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ABSTRACT

j

This report is the first in a series which will describe the technical pro-
t

gress in the investigation of the feasibility of designing a lightweight

solar array with a power-to-weight ratio of 200 watts per kilogram. 	 This

Ems-	 solar array will produce 10,000 watts of electrical power at l &.U. at its
r

beginning of life (BOL), and degrade less than 20% over a three year period

in interplanetary flight.	 A review of existing lightweight solar array sys-

tem concepts is presented along with discussion pertaining to their applicable
l

technology as it relates to a 200 watt/kilogram array.	 Also presented is a

discussion of the candidate development solar cells being considered, and
f;

various deployable boom concepts under investigation. =m
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SECTION 1

INTRODUCTION AND SUMMARY

A program to study the feasibility of a 10,000 watt solar array subsystem
f O'j	 ..

with an overall power-to-weight ratio of 200 watts/kg was initiated on

January 19, 1976. This solar array is to be designed for compatibility	 'FNt

with a typical 2000 pound interplanetary spacecraft carried aloft by a

Space Shuttle. The power-to-weight ratio is interpreted to be the delivered ra

beginning-of-life maximum power output at 1 A.U. and at the predicted array°

temperature in free space, divided by the total system weight. The total 	 t.^»

system weight includes the array itself plus all elements of the deployment 	 w

mechanisms and support structure, but not the gimbaling or orientation 	 kdtc

related equipment. Thus, for the specified pou;ar output of 10,000 watts at

1 A.U., the total system weight must be Less than 50 kg (110 pounds). This

ultra-lightweight array will require improvements in both the solar cell

blanket unit weight and in the elements associated with the deployment and

support structure.	 +°,

The program has been organized into the following major tasks:	 {
{

Task No.	 Task. Title

y,

100	 Review and Update Technical Requirements

200	 Design Synthesis and Analysis
3

300	 Prepare Layout Drawings

1.00	 State of the Art Projections

500	 Prepare Subsystem Specifications

1-1
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The Technical Roadmap to be followed in the performance of this program is

shown in Figure 1-1.

In Task 100, the technical requirements imposed on the solar array were

reviewed and updated by adding the latest Shuttle launch environments, and

the candidate solar cell data provided by JPL. Appendix: A includes the base-

line requirements to which the 200 watts/kg solar array is being evaluated.

In Task 200, design synthesis and analysis, various existing lightweight

array concepts will be analyzed along with new conceptual approaches. Pro-

mising system designs will then be selected for further evaluations. Studies

will be performed to optimize solar cell blanket size, weight, and aspect

ratio. Various deployment boom designs will be analyzed to optimize over-

all weight as a function of stiffness, tension, and natural frequency.

Requirements for solar cell size, contact configuration, interconnecting

methods, adhesives, coverglasses, and substrate materials will be deter-

mined and fed back into the evaluation cycle. This iterative process will

result j.-i an evaluation matrix that compares the relative merits of each of

the selected systems. Many other factors will also be considered as part of

this Task; such as repairability, reliability, relative cost, testability,

handling considerations, structural interface, etc. With the aid of the

evaluation matrix, those systems showing the most promise of meeting tle

overall requirements will be selected for detailed synthesis and analysis.

This is intended to verify feasibility of designing a lightweight solar

array capable of delivering 10,000 watts of electrical power at 1 A.U. and

having a power-to-weight ratio of 200 watts per kilogram.

y

I
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The results of Task 200 culminate in the documentation requirements under

Task 300 (prepare Layout drawings), Task 400 (state of the art projections),
F

and Task 500 (subsystem specifications).

The main effort during this first quarter centered around a review of exist-

ing lightweight systems and deployment devices. Parametric vibration studies

Y were performed to optimize stiffness, tension, aspect ratio, and natural

frequency for planar and V-stiffened arrays. Solar cell data received from

JPL was analyzed to determine cell performance as a function of temperature

and cell thickness. The overall array dimensions ind number of cells

required to deliver 10,000 watts at 1 A.U. and at the initially predicted

temperature, was also established as a preliminary baseline. Weight sum-

maries for various concepts were also prepared and are discussed in this

report.

f
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SECTION 2

TECHNICAL DISCUSSION

2.1	 DESIGN REQUIREMENTS

2.1.1 GENERAL

The basic design requirements for the 200 Watt per Kilogram Solar Array Feasi-

bility Study are given in GE document number- 200W/Kg - 2.76-004. Baseline

Requirements, which is included in Appendix A of this report. In the following

paragraphs, the major requirements as they pertain to the solar array will be

briefly discussed. Table 2-1 lists these major requirements. These requirements

are not intended to place undue restrictions on the solar array system design,

but only to act as a guide in the formulation of a design approach. When any

design requirement is found to restrict a potentially attractive design approach,

this requirement will be reviewed to determine its impact on the ability to

achieve the 200 watt/Kg goal. For example, if the deployed natural frequency

requirement of 0.04 Hertz is found to impose structural weight penalties on the

solar array system which make the 200 Watt/Kg goal unachievable, then that re-

quirement will be treated as a parameter in determining the affect on total

system power-to-weight ratio. The intent is to develop high performance design

concepts which are viable concepts for future interplanetary missions. These

design requirements will be representative rather than specific, as a detailed

optimization cycle would be a part of any flight hardware application.

2.1.2 OUTPUT POWER AND DEGRADATION

The output power of the fully deployed solar array is specified as 10KW in free

space at 1 AU and at the predicted solar array operating temperature at this

intensity. ASTK specification E490-73A defines 1 AU. A copy of this specificai.on

is included in this report as Appendix B. The 10 KW power output is defined a

1
oy.
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Specification Paragraph No,
(See Appendix A) Parameter Requirement

10 kW In free space at 1 AU and at predicts(; 	 , ,ay temper-3, 2.2 Electrical Power, Beginning of Life
ature at this intensity

3, 2, 2 Point of Power Measurement At spacecraft Interface

Derived from 3, 2, 2, 3, 2, 5 Weight, Including deployment 50 kg
mechanisms and all mounting bracketry

3,2.5 Power-to-Weight Ratio 200 Watts/kg in free space at 1 AU and at predicted array
temperature at this intensity

3,.2.3 Operating Lifetime Not less than 3 years

3, 2, 3 Power Degradation Limits No greater than 20% loss of power, excluding solar flare
proton reduction, over a period of 3 years

3, 2,1 Deployment/Retraction Full deployment. 	 Retraction up to 90 1,o' of exposed array is
considered an option

3, 2, 4 Solar Array Operating Temperature 85°C maximum in free space at 1 AU

3, 2, 8 Deployed Array Dynanics Lowest natural frequency equal to or greater than 0, 04 Iiz

3, 2,10 Deployed Array Flatness Lie within predetermined plane with maximum angular de-
viation of 10 degrees, excluding deflections caused by
dynamic load inputs

3.3.2.1 Launch Vibration, Stowed Array Freq, Range (Hz)	 Amplitude

2 - 5	 1.0 Inch Double Amplitude
5 -26	 1, 3g (0-pk)

26 - 50	 0, 036 Inch Double Amplitude
50 - 1000	 5g (0-pk)

3.3.2.2 Launch Acoustics, Stowed Array ,, —OVERALL 1" de

1^0

110 OCTAVE BAND
SOUND PRESSURE 190

LEVELS.
Ids .20p N1.21

120

11D 11	 1	 IIII^ _ .1 	 j	 I11t	 1	 11111	 1	 1	 1111	 1	 I111^
20	 1DD	 1000	 10,000

FREQUENCY INe1

3.3.2.3 Shock, Stowed Array 20g terminal sawtooth pulse at 10 meet duration at space-
craft interface

3.3.2.4 Static Acceleration, Stowed Array 9gte axial, 2g 1 s lateral

-130°C to 1400C at 10 -5 Torr3.3.3.1 Steady State	 ^rmal Vacuum

3.3.3.2 Thermal Shock -1900C to +1400C at 10-5 Torr, 1000 cycles. 	 Natural
heating/cooling rate of simulated passage through planetary
shadow (Albedo = 0)

3, 4, 5 Solar Cella Use candidate solar cell data provided by JPL, Current-
temperature coefficient of 0, 03mA /°C-Cm2 , Voltage-
temperature coefficient of -2, 0 mV/°C.	 Length= 2 to 4 Cm,
width = 2 Cm, Thickness = 0, 003 to 0.010 inch, 	 Cell contacts
to be silver-palladium -titanium or silver chromium. Inter-
connect material to be Beryllium-Copper, Kovar, Molybdenum,
or Silver. Weldable or solderable,	 E/I curves per JPL IOM
342-76-D-025, dated 27 Jan 1976

3.6,1, 2 Quasi-Static Loads, Deployed Array 1 x 10-3g maximum

i
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the beginning of life (BOL) value measured at the spacecraft interface. There-

fore, losses in solar cell interconnects and cabling (2-3 percent of total power

output) must be added to define the array power required. Since the spacecraft

power conditioning circuitry will include the necessary diode isolation, no diodes

will be used on the array itself.

The solar array must be capable of operating over a three year period with a power

degradation not to exceed 20%. Trapped electron and solar flare proton effects are

excluded because there is no data presently available for the candidate solar cells

being considered. These effects can be added when the data becomes available. The

ultraviolet radiation intensity is specified as 1095 days at 2.002 calories /cm2/

q	 minute. This, along with thermal rejection considerations and overall weight, will

be used to establish the type, thickness, and material emp loved for coveralasses.

4	 adhesives, coatings, etc.

2.1.3 POWER TO WEIGHT RATIO

The power-to-weight ratio is specified as 200 watts of electrical power for each

kilogram of total system weight. This ratio is based on the 1OKW, BOL, power

output at I * AU in free space. This requirement is the main objective of the

program. It represents approximately three-times the capability of existing

flight arrays. Several approaches are being considered in our attempt to achieve

b	 this goal. Weight reductions are necessary in all elements of the array design,

This includes lighter cells, coverglasses, substrates, deployment mechanisms,

support structures, booms, and other materials and devices, The higher efficiency

solar cells presently being considered result in fewer^of them being required to

2-3
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t.obtain any given output. Cell interconnect and cabling weight may be reduced

by designing higher voltage, lower current arrays. Lighter blanket weights

result in reduced stiffness requirements to achieve the 0.04 Hertz natural

frequency requirement. A reduction in stiffness can reduce the deployment

mechanism and boom weights. The structural weight required solely for launch

restraint may be left on board the Shuttle or jettisoned once the spacecraft

is ejected into interplanetary flight. Some preliminary studies have been

performed in these areas and they are described in paragraph 2.5 of this report.

The use of a V-stiffened array shows great promise over a planar array with

regard to total system weight! Comparisons of these two configurations can also

be found in paragraph 2.5 of this report.

2.1.4 TEMPERATURE

There are several temperature requirements imposed on the solar array and these

will be discussed in this paragraph.

With reference to Appendix A, paragraph 3.2.4, the deployed solar array will be

designed to operate at 1 AU in free space at a steady state temperature not to

exceed 85 oC. Since the power efficiency of silicon solar cells decreases as

temperature increases, the array thermal design should be directed toward a low

operating temperature. Previous studies indicate a Kapton substrate with holes

cut out at the cell centers, and with a silicone adhesive protective coating

applied to the back surface of the cells at the exposed cut-out areas, a steady

state temperature of 57.2 0C can be achieved. 2 Although this approach of allowing

the back surface of the solar cell blanket to radiate to free space is effective

in reducing temperature, the cost of implementing this may be significant, since

each cell must be covered with an equivalent layer of adhesive to protect against

low energy protons. However, this approach and others will be evaluated during

1Reference 13, Section 6
2Reference 1, Section 6
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the course of the program. The thermal evaluations will begin after promising

system concepts have been identified.

Paragraph 3.3.3.1 of the Baseline Requirements (Appendix A) specifies the steady

state thermal vacuum environment of -1300C to +1400C at 10 -5 torr. This re-

quirement defines the range of steady state temperatures, at vacuum, over which

the solar array shall be capable of operating. It is not required to produce

lOKW over this range, but it is required to be fully operational in both the

electrical and mechanical modes. (The lOKW of power output is defined as at

BOL, 1 AU, and at the predicted array temperature for that intensity). This

temperature range effects both the solar cell blanket design and the deployment

mechanisms design.

In the solar cell blanket area, materials used for the solar cell "sandwich"

,,nust be selected to prevent breakage or damage due to relative differences

between their coefficients of thermal expansion. The solar cell sandwich; con-

sisting of substrate, solar cell to substrate adhesive, solar cell, solar cell

to coverglass adhesive, and coverglass; must be designed to withstand not only

this temperature range, but also the thermal shock values discussed below.

Solar cell interconnects must be capable of operating over these temperatures

without applying undue stress on the cell contact areas. The induced thermal

deformations caused by temperatures cycling between -130 0C and +1400C must be

kept to values low enough to meet the flatness requirement of 10 degrees specified

in paragraph 3.2.10 of the Baseline Requirements.

h

	

	 In the deployment mechanisms and boom area, the temperature range of -130 0C to

+140 0C implies the use of dry lubricants and materials with similar coefficients

of thermal expansion, particularly in bearings, bushings, gears, and shafts. If

the deployment mechanism is well coupled thermally to the spacecraft structure,

the deployment mechanism will operate near relatively benign spacecraft temperatures.

1
2-5
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However, if the deployment mechanism is thermally coupled through the bearings
^	 t

of a gimbaling device, the mechanism may operate over a wider temperature range.

h
In this case, it may be thermally driven more by the array temperatures than by

the spacecraft temperatures.

The initial deployment from the fully stowed configuration will likely be at a

temperature near that of the spacecraft. The main purpose for retraction is to

t	 reduce the power output at high solar intensities (nearer to the sun). Thus,

retractions will likely be at temperatures in the high end of the range rather

than at the low end.

Paragraph 3.3.3.2 of the Baseline Requirements (Appendix A) defines the thermal

shock environment. This requirement specifies a temperature range of -190 0C to

+1400C at 10-5 torr. The time rate of change of temperature for cooling shall

be the natural cooling rate of the solar panel in a simulated passage into a

planetary shadow with an assumed planetary albedo of zero. The time rate of

change of temperature for heating shall be the natural heating rate of the solar

panel in a simulated passage from a planetary shadow into a normal solar flux of

intensity corresponding to a steady state temperature of +140 0C on the solar cells.

