General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

o

¢

NASA SOFTWARE SPECIFICATION AND
EVALUATION SYSTEM DESIGN
FINAL REPORT PART I

~ ,
P ’ “
_ ‘ 3
(NASA-CE-1Q0270) NASAR SOFTWAEE

SPECIFICATION AND EVAIUATION SY
PAET 1 Final Report (Science 3

STEM DESIGN,
Inc., Huntsville, Ala.)

Pplications,
74 p HC $4,5¢

e

CSCL 098 G3/61

N76-22945

Unclas

L R | _.:. . ‘ T SAI-77-555-HU

AR . _ NASA SOFTWARE SPECIFICATION AND
“ TN B EVALUATION SYSTEM DESIGN
i, ' - i FINAL REPORT PART I

SOFTWARE VERIFICATION/VALIDATION TECHNIQUES
- CONTRACT NAS8-31379

Prepared under the direction of "
: “Mr. Bohby C. Hodges - : C 8
Marshall Space Flight Center

National Aeronautics and Space Administration

;} R & _ o - March 19, 1976

T

SCIENCE APPLICATIONS "INCORPORATED

-.2109 W. Cllnton Avenue, Suite 800, Huntsv1lle Alabama 35805
(205) 533 5900 .

&

TABLE OF CONTENTS

INTRODUCTION b S 1-1
SSES METHODOLOGY 2-1
2.1 GENERAL.,iiiiiiiiinnanns f et ee e 2-1
2.2 SOI‘TWARE REQUIREMENTS METHODOLOGY 2-4
2.2.1 Software Requlrements and S R
Traceability....... e eseee ey ey 2-4

- 2.2.1.1 ‘Introductlon.;;“.;.,,&...}. 274

2.2.1.2 Contents of the Software B

Requirement Documents...... 2-7
. 2.2:1.3 A Software Requlrements o

Example. ... coeeerenesennn .. 2-8
2.3 SOFTWARE SPECIFICATION LANGUAGE. 2-15
2.3,1 Purpose and Goals of SSL. ceei.. 2-15

2.3.2 Partitioning of Speclflcatlons...... 2-19
2.3.3 SSL Subsystem and Module ‘ A

DESCriPEioNS. it it inronraraionsonn ‘2-20
. LANGUAGE DESIGN FOR RELIABLE PROGRAMS....... 2-24
2.5 STATIC CODE ANALYSTS. 'vuerenenn. et 2-27

2,5.1 Statig_Code Analyzer Eﬂhancements... 2-29

2.6 DATA BASE VERIFICATION.eevueneensennn.. 2234

2.7 GRAPH ANALYSIS AND INSTRUMENTION..........., 2-39
2.7.1 The Program Graph..... AN el 239
2.7.2 DD Paihs.......cocoen.. B L
9.7.3 Probe Numbers and DD Paths.......... 249

'2.7,4 Instrumentation Templates......... .. 2-49
© 2.7.4.1 ANSI TFORTRAN Branch o
Stat emEntS « 5 4 % &8 v h s e o.i . . . 2’—30

B

Py

)

e

' TABLE OF CONTENTS (continued)

2.8 DYNAMIC ANALYSIS.....uevnerunerrnneenoennnns

2.8.1 - INETOAUCELION. o ve v i i e e e
2.8.2 User Interface........ e e
2.8.3 .Commands.......... et e e a e
2.8.4 Reports..... A -
2.9 AUTOMATIC TEST CASE GENERATION..............
© 2.9.1 Testcase Generation Functibﬁs _'
2.9.2 Language Considerations.............
2.9.3 Theoretical Foundations.............

