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A series of low-level aircraft flights were conducted
 

during SL2 and SL4 to provide reference information to evalu

ate the accuracy of SKYLAB measurements of oo and TB and to
 

develop and test empirically based algorithms for the deter

mination of surface windspeed from measurements of the above
 

parameters. The active portion of S193 was found to be use

fully sensitive to variations in windspeed by both polariza

tions at incidence angles of about 30 , 400, and 500 for both
 

launch periods, despite diminished performance of the antenna
 

during SL4. During SL2, the experiment program yielded air

craft and satellite measurement of ocean surface roughness
 

which varied from essentially calm to hurricane force (c.f.
 

Ross, et al., 1974; Au, et al., 1974; Ross, 1975; attached
 

as Appendix A, B, and C, respectively) which are suitable to
 

study the relationship between microwave parameters and sur

face roughness.
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Given that both the active and passive portions of the
 

microwave instruments aboard SKYLAB are sensitive to surface
 

windspeed, the intent of this investigation was to verify this
 

sensitivity and establish and test algorithmi to determine the
 

accuracy and precision of satellite inferred surface wind

speeds..
 

Satellite underflights by NOAA and NASA aircraft on 5, 6,
 

and 11 June 1973 yielded a wide range of measurements under a
 

variety of-conditions. The data of 11 June (Ross, 1975)
 

showed that the presence of rain during low wind conditions
 

can increase the backscattered return apparently due to gen

eration of Bragg waves by impacting raindrops. The SKYLAB
 

data of 6 June was obtained in conjunction with near simul

taneous aircraft penetration of Pacific Hurricane AVA and
 

yielded active and passive measurements of surface roughness
 

from -windspeeds of 10-25 m/s.
 

A number of studies have shown that a power law fit of
 

the form
 

y = aoxal 
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reasonably well describes the behavior of the normalized
 

radar backscattering cross section over a wide range of wind
 

conditions while the behavior of the naturally emitted micro

wave energy is approximately linear and can be modeled with
 

a fit of the form
 

y = a0+alx 

The data sets from 5, 6, and 11 June (a0 measurements
 

were adjusted to upwind after the technique suggested by
 

Pierson, Cardone and Greenwood (1974) were accordingly fit by
 

appropriate power law or least squares linear relationships
 

with -windspeed as the dependent variable for the sake of
 

simplicity of the windspeed algorithm. The results are con

tained in Table I. It can be seen from the table by examin

ation of the coefficient of determination, r2 , that the data
 

for an incidence angle of 440 fit poorly (r2 would equal 1
 

for a perfect fit) and therefore are widely scattered. This
 

may possibly be due to rainfall which was present in the'
 

lower wind areas of the hurricane.
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The data for the incidence angle of 5i° , however,
 

2 of .78 which is high enough
yielded a maximum value for r


to suggest that this algorithm could be reliably .used to
 

estimate surface winds. Testing of these algorithms, how

ever, was not carried out due to lack of extensive high
 

quality surface truth accompanied by high winds during SL3,
 

and damage to the antenna during SL4 which modified its
 

characteristics thereby invalidating the algorithm.
 

The antenna damage during SL4 consisted of a crack in
 

the antenna feed in the vicinity of the reflector which
 

greatly modified the antenna pattern. Received power was
 

thetefore reduced and the purity of polarization was com

promised. Extensive interesting data was obtained, however,
 

for moderate to high winds in winter storms which were
 

accompanied by low altitude aircraft flights. On 9 January,
 

a particularly interesting data set was obtained in a N. At

lantic storm (Figs. 1 and 2) which was characterized by sur

face winds which varied from 7.5 to 30 m/s along the subsatel

lite track. Power law and linear least squares fits to the
 

data yielded the coefficients shown in Table II.
 



Because of the questions regarding polarization purity
 

of the transmitted radar energy and the preponderance of data
 

for the higher winds, both linear least squares and power law
 

fits to the ao data were carried out and gave comparably high
 

values of r2 (.7-.8). Also, since both the scattering and
 

reference windspeed measurement are subject to errors, a vari

ety of algorithms by means of power law and least squares fits
 

were obtained, some with a procedure which weighted the depen

dent and independent variable depending upon a specified error
 

for each. The results are contained in Table II.
 

The algorithms of Table II were then utilized to estimate
 

surface winds from SKYLAB parameters obtained on 4 January in
 

an Atlanti storm (Fig. 3), and on 24 January in a Pacific
 

storm (Fig. 4). The computed winds were then compared to winds
 

determined by:subjective analysis of the weather charts based
 

mainly upon ship reports and aircraft measurements. Mean and
 

RMS differences between the two winds are contained in Table
 

III. Use of the algorithms for a0 based upon a linear least
 

squares fit produce comparable though slightly higher results.
 



As can be seen from Table III, the RMS differences
 

between analyzed and inferred winds in the case of the pas

sive side of S193 are higher than those resulting .fromthe
 

scatterometer mode. An analysis of the antenna pattern
 

conducted by the University of Kansas indicates the effec

tive beam width to be essentially horizon to horizon with
 

unknown side lobe effects. Fortunately, the scale of-the

weather systems for the 4, 24, and 9 January situations
 

appears to have been large enough so that surface roughness
 

conditions could be considered homogeneous within the foot

print. NIMBUS-G brightness temperature distributions at
 

19.5 GHz for 9 January are shown in Figure 5 and indicate
 

similar qualitative behavior in the areas viewed by SKYLAB
 

lending some confidence in the S193 SL4 passive results.
 

In order to establish a basis for assessing the quality
 

of these SKYLAB results, the reference surface windspeeds used
 

for the 4, 9, and 24 January data sets were compared with
 

those produced by Dr. Vincent Cardone of CUNY who used an
 

objective procedure based upon pressure fields but weighted
 

in favor of ship or aircraft reports. This comparison yielded
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mean and RMS differences as shown in Table IV, with the
 

objective procedure yielding.somewhat lower mean winds.
 

It can be seen that the active portion of S193 during SL4
 

produces results comparable to that of either an 6bjective.
 

or subjective analysis procedure based upon conventional
 

data sources while the passive results are somewhat higher.
 

The S194 instrument operating at l-Band is also sensi

tive to surface roughness, though less so than the higher
 

frequencies. The data of 9 January were therefore suitable
 

for least squares fitting and produced the following results
 

for vertical incidence.
 

U = -484 + 5.4 TB
 

As with S193, the data of 4 and 24 January were used to esti

mate surface winds and compared to the analyzed wind field.
 

Mean and RMS differences resulting were 4.5 m/s and 5.6 m/s,
 

respectively.
 

Aircraft measurements of microwave brightness tempera

ture at Ku band presented in Appendix A for data collected
 

on 5 and 11 June agree with satellite measurements to about 10.
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Sensitivity of the instrument cannot be determined ab

solutely, but can be interred from the low RMS errors of
 

the estimation of surface windspeed to be better than
 

.5 db in the case of the active portion of S193. Because
 

of the antenna damage, comparable estimates of the per

formance of the passive side of S193 cannot be made. In
 

the case of S194, the accuracy and sensitivity of the
 

instrument appears to have been approximately 10K.
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TABLE I 