The total thermal shock environment shall consist of 1000 complete heating and

cooling cycles.

The thermal shock environment applies to a deployed array and is a survival en-

vironment rather than an operational one. This requirement has its greatest

impact on the materials selected for the design. When any of these temperature

requirements, as well as all other requirements, are found to restrict a poten-

tially attractive design approach, a parametric review will be performed to

determine the impact on the ability to achieve the 200 Watt/Kg goal.

2-6
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2.1.5	 DYNAMICS

The Shuttle launeb environments specified in paragraphs 3.3.2.1, 3.3.2.2, 	 3.3.2.3,

F	 and 3.3.2.4 define the vibration, acoustics, shock and acceleration values to be 1

considered in the stowed array design.	 These environments are felt to be rela-

tively "standard" for spacecraft design and, at this early stage of the program,
1

are not unduly driving the array design to the detriment of overall weight pen-

rp

to

alties.	 Table 2-1 summarizes these requirements.

The lowest deployed natural frequency shall be equal or or greater than 0.04 Hertz,

as specified in paragraph 3.2.8 of the Baseline Requirements. Studies performed

using this value and the quasi-static load of 1 X IDg -3 showed the limiting element

to be the smallest practical size of the deployment booms evaluated 3 . These

studies are described in paragraph 2.5 of this report. Again, at this early stage

of the program, neither the natural frequency or the quasi-static load appear to

unduly limit the design approaches. However, as the Study Program progresses,

it may be necessary to re-evaluate these and other requirements if they are found

limiting from a performance standpoint.

2.1.6 SOLAR CELLS

Typical candidate development solar cell data was provided by JPL for incorporation

into this Study Program. Paragraph 3.4.5 of the Baseline Requirements (Appendix

A) describe this data. Options regarding cell size, thickness, contact config-

uration and material, interconnecting materials, and grid line density were

given. These options will be evaluated to establish optimum cell design for this

program. Performance curves of cell output power as a function of thickness,

temperature, the number required, etc., are discussed in paragraph 2.4.2 of this

report.
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2.2 EXISTING SOLAR ARRAY CONCEPTS

2.2.1 GENERAL

A number of lightweight solar array system concepts have been developed with

experimental hardware and testing applied to many of the designs. The most

recent example of large lightweight arrays in the 25 kw systeri currently

being developed by LMSC for the Solar Electric Propulsion Spacecraft (SEPS).

These concepts can be categorized by three basic approaches, namely, roll-up,

flat pack, and folding panels. Roll-up designs require a complete flexible

blanket type of array. Flat packs usually involve a series of either flexi-

ble or semi-rigid panels which fold accordian fashion into a lightweight con-

tainer. Folding panels are rigid in construction utilizing a frame or struc-

tural material such as honeycomb for a substrate. The frames are large and

hinged to form two or more layers when stowed. A comparison sumaiary of

efficiencies and power levels of many of these concepts is shown in Table 2-2.

2.2.2 GE/JPL I10W/KG ARRAY

A study of the design of a 110 watt/kg system was completed by General Elec-

tric, Space Division in May of 1973 and reported on in Reference l of this

report. Since this effort represents a starting point from which one can

proceed to higher efficiency levels, a description of that baseline design

as presented in this reference follows.

The baseline configuration which meets those requirements for the inter-

planetary and geosynchronous missions is shown in Figure 2-1. This concept

consists of a single, central, deployable mast which supports two flexible

solar cell blankets. The 10 2 000 watt beginning-of-life output is generated

2-8"
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Power
Efficiency Level Description

Type
2

Watts/kg	 Watts/M RW Array/Support/Stowage Source Remarks

77.6 118 2.75 Blanket /Pantograph /Graphite Epoxy Drum Fairchild-Hiller

Roll up 71 . 7 118 2.75 Blanket /BI-STEM/Beryllium Drum General Electric Eng'g Model Tested

68.1 118 2.75 Blanket /Ryan Boom/Magnesium Drum Ryan

48.5 107 1.5 Blanket /BI-STEM/Magnesium Drum Hughes 1971 Flight Experimen t

18.5 118 .08 Blanket /STEM/Drum British Aircraft
Corp.

110 95 10 Blanket/Astro Mast /Be Container General Electric Study

83 118 2.75 Panels /BI-STEM/Container TRW

79 118 14.2 Panels /Inflatable Framework /Magnesium Messer-Schmitt
Frame

Flat Pack
78 118 2.7 Panels /BI-STEM/Frame Attached to S/C LMSC

75 118 .75 Rigid Panel /Telescopic Mast/Container RAE

66 99 25 Blanket /Astro Mast/Honeycomb Container LMSC SEPS Array
(2 panels)

Folding 80 90 10.4 Hollow Core Substrate /-/Beryllium Box EOS

Pan
e
el Frame

{ 40 118 15.7 Fiberglass Be Frames/-/- Boeing
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Table 2-2 Summary of Existing Light Weight Solar Designs
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by 226,800 solar cells which are interconnected to supply power at a 193 vdc

maximum power voltage. These solar cells are nominal 125,um thick, 2 x 2 cm,

N/P silicon with a nominal base resistivity of 10 ohm-cm. A plated nickel-

copper-nickel-gold bottom wraparound contact configuration is used in con-

junction with an ultrasonically bonded aluminum wire interconnector system.

The active solar cell surface is protected from low energy proton damage by

a nominal 37jim thick integrally deposited coverglass. A Kapton-H film sub-

strate supports the solar cell modules without the aid of a bonding adhesive.

Holes in the substrate allow for this direct radiation heat transfer from the

rear of the solar cells. The exposed portion of the rear cell contacts are

coated with adhesive to provide the necessary low energy proton protection.
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Figure 2-1. Baseline 110W/kg Solar Array Configuration
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Tension in the solar cell blanket substrates maintains the deployed natural

frequency above the minimum specified value of 0.04 Hz. The flexible solar

cell blankets are stowed for launch by folding into a flat-pack package which

is retained in compression between a bottom honeycomb panel and spring driven

hinged honeycomb panel doors on the top. These doors are held closed during

launch by the tubular leading edge member (LEM) which is attached to the

deployable boom at the center and retained at each end by a launch retention

cable mechanism. Solar array deployment is accomplished by firing redundant

cable cutters at each end of the array which releases the end of the LEM and

the restraint at each end of the supporting truss work. Application of power

to the deployable boom actuator will cause the LEM to move off the door panels

allowing them to swing open. Continued deployment of the boom will cause the

LEM to pull each fold of the blankets from the stowed package. Interlayer

cushions of Kapton-H film are retained by the bottom panel. At the end of

the deployment travel, the further deployment of the blanket applies the

required tension load by extending a spring mechanism at the base of each blanket.

r

The deployable boom is an ASTROMAST structure manufactured by Astro Research

Corporation (formerly SPAR Aerospace Products, Ltd.). For this interplanetary

mission application an articulated longeron mast, whici: is similar to the Lock-

heed Space Station Solar Array Mast, may be required to meet the specified +1400C

upper temperature extreme.

Some significant design features of the baseline configuration which meets the

110 watt/kg goal are presented in Table 2-3,

K'

2-11
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Table 2-3, Significant Design Features of the 110 W/kg
Baseline Solar Array Panel

Configuration

Parameter Value

1. Deployed Length (L') 18.565 m

2. Total width (W) 5.915 m

3. Blanket width (w) 2.830 m

4. System aspect ratio (L'/W) 3.1E

5. Total gross blanket area 105.08 m2

6. Total number of solar cells (2 x 2 cm) 226,800

7. Lowest deployed natural frequency 0.04 Hz

8. Electrical power output at Vmp = 193 vdc 9860 watts

•	 Beginning-of-life (BOL)
•	 570C
•	 1 A.U., AMO illumination
•	 Measured at panel interface connector

9. Expected maximum power degradation after
3 year interplanetary mission 30%

10. Total system mass 87.5 kg

11. BOL power-to-mass ratio 112.7 watt/kg

12. EOM power-to-mass ratio 78.9 watt/kg

Each solar cell blanket consists of an interconnection of 30 identical strips

as shown in Figure 2-2. Each strip consists of two series connected solar cell

modules, with each module being composed of 1890 2 x 2 cm solar cells which are

interconnected 135 in series by 14 in parallel as shown in Figure 2-2. The two

modules on one strip are connected in electrical series with the two modules on

an adjacent strip to form a complete electrical circuit. Thus,each electrical

circuit is composed of 7560 cells connected 540 in series by 14 in parallel.

2-12
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Each circuit has a calculated 335 watt maximum power output at 196 vdc mea-

sured at the circuit terminals. If a 2-percent bus strip distribution loss

is accounted for, the total calculated panel output is 9860 watts measured

at the panel interface connector. Table 2-4 is a summary of the component

quantities as related to the level of assembly of the panel.

Table 2-4 Component Quantity Related to Level of Assembly - 110 W/kg

Cell Module Strip Circuit Blanket Panel

Cell 1

Module 1890 1

Strip 3780 2 1

Circuit 7560 4 2 1

Blanket 113,400 60 30 15 1

Panel 226,800 120 60 30 2 1

The solar cells are nominal 125 ,pm thick, 2 x 2 cm, N/P silicon with a nominal

base resistivity of 10 ohm-cm. Table 2-5 summarizes the significant character-

istics of this cell. The solar cells are shielded from the damaging effects of

low energy protons by the deposition of an integral cover of Corning 7070 Class.

A nominal integral coverglass thickness of 37,µm should provide the necessary

protection within the weight constraints of this program.
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Table 2-5 Design Characteristics of Ferranti 125 um Thick Solar Cells
(Ferranti Cell Type MS36)

Feature Description

Thickness 125 4. 25 pm

Size 20 + 0.15 x 20 + 0.15 mm

Resistivity 7 to 12 ohm-cm
Float zone silicon

Contact Configuration Bottom wrap-around
24 finger grid geometry

Contact Material Plated - nickel, copper, nickel,
gold

Anti-reflective Coating TO
x

Minimum Lot Average 123 ma at 0.445 volts
Electrical Performance
(covered) (equivalent AMO, 1 A.U.

illumination at 25 + 20C)

Maximum Lot Average Cell 0.129 gm/cell
Mass
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Figure 2-3 shows an enlarged rear view of the substrate. The aluminum wire

interconnectors are ultrasonically bonded to the gold solar cell contacts

through slotted holes in the Kapton film. The wire is pinched flat in the bond

areas to allow several bonds to be made at the one attachment point. Between

these attachment points, the wire follows a curved path to accommodate the

differential expansions and contractions which occur when the array is thermal

cycled between -1900C and +1400C. Holes have been cut in the Kapton-H film

substrate to allow the rear of the solar cells to radiate directly to space.

The rear of the solar cell which is under the hole is coated with Dow Corning

93-500 adhesive to provide the necessary low energy proton protection. To

further reduce the solar cell temperature, a high emissivity coating is applied

over the entire rear solar cell contact surface except at the points of inter-

connector attachment.

1

The bus strips, which run on the sun side of the substrate along each edge,

consist of flat copper conductors with Kapton-H film used as the insulator.

The electrical connections between blanket strips are made by jumper loops

which attach one bus strip segment to the adjacent bus strip segment. The

installation of these jumper loops is shown in Figure 2-3. The fold hinge

between blanket strips consists of a strip of FEP-Teflon which is heat sealed

to the Kapton substrate to form a lap joint along the width of the blanket.

2-16
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A detailed mass breakdown for the solar cell blanket is given in Table 2-6.

Table 2-6 Mass Breakdown for Solar Cell Blanket - 110 W/kg Array
(Total for Both Blankets)

Items
Mass
(kg)

Solar Cells	 (.129 gm each) 29.26

Integral Coverglass 7.26

Interconnectors 1.81

Substrate 4.04

Adhesive (rear contact low energy proton
protection) 3.50

Bus Strips and Insulators 1.50

Inboard and Outboard Leaders 0.27

Circuit Terminations 0.15

Strip Hinge Joints and Bus Strip Jumpers 0.71

48.50

2.2.3 LMSC SEPS ARRAY

The SEPS array currently under development by LMSC is an extremely large array

consisting of two wings with a total output of 25 KW. The baseline configura-

tion is shown in Figure 2-4.

This array is a blanket fold up type using a continuous longeron lattice light-

weight extendible mast. The array is stored in a supporting container when

retracted. The system is designed to meet the basic requirements listed in

Table 2-7.

2-18



BLANKET SIZE

STORED
ARRAY

PRELOAD
MECHANISM

ARRAY
HARNESS

INTERMEDIATE
TENSION
NEGATOR

CONTAINMENT
BOX COVER

4.Om

(157 IN

I	 GUIDE WIRE

GUIDE WIRE GROMMET
PANEL HINGE

IN i ERMEDIATE
TENSION

pl^

DISTRIBUTION
BAR	 31

ARRAY	
(724,

HARNESS

!ARRAY
STORAGE
CONTAINER

'---EXTENSION/
RETRACTION
MAST

TENSION BOTTOM NEGATOR

MAST CANISTER
GUIDE WIRE NEGATOR

Figure 2-4 SEPS Baseline Configuration

• GOOD JOINT ACCESS
• HIGHER PACKING FACTOR
• REDUCED ASSEMBLY STEPS AND COST
• ELIMINATES N-BUS GAP PROBLEM
• REDUCED WEIGHT

WRAPAROUND ELECTRODE CELL
(SERIES TAB ELIMINATED)

/-CELL COVER

SERIES TAB

n

BASELINE

WRAPAROUND ELECTRODE
CELL OPTION (LIGHTEST SYSTEM)

N GAPT	 1%ir_w1r1rNkIAI r. rr•rnr,r%r_^rri I

CONVENTIONAL
CELL OPTION

Figure 2-5	 Integral Interconnects - SEPS Substrate Design
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Table 2-7 SEPS Array Basic Requirements

Parameter Requirement

Deployment Full development and retractions from
intermediate positions

Stowage Volume 0.46 M x 0.46 M x 4.06 M

Weight 380 Kg maximum

Deployed Natural Frequency 0.04 Hz
(1st mode)

Docking Loads 0.5 g

Solar Operating Range Between 0.3 and 6.0 A.U. 	 from sun

Array Power 25 KW BOL
21 KW EOL

Voltage Voc 420 VDC
Vmp 200 VDC

Mast Length (extendible) 32.0 M (105 ft)

Mast Bending Stiffness 5.45 x 104 N-M2 (19.1 x 106 lb-in 2)

Mast Life 50 cycles full as partial extensions
over 5 yr. period in space.
200 cycles ground test

The solar cell blanket is 30.99 M (101.6 ft) X 3.99 M (13.09 ft) in size and

is made up of individual panels which are attached to each other by means of

a fiberglass and graphite/epoxy piano hinge.	 When retracting the blanket, the

panels are guided by means of wires which are maintained in tension by negator

spring motors. The stowage container cover also serves as an outboard header

for the blanket array.