2.10 SOFTWARE REQUIREMENTS TESTCASE GENERATOR....

CONCLUSTONS. .\ i vt S

REFERENCES. e e e e

N AR St @t L e

" LIST OF FIGURES

1-1 Subsection/SOW/SSES Goal Correspondence......... L.o1-2

2-1 Augmented Development CyCLle....v.eeesereeneennenn. 2-3
. 2—2 -.Recommended'Software‘ProjectATime Line..;;.;.,.n.f'z—ﬁr
2—3:~_Pequ1rements Document Structure............ J;f..,, 2-9
9-4 Syntax Diagram of an SSL Speclflcatlon...;;{...}..'2—21 .
' 2-5 SSL Skeletal Definition for Modules............... 2-22
2-6 Description of ‘Module in. SSL....Q.f.; e . 2293
2-7 - Arvchitecture of a CODASYL Data Base Management _
= 1 £ PP 2-3
'9-8 ANSI FORTRAN Statement Table............. .. 2240
2-9 Mapping Formula Against Statement Types........... 2-42
2-10 Sample Program....w;..,w...,.f...,,....‘ e 244
2-11 Program- Graph for Sample.........................; Dl d
2-12 DD Paths for Sample....... it erioensonnns e 2-46
'2-13 DD Path Graph for Sample........l...iviieernenese, 2047
2-14 Sample Archival LiSting......eeeeeeeeerunnnnenn.ns . 2-58
2-15 Summary Report Sample.................... IERTREEEE 2-59
2-16 Detailed Module Test Report........ e ... 2259
2-17 Software Requirements Testcase Generation......... 2—-64

LIST OF TABLES

2-1 Functional Specification Language Goals........... 2-16

1| 2-2 Source Code Program CheckS.........ovvevninininnn, 2-28
'2?3' Program Report THEMS . v e i .. 2-29
2-41 = Presently Kpawn Capabilities of FACES...... ceeiee. 2-30

,ZfﬁiurNew.FACESMC@pabiIities e aee e 2232

S iiid

R R

;} .

1. INTRODUCTION

The main body of this summary is divideéd into ten sub-

‘sections. This division corresponds closely to the items with-
in the orlglnal scope of work (SOW) of the contract. Gencvally |

there are two or three consecutlve subsectlons pertalnlng to

each SOW item. The exact correspondence between the subsectlons»» -
a-nd the SOW ltemS]_C: g‘lVen in I‘lgure 1 1) : . R B

The original purpose of this contract was to condﬁct~

c_exploratory ana1y51s within the individual areas mentloned in-
-Lhe scope of work However in time the work evolved 1nto the
_d981gn of a software speolflcatlon and evaluatlon system ThlS
5system will be denoted as SSES throughout this report. The =

various technlques and tools which constitute this system are

the topics of subsections of section two of this report.

LY
& 4
. &g =
; S5ES < 5
L&
GOALS i " é-
3 g [uS/ & &
&) J85) K S
T & 7 A, g8
: £F oy [@l s S5
- sow) of [&5) 535/ &3 |
ITEMS > S8 /55 / fa g &
| &g g% [&d /) & [Sa R
Q,q% o T 5e7 & 1)
Al Program Proof S
of Correctness {1,2.2,2.3}]{1,2.4)
A2, Peogram Flow-
path Analysis (1,2.7,2.8)
A3 Data-BaSe
Verification. . (1.2.6) (1,2.6}
- Ada. Static Analysis {1.2.5) | (1,2.5}
Adb. Structural .
Analysis {1,2.7,2.8)
Adc. Dynamic
. Analysis {1,2.7,2.8)
Add. Testcase
Generation {1,2.9,2.10}
Ade. Instrumentation {1,2.7}
Adt. Praduciian 11,2.2,2.3){ (1.2.4)
B1. EaﬂvTenhm (LZJO)
C1. Evaluation {1,311, 1)
C2. Specifications (1,2.,3..4)
SAi.0483

Figure 1-1. Subsection/SOW/SSES Goal Correspondence

|
i
i
i
i
!
t
§
!

o ‘

S

»

