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S UM MARY

An iterative numerical method has been developed for the

calculation of steady, three-dimensional, viscous, compressible flow

fields in centrifugal compressor impellers. The computer code, which

embodies the method, solves the steady three-dimensional, compressible

Navier-Stokes equations in rotating, curvilinear coordinates. The

solution takes place on blade-to-blade surfaces of revolution which

move from the hub to the shroud duri^g each iteration.

Numerical calculations were made for two centrifugal impl-

lers, one with radial blades and the other with backswept blades. The

radial impeller operated in a laminar Reynolds number re g ime. The

backswept impeller problem was used to check out the turbulence model

incorporated in the code. A large vortex was calculated on the suction

blade surface of the radial impeller in the region of the discharge;

such a vortex is qualitatively in agreement with observations. The

V	
backswept rotor calculation did not indicate an impeller separation.

No conclusions can be drawn with regard to the effectiveness of backsweep

in reducing or eliminating flow separation, because the radial impeller

was calculated for laminar flow at a very low Reynolds number (5000),

whereas the backswept impeller problem was calculated for turbulent flow

conditions with the turbulence model operational. Contour plots are

i
presented to show the calculated static pressure in the blade-to-blade

channel. Relative velocity vector plots on various blade-to-blade surfaces

4	
show significant differences with inviscid potential flow solutions in

common industry usage for centrifugal compressor design. It is concluded

the viscous Navier-Stokes solution for flow fields in centrifugal compres-

sors represents a significant advancement in the ability to analyze these

complex types of turbomachinery.

I

ii
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	1.0	 INTRODUCTION

The principal objective of ,.his research effort is to develop

a computer program to calculate the three-dimensional, viscous,

compressible flow field in blading pass^_yes of turbomachinery. At present

the computer program is being applied to the rotating impeller of centrifugal

compressors.

This submittal is a report on the work which has been completed

in Phase I of a two phase program of research and development. Three

main tasks have been completed in Phase I. They are as follows:

1. An impeller computer code was developed and debugged.

2. A radial centrifugal impeller problem was solved.

3. A backswept centrifugal impeller problem was solved.

Phase II of this research effort is comprised of two additional principal

tasks.

4. To speed-up the computer code of Phase I by a factor

between 3 and 5.

5,	 To revise the computer code of Phase I, which calculates

the flow field on blade-to-blade surfaces, to calculate

the flow field on cross-sectional surfaces.

The importance of the cross-sectional calculation is discussed in Section

4.0.

-1-
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2.0	 SYPMOLS

Cp	Heat Capacity at Constant Pressure

Cv	 Heat Capacity at Constant Volume

E	 Specific Internal Energy

H	 Thermodynamic Heat Function or Enthalpy

hx	Metrics of Transformation

by	Metrics of Transformation

hz	 Metrics of Transformation

i	 Unit Vector of Curvilinear Coordinate x

Ad	 Unit Vector of Rotating Cartesian Coordinate of xl

12	 Unit Vector of Rotating Cartesian Coordinate of x2

i3	 Unit Vector of Rotating Cartesian Coordinate of x3

j	 Unit Vector of Curvilinear Coordinate y

J	 Index Specifying Streamlike-lines on blade-to-blada Surface

K	 Index Specifying Potential-like-lines on Blade-to-blade surface

k	 Unit Vector of Curviline- Coordinate z

Ks	 Von Kainnan's Constant

M	 Momentum

m	 Mass

n	 Time Index for Finite Difference equation

P	 Pressure

Ro	Maxium Radius of the Impeller (at the exit)

r	 Radial Coordinate which together with x 3 form a Cylindrical

Coordinate System

Sx	 Grid Velocity Component along x Direction

Sy	Grid Velocity Component along y Direction

Ti-	 Total Laminar Stress Tensor

t	 Time

u	 Particle Velocity Component along x Direction

u	 Particle Velocity Vector

Uop	 Speed of March along z Direction

V	 Particle Velocity Component along y Direction

W	 Particle Velocity component along z Direction

W=W-UOo Velocity along z on a Galilean Frame which rr^vcs with a

Constant Speed Uuo along z with respect to the laboratory frame

X	 Curvilinear Coordinate along Azimuthal Direction



	

I
X 1	 Coordinate Axes of Rotating Cartesian Coordinate which Rotate

+	 about Axial Axis X 3 with Speed w

I	 X2	 Coordinate Axes of Rotating Cartesian Coordinate which Rotate

about Axial Axis X 3 p ith Speed w

	

X 3	 Axial Coordinate

	

Y	 Curvilinear Coordinate along Streamwise Direction (from inlet

to discharge)

	

Z	 Curvilinear Coordinate or. Marching Direction (from hub to shroud)

Svmbols in Greek Letters

Heat Capacity Ratio CpjCv

b	 Boundary Layer Thickness

	

di	 Incompressible Displacement Thickness

	

E	 Eddy Viscosity

	

^U	 Molecular Viscosity Coefficient

Kinematic Viscosity Coefficient

Rotation Velocity of Impeller

Total Stress Tensor

	

tij	
Reynold Stress Tensor

	a	 Pressure Blade Surface Meridional Angle

	

A	 Local Flow Angle Between Pressure Blade Surface and Meridional plane
Density

Shearing Stress at Wall

Viscosity Coefficient for the DeViatoril Strain =--1 u
3

	6	 Azimuthal Coordinate Angle, together witki r and X 3 form

cylndrical coordinate system

-3-
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3.0	 BACKGROUND

In recent years, considerable effort has been spent in solving

the time-dependent, compressible, Navier-Stokes equations for systems with

plane two-dimensional and/or axial symmetry 1,2,3.5,6,7. A single

numerical method was used to solve these two-dimensional and/or axisym-

metric problems. The numerical rr,ethod*is an explicit time marching scheme

in two spatial dimensions. Details of the method are presented in References

4 and 7.

In 1969, under sponsorship of NASA Ames Research Center, a research

effort was initiated to apply the above time-dependent, two-dimensional

method to solve steady flow problems in three spatial dimensions. The basic

idea was based on the Equivalence Principle 8 , which states that for

slender bodies at hypersonic speeds the three-dimensional steady equations

of motion for inviscid flow reduce identically to unsteady equations in two

dimensions.

This principle was extended in an ad hoc manner to a viscous

flow through a model which permits viscous cross flow together with inviscid

axial flow. Figurel shows an ogive-cylinder body at angle-of-attack

with respect to the freestream flow direction; leeward vortices are also

indicated in the figure. The axial coordinate z was made proportional to

a time-like-variable, t, according to the relation

z = U00 t
	

(1)

where Uap is the freestream speed. The two-dimensional Navier-Stokes

equations were solved in cross-sectional planes normal to the system's

axis. The cross section planes were rroved at freestream speed from the

leading edge to the trailing base of the body. The time-dependant flow

field at each cross-sectional plane corresponded to the steady flow at the

z coordinate given by Equation (l). Since the leeward vortices of Ii(jure 1

have axes which are almost parallel to the z axis, the cross-sectional

* The numerical method was originally developed by Trulio.

-4-
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planes of calculation contain these vortices. Althoagh all axial eff?cts

were neglected, this numerical procedure did calculate leeward vortice_;

and produced other flow field results which were generally in accord with

experiment 9.

Subsequenr to the above research effort, a new study was

launched, under NAS A Ames Research Center sponsorship, whereby axial effects

were incorporated in the nun.,^rical procedure and a numerical solution to the

full Navier-Strokes equations were generated by iteration. A or,e-dimensional,

time-dependent radial computer code was used to solve for the steady, viscous,

compressible, supersonic flow field about a cone-cylinder-flare Lody at zero

angle of attack. In three iterations the cal.-ulated boundary layer 4nd shock

wave structure converged. After five iterations a recirculation region

formed at the cylinder-flare junction. Although the computed recirculation

region was much smaller than measured, ccmparisions of calculated shock

structure and boundary layer results with experimental data and boundary

layer theory predictions were satisfactory*.

The above axisymmetric computer ^ode was then revised to solve

for two-dimensional time-independent flow fields. Trulio and Yeung solved

for the supersonic viscous, compressible flow field in a ramp-compression

corner**. As in the case of the con--cylinder-flare junction, the iterative

method did not accurately predict the recirculation region formed at the shock-

wage-boundary layer interaction.

The iteration procedure em ployed for the axisymetric and two-

dimensional flows, described above, was completely reformu?ated to account

for boundary layer separation and the subsequent evolution of a recirculation

regim. The re-formulated iteration procedure was then applies. to the impeller

of a centrifugal compressor in this research effort. Formulation of the

iteration procedure for the impeller problem is discussed in the next section.

*Walitt, L., "Computation of Steady Axisymmetric Flow Using a one-Dimensional

Time Dependent Nuthod, "Applied Theory Report ATR-74-1G-1, Aur .-just 1974, to be

put lished as a NASA Contractor Report.

**Truilo, J.G., and Yeung, H.W., "Iterative Solution of the equations for

Steady Viscous Compressible Flow Rased on Similitude," Aero,pace Research
L,-iboratory, Report No. AR1,74-0138, 1974.