2-20
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The array is comprised by 8 mil thick solar cells with 6 mil covers. The

weight density distribution of the baseline design is shown in Table 2-8.

A cross sectional view of the cell/blanket construction is shown in

Figure 2-5 with the benefits obtained with the wrap around cell electrode.

Table 2-8 Baseline Weight-Density, SEPS Array

Item Density (1bs /ft2)

8 mil cell 0.0831

6 mil cover 0.0569

cover adhesive 0.0092

1 mil Kapton 0.0074

1 mil adhesive 0.0073

1 mil copper 0.0116

0.1755 Total

2.2.4 GE/JPL 30 WATT/POUND SOLAR ARRAY

In February 1971 General Electric completed a program to develop the technology

of the rollup solar array concept tinder contract to the Jet Propulsion Labora-

tory. This mr ay, shown in Figures 2-6 and 2-7, provides 2.75 KW at an effi-

ciency of 71 watts/kg. A flexible Kapton substrate blanket 1.17 m (46 inches)

wide by 10.2 m (402 inches) long is stowed by rolling it up on an 8" diameter

drum of sheet beryllium. A negator spring motor on the drum provides the

blanket tension. The array is deployed and retracted by means of an Astro

2-21
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Research "BI-STEM" deployable boom 1.34" in diameter shown in Figure 2-8.

The array was fabricated with partial solar cell coverage and the remaining

area with dummy glass modules. Cell modules were procured from several sup-

pliers to provide a representative sampling of interconnection approaches,

including the resources of Heliotek, Spectrolab, Boeing, EOS, and Centralab.

Slip rings conducted power from the array to electrical interface connectors.

The total weight of the array was 37.4 kg (82.5 lbs.). A summary weight

distribution is presented in Table 2-9. A prototype model was fabricated

and tested for performance and response to the environments of vibration,

pyrotechnic shock and thermal vacuum. The prototype array demonstrated that

a 250 sq. ft. array could be made to exceed the baseline target of 30 watts

per pound. It provided valuable information on such items as cell module

variations in weight and construction, rollup extension and retraction,

dynamic response, damping characteristics, and thermal radiation effects.

Detailed results of this effort are found in Reference 2.
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Table 2-9 Actual Weight Summary (Prototype Model)
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Nomenclature Drawing No.
Unit

Weight
(lb)

Qty/
Next
Assy

Total
Weight
(lb)

RA250	 Prototype Assembly 47E214519G2 - - 82.5

Center Support 47E218547 1.33 1 1.33

Leading Edge Member - 0.85 1 0.85

Boom Actuator - 11.73 1 11.73

LEM Support Brackets - 0.11 2 0.22

Outboard End Support - 2.05 2 4.10

Movable Portion - 1.31 1 -

Fixed Portion - 0.69 1 -

Bolt - 0.05 1 -

Drum Assembly 47E218804 8.80 2 17.60
G3 & 14

Guide Flange 47D218535 0.38 2 -
G3 & G4

Drum Shell 47E218144G4 2.79 1 -

Outboard End Cap
Assembly 47E218194G3 0.45 1 -

Inboard End Cap 47E218544 4.80 1 -
Assembly G1 & G2

Mounting Hardware (Drum- - - - 0.13
to-Center SEupport)

Prototype Array Blanket
Assembly 475218819G1 23.22 1 23.22

Prototype Array Blanket
Assembly 47J218819G2	 23.36	 1	 23..36

7
i
a
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2.3 ADVANCED SOLAR ARRAYS

A solar array system which can produce 200 watts/kg of overall weight

represents a significant design challenge. As noted in the summary chart

Table 2-2, most arrays developed to date have been in the range of 65-75

watts/kg, in respect to power versus weight performance. One intent of

this conceptual study is to keep abreast of all current development acti-

vities in the various areas of blanket fabrication, extendible structures,

and stowage techniques, so that maximum benefit may be derived from the

results of these programs. Work being performed at LMSC for NASA on flexi-

ble solar array design optimizations, and on the development of SEPS flat

pack approach to large arrays, is of particular interest.

2.3.1 SOLAR ARRAY SYSTEM TRADES

In the development of a solar array system design, a number of design

decisions must be made which will be governed by considerations of perform-

ance, minimum weight, reliability in space, and producibility. Some of the

items which will receive consideration in this study are discussed herein,

2.3,1.1 Array Configuration

The shape of arrays may be made rectangular, square, or round. Most arrays

to date have been rectangular, in which case a choice of aspect ratio is

necessary. Long narrow arrays may pose a problem of too low a natural fre-

quency which interferes with spacecraft attitude control stability, It is

usually desirable to make an array relatively short normal to its axis of
r

rotation so that orientation drive reaction torques are minimized. Round

shapes are not efficient in generating cell mounting area and hence would

have to be justified on the basis of associated weight or ease in retraction

and deployment.

}
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The number of arrays (wings) in the system is often a decision for the

spacecraft system designer. Breaking the system up into separate wings

can reduce the size of individual parts. However, it appears that the

best power to weight efficiency will be obtained by having a minimum number

of deployment mechanisms. For the purpose of this study, it has been speci-

fied that there will be two arrays each of 10 KW capacity in the system.

Interface with the spacecraft can have a significant effect on the structure

and weight of system. Rigid mounting directly on the spacecraft structure

will permit lighter weight structures in the array system at the interface.

Arrays which can be oriented constantly to the sun line through 180 0 to 3600

will require more structural strength within the stowage subsystem itself,

and hence present a larger weight reduction problem.

2.3.1.2 Panel and Stowage Configuration

There are a number of panel and stowage configurations which merit considera-

tion in this study. Among these types are rigid folding panels, semi-rigid

hinged modules, flexible folding modules, and continuous blanket substrates.

The method of stowage is directly tied in with the construction of the array

and hence becomes a prime consideration in the design of a lightweight extendi-

ble array system.

Rigid folding panels are fabricated by mounting cells on a low weight struc-

tural panel such as honeycomb material with hinges on opposite sides. This

method of construction is often adequate for small arrays. Although some good

advances have been made, such as the EOS hollow core panel, rigid panels can

be expected to be a limiting item in optimizing weight for large arrays.

2-2$
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Semi-rigid panels formed in modules and hinged for folding into a flat

pack were selected for the SEPS array by LMSC. 1 This method was chosen

because of its (1) module compatibility, (2) non-sensitivity to misalign-

ment, (3) control and care of supporting cells in a flat condition for

retention of the array under launch environments, (4) a flexible stowed

volume, and (5) elimination of power transfer devices.

In optimizing weight during this study, tradeoffs will be made between the

flat pack and rollup methods of stowage. The drum type rollup device is 	 q a
p

attractive because it provides a method of imparting continuous tension on 	 a

M
the blanket for both extension and retraction by the addition of a simple

negator spring motor to the drum. However, the drum approach has two limit-

ing factors, namely (1) the tendency to bend thin cells assemblies about the

radius of the drum, and (2) low weight and volume efficiency because of the

wasted space inside the cylinder. The drum is efficient structurally, however,

and this factor tends to overcome the other limitations.

2.3.2 LOW WEIGHT DESIGN APPROACH

In order to identify the most promising areas for weight reduction on this

solar array system, particular attention has been placed on the weight distri-

bution of current developed arrays and the 110 watt/kg concept developed by

General Electric in 1973. The system is divided into four subsystems for the

purpose of a weight distributions study, namely (1) Electrical (Solar Cells,

Substrate, etc.), (2) Stowage and Support, (3) Deployment and Retraction

Mechanism, and (4) Retention and Release Mechanism. By inspection of the

weight distribution in typical flexible solar array systems (see Table 2-10),

IReference 27

2-29

L"



GE	 i
GE LMSC 110 W/kg

Subsystem Rollup Array SEPS Array Concept

kg % of kg % of kg % of

Total Total Total

1.	 Electrical 21.12 56.5 122.5 64 48.5 55

2.	 Stowage &

Support 10.96 29.3 34.7 18 30.6 35

3.	 Deployment
Mechanism 5.32 14.2 35.1 18 8.4 10

TOTAL 37.4 100 192.3 100 87.5 100

a=

r

C

O r;•^rr-

'V	 Table 2-10 Typical Weight Distribution
C)	 of Solar Array Systems

_Y

1, y
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maximum reduction of weight should be obtainable by changes in the solar

array blanket and the stowage and support apparatus. These are the highest
a	 .

weight percentage areas.
w

This study is made on the basis of an advanced silicon cell which has been

defined by JPL as a projection of the state of the art in the 1977-78 time

j	 frame. This cell, resulting in a 40% reduction in cell thickness and a 36%
A

increase in solar cell electrical conversion efficiency over the 110 W/kg

array baseline design, results in an immediate weight savings of 48% in this

predominantly heavy electrical subsystem. Since it follows that very light

arrays will likely be very thin arrays, it appears that the advanced array will

inherently be highly flexible.

2.3.3 PRELIMINARY DESIGN CONSIDERATIONS

With this trend toward a highly flexible blanket, some preliminary concepts

are being explored. The following paragraphs discuss some of these concepts.

2.3.3.1 Flat Sided Rollup

If drum storage is employed, there will be a tendency to bend the thin cells

c

assemblies to some radius which is a function of the cell stiffness, the 	 p

blanket tension and the drum radius. Therefore the minimum radius which is

acceptable in respect to bending of solar cell assemblies is of prime impor-

tance. The flat sided drum is a concept aimed at combining the features of
i

the rollup approach with the desirable features of the flat pack; namely the

non-bending of the cell assemblies. Having flats on the drum will cause a

fluctuation in blanket tension during deployment and retraction if a constant

tension torque is applied to the drum. The design curves in Figure 2-9 may i
be used for selecting an acceptable trade. It is desirable to keep the flat
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width "W" large so that a reasonable module height on the blanket will be

attained. But it is necessary to keep the number of flats on the drum

high enough to keep the tension fluctuation down to an acceptable value.

The dotted line represents a logical selection with 4 sides and a tension

ratio of 1.4:1. This method of ccurse requires that a small section of

bare substrate exist at the corners of the rotor dividing the cell modules

h

from each other. The total length of the blanket must be increased to allow

for this loss in effective cell mounting area.

The minimum safe stowage bending radius for a 3 mil cell assembly is not

easily determined at this time. Three mil cells and corresponding blanket

assemblies do not currently exist. A minimum bending radius which will not

result in excessive breakage of cells is dependent on finish conditions of

the silicon cell, method of cutting, nature of cover material, adhesi%es,

temperature conditions, etc. Further investigation of this important ques-

tion will be conducted. Some data taken at GE Silicon Products Department,

Syracuse, N.Y. 2 indicates that the fracture strain of 6 mil silicon ribbon

is .0011 to .0014 in/in. The corresponding fracture stress values will be

dependent upon the representative modulus of elasticity. In Figure 2-10,

the theoretical strain and stress versus bend radius has been plotted for

3 mil thickness of thin sheet whose elastic modulus is 10 X 1.0 6 lb./in2 . It's for

only a single layer sheet. When the solar cell assembly consists of a sand-

wich type construction, the outer fiber (point of max. strain) m*7 exist in

the cover glass and hence, maximum stress will probably occur at that point.

The determination of minimum safe bend radius may be approached analytically

but should be verified by testing the specific components, materials and con-

struction involved in the cell assembly design.

P	 2 Reference 3
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2.3.2.2 V-Stiffened Concept

Another approach in designing an array which will help in the task of

weight optimization, is the V-stiffened concept first presented in the

GE 110 W/kg study 
3. 

In this concept, the two blankets shown in Figure 2-1

of section 2.2.2 as being coplanar, are canted by a small angle so that

tension forces in the blanket add to the bending stiffness of the overall

mast array assembly (see Figure 2-11). Thus, a lighter weight mast is per-

missible. Preliminary structural analysis of a V-stiffened 200 W/kg array

has been performed and is discussed in para. 2.5.3.

(r

WI:

P, CANT ANGLE	 BOOM CENTERED

WITHIN BLANKET

"	 BEARING

Figure 2-11 a 'V" Configuration, Sin g ,te Boomcl

Solar Array Concept

3Reference 1
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2.4	 EXISTING COMPONENT TECHNOLOGY BASE

2.4.1	 GENERAL

A review of the existing technology base in the areas of solar cells, solar k

t	 cell covers,	 interconnects and substrates, and deployable booms was performed
r

during this reporting period in order to have an early assessment of the pre

sent state-of-the-art.	 This section discusses each of these areas with parti-

cular emphasis on the applicability to this study.

2.4.2	 SOLAR CELLS` r̀ ^^

2.4.2.1	 Introduction

The attainment of the specific power goal of 200 W/kg is dependent in large t^

part on the reduction of the total weight of the solar cells required to output

10.2 KW,	 BOL (assumes 2/, electrical loss). 	 Cell efficiency,	 cell thickness,

and configuration will all impact the requirement for light weight.	 Cell

efficiency for any given cell configuration is a function of cell temperature

and optical power density (insolation) incident on the cell.	 For the purposes

design	 insolation	 be held	 1of this conceptual	 the study, the	 will	 fixed at	 A.U.

(distance from the sun). 	 This spectral power density 	 for this insulation is

defined by ASTM Standard Specification E490- 73a. 	 (Attached as Appendix B).