O

e

iverilication effort. The initial emphasis was toward deVelbping_

| soltware without a consequent. loss in user confidence. - Such a

'vcrlllcatlon procedure could be constructed to perform oonsis-

_.tontly only if strlngent demands and checks were put on the soft-
ware throughout its development The software development stages-'

: our:methodology is centered_about_fiye_goals:

RODUGE]LITY OF THY
2. SSES METHODOLOGY %ﬁf(}m@ ?AGE B POOR

2.1 GENERAL
Eight months ago, SAI and NASA jointly began a soft—
ware research effort to develop methods which will reduce the

effort expended (usually 50%) in a typical softwafe test and'

techniques that would allow efficient automatic verification of

ponerally are understood to be requirements, 'specifications,

code, test, and maintenance.. We concluded that an entire soft- [= .
ware development methodology would have to be developed to en-

sure that at no stage of the development could magor 1ncon51s-
tencies remain undetected and that from requlrements onward the’

soltware product would have to be quite formal. The design of

"1, TBarly Program Feasibility and Testing
2. ' Requirements/Specification Completeness and Trace-
ability | ' o
3. Reliable Code Implementatlon
' Sufficient Test Capability
5, Sufficient Maintenance Capability

thieving'these ends demanded the development of a formal softul.,
ware requirements methodology, a formal specifications 1enguage
- which could traceably embody requlrements, a high level pro-~
'grammlng language whieh could be ea511y and falthfully generated
“from specifications and could promote a logical error-—-free code
1mplementat10n a language Preprocessor to allow compatabllity
ol the methodology with existing compilers, and Ilnally, auto-
mdLlC code ana1y31s tools to attain our original objective -
LhdL o reduolng software test and verlflcatlon ‘effort. ‘The

- 2-1

TR e R e e o b N e B v e ¥
; : v . e - o L TR

Wy

a2

£

way in which these techniques would be used in a. software de~-

|meant-automatic . test tools had to be employed and their func-

ﬁwo conciuded that the e[flcaolous performanoe of these test toolg

Ciise Lo those epec1ilcat10ns “Hence, it wa.s deorded that Lhe

,1n reverse. order from that oI software development

_.spoolllcatlone language the data ‘base verifier and testcase
'gcnorator (and 1ndeed the whole 1ntegrated system 1tee1f), whlle

'Lhc structured programming language: and the static. analyzer
-Tho Lxecutive Summary does not attempt to treat in depth any one

"un|F1cat10n of our Software methodology Detailed discussions e

ol this report.

velopment project is depicted in Figure 2-1.

- The construction of our unified methodology demahded,
Lthat cach tool and technique take allowahce of the other'teoh—
n1ques which would be employed prlor to and follow1ng it. Our
or1g1na1 work goal = the allowance of a reduction in software
test effTort without a corresponding 1loss 1n'user confidence - -

Llons ilrst had to be deflned After reallzlng this 1mpllcat10n‘ ‘
mado cortain ‘demands on the programs analyzed and - on the very -
programming language employed Slmllarly,rprogram language re~
sirlctlons have. placed demands upon the way in which spe01flca—‘
Lions. for those programe were to ‘be written; and speolflcat10n~
roslrictions have an impact upon requlrements which would give:
dvvulopmont of our software methodology had to be carrled out
‘Such & methodology L oan 1ntegrated Software’ Specmflcatlon”

and Lvaluation System (SSES), is being developed for NASA/MSFC.
Some SSES components are entirely original - like the software

