all suppressed-carrier
tracking loops, has been perfectly resolved, Techniques for

^4
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accomplishing this resolution are discussed in the section on
average symbol transition density of convolutional codes.

. When .a Costas loop is employed for establishing the required
carrier sync reverence, then the p. d. f, p(2JV ) is given by

c+TT

p(4) Cl exp l l cos Zc + P(Z C_J 	exPI-P' cos 2y--P(2Y}]dy;

1I < ^^	 (6)

where C l is a normalization constant such that

r	 2
p(24)dc	 2	 p(24)d4	 1	 (7)

IT	 TT

and

F	
POL	

© 
2S

p - 4	 P =
 N 0 W 

L

P I sin'
ss

In (8), the parameter JL is the loop's squaring loss, W L is its
two-sided noise bandwidth, and ^ss is the static phase error
caused by Doppler offset. Defining the ratio of symbol rate to
single-sided loop bandwidth by

S ^ 
2^b	

(9 )
s WZ

then

P	
F`b s
	

(10)v

where l N. is the rate of the code.
Figures 2-1 and 2-2 represent plots of bit error probability

vs energy Per bit to noise ratio. These results were

j,VP,,p. Tjr,)BILYY OF M
Y i d PAGE IS POOR

tiff



.r

a

1

10 

10-1

10- 2

10-3

Pb

ZQ°

,o

E	 • •/1Q
5°.

10 -5

	
Ide^1

	 'Ps S=O

0.00	 0.50	 1.00	 1.50	 2.00	 2, 50	 3000	 3,50	 4.00

Rb' ds

Pr ig. 2-^1. Bit Errol°Yrahahility Performwncc of X=7, Rate 1/3
Shuttle Code with Loop StaLic Phase Frror a Parameter,
& W 216,

	

s	 -35-



o

100

r.

r

r	
10-2

103

P
b

10-4

10-5

-	
Rb , dB

_. Fig. - Z . Bit Error Probability Performance of K=7, Rate 1 /3 Shuttle Code
wtth loop Static Phase Error as a Para;neter; 	 432.

1

1 e'

1

S
ti	 e

f

7!

5

F

_rrA

5N

4

^ 1

a

1

I	
^^

a

s p

100

-5
^00

r5 
c'	 .



f	 '

_	 obtained via numerical integration of (4) using (5) and (6). These

curves are illustrated for the Shuttle K = 7 and V = 3 convolutional

code. For b
s 

= 432 or 216, notice the degrading effects due to the
static phase error. In addition, it should be no ted that other
degradations due to filters ii,: the signal path can easily be

	

.	 i

incorporated and Figures 2-1 and 2--2 used to indicate the total 	 r
loss due to the nois y 	ncarrier reference, when 	 various filters
in the receiver are 'assumed to be present. 	 y
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3, 0 SYMBOL SYNCHRONIZATION OF MANCHESTER CODED
DATA

3. 1 Introduction
The technical literature abounds with information relating to

the problem of establishing symbol synchronization in binary.
baseband digital communication systems transmitting NRZ-L
data (Refs. 1-15). By comparison, very little has been said
(Refs. 16-18) regarding the extraction of symbol sync from Bi-
phase-L (Manchester coded) data.. In many applications (e. g.
Shuttle relay links), however, the advantage of an increased
average transition density (a factor of three for random data)
offered by .Manchester coding overshadows its potential dis-
advantages such as the introduction of a half-syn-lbol ambiguity
requiring resolution and the approximately doubled bandwidth
occupancy. Thus, in these instances, the problem of providing
symbol. synchronization in the receivers. of such systems requires
special attention,

3. 2 Maxi'mum A Posteriori. (MAP) Estimation of Symbol 	 c
Regardless of the data for-mat, the question of what is the

"optimum" symbol synchronizer is a natural one to ask. The
answer to this question, of course, depends highly upon the
criterion of optimality one selects. The maximum a posteriori
(MAP) estimation criterion represents one approach to the problem.
Although this approach unfortunately avoids a direct attack on the.
important problems associated with symbol, sync acquisition time,
acquisition range; and mavixnum probability of acquisition, it does,. .
however, afford a great deal of insight into arriving at closed
loop synchronizer configurations whose high and low-, signal-to-
nose ratio approximations are physically and practically
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realizable, and yield good, if not the best, tracking performance.
In fact, we shall demonstrate that, under certain practical con-
ditions, the rules governing the design of the symbol synchronizer
motivated by the MAP estimation approach are indeed identical
to 'those which minimize its mean-squared symbol sync jitter.

A derivation of the MAP estimator of symbol sync is given in
Ref. 1 where an arbitrary tune-limited symbol pulse waveshape

PS
 (t) of energy E 

s 
= 5T s and equiprobable symbols are assumed.

Furthermore, the derivation assumed that the symbol length Ts
is known (and remains constant over the observation in^erval),
and that a stored replica of the transmitted signal waveshape is
available at the receiver.