2.4.2.2	 Cell Efficiency vs. 	 Cell Thickness

l

Under the conditions of solar irradiance at 1 A.U. distance, the impact of cell

f

thickness on cell efficiency is indicated in Figure 2-12.	 The fall-off in power

output as the cell thickness decreases is associated with the low absorptivity

of red and infrared photons in silicon.	 At the baseline thickness of 3 mils

(75 pm),	 the cell power output has dropped to 89.5% that of a 10 mil cell.

y

Conversely, 11.7% more cell area will be required to provide the same power

2-3b
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output as a 10 mil cell. It would appear that there would be a clear advan-

tage to thin cells over thick cells on a specific power basis, since the

incremental power loss is more than offset by the incremental gain in cell

area. The specific power advantage at 3 mil would appear to be 0.896/.03

— 3 times that at 10 mil. However, the weight of additional cell interconnects,

blanket size, support mechanisms, etc. will have to be accounted for before a

true measure of the impact of the cell thickness factor on specific power may

be made. An overriding consideration regarding cell thickness is that of break-

age. It is a widely held observation that the thinner the cell the higher the

breakage rate due to handling. In order to assess the potential of achieving

an output power to weight ratio of 200 Watts/kg for a flexible roll-up array

of Silicon, the glass cover slip which contacts the solar cell, and the compo-

site mechanical nature of the system. This report will attempt to shed light

on the scope of the problem and make conclusions concerning those elements

which a rational approach, aimed at getting the necessary answers, might include.

Aside from the unfortunate paucity of information on the mechanical properties

of thin Silicon solar cell material; the other outstanding aspect of this topic

is the extent to which disagreement exists, and the amount of variability in

existing data. One reference shows a 50% variation in breaking strengths for

single crystal Silicon of small dimensions (0.25 in. x 0.25 in, x 0.025 in.)

with the same surface preparation. There is also no general agreement in the

literature on just what value should be accepted for this material property.

Source to source discrepancy may be due to differences in either the principal

J F

r
d

of measurement or the measurement technique. For instance, an early (1951)

measurement of the elastic constant of Silicon was made acoustically. In this

3
method, the elastic constant is calculated from the measured propogational veto-

<a
c

city of sound in the material and the density of the material. More recently, 	 j
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investigators have used the "three-point" loading technique where the sample

is braced against two supports and loaded from beneath by a third moveable

loading member. Results obtained in mechanical loading tests of this type

will, to some extent, depend on the specifics of how the test was carried out

and on the conditions at the boundaries where the sample under test is held

to its support. There does, however, seem to be agreement that the failure

property (fracture stress) will depart from its bulk value, and in some way

be related to the surface quality of the material. It has been shown that Sili-

con wafers which have been chemically polished will withstand greater bending

stress. The polishing eliminates many stress risers (i.e. minute cracks,

notches and other surface imperfections) by simply etching below them. Sili-

con solar cells for lightweight space array applications are a composite of

several different materials. It is really the mechanical (flexural.) behavior

of this composite that is of interest in this study. Pertinent information on

this subject is for the most part not available. Therefore, such information

must be empirically generated. In addition to the flexural properties of speci-

fic solar array materials and their composite behavior, attention should also

be given to a consideration of "stress-time-temperature" effects. The design

of all such studies should duplicate real loading and other ambient conditions

as closely as possible in order that results obtained from such studies will

predict the performance of the entire system under actual space flight conditions

with minimum uncertainity.

r	 2-39



TABLE 2-11

TEMPERATURE DEPENDENCY

OF

CELL PARAMETERS

VOLTAGE:	 AV /A T = -2M V/°C

CURRENT:	 AVAT = 30)1 A/Cm2-0C

POWER:	 AP/AT 	 = 270}1 W/°C*

ARRAY PARAMETERS

VOLTAGE:	 AV/Vo	 = -0.4%pT

A P/P	 = -0.33%l&T

* 2 x 2 cm  area cell

w
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2.4.2.3	 Cell Temperature Dependence

For the purposes of this study, a current/voltage performance characteristic

has been assumed for a 2x2 cm cell, 10 mils thick. 	 This characteristic and

the associated power output curve is shown in Figure 2 . 12 for the standard
:i

condition of insolation and temperature.	 Additional assumptions have been
i
41

made regarding the temperature dependence of voltage, current and power, see iu

Table 2-11.	 Using f he candidate cell data of Figure 2-13 and these temperature

coefficients, a prediction . of cell performance as a function of temperature is

shown in Figure 2-14. 4,
p9f

b2.4.2.4	 Radiation Hardening
y

The Baseline Requirement document states that the solar cell must successfully". y

withstand a total dosage of 2 x(10 12) proton (1 MEV) particles per cm 2 over

3 years.	 The radiation damage to be expected at this dosage will be the sub-
E

..

ject of analysis in the next quarter of the program.

2.4.2.5	 Configuration
s	

'

A configuration trade off analysis will be conducted during the next quarter of

the program.
`	 E

2.4.3	 CELL COVERGLASSES

2.4.3.1 Introduction

An efficient coverglass serves several purposes; namely, as a thick barrier to

physical particles, a radiation shield for high energy particles, a UV baffle,

low index of refraction optical interface to air/vacuum, and a good radiator

for thermal energy. The density of the most commonly used coverglass material

(fused silica) is almost on a par with silicon (2.2 g/cm 3 vs. 2.3 gjcm3 for sili-

con). A thermoplastic material, FEP (Fluorinated ethylene propolene), is often

cited as having suitable properties.

2-42
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Its density is 2.15 g/cm3 , about 2% lighter than fused silica. The battle of
r

weight reduction at the coverglass interface will be won by finding a substitute

material with suitable physical and thermal properties or by application of very

thin sections of the standard materials.

2.4.3.2 Material Investigation

A search for appropriate material and methods of applying these materials will

be made in the next quarter of this conceptual design study. A leading candidate

at this time would appear to be ion sputtered or RF sputtered fused silica. A

second contender would appear to be 1 to 2 mil FEP. In either case, the princi-

pal criteria to be used in candidate evaluation include resistant to 1) UV radia-

tion, (2.0 calories/cm 2-min for 1095 days), 2) radiation dosage of 10 7 RADS and

3) high thermal emissivity at cell operating temperature. The effectiveness of

the material as a barrier to high energy particles shall not be at issue, since

solar flare proton fluency has been disregarded as a source of solar cell power

loss. Refer to paragraph 3.2.3 of Baseline Requirements, Appendix A.

2.4.4 CELL INTERCONNECT AND SUBSTRATES

2.4.4.1 Introduction

The conceptual design of low resistance, highly reliable cell interconnects and

substrates will be based on the accumulated past experience of many space power

systems, influenced by the present specific power requirement of 200 W/kg. The

integrity of the ohmic contact during thermal cycling is of particular concern.

The selection of substrate material will be made on the basis of resistance to	 j

particulate surface dosage radiation of 10 7 rads and UV exposure equal to 1095	
A'

days at the rate of 2 cal/cm2-min.

1
2.4.4.2 Material Investigation

Y

A review of materials previously identified by studies and/or usage will be made

',	
2-43



t	 t

.c'A r 47y

in the light of the present requirement on specific power. The integrity of

physical properties over a 3 year mission, good thermal emissivity, and a high

strength to weight ratio are the principal criteria.

2.4.5 DEPLOYABLE BOOMS

Extensive surveys of deployable booms have been made in the past, particularly

in connection with the Space Station Array Program, and are well documented.

This study wili utilize these findings and review any advancements of the state-

of-the art of extendible members in respect to their significance 1:(i the current

study. The deployable booms, which appear to be good candi4at;r.s at present,

are (1) the Astromast Coilable Lattice Boom, Figure 2-11, made by Astro Research

Corporation, and (2) the BI-STEM (Storable Tubular Extendible Member) boom,

Figures 2-15 and 2-1, also manufactured by Astro Research. The Coilable Lattice

Boom has continuous longeron members running the entire length of the mast.

When retracted, these longerons coil on top of each other as shown in Figure 2-16.

When longeron stresses generated by the coiling of the boom are excessive, as in

case of high temperature, segmented steel longeron members are utilized. These

fold on retraction. This version is the articulated lattice structure shown in

Figure 2-17. In general, lattice structures have the advantage of a high strength

to weight ratio in applications where a relatively high El (modules of elasticity)

and bending strength are needed. Their disadvantage is the large stowage volume

and actuator weight required. The widely used BI-STEM boom is essentially a

ribbon of thin metallic material which assumes a tubular shape of high strength

when unwound from a spool. Additional strength is obtained by using two tapes

which form around each other as shown in Figure 2-18. The actuator has a motor

driven spool and tubular guide mechanism. The unit shown in Figure 2-19 is the

A-631 model containing a 1.34 inch diameter mast. This device is compact and

weighs less than 6 pounds (less BI-STEM element).

z
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Figure 2-15. ASTROMAST Coilable Lattice Boom - Lunar Antenna Mast
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2.5 PARAMETRIC ANALYSES

2.5.1 GENERAL

This section describes the dynamic parametric analysis performed on both

a planar and V-stiffened array configurations. The results of the analyses

and their impact on the design of a 200 watt per kilogram solar array are

discussed.

F*	 2.5.2 PLANAR ARRAY - VIBRATION STUDIES

2.x.2.1 Introduction

Parametric studies performed during the 110 W/kg solar array study formed

the basis for establishing the optimum structural configuration characteris-

tics of the 200 W/kg array. The design requirements for an interplanetary

mission were essentially the same with a. minimum deployed array natural fre-

quency of .04 Hertz and a deployed array quasi-static load capability of

1 X 10 -3 g's. The launch environment is that of the Space Shuttle instead of

the Titan-Centaur, but this change only affects the stowed configuration and

is not extensively different. In this report, only the deployed array vibra-

tion studies are being considered.

The following discussion reviews much of the investigations, techniques, and

optimization studies which were conducted on the 110 W/kg array. A prelimi-

nary configuration was selected based on the findings of the earlier study and

the new guidelines for lighter weight, more efficient solar cells.

Computer codes for determining minimum boom bending stiffness and blanket ten-

sion to meet the .04 Hertz frequency were updated and results are presented

for the new baseline configuration.
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2.5.2.2 Background Data

The configuration selected for the 110 W/kg interplanetary mission is shown

in Figure 2-1. It consists of two Kapton solar cell blankets supported by

a tubular Beryllium leading edge member, and a single deployable articulated

steel longeron ASTROMAST. A flat pack design was used for the stowed solar

array. Table 2-12 presents a total system mass summary for the system. The

total weight of 87.5 kilograms was split almost equally between the mass of

the solar cell blankets and the supporting and packaging structure. The goal

of 200 W/kg necessitates the 87.5 kilograms be reduced to about 50 kilograms

and indicates the need to reduce weight in all areas.

Figures 2-20 and 2-21 present the first anti-symmetric (torsion) and symmetric

(bending) frequency versus blanket tension characteristics for a planar array.

As indicated by the curves, their crossover point gives the maximum natural

frequency for a minimum blanket tension. Figures 2-22, 2-23, and 2-24 graphi-

cally present the results of optimized boom stiffness and tension versus

natural frequency and minimum system weight. The overall conclusion derived

from these parametric variation studies was that a three to one aspect ratio

was the minimum weight design for baseline configuration shown in Figure 2-1.

In view of the extensive optimization analyses performed during the 110 W/kg

study, a planar baseline configuration was selected which closely matched

the findingo from the earlier investigation. However, it is shown in sub-

sequent discussions that the optimized planar array with just the lighter

and more efficient solar cells does not meet the desired weight goal of

50 kilograms. Further weight reductions and/or configuration changes are

indicated.
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Table 2-12 Total System Mass Summary - 110 W/kg Array
(Baseline Configuration for Interplanetary Mission)

Item Mass

(kg)

Solar Cell Blankets (see Table 2-6 for detail breakdown) 48.5

Stowage and Support Structure 30.6

Frame 11.0
Container Bottom 3.6
Container Cover 4.0
Container Mechanisms 0.1
Center Fitting 0.8
Leading Edge Member 3.1
End Retention Fittings 1.0
End Retention Cable Cutters 0.9
End Retention Mechanisms 0.4
Blanket Tension Mechanisms 1.2
Interlayer Cushioning 2.5
Container Foam 1.8
Coatings 0.1
Fasteners 0.1

Deployment Mechanism 8.4

Mast 3.1
Canister

i

5.3

Ln	 Total	 87.5
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2.5.2.3 Planar Array Computer Codes

The dynamics analysis required to determine the optimum boom stiffness and

tension of the planar array was performed using a discrete parameter model

used for previous analyses on the 30 W/lb. and 110 W/kg studies, and veri-

fied by test. The model used a five by two discretization as shown in

Figure 2-25. Because of the symmetry of the solar array configuration, only

half the array was analyzed with appropriate boundary conditions to determine

either the symmetric or antisymmetric array modes. Each blanket was repre-

sented by 10 rectangular elements that describe the out-of-plane stiffness

caused by the blanket tension. The leading edge member (LEM) and boom were

modeled using beam elements and included the effect of axial preload on the

boom stiffness. The leading edge member was free to rotate relative to the

boom about the longitudinal axis of the array. A consistent mass representa-

tion was used. The boom density was varied in accordance with the boom stiff-

ness as shown in Figure 2-20 for the continuous longeron ASTROMAST and arti-

culated steel ASTROMAST booms. The analyses were performed using the appro-

priate subroutines in a DYNAMO II program that enabled the parameters to be

varied over the range of interest. (See Table 2-13)

2.5.2.4 Deployed Analysis

2.5.2.4.1 Optimum Blanket Tension

The initial analysis performed was to determine the optimum blanket tension

necessary to meet the ,04 Hz frequency requirements for both symmetric and

torsional vibration. Since the LEM rotates freely on the end of the boom,

boom stiffness does not affect the torsional frequency calculations of the

array, and the tension required to meet the torsional frequency criteria can,
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Figure 2-25	 Finite-Element Model of Two-Blanket,

Single-Boom Solar Array
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therefore be determined solely from the information given above. This was

done utilizing the rectangular membrane finite element program developed for

determining the anti-symmetric frequencies of the 110 W/kg array. Once this

value of tension was determined it was input, along with the data in Table 2-14,

into the symmetric analysis program, to determine the boom stiffness necessary

to meet the .04 Hz criteria for out-of-plane bending.

The results have been plotted in Figure 2-27 from which it can be seen that

the op!_Lmum tension for the baseline system is approximately 2.4 lbs. (both

sides).

Table 2-13 contains a summary of information acquired from the computer codes

for use in the present 200 W/kg study.

Table 2-13 200 W/kg Baseline Planar Array Computer Runs

Run No.

SAS002	 Effect of tension on torsional frequencies.

SAS003	 Effect of EI variation on symmetric frequenceis assuming:

- Fiberglass ASTROMAST
- Tension equal to that required for a torsional
frequency of .04 Hz.