some are 1mprovements upon already ex1st1ng technology - like

SSES component put only to present the technlcal hlghllghts and

of Lhe various system components will be the toploe of Part IT

i
{
t
|

. TOP DOWN
‘DESIGN

 {REQUIREMENTS'
A\METHODOLOGY

LANGUAGE
DISCIPLIGES

| oiscipLINgs

; Y /. .
o NS L P i : . -
: Sl ER SOFTWARE ' " |PETAILED L Y R : S NT,
| - DEVELOPMENT | sygrey N REQUIRE~ /[pESIGN /. L reneace | oetatenl ot FiCVohiFY
| STERS REQUIRE =/ SYSTEM MENTS PRELIMINARY.} | ~ /CODING /VERIFICA -) DESIGN S
R MENTS . /4pECIFICATION DESIGN pEsieN || ToN - | e 1 -
— — % T F 1 - N !
| O ..______r..._u..__,___.:._l
P . \\ o ; r " ; : = o
1 Y i ' : [J - 1 :
['I\J 1.) 1 v { 0 1
0o —— H ' ; | /DATABASEY
/ v : / oynamic :
STRUCTURED Y ;- [N oee: : VERIFIER
: PREPHOCESSOR / - | L i
To0Ls L o B

. STRUCTURAL TEST
- STATIC CODE

ANALYZER CASE GENERAT‘Q{! ' g w '
2 HE@'
1-75-1585 tep) e
o
e % g y
TFigure 2-1. Augmente‘d 'Developmeht “Cycle g =
: : . o : : g

‘2.2 - 'SOPTWARE REQUIREMENTS METHODOLOGY.

~ The basis for the software requirements methodology was
1n1t1ated wrthln the September 18th progress report of thls _
conLract ‘Bubsections of that report deallng with the software

requlrements decomp081t10n methodology have been edlted for

inclusion’ below

2.2.1 Software Requlrements and Traceablllty

Our efiorts toward the semantlc deflnltlon of a formal

software speclfloatlon language have necessitated an analy51s

of the:manuner in Wthh sofiware requirements are stated in.
subSectlon 2. 2 1.1, we present our view of the early develop—.
ment stages which is compatible with currect_NASA procedures and

- | guidelines. Subsection 2.2.1.2 discusses requirements decomposi-
‘tion in more detail, listing the necessary elements of a decom-

p051t10n Subsection 2.2.1.3 presents an examp,e. The names
thaL have been ass1gned the components are worklng tltles eub—
ject to change ' T

2.2.1.1 :IntTOductienv~*

Requirements analysis is a continuing effort from

‘;pronlem'feCOgnition'to'prOblem statement to solution recommen-
| dation. It is the final phase, solution recommendation, tnat
is of lmportance to the _process of software module speclflcatlon
| In thls report we are not concerned Wlth how the recommendation

was derived, but only how it is stated. In effect we are stat-

| ing our assumptions concernlng what 1nformatlon lS contalned
within a requlrement and recommendlng a format to make that in-

formatlon expllclt To do this requlres that we state our view

| of the act1v1t1es and déliverables assoolated w1th the early

'-stages of deSIEH

-'Tigure”Z—;”iliuStrates the activities .and documents cur- |-

rently depmcted in NASA Worklng Ppapers on software development

procedures (Act1v1t1es are represented by hexagons) ‘ We have f N
d1v1ded the NASA act1v1ty “Prellmlnary Des1gn”'1nto several sub--”'
aCLIV1tleS as will be presently explalned '

e e e e e

5

[| sysTem

.,
P

@ RS SRR I & S RS I S &

REQUIREMENTS
SPECIFICATION*

/ SOFTWARE

HEQUIREMENT> . i SR —

PRELIMINARY \,
\ DEFINITION* PESIGN* :

SUBSYSTEM .
SOFTWARE
 REQUIREMENT
DECOMPOSITION

PRELIMINARY
SOFTWARE . -
REQUIREMENT. -
DECOMPOSITION

SOFTWARE

SOFTWARE
REQUIREMENTS
SPECIFICATION®

REQUIREMENT ")
DECOMPOSITION

.F‘REL!MINARY e
SOFTWARE '

TO DETAILED
™ DEsIGN

A

DESIGN T
SPECIFICATION*
(IN SSL)

*FROM NASA WORKING PAPER RECOMMENDATION.