SL 2 

Incidence 
Parameter Polarization -aO al r Z Angle 

a0 VV 29.3 .33 .22 440 

ao HH 58.9 .43 .37 440 

o v 63.2 .53 .75 510 

,HH 122 .54 .74 510 

TB vv -65.2 .47 .68 440 

TB HH --45.2 .49 .75 440 

TB vv - 12.7 .14 .45 510 

TB HH - 38.7 .44 .78 510 



TABLE Ii 

9 January 

-Incidence 
Parameter Polarization a0 al r2 Angle 

a0 VV 16.37 .55 .87 300 

ao HR - 24.16 .59 .78 30 ° 

TB VV -256.87 2.23' .59 306-

TB HH -176.85 1.86 .84 0-30 

VVw 22.26 .57 .94 40.8 

O HR 34.09 .59 .83 40.8 

TB vW -431.39 3.58 .91 40.8 

TB HH -238.9 2.54 .95 40.8 

O v .26.61 .61 .91 47.6 

ao HH 40.07 .53 .65 47.6-

TB VV -553.8 4.49 .92 47.6 

TB HH 246.9 2.8 .95 47.6 



TABLE III
 

4 Jan 24 Jan 

Mean RMS Mean RMS 
Polari- Diff Diff Diff Diff Incidence 

E Parameter zation (m/s) (m/s) (m/s). .(m/s) Angle 

° 
300 ao0 VV 2.66 2.63 2.67 2.5 32 

30 ao0 HH 3.53 4.10 - .85 2.54 - 320 

40.80 ao V 68 2.57 - 0.00 1.59 410 

° -" . .: "[''-- :: " q -" - - - -

40.80Q 
00
HE 2.57 3.63 147 " 1.86 41 ° 

470 ao0 vv 1.91 3.70 -l.01 2.49 480 

470 0 HH .9, 3.73 -3.11 2.67 480 

30 T 

30 TB VV -3.02 6.56 -4.6 5.4 320 

TB HH 2.72 6.13 3.0 4.0 320 

40.70 - TB vv 1.99 5.04 - .8 3.4 410 

TB HH .69 4.35 - .4 3.5 410 

-470 TB vv -1.71 5.27 -1.5 4.5 480 

.TB HH -4.06 4.25 -3.3 4.7 480 



Cardone vs Ross 


9 Jan 


.4Jan 


24 Jan 


TABLE IV 

Mean RMS 
Diff Diff Incidence 
(m/s) (m/s) Angle 

-4.65 3.63 30

-4.10 3.21 -40.7-

-2.99 - . 3.02 47-.6 

-3.33 3.0 30 

-1.78 3.87 40 

-2.74 2.21 47 

- .02 .16 30 

-3.05 1.56 40 

.2.85 .93 50 

ORIGINAL PAGE Is 
OF Po QUAUwy 
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FIGURE CAPTIONS
 

Figure 1. Surface analysis for the SKYLAB underflight of 

9 January 1974. Data locations at incidence 

angles of 00, 40.70, 47.60, 42.90, and 50.50 

are shown. Surface winds from ship reports 

are shown with the solid flags indicating 50 

knot winds. 

Figure 2. Brightness temperature and a0 measurements 

-adjusted to upwind are shown as a function of 

time for the indicated incidence angles for 

the 9 January.S193/194 data sets. Surface 

winds were determined from the analysis of 

Figure 2 based upon ship reports.. 

Figure 3. Surface analysis for the 4 January data set. 

SKYLAB S193 data points at 0=0 
° , 400, and 470 

are shown. 

Figure 4. Surface analysis for the 24 January data set. 

S193 observation points are shown along with 

the associated incidence-angle. 



FIGURE CAPTIONS (continued)
 

Figure 5. 	Contour map of the NIMBUS-G 19.35 GHz brightness 

temperatures. Corresponding SKYLAB data points 

are superimposed on the map for incidence angles 

of 50.50 (A), 42.90 (B), 0.00 (C), 40.70 (D), and 

°
 47.6 (E). 
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Appendix A
 

MULTI-FREQUENCY RADIONETRIC MEASUREMENTS OF FOAM
 

AND A NONO-MOLECULAR SLICK 

B. Au, J. Kenney, L. U. MartinORIGINAL PAGE XS; 
OF POOR QUAJHlI Naval Research Laboratory 

Washington, D.C. 

and
 

D% Ross
 

National Oceanic and Atmospheric Administration
 
Miami, Florida
 

.. ABSTRACT
 

Microwave radiometric measurements have
 
been made of both a surf-zone and of an ocean
 
-regioa where small-scale roughness was sup
pressed by an artificial mono-molecular slick.
 
The foam measurements show near identical foam
 
temperatures at 8.35 and 14.5 GHz, but large
 
variations at 1.4 GIlz. The resultant maximum
 
foam emissivities at nadir range from 0.57 at
 
1.4 GHz to 0.84 at 14.5 GHz. The presence of
 
the mono-molecular slick on the ocean surface
 
had the smme effect as a decrease in surface
 
rougnness. For horizontal polarization, the
 
emission decreased below that of the surround
ing ocean for all viewing angles. At vertical
 
polarization, the emission decreased below and
 
increased above a viewing angle of approximately
 
60 degrees. The change in temperature was ob
served at both 8.35 and 14.5 0Hz, being barely
 
detectable at 1.4 6Hz.
 

I. INTRODUCTION
 

The dependence of the microwave brightness temperature an sea stave and surface
 
wind fields is under active investigation and has led to the prospect of remotely
 
determining these parameters from a -stelliteon'an all-weate£'baiC Theuseful
mess of sea state and vind field data (in data scarce areas) would be of immense
 
value to both meteorologists and oceanographers alike. Two oceanographic effects
 
that play important roles in the dependence of the mibrowave signal on the sea sur
face are small-scale wave structure and foam.
 

The dependence of the observed microwave signal on sea surface structure mani
fests itself through the emission and reflection from dielectric media with all 
scales of surface roughness. These include not only the relatively smooth ;ind waves 
and swell much larger than the observing wavelength, but also the capillary and ultra
gravity waves present on the sea surface at low surface wind speeds. Current models 
of the sea surface include roughness both larger and smaller than the observing wave
length, but the effect of small-scale structure on the radiometric signal has yet to 
be exxlenall..,--nified.
 

Foam is a potentially more useful parameter to the remote sensing of the ocean
 
surface by microwave radiometry. Beyond an initial start velocity of 7 m/sec. foam
 

coverage increases with surface wind speed. The exact magnitude of the. signal
 

1763
 



increase depends on observing frequency, 'real coverage of foam in the antenna beam
 
and foam properties. Both the dependence of foam coverage with wind speed and the
 
radiometric properties of foam are areas-of active research. Of primary interest
 
is the increase in temperature with frequency and the variation with viewing angle
 
and polarization.
 

Experimental information about both of these phenomena has been obtained by the
 
Naval.Research Laboratory in a series of airborne multi-frequency radiometer measure
ments. In one set of observations, low altitude measurements were made of a surf
zone at a variety of viewing angles. In the other set, measurements were made of an
 
ocean region in which 'the small-scale roughness had been'suppressed by an artificial
 
mono-molecular slick. This suppression enabled comparison to he made between an
 
ocean surface having all scales of roughness present and 6e having just the large
scale structure.
 

2. INSTRUMENTATION
 

The measurements in these experiments were made with a three frequency, non
scanning, airborne radiometer system mounted on a NOAA C-130 aircraft. The antennas
 
all have identical seven-degree beamwidths and were mounted on a hydraulically con
trolled platform that allowed viewing angles from nadir out to 80 degrees to be ob
tained. The antennas at K (14.5GHz) and X-band(8.35GHz) were horn-fed dielectric
 
lenses while the L-band(l.GHz) antenna was a dipole-fed eight foot diameter para
boloid. Periodic calibration of thd radiometers was provided by noise diodes coupled
 
into the reference arm of the radiometers. Simultaneous dual-polarization measure
ments were made at K.- and X-band, while single polarization (either horizontal or
 
vertical) was observed at L-band. Data were recorded both on analog strip-chart for
 
instant monitoring purposes and also on magnetic tape for later digital processing.
 
Sensitivity of the radiometers with a one second integration time was 0.21, 0.08 and
 
0.05 *K for L, X and Ku-bands respectively.
 

3. SLICK MEASUREMENTS
 

To determine the effect of small-scale roughness on the radiometric signal, one
 
method is to suppress the small-scala waves in a speciZic area on the ocean surface.
 
Although various types of oils damp small-scale waves, for sufficient oil thickness,
oils have a radiometric effect of their own. This effect may overwhelm any change
 
due to the damping of the small-scale structure. To eliminate this problem, oleyl
 
alcuhol W.. ubedtoc Cthe t~n~ua. it fuztae.s a .olcaa slick 0a .,he aa
 
surface which is too thin to have a radiometric effect, yet damps out the capillary
 
and ultra-gravity waves.
 