-G-
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4.0	 FORMULATION OF IM.PFLLF:R PROBLLM

A set of finite difference analogs of the full three-dimensional,

compressible, Navier-Stokes equations has been developed and programmed.

In addition to three-dimensionality and compressibility, the following

effects are included:

1. Centrifugal Force

2. Coriolis Force

3. Transition and Turbulence

4. Arbitrary Impeller Geometry

5. Impeller Tip Clearance

A solution to these finite difference equations is obtained in the following

manner. For the radial impeller, an inviscid flow field was generated by

the method of Reference 10. For the backswept impeller, an inviscid flow

field was generated by the method of Reference 39. St,sting from the known

inviscid solution, the viscous effects are calculated through iteration.

Certain terms of the finite difference equations (FDE) are evaluated from

the inviscid solution and other terms are evaluated directly. Terms evaluateu

from the inviscid solution are designated "elliptic source terms", while

those evaluated directly are designated, "parabolic terms".

The distribution of the elliptic source terms and parabolic terms

ire the FDE depends on the mode of marching. At present two modes of marching

are contemplated.

1. The FDE are solved on blade-to-blade surfaces which move

from the hub to the shroud.

2. The FDE are solved on cross-sectional surfaces which move

from the inducer to discharge.

Each method of marching results in its own set of elliptic source term: and

parabolic terms.

For illustrative purposes we start with a schematic of a typical

impeller for a centrifugal compressor shown in figure 2. In the blade-to-

blade mode of marching, the computation takes place on a blade-to-blade

surface, which extends from inducer to the discharge, and moves from the

hub to the shroud during an iteration. The darkened surface of Figure 2 is

the htib blade-to-blade surface. The blade-to-blade method of marching is

-1
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illustrated in the blade passage schematic shown in Figure 3. ':he x, y, and

z coord:.nates of Figure 3 represent a left handed orthogonal, curvilinear

coordinate system. The z - direction is proportioral to the time-like-

variab'ic, t, with the calculation taking place in the (x,y) blade-to-blade

surfaces. The (x,y) blade-to-blade surfaces m-)ve from the hub to the 	 }

shrou3 of th^ impede.. This mode c,f marching accounts for two very important

!	 fluid mechanical effects that occur in imFellerF.

1. Upstream influence effects -

T1ie flow is subsonic re :motive to the moving blades; hence, downstream condition:.

influence upstream conditions. Since: each blade-*o-blade surface extends from

inducer to discharge, the downstream flow czr. influence the upstream flow as

the blade-to-blade surface moves from the huo to shroud.

2. Blade boundary layer separation -

Separations, which occur on the blade surfaces, produce vortices whose axes

are normal to the blade-to- g lade surfaces. Thus, the vortices themselves

are contained in the blade-to-blade surfc.ce and are easily calculable.

The cross-sectional mode of marching is analogous to the body-at-

angle-of-attack problem discussed in Section 3.0. We march down the channel,

from th.i inducer to discharge, in cross-sectional surfaces normal to the hub

surface. A schematic of the blade passage with the c.^uss••sectional surfaces

indicated i.s presented in Figure 4. The z-coordinate, which varies

with time, is now normal to the (x,y) cross-sectional surface of Figure 4.

The (x,y) cro!• s sectional surfaces move from the inducer to the discharge

of the impeller. This mode of marching accounts for three additional fluid

mechanical effects that occur in impellers.

4. Channel corner vortices

At the junction_ of the bl..des and t;e hub, vortices usually fors, whose axes
ti

are generally normal to the cross-sectional surfucca; hence, the corner

vortices would be contained in these surfaces and are easily calculdi.le.

5. Shroud effects -

j	 Relative to the blade E,, the- shroud imposes a moving boundary condition. The

effects of this moving noun:lary condition may induce separation in the

neighborhood of the shroud. This separation is calculable in cross-sectional

surfaces since each surface contains the shroud vertices.

0

-9-
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I %	 Surface y
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I

t	 IG 	
\
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i2	 2)
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FIGURE 4 Orthogonal surfaces in the channel of a centrifu r l,.a impeller
which define the curvilinear coordinate_: x, y, and :-surface

of calculation is the orthogonal surface z constant.
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6. Blade tip clearance effects -

Since the shroud and blade tip are contained in each cross-sectional plane,

spillage in the tip clearance region is calculable in this mode of marching

To properly solve for an impeller flow field, an iteration procedure

with both modes of marching is required. The procedure is as follows.

Starting from an inviscid solution as the "zeroth" iterate, we determine

the first viscous iterate by marching in blade-to-blade surfaces which move

from the hub to the shroud. Based on the first iterate we determine a second

viscous iterate by marching in cross-sectional planes which move from the

inducer to the discharge. In this way the six principal impeller fluid-

mechanical effects, described aNr ,-e, can be accounted for. The second

iterate will be a complete solution to the three-dimensional, compressible,

Navier-Stokes equations for flow in a centrifugal impeller.

The blade-to-blade mode of marching has been developed in Phase i

of this research effort. The blade-to-blade results generated are the

subject of this report.

-12-



5.0	 DFRIVATION OF TF?E INTEGRAL CONTINUITY E9UATION

In this section the integral continuity equation solved on the

(x,y) blade-to-blade surface is derived. This derivation is presented

to illustrate the actual elliptic source terms and the parabolic terms

of the equations of motion. The equations of motion in rotating, orthogonal,

curvilinear, Eulerian coordinates x, y, and z are presented in Appendix A.

The steady three-dimensional equations of Appendix A, in

Eulerian coordinates x, y, z, are transformed to (x,y,t) space according

to the following relations:

z = U OO t,	
a = 1	 a , w = Uco + w '	(2)
dz	 Uo0 6L

where t is a time-like-variable, U is the velocity of the blade-to-blade

surface, w is the velocity component in the z-direction, and •a' is the

velocity in the z-direction. Equations (2) represent a mathematically conven-

ient transformation and lead to a compact set of integral relations; however,

they are somewhat non-physical in that the variable t may no longer be time-

like, having the units z/U .

The conseravation of mass for steady motion relative to the rotating

curvilinear coordinates (x,y, z ) is (Appendix 410 as follows:

a (^"`4,r) 
+ a ^uhyh^)

aX
+	 d ^uhzh Y) = o	

(3)a^ 	 ay

where	 is the density, u the x-velocity component, v :he y-velocity component,

and (hx ,hy ,h t ) are the transformation metrics.

According to Equations (2) the continuity equation becomes:

a (^^, h^-) .+.a ( p u^, 7,h	 +	 L (Pas (pv 4,^;,X) _ - 	 IN' hx l t )	
c4)dt	 aX Y	 y /

The left-hand-side of Equation (4) closely resembles the continuity equation

for unsteady flow in the (x,y) plane. The transformation metrics hx , hy , iz

on the left-hand-side account for the fact that the flow is not p3anar but

,-13-



occurs on a curve.i surface. The term on the right-hand-side of Equation (4)

represents a source term which accounts for the variation of axial velocity

w from the constant reference velocity. This term must be considered known

in the iteration process and is evaluated from the previous iterate in

each successive iteration.

Equation (4) is formulated in the rotating, Eulerian coordinates

x,y,t, however, the calculational process takes place on the (x,y) blade-

to-blade surface (Figure 3) which distorts with time t according to the shape

of the blade surfaces. Hence, we are really interested in the continuity

equation in a generalized coordinate system , ^, 	 , where

t = T

X = f (T , I, C )	 (5)

y 	 ( F , I , Z )

The transformed continuity relation in	 ,'1,	 space, which is derived in

Appendix B, is present: "' below.

1,1,x h y 8A ^o( - S )•^dC — ^^ (^`"'^s•ndC=—^^ ^w'h x 1	 (^)
at	 S	 )	 11

C

	 C	 A

where

= uh y h^	 + v 
h = h ^^	 (7)

_^5 = 5, ^ Ir Z= + S  k, h?j

and dA = dxdy, A corresponds to the area in the

the region bounded by the closed curve^, r̂  is th

in the (x,y) plane, !, k is the coordinate velocity

and	 is the coordinate velocity in direction y

(8)

(x,y) plane contained within

unit normal to the curve

in direction X ( .a, =

Lquations (6)

to (8) represent the conservation of mass theorem in terms of area integrals

in the (x,y) plane and ling integrals evaluated on a curve c in the (x,y)

-14-



plane. The curvilinear effects are accounted for by the metrics hX,hy,

h and their derivatives. The term on the right-hand-side of Equation
z
(6) is an elliptic source term and the second and third terms on the

left-hand-side of Equation (8) are parabolic terms.

-1s-



6.0	 TRANSITION AND TURBUT ENCF

In this section various models of transition and turbulence are

investigated and the proper ones are selected for incorporation into impeller

computer code. Subsection 6.1 deals with the turbulent models, Subsection

6.2 concerns the mixing length theory, and separation is discussed in

Subsection 6.3, and Subsection 6.4 considers transition.

6.1	 Turbulent Models

With the advance of high-speed computers, turbulent flow problems

have become amenable to numerical studies in the past decade. The develop-

ment of turbulent models has contributed substantially to these studies.

