General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
ECOLOGY AND THERMAL INACTIVATION OF MICROBES IN AND ON INTERPLANETARY SPACE VEHICLE COMPONENTS

Forty-fourth Quarterly Report of Progress

Order No. W-13411

January 1, 1976 - March 31, 1976

Conducted by
Division of Microbiology - Cincinnati Food Research Laboratory
Bureau of Foods
Food and Drug Administration

for the
National Aeronautics and Space Administration
Washington, D.C.

U. S. Department of Health, Education, and Welfare
Food and Drug Administration
1090 Tuscum Avenue
Cincinnati, Ohio 45226

May 1976
ECOLOGY AND THERMAL INACTIVATION OF MICROBES
IN AND ON INTERPLANETARY SPACE VEHICLE
COMPONENTS

Forty-fourth Quarterly Report of Progress

Order No. W-13411

January 1, 1976 - March 31, 1976

Contributors:

A. L. Reyes
A. J. Wehby
R. G. Crawford
J. C. Wimsatt
J. E. Campbell
J. T. Peeler

Report Prepared by:

A. L. Reyes
A. L. Reyes, Microbiologist

Report Submitted and Forwarded By:

J. E. Campbell, Ph.D.
Principal Investigator
Inactivation of Microorganisms and Viral Particles

R. B. Carver and J. T. Peeler

Division of Microbiology
Food and Drug Administration
Cincinnati, Ohio 45226

ABSTRACT

As a support to current research, the Division of Microbiology has identified almost 600 articles and books published since 1960 about microbial and viral inactivation. This bibliography is presented to facilitate literature reviews on chemical, heat, and radiation inactivation of microorganisms and viral particles.
Inactivation of Microorganisms and Viral Particles

R. B. Carver and J. T. Peeler

Division of Microbiology
Food and Drug Administration
Cincinnati, Ohio 45226

The Division of Microbiology, Bureau of Foods, provides the research and consultation expertise for the Bureau of Foods on problems related to microbial contamination in foods. This division undertakes a wide variety of projects related to methods for detecting and identifying microorganisms and routinely examines techniques to control or eliminate microorganisms and viral agents. At least five current projects deal with methods to destroy different species of organisms and viral particles.

Since the modern basis of thermal parameters was first presented in 1920, many strains of microorganisms have been studied under varying conditions to determine the best way to inactivate them and a large body of published work about this subject has been presented to the scientific community. The modes of inactivation can be broadly classified as chemical, heat, radiation, or a mixture of the three; and the references in this bibliography have been similarly classified.
Because comparative data from recent investigations are necessary to design current studies, a large number of references were examined. Almost 600 papers have been identified as having some bearing on the general topic of inactivation of microorganisms and viral particles. The following periodicals (from 1960 to mid-1975) were used as the primary source for the references: Applied Microbiology, Bacteriology Reviews, Canadian Journal of Microbiology, Food Technology, Journal of Applied Bacteriology, Journal of Bacteriology, Journal of Dairy Science, Journal of Food Science, Journal of General Microbiology, Journal of Milk and Food Technology, Microbiology Abstracts, Poultry Science, Virology, and the NASA Bibliography of Scientific Publications and Presentations Relating to Planetary Quarantine. Pertinent articles from other periodical sources are included also, as are some books and review articles. The bibliography is not comprehensive; some references may have been overlooked or the source material may be incomplete.

The bibliography is presented as an aid to anyone needing information on the subject of microbial and viral inactivation.
References

CHEMICAL INACTIVATION

87. Bond, W. W., Favero, M. S., Peterson, N. J., and Marshall, J. H.,
Dry-heat inactivation kinetics of naturally occurring spore popula-

88. Bond, W. W., and Favero, M. S., Thermal profile of a Bacillus species
(ATCC27380) extremely resistant to dry heat. Appl. Microbiol. 29(6):
859-860 (1975).

89. Boyd, D., Nixon, R., Gillespie, S., and Gillespie, D., Screening of
Escherichia coli temperature-sensitive mutants by pretreatment with

90. Brannen, J. P., On the role of DNA in wet heat sterilization of micro-

91. _ Role of water activity in the dry heat sterilization

92. _ An analysis of vacuum effects in the sterilization of

subtilis var. niger spores as a function of relative humidity.

growth characteristics of microorganisms isolated from semiperishable

95. Bruch, M. K., and Smith, F. W., Resistance of spores of Bacillus
subtilis var. niger on Kapton and Teflon film to high temperature

temperature effects on selected Bacillus species. J. Dairy Sci.

286. Rotman, Y., and Fields, M. L., Structure of spores of rough and
 smooth variants of Bacillus stearothermophilus with special reference

287. Sale, C. S., The lethal effect of relative humidity on air-borne

 meat proteins on the thermal inactivation of Staphylococcal enteroto-

290. Scheie, P., and Ehrenspeck, S., Large surface blebs on Escherichia
 coli heated to inactivating temperatures. J. Bacteriol. 114(2):

291. Segner, W. P., Frazier, W. C., and Calbert, H. E., Method for the
 determination of rates of spore inactivation at ultra-high tempera-

292. -----, Thermal inactivation of heat-resistant bacterial
 spores in milk concentrate at ultra-high temperatures. J. Dairy Sci.

293. Segner, W. P., and Schmidt, C. F., Heat resistance of spores of
 marine and terrestrial strains of Clostridium botulinum. Appl.

335. Vinters, J. E., Patel, R. H., and Halaby, G. A., Thermal process
evaluation by programmable computer calculator. *Food Technol.* 29:

336. Vinton, C., Viability and heat resistance of anaerobic spores held

337. Walker, H. W., Matches, J. R., and Ayres, J. C., Chemical composi-
tion and heat resistance of some aerobic bacterial spores. *J.

338. Walker, H. W., Influence of buffers and pH on the thermal destruc-
tion of spores of *Bacillus megaterium* and *Bacillus polymyxa*. *J. Food

during heat inactivation of endospores of aerobic bacillus. *J. Food

aureus* in milk, whey, and phosphate buffer. *Appl. Microbiol.* 14:
584-590 (1966).

341. Wang, D. I-C., Scharer, J., and Humphrey, A. E., Kinetics of death

and heat-sensitive strains of *Clostridium perfringens*. *J. Bacteriol.*

343. Wilder, C. J., Factors affecting heat inactivation and partial re-
activation of peroxidase purified by ion-exchange chromatography.

RADIATION INACTIVATION

360. Adler, H. I., and Hardigree, A. A., Analysis of a gene controlling cell division and sensitivity to radiation in *Escherichia coli*.

COMBINATION (CHEMICAL, HEAT, RADIATION) INACTIVATION

BOOKS AND REVIEW ARTICLES