To apply this body of theory to the case of Manchester coded
symbols, we define the pulse shape.p s (t•) by

0 t :9 T /2
(t) -	

s
ps 

	
(^-)

..^;	 Ts j2 st sTs

Also, to allow for average symbol transition densities other than
one--half, we can assume a data stream of independent symbols
with a priori probabilities p and q = 1--p and .modify the derivation
accordingly. Without belaboring the details, one can show that,
analogous to Eq. (9-14.) of Ref.. 1, the MAP estimate of e--that is,
e- -is the value of e that maximizes	 i

A(y, E) b in fly, a)	
fT

1i^ p exp 20Yk 	 s( t)P [t-(i- I)T s c]dt
s 

k=o	 k( )

+ q exp T 2	
Y (t)P [t-(k - 1)T S--3d 	 (2).

^0 fTk(C)
 k s

Many  other possibilities exist for statistically modeling the data.
stream; however, the MAP estimate solution becomes quite
complex for any model other than the one assumed above.

r

1



E

K
y(t) =	 akps[t-(k-l)TS-s + n.(t); 0 s t SkTS	 (3)

k=0

is the recr-	 symbol data stream in noise over the observation
interval (0 s c S kT S), a  is the polarity (:kl) of the kth transmitted
symbol, and Tk(e) is the kth subinterval defined by (k--l) Ts+e s t s
kTs +e . Furthermore, the additive noise, n(t) is assumed to be
white Gaussian with single-sided noise spectral density N0.

Alternately, the MAP estimator is that value -of s which
satisfies r
aA(Y, s)	

K	
Z	 Zips[t-(k-1)Ts .E^

as	
l e-e ' N0 

T, (e)	
ae dt

k-.0	 k

+ y(kTs +E)p 8 ( TS ) - Y.[(k--I)Ts+} Ips(0)

P exp N . JT () y(t)ps t- (k-1)T s -e^dt - qexp »N. 'T ( ^	 [t-(k l} STe dt
0 k	 0 kX 

p exp 
N 

Y
T( 

-
)

+q expl -N J,l;k(E)y(t)ps[t-(k-I)TS-E]dt
0	 0.

W 0
	 (4)

i
For any estimate of e other than. the MAP estimate, the function

U ( y, e ) /be will be either positive or negative depending on
whether e<e or e> e and hence can be used to provide search
direction. A simple example of a closed-loop symbol synchronizer
that incorporates Wy, c)/be:  as an error signal is illustrated in
Fig, 3-1, where for simplicity we have assumed : p s (0) = p s (T) 0.

For large Es INa, the following approximation can be ::de:

^r
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p expIN 	 ^ Y{t)p s	 s
[t-(k-1) Ts -e]dt -q exp - 

2 
ST 

^ y(t)pa	 Gt- (k-l)Ts
-e dt

	

T ()	 (e)
f1	 1r	

N 
fl	 lc

	

2	 ^
p exp NO fTk( e)y(t)Ps t-(k- )'ps - e^ dt +qex]? -N

2 
O f Tk(E)Y(t)ps[t- (k-1)T5 -£

	

sgn N f	 h Y(t)P [t-(k-l)TS-e]dt}	 (5)
0 Tk(e)	 )

where sgn( ) is the si.gnum. function. Likewise, for small EsINO,

we have

( 2	 ^pexpjl IT ( E)y(t)ps ^t-(k-l)T s -sIdt -gexp -N fT (E)Y(t)PS^t-(k-l)Ts-E^dt
0 lc	 0	 lc

pewf T ( E)y (t)Ps [t -(k-l) Ts -ea dt +gexp -N ^T (E}y(t)ps[t-(k-1)Ts-" dt^
0 k	 0 k

(p -q) + 4Aq NO
2

 JT E YMP $ [t-(k- 1 )'1'^~ aldt 	(6)
kO

Using (5) and (6) in Fig. 3-1, gives the equivalent High and low
E s INO closed-loop configurations illustrated in Fig. 3-2.

For the Manchester pulse of (1), the output of the minus one
amplifier following the differentiator in Figs,3-1 or 3-2 is -illustrated
in Fig, 3-3, The strength ^ of the impulses at the edges of the
symbol pulse is, in general, a random variable and depends upon
the polarity of the preceding and succeeding symbol pulses. For
example, ' in the kp h symbol interval,	 if a	 = a =:ak-1 r k	 ,+l,
and ' = 0 . if .a 	 a and a	 a	 Since the probability of .a

k_1	 k	 k+l	 k

data symbol transition is p t = 2pq and the probability of no
transition is 1 -pt, then the average value of	 namely 'n, is
given by

0 x 0 +1 (1 Wpt)	 l pt	 (7)
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Oẑ y ^COW