Though their progress is still in a preliminary stage, there is no shortage

in the supply of models. The difficulty, from a user's point of view, is to

select an appropriate model for his particular problem. All models of

turbulence are supposed to be general and few cross comparisons between

models are available. However, at the present time there is no definitive

verdict as to the best turbulence model to employ. Thus a good rule in

selection seems to be "the simpler the better".

The adoption of models for turbulence naturally rules out the

relatively more fundamental approach via statistical theory, which might be

academically pleasing but unrealistic in engineering applications. In

general, turbulence modelling is divided into two classes: those described

by one algebric relation, such as the mixing length hypothesis, and those

described by one or more differential equations governing some quantity

like turbulence energy, turbulence vorticity or shearing stress. There

are ntunerous examples in the latter class, generally referred to as the

transport model, for example the classical Kolmogorov model (1942) 11 and

recently the Saffman model (1970) 12	In adopting such a model, one must

solve, in addition to the conscwation laws, several differential equation,

from which turbulence stresses are determined. Limited success can be

claimed in application of the transport models; they all seem to do quite

wall in simple problems like turbulent boundary layers with small pressure

gradients.

-16-



(10)

Let us present herein the Saffman transport model for illustration.

The model contains two variables: the energy density e and a pseudo-vorticity

which are assumed to satisfy the following non-linear diffusion equations.

t -,e^+ a  ^ 
u -e) +*(25L' S`JZ	 'R]^e

+	 + Cr *e/a	 — V e- !^^ IL

^-	 S22 +	 u -2 2	 f	
u	 a u	 y2

at ^^	 ax; () >	 > - l	 ^6Y-Ii 

a	 ^ e ^ nz

dX Z L	 ^ J ^ x;

where: t = time,

xj = Cartesian coordinates (j = 1,2,3)

= mean density

U . = mean velocity components in the j-th direction

/e[ = molecular viscosity coefficient

S.. = mean rate of strain tensor
ID

*	 *	 * c
The numbers

to be universal constants.
*

_	 = 1/2

C)(,* = 0.3
h* __ 0

5/3 `- -//? < 2	 _
4 *	 2

l3	CA

= 2.5, based on experimental data,

and KS the Karman constant.

are assumed by the model

-17-
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Equations (9) an3 (10) are integrated with an appropriate set of boundary

conditions (which are not trivial) to yield a and 0 . The eddy viscosity

E is related to e and _^! by

-	
e	 (11) 
n

Saffman's model is but one of the many available schemes governed

by two equations; some of the others are Chou (1945) 13 , Harlow-Nakayama

(1968)1 4 Jones-Launder (1972)1 5 Ng-Spalding (1972)1 6 etc. They all have a

set of empirical constants, some even parametric functions. The complexity

of the mathematical system and the uncertainty in those constants are

inherent with all the models. Moreover, a set of non-linear diffusion

equations generally introduces a new time scale in the computation, which

is often substantially smaller than the convective or diffusive time scale

for laminar type computation. The two-point boundary value problem also

poses a tedious numerical task. However, the advantage in this kind of

turbulence modelling is also clear; they all attempt to depict the physics

of turbulence transport, generation, dissipation and diffusion. In addition,

some models (such as Saffman's) show the correct analytical behaviour near

the wall (as demanded by the law of wall). The predictive capabilities

for incompressible boundary layer flows by those models are thoroughly

established. Turbulent flows in more than two spatial dimensions, including

separation, compressibility, rotational effects, and containing boundary

layers interaction with shock waves have not been subject to examination

by those models*. In short, the turbulence models, as promising as they

are, have yet to be thoroughly tested by problems more complex than plane

boundary layer flows.

In view of the three dimensionality of the compressor problem,

the desired economy in computation, and the added degree of complication in

-------------------------

*wilcox 17 , applying Saffman's model, has shown good results in the study of

turbulent boundary layer separation and reattachment at moderate (2.9G)



the nonlinear equations, we must seek an alternative to the formulation by

turbulence model equations. The alternative should be able to render a

reasonably good description of the turbulent boundary layer development

without a disproportional amount of computation time.

6.2	 Mixing Length Theory

The mixing length theory herein is the one originated by Prandtl18

and subsequently modified by Van Driest 19 , Cebeci 20 and other researchers

to include the effect of compressibility. The formulation, in comparison

with turbulence models, is quite simple. The Reynolds stress tensor**

ij
is expressed by the eddy viscosity E .

	

`L3	 (
a-`-'_^ 	 a^ - -z d yak ^ ^ 	z
d x , t aXi	 3 ax k 	 J — "Z eSG ^1 	 ( 12)

where	 p E _ -

	

/	 2 Z` i

The eddy viscosity	 is then estimated by the mixing length theory which

subdivides the shear layer into an inner and an outer region. Near the

wall, we have

2 2 2 a^J.E^=KlyDIay`'

where: K1 = 0.4

y = nornal direction from the solid wall

u = velocity component parallel to the wall

D = 1 - exp (A)

26 3.)
P

i	
Y

------------------	 Y Ji

"Total stress tensor 
(-..is 

given by 
fr ij = Tij	

ij, with Tij being

the mean laminar stress tensor.

(13)
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1/ = kinematic viscosity coefficient

shearing stress at the wall

d p/dx = pressure gradient in the direction parallel to the wall.

In the outer region, the so-called Clauser defect law is used.

C o	 k2 Umax o^^	 (14)

where	 k2 = 0.0168

U	 = maximum value of u in the direction normal to the wall
max
S

c
* = incompressible displacement thickness

S
_	 ( - u
	

)dy
uMTX

u

The upper limit Cr in the ^ji * integral has to be defined to suit the compressor

problem. It can be taken either as the mid-point of the channel defined by

the blade-to-blade surface or the location where u 	 occurs+. The eddy
max

viscosity F- is then evaluated by

E	 EL

E,	 if	 F <

A typical variation of E is sketched in Figure S. When the flow

field extends to infinity in the y-direction, C
0 

is often multiplied by

the Klebanoff intermittency factor 2l L

\6

Il	 + 5.5 c b J	 (16)

which effectively makes	
o
F decay away from the wall as it should by physical
^

reasoning. The introduction of V is not necessary in the compressor probl^m.

The mixing length theory has enjoyed a large number of followers

and many successes in applications. Cebeci and Smit} 2 have applied it

successfully to incompressible and compressible boundary layers, with

and without separation 23 , with ma-s and heat transfer2 0 , as well as low

Reynolds number turbulent flows 24,25 . Figure 6 shows a comparison of

results obtained by the mixing length theory 2 with :measurements for a wasted

*
+The definition of 'does not affect the value of 	 for a monatomic

i

velocity profile.
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Lody of revolution. The calculated skin friction coefficient C  and

momentum thickness 8 seem to agree with experiment quite well. Most

recently, Ceboci* successfully applied the mixing length theory to Uie

study of internal flows in area-changing channels. however, the failure

of the mixing length theory in the interaction problem of a strong shock

with a hypersonic (free stream Mach nu or = 8.5) turbulent boundary layer

has also been reported by Baldwin and MacCormack 26. It yields an incorrect

pressure rise estimation on skin friction and heat transfer. However,

the Saffman predictions were also found to be inaccurate in the same problem

by the same authors. One may conclude that the mixing length th^ory, which

is applicable to the attached boundary layer, is perhaps inadeq •iate for

the prediction of separated and reattached flows of the type examined by

Baldwin and MacCormacY.. Again, the same conclusion is drawn for the

transport model, Saffman's in this case. Fortunately, shock-boundary-

layer interactions of this magnitude do not occur in the com?.reesor

problem. The track record of mixing length theory seems to certify its

usefulness.

In almost any discussion concerning the mixing length theory

(or equivalently, the concept of eddy viscosity), the criticism that eddy

viscosity should nn* be a local property inevitably arises. It is indeed

true that turbul- :e is a macroscopic phenomenon marked by eddies of

finite size, and possesses a relaxation time similar to that r.f a vi-.co-

elastic solid. However, evidence has been gathered over the years to support

the concept of a loca l eddy viscosity coefficient. It is believed th..t

the mean-velocity gradient anu the turbulent shearing stress generally go

up and down together, in particular, they go to zero together. The concej,t

of eddy viscosity leads to accurate predictions of velocity profiles c, ►er

a vast range of parametric inputs.
27

In summary, the advantages of the mixing length theory are that

1. It is simple, requirinq no additional differential c-qu.ition

to solve. '11iis is crucial in the coml,ressor calculation, since the existing

routine is complex enough because of the geometry of the compressor.

*Private corununication.
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2. It allows a realistic prediction to be made of the velocity

and the shear-stresses, and the general behaviour of boundary layer flows. 2ES

3. Much experience in the use of mixing length theory has been

accummulated and is available in the literature.

Besides the comment on "local" property, the arguments agai.,st

mixing length theory are as follows:

1. There is no successful evidence in predicting recirculating
i

flows. However, the same comment applies to existing transport models.

2. It implies that the effective viscosity vanis}:es where the

velocity gradient is zero,	 i 	
6U /by I	 Transport models, on the

other hand, do not provide a definitive relation between Eand I d u^ dyl^

they provide a set of differential equations whose solution pre:umbaly

i	 defines L-hat missing relation.

i	 3.	 The mixing length theory takes no account of the convection

or diffusion of turbulence.