SAS004	 Effect of EI variation on symmetric frequencies assuming:

- Articulated steel ASTROMAST
- Tension equal to that required for a torsional

frequency of .04 Hz.

SAS005	 of tension variation on symmetric frequency.

y _
	

9
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Table 2-14 Baseline Configuration - Planar Array

Aspect Radio (AR) 3

Length (L) 14m 46 ft.

Width (total) (W) 4.68m 15.3 ft.

Blanket Mass (M) 24.97 kg 55.06/gc slugs

Blanket Density (1) .381 kg/m2 .078 /gc slugs

Required Frequency (f) .04 Hz

2.5.2.4.2 Effect of Aspect Ratio

In this analysis, data calculated for the 110 W/kg

represent the 200 W/kg array. Figure 3-100 of the

presents a plot of optimum boom stiffness (EI) vs.

(f) and optimum blanket tension for various aspect

mary equation in the determination of the tension

sion is that for tension in a stretched string,

study was modified to

1
110 W/kg final report

fundamental frequency

ratios. Since the pri-

required for .04 Hz in tor-

TS ^ g 8 L2

the tension scale on this plot was shifted by ratioing the tension values by

,,pL2 of the baseline 200 W/kg blanket to the , OL2 of the 110 W/kg blanket. The

boom stiffness scale of the plot was then similarly shifted by ratioing the

values on this scale by TL 
2. The results are shown in Figure 2-28 of this

report.

1Reference 1
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Computer runs were made for the 200 W/kg baseline that verified that the

results are sufficiently accurate for evaluation of the 200 watt/kg configu-

rations,

2.5.3 'V-STIFFENED ARRAY-VIBRATION STUDIES

2.5.3.1 Introduction

Paramet-ric studies performed for the 110 W/kg solar array as well as the cur-

rent 200 W/kg study indicated that further reductions in required boom stiff-

ness and overall system weight can be obtained from a minor variation of the

planar design to a canted or V-stiffened one. The 110 W/kg study was able to

meet its system weight goal with a planar array. However, as shown in the pre-

vious section, the planar configuration cannot meet the system weight require-

ment unless a significant mass reduction is made in the stowage and support

structure. The following discussion presents a review of the earlier invest-

igations into V-stiffening effects and a 200 W/kg baseline configuration is

established which nearly meets the system weight goal.

2.5.3.2 Background Data

A "V"-stiffened solar array configuration was conceived as a means of obtain-

ing significant increases in the minimum array resonant frequency without

added complexity. Thus, it is possible to meet a specified deployed natural

frequency requirement with reduced boom stiffness (and reduced total system

weight) when compared with a planar array geometry. This concept, shown in

Figure 2-11, uses the slight angle of the array blankets to enable observed

in-plane stiffening resulting from the redistribution of blanket tension to

provide out-of-plane stiffness. Static tests and analysis of the in-plane

behavior showed that the array blanket tension was redistributed such that the

-h

p "

^,

.4
t

x	 .

^I

F
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array rotated about one edge. In effect, the blanket provided a moment con-

straint to the tip of the deployable boom until an edge tension condition

r_.

was achieved after which the boom behaved as a cantilever. By canting the

blankets and centering the boom within the blankets, this boom tip constraint

Y

can be used to stiffen the array for symmetric out-of-plane motion.

The effect of the canted blankets will also provide stiffening for torsional

motion of the array. For a given boom, the tip constraint will enable greater

tension to be applied without buckling the boom; hence, an increase in the tor-

sional frequency. In addition, the boom will be required to bend during tor-

sional vibration with some increase in the frequency. (Because of the high in-

plane stiffness, the array will tend to twist about the center of the "V" caus-

ing bending of the boom.)

Figure 2-29 graphically illustrates the effect of blanket tension on natural,

frequency for a "V"-stiffened array. There is no crossover or hump maximum

frequency for the symmetric mode as exists for the planar array. Conversely,

for a given frequency, "V"-stiffening permits the use of lower blanket tensions

and subsequently "Lighter weight support stricture. Figure 2-30 presents the

results of an investigation into minimum allowable boom stiffnesses and boom

buckling limits. It is apparent that the "V"-stiffened array does not have

an optimum boom stiffness and blanket tension for a given frequency similar to

the planar array. The following discussion further investigates these trends

and has resulted in the selection of a minimum weight configuration.

2.5.3.3 V-Stiffened Array Computer Code

Tests on a planar array indicated that there were three regions of different

stiffnesses for in-plane deflections as shown in Figure 2-31a and described

r e,

A

A

r

1

4
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below:

".	 Region 1:	 For small deflections, hysteretic behavior of the BI-STEM boom

caused a relatively high stiffness. 	 This is best predicted semi-empirically

and is not predicted by simplified analytical modeling.

Region 2:	 For medium deflections, the tension distribution of the blankets

'	 changes such that the slope (9) at the tip of the leading edge member is pro- kr;

portional to the tip def,`.ection (S) divided by the array length (L).

9	 =	 6/L
N

q

This results from a constraining moment at the tip of the boom due to the

blanket tension and is valid until the tension shifts to the edges of the

blanket.
AAA

Region 3:	 For large deflections, the effect of blanket tension is no longer

present and the boom behaves as a cantilever. 	 This occurs after the transi-

tional deflection	 (when tension shifts to the edges of the blankets at end of ,a
f

Region 2).

Using the idealized representation shown in Figure 2-31b, an effective linear

stiffness (Keff) can be defined for a selected amplitude of motion. Although

other methods could be used to arrive at a linearized stiffne,,s, this appears
r

to be a reasonable estimate. It is conservative for large amplitudes in that

the stiffness is higher than predicted, but may be unconservative for small

amplitudes because the Region 1 stiffness is not included in the stiffness

representation.

2-64



I3t

REP.7,10DUCIBILTIT OF T11, :
ORIGINAL PAGF T , P..1^

1 fi	 1	 2

r ^
12	 f 17 1r, 15

Y

122 19 14 13 12

2 ,11 21 11 10 9

I	 1	 I; 23 8 7 E;

i -_ ,6
2 5 4 3

--^ -77/-7-2 r,7-1 f	 777

NOTE: SYMMETRY BOUNDRY CONDITIONS w,
IMPOSED ALONG BOOM

(a) Planar Solar Array
3

1

Keff

.	
ZQ

2
1	 2

T

T	
-1141 -

17 16 15

NOTE: Keff USED TO
REPRESENT BOOM 14 13 12 411STIFFNESS WITH IN -
PLANE BLANKET

lTENSION EFFECT. 11 10 9

8 7
0-

5 4 3  ^

(b) "V" -- Configuration Solar Array

Figure 2-32	 Symmetric Models

3
a

2-65

t



t 1

2.5.3.3.1 Symmetric Vibration Analysis

The approach used in performing this symmetric vibration analysis of the "V"

stiffened array was to use the existing planar model of the blankets and

revise the boom stiffness representation to reflect the effect of the blanket

tension redistribution. The original analytical model of the array is shown

in Figure 2-32a. The revised model of the array is shown in Figure 2-32b,

where the major modification is to replace the boom finite element model by

an effective linear spring (Keff)• This appears reasonable in that the cant

angle of the array being considered is small (on the order 10 0 ) so that signi-

ficant area is not added to the array due to the change in the projected area.

The resulting change in the membrane stiffness due to the small angular rota-

tion should not be significant, but should actually increase the blanket stiff-

ness. Therefore, the main effect seems to be the revised boom stiffness.

Consider the out-of-plane deflections of the "V" stiffened array shown in

Figure 2-33a and the free body diagram of the Leading Edge Member (LEM) shown

in Figure 2-33b. These diagrams are identical to those of Reference 2 except

for the modified width which now becomes the projected width; i.e., w is

replaced by w sin )8. The force deflection relation (ref. 1) neglecting root

flexibility (a) becomes:

F =	 4 RI	 -	 4T	 +	 Tw, sin	 (1)
L3 	 15L	 L

where:

T = tension per blanket

EI = Boom Stiffness

w = Half width of array

^4

r,

k'

ST^

i

y

3

a^

^a

2-66



.	 f9'^.,.	

n • ^a S 4^
f•'

E

1

k	 Ilk ^" u

E4 A --I	 _
v.

F

N
n	 : d

^T

Kr

PT A^ w

	

	 ^^
in

W sin

l

(a)

Edge View of Deflected Array
r

E

ZT (w/Z sin + a - LI	 ^.	 ^_t_	 F

E	 L 	
h

a

	

	
2T

2T

V
h E I d	 (11 + 76a+ 160C211  Td

=	
L 3 (1 + 4 C	 IL 5 (I +4CE z

	 L

M =	 LEI d	 + T6 (1 + 12 a )

LL (1 + 4a	 15 (1 + 4 a )
Z

(b)

Figure 2-33 Force Diagram at Outer End of Array

r-

 

2-67



and the limiting deflection at which the transition from Region 2 to Region 3

occurs (Ref. 1 and 2) neglecting root flexibility, becomes:

-1

TRANS = Tw sin,Q2 EI	 +	 T	 (2)
15

Using Keff to linearize the boom stiffness over the range of applicable deflec-

tions and neglecting root flexibility:

F = 4 EI - 4T + Tw sin	 1	 (3)

eff = S	 f..3	 15L	 L	 g

where 1/2 
eff 

is added to the stiffness matrix of the analytical model at

coordinate 17.

It will be noted that the tension effect on the boom stiffness is included in

the linearized stiffness. As the tension is increased, the boom stiffness

decreases as indicated by the first two terms of Equation 3. When 2T = 30 EI,

L

the boom stiffness becomes zero and the Keff is due only to the initial offset

value. From the buckling standpoint, the buckling load in Region 2 is increased

from Ilam I to 3_0 EI, an increase of approximately 3 to 1.

L	 L

The mass of the boom is included in the boom tip coordinate using one-fourth

of the boom mass.

2.5.3.4 Deployed Analysis

2,5.3.4.1 Assessment of Stiffening Effects

An evaluation of the effectiveness of the V-stiffened configuration was per-

formed using the baseline configuration (Ref. 12) as a point of reference.

The following values were assumed for the parameters specified:
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Total Deployed Len-th	 =	 14 m (46 ft.)

Total Blanket Width 	 =	 4.68 m (15.34 ft.)

Boom Stiffness (EI) 	 =	 826 nt-m2 (2000 1b.-ft. 2)

LEM Stiffness (EI)	 =	 2060 nt-m2 (5000 1b.-ft. 2)

Blanket Mass	 =	 24.97 Kg (55.06/g c slugs)
r p	

Tension per Blanket	 =	 5.78 nt (1.3 lbs.)

n	
The effect of the cant angle on the array characteristics can be seen from

the previous analytical expressions. The deflection at which transition occurs

is directly proportional to the sine of the angle (Equation 2) so that the

transitional deflection can be increased, if necessary, by increasing the angle

(e.g., a 15 degree angle would result in approximately 50 percent increase in

the transition deflection over that provided by a 10 degree angle). For a

given d-aflection, the effective boom stiffness is increased significantly due

to the increase in the offset force (3). On the other hand, the effective boom

stiffness at the transitional deflection can be shown to be

K'e f f	 =—Ea-I-	 3T
	 (4)

L	 15L

which is not affected by the cant angle.

The fundamental symmetric resonant frequency determined from the analytical

model is shown in Figure 2-34 for the range of tension values investigated.

For comparison, the symmetric and antisymmetric frequencies of the baseline

planar array are also shown. The "V" array frequency is shown for oscillation

amplitudes equal to the transitional deflection and one-tenth the transitional

deflection. It should be noted that the small amplitude curve is questionable

due to neglecting the Region 1 stiffness.

F,

^ f
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From Figure 2-34 it is apparent that the tension required to meet the .04 Hz

torsional frequency and the boom stiffness required to meet the .04 Hz sym-

metric frequency criteria for the planar array, results in a greatly increased

symmetric frequency for a small (10 0) amount of V-stiffening. Therefore, using

this tension value (needed for .04 Hz torsion) allows the boom stiffness to be

•	 significantly decreased while still obtaining .04 Hz in out-of-plane bending.

For baseline design, the required blanket tension (per side) of a planar con-

figuration was determined to be approximately 5.8 nt .(1.2 lb). The tension was

set at this value and the boom stiffness varied through the range of practical

interest.

The range of boom stiffness that was considered practical was based on the

buckling load of the array for the required tension value. If a conservative

design approach is used, a criteria that the buckling load of the cantilever

boom is not exceeded could be selected. Alternately, a less conservative

criteria is that the buckling load of the boom with the blanket restoring

moment acting would not be exceeded. Using the first criteria, the boom could

not buckle for any range of deflections whereas the second criteria would

result in boom buckling if the tip deflection was greater than the transitional

deflection. From Figure 2-35 applying a safety factor of 1.25 to the buck-

ling load an El of 285 nt-m 2 (690 lb-ft 2) satisfies the first criteria and

an EI of 91 nt-m2 (220 lb-ft 2) satisfies the second criteria.

The calculated symmetric frequencies for this boom stiffness range satisfies

the 0.04 Hz requirement for oscillations at the transitional deflection and a

large margin is indicated for smaller oscillation amplitudes. Consequently,

the controlling factor is boom buckling.
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2.5.3.4.2 Force Deflection Characteristics

To determine the optimum cant angle (j9) of the blankets, computer runs were

made to calculate the frequency in out-of-plane bending over a range of boom

stiffnesses for cant angles of 6 0, 8°, and 10°. The transition forces (F t ) were

calculated from equation (1) for each boom stiffness (EI) at each cant angle and

are plotted vs. El in Figure 2-36.

The loads produced by the quasi-static accelerat?:vn requirement (10 -3 g's) set

by JPL must not exceed the transition force or the effects of V-stiffening

will be lost. A 1.25 safety factor applied to an approximate blanket plus boom

weight of 57 lbs. multiplied by 10 *3 results in a minimum transition force

requirement of .071 lb.

The intersection of the horizontal line drawing at F t= .07 on Figure 2-36 gives

the minimum boom stiffness needed to meet this criteria for each of the cant

angles. A blanket cant angle of approximately 8.25° is seen to result in a

design which meets exactly, both the transition force and boom buckling criteria.

The use of any other cant angle would require a design which exceeds one or both

of these rquirements.