Note that Eq. (7) is valid independent of the value of Es /Nae

In practice, the impulse functions discussed above would be
approximated by finite width pulses. 	 With regard to the impulses
at the edges of the symbol pulse, there are two natural ways of
making this approximation each of which leads to a different
closed loop symbol synchronizer configuration. 	 In one case, the
cross-correlation reference signal at the lower phase detector in
Fig. 3-1 or 2 might appear as the waveform illustrated in Fig. t
3-4a.	 This reference signal has the effect of gating the integrate-
anal-dump on for DT 12 sec at the beginning and end of the symbols
interval and twice as long at the mid-symbol position. 	 According
to MAP estimation theory, the fractional "window width, 'T
should be chosen as small as possiblei.	From a practical stand-
point, however, we shall soon see that other considerations are
involved in the selection of its value,	 In the second case, the
same, cross-correlation reference signal would appear as in Fig.

3-4b. Here, the edge gates overlap two adjacent symbols.
Regardless of which impulse £unction approximation is adopted,

in a practical symbol synchronizer implementation, the running
accumulator could be replaced by a digital filter whose memory
is chosen relative to the value of X (Ref. 6).	 Whereas, the input
to the bumped phase oscillator was a linear combination of the

9

previous K+l outputs of the ins.?ltipiier, we now have an accumula-

tion of the infinite past of these quantities each weighted by the

impulse response of the digital filter. 	 By adjusting the memory

- of this filter, the input to the.bumped phase oscillator can be made.

'. to essentially reflect only the previous K+1 multiplier outputs..

Since in practice the signal epoch will never remain constant in
- time, a weighted sum of the data that accentuates the recent -a

symbols and attenuates the others should be more appropriate than a

-a
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r

pure linear combination; thus, the motivation for using a digital

filter.

3.3 Steady-State Performance of Symbol Synchronizer Implementa-
tions Motivated by the MAP Estimation Approach

On the basis of the foregoing information, we propose to study the

steady-state tracking performance of the symbol synchronizer

implementations in Fig. 3-5. Those in Figs. 3-5a and 3-5b are based

on the approximation of Fig. 3-4a while those in Figs. 3-5c and 3-5d

make use of the approximation of Fig. 3-4b. The techniques

which will be employed ',.n carrying out this study are analogous

to these given in Ref 1 where they axe. used to characterize the

performance of symbol synchronizers with NRZ inputs. Namely,

under the assumptions that the input timing offset e is essentially

constant over a large number of symbols and that the loop response

is very slow with respect to a {{ u mbol interval (W T s ^ l where

W  is the two-sided loop bandwidth), the symbol synchronizers of

Fig. 3-4 can be modeled as the continuous phase--locked loop

given in Fig. 3-6. Developing the equivalence between Fig. 3-5

and Fig. 3-6 relies on finding 1) the average loop S-curve g(7.) as

a function of the normalized timing X = (e-e)/T s and 2) the two-

sided spectral density S(w, 7,) of the equivalent additive noise n%(t).

Once having determined these quantities, the steady-state

performance can be found by application of the Fokker-Planck

equation.

The approach taken in finding g(%) and S(W, follows that

given in Refs, 1, 7, and 10, In particular, if one replaces the

samplers in Fig. 3-5 by sample--aid-hold ci.rruts, then the
input to the digital filter becomes the continuous staircase-type
waveform e(t) defined by	 .

fi
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e

e (t} = ek 	kT+e s t :s^ (k+I) T + C.	 (8)

-	 whose statistical mean conditioned on fixed X is g(%) and whose
power spectral density conditioned on fixed X is S(W, X). Mathe-
matically speaking,

g 	 En,, s {e(t)	 E n, s f e k J X}.  

S(w, ?)	 J[<R (t , r ;)L )>	 R(t, T, X) = En s[n,(t)n,(Wr) JX3 (9)

where Ens represents the conditional expectation on X both with
respect to the noise and the signal (symbol sequence), the symbol
9 denotes the Fourier transform operation, and the symbol C
denotes time average. Furthermore, to evaluate the autocorrela-
tion <R(t, T;	 it is sufficient to determine the discrete function

R 0 (m,	 m 0,:-1, a,	 defined by

R 0 (m,	 En s[ekek+m 	 - g2 	 (10)

Then, since %(t) is conditionally cyclostationary (i.e. its auto-
correlation function R(t, r;X) is, for fixed r and X, periodic in t
with period T we have

i	 -	 R0(m+l, X)-R 0 (m, ^)

s

mTs s r s (m+l)Ts

The autocorrelation function R 0 (m, X) has the following properties;
(1) RO (m, ^) has nonzero value only at m = 0, 11. This is a

consequence of the independence assumption made
regarding the data symbols.



ed C-.a s
	

'1 Y

i	 -

(2) R (m., X) = R (--m, ^.0	 0
Thus, Eq. (9) combined with (10) simplifies to

2T
S(w , X)	 2 f s < R (t, -r; %)> cos wrdr

0

2 
	 [

'La(0, 7;) +	 ,T 	 cos W Td'r

	