IThe development of turbulence models is still in a preliad nary

i stage; much modification to existing models is expected in the years ahead.

In the absence of a clear-cut all purpose model, the one which has been

experimented with the most, has shown the most success, and which is

simplest to use should receive first attention in our compressor studies.

Hence, we selected the mixing length theory as our tool in turbulence

studies.

6.3	 Separation

In general, there are two types of boundary Dyer_ separations:

laminar and turbulent. Separations in compressors or diffusers may occur

either way depending on the inlet conditions. In computational fluid
}
!	 dynamics, various criteria have been examined to identify the spearation
I

point.

i

1
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Separation on a plane or axisymmetric flow is defined by the

point where the wall shear vanishes, namely, 	 0. In laminar flow,

one can monitor the var.iati-n of the wall shear to locate separation. In

addition. there are other simple criterion such as that based on the

momentum integral meth-)d of Uliwaites 29 , and that of Strdtford 30	-ough

Iwhich laminar separation is d-fined. For example, laminar separat .i is

predicted when	 CP, (X dtI'/dx )	 reaches a value of 0.102, where

Cl is the local pressure coefficient and x the streamwise distance from

the leading edge. We shall simply monitor the wall shear and the pressure

d.stribution to pinpoint the laminar separation point.

I

	

	 The prediction of turbulent separation is a much more difficult

task. The current prediction methods can be divided into two groups. li,ese

methods are either of differential type (meaninq that partial differential

equations are solved) or of integral type (meaning that momentum integral

or energy integral equations are solved) { . The Simi-lest integral method

involves the monitoring of the shape factor Ii, H = (5. /6	 is the

incompressible displacement thickness, 9.
r 

the incompressible )%omentum

thickness). When H reaches a certair, value (H = 2.8 is used by "IcNally3l,

and the range between 1.8 and 2.4 is frequently cited), then separation of

the turbulent flow is assumed to occur. Again, we shall just monitor the

wall shear and extrapolate it to zero for the location of the separation

point. In past computations, the peak of the wall pressure and the vanishing

of the wall shear locate separation jointly.

In short, we hall introduce no additional critcrioi, for the

determination of laminar or turbulent separation otter than its natural

definition through the vanishing of wall shear. Since we solve the full

Navier-Stokes equations numerically, we do not have to change governin(j

equations after separation takes place.

+The 1068 AFOSR-1111-Standard Cot,ferenco on "Computation of 'IUri)ulent Boundary

Layers" provides a critical evaluation of these method::2H.
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7.0	 RADIAL I?a'YL TLER PROBLEM

To fully describe the debug problem selected, which was designated

as "Problem 1.0", nine items are discussed. They are (1) input conditions,

(2) geometry in cylindrical coordinates, (3) curvilinear coordinate

system, (4) boundary conditions, (5) meshes, (6) inviscid solution, (7)

medium viscosity, (8) constant speed, Uco , at which the blade-to-blade

surfaces of calculation move from the hub-to-the-shroud, and finally, the

results (9) of the numerical comptitation for problem 1.0.

	

7.1	 Input Conditions

The radial impeller which served as the debug prob l em was selected

by Dr. T. Katsansis of NASA Lewis Research Center. Input flow properties

for the problem are as follows:

laboratory inlet total temperature = 536 OR

laboratory inlet total pressure = 861 psfa

rotational speed = 4031.70 rad/sec (38,600 rpm)

apecific heat ratio = 1.667

gas constant = 38.73 ft/OR

The above specific heat ratio and gas constant are for Argon.

	

7.2	 Geometry

The radial impeller geometry is presented in the cylindrical

coordinates r, 9, and x3. These coordinates are defined in Figure 7 in

terms of Cartesian coo^-., nates X1, X2, and X3. The sense of the angular

rotation is also indica '̂ed. Ic is seen from Figure 7 that a left-handed

coordinate system is being employed. Figure 8 pres:nts traces of the hub

and shroud lines in a half-plane through the axis of the impeller, i.e., a

meridional plane. The hub and shroud radial coordinates are presented as

functions of axial distance. solid lines indicate the actual geometry of

the machine, while dashed lines indicate formula approximations. The hub

is approximated by an ellipse with its major axis on the radial axis, and

the shroud is approximated by a super-ellipse having its major axis in the

axial direction. The elliptic and super-Elliptic formulas are also shown

in Figure 8. The dashed hub and shroud line: extend above the discharge,

so that the region of calculation contains the discharge. The hub elliptic

formula approximation produces an inlet area about 9% greater than U..
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actual inlet area. Although approximate, the hub formula simplified
I

development of the IFFC computer code. The angular coordinates of the

pressure and suction blade surfaces are shown in Figure 9 as functions of

axial distance X 3 . The solid lines indicate the traces of the blades on

the hub, while the dashed lines indicate shroud blade traces.

7.3	 Curvilinear Coo rdinate System

An axisymmetric orthogonal, curvilinear coordinate system was

used to solve debug Problem 1.0. Consider the curvilinear coordinates

x,y, and z. The surfaces x = constant were selected as half-planes through

I	 the axis of rotation of the machine, i.e., meridional planes. The surfaces

y = constant and z = constant were obtained by rotating two orthogonal curves

in the meridional plane about the -Axis of rotation of the machine. Since

the hub was approximated as an ellipse, elliptic coordinates were used to

establish the y and z surfaces. A family of confocal ellipses defined the

z surfaces and a family of hyperbolas, orthogonal to the ellipses, defined

the y-surfaces. Consider the interior ellipse shown in figure 8. This

ellipse is labelled with the constant value z =-1.195. The value of z

is determined from the following formula:

tanh z	 B
A
	 (2)

where B and A are the lengths of the minor and major axis, respectively,

of the interior ellipse. The negative sign permits z to increase as the

blade-to-blade surface moves from the hub to the shroud. The orthogonal

hyperbola to this ellipse is labelled hitil the constant value y. The value

y is defined as the angle the asymptote of the hyperbola makes with the

radial axis.

The transformation equations from cylindrical r, C, x 3 space to

}
	 curvilinear x,y, z space are shown below:

r = Ro= C Cosh Z Cos y

1	
9 = X	 (3)

I

X 3 = C Sinh Z Sin y

where Ro is the maxium radius of the impeller and C is the focus of the

elliptic and hyperbolic coordinates. Formulas for the metrics of trans-

-28-
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formation Equations (3),i.e., hx,hy,hz are derived in Table I as well as

their derivatives. Application of Equation (3) to the geometry of Figures

8 and 9 results in the transformed geometry in the x,y,z space. The trans-

formed geometry is shown in Figures 10 and 11. F'_gure 10 presents the hub and

shroud lines in the y,z, plane. The hub is a horizontal straight line, since it

is an ellipse. The shroud is still a curve, since it is a super-ellipse

with a reversal of major and minor axis with respect to the hub ellipse.

The interior ellipse of Figure 8, corresponding to z = -1.196 radians, is

shown as a dashed horizontal straight line. Figure 11 shows the pressure

and suction blade surfaces in the (x,y) plane. The solid lines indicate

the blade traces on the hub, while the dashed lines indicate the blade

traces on the shroud. In curvilinear space the calculation will take

place in (x,y) planes which move from the hub to the shroud as the

parameter z increases.

7.4	 Boundary Conditions

Boundary conditions for the impeller problem in the (x,y ) planes

of calculation are indicated in Figure 12. At the upstream boundary

of the region of calculation uniform inlet conditions are specified.

Along the pressure and suction blade surfaces no slip flow is enforced.

At the lateral boundaries upstream of the inducer and downstream of the

discharge periodic boundary conditions are enforced. Finally, the back

pressure is specified at the downstream boundary of the region of calcu-

lation.

To expedite development of the IFFC computer code, the upstream

boundary was placed at the inducer in the solution of debug Problem 1.0.
I	

Inviscid conditions, Ciscussed in Section 7.6, were prescribed along the

upstream boundary. However, it is emphasized that boundary conditionz

Figure 12 will be employed in the solution of all problems subsequent to

the debug problem.

7.5	 Meshes

From Figure 11 it is seen that the (x,y) blade-to-blade surface

distorts as z increases from its value at the hub of z =1.22524 radians

to z= -1.14 radians near the shroud. Since the blade shape in the (x,y)

plane distorts with z, the finite difference mesh must distort as well.

Thus, a subroutine was developed to automatically distort the finite

difference mesh in accordance with the blade geometry. Two meshes,
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corresponding to z - - 1.22524 radians and z --1.14 radians are shown in

Figures 13 and 14, respectively. Each mesh is formed by the intersection

of 20 streamline-like-lines and 39 potential-like-lines, i.e., 780 points.

The streamline-like lines are spaced closer in the vicinity of the blades

than in the center of the blade passage.

7.6	 Inviscid Solution

In order to solve the equations of motion shown in Appendix A,

the inviscid solution is required. The inviscid flow field serves two

purposes. First, tine inviscid field at the hub provides initial conditions

for the viscous calculation: for debug Problem 1.0 the hub boundary layer

was neglected. Second, as discussed in Section 4.0 the inviscid flow

field is the zeroth iterate in the interation procedure.