The oleyl alcohol was laid by the NOAA T-boat in the Atlantic Ocean about five
 
miles from Miami, Florida. A total of nine passes along the length of the slick
 
was made, with measurements being taken at angles from nadir out to 80 degrees.
 
Based on laser geodilite data, the significant wave height was about 2.4 meters.
 
Surface winds were 8 meters/sec, sufficient to produce some foam patches on the sea
 
surface. Corresponding 35-mm photographs of the sea surfacZ at a rate of one per
 
second were used to confirm the areal extent of the slick.
 

The radiometer outputs as a function of time for a viewing angle of zero de
grees are shown for horizontal polarization in Fig. I and vertical polarization in
 
Fig. 2. The slick appears as a 2* K decrease in antenna temperature at both X- and
 
Ku-bands and for both polarizations, with no detectable effect at L-band. The change
 
in temperature with angle for both polarizations is summarized in Fig. 3 for K -band.
 
The slick decreases the observed temperature for horizontal polarization at aly
 
angles, but produces an increase in temperature for vertical polarization near 80
 
degrees. Results obtained on 3 April 1973 under-lighter sea state conditions are
 
similar, but with a slight decrease in magnitude. The results for both days are
 
summarized in Figs. 4 and 5, which show the temperature difference between polar
izatioas due to the slick as a function of viewing angle. The difference between
 
polarizations increases with increasing viewing angle and shows g slightly larger
 
effect at Ku- than X-band. Surface roughness thus has lit'tle influence on the
 
temperature change due to the slick until large viewing angles are obtained.
 

4. FOAM MEASUREMENTS
 

To investigate the radiometric properties of foam as a function of.frequency
 
and polarization, it is essential that the foam be identical in each case. This
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was accomplished in the field observations by making measurements simultaneously at
 
three frequencies and at both horizontal and vertical polarization at X- and Ku-band.
 
By using identical seven degree beamwidchs for all antennas, different foam coverages
 
among beams are eliminated and comparison can then be made. To obtain good foam
 
coverage and sufficiently thick f am, observations were conducted parallel to a surf
zone. The measurements were made from an altitude of 150 meters at angles from nadir
 
out to 53 degrees.
 

Figures 6 and 7 show the radiometer output as a function of time for all of the
 
radiometers at a viewing angle of 28 degrees. The wide variations in signal are due
 
to both variations in foam properties and foam coverage. One can notice the cor
relation between the three frequencies and both polarfzations, with only a'difference
 
in magnitude. To illustrate the response between the different frequencies, Figs.
 
8 and 9 show scatter diagrams of the temperature increase due to the foam at L- and
 
X-bands plotted against the increase at Ku-band. The increase in all cases is the
 
increase in brightness temperature above that from a specular surface. The linear
 
relationship between X- and Ku-bands compared to the variability at L-hand indicates
 
that the foam was-sufficiently thick to have the same response at the higher freq
uencies, but variable response at L-band.
 

The results for all viewing angles are summarized in Fig. 10, which shows the
 
maximum foam emissivity at Ku-hand as a function of viewing angle for both polari
zations. The results at X- and L-band are not shown as the X-band values are within
 
1% of those at Ku-band and those at L-band are similar in shape, only decreased in
 
magnitude. For comparison purposes, the empirical model as put forth by Stogryn is
 
also shown for the same conditions as the'experiment.
 

The maximum value of the experimental emissivity at nadir is 0.84, less than
 
the theoretical maximum of 1.0 for a perfect emitter. The results for all of the
 
frequencies are shown in Fig. 11, which shows the observed foam emissivities as a
 
function of frequency for nadir viewing angle. The empirical model of Stogryn is
 
again shown for comparison. One important feature is the increase in emissivity of
 
foam from L- to X-band and the flatness of the curve from X- to Ku-band..
 

5. CONCLUSI0S
 

The absende of small-scale waves on the ocean surface changes the-microwave
 
emission at 8.35 and 14.5 GHz, and has a barely detectable effect at 1.4 GHz. At
 
horizontal polarization, .Lhe change in emission is observed as a decrease in signal
 
for all viewing angles. For vertical polarization, there is a decrease in emission
 
for angles less than 60 degrees and an increase in signal beyond. The magnitude of
 
the change in emission, increases with increasing surface roughness, particularly for
 
vertical polarization at large viewing angles. The measurements show that the sea
 
surface becomes effectively smoother when the small-scale waves are damped, in that
 
they have.an exact opposite effect to an increase in surface rouihness. Further
 
experiments are required to determine whether the increase'in emission from small
scale roughness is independent of the'underlying large-scale roughness, or whether
 
small-scale waves become important only after large-scale roughness is present. In
 
any case, it is evident that small-scale roughness is important to the emission from
 
the sea surface and must be included in any theoretical model.
 

The presence of foam on the sea surface is responsible for large increases in
 
microwave emission at all of the frequencies investigated. The emission varies with
 
areal coverage and foam properties, but is less at 1.4 GCz than at the higher freq
uencies. The variability at L-band Is caused primarily by variations in foam depth,
 
which are more important at the longer wavelengths. The emission from the foam is
 
less than from a perfect emitter, but it is within 162 of that value at 14.5 GHz.
 
For the thick foam of this experiment, the emissivity of foam increases gradually
 
from 1.4 to 8.35 GH2., with neglible increase from 8.35 to 14.5 GCz. In general, the
 
observed foam emissivities disagree with the empirical model of Stogryn, being up to
 
20 *K greater in magnitude than his model.
 

For the conditions of this experiment, where relatively thick foam was observed
 
.the frequency dependence occurs between L-and X-band. More experimental work is
 
required to determine if this frequency dependence holds in general. It is unlikely
 
that the emissivity of foam would have the same frequency dependence or magnitude fo
 
the foam patches and streaks on the sea surface during high wind conditions. For th
 
thinner foam patches and streaks, the change in emissivity would most likely occur 
at higher frequencies.
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ABSTRACT
 

Aircraft, SKYLAB, NOAA-2, ATS-3, and NIMBUS-5 
recently obtained a variety of measurements of Pa
cific Hurricane AVA. These measurements are unusu
ally broa i . ra..... A . ZaLlije observed 
passive microwave emissivities at 13.9 + 19.5 Glz, 
active microwave scattering cross-sections at 13.9 
GHz, and near infrared and visible images. Essen
tially simultaneous aircraft measurements of wind 
speed, waves, wnxtecaps, 1.4 and 13-15 GHz passive 
microwave emissivxties, 1.4 GHz active microwave 
images, sea surface temperatures,-pressure fields, 
and aerosol size distributions were also obtained.
 
A brief description of sensors and platforms is
 
presented along with some in-depth details of re
sults obtained. These results confirm the sensi
tivity of microwave emissivity to foam and liquid
 
water in the atmosphere. Wave measurements from
 
the aircraft show significant differences in the
 
shape of the energy spectrum when compared to other
 
fetch-limited spectra. Whereas fetch-limited spec
tra are rharply peaked, the hurricane spectra re
mote from the eye are broad, indicating the pre
sence of swell and increased energy transfer within
 
the spectrum due possibly to non-linear interac
tions, while those near the eye are sharply peaked.
 

The SKYLAB RADSCAT, operating at 13.9 GHz in a
 
cross-track mode, obtained microwave measurements
 
of a portion of the storm in both the active and
 
the passive mode. Preliminary results show that
 
the scattering cross-sections increase when viewing
 
the hurricane despite an expected attenuation due
 
to rain- Passive measurements increase as expected
 
and are in general agreement with NIMBUS-5 measure
ments at 19.5 Giz.
 

Aircraft measurements of microwave brightness
 
temperatures at L band show an increase which is
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largely due to foam and whitecaps while those at X
 
and KU band are contaminated by rain.' Active co
herent L-band radar-images of swell produced by the
 
hurricane were obtained enroute to the storm. These
 
images indicate a strong interaction takes place be
tween long and short gravity waves.
 