0	 s

2T	 R (1, A)

	

+ 2 f	 sT s [R 0 (1,  X) - T 	- ( ,r-TS ) cos UJTds	 (la)

s

Since, as before, it is assumed that W L T s << 1, it is sufficient
then to consider only the value of S(Uj, X) at zero. frequency--that
is, S(0, X)---and assume a flat spectrum of this value for all W of
interest. From (12), we get

S ( 0 , k) = Ts [R 0 ( 0 , X) + 2R 0 (1, ))1	 (13)

Furthermore, since in any practical system little data degradation
due to imperfect symbol sync can be tolerated, then extreme
accuracy is required in establishing symbol synchronization.
Since this implies very large loop signal-to-noise ratios, then
.the value of S(0; 7.} is essentially the noise spectral :density seen
by the loop .at X = 0, viz., S(0, 0), see Ref, 1, Ch. 9.

. 3. 4 Application of the Fokker--Planck Technique to Obtain
Performance

The stochastic differential equation which describes the loop
illustrated in Fig. 3--6 is

^.	 KvF(p)[.g	 + n,(t))	 (14)

where p is the Heaviside operation and the dot denotes differentia-
tion with respect to time. In. writing the above,. we have assumed..

-55---	
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^ ^a g	 ,^ p	

i

zero static timing error which is consistent with our previous

assumption that e(t) = 0.
In dealing with equations of the above form one can, at best,

hope to find the probability distribution of X(t), viz., p(X, t) from 	 y

which the mean-squared timing jitter a 2 (t) can be calculated.
R

Under the assumptions previously made regarding the equivalent 	 1
additive noise process nt), the solution for p(X, t) can be found
via the Fokker-Planck method. In particular, for the first-order 	 r

loop case, i. e. F(p) = 1, A(t) is a first-order Markov process	 A
whose probability density function satisfies the diffusion equation;

Ref. , T

ap (?L , t)	 2

bt0.
	 + bx GK 1( ^0 t)p(x0 , t)a = . a a Z EKZ ( X0 t )p ( X0 , t]	 (15)

C	 ^	 C^^La

a

where Krra , t) and K (X , t) are defined by the .conditional expecta- 	 impT 0	 Z 0..
-ions

i

KI(A O ,t)	 lim 
Q E	 0	 (16)

At­+ 0	 y'
Mx^{^o , t)	 lim 

of Et ^(t^ Q t) .7^(t} 2 ^^(t)w^0}	 (17)
At-40

Of interest is the case where p(X, t) converges to with time to a
stationary probability density function independent of the initial
condition, which can be used to evaluate the steady-state behavior
of the symbol synchronizer. Denoting

P

*In terms of the timediscrete symbol synchronizer configurations
of Fig. 3--5, the first-order loop assumption is equivalent to assum-

	

ing a digital filter with unity weighting coefficients. 	 r

1+
-57-
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B. 

I"Z ffo

C^;^I

4.

we obtaiia from (15) the stationary equation

u(19)
cl ^

where from (9), (13), and (14), we obtain

K2 
(X)	 K 

2 
S(O 'X-) C_- K 

Z 
S(0,0	 (20)

v	 V

Substituting (20) into (19), and solving, gives the probability

density function

p W C. exp 0
K v 

S^^ )(, 0)

P	 p W

where C is a normalization constant chosen such that

J 2 
-2

Now for large group signal-to-noise ratios, g(A) can be

approximated by

	K
9
	(Fig. 3-5a)	 (23a)

STIR X	 (Fi g. 3-5b)
g00	 9

WTK.	 (Fig. 3-5c)	 (23c)
9

STX	 (Fig. 3-5d)	 (23d)
9

	where K is the slope of the normalized S-curveg
n
	at the

9
origin. Then defining the ratio . of symbol rate i% 1/Ts

 to
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/e

single-sided loop bandwidth WL /Z by

s	
_	 s (24)

s	 W
_.,	 L

we have for large R S	 (but necessarily large R ) that
s	 s	 s

-	 ZS(0, Q)IN0
(Fig. 3-.5a) (Z5a)

R S2s s	 g
}

ZS(Q, Q)/N?T
(Fig. 3-5b) (Z 5b)

Z	 Z
Rs6s Kg

cyx x% p(X)Clx= + N

s
(Fig. 3-5c) (25c)

R b KZ
s s	 g

ZS (a , O) INZ T
(Fig. 3-5d)

R 2 S K
(25d)

s	 g __

The value of symbol edge gate amplitude Y	 (see Fig. 3--5) may k

now be selected to minimize CY 	 Differentiating (Z5) with

respect to y and equating to zero gives f

1-Z. q	 (Fig. 3-5a) (26a).
1_Zpq	 (Fig, 3-5b) (Z 6b)