’E;‘}figure »i2,~2-. Répommeﬁded Software Project Time Line

SAL.0507

Sl

e L

%+

RS

Principal documents and activities of the early phases

of devolopment are:

Systems Requlrements Spec1flcat10n - A document descrlb—

1ng the funectional and environmental charac-—
- teristics of the problem solution.

Software Requirements Specification - A document which

: descrlbes the software interfaces with the
env1ronment in whlch it performs as well as key
assumptions and constraints.

:LTSofLware Requlrements Definition - An activity whose

. purpose is to derive the Software Requirements

Speclflcaﬁlon from the Systems ReQuifements

' Specification. . "' “/' R AT
Prelimlnary Scitware Deeign Specification - A document

describing the data stiructures and software

functions which will comprise the finished soft-

ware system

"Prellmlnary De51gn (PD) - An activity whose purpose is

to derive the Preliminary Software Design Speci-

fication. _ o)
Pre11m1nary Software Requlrements Decomp051t10n (PSRD) -

A subactivity of PD whose purpose is the dec-

laration of the actions to be performed by a

a single software package; emphasis is on what

to do and not how (nor how well) to do it.

Software Requlrement Decomp051tlon (SRD) - A subact1v1ty'-'

of PD whose purpose is the detailed declaration

. of the actions to be performed by a 51ng1e soft—} ..

ware package arranged in the same general form
~as the PSRD 1n1t1a1 estimates are included that
:pertaln to "When“- ”how well", and Tthow" various | -

actions are to be performed.

C i

Subsystem Software Requirement Decomposition (SSRD) - A

subactivity of PD whose purpose is a declaration

with the same form and substance as the SRD ex-
cept it pertains to only one subsystem within

the software package.

The next subsection contains a detailed summary of the constit-
uents of PSRD, SRD, and SSRD.
2.2.1.2 Contents of the Software Requirement Documents

In this subsection, we state in detail the (quite
similar) PSRD, SRD, and SSRD subactivities. In doing so we
have included only those facets of a requirement that directly
affect the software organization. Noticeably absent are such
requirement categories as: '

® Manpower and schedules

e Applicable documents

e Acceptance criteria.

We wish to emphasize once more that our purpose is to state the
information derived from Software Reguirement Decomposition and
not the methodology employed.

For the purpose of moduyle specification there are two
types of requirement decomposition subactivities. The first is
the Software Requirement Decomposition which is an expansion of
PSRD. The SRD embraces the recommended solution of the original
problem obtained .froin the customer. The second type is the Sub-

 system Software Requirement Decomposition which nearly always

expands on a subsystem or real time process derived from the SRD
or a preceding SSRD. There may be from none to several SSRD
activities and they are performed by the analyst at any time up
to the conclusion of detailed design. There will be a broader

discussion of subsystems within the example of subsection 2.2.1.3.}

Within a SRD or SSRD there are seven divisions:

Direction - A general statement of the boundaries of
the problem.

r THE
RODUCIBILITY OF '
Og.EI’GNAL PAGE IS POOR

A4

a-7

i v o

S———e - . v

¢

%!

&2

&

S

Transductions - A list of processes to be performed,
each of which translates a stimulus into a
response.
Input - Data or documents available to the software
system from external sources.
Cutput - Data or documents produced by the software
- for external purposes.
Constraints - A list of capabilities, design objectives,
or resources to be observed.
Preconceptions - A list of specific design alternatives
to bhe observed.
Implications - A binary relation existing between cer-
tain transductions.
Of the seven divisions, only the direction and a subset of the
transductions are required for the Preliminary Software Require-
ment Decomposition. (The specific subset of the transductions
necessary will be shown in the next subsection). If there ars no
implications, all transductions are assumed to be independent.
Figure 2-3 illustrates the relationship between software and sub-

system requirements for a particular system.
2.2.1.3 A Software Requirements Example

Ascsume that an employer wishes to establish a list of
employees based on proximity of residence for the purpose of
carpooling. He desires the results compiled in two formats:
(1) an alphabetical list of employees and their assigned car-
pool number, and (2) a list of carpools with individual partic-
ipants. With the aid of an analyst, he derives the following