2.5.3.4.3 System Weight

In Figure 2-37 weights of the aritculated steel ASTROMAST and deployer, and the

steel BI-STEM and deployer-are plotted with blanket weight vs. blanket cart

angle using the data shown in Figures 2-38, 2-39, 2-40 and 2-41. The boom

stiffness used to determine these weights were the minimum required to meet both

the transition force and boom buckling criteria as determined from Figure 2-36.

The vertical line at 8.25° indicates the point at which both the buckling and

quasi-,static loads criteria are met exactly. As can be seen from Figure 2-36
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for angles greater than 8.25 0, the boom size is constrained by the minimum

EI of 690 lb-ft 2 needed to meet the buckling criteria and at angles less

than 8.254 the boom size is constrained by the EI needed to meet the quasi-

static loads requirement.

In determining these weights it has been assumed that the smallest boom repre-

sented on the plots (Figures 2-38, 2-39, and 2-40) is the smallest which can

--	 be made. This results in the boom and deployer weights being constant beyond

7.20 of cant angle for the BI-STEM and beyond 7.5 0 for the ASTROMAST. ASTRO-

MAST has indicated that it is unlikely that their boom can be obtained in

sizes smaller than that given in Figures 2-39 and 2-40. It is not known at

this time whe<-Ler the steel BI-STEM can be obtained in smaller sizes. Should

they become available, it could result in a significant weight savings over

that shown for the BI-STEM in Figure 2-37.

2.5.4 COMPARISON SUMMARY

Table 2-15 presents a summary comparison of the 110 W/kg and 200 W/kg baseline

arrays established by the previously described analysis techniques. The

effect of using lighter, more efficient solar cells is immediately obvious

in the sizeable reduction of blanket weight and this is further reflected

in the lower boom bending stiffness and deployment mechanism weights. However,

the significant reduction in required boom bending stiffness for the "V" stiff-

ened array is mostly dissipated by the practical size limitations of both the

ASTROMAST AND BI-STEM hardware. The values given for the 200 W/kg array are

for the smallest units listed in the vendor literature, namely a 4 inch

ASTROMAST and 1.3 inch BI-STEM boom. Unfortunately, a point of diminishing	 -

return has been reached with the deployer where practical minimum eize limita- 	 .A
,„i

tions neF aces the advantages of smaller and lighter weight booms.
i
i
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In view of the above noted limitations,several alternatives are suggested

in order to achieve further optimization in the design, The simplest

approach is to consider larger power arrays than the present 10 kilowatts.

By going to a larger array size the practical limitations of the hardware

are avoided while the same optimized configuration parameters are maintained.

The optimization of the stowage and support structure has yet to be investi-

gated but larger size hardware can provide for more efficient utilization of

structure. And finally, the validity of the blanket weight and 3 mil solar

cells has to be confirmed. If this is found to be unattainable, then the

deployment hardware would have to be proportionately increased in size to meet

the increased blanket weight requirements.

2.5.5 DISCUSSION OF RESULTS

The results of the above analyses indicate a possible trend in the 200 W/kg

proposed concepts. For instance the analysis shows that a bending stiffness

of l X 105 lb. -in. 2 is adequate for the array. The ASTROMAST and BI-STEM

stiffness versus diameter characteristics are shown in Figures 2-40 and 2-42

respectively. From this data it can be seen that the minimum practical

ASTROMAST size (4-inch diameter) more than meets the stiffness requirement,

The curves show that a 0.9-inch diameter BI-STEM would just meet the 1 X 105

lb-in 2 requirement. However, since 0.9-inch is a non-standard size, the next

size larger, 1.34-inch diameter, would be a more practical choice. It is also
f

of interest to note that the 1.34-inch diameter BI-STEM would also meet she

planar EI requirement of 3 X 105 lb-in2 , thus creating more flexibility in

the choice between planar and V-stiffened configurations.

Using this information on appropriate mast size, two preliminary mechanical

concepts have been generated to stimulated chinking on the design problems

2-79
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Table 2-15
o	 Comparison of 110 W/Kg and 200 W/Kg Baseline Arrays

A	 av Cant Boom ET	 nt-m2 /lb-in2 Wt.	 /lb

110 W/kg Planar Oo Articulated Steel
Astromast

4170/14 x 105

Blanket Boom D,-j2lo er

48.5/107 3.1/6.8 5.3/11.7

V-Stiffened loll Steel BT-STEM 1230/4.3 x 105 49.2/108.5 4.4/9.7 2.5/5.5

200 W/kg Planar 0o Articulated Steel
Astromast

826/3 x 105 256/56.3 .8201.8 5.1/11.3

V-Stiffened 80 Steel BI-STEM 290/1 x 105 25.8/56.9 2.1/4.6 2.0/4.4
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posed by the 200 W/kg array. A rollup planar array is illustrated in

Figure 2-43. This concept shows the general appearance of a 4 sided drum

of 12-inch radius at the corners, and the use of a 4-inch diameter Astro-

mast. The concept of V-stiffening is shown in Figure 2-44. A 16-inch dia-

meter stowage drum is tentatively sketched in position for purposes of illus-

tration.

Possible weight benefits to be derived from present concepts are shown the

"Mass Summary Chart", Table 2-16. The weight values shown on this chart

for new concepts are based on preliminary estimates and extrapolations.

They are, of course, subject to change up or down as the study becomes more

detailed. However, they do serve to show an estimate of the degree of pro-

gress in weight optimization. The chart will be verified and extended as

the study progresses.

l

, ^ A

t	 j

9
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Figure 2-43 200 W/kg Solar Array Flat Sided Roll Up Concept
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ESTIMATED WEIGHT

STATE OF ART 110 W/KG ARRAY 200 WATT KG CONFIGURATI ONS

PLANAR ASTROMAST V-STIFF N D(SEPS ARRAY) GE STUDY
ITEM ..	 j % WT. I N KG WT, IN KG % WT, IN KG %

2 1 Q

Electrical
Solar Cells 29,26 11.91 11.91

Substrate 4.04 2.51 2.51

Adhesive 3.50 2.18 2.18

Cover Material 7.26 4.51 4.51

Bus Strips & Insulators 1.50 1.50 1.50
Inboard & Outboard Leaders .27 .27 .27
Interconnectors, Terminals 1.96 1.96 1.96
Strip Hinge Joints & Jumpers .71 .71 .71
Slip Ring/Flex Lead - -

Sub Total T2-2--.-41T- bb 8. 5 2 4 -	 8

Mechanical
Stowage & Support

Frame
Container
Coven
Drum & End Plates

Cushion
Sub Total 3 30.6 35 24.21 39 358 8.25

Retention & Release Mech
Brackets
Cables
Pyro Devices

2.4 5Sub Total 2.4 4

Deploy & Retract Mechanis,
Mast 35.05 3.1 .82 2.1
Canister/Deployes 5.3 5.10 2.49
Drum Actuator (Spring .59 •.59
Springs (Retention) 8.91

3.96 5:18 2Sub Total 23 8.4 (? 6.51 6

Total 192.29	 j 1.00	 j 87.5	 j 100 1	 58.67 100	 j 51.38 100

Efficiency (Watts/KG) 65 114. 3 170.4 194.6

r

k^

i

41

1

e

Table 2-16 Mass Summary Chart

200 WATT/KG SOLAR ARRAY STUDY

1	
NOTES

co
Un

1	 Extrapolation of 100 W/Kg Baseline design. (4" Dia. Astromast)
00 (2, SEPS basline design by LMSC.
°^	 Low wt drum & 1.34' Dia Bistem A631 deployer.
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SECTION 3

CONCLUSIONS

t

{	 No definite conclusions can be made at this early stage of the program.

However, some preliminary obser\-ations seem noteworthy."

The use of 3 mil solar cells has a weight advantage that overshadows the

reduction in power output as described in paragraph 2.4.2 of this report.

Additional evaluations will be performed to determine the practicality of

manufacturing, handling, and assembling such thin silicon cells. It may

Y7
be necessary to consider thicker cells (and their associated increased

w
weight) in order to establish confidence in a practical approach.

The use of the V-stiffened array reduces the stiffness required for the

boom over that required for a planar array. The reduced stiffness allows

a smaller and lighter deployment mechanism and boom to be used to meet the

0.04 Hertz minimum natural frequency.

,i

r
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SECTION 5

NEW TECHNOLOGY

No items of new technology have been reported during this period. }

tea"':
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1.0	 SCOPE

	1.1	 This specification covers the requirements for a conceptual

h
approach for a 10 kilowatt solar panel design having a

power-to-weight ratio of 200 watts per kilogram or greater.
Y

This conceptual approach requires a background of information

on the influencing parameters, their margins, the trade-offs

j considered, and the rationale developed for a light-weight

array design as defined by the requirements in paragraph 3.0.
,r	 wxK

i

2.0 APPLICABLE DOCUMENT

n

2.1 The following document forms a part of this specification to

the extent specified herein:

MIL-HDBK-5	 Metallic Materials and Elements for
K•

Flight Vehicle Structures

3.0 REQUIREMENTS

3.1 Conflicting requirements.	 In case of conflict between the

of this specification and the documents
JA

t
requirements

referenced herein, the requirements of this specification r"

shall govern.

3.1.1 Deviations from standard practices. 	 Any deviations from

generally accepted standard practices will be approved by

the Jet Propulsion Laboratory (JPL), after it has been

demonstrated by 'analysis that the deviations will not degrade

,. the overall, probability of attaining the objectives of this

{ effort. The burden of proof in such circumstances shall rest
ti

A-2



Mre fie. &tyam.	 VyW ^T(..^.	 1' 1 3itiYrsr :`.	 .. .r..m	 -K.r	
r , _.
	 -	 •. -	

,.

'y'

.

(..g	 [''//''^^	 q

,^. jt

^^y^

.

,
1.71	 {!	 :,`4•+T+.I^	 ^.1 ..	 ^.... I:l .^..Y..	 1 ^F	 2.^	 ;4 A". . .
ORIGINAL PAGE IS POoR

upon the contractor and not upon JPL.

_	 3.2 Performance requirements.	 The solar panel shall be designed

so that the following performance requirements can be met.
.k

3.2.1 General.	 In the stowed configuration, the solar panel shall }`

be supported in a manner that will prevent damage to the
y

solar panel under shock and vibration loads.	 Upon command w'
..-

10 and in proper sequence, the release and deployment mechanism

shall extend and lock the solar panel into the deployed

position at a rate to be defined by the contractor.	 Uponr

command and in proper sequence, the retraction mechanism shall ".►
f'a ^ra
9 retract up to 90% of the solar panel, exposing sufficient area

to provide up to 10% of the total power, and lock to this

partially stowed position at a rate defined by the contractor. {

` This retraction mechanism will be considered as an option.

3.2.2 Power reguirement.	 Following launch, the deployed solar panel

shall be capable of supplying 10 kilowatts of electrical power f

at the spacecraft interface at a solar intensity normally «7-_K

incident at 1 AU* and at the predicted solar array temperature`
r ,

,G at this intensity.

3.2.3 Lifetime _ 	 The solar panel shall be designed to perform over

a peric.( of 3 years with no greater than a 20 percent loss of

power, disregarding solar flare proton reduction, and with no r

4L9..^—A-tares which sould prevent the panel from performing

*1 AU is defined in ASTM Spec E490-73A
A-3



successfully in both electrical and mechanical modes. Sound

engineering judgement sh ll be exercised in regard to the depth

to which the design is driven by the exclusion of single or

multiple failure modes.

3.2.4	 Solar panel operating temperature. The thermal characteristics
x`

of the deployed panel shall be adjusted so that the celled area
	

tg:

maintains a maximum operating temperature of 85 0C at a solar

intensity normally incident at 1 AU*. The electrical character-	 .le

istics of the array shall be determined over the temperature

range of -1000C to +1000C.

3.2.5	 Solar panel weight. The weight of the solar panel in flight

configurations, including the release, deployment, and

retraction mechanisms, but not including solar panel gimballing

mechanisms, shall be such that the solar panel specific power

equals or exceeds 200 watts per kilogram at a solar intensity

h

3

normally incident at 1 AU*.	 R^`

3.2.6	 Packaging volume envelope. The volume and shape of the`
3

stowed solar panel, including the release, deployment, 	 t

retraction and lock (an option) mechanisms, shall be determined
y

by the contractor in order to maximize the solar panel adapta-

bility to various spacecraft configurations. In these design

considerations, a 2000-pound spacecraft (which includes two

10-kilowatt solar panels and a Shuttle launch vehicle) shall

be assumed.

*1 AU is defined in ASTM Spec E490-73A
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The following requirements shall also be included:

r	
^. y

_ a) Launch vehicle shroud volume restrictions 44
by : }

k b) Spacecraft struct:+aral interface requirements

^ c) Solar panel deployment complexity (reliability)

,^^, d) Solar panel gimballing (Sun tracking) requirements

e) Solar panel retraction complexity (reliability)

f) Solar panel attachment configuration requirements.

Y

3.2.7 Structural interfaces.	 The solar panel to spacecraft attachment
y6.

points shill be considered to provide the most efficient inter-

face capable of performing the mission. 	 Consideration shall?
M;

be given to the ease with which the deployed solar panel can

be gimballed (tilted or rotated) with respect to the spacecraft

as required by the Sun tracking requirements.	 Consideration

shall also be given to the requirements imposed on the spacecraft -

structure by the solar panel.	 A solar panel requiring an <.

extremely rigid support or negligible relative motion between

widely spaced support points is undesirable because meeting ;.?

these requirements might result in increased spacecraft weight. $'

3.2 .8 Structural rigidity.	 In the deployed configuration, the solar

panel shall have sufficient rigidity so that its lowest cant-

levered natural frequency of vibvation is equal to or greater

than 0.04 Hz.	 In the event this criteria cannot be met, i.e.,

the cantilevered natural frequency is less than 0.04 Hz, the

A-5
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interaction of the flexibility of the solar array to the JPL

attitude control system shall be analyzed to assess the impact
I	 :!

of the flexibility of the solar panels on the attitude control

systems.

3.2.9	 Mass center location. The solar panel shall be designed to

minimize displacement of the vehicle mass center and center of

solar pressure caused by thermal gradients and solar panel

temperatures.