Flight level wind speeds were obtained by means
 
of an inertial navigation system and represent a sig
nificant increase in accuracy from past measurements
 
of hurricane winds. Maximum winds encountered in
 
the eye wall measured 137 knots, the highest ever
 
for a Pacific hurricane, which had a record low cen
tral pressure of 914 mb.
 

- The use of extensive and coordinated satellite 
and aircraft measurements has provided an unprece
dented opportunity to study the dynamics of a hurii
cane.
 

1. INTRODUCTION
 

The development and application-of remote sensing techniques to the study of
 
man's environment has increased considerably in recent years. Perhaps the greatest
 
return on monies invested in this area has been in use of satellites in observing
 
and predicting weather. One aspect of weather phenomena which is currently being
 
studied in great detail is tropical cyclones. A tropical cyclone is an intense
 
vortex of high winds and large moisture concentrations which can have a devastating
 
effect on man as they pass from water to land accompanied by high wind forces, in
ordinately high water (surge) levels, and large amounts of rain. Because cyclones
 
are generally born in remote ocean areas, they have -remained a little understood
 
phenomena. In recent years, however, aircraft have been used to study many-aspects
 
of the storms by means of a variety of in-situ measurements. More recently, satel
lites equipped with imaging systems have been of great utility in detecting the
 
birth of cyclones and predirting he path they a mar likly t-fol,low d'., ng
 
their lifetime.
 

This paper describes a number of measurements of some unique aspects of a cy
clone obtained from aircraft and a variety of spacecraft and represents an unprece
dented opportunity to evaluate the capability of remote sensing instrumentation to
 
contribute to the study'of such phenomena.
 

2. BACKGROUND
 

The NASA SKYLAB experimental satellite was the catalyst needed to gel this ex
periment. Intended as a means of evaluating the Radar-Radiometer sensor packages
 
aboard SKYLAB, an aircraft program was initiated to fly beneath the SKYLAB and mea
sure an extensive number of environmental parameters which might affect the signa
ture of the earth viewing satellite sensors. One of the aircraft involved was a
 
National Oceanib and Atmospheric Administration (NOAA) C130 Hercules normally
 
equipped to study hurricanes and other weather-oriented phenomena. For the SKYLAB
 
program, a number of additional sensors were installed and are shown in Table I
 
.along with the parameter intended to be studied and expected accuracy. Figure 1
 
shows the NOkA aircraft with passive microwave radiometers extended out the rear
 
cargo door. .
 

As the NOAA SKYLAB underflight program was getting underway, the first Pacific
 
Hurricane of the season was forming and was named AVA, (Figure 2). As one of the
 
objectives of the SKYLAB program was to observe hurricanes, a data gathering pass
 
was planned for 6 June 1973, using the SL 193 Radar-Radiometer in the solar inertial
-scanning mode. Unfortunately, a more extensive look at the hurricane with other
 
SKYLAB sensors could not be arranged because of conflicting priorities. Indeed, the
 
NASA system was literally turned upside down in order to schedule this limited pass.
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3.AIRCRAFT MEASREPMENTS 

The NOAA C130 deployed to Acapulco the morning of 6 June, refueled and com
menced its flight into the storm at 2107Z. Figure 3 shows the-track of the air
craft along with isolines of flight level (500 ft.) winds measured with a Litton
 
LTN-5"inertal system using the true airspeed output from a Xollsman differential
 
pressure transducer. As a result of a measurement of an extraordinarily low cen
tral pressure of 915 itb obtained by an Air Force Reconnaissance aircraft approxi
mately three hours prior to our entry into the storm, it was decided a low level
 
(500 ft.) penetration into the eye would be unwise. The portion of the track shown
 
in Figure 3 from 2156 to 2315 was therefore flown at 10,000 feet. Low level (500
 
ft.) measurements of wind sneed and direction, wave heights, whitecap densities,
 
and microwave emissivities were obtained during the period 2107-2156, and again
 
from 2325 to 2356. Microwave measurements, which require the cargo dcor to be open
 
with extended-radiometers, were not taken during the latter time period because of
 
the reduced safety factor associated with high turbulence in conjunction with open
 
cargo doors:
 

Figure 4 is an example of laser altimeter profiles of waves in an area of 65
 
knot flight level winds. Figure Sc shows the spectra of this segment, manned to
 
fixed coordinates, along with a spectra of high waves measured in the North Sea
 
(Ross, et aL, 1970). Also shown are spectra (Panel a, b) obtained at other regions
 
within the storm plotted together with spectra of the same total energy obtained in
 
the N-Sea and the North Atlantic. There are some significant differences between
 
these sets of.spectra. Those obtained near the eye (Fig. 5b, C) are sharply peaked
 
i d, agree well with the N-Sea spectra which are severely fetch limited. The third
 
spectrum was obtained approximately 110 nautical miles from the eye and shows con
siderably more low frequency energy than the North Atlantic spectrum which was es
sentially fully developed. In addition, this spectrum shows a reduced level of en
ergy on the high frequency side of the peak. We attribute this difference to non
linear interactions between the high frequencies and swell of frequencies near the
 
peak which results in a broadening of the hurricane spectrum. Figure 6 shows the
 
variation of wind speed and significant wave height with radial distance from the
 
eve. The a.hea.........e .. tcd surface (2G iueter) winds assuming a logarith
mic variation in wind between the surface and flight altitude (Cardone, 1969). The 
significant waye height is known to vary as the square of the wind speed for fully 
developed seas. It can be seen in this figure that this relationship does not hold 
in a hurricane because of the fetch and duration limited character of the hurricane
 
wind field.
 

Observations of microwave brightness temperature were obtained during the per
iod 2107-2147. The data at the higher microwave frequencies are strongly affected
 
by the presence of rain as one-minute average values at vertical incidence vary in

,
consistently from 1300 to 1450 and 1400 to 2000 for X and KU Band respectively.
 
Brightness temperature vs. incidenc'e angle for this segment at L-Band is shown in
 
Figure 7 along with data for a low wind condition obtained 11 June. It can be seen
 
that there is a systematic increase in brightness temperatures of about 40 K at all
 
incidence angles. Inspection of simultaneous vertical photography reveals little
 
thin foam streaking presumably because of the swell content of the seaway and the
 
percentage of whitecap coverage is approximately 10 percent.? Based on the results
 
of Au, et al. (1974), presented elsewhere in this symposium, we attribute this in
crease to the whitecap (foam) coverage. Thus, a sensitivity of .40K/% whitecap
 
coverage is obtained.
 

Enroute to the storm, coherent side-looking radar operating at a frequency of
 
1.35 GHz ( = 25 cm) was used to obtain surface imagery. A series of wave-like
 
patterns is apparent in this imagery which appears to be a combination of locally
 
generated wind waves mixed with swell coming from the hurricane. This imagery, to
gether with a vertical photograph obtained simultaneously, was digitized and sub
jected to two-dimensional Fourier analysis. Figure 8 shows the optical image of
 
the two-dimensional Fourier transform at the top, along with a densitometer trace
 
obtained along the axis of the principal direction (lower left, and center). Also
 
shown is a composite hindcast wave spectrum constructed by using the wave spectra
 
obtained at 2147Z along with a spectrum obtained in the Atlantic Ocean for a wind
 
speed of approximately 22 knots. Surface winds at the time of this image were vis
ually estimated to be 20 knots, which was substantiated by sun glint analysis of
 
ATS-3 Satellite imagery (Strong, 1973). The position of the laser wave measure
ments and of the hurricane relative to the radar imagery is shown in the inset in
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the upper right corner of the figure. Good agreement between the wave lengths of
 
the principal wave components .can be seen. That the radar is imaging the waves is
 
evident; not so evident is the scattering mechanism which allows detection of waves
 
longer than the backscattering Bragg waves (Crombie, 1955). It has been demonstra
ted in several laboratory and field experiments (cf. Shemdin, et al., 1972, Mitsu
yasu (1971)) that presence of a swell in a wind sea will reduce the amplitude of
 
the wind-wave energy peak by an amount which is dependent upon the energy and fre
quency separation of the swell. Longuet-Higgins (1969) describes this interaction
 
which results in shorter waves peaking near the crest of the longer wave as it pass
es by. The long waves thus modulate the Bragg waves which, in turn, modulate the
 
return of the radar energy resulting in an image of the longer waves. Since more
 
than one long wave component is seen in the image, it has been suggested (Stilwell,
 
1974) that this modulation is accomplished by interaction between all waves longer
 
than the Bragg waves. The rada -magery therefore may contain useful amplitude as
 
well as wave length and direction information if the transfer function for the for-'
 
mer can be established. Unfortunately, the radar power supply gave out shortly af
ter this segment was completed so that no imagery of the local hurricane wave field
 
was obtained during the eye penetration.
 