The inviscid flow field for debug Problem 1.0 was solved for by

Vanco (Ref. 36) using the meridional velocity gradient method of Katsanis

(Ref. 10). The velocity vector and pressure fields were calculated on the mean

mean hub-to-shroud stream surface of the impeller channel. These proper-

ties were specified along five streamlines, as well as the suction and pressure

blade velocities associated with each r, X 3 point along the streamlines.

At a given mesh point in the flow field the velocity vector,

specific internal energy, pressure, and density were determined in the

following manner. First the velocity vector was found by linear inter-

polation in the inviscid field of Vanco. The rothalpy, H = E +W2/2-r2 w 2/2

which is invarient along inviscid streamlines, was then used to compute the

specific internal energy in terms of the velocity and radius at the given

point, i.e.,	
(	 2	 2 2

E	
Eo	 1	

2
1 -	 EO	

J	
(4)

	

l	 ^Eo

where Eo is the inlet stagnation specific internal energy in the laboratory

frame, W is the magnitude of the relative velocity vector, r is the local

radius,W is the angular velocity and Yis the specific heat ratio.

Pressure was calculated from the given mean stream surface pressure by

assuming insetropic flow along each blade-to-blade circular arc associated

with r and X3 . The density was then determined from the equation of state.

(^ l) r
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The flow field above the discharge was computed from relations

governing flow in a vaneless diffts:r. The mass, angular momentum in a

laboratory frame, and rothalpy were conserved. The viscous mixing above

the discharge was partially accou ved for through an entropy gains the

density at the downstream boundary was reduced to 95% of it ' s isentropic

value.

The inviscid relative velocity field at the hub, z 	 - 1.22524

radians, is shown in Fig.15. These vectors have magnitudes proportional

to the particle velocities in the (x,y) plane; their tails emanate from

the mesh points of Figure 13. The 0 symbols indicate the pressure and

suction blade surfaces. A value of 172 was added to the angular x values

of Figure 13 to produce positive ordinate values. The locations of the

pressure and suction blade surfaces are reversed between Figures 13 and 15

because the abscissa of Figure 15 is located on the top of the page, while

the abscissa of Figure 13 is located on the bottom of the page. It is

seen from Figure 15 that the velocity profile is linear between the

pressure and suction blades. Furthermore, Mach number calculations in

the vicinity of the inducer indicate transonic flow. For example, at the

upstream boundary of the region of calculation, i.e., the inducer, the

suction blade Mach number is .95.

7.7	 Medium Viscosity

i
	

The meshes of Figures 13 and 14 have zone widths in the neighbor-

hood of the suction and pressure blades which arc too coarse to define
1
i
	

a thin boundary layer. For example consider the inviscid field at the hub
f
	

shown in Figure 15. At the inducer the suction blade Reynolds number per

foot for Argon is 2.09 x 106 . The hub ellipse is .26 feet in arc length,

f
	

so based on this dimension the exit Reynolds number for Argon is about

1
	

545,000. This Reynolds numbe p would probably produce a turbulent boundary layer

thinner than the width of the first layer of zones adjacent to the suction

blade surface. Therefore, to resolve the boundary layer with the meshes

of Figures 13 and 14, a Reynolds number reduction is required.

Flat plate analysis indicated that for an inducer suction blade

Reynolds number of 20,000 per foot, the laminar boundary layer at discharge
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is contained in about five zones of the mesh. Based on the arc length

of .26 feet of the hub ellipse, the discharge Reynolds number is then

5000.

Therefore, in order to get meaningful results with the meshes

of Figures 13 and 14 it was necessary to invent a fictious medium having

the compressibility properties of Argon and the viscous properties

appropriate to a Reynolds number of 5000. Thus, the flow field of

debug problem 1.0 is quite far from actual impeller flows aad can only be

considered in a gsalitative sense.

7.8	 Specification of Uco ; Speed at which Blade to Blade Surfaces

of Calculation Move from Hub-to-Shroud

To run debug Problem 1.0, the speed U ca 	 at which the (x,y)

blade-to-blade planes move from the hub to the shroud must be specified.

The final steady solution will be independent of U 00 ; however, intermediate

solutions will depend on the magnitude of U Qp . The speed Uoo must be

small enough to permit viscous diffusion effects at the blade surfaces to

build up boundary layers which subsequently separate. The time it takes

a particle at the inducer to travel to the discharge is the characteristic

time, t , for boundary layer build-up (Reference 3).

The speed U,, was determined in terms of the characteristic

time t in the following manner. Consider flow along the suction blade at

the hub. The average velocity is about 583 fps and the hub arc length is

.26 feet. Therefore, the characteristic time is .444 ms. Since the

time it takes the boundary layer to develop is t, let us assume that another

characteristic time is necessary to permit the boundary layer to separate.

Hence, approximately 2t characteristic times are required for the (x,y)

blade-to-blade plane to go from the hub to the shroud. If 1.9 character-

istic time passes in the time period that the (x,y) blade-to-blade surface

moves from the hub to the shroud, then the appropriate speed is U,,=

21.8 fps.
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7.9	 Radial Impeller Numerical Results

Problem 1.0 was run 750 cycles*, or long enough in time

(	 for the z parameter to increase from z = -1.22524 radians at the hub to

z - -1.194 radians; the (x,y) blade-to-blade plane moved approximately-37t

of the total increment in z between the hub and the shroud at discharge.

This partial solution of Problem 1.0 required 23 minutes on the CDC 7600

computer.

Shortly after the calculation commenced, it was found that there

was a mass imbalance in the initial conditions. The elliptic formula

approximation to the hub geometry (see Section 7 .2) increased the inducer

flow area by 9% from the actual flow area. Vanco's inviscid solution was

not corrected for this geometry change. Therefore, a mass imbalance was

produced in the initial conditions of Figure 15; more mass flux entered the

system than exited from the system.

The mass imbalance is indicated in pressure distributions along

the blade surfaces. In Figure 16 pressure distributions on the pressure

blade surface are shown for three values of the z parameter. The

abscissa of Figure 16 represents the angular coordinate y, while the

ordinate is the ratio of the local to inlet stagnation pressure, i.e.,

p/po . Curve 1 represents the initial pressure blade distribution at

z = -1.22524 radians; the initial exit pressure ratio is 1.635. Curve 2

represents the distribution 100 cycles after the start of calculation,

i.e., z = -1.2189 radians. There is a pressure peak in the center of the

channel followed by a deep rarefaction in the radial portion of the

impeller. The deep rarefaction and fixed high exit pressure induced back

flow at the downstream boundary, a condition of impeller surge. To prevent

surge the back pressure was lowered to a ratio of 1.47. At the lower

back pressure level outflow was maintained at the downstream boundary and

the problem was continued.

*A cycle of calculation consists of updating the dependent variables

of motion throuy'i one timestep over all the mesh points.
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The pressure wave and trailing rarefaction calculated at cycle

100 started moving towards the inducer and the solution in the radial

portion of the impeller converged. Convergence was demonstrated by

inspection of the flow field over a small change in the z coordinate. For

a given small change it z the flow field in the radial portion of the impeller
changed slightly, while flow near the inducer changed markedly. Curve

3 of Figure 16, which corresponds to cycle 550 or z =-1.196 radians, is

converged in the radial portion of the impeller. The solid line represents

the converged region of -'he flow and the dashed line represents the un-

converged region.

The upstream moving pressure wave finally impacts the upstream

boundary, reflects from it, and amplifies. The inviscid conditions

prescribed at the spzt:eam boundary cause reflection and amplification

of the pressure wave. This same phenomenon was observed in previous

cylinder calculations started from impulsive initial conditions (Ref.2).

Problem 1.0 cov'S not be continued beyond this point without moving the

upstream boundary upstream of the inducer.

The three-dimensional flow field in the radial portion of the

impeller has converged and is very interesting. Results are presented

for the radial portion of the imp°ller in the remainder of this section.

The sequence of events as the flow develops in the impeller

channel is illustrated in the velocity vector plots of Figures 17 and

18. Figure 17 shows a velocity vector plot at cycle 100 (z = -1.2189

radians) and Figure 18 shows the velocity field at cycle 450 (z = -1.991

radians). In Figure 17 bo,•.ndary layers are seen on both the pressure and

suction blade surfaces. A flow instability is beginning to occur at the

downstream end of the suction blade surface. At cycle 450 (z = -1.991

radians) the flow has converged in the radial portion of the impeller.

A thicker pressure blade surface boundary layer than present at cycle 100

is clearl indicated in Figure 18. Furthermore, the suction blade boundary

layer has separated and a large vortex is in evidence on the suction bla-'e

surface near discharge. The vortex takes up almost half the channel

width between blades. The reduced channel flow area causes an acceleration

of the flow about the vortex; large vectors are in evidence just above the

vortex. This large vortex is consistent with the size of vortices previously

t
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determined about cylinders at low Reynolds number (References 1 and 2).