3.2.10	 Flatness. In the deployed configuration the solar panel blanket

celled area shall lie in a predetermined plane with a maximum

angular deviation from this plane of ten (10) degrees. This

deviation shall include deflections caused by thermal gradients

but wall not include deflections caused by dynamic mechanical

load inputs.

3.2.11

	

	 Inspection. Release, deployment, retraction, and locking mechan-

isms, shall be designed so that, with suitable ground support

equipment, their operating functions can be inspected in a one-g

Earth field environment prior to installation on the spacecraft.

3.2.12

	

	 Reliability. The solar panel design shall incorporate design

practices that enhance the probability that the solar panel will

operate successfully in both mechanical and electrical. modes. 	
V

33

	

	
Environmental requirements. The following environmental require-

ments shall be considered in the design of the solar panel.

A-6
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3.3.1	 Ground handling. The solar panel's structural, mechanical, and
. d.i

electrical performance shall not be degraded because of ground

handling during manufacturing, testing, and transportation

operations.

3.3.2 Launch environment. The following environmental constraints

which represent the launch er7,ironzient of the solar panel in

the stowed configuration, shall be considered in the solar

r	panel design.

3.3.2.1

	

	 Sinusoidal vibration. Sinusoidal vibration input levels as

shown below will be applied at spacecraft solar array interface

in three orthogonal directions, at a sweep rate of one octave

per minute.

Frequency Range (Hz)	 Amplitude

	

2-5	 1.0-inch double amplitude

	

5-26	 1.3 g (0-pk)

	

26-50	 0.036 inch double amplitude

	

50-1000	 5g (0-pk)

3.3.2.2- Acoustic. The launch acoustics environment shall be 60 seconds

of a random incidence, reverberant sound field, having the

third-octove band sound pressure levels defined in Frig. 1.

150	 OVERALL 1454e

140

1n OCTAVE BAND
SOUJNO PRESSURE 130

LEVELS.
/O to 20p N42

120

i ,.	
110 1 	 1( i	 !	 1 1 1 1 1	 f	 (,_ !	 i![	 I	 l t ja ja j	 1	 I	 C	 t	 1	 t t (l l

20	 100	 1000	 10,000
FREQUENCY. Hz
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3.3.2.3 Shock. The worst shock environment will, be a 20 g terminal

r
sawtooth stock pulse of 10 milliseconds duration at the spacecraft

interface in each of three orthogonal directions.
y

-'	 3.3.2.4 Static acceleration. 	 The static acceleration environments shall

be 9 g's at the approximate center of mass of the solar panel
r

F,

in the stowed configuration.	 This environment shall be considered

Y for the axial axes; 2 g's shall be considered for the lateral axis.

I.

3.3.2.5 Launch pressure profile.	 The solar panel temperature shall be

initially at 27 'iVC and at atmospheric pressure. 	 Figure 2

shows the pressure-time history during launch and ascent.

3.3.3 Space flight environment.	 The following space flight environmental

constraints shall be considered in the solar panel design.

3.3.3.1 Steady state thermal/vacuum environment. 	 The steady state

thermal/vacuum environment shall cover the range from -130 to +1400C }

and a pressure of 10 -5 torr or less.

3.3 ° 3.2 Thermal shock environment.	 The thermal shock temperature 1

extremes shall be -,1;	 IC and +1400C at a pressure of 10-5 torn

or less. The temperature time rate of change during thermal

shock shall be the natural cooling rate of the solar panel in a

simulated passage into a planetary shadow with an assumed planetary

albedo of zero, and the natural heating rate of the solar panel

in a simulated passage from a planetary shadow into a normal solar

A-8
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flux of intensity corresponding to a steady state temperature

of 1400C on the solar cells. The total thermal shock

environment shall consist of 1000 complete cooling and heating

cycles.

3.3.3.3 Solar flare proton radiation environment. The proton fluency

for the 3-year mission shall be as defined in Table 1.

Table 1. Mission-Proton Fluency

Proton Total
Energy Fluency
(Mev) (Particles /cm2)

1 2.0 x 1012

.1

E

x 

3.3.3.4 Pyrotechnic shock environment. The solar panel assembly shall

be capable of withstanding shock environments induced by the

firing of any pyrotechnics that may be required for the operation

of the assembly.

3.4	 Materials arts and processes. ',Materials, parts, and processes

used in the design of the solar panel shall conform to the

requirements specified herein. Any materials, parts, and

processes that are not so covered shall be subject to the

approval of the JPL cognizant engineer. In every case, the

contractor's selection shall assure the highest uniform quality

of the solar panel.

3.4.1	 Material selection criteria. The influence of the following

environments and those specified in 3.3 on the design properties

j`	 A-10
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of the structural, electrical, thermal control, and lubricant

materials in the solar panel shall be considered; r

(a) Storage at 95 percent relative humidity at 55 0C for
a

50 hours. The solar array may, however, be protected

during delivery to the launch facility by use of

appropriate site or ground operations facilites or 	
t

I

`	 equipment. If such protection is deemed appropriate,

-''	 cost . weight, and other impacts on the array design shall

be evaluated.

(b) 10,000 thermal cycles between -1900C and +1400C at

,7
10 torr with a 90-minute cycle, and a temperature

stabilization (< 20C/hr) dwell at the extreme temperatures.

(c) 1000 thermal shocks as defined in para. 3.3.3.2 "Thermal

Shock Environment".

3.4.1.1 Flight environment materials. The materials shall be capable
^k

of enduring the space environment without releasing any

a the solar cellsignificant condensing gases which. would decrease _ e;	 g	 g g

efficiency, or could potentially lead to electrical shorts or

degradation to the spacecraft system operation.

3.4.2

	

	 Radiation resistance. The dosage and energy levels of the

particulate radiation encountered during a mission shall not

produce a significant effect on the metallic structural elements.

Polymeric materials shall be either shielded or selected to

resist a radiation surface dosage of 10
7
 rads without decreasing

r

	the critical design properties below the design allowables, 	 T.r

?	 A-11
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	3.4.3	 Exposed structural adhesives. When adhesives are considered

for bonding transparent or partially transparent structural

components, the influence of particulate surface dosage

radiation of 107rads, and ultraviolet radiation equal to 1095 days

of solar radiation at the rate of 2.002 calories/cm2 /minute, on

the adhesive shall be considered.

	

3.4.4	 Diodes. Diode isolation will be provided in the Power

Conditioning circuitry. Therefore, diodes are not required

on the solar array.

	

3.4.5	 Solar Cells. The candidate solar cells to be used have the

following characteristics:

(a) Current-voltage temperature coefficients between -1000C

and +1000C at l AU:

Current: 0.03 ma/oC-Cm2
Voltage: -2.0 my/oC

These values apply to all cells of any thickness

	

-	 between 0.003 and 0.010 inch.

(b) Physical properties:

Length: 2 to 4 Cm
Width: 2 Cm
Thickness: 0.025 Cm (.010 inch) to 0.0075 Cm (0.003 inch)

(c) Practical contact configuration. See Figure 3.

(d) Interconnecting methods

Both weldable and solderable solar cells will be considered

as available for cell thicknesses between 0.003 and 0.010

inch. The cell contacts will be silver-palladium-titanium

A-12
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FIGURE 3

SOLAR CELL CONTACT CONFIGURATION a

RACK SIDE CONTACTS

FULL CONTACT	 PICTURE FRAME CONTACT

FRONT SIDE CONTACTS

I ' l I
.1

BAR CONTACT	 CORNER DART CONTACT	 PADS

BAR CONTACT:.	 FULL WIDTH EITHER EDGE,
20 MILS TO ANYTHING DESIRED

'WRAP AROUND CONTACT:	 ANY CONFIGURATION, SPINE OR
`	 FULL WRAP

GRID LINES:	 WIDTH, 2 MILS TO 8'MILS; 	 {
NUMBER 3/Cm to 12 /Cm	 4

=s

f
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or silver-chromium. Interconnect materials will be

beryllium-copper, Kovar, molybdenum, or silver. (The

latter two in a mesh configuration have exhibited

superior overall electrical and mechanical behavior

_	 ire rcn_ant _L7al dad on-nt-nnt .Qt- idi 0

(e) Current voltage characteristics at 1 AU, 0.010 inch,

_.	 280C. See Figure 4.

(f) Solar cell efficiency as a function of cell thickness

between 0.002 and 0.008 inch. See Figure 5.

The following assumptions may be used with regard to the

candidate solar cell data:

1. Cells as thin as 0.003-inch can be welded with little or

r
L

w

Y,

no degradation in performance.	 Al

2. Cells as thin as 0.003--inch can be temperature cycled
I

between -1900C and +1400C without incurring damage. r ^,

3. The use of alternate cells is not to be considered in the

baseline design.
M

4. The candidate cells described will be available in production
.a

quantities in the timeframe necessary to fabricate actual

arrays.

5. The fill factor will not change over the temperature range-

of -1000C to +1000C.

6. Cells thinner than 0.003 inch are not considered practical

and will not be used in the baseline design.

A- 14
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Figure 4 Typical Cell E/I and Power Curves
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Figure 5 Cell Efficiency vs. Cell Thickness
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3.4.6 Solar cell adhesives. A requirement for two separate 14hes ,-- s

can exist in the solar cell area. One requirement shall be for

an adhesive used to attach the solar cells to the structures;
y

the second shall be to bond solar cell cover glasses to the

cells. The adhesive for bonding cover glasses to solar cells

shall be transparent to electromagnetic radiation in wavelengths

from 0.4 to 1.O micron, and shall be resistant to ultraviolet

and particulate radiation. The adhesives shall have the

following properties:

a) High thermal conductivity
b) Low outgassing in the vacuum environment
c) A modulus of elasticity compatible with the thermal

motion of the cells and structure
d) Repairability during the fabrication phase.

	

3.4.7	 Solar cell adhesive thickness tolerance. Solar panel and solar

cell installation normally shall require the extensive use of 	
F

bonding materials. The thickness and area of application of

these materials, if used, shall be accurately controlled. The

designs and processes shall include control requirements and

tolerances that can be maintained in the fabrication shops.p	
.

aR

	3.4.8	 Solar cell tolerances. The control of solar cell processing

through the fabrication shops shall be dependent upon the

comparison of initial testing and grading to subsequent cell

testing during the fabrication sequence. The tolerances set

b the des ign shall be adequate to allow a high yield ofY	 g	 q	 g y	 _-- ,

good assemblies.-

f 
	 ,
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Solar cell connections. The heat required in j

cells can cause degradation in cell performance.

3,4.9

The solar

cell electrical connecting technique shall be compatible with

solar cell interconnection methods and shall exhibit accurate

temperature control for minimum power loss.

	

3.4.10	 Solar cell installation. The installation of solar cell

assemblies onto substrate panels and the assembly of structural

component parts shall be accomplished with protective coverings

on the operator's hands, or the handling shall be done with

suitable mechanical devices. The configuration of these assemblies

shall be designed so that the required work can be accomplished

while complying with all handling restrictions.

	

3.4.11	 Thermal control coatings. Degradation of thermal control

coatings by the ultraviolet and particulate radiation of the

flight environment shall be considered.

	

3.4.12	 Bearings and lubricants. In the event bearings and lubricants

are required in the solar panel design, the bearing materials 	 j

shall resist the thermal excursions and particulate radiation 	 k;

of the flight environment. Lubricants shall not degrade;

i.e., lose lubricity under flight conditions up to 1095 days,

or release any condensing gases, which would case degradation

to the spacecraft system. Possible occurrence of cold welding

at hard vacuum shall be evaluates.

A-18
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3.4.13

	

	 Part producibility. Configuration and size of parts shall be

compatible with normal tooling practices. Very thin foil

gage parts shall be capable of being fabricated with reason&ble

assurance that damage will not occur and that the part can be

handled without damage when reasonable precaustions are taken.

ki-I

3.4.14	 Configuration of the solar panel. The configuration of the

solar panel shall be designed so that positioning and holding

of components and subassemblies can be accomplished to provide

support during solar panel assembly.

3.4 .15	 Repair and replacement. It shall be possible for fabrication

personnel to repair or replace any components of the solar

panel at any time during the fabrication or ground handling

sequence and prior to installation on the spacecraft.

3.5	 Mechanical design criteria. The following criteria shall

govern the mechanical design of the solar panel.

3.5.1	 Strength and deflection requirements. All structures, with 	
r'°

minimum material and geometric properties, shall have adequate

strength and rigidity to accomplish all requirements. In the

fulfillment of the strength and deflection requirements, the
y

worst possible combination of simultaneously applied loads and

environmental conditions shall be used to determine Hmit loads

and design _loads., Particular attention „hall be given to the

,b
following.
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3.5.1.1 Dynamic loads. During the loads analysis, consideration shall

be given to loads induced by the solar Panel's elastic and

rigid-body response to dynamic excitation in the stowed and/or

deployed configuration.

3.5.1.2 Quasi-static loads. The quasi-static loads as a result of vehicles

thrush and flight maneuvers shall be 1 x 10 -3g acting upon the

deployed solar array.

3.5.1.3 Fatigue considerations. Fatigue shall be considered in the

design of structural elements by the avoidance of deleterious

residual stresses and stress concentrations in conformity with

good design practice. Special attention shall be given to

elements subjected to repeated load cycles at high stress

levels. Material selection shall include consideration of

fatigue characteristics in relation to the design requirements

of the structural element

3.5.1.4 Thermal considerations. Consideration shall be given to

deterioration of material properties and to stresses and

deformation caused by temperature effects, both prolonged and

transient.

3.5.2	 Limit load. The limit load shall be the maximum load a structural

element is expected to experience during its required functior:,al

lifetime, including fabrication, handling, and ground testing.

no structural element with minimum material and geometric

properties shall yield at limit loads or impair the required

functions of the solar panel.

r 11

r

$j
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3.5.3
e

Design load. The design load shall be the limit load multiplied

by the safety factor. No structural element with minimum material

and geometric properties shall experience ultimate stress, failure

by instability, or rupture at design load.

3.5..4 Material properties.	 Allowable material properties shall be selec-

ted to satisfy the environmental conditions that affect material

properties.	 As a goal, metallic materials shall be in accordance r

t

with MIL-HDBK 5.
4

N

3.5.5 Safety factors.	 The safety factor is a multiplying factor applied
w

to the limit load to allow for design uncertainties. 	 The follow-

ing safety factors shall be used as a goal: w.

a)	 Structures:	 1.25
b)	 Structural joints, fittings, and brittle material: 	 1.44.