4. SATELLITE RESULTS
 

Imagery and microwave data from a variety of satellites were obtained of the
 
hurricane in various stages of development. A summary of these satellite studies
 
is shown in Table II. Figure 9 is a composite of ATS imagery showing the track of
 
SKYLAB as it passed near the storm. Unfortunately, the storm was moving rather
 
fast, and although the SKYLAB antenna scanned-to 520 incidence angle, only a small
 
portion of data was obtained in the high wind periphery of the storm. This data,
 
along with NIMBUS 19.5 GHzmeasurements of the same portion of the storm, are shown
 
in Figure 9 for the incidence angles of 450 to 52.50. Also shown are rainfall rates
 
inferred from the 19.5 GHz NIBUS,5 radiometer (Wilheit, 1974).
 

The purpose of .the S 193 Radar-Radioheter is to infer surface wind fields from
 
measurements of the microwave backscatter. .The passive portion of the instrument
 

""	is intended to provide a basis for correcting the return radar cross-section (C
 
due to attentuation by liquid water. The inference of surface wind speed is further
 
complicated because the amplitude of the backscattered component is sensitive to
 
the relative direction of.the wind vector. Jones (1974), from data obtained with
 
an a irraft e',ct-atn vea.--1 poa ;ain r-.p.-.---a.dfcr---oCbot5db_ 

tweeb the ugwind and cross-wind directions for'a wind speed of 14 m/s and incidence
 
angle of 40 , vertical polarization. The up-downwind asymmetry he observed of 1-2
 
db is further evidence of short wave modulation by longer waves. Estimates of wind
 
direction along the footprint were made as previously described and resulted in
 
positive correctiohs of 2L4 db. A backscattered component due to rainfall is not
 
accounted for in the data whichare summarized in Table III, 

It can be seen from panel a of Figure 10 that if a correction were applied to
 
co values, due to rain attentuation, that the aO for both polarizations would in
crease with increasing wind speed between 1857:15 and 1858:00. Neglecting the val
ue at 1858:16, cO would then decrease at 1858:31, following the decreasing trend in
 
surface wind. At the 450 incidence angle (panel b), rainfall rates were markedly
 
reduced and ad qualitatively agrees with trends in the wind speed. ao 0 , in both
 
.cases, has been corrected for wind direction while no such correction has been ap

.
plied to G 0 As with-the coherent radar images, the co is a measure of the ener
gy content of resonant Bragg waves - near capillary, or centimeter, wavelengths in 
the case of the S 193 radar. Phillips (1966) using dimensional arguments shows 
that the high frequency end (fi > f,5. of the gravity wave spectrum should reabh a 
maximum, or equilibrium, value. Increased energy transfer into this spectral re
gion would simply result in increased energy loss through wave breaking. Pierson 
and Stacy (1973) suggest three forms for-the behavior of the high frequency end of 
the spectrum, including the ultra-gravity and capillary regions, which are wind 
speed dependent and result in increased wave energy levels for all increasing winds. 
Hasselmann, et al. (1973), show that the Phillips equilibrium constant decreases 
with increasing fetch indicating long wave-short wave interaction is important in 
the behavior of the high frequency tail of the spectrum. 

*fm is the frequency at which the peak energy occurs.
 
- pea
 



37 

From the observations (f SKYLAB measurements obtained in Hurricane AVA, it is
 
tempting to attribute the observed o0 variations to corresponding variations in en
ergy level-of wind speed dependent Bragg waves. On the basis of this limited data
 
set, the considerable potential for errors associated with the corrections required
 
for attenuation, relative wind direction, and backscatter due to rain, and an un
known sensitivity of o0 at high wind speeds, we reject this step at this particular
 
time. A final conclusion rust await additional data obtained for high sea states
 
during SL4 and a better estimate of azimuth dependence of a0 for different wind
 
speeds and both polarizations.
 

5. CONCLUSIONS
 

It can be concluded from this data set that the use of remote sensors could be
 
a useful tool in the monitoring and study of tropical cyclones. The potential for
 
such sensors listed by observational category is as follows:
 

1. Active microwave - Both cross-sectional as well as imaging microwave sys
tems can be used to map aspects of the wave field of a hurricane. High frequency
 
systems, such as the SKYLAB RADSCAT, may have reduced utility in areas of heavy
 
rain, while low frequency imaging systems will be limited primarily by the required
 
.high data rates.
 

2. Passive microwave - Aircraft and satellite measurements at 1.4, 8.35, 14,
 
-and 19.5 GHz show the higher frequencies to be capable of determining liquid mois
ture budget while the lower frequencies could be useful for determining the atmos
-phere-ocean energy exchange budget because of a sensitivity to energy loss occur
-ring through 	the wave spectrum. However, because of diminished sensitivity at 1.4
 
GHz, a frequency somewhat higher, but less than 6 GHz, would be more appropriate.
 

3. Visible;
 

- .a. Satellites - Visible raion imagery has been extremely useful in posi
tioning the hurricane, calculating its forward velocity, and"estimating the degree 
of asymmetry of the hurricane. 

b. Coherent - Red laser light can be used with good results from low
 
aircraft altitudes to profile surface waves despite heavy rain and spray, and the
 
wave measurements can be used to bound the role of momentum transport to the ocean.
 

c. Photographic - Observations of whitecap density, which is related to
 
momentum transfer and the wave spectrum, can be obtained. Thin foam streak direc
tion relative to the eye of the hurricane could give an estimate of inflow angle of
 
the surface winds.
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TABLE I. NOAA C130 AIRCRAFT INSTRUMENTATION 

Parameter Instrument 	 Accuracy
 

Wind Speed/Direction LTN-51 + 
Inertial Navigation System - 2.0 kts 

Sea Surface Tempera- Barnes PRT-5 - 1.0OC 
ture 

Microwave Emissivity 14, 8.5, 14 GHz Radiometers - 1.0°K 

Wave Heights and Laser Altimeter + 1% or 3"•Lengths-"" 	 ".
 

Wave Length and Coherent Radar 1.35 GHz - 10% 
Direction 

White Caps and Foam 35 mm Vertical Camera - 20% of Observation 

Liquid Water Content Johnson Williams Hot-Wire ± 15% 

TABLE I. SUMMARY OF SATELLITES USED TO STUDY HURRICANE AVA
 

Satellite Imagery Type Microwave Data Use
 

1. ATS 	 Visible - Positioning, Cloud cover
 

2. 	NIMBUS-5 Microwave 19.5 GHZ Positioning, Rainfall rate
 

.EH VV
 

3. 	NOAA-2 "Visible - Positioning, Asymmetry 

Infrared - Cloud-Cover 

4. SKYLAB 	 Photography 13.5 G0z Surface Winds
 

HH, VV .....
 

HV, VH Rainfall Distributions
 

5. 	 DPP Visible Positioning, Cloud cover,
 
Asymmetry
 

Infrared 	 ." Cloud Heights
 

169
 



TABLE III.' SUMMARY OP SATELLITE OBSERVATIONS 

Rela- OW0 S193 

'NIMBUS-5 Rai S193 S193 
w ,tir 

S1930 S193 Ai-
"Car-
rec 

Imci
dnce 

SKYLAB 1T9.5 G1HTB fall Tn;4 Tv 0 w OeH. 2 0U muth tion Angle 
Time i ('K) (mm/hr) (OK) (CK) (db) (db) (kts) (Deg.) (Deg.) (db) (Deg.) 