A comparison of viscous and inviscid velocity fields is pre-

sented in Figures 19 and 20 on an (x,y) plane of calculation which has

moved about 33% of the total increment in z at the discharge. In the

viscous flow field of Figure 19, which corresponds to cycle 550

(z = -1.196 radians), the separated region has grown larger and feeds

into the boundary layer on the suction surface. The subsonic nature

of the flow causes the suction blade velocity vectors upstream of the

separation to adjust to the vortex. Figure 20 shows the corresponding

inviscid flow field at z = -1.1960 radians. Due to the absence of viscosity,

the inviscid suction blade flow does not separate.

The velocity field in the radial portion of the impeller at

the final cycle calculated, i.e., cycle 750, is shown in Figure 21. A

well formed vortex is seen in Figure 21 which extends aft of the discharge.

A reversed flow profile is clearly seen in Figure 21. The results of

Figure 21 indicate that the velocity field is highly non-uniform above

the discharge plane.

A comparison of the viscous and inviscid pressure distributions

in the radial portion of the impeller is presented in Figure 22. These

data correspond to z = - 1.196 radians or on an (x,y) blade-to-blade

plane of calculation which has moved 33% of the total z increment between

the hub and shroud at discharge. The pressure surface comparison (Figure

22b) indicates that the viscous pressures are no more than 8% high than,

the inviscid pressures upstream of the station in the channel where the

back-pressure influences the discharge flow. The lower back-pressure in

the viscous suction blade surface pressure of Figure 22a drops off at

the separation point to nearly coincide with the inviscid solution. The

rapid drop in pressure in the viscous case is consistent with the in-

crease in the flow velocity just above the vortex (see figure 21).

Although the flow field in the inducer region has not yet

converged, it is clear that the IFFC computer code has duplicated,

at least qualitatively, the flow phenomena that have been observed to occur

in the radial portion of an impeller (Ref. 37). We therefore conclude that

the IFFC computer code works for laminar flows.

-45-

i



Ln

O
0

V)

f

V)
I

b

M

X11
X11

^i11
X11

X11

N	 /

^	 .1111
k	 ^11^111
0.,.^11111

X111111
.11111
X1111111

.1111 A I

•AA/

u

4

^6
w N p

to^

^V,
w 8

^N

ol

w

w .°o g

q 1 1y

U ^ 5
VI	 N

M

f Vl

0 ^ N
O

a 
w 

m
K O O

►MI `

.^^]1 Z

>

y 

m

b 

'^C

> F

r 99w a

C^^nF

P

U
v
w

b

0
N

N0

N

0

V)
r

fn

O

t0

in

0

'b b 	 0.65	 0'.80	 0'.95
>a, radians

\\ \

1.40	 1.55	 1.70	 1.85	 2.00

—46—



V)

O
p

r

('	 In
10

S	 ^

t	 N

0
N

r

V)

5

N

a
N

A

j

a

0
M

V)r
Cl)

O
W

In

V)
v

M

O

('f.

r
M

s

U
H W
H o

^^ H M
W n

(a] H ,^1

o ^

a
t ^ ^

Gi H N

x ^ n

:3	
z

p
W i0 ^'1

^ O W

H	
I ct

p 1 p QH
U u a C
U)	 m cn

5 
N	 ri

i
H Q W Q 1

co is R
x: U G Q
H F

k. :1 U,
O .1

O I' 1
F J Q n

W

^̂aoz^^
Fi Gl H L
U U I
W ^L C ) 4,:

yQyv^^
F w C1

U 1.1	 `,?+

I cn

^' ^ a el
H I Lt. •`
Ft w a F

.7 '^ W 10N

O
N

W

I,^	

W

o	 -47-0

^b.50	 O.GS	 0.00	 0.95	 1.10	 1.25	 1.40	 1.55
	

1.70	 1 -05



	

I	 i	 i	 i

i

	

N	 -

1l 1 ^^ ^	 n\ ^^	 a <

boa

I ^ \1 ^t^`1	 ^	 1	 O ~05

I	 ••	 !. 1	 ^`	 1^	
o^Wx

wWa<
I	 ^ ri,^^ ^\ ,^ ^ 1	 a^ y m

	

•	 'I
rr
	 ^	 ^;'^^ I C I	 w u p z

1^ I 1`	 1^ 1^J^^ I	 cnum2] < rF
1' ^1''^' +	 1 1 1	 z

tVII 	 o^g^
I	 in F W

ul

go

	

M	 ±	 uy	, '1 I^I• irI1^.i ji^. ,f'i	 z.<-10G

r	 nr'n	 I ,	 F ~^
r ^I+^i/^+/ ^^r^f4^li( ^;+ i 	o	 o W Q

to

IL 0

1 /^^ I'rl f)1+'; :' ^ '^!^	 w 0.H

`Vuj v C

	

^t	
I	

II it	
I' II ,	 i,^'^I'^	

W N Q
7_ <

II 

Fs->*r
al , 	' l _ 	

wj

	

M	

A^	 -
I

I	 1 'r	 r ^/ f` r	 W

ti	 4-	 IIII

1	 ^	 t	 II^ ^.fl^l

^	 ,111.1,1)• 1 , ' ;

o	 1	 1	 ^^ 1.l^.; 'I 1
IO

^	 r1	
I	

1`.	
^	 ^^^

0.50	 0.65	 0.00	 0.95	 1.10	 1.25	 1.40	 1.55	 1.70
X, radians

-4$-

1
'	 I

i

i	 ^	 I

< m



1.80

1.60

1.40

1.20

0a
a

1.00

m

1.40

1.20

0
1.00

a

.80

.80

	

3.8	 4.0	 4.2	

4yy.4 77^^ dd11aa4.6

	 4.8	 5.J

	

FIGURE 22b	 COMPARISON OF VISCOUS AND'IN$IS ?B PRESSURE VARIATIONS ON TIII:
RADIAL PORTION OF 711E IMPELLER; z = -1.1960; PRESSURF SURFACE;.
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RADIAL PORTION OF THE IMPELLER; z = -1.1960; SUCTION "UJ-YAC:.
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1

8.0	 BACKSWEPT IMPELLER PROBLEM

A proof of principle impeller problem was run to check out the

turbulence model which had been incorporated in the IFFC code. The impeller

geometry, which was selected by Dr. T. Katsanis of the NASA Lewis Research

Center, was that of an advanced backswept compressor developed by CREARE, Inc.

The basic geometry and design operating conditions of the backswept impeller

problem were as follows:

Rotational speed	 75000 RPM

Tip diameter	 15.95 Cm. (6.28 in)

Design pressure ratio	 8:1

Inlet total pressure	 2117 lb/ft 2

Inlet total temperature	 519 ° R

Impeller tip speed	 2055 ft/sec

Discharge Reynolds Number*	 1.43 x 106

The rotor geometry is presented in the cylindrical coordinates

r, 6 , X3 in Figures 23 and 24. Figure 23 presents traces of the hub and
shroud lines in a half-plane through the axis of the impeller, i.e., a

meridional plane. The hub and shroud radial coordinates are presented as a

function of axial distance. The hub and shroud lines extend upstream of

the inducer and above the discharge so that the region of calculation

contains them both. The angular coordinates of the pressure and suction

blade surfaces are shown in Figure; 24 as functions of axial distance X3.

The solid lines indicate traces of the blades on the hub, while the dashed

lines indicate shroud blade traces. The regions upstream of the inducer

and downstream of the hub are also indicated in Figure 24.

A fine finite difference mesh was incorporated in order to

adequately define the boundary layer. The mesh consisted of 30 J-lines

(streamline-line) and 101 K-lines (potential-like). A grating factor

(g) of l.Cli was used to space the J-lines. The hub plane mesh is illustrated

in Figure 25 and the blade-to-blade surface 23% of the distance between

hub and shroud is shown in Figure 26.

The invicid flow solution for the backswept impeller was solved

using the meridional finite difference method of Reference 39. The hub

inviscid flow field, which serves as the zeroth iterate for the viscous

calculation, is shown in Figure 27. It is noted that at the inducer

inlet the relative velocity is roughly the same on both the blade

pressure and suction surfaces. The velocity profile remains relatively

*Reynolds number based on an average inviscid relative velocity along the
hub and distance along the hub.
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constant until approximately half way through the channel, when the suction

blade velocity becomes significantly larger than the pressure surface velocity.

This result is not in agreement with observed flow phenomena for centrifugal

i
	 impellers. That is, the low-flow region is observed to occur at the suction

blade surface near the discharge.

Substantially different results were obtained for the viscous

solution to the backswept impeller problem. Relative velocity plots for

the blade-to-blade surface 19% of the distance from the hub to shroud are

shown in Figures 28-30. The inducer region, which is shown in Figure 29,

has a slight separation on the blade suction surface near the inlet. At

the discharge the flow velocities near the suction and pressure surfaces

and across the channel are nearly equal, whereas the inviscid calculation

(Figure 27) predicted very low velocities on the pressure surface. There

is no indication of a suction surface separation at the discharge like

that obtained in the radial impeller problem. No conclusion can be drawn

with regard to the effectiveness of backsweep in reducing or eliminating

flow separation because the radial impeller was calculated for a very low

Reynolds number (5000) with la_-ninar flow, whereas the backswept impeller

was calculated at a high Reynolds number (1.43 x 10 6 ) with the turbulence

model operational.