2(1-2pq)-..(Zp.q) 	 (R )ITiep( Rs )/exf P,s
Y	 toptr	 Rs

^1	 RZ	 1-erfZ R	 _Z^(Z q)	
exp(•

. R )erf,,^	 expZ (( pq)	 p	 2n
-R )

ss	 s	 s5	 s	 ^

::T..	 (Fig.	 3-5a) .
^

Z(1-F2R S )[(1-Zpq)	 !^(ZPq)] (26c)
(Fig. 3-5d)

17 4(1 - ZPq)R -^	 1-^4(Zpq)R
(Z 6d)

s	 s



pF

a^ 	 yggP xx	 / r^

Note that the value of Y which minimizes a2 for Fig. 3-5a and

Fig, 3-5b is independent of R s and is identical to the value of
[see Eq. (7)] suggested by the MAP estimation theory,	 The

values of opt for Figs. 3-5c and 3-5d are, in general, functions

of R s	 and Zpq.	 Fig. 3-7 illustrates	 of Eq. (26c) vs R s foropt
L ^.3 fixed 	 and pt	 Zpq as a parameter.	 Keeping in mind that Fig.

3»5c is intended for use at large signal--to--noise ratios, we note
from Fig. 3-7 that over a wide range of R s , Y opt can well be

A	 approximated by its value at R s	 iR e.

Y
opti

2 (1 -Zpq) (27)
R 
s^^

Again, note the similarity with the result predicted by the MAP

estimation theory.	 Fig. 3-8 is a similar plot to Fig. 3 -7 for
Yopt as given by (26d). 	 Here we see that over a similar range
of small signal-to-noise ratios, yn t is well approximated by its

p
value at Rs = 0, L e.

2[(1-Zpq).- jL(2Lq) 7
Yopt

= (28)

R 
r0	 I -

s

From (25) and (26) we see that a comparison of the various
--	 symbrI synchronizer configurations on the basis of minimum

mean-squared timing. jitter a 	 can be achieved by studying the

behavior of the two ratios 	 min

(6 ...	 )	 .
Amin a rH( , Rs , Zpq)

_(24)
(CY	 1 + (1 - Zpq)Z7.	 cmin

and
2	 -

^6^	 )b	 x	 R 9 2 q)( ,	 Prein	 L	 . s_ (30)

(^A	 )d	
1 + (I -Zpq)

min

-	 a .
s	 fY

.^
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5

Fig. 3-7. Optimum Y vs R s for E Fixed and Transition Density as a
Parameter (Lange. Signal-^to-Noise. Ratio Case),

^61-



FlzsOD ta	F
r	^

a^^

•(as h b^ uU asIOM--0j-jlau2t8 1-:uxf	au ea-e l
-e Se AllsuaQ u0111sr pal pu-e pas;t;a ,TOJ 11 • SA A iunauildp '8;£ 421a

s

rt
OOL	L 01	Z OL	£_016aa

P

Y	09.0
of

-	•^\-.^\	^...g^ ---• .ar•ia....•.r..\•a•..•.i.•..rr•ar..r•..r.i^...^...•••..s. L L 6

'^	tea•	••\•.	r-
`	"••	91760

£°L

V L

9'L

0

9°L

L'L

8°L

6°L

07

L`z

z °z .



1 ,Ai

	 /tp	 • jj	 fly // t

	 h'

where

rH(^, Rs, Zpq) Q 1 +	
(31a)

-	 [(l-Zpq)erf^_'^(ZPq) J ri exp(-Rs)'^Z..
	 % .1

I

	exfZ,,f^t'{z+z R (Zpq.) [1 -erf2	 + (Zpq.),	s e^'p ( -R s } erf	 -4TT exp2(-Rs)^
S	 S	 1x

2
Z(1+ZR )[( I -Zpq) - 19(Zp9.)

	

s	 (31b)rL( ^ R s ^ 2pq } l + 1 + 4 ( 1 -Zpq )R s + I 1 + 4(Zpq)R8

Figs.. 3-9 and 3-10 illustrate these two ratios (in dB) as a function

of Rs with 9 fixed and pt = Zpq as a parameter. We observe from

Fig. 3-9 that over a large range of values for R s , and pt, the

minimum mean-squared timing jitter associaLed %v th Cle synchro-

nizer implementation of Fig. 3-5a is larger than that: associated with
Fig. 3-5c. In fact over a wide range of large signal-to-noise ratios,

the ratio given in (Z9) can be approximated--by-

)
^	 a I -}- Z{1-Zpq)	 (3Z)

(^z	 )	 1 + (1-2pq)ZXcmin

Similarly, from Fig. 3-10, we observe that over the range of
parameter values considered, the symbol synchronizer configura-
tion of Fig. 3-5d outperforms that of Fig. 3-5b.