1857:15 170 2 121 173 -14 -19 36 90 150 +2 52.5/ 

1857:30 170 2 124 174 -14 -20 42 90 150 +2 52.5 

1857:45 193 25 145 188 -13 -16 48 120 120 +4 52.5 

1858:00 193 25 152 1119 -14 -15 40 160 80 +3 52.5 

1858:16 200 50 216 233 -13 -13 39 160 80 +3 52.5 

1858:31 180 5 135 185 -17 -19 32 160 80 +3 52.5 

1857:18 170 2 122 1ei -14 -17 32 90 150 +2 45.0 

1857:34 170 2 122 i1 -14.5 -19 36 90 150. " .."+2 45.0 

1857:49 170 2 140 1754 -15 -16 . 36 110 130 " +3 45.0 

1858:04 175 3 136 111 -13 -16 . 37 140 .100 A +5 45.0 

1858:20 182 6 128 165 -14.5' -18 36. 120 120 H.+4 45.0 

1858:35 180 5 132 169. -18.5 -21 28 100 100 . +5 45.0 
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COMPARISON OF SKYLAB S-193 AND AIRCRAFT VIEWS OF SURFACE ROUGHNESS M-2 

AND A LOOK TOWARD SEASAT 

By Duncan Ross, Sea-Air Interaction Laboratory, National Oceanic and
 
Atmospheric Administration, Atlantic Oceanographic and Meteorolog
ical Laboratories, Miami, Florida
 

ABSTRACT
 

An extensive aircraft underflight program was conducted along the Skylab ground
path for the purpose of documenting wind, wave, and atmospheric conditions affecting
 
the amplitude of the active and passive microwave signatures. The S-193"microwave
 
system senses a rougnness parameter at the ocean surface that is proportional to the
 
surface windspeed. The exact relationship between the wind and this roughness para
meter is the subject of continuing investigations.
 

In the case of the active portion of the system, the intensity of off-nadir
 
backscatter from the ocean is thought to be primarily determined by the amplitude
 
of short gravity/capillary waves and has been shown to be strongly a function of
 
azimuth relative to the surface wind direction. The passive side of the instru
ment senses the naturally emitted (and reflected) microwave energy and is propor
tional to the PI4S slope and percent foam coverage of the ocean.
 

'NOAA, NASA, and USAF aircraft were equipped with a variety of environmental
 
sensors in an attempt to specify the surface conditions affecting the satellite
 
sensors as well as dcLive a'id passive microwae sensors intnded tn rlibratp the
 
Skylab instrument. The aircraft program is described, and some comparisons of sat
ellite-and aircraft results are presented. The principal result of the comparison

of active radar is that direct inferences of-the'surface windspeed are possible,
 
but subject to considerable scatter, and that this scatter appears to be due to in
teraction between long gravity and short Bragg waves and backscatter due to rain as
 
well as errors in correcting for azimuth dependence. It is shown that CO for inci
dence angles of =50 increases both with windspeed and with increasing energy level
 
of the high-frequency gravity waves that, themselves, are proportional to both the
 
local wind and fetch in a manner that is not uniquely determined by the windspeed.
 

An unforeseen opportunity to observe a Pacific hurricane by both Skylab and
 
NOAA aircraft has contributed to the development of a simpliffed wave forecasting

scheme applicable to hurricanes, and more general conditions, which combines the
 
better qualities of both spectral and height/period forecasting techniques. The
 
implication of this result to the SEASAT program is that quite large data inputs

in both the time and space domain can be handled using existing computers and should
 
produce a forecast of comparable or superior quality to existing spectral techniques,

but in shorter time steps. Horizontal polarization data obtained by the aircraft in
 
Hurricane Ava, and in other experiments, which led to this development are presented.
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INTRODUCTION
 

The 5-193 experiment aboard Skylab was intended to test the concept of remote
 
determination of surface'uind conditios on a worldwide basis asan aid to improved
 
environmental forecasts. A part of this experiment included an aircraft underflight
 
program to calibrate and validate the inference of surface wind conditions from the
 
satellite measurements of radar backscatter, uo, and upwelling naturally emitted
 
microwave energy, Ta..
 

A number of significant developments have evolved-as a result of this combina
tion of satellite and aircraft studies of the environment, which will be touched
 
upon herein. It is impossible, however, to discuss in depth all aspects included
 
in the scope of this program. Results presented here are preliminary, and some con
clusions may be modified as additional data sets are considered. The reader is,
 
therefore, asked to be tolerant of missing details and tentative conclusiohs that,
 
hopefully, will be firmed up in future reports.
 

- AIRCRAFT INSTRUMENTATION 

The aircraft measurements-were obtained from instrumented NO", NASA, and USAF
 
Ci3O aircraft. All aircraft were equipped with a basic environmental package con
sisting of an inertial platform for windspeed determination, a Barnes Infrared Ra
diometer for sea surface temperatures, a laser wave profiler for wave measurements,
 
a Cambridge Dew Point Hygrometer, a Rosemount Air Temperature Probe, and a vertical
 
camera for white-cap-photography. The NOAA C130 was additionally equipped-with a
 
three-frequency passive microwave system at Ku (14.5 GHz), X (8-35 GHz), and L (1.8
 
GHz) bands. This system was used for dual polarization measurements at X and.Ku
 
bands and horizontal polarization measurements at L-band. Because the NOAA aircraft
 
was not available for the third launch period, a cooperative arrangement with the
 
Air Force 53rd Weather Pprnnnp-ic'nra Cn aAo of thle Air leaLher Service was nego
tiated by NOAA, and the inertial platform, laser, microwave, and camera systems
 
were transferred to the Air Force C130 for the SL-4 underflight program. Figure 1
 
shows the NOAA C130 aircraft with passive microwave antennas extended to the in
flight operating position..
 

The NASA JSC C130 aircraft was similarly equipped except that the microwave
 
system was both active and passive (time-shared) and centered only at 13.5 GHz.
 
The NASA aircraft participated in the underflight program during all three launch
 
periods.
 

SATELLITE INSTRUMENTATION
 

Skylab S-193 Instrument. The S-193 experiment aboard Skylab consists of an
 
instrument capable of operation in one of three modes: (1)short pulse altimetry,
 
(2) radar backscatter, and (3) a passive radiometer mode. The instrument is a single
 
frequency device centered at 13 GHz (Ku band). In the so-called RADSCAT configura
tion, the instrument alternately switches between the active and p~ssive mode. It
 
isqapable-of-sann-i-ng--in-the-along-track and across-track directions, and th6i ob
'tains dual polarization measurements of radar backscattering cross section, co, and
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upwelling naturally emitted microwave energy, which isdirectly proportional to the
 
apparent, or antenna, temperature Ta, as a function of incidence angle. 1
 

Radar Backscatter. The mechanisms responsible for determining the level of 
radar energy backscattered by the ocean surface are primarily, but not limited to, 
the amplitude of resonant Bragg waves for incidence angles between about 300 and 
800, and the RMS slope distribution for near vertical incidence angles (Wright, 
iQ(;Al ValPn7lrIn 1968). The Bragg condition isdefined as 

2ir
 erKB = Ko cos el + K0 cos e2 
)water B 

where el and 2 are the incident and scattering angles, KO = 21T/A microwave. Inthe 
case-of S-193, -these waves correspond to cm wavelength ocean waves. The detailed 
behavior of Bragg waves and also their effect on backscatter has been the subject of 
considerable study inlaboratory experiments in recent years (cf. Rouse and Moore, 
1972; Duncan, Keller, and Wright, 1974; Keller, Larson, and Wright,1974; Keller and 
Wright, 1975; Reece and Shemdin, 1974; and many others). The principal result of 
these studies isthat the backscattered doppler radar spectrum for a particular radar 
frequency and incidence angle is not a unique function of windspeed but rather is, to 
some. degree, a f6nction of fetch, duration, and presence of swell as well as wir. 

speed. 