The viscous solution for the surface 728 of the distance between

hub and shroud produced relative velocity profiles shown in Figures 31-33.

The results were similar to the 19% surface except that the velocity

gradient near the suction blade surface was not so pronounced. Also,

except at the inlet, the velocity profiles were relatively uniform from

blade-to-blade and continued to be so all the way to the discharge.

The solution for the 988 surface, shown in Figures 34 and 35

produced results which were similar to the 728 surface calculation.

Likewise, the 99.958 surface, which is shown in Figure 36, looks much

like the 988 surface, although the 99.958 surface is located in the tip

clearance region. There is no blade to influence flow at this surface,

but the relative velocity plot shows that the blade viscous effects are

felt despite this fact. Indeed, the relative velocity (boundary layer)

profile near the hypothetical blade surface is much like one would expect

if a blade were present.

The static pressure contour plot for the 988 blade-to-blade

surface (z = .22451 radians) is shown in Figure 37. The static pressure

ratio shown is referenced to the inlet stagnation pressure (P 0 ). There

is a region of low static pressure near the inducer inlet (P/P o = .8) on

the suction side of the channel, which indicates a region of accelerated
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flow due to the airfoil. The inducer or axial-flow portion of the channel

decelerates the flow steadily until there is a static pressure ratio of

about 1.4 as flow begins to enter the radial portion of the rotor. The

rate of static pressure rise thereafter is increased rapidly because of

the rotor centrifugal energy input. Finally, at the discharge an average

channel static pressure ratio of about 4.6:1 is achieved and there is a

relatively uniform profile across the channel. There is no separation

indicated because the static Pressure rise continues throughout the radial

portion of the flowpath. This is attributed to the stabilizing influence

of the backswept blading.

Very similar results are illustrated for the 99.95 % surface

(Figure 38), which is located in the tip clearance region at the shroud.

In Figure 39, hub, 19% and 778 surface calculations of suction surface

static pressure ratio ( P/P O ) as a function of Y (axial coordinate) are

shown. These results also indicate the absence of separated flow because

diffusion continues all the way to the discharge.

Relative velocity ratio contour plots are presented in Figures

40-43 for the blade-to-blade surfaces located 19%, 72%, 92 `x, and 99.95%

of the distance from the hub to the shroud. The relative velocity ratio

VjV*, is the ratio of flow velocity to critical flow velocity according

to the following*:	0.5

V/V* = M+1
2+(^-1)M2

At the 19% surface (Figure 40) the contour plot indicates roughly sonic

relative velocities at the inducer inlet with diffusion down to a velocity

ratio of .4 - .6 at the impeller discharge. The cont-, lr plot for the 92%

surface, which is shown in Figure 42, suggests that most of the flow at

the inducer tip is at a relative velocity ratio of 1.2 or higher. A

smooth, even diffusion rate is indicated, and a relative velocity ratio

of roughly . 6 is obtained at the discharge.

Contour plots of relative total pressure ratio are shown in

Figures 44-46. Relative total pressure ratio is defined as the

stagnation pressure calculated at a given point divided by the ideal

stagnation pressure which would have occured if the process were isentropic.

*where M is defined as the ratio of the local relative velocity and the
local sound speed.
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The contour plot of the 19% surface, shown in Figure 44, indicates that for

most of the flow the relative total pressure begins to deviate from ideal

conditions at about 40% of the meridional distance through the passage. At

the discharge a value of the relative total pressure ratio of roughly .92 -

.96 is calculated for flow in the mid-passage. Tha regions of low total

pressure are observed to be near the suction and pressure blade surfaces.

Similar results are indicated for the 72% and 92% surfaces shown in Figures

45 and 46. At the 98% surface it is observed that a region of relatively

high (.96 - .98) total pressure ratio occurs at the discharge in the mid

passage region. Again the main flow losses are calculated to occur near

the blade boundaries.

An independent boundary layer computation, using Mager's integral

turbulent boundary layer analysis 
(40), 

was performed to verify the numerical

separation characteristic. The calculated suction blade momentum thickness

© in the boundary layer for the 19% and 77% surface calculations is shown

in Figures 47 and 48. Since the ratio of (H) to the initial value QH i stays

relatively constant downstream of the initial inducer portion of the channel,

there is no separation and no reduction of static pressure rise capability.

Nowhere does the suction blade momurtum thickness go below its initial value;

hence, turbulent boundary layer theory indicates that the suction blade flow

should :.ot separate.

Distributions of the ratio of eddy viscosity to the molecular

viscosity along the suction blade surface are presented in Figure 49.

The boundary layer turbulence is generally increasing along the blade,

especially in the radial flow region prior to discharge.
I

The viscous calculation of the backswept impeller flow field with

1
	 the IFFC blade-to-blade computer program ran 8073 cycles or surfaces from

i	
hub to shroud. The 30 x 101 mesh consisted of 3030 zones and required 9.3

i	 hours of computer time on the CDC 7600 computer to complete the problem.
1

It is recommended that additional efforts be made to reduce the comput-

I
	

ational time requirement to make this solution a practical tool for

utilization by the compressor aerodynamicist.

W
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9.0	 CONCLUDING REMARKS

A viscous blade-to-blade computer code for computing the flow

field in centrifugal impellers has been sucessfully developed. The program

was used to calculate the flow field of both a radial and backswept com-

pressor impeller. Whereas the radial impeller problem indicated a large

separation region on the suction blade surface near the discharge, the

backswept impeller calculation, which included the mixing length turbulence

model, did not separate. No conclusions can be drawn with regard to the

effectiveness of backswept blading in reducing or eliminating flow separation,

because the radial impeller was calculated for laminar flow at very low

Reynolds number (5000), and the backswept impeller was calculated at a high

Reynolds number (1.43 x 10 6 ) with the turbulence model included.

The backswept impeller problem requires 9.3 hours of computer

time on the CDC 7600. It is rec-onended that an effort be made to improve

calculation efficiency to redu.=e the costs associated with the blade-to-blade

soLition. Also, it is recommended that the IFFC cod, be modified to provide

the additional capability of calculating the flow in cross-section com-

putational planes. This modification will enable the program to calculate

shroud viscous effects, tip clearance effects, and corner vortices.
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Appendix A

DEVELOPMENT OF EQUATIONS OF MOTION IN ROTATING

ORTHOGONAL CURVILINEAR COORDINATES

The coordinate system upon which the iteration takes place controls

convergence of the calculational procedure. 	 Since flow is

confined to an impeller blade channel, a generalized coordinate system,

whose axis follows the channel geometry, will be utilized to converge

the iteration as rapidly as possible. Consider the generalized coordinates

(x,y,z) shown in Figure Al; the surface x = constant is a mid-channel surface,

surface y = constant is a blade-to-blade surface, and the surface z = constant

is an orthogonal channel surface. The transformation of cartesian equations

in coordinates, X l , X2 , X3 to the generalized curvilinear coordinates x,y,z

is presented in the following paragraphs. The development takes place in

the following three steps:

(1) The metrics and generalized basis vectors are derived.

(2) Coriolis and centrifugal acceleration terms are developed

in generalized coordinates.

(3) The generalized equations of motion are presented.

The rotating cartesian coordinates X l , X2 , X3 are related to the

orthogonal generalized coordinates x, y, z as follows:

X1 = f l (x,y,z)

X2 = f2 (x,y,z)	 (Al)

X3 = f3 (x,y,z)

The metrics and basis vectors of the transformation can be determined from

Equations (Al). An element of a length, ds, in cartesian coordinates is

expressed in generalized coordinates as follows:

ds 2 = h 
X 
2 dX 2 + ry2 dy 2 + h Z 2 dz 2	 (A2)
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where:	 hx =	 ^d^) r + ^ 1 )L 4-

2 = [I ^'/ /^^j d	 y.

hZ

The parameters, h x , hy , and h  are the metrics of the transformation. The

unit basis vectors i, 1, k of the generalized coordinates are related to the

eartesian basis vectors i l , i l , and i 3 as follows:

1- hx ( c— + 2 I L + d X 3 3/

1 - by 6qQ_
1A

	

 d 3 	 31	 (A3)

k = h / '^ 1^ + ^/^	 J
Z	 )

` d X,	 jxL	 3

The Coriolis and centrifugal accelerations, in -the directions, x,y

and z can be deter^±ined from a scalar product of their eartesian components

with the basis vectors of Equations (A3). The Coriolis accelerations in

directions i, Z, and k, are, respectively

Gc^X U	 I = '2k W 3^ ^°!^^" Jd
y ° 1+wJ^^r/Xj

C	 )	 O Xi	 dX O^ X l	 d .dx, dry	 (M)

^Xd^_d dX +wa
1
rt d^^ _.^2(wxu) - j = ?y^c^[^A^z(dx,	 dx^	 ^dW16;cI OX dr^	 cAS>

w,r U) • .t^ =	 2tit	 uhx	 °'^ d^
 ^'

-	 d^ + Vl, 
60 J('

^ d ^?
 dX,

d 	 (A6)

where u, v, and w are the components of velocity vector u in the i, i, ar.d

k directions, respectively, (,.) is the angular frecnaency, and W is U-2 angular

frequency vector rointinq in the X3 direction.
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The centrifugal accelerations in directions i, i, and k, are,

respectively

W x W X Y) (	 ^ (.U1 h K (A	 + K fix` 1
	 (A7)

^^ J( W X r^ . 1 _ 	 (Xi	 + ° J	 (M)

QAJ x W .Y Y^ — 	 -- -- WI- 1% (<, ^  
+ X- 

O )
	 (A9)

where r is the positio

X3.