To complete the picture,we compare the mean-squared jitter
performance of Fig. 3-5a with Fig. 3--5b and Fig. 3-5c with Fig.
3-5d so as to determine their relative behavior in the region

between 'small and large signal-to-noise ratios. The motivation

behind :such a comparison is the fact that in this region . of medium. .

signal-to-noise ratios, the appropriate n.onlinearty to be used at

the output of the. in-.phase . armintegrate-and-dump.circuit- as .

63-
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suggested by the MAP estimation theory is neither the signum

nor the linear function Isee Eq. (4)	 Thus, it is not immediately

evident which implementation is preferable in this in-between
signal-to-noise ratio region. Figs. 3--11 and 3-12 illustrate,.

respectively, the ratios (6) f (tr 2 	) and (a•2	 } /(CT	 }
`in b ^i n a	 `min	 mnd	 ` i cm	 m vs. Rs with ^ and Pt as parameters.

3. 5 Further Numerical Results
The S-curves (phase detector characteristics) for the four

symbol synchronizer implementations of Fig. 3- 5 are illustrated

in Figs. 3-13 to 3-1 6 respectively for pt . 5, various values of
window width ^,, and R s as a parameter. We observe from these
illustrations that over a certain range of signal-to--noise ratios,
the various loops exhibit a stable lock point which is one half
symbol (X = . 5) away from the desired lock point at X = 0.
.Although, this midsymbol lock point is less probable than the
one at X= 0, an attempt should be made to resolve it whenever
possible. For sufficiently large signal-to-noise ratios, viz.,
greater than 10 dB, the midsymbol lock point vanishes for the
synchronizer implementations of Figs. 3-5a and 3--5c. On the
other hand, the S--curves for Figs. 3-5b and 3-5d are (for
p = .5) independent of R s . For smaller and smaller transition
densities, pt , the S-curves become more and more symmetrical and
in the limit of zero transition density, i.e. a square-wave data
waveform, the S-curves are periodic with period equal to 1/2,
and thus, the midsymbol and desired lock points are equiprobable.

`Therefore, some form of ambiguity resolution circuit will be
required with the use of these phase detectors.

3.6 Cycle Slipping Performance
Up until now, we have treated the normalized timing error

process, X(t), in the symbol synchronizer as a stationary
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process possessing abounded variance [see Eq. (25)'. This

resulted from the fact that we have in reality been dis cus sing

the behavior of the tinning error reduced modulo Ts , or
equivalently, the normalized timing error reduced modulo 1. To.
completely describe the X(t) process, one must account for the
component of its variance that results from diffusion, that is,
cycle slipping. The steady-state effect of cycle slipping is
perhaps best described by evaluating the diffusion coefficient,
that is, the rate at which the variance of the timing error is
approaching infinity, or equivalently, tine total average rate of
cycle slips, S. The cycle slipping phenomenon in symbol
synchronizers is not unlike the same phenomenon in phase-
locked loops. .In fact, with appropriate .normalizations, the
expressions for S given in Ref. 1 for the phase-locked loop can
be easily generated to apply to the symbol synchronizers of
Fig. 3-5. In particular, it is straightforward to show that

S _	 1
(33)WL 	 z

P exp -P gn0 (x)dx dX s exp P	 gna(x)dx d7^
JO 	 0

where	
^ gn(%)

9 0 (X ) ~ K	
(3`l)

and	 g .

P 
A 2
	

(35)
6X

M1.n

with cy	 determined from (25). The expressions for the loop
S--curves given in (14) can be integrated in closed form.; however,
the remaining integrals in (33) must be performed numerically
on a digital .computer. When this is done, one finds that for all
values of R s 2 . 1, Ss z 100, E s. 5, and pt z 05, the normalized

@j	 62?
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average rate of cycle slipping as computed from. (33) is below

10 10 , Thus, for most practical applications, cycle slipping

will not be a problem.

7	 3.7 Symbol Synchronizer Performance in the Presence of Clock
Frequency Offset

In deriving the results given thus. far, we have made the
assumption that the unknown epoch, e(t), of the input symbol
data stream is constant with .time. Quite often in practice, a (t)

C O +e 1 tf T, Under these conditions, the stochastic differential
equation of (15) becomes

Cl .. KvF (P)E;( k ) + nx(t)	 (36)

and the symbol synchronizer operates in the presence of a clock

`	 frequency offset. Applying t'he Fokker--Planck technique to (36 ),
we obtain a generalization of (21), namely,

Ze lx	 Zf g(X)dX

	

PCM = CZ e P K S(0 7 0) KvS(0, 0)	 (37)

where CZ is a normalization constant. For large . Rs S, the
mean-squared timing fitter is still given by (25); however, the
stress in the loop caused by e l has, as we shall see shortly,
a pronounced effect on symbol error probability performance.
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4, D AVERAGE ERROR PROBABILITY PERFORMANCE OF
CONVOLUTIONALL7 CODED SYSTEMS IN THE PRESENCE
OF IMPERFECT SYMBOL SYNC

4.1 Introduction

Digital comm-anication systems which, by necessity, require

symbol synchronization for successful operation, suffer a perform-

ance degradatiol'i due to the timing jitter associated with the symbol

synchronizer. Accurate assessment of this degradation is essential

in predicting overall end-to-end system bit error date performance.