Preliminary Software Requirement Decomposition:

Direction

Construct carpool lists by individual and by carpool

number.

o
F 4
2-8 ﬂ'/l/

. f [‘I T
RODUCIBILITY or Fi)
%I%G]NAL PAGE IS PUUR

DIRECTION)
Tnmsuurﬂluus iR
CONSTRAINTS .
SOFTWARE e e e B 4 PRECONCEPTIONS
REQUIREMENT IMPLICATIONS
INPUT
QUTPUT
DIRECTION
' TRANSDUCTIONS
coms'rnmr:_}‘so
|—w-om-c3ad SUBSYSTEM m i on e e g ¢ PRECONCEPTIONS
EQUIREMEN IMPLICATIONS .
f R T INPUT I
. QUTPUT
DIRECTION
TRANSOUCTIONS
CONSTRAINTS
ol SUBSYSTEM |y e uneme == ~gm{ PRECONCEPTIONS
*1 BREQUIREMENT ILAPLICATIONS
INPUT
QUTPUT
DIRFCTION
TIRANSDUTTIONS
. CONSTRAINTS
| SUBSYSTEM = e o= e~ { PRECONCEPTIONS
AEQUIREMENT IMPLICATIONS
INPUT
QUTRUT
. SAIAIT
: |
&3
]

Figure 2-3. Requirements Document Structure

- nn
N

Transductions

Translate: Transform each employee street address to
a uniform coordinate system.

Group: Cluster employees based on proximity of
residence.

Assign: Assign each individual to exactly one car-
pool.

Print 1: List individuals alphabetically with car-

pocl assignment.
Print 2: List carpools with individuals assigned.

Completeness and unambiguity is necessary in the above statement,
but we make no recommendation for attainment other than inspec-
tion. The form and content are important for the purposes of
software specification. If desired, it may be expanded via foot-
notes or appended subparagraphs. Particularly important to this
problem is a list of availablz documents such as employee file

and street/coordinate tape.

The analyst now assumes primary responsibility and
attempts to add, perhaps in consultation with the customer, the
following items:

® Constraints that are both problem oriented and

computer oriented

® Additional transductions that are either implied

by the original transductions or are made necessary
by the constraints

® The implication list
The preconception list

@ The input and output lists

The results of this analysis (which complete Software Require-

ment Decomposition) are stated below:

S

2-10

A A At emtn

&

s
-

e
gt

Transductions (Derived from the previocus transductions)

Precord:

Find:

Span:

Match:

Reject:

Sorte:

Input

Employee file: Name and address of each

Coordinate file: Correlation of street addresses

Output

List 1: An alphabetical list of employees with

List 2: List of carpools with individuals as-

Constraints

Memory:
Machine:

Language:

Size:

Distance:

street number is not on coordinate file.

Print an employee name and address.

Find the most eligible individual to add to

an existing carpool.

Compute the minimum tree span of a set of

nodes specified via planar coordinates.

Search the street/coordinate file for the
nearest point to a given address.

Delete all employees for which street name or

Sort carpool file,

employee.

with an (x,y)-coordinate system.

carpool assignments.

signed.

Use no more than 32K words

Use IBM 8360/65 for development

Use ANSI Standard FORTRAN without the
arithmetic IF

No carpool may contain more than five
persons

The sum of the distances associated with the
edges of a minimum spanning tree of resi-
dences of members of a single carpool must
be less than two kilometers.

wr

e

wp

| Implications

Translate) Match | Printl) Precord
' Tfanslate,:) ﬁeject Printz _:) Precordr

Assign D) Find - Reject O Precord

Assign T ‘Span = Printl _) Sorte

Prvgonceptlons-

Sort: Use a SheII'Sdrt to produce the Print 1 listing

.