The Coriolis

(A4) to (A9) are added

generalized orthogonal

follows:

a vector in Cartesian rotating coordinates X 1 . X 2 , and

and centrifugal acceleration components of Equations

to the Eulerian set of equations of motion in

coordinates (Ref.38). The final relations are as

Continuity

dl^(PY)=o	 (Alo)

where:	
I

Qt di, h, - ^/ (?V n t jte(^ ^ "'Ll l/ ( YJ hX ^'^J

u= ui +v^+;3 ^

and p is the density.

x - Momentum

cI ► V ^Ul^) +
4^V	 +^ 

°J
X	

ha x	 by r^ d ^`a - ^} Lo%+W6 -
Ik	 hX	 he -,xx ^iC	 fyt

!?tjAx ^lVti.,^dXJi1
cl^C	 1	 L	 J	 d^^ rlA ^^^ 1 , J

k W114'^d?'Ji 0. ^]
_ QW`'^xr^,"`J

I-d
i v((^ '	-

C	 dx'^ 	 hrk^
Jlt^.rz y
Tit

Y{^,_	 14^ X;-
^w^r 

(All)
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where:

+- r-x + rrx

y - Momentum

^
vrudĥ  ^^ dhk^ ►^dl _^ ru`d^ t `dti^ +`d l	 dy ^+^ _d
z h<dX j^	 l^ ^^ ^^ L h^ ^^^	 d J ^1 fit, 

PI^I^Nh (^^ JX^ ^ -,,k2

-+ W hy (dldF	 d )]_ ecu`ti^ rXd:2 i^^d1_ _ d^^	 +r^, JkJ{v^^dx^dx ^ ^ir dot 	L ^I^,	 ,r^	 ^ 	 (AI

where:

.^^ v (ew ^^) + hN
	 Jx {r	

d^	 ^'` d ĥ +v_`d^ 4 +	 r^? z w ^^, .!t -^l d^ i

^^	 h^l	 r l hl)^c d^ ht 0y

where:

= Tx i ! + rti4 j -f q" ^(^

Internal ynerg}• I:qu.ition
r r

dI v (('^N) _ ^X l	 T *ti d
	 i,!- dhr ^y l^..dV+ dh^ cs_
d; ^^x dz	 ^^^J ^^ h y^ Y V^ hr^d J

^^ L	 t/hllf^/x ^/^yhr dd	 ttirJ(hh,rhr^ ĥ ht dli i^h )]
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where E is the specific internal energy, a", C—'f'j, Vi
 ^.	 are the

normal stress components, and Tx.^^ zx.^/ 
_ ;'^	

are the shear stress

components.
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Append i x x

CONTINUITY EQUATION IN GENERALIZED COORDINATES

In this appendix continuity Equation (4), in (x,y,t) space,

is transformed to generalized coordinates ( ,7 ,r ). 7'he transformation

equations between x, y, t space and the generalizcxl coordinau-i ( , ^1	 )

are presented, and from these relations the integral equation for marts

conservation is derived.

Equation (4) is written in terms of the I.ulerian coordinates

(x,y,t). In the calculation the trace of the boundary of the impeller

channel in the blade-to-blade surface must distort with time. 'Therefore,

the continuity equation must be formulated in a generalized coordinates

Sy
s
 tem 1,^. Thc • generalized coordinates are defined as follows:

t = Z	 Oil )

X == f(	 ,7 , Z )	 (H2)

Y = 9(^,( ,r )	 (kt3)

and f(^,'7,0)	 0) = 7, where f	 - 	 ], y	
^d? 1= i.

fir = o ^Ir Z	 L 0^1t.

Equation ( g i g ) is differentiated with rc-pect to t, x, .,nd y,

respectively. The result is as follows:

d?- = 1

0	 W 4)Ox

c/Z	 od;

Differentiation of Lquatinns (kit) and 013) results in the foliowimt:

f 1g'	
g7f?

ar [f X 91 -
 9 C f T

a  _	 g 71

aS _	 -f7)
ay	 [ f tg 1 - g^f
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b T,- 
f T g^ - f ^gT

aT	 [f t9^ - gEf 11

a 11	
_g

a	 [fg ^gf ]

ft-
ay	 [ f 99^ - 9tf1 3

Consider the function G(^ ,? "T).  The derivatives of this function are as follows:

T
at G C a f G^ t -r a

G^(f^9 T 	g,nft ) + G^(f T y_ g 	f^g T ) + G T (f^g 1 	9 f n)	 (87)
( f 99 - 99f^)

G g - G g

ax	
G S 

ax + 
G I 

ax } G T ax	
[ f ^g ^1 - 

g f̂ g ]	
(is e )

aG ^ G L	
- G

+ G -E + G ^T	
Ej + G^f

t 	 (MI)
By	 C ay	 I ay	 T ay	 [ f Z9 1) - 9 Z f II]

Equations (B3) - (B6) produced Equations (B7), (E,B), and (B9).

Using Equations (B7), ( BB ), and (B9), the continuity E uation (4)
is transformed to the generalized coordinates ( 	 ,	 Z ). The trans-

formed relation is as follows:

d (Q^^^^T ') ;
	 Se))", +(e6(V Ŝ ))T^

	
r(eu^l,^ )K +(Pw h,S^

)0' 
I -)

(B6)

Lic
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J 	 I
/ (C ' 

7 ' ^) I =
(x, y, t )

1
L

S.  g7 	 g^ f 7
(B12)

where ( ) x and ( ) y define differentia ion with respect to x and y,

respectively, and the grid velocity components S  and S y are defined in

terms of deviatives of the curvilinear coordinates x and Y.

x
Sx = dz = f r

Sy
	 d r gT

The symbol J represents the Jacobian of the transformation, i.e.,

(Bll)

where:	 dx dy = J-1 d^ dj
	

M13)

Equation (B10) is multiplied by the area increment d17 d I and the resultant
relation is the final continuity equation as follows:

kA

4 Y ^yJA +^^°( -$ s ) ndC — ^ ^^gs •A k=— 2-r /,- W ^,'^	 (B14)
ON-Z 	 G	 `^ j	

A c

where dA = dx dy, A correspond: to the area in the x,y }Mane contained

within the region bounded by the closed curve C, ii is the unit normal to

the curve C, g is the particle velocity vector ir, the (x,y) plane as

defined by Equation (7), and c is the coordinate velocity vector in 4L.e

(x,y) plane as defined by Equation (8).	 In the integration, process

use was made of Equation (B13) to convert integrals in 	 to ir.*cyr.l: in

dxdy. Furthermore, Leibniz's rule was used to permute differentiation and

integration and Gauss's theorem was used to convert area into ,rals to line•

integrals in the (x,1) plane.

[1!
l'°^'^` J •̂. .y	 _ ^i 4^r7^+	 _^; ^	 ^ -	 ..	 r^ n1{ ^ 'X ;^y^°J ^^^^L^^i t^^^ir ^y, 1 ^. 

t ^^ ^a f • ^	 vs 1x Y +' ^ ^	
^	 ^ ^	 ^	 ^+	 -.^	 +'. i 1 ' ^.[!	 ^	 F ! dr,'^4'.lt^^

'11	 'C' ^ r r 1 ^ r 9

	 ♦ K	 ^	 e	 .	 {	 ^	 ^!	 t ^•y . t `, 1	 ^xr ^ r ^ ^	 u t..
+	 t	 1	 '	 tt';	 #. v ^L f : ^.5`. ,yam .,^ ^ rt

IX

^1+Y_37 tiff}^f,^'^k^w[	 ^^'.	 •'.	 ^ 'r_	 ^T	 •^.6. 1 ^itt,^"'^.%i ^t-.^'A
1	 . +;jrT^. f^	 )	 +E	 ': ^	 r ,.	 ^ 1•'	 .	 -	 3	 ,.•	 ^ (,F ^' a?! I °	 ^Y ^,ttf ^^^i

	

i` ^	 T ^ { w' S 3 ^ r^

	

-	 ;.i ,	 '	 .	 `^ At	 T ^FM rl u^#f^ • ^ ^_kl•

^ i	 s	 -	 ^	 . ti	 ra.	 G LF ' to •	 !

	

0	
^i,	

I M•.̂ +^	 i	
,i	 :^	 ,	 " .LJtc F^j	

^^ya _.' } b''f#	 1^ .k„^^Fl,^-" b	
ASIA  	 'P

 L'
l^a W1V̂ ^%f r-.n^'^P	 `•^ °*}	 RF .,	 _[1/v{'

n

(

n 	 'F ^	 ^^{ ',^"l^^•Sr^'S^,^1 } ^sA}.3`A `
•uN"q {,	

- 4	 :^	 ^•^`,	 •1 `1
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