Regardless of whether the system is coded or encoded, proper

design of the symbol synchronizer loop plays an important role in

reducing the degradation to a minimum. For a given symbol
signal-to-noise ratio, R , symbol. rate)? = 1 /T , and loop band-

s	 s	 s
width W it is desirable to select a configuration which yields

minimum mean-squared tieing jitter and is commensurate with

the requireinenLs on implementation complexity. Several such

configurations for Manchester coded symbols were described in
the previous section,

When the system is uncoiled, it is sufficient to know the
probability density function, p(%), of the normalized timing error
X in order to analytically evaluate the error probability perform-
ance degradation clue to a noisy symbol sync reference, In
particular, assuming that the timing error is essentially constant
over the syrnlLol d-uraticn T s , then the bit error proba'^ ^lity Pb
is given by

Pb = J i I'E0 )p^ A),	 (l)

where

P^(X)	 -,^ e: tc^.t	(] ^; ^l i	 ll ^^t)erfc^,, R ( 1 -4 ^^^^	 l^)E s

^^iJ^̀1^T
+&PRO_

^t^ ::tom 'z uL	 ^. {	 -	 -79-	 f

9

Y

A

1



tn;^eli f"Z(fORIP
P

S^

._ ,	 a_^	 I

and pt is again the symbol transition density.
For convolutionally coded systems, the effect of imperfect

symbol sync on bit error probability performance is, in general.,
more difficult to evaluate analytically and, indeed, in many cases
must be determined by either simulation methods or hardware
measurements. Fortunately, however, for the Shuttle S-band
relay links, suitable assumptions regarding the behavior of the
system can be invoked and an approximate anal}^lcal evaluation is
possible. In the next part of this section, we describe such a
technique and present numerical results for the Viterbi decoded
K=7 rate 1 /3 Shuttle code.

4.2 An .Analytical Evaluation of Performance Degradation due to a
Noisy Symbol Sync Reference

Generally speaking, the presence of a timing error in the
symbol synchronizer causes a reduction in the signal-to-noise
ratio available per symbol at the Viterbi decoder input. If the
loop bandwidth is large relative to the symbol rate, so that the
timing error process varies rapidly over the duration of a single
symbol, them the degradation in average symbol signal-to-noise
ratio is a good measure for estimating bit error rate degradation
in Viterbi decoding. Unfortunately, in rm st practical convolutionally
coded systems, the loop bandwidth of the symbol synchronizer is
considerably narrower (perhaps by several order of magnitude)
than the symbol rate, and thus a more direct approach, namely
direct computation of the bit error rate, is required.

If we examin.e.the symbol synchronizer configurations
previously discussed, we observe that the output of the in-phase
arm integrate-and-dump when passed through a soft qua.ntizer
produces the soft decisions required at the Viterbi decoder input.
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For simplicity of presentation., we shall assume an infinite bit

- quantizer and, thus, the integrate and dump output is fed directly
t,

into the Viterbi decoder. 	 Using previously defined terminology

the integrate -and -d-ump  output z(t) at time kT +c is given. by 1s

h	 1	 kT+e
zk	z(kTs+e)	 =	 Y(t)ps[t-(k-1)T--a]dtJ fT	 ',

s	 (k-1)Ts +e.

^[ak(l-3'X')-ak'X']+ nk , ]^>0+l

--	 (3)

,Ŝ ak (I -3 y^) -ak 	 ):g  Dl ^^	 + n-	 k'

when e
t	 ^

1	
kT+e

n1c	 - Z,	
s	

n(t)ps[t--(k-1)T-e] dt	 (`I)
f(k-l)T

R'

s
and

NEnk}	
0,	 6^	 Enk	

4 ZT	 (5)

_ s .^

Letting k =1 v+m  (1 /v is the code agate), then alp specifically
represents the mth (m T 1, 2, . . .%1) encoder .output symbol
corresponding to transmission of the .nth information bit.

a

The Viterbi: decoder, being a maximum-likelihood decoder,
computes the test statistic (metric) j

Lv	 L	 v

q	 z k a k z 2v+^na.2v E m (6)
k=l	 .9=1 m=1

for all possible sequences of encoder output symbols corresponding
^.

to the transmission of L information bits and chooses the .input-
message that yields the largest value of q.	 The brackets in (6)
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indicate that the computation of q 4,a done :.re ..ree branch at a
time as one sequentially steps through the L branches of the tree.
By choosing the value of L to be several tunes the constraint
length of the code, the selected path through the tree can be used
to decode the first bit in the sequence of L.