3 5 6. Structural	 ualific qualification	 es	 levels.	 n	 nq	 a	 testThe environmentalmental levels.

defined in 3.3 shall be considered as the qualification test levels.

3.5.7 Structural design.	 Simplicity of the analyses and tests shall. be

considered in the structural design. 	 All structural components

shall be amenable to either analytical or experimental demonstra-

tion of adequacy.

3.5.8 Structural nonlinearities. 	 Nonlinear structural design shall be

kept to a minimum and used only when linear behavior is not possible.

3.5.8.1 Energy dissipating mechanisms. Where possible, all energy dissi-

pating mechanisms used shall have linear force-velocity relation-
	 t;

ships over a wide range of frequencies, loads and temperatures.

A-21
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3.5.8.2 Mechanical backlash. Particular effort shall be made to avoid

r mechanical backlash in all structural connections.

E	

': t

3.5.9 Separation joint preload. 	 Attachment of any component to

' another shall provide for sufficient	 reload so that no	 hphysicalP	 P	 P y

separation will occur during ultimate load conditions.

3.5.10 Design flexibility.	 Where practical, the solar panel shall be

designed so that additional data and advances of technology may

be incorporated at later dates.;.'

3.5.11 Thermal gradients. 	 The solar panel shall be designed to

minimize thermal gradients in the plane of the solar panel.

3.5.12 Mechanical integrity.	 The solar panel shall be designed to

-prevent the release of loose parts or gases that could damage

or impair the function of the solar panel or other spacecraft

subsystems.
f.

3.5.13 Margins of safety. Margins of safety are defined with respect

to the limit load or the design load as: ' !^

MS _	 *	 (or	
_ 1 _ ► ",

limit load (or design load)

*Load corresponding to yield stress of a structure with
minimum geometric and material properties, with consid-
eration of environmental effects on material properties.

**Load corresponding to ultimate stress, instability, or
rupture of a structure with minimum geometric and mater-
ial properties, with consideration of environmental effects
on material properties.
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3.6 Electrical design criteria.	 The following criteria shall
t

govern the electrical design of the solar panel.

3.6.1 Solar cell efficiency. 	 The contractor shall establish the

power output based on the photovoltaic characteristics of the "1a

JPL proposed candidate solar cells and the predicted operating

temperature of the solar panel. 	 This design effort shall include}'
x ^:

the power losses incurred during fabrication, assembly, cabling,

and solar panel/spacecraft interfacing considerations.

3.6.2 Electrical insulation_	 The electrical insulation between the {

scalar cells and the solar panel structure shall provide a

maximum dielectric breakdown strength in air, at standard ,.

temperatures and pressure conditions, greater than three times

the open circuit voltage of the solar panel.	 Leakage resistance
{

under the test conditions shall be greater than 10 9 ohms per

square centimeter of cell area.

3.6.3 Repairability. The solar cell modules shall be constructed,

and materials shall be selected, so that any defective cell can

be replaced in a fabrication repair area without damage to

adjacent cells, electrical insulation, or mounting substrate.

3.6.4 Compatibility of materials. 	 The solar cell stack shall be

designed to use only materials that are compatible thermally,

mechanically, and electrically with each other, with the space

environment, and interface requirements of the solar cells

substrate.
A-23
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3.6.5 Interconnections.	 The solar cells shall be interconnected,

both in parallel and in series by metallic conductors. 	 These

conductors shall be designed to minimize both thermal and

flexural stresses on the solar cell interconnections.	 The

electrical resistance of the interconnections (including solder, t

if used) shall not exceed 2 percent of the total series resist-

ance of the solar cells. 	 The joint shall be at least as strong •^`

as the bond between the semi-conductor meterial and the ohmic

contacts.	 The joining materials ;hall exhibit stable physical`"

and electrical characteristics in both space and terrestrial
a

environments,

3.6.6 Magnetic field.	 Solar cell wiring, interconnecting and structural

techniques shall be designed to minimize as far as practical the

magnetic field produced by the flow of current in the solar panel.
f,	 r

3.6.7 Electrical conductors.	 The size and configuration of electrical

conductors shall be determined by the following considerations: F

a)	 Low weight Y

b)	 Low resistivity
c)	 Minimum magnetic field
d)	 Mechanical strength to endure design loads
e)	 Exterior finish to be resistant to natural and inducedl

environments
f)	 Process adaptability
g)	 Redundancy
h)	 Thermal coefficient of expansion
i)	 Thermal shock (minimum of 30°C/minute) on the cells
j)	 Repairability
k)	 Conductor flexibility.

r

r A-24
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	3.6.8	 Conductor insulation. Conductor insulating materials shall be

selected on the basis of the following considerations:

a) Mechanical strength
b) Flexibility
c) Dielectric characteristics
d) Ease of forming or fabricating
e) Flight environment considerations
f) weight.

	

3.6.9	 Electrical terminals. Terminals shall be used to facilitate

maintenance, repair, and replacement of electrical components.

The following requirements for terminals shall be met:

a) Voltage drop across any terminal shall not exceed 25
millivolts at rated load.

b) The terminals shall withstand 50 cycles of manual mating and
unmating without replacement of parts.

c) The terminals shall be accessible for ease of wiring
installation and for factory or field checkout.	 .'

d) The terminals shall be rigidly attached to primary or
secondary structure.	 .°

e) The terminals shall have minimum possible weight.

f) Exterior finish of the terminals shall be resistant to both'
natural and induced environments.

r

	3.6.10	 Installation. The installation of wires, terminals, electrical 	 }
r:

connectors, and busses shall conform to the 'f'ollowing

requirements;

a) Busses and other wiring shall be installed in order to
minimize as far as practical magnetic fields.

r

4

b) Installation shall withstand the rigors of normal handling
and transportation as well as launch and operational
maneuvers.

c) Installation shall be designed to facilitate service and
repair activities.

A-25
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3.6.11	 Electrical checkout. Test terminals shall be provided on

the solar panel to permit ground testing and checkout prior
Y

to launch, in a one-g Earth field, with suitable ground

support equipment (GSE).

a

O

i

t ,
t

{

r	 <:

i
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Designation: E 490 - 73a

Standard Specification for
SOLAR CONSTANT AND AIR MASS ZERO SOLAR
SPECTRAL IRRADIANCE'

This Standard is issued under the fixed designation E 490: the number immediately following the designation indicates the year
of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last
reapproval.

l

1„r

1. Scope
1,1 This specification defines the solar con-

stant and the ze,o air mass solar spectral
irradiance for use in thermal analysis, thermal
balance testing, and other tests of spacecraft
and spacecraft components and materials.

1.2 This specification is based upon data
from experimental measurements made from
high-altitude aircraft, balloons, spacecraft, and
the earth's surface. The stated accuracies are

based on the estimated accuracies of the mea-
surements, calibrations, and radiometric scales.

2. Applicable Documents
2.1 ASTM Standards:
£ 349 Definitions of Terms Relating to

Space Simulation'

3. Definitions of Terms
3.1 air mass (optical air mass) (AM)—the

ratio of the path length or radiation through the
atmosphere (I.) at any given angle, Z deg, to
the sea level path length toward the zenith (I.).

AM = 1m/I^ see Z, for Z < 62 deg

Symbol: AM  (air mass one), AM2 (air mass
two)

3.2 air mass zero (AMO)—the absence of
atmospheric attenuation of the solar irradiance
at one astronomical unit from the sun,

3.3 astronomical unit (AU)—a unit of
length defined as the mean distance between the
earth and the sun that is, 149 597 890 =i: 500
km).

3.4- irradiance at a point on `a surface (E)

—quotient of the radiant flux incident on an
element of the surface containing the point, by
the area of that element, measured in W • m''.

609

3.5 irradiance, spectra( (Ex)—the irradiance
per unit wavelength interval at a specific wave-
length, or as a function of wavelength measured
in W-m-1•µm-1.

3.6 integrated irradiance—spectral irradi-

ance integrated over a specific wavelength
interval from X, to X,, measured in W • m-'.
Symbol: Ex i _ X, = Jai EXda	 '

3.7 Additional definitions will be found in
Definitions E 349.

4. Solar Constant
4.1 The solar constant, based on the average

of the values shown in Table 1, is 1353 W - m' z
The estimated error is X21 W ,m`',

4.2 Table 2 summarizes the results in differ-
ent units, and Table 3 presents the total solar
irradiance at various planetary distances from
the sun.

5. Solar Spectral Irradiance (Air Mass Zero)

5.1 The zero air mass solar spectral irradi-
ance is based on data from the NASA 711
research aircraft experiments (1,2,3)' (see
Table 4) with additions and revisions based on
other recent measurements (16), Previously
compiled solar spectral irradiances were based
on ground-based measurements (17 to 25) and
some measurements from rockets (26). Spectral
irradiance data from the NASA Ames Re-
search Center (27) were not included because of

'This specifcauon is under the jurisdiction of ASTM
Committee E-21 on Space Simulation.

Current edition approved Sept. 27, 1973 and Dec. 27,
1973. Published January 1974.

'1974 Annual Book of ASTM Standards, Part 41
' The boldface numbers in parentheses refer to the list of

references at the end of this specification.
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calibration uncertainties. Further discussion on 0.1.15 µm (nearly 0.0025 W •m	 ') is based on
the methods of calculation and historical infor- Hinteregger's results (32). In the 0.14 to 0.20-
mation can be found in Refs (3,16,28 to 31). µm	 range, the values are based	 on	 Naval

5.2 Table 5 presents the solar spectral irradi- Research Laboratory data (17, 26), which have
ante in tabular form for the range from 0.115 to been adjusted downward because of data by
1000 µm. The first column gives the wavelength Heath (33) and Parkinson and Reeves (34). In
(1,) in µm; the second gives the spectral irradi- the range from 0.20 to 0.30 µm, the values of
ance (Ea) at a in W •m`' • µm - 1 ; the third gives the Goddard Space Flight Center curve have
the total irradiance for the range from 0 to X been retained because of confirming Nimbus
(E.-t,) in W-m'; and the fourth gives the satellite data (33). The Epply-JPL data were
percentage of the solar constant associated with used for revision in the range from 0.3 to 0.7
wavelengths shorter-than X (Do_ t,). µm (9 to 13), The 20 to 1000-µm range (9 to

5.3 Table 6 presents an abridged version of 13, 16) irradiances were computed from the
Table 5.	 F'lgure	 1	 plots the Standard Solar combined data on the brightness temperature of
Spectral Irradiance, the sun from many different authors as quoted

5.4 The irradiance in the range from 0 to by Shimabukoro and Stacey (35).
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TABLE I Solar Constant

Solar
Platform Detector Year Constant, Ref

W.m-2
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U. of Denver balloon Eppley pyrheliometer 1969 1338 6,7
Eppley-JPL high-altitude aircraft Eppley pyrheliometer 1966-1968 1360 8 to 13
Mariner VI and Vill spacecraft cavity radiometer 1969 1353 14
JPL balloon cavity radiometer 1968-1969 1368 I5

Average estimated error 1353+21
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TABLE 2	 Solar Constant Conversion Factors TABLE 3	 Solar Irradiance at the Planets

Solar constant	 1353 W . m	 ' (:21 W•m ') (preferred Solar Irradtance.W•m
unit( Planet - -

- 0,1353 W-em Mean Perihelion Aphelion
= 135.3mW , cm ' Mercury	 9029.0 14309.0 6211.0m .353x 10 erg•em	 s` Venus	 2586,0 2621.0 2551.0
=	 125.7 W-ft	 ' Earth	 1353.0 1399.0 1309.0
-	 1.940ca1•cm° 2, min	 ' Mars	 583.0 709.0 487.0(:0.03ca1•cm	 '-min , 1) Jupiter	 50.0 55.2 45.5- 0.0323ca1•cm-'•s-I Saturn	 14.9 16.6 13.4
-	 429.2 Btu•ft l •h	 I Uranus	 3.68 4.07 3.34-	 0.119Btu•ft-'•s" Neptune	 1.496 1.500 1.493
-	 1.937 Langleys -min	 ' Pluto	 0.870 1.556 0.555

The calorie	 is	 the	 thermochemical calorie-gram and	 is
defined as 4.1840 absolute joules, The Btu is the thermo-
chemical	 British	 thermal	 unit	 and	 is defined	 by the
relationship: I Btu (thermochemical)/(°F x lb) = 	 I cal.g
(thermochemical)/(°C x g).

The Langley,	 however, is defined in terms of the older
thermal unit the calorie g (mean), that is, I Langle y -	 I
cal , g (mean)-cm - 1 ; 1 cal • g (mean) = 4.19002 J.

TABLE 4	 Spectral Irradiance Instruments On Board the NASA 711 Galileo Research Aircraft. Used for Obtaining the GSK
Curve of Solar Spectral Irradiance (Refs 1, 2, 3)

Instrument	 Energy Detector Type of Instrument Aircraft Window
Material

Wavelength
Range,m

i
Perkin-Elmer monochromator 	 I P28 tube, LiF prism sapphire 03 0.7

thermocouple 0.7 4
Leissmonochromator 	 EMI9558QA, quartz double Dynastlquartz 0.3 0.7

PbS cell prism 0.7 L6
Filter radiometer 	 phototube dielectric thin films Dynasil quartz 0.3	 1.2
P-4 interferometer 	 i P28 or R 136 Soleil prism lnfrasil quartz 0.3 0.7

PbS cell 0.7	 2.5
1-4 interferometer 	 thermistor Michelson mirror Irtran4 2.675

bolometer
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TABLE 5 Solar Spectral Irradiance-Standard Curve
A	 - wavelength, µm,

EA = solar spectral irradiance averaged over small bandwidth centered at A, W •m '-µm '
E,,. A - integrated solar irradiance in the wavelength range 0 to A, in W -m'',
D,,. A . percentage of solar constant associated with wavelengths shorter than d, and
solar constant F 1353 W • m '

Nun . -Lines indicate change in wavelength interval of integration.
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TABLE 6 Solar spectral Irradiance-Slandard ( uric, Abridged Version
A	 < wavelength, orn
Ea - solar spectral irradiance averaged over small bandwidth centered at A, W m r µm
Do A ^ percentage of the solar constant associated with wavelength % s horter than A. and
solar constant - 1353 W-m '
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FIG. I Solar Spectral Irradiance.
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