The Wave Spectrum. -It has been suggested that the S-193 RADSCAT data are af
fected by both long and short ocean waves. Inthe following sections, an attempt
 
will be made to evaluate 5-193 data interms of the wave spectrum. A brief descrip
tion of the spectrum and its behavior during growth and swell situations is there
fure aPpropr-atc.
 

Wave conditions can be fully described by the two-dimensional energy spectrum, 
A2(f,e), and integration over direction (a)and frequency, f,yields the total energy 

E= [A(ff) dedf-

which isproportional to mean surface displacement, 2a2;
 

For a wind blowing off a-shoreline, the fetch isdefined simply as the distance
 
from shore to the downwind measurement site. Figure 2 presents the behavior of the
 
one-dimensional energy spectrum for seven fetch locations during offshore wind con
ditions as observed inthe JONSUAP experiment (Hasselmann et. al., 1973). The in
set of Figure 2 depicts the meaning of the five parameters suggested by Hasselmana
 
et. al. as convenient for describing the important characteristics of the spectrum.
 
Itcan be seen from this figure that the peak frequency, tm, grows and migrates to-

Ward lower frequencies as fetch increases. Hasselman et. al. found that the
 
sharpness parameter, y, and the width parameters Ca, ah, are essentially independent
 
Of fetch. The Phillips parameter, a, however, general y decreased with increasing

fetch. The behavior of the spectral scale parameters can also be represented
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conveniently innondimensional form by incorporation of the local windspeed, U1.,and
 
gravity. Thus, Figure 3 presents the behavior of nondimensional energy
 

frequency

and nondimensional 


I'm 0
 

versus nondimensional fetch
 

U!0o2.
 

Nondimensionalization in this manner has properly accounted for the windspeed depen
dence of the behavior of total energy and peak frequency with fetch. The interre
lationship between a, E,and f? is therefore apparent and was studied in detail by
 

Hasselmann et. al. (7975). They proposed fm as a convenient means of describing 

the stage of development of the wave spectrum inan average sense. Figures 4 and 

5 from this study show the behavior of E and a with respect to imand X. The lines 
denoted
 

-3
10
C 


and
 
C =10. 

are representative of-the momentum entering thewave field (Hasselmann et. al.,
 
1973), with an approximate mean value of
 

SC W Z 10 4 , 

or about 20 percent of the total momentum transferred to the ocean by the wind.
 
Variations about the mean are attributed to changes in the local wind conditions.
 
An example of varying the wind by a factor of 1.5 for a particular fm isincluded
 
in the figures.
 

RESULTS
 

Because the principal purpose of the S-193 experiment was to remotely infer
 
surface wind conditions, it is appropriate to first consider examples of the data
 
from a typical pass as a prelude to more extensive analysis of the complete data
 
set. Figure 6 presents the results of a pass in the Gulf of Mexico during SL-2
 
and is a typical example of variable low windspeed-conditions. The S-193 active
 
radar backscattering cross sections, (ao)b and passive microwave antenna tempera

° 
ture, Ta, for horizontal polarization and an incidence angle of'5o are shown
 
plotted as a function of latitude along with the surface wind conditions as de
termined from the NOAA aircraft underflight.
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Considerable variability can be seen for o, especially around 190 and 22N."
 
The data for those latitudes less than 230, however, were not corrected for azimuth
dependence and therefore show scatter due to changes in wind direction as well as
speed. The higher latitudfs, however, are of most interest because 'they were accon
panied by extensive ground truth. It can be seen that the surface winds decreased
 
significantly between 24' and 260 N, while ar decreased only slightly between 2d

and 25.5' N and actually increased at 260 N. The horizontally polarized antenna
 
temperature agrees well with aircraft determinations and also increases signifi
cantly at 260 N. Because of the presence of many rain showers observed by the air
craft to be in the area of 260 N, these increases are tentatively attributed to
 
this factor. This pass; therefore, implies significant corrections would normally

be required to account for the presence of rain.
 

During SL-2, a unique opportunity to observe high wind conditions developed
 
with the appearance of a hurricane in the eastern Pacific southwest of Acapulco,

'lexico (Ross et. al., 1974). As plans were being formulated for observing the
 
storm with the S-193 system, the NOAA C130 aircraft deployed on the 6th of"June to
 
Acapulco, refueled, and fTew a 7.5-hour mission into the storm.' Figure 7 is a NOAA
2 composite satellite view of Hurricane Ava showing the flight track of Skylab as it 
conducted a data pass with S-193 operating in the side-looking solar inertial mode. 
Unfortunately, the storm was rapidly moving away from the subsatellite track and it 
was not possible to obtain measurements in the region of maximum winds. Figure 8 
is an-example of active and passive measurements of Ava obtained at incidence angles 
of 42.5' and 50.50 along with estimates of surface winds obtained during the air
craft penetration and rainfall rates estimated from the NIMBUS-5 satellite 19.35
 
passive microwave system (Wilheit, 1972). It can be seen from this figure that
 
there is an increase in a0 and Ta in the higher wind areas of the storm with the

highest antenna tempcrature occu-rino in the zone of heavy rainfall. 

High wind conditions were also obtained during the third launch period. Figure 
9 shows the subsatellite track for data obtained on the 9th of January at incidence 
angles of 00 and ± :50 ° along with the NOAA surface analysis for 180OZ. This situa
tion is'particularly interesting because the windspeed varied from 7.5 to 30 m/sec
 
from the beginning to the end of the sampling period with little rainfall reported
 
except in the-region of the front. Figure 10 presents the variation in C0 and Ta
 
for +47.6' and -50.50 incidence angle along with surface winds estimated from an
 
isotach analysis based mainly on ship reports and the NASA JSC aircraft measure
ments. A qualitative comparison of these data sets, together with that from Hurri
cane Ava and the June 11 pass in the Gulf of Mexico, strongly suggests a first
order dependency on surface wind conditions but with scatter.
 

Unfortunately, due to damage to the S-193 antenna occurring during an SL-3
 
extravehicular excursion, the antenna pattern was altered in an unknown fashion.
 
It is therefore risky to include the 9 January data set with those obtained during

SL-2 when calculating windspeed dependency. This case was therefore treated sepa
rately and is shown plotted against windspeed in Figure l 0o and Ta data ob
tained during SL-2 are shown in Figure 12 plotted against windspeed. These data
 
sets are restricted to those data passes described above, which were accompanied
 
by an aircraft underflight. Aircraft-determined antenna temperatures included
 
show good agreement with S-193. The surface winds attached to each satellite data
 
point are judged to be accurate to about I to 3 m/sec in the case of SL-2 and 3.to
 
5 m/sec in the case of the SL-4 pass of 9 January. The judgment of accuracy in
cludes the effects of mesoscale variability in the local wind conditions and inac
curacies associated with aircraft-determined winds and ship reports in the case of
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the 9 January data. Unfortunately, no study is known to the author that compares
 
ship reports (mostly visual estimates) to continuously recorded and calibrated
 
winds averaged over 10 to 30 minutes. Therefore, one is left with a judgment.
 

DISCUSSION
 

The above data sets strongly suggest a useful-first-order relationship between
 
surface winds for both ad and Ta subject to some degree of scatter. There are sev
eral sources of errors in both parameters contributing to the scatter that crops up
 
in the processing. In addition, there may be errors due to invalid atmospheric as
sumptions (or errors in the corrections required for a particular assumption), ran
dom errors in inferring the 10-meter windspeed from aircraft measurements, as well
 
as natural variability in local wind conditions. The aboye errors inherent to this
 
data set probably cannot be reduced any further.
 