Using the decoding metric of Eq. (5), a tight upper (union)
bound to the average bit error probability is (Refs. 1, Z)

Pb s	 nj n.p .	 (7)33
j = drnin

where P, denotes the probability of error in comparing the
3

correct path to an incorrect one which differs in 3 symbols from

it, dminis the minimum free distance of the code, m J, is the number
of paths at distance j (differ in j symbols from the correct path)
and n. is the number of bits each of these paths differs from the

J
bit sequence corresponding to the correct path. In the absence of
symbol sync error, P, is given by

3

P	 z erfc
j	 s	

(8)

for each of the rn
j
 paths at distance j. When symbol sync timing

error is present, the specific location of the j symbols which are
in error along the incorrect path at distance j also affects the
calculation of P.. Thus, P. is, in general, different for each of
the m, different incorrect paths at distance j.' To see this, let

r ^
{ ()	 k 1, 2, . „, L, i l 2, ... , m. denote the sequence of

symbols along the. ith incorrect path at distance j. Such an
incorrect path will be chosen if and only if its metric is larger
than that of the correct .path, i. e.
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1	 r

_r 	Lv	
z a^(i)	

Lv	
z a	 (9)

k-1	 k=l

- -	 or	 -
LV (y)

zk(ak	
_ak)	 z 0	 ( 0)

k= 1
I MLet Si 

(j)further denote the set- of locations where a IM 	 a.,

Clearly S.(j) contains j elements. 	 Thus, from (10), we get that t	 ,L
-'	 the ith incorrect path will be chosen if

j

zkak

ke s (j)

or equivalently,

z a	 C 0	 (12)l^ k
kcS• (j)

Substituting (3) into (12), we find that the probability of selecting

the i th. incorrect path at distance j from the correct path is

_

P.(i)	 Pr	 f5	 [1-3 JXJ -aka'k-a 	 ^	 nkakJ	 ^ (13) P

^
kes. (j )	 keSi(j)

where the	 is determined by the sign of k in accordance with (3).

Since, .froze (5) the random variable 	 nkai^ is Gaussian with

zero mean and variance jN 0 ' / 2 T, we kESi(J) get that

[1 _3 ^`}^akak
P ,	 _ z(i)	 erfc kSi(j) (14)

J s	 j

Finally, then, for a given valve of normalized timing error
i

the upper bound on bit error probability analogous to Eq. (7) is

IDUCIBILITY or, TPLEK
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Pb (^) s	

n 
	 pj(i)	 (15)

j 	 i^lmin

The summation in (14) is upper and lower bounded by

[1 » 3 I ?I"akakI l 1), 1]	 (1-41), I)	 (^ )

keS;(j)
and for reasonably large j is well approximated by.

C l ..3 j %j -aOk_a j),!]	 j EI -.3 I %{ - lXj(l -pt)+ I Xipt]
kes. (j)

J[1-4 XI+?_ I X ip t]	 (17)

with the approximation improving as j increases. Since in comput-
ing the upper bound in (15), the minimum value of j is d min , and

since d 
min 

= 14 for the X=7, ,r--3 Shuttle code (Ref. 3), we shall
use (17) in (14). When this is done P.(i) becomes independent of i

J
and (15) simplifies to

Pb M s	 ri,7xa,{z erfc{	 [1-4 1XI ! 2 j^^ Pt^^)	 (18)
J J

J rd min .

which is identical to (7) (after substitution of (8)) except that
is replaced by VR_ (1-41% 1 +Z.I -K jpt). The average bit error
probability Pb is then upper bounded by

l	
^ .

`z
P s	 n,m. a erfc{ jR 1-4j7tj+2 7^ P
b	 s	 t

l3p(),)dx	 (19)
a 	 J J 

J =drain

Since the union bound of (7) is very tight over a relatively wide
range of bit signal-to-noise ratios R  = v12 s at low decoding error

-84-	 .f	 i



rates, the polynomial curare fit to the simulation results may be

used in place of Pb (?^) of (18) by making in it the substitution
(1-41XI + 2 I%Ipt for , Finally, then,

I

	 1'b ^ 1't(X)P(X)dx
	

(20)

where

log10 PI (X)	 -.IZ06.(7.0 log10 Rb(X)) .. , 50(101og1oRb(X))

1.0706
	

(21)
and

Rb(A) 
A 

Rb (1--4 j %j + Z j%jpt)2

	
(22)

Using the symbol synchronizer configuration in Fig. 3-5a,
Figs. 4-1 to 4-5 illustrate Pb , as determined by the numerical
integration of (20), vs R  for p t = . 5,	 .25., and values of
normalized clock frequency offset 6f/BL 0, . 02, . 04, . 06, and ,. He
The ratio of symbol rate to loop ba.-tdwidth is a parameter on each
of these curves. The limiting curves for 6 400 are determined
from (21) with the substitution.% fif/4BL. For . all practical
purposes, this limiting performance is obtained with a 6 of 2000.
Figs. 4-6 and 4-7 illustrate the bit error probability performance
for other values of transition density and no clock frequency offset.
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