One potential sourceof error that can be addressed, however, lies in the lack
 
of uniqueness of the active or passive signature due to the variability in possible
 
wave conditions that may be present for a given windspeed. Reece and Shemdin (1974),
 
in a study conducted in a wave tank, showed that the high-frequency waves, for a par
ticular fetch, are windspeed dependent, but the absolute energy level for a particu
lar windspeed is reduced with the addition of a low-frequency component (swell) and
 
that the amount of the reduction is proportional to'the amplitude of the low
frequency component. Mitsuyasu (1971) showed similar reduction in'the high
frequency gravity region of the wave spectrum with the introduction of swell.
 
Hasselmann et. al. (1973), showed that the Phillips constant (a) (Phillips, 1958),
 
which determines the energy level of the f-s region of the wave spectrum, decreases
 
with increasing nondimensional fetch as discussed earlier. In order to assess the
 
possible importance of the gravity wave spectrum in this data set, it is desirable
 
to consider o0 as a function of some observable parameter of the wave field that
 
varies with fetch in a well-behaved and predictable m.anner.
 

The nondimensional peak .frequency, f., was shown earlier to be a particularly
 
useful parameter that well describes the stage of development of the wavespectrum.
 
Aircraft measurements of the wave spectrum were used directly to specify fm for
 
Skylab data sets obtained on 5 and 11 June 1973. The data for Hurricane Ava, how
ever, present a special problem because the aircraft measurements were not obtained
 
at the exact subsatellite point. In order to specify the peak frequency, it was
 
desirable to develop some technique of estimating these parameters from the air
craft data set. The hurricane wind fields are circular in nature, however, and
 
the fetch relationship needed to infer ?, is ambiguous and arbitrary. Furthermore,
 
the position of the aircraft measurements relative to the eye of the hurricane were
 
concentrated in the rear quadrant, whereas most of the satellite positions were to
 
the right of the hurricane center. Figure 13, however, presents some of the wave
 
data obtained, plotted along with spectra from the North Sea measured under similar
 
wind conditions, but fetch limited, and in the North Atlantic during fullydeveloped
 
conditions. The resemblance between the spectra is striking. The most significant
 
feature of the Ava-spectra, however, is the general lack of "swell," which would ap
pear as a secondary peak in the spectrum. This is especially significant when the
 
unidirectional assumption required in processing the aircraft data js considered.
 
Because we assume all waves are moving in a direction parallel to the aircraft
 
flight track, swell from some other direction is moved toward lower frequencies in
 
the mapping process to fixed coordinates, leading to an unrealistic "broad"
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appearance to the spectrum with multiple peaks. Hurricane Ava was a superhurricane
 
by any criteria and had a record low pressure for eastern Pacific storms of 914 mil
libars. Fortunately, another such storm of which wave measurements have recently
 
become available was Hurricane Camille, one of the worst hurricanes to ever strike
 
the coast of the United States as itwent ashore near Mobile, Alabama, inAugust of
 
1969. Camille's eye dimensions, maximum winds, forward velocity, and central pres
sure were virtually identical to those of Hurricane Ava. Measurements of wave con
ditions inrelatively deep water were obtained by a consortium of oil companies.
 
Some of the data were reported recently (Patterson, 1974, and Hamilton and Ward,
 
1974) and were used in this study. Figure 14 presents the relative positions of
 
Camille and Ava wave data to the eye and wind field of Ava as determined from the
 
MOA aircraft flight. It is fortunate that Camille ,;as so similar to Ava as the
 
windspeeds measured on the oil company pla'tform were biased low because of poor
 
anemometer exposure for a storm approaching in the direction of Camille. Ava's
 
winds were therefore used to specify the Camillewind field, which avoids the dif
ficul-ty of introducing another empirically based technique to specify 10-meter ane
mometer winds. The wave data from Camille and Ava were then nondimensionalized and
 
plotted against the nondimensional radial distance from the eye and are presented
 
inFigure 15. Itcan be seen that a simple power law reasonably well describes the
 

radial behavior of both E and fm" Nondimensional peak frequencies for the Ava data
 
set were therefore calculated from the expression.
 

=fm 1-6R"2s 

where
 
rg 

and r is the particular radial distance from the subsatellite point to the eye of
 
Ava. The Ava data set was then combined with data from 5 and 11 June 1973 and is
 
shown inFigure 16. Itcan be seen that co varies considerably with Im. It can be
 
argued that, because the windspeed isincluded in.the calculation of fm, itis dif
ficult to correctly separate the windspeed dependency from stage of development.

To aid inthis separation of dependencies, a multiple regression analysis was per
formed according to the equation
 

Z a0 + alx + a2y 

letting Z ao, x = U10, and y -" fm. The constants ao, al, and a2 were found to be 
-29.5, 0.20, and 59.4, respectively. Such a dependency on fm ismuch greater than 
expected or would be predicted on the basis of wave tank experiments cited earlier. 
The same multiple regression analysis was performed on the 9 January data set, based 
on hindcast fm, for 47.6' incidence angle, and yielded values of -15.7, 0.39, and 
17.5 for the same constants. The hindcast performed assumed limited fetch, but un
limited duration, and the rather low wave heights reported suggest an underestimate
 
for the values of ?m for the higher winds. Also possible is a bias inthe case of
 
the hurricane data set due to backscatter from rain. rhe 9 January data set, how
ever, seems to confirm a fetch dependency and both sets considered together suggest

that controlled high-wind, variable-fetch experiments should be performed to accur
ately infer high winds from measurements of ao.
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A similar treatment of the fetch effect inthe case of the passive microwave
 
measurements is also indicated and is underway.
 

RELATION TO SEASAT 

o The success of the simplified approach suggested by Nasselmann et. al. (1975)
for specifying the evolution of the wave spectrum depends on successful parameteri-.
zation of the nonlihear interactions that control the exchange of energy within the 
spectrum that, inturn, are very sensitive to local gustiness in the surface wind 
conditions. However, because it is not necessary to deal with the entire directional 
spectrum for each grid point in a numerical forecast scheme, itwill be possible to. 
increase the density of grid points and decrease the time steps involved, infore
casting waves. For example, a typical spectral model consisting of 17 frequencies
and 15 directions for 512 grid points in the North Atlantic-requires 130 000 storage 



locations, whereas the simplified approach, expanded to account for two swell sys
tems, can increase the grid density to 5012 and require only 30 072 locations. 
Such a forecasting approach is needed for rapid assimilation of satellite data and
 
will likely be inoperation by the time the SEASAT satellite is launched. At this
 
time, the First Global GARP Experiment will also be underway and provide a unique

opportunity to test the SEASAT concept.
 

CONCLUSIONS
 

The Skylab S-193 experiment has proved that active and passive microwave sen
sors can be used to infer surface winds but are subject to scatter and a decreasing
 
sensitivity with increasing windspeed in the case of the active radar, and bias due
 
to rainfall with little sensitivity to lower windspeeds in the case of passive micro
wave signatures. These results, therefore, suggest that combined active and passive
 
syts .. ~ a wcightcd averaging process (em-lploying polarization dependencies) being
used to infer the local wind might reduce some of the scatter due to random errors 
and should be tested with Skylab data. The results further suggest that a parameter
ization of the wave spectrum may be necessary inorder to further reduce the scatter 
inao. The Skylab data set contains most of the data needed to test these hypotheses

and could lead to satellite determination of both the windspeed and surface wave
 
spectrum by judicious use of active and multifrequency passive microwave systems.
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Figure 2. Growth of wave spectra for-offshore wind conditions during JONSWAP-69. Fetch
 
increases from Station 5 through Station 11. Three shape parameters 0a' %'
 

and y, and the scale parameters 1'mand a suggested by Hasselmann are shown in
 

the inset. y is simply the ratio of the energy at f to that which would be
 

predicted by the Pierson-ioskowitz (1964) form of the spectrum. 
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Figure 3; Dimensionless parameters E"and fmversus dimensionless fetch X for high wind

speeds (15 to 25 m/sec) as determined by aircraft "experimentsin the North Sea
 
and off.Cape Fear, N. C., on-27 January (Ross and Cardone, 1974, and Barnett 
and Wilkerson, 1969).
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