‘ Presume‘that the analyst determines that clustering

should be implemented as a major independent subsystem. (He/she
may make this decision at any point prior to completing the
design.) The desired subsystem will:

(1) Cluster the employee file based on prox1m1ty of
re31dence

(2) Write the clusfers onto a segmented file, one
cluster per segment

(3) Sequentially read the cluster file w1th end of
segment markers.

Commensurate with these goais, the analyst next performs the
SSRD. The results are as follows:

Direction

Cluster and order an employee/coordinate file.

Transductions

Initialize:

Cluster:

Restart:
Segment :
Fetch:

Find the n farthest apart points in the
file to use as initial cluster centroids,
n will be an input parameter.

Match each point in the file to the near-
est centroid.

Compute the centroids of each cluster.
Order clusters into segments and save,
Fetch the next element of the current

cluster.

2-12

R

sooay

o~
s

Mark: Test for end of cluster.

Measure: Find the point nearest a given point from
a given set of points.

Swap: Exchange two employee records

Input

Point file: A file containing a sequence of ix,y)-
coordinates with a2 unique identifier
attached to each

Qutput

Neighbor: An entry from the point file

Tos: An end of segment marker

Eof: An end of file marker

Constraints

Number : n < 50 (the number of clusters).

Halt: Continﬁe attempts to cluster until the
centroids remain unchanged on two con-
secutive tries,.

Implications

Measure (Initialize

Measure (Cluster

Swap C Segment

Preconceptions

None

Tte analyst now embarks upon the second phase of Prelim-
inary Design, module specification. However, he/she may con-
tinue to reduce portions of the system to subsystems. Sub-
systems are similar to levels of abstraction [1] and have four
distinctive characteristics:

(1) The modules within a subsysiem do not share any
global data (e.g., files or COMMON) with modules
not in the subsystem.

2-13 ' &

(2) The modules located at the subsystem entry points
are referenced (called) only by modules not in

Y
the subsystem.
(3) No module referenced (called) directly by a module
%r within the subsystem is ever referenced directly
AN

by modules not in the subsystem.

; (4) All subsystems satisfy one or more of the Yollow-

ing criteria:

(a) Information hiding - The subsystem isolates

design decisions 1likely to change.

(b) Resource management - The subsystem has
exclusive control of particular resources

such as a peripheral or data structure.

(¢) Division of labor -~ The subsystem is logically
complete, apart from the original require-

ments, i.e., it is a reuseable component.

(d) Real time process - The subsystem operates as
an asynchronous activity within a real time

application.

4

fa 2-14

—dl 3L

I

O

)

2.3 SOFTWARE SPECIFICATION LANGUAGE

Within the course of this contract, a formal language
was designed for the purpose of conveying the Preliminary Design
specifications of software. In the following subsections, we
discuss the'purpose, goals, and specific attributes of our Soft-
ware Specification Language (SSL) as well as provide a simple
example of how SSL is used.

2.3.1 Purpose and Goals of SSL

In the software development process, the step between
producing software requirements and constructing a detailed

specification of the code has been informally supported by charts

and diagrams, procedural languages, descriptive systems, and
K-diagrams. Therefore, we have developed a software specifica-
tion language, the function of which is to formally describe the
overall software system (or functional) structure, and thereby
pro%ide a firm foundation for the aforementioned software de-
velopment step. Additionally, SSL fulfills another primary
goal, the goal of traceable requirements, by incorporating the
capability to tag regquirements and attach them to specific
software objects. In Table 2-1, the goals for our functional
specification language are presented along with a brief dis-

cussion of each goal.

One of the specified goals in Table 2-1 is “"formality.
Formality (i.e., rigorous definition) is necessary for auto-
mation. Specific attributes of SSL that fulfill this general

goal or attribute are:
' A context-free grammar representable in

Backus—-Naur Form

. Semantics that are defined via set theory

Do
L

.

]

(&

W

Table 2-1. Funectional Specification Language Goals.
?
" Specifications should describe the overall software system
structure. ‘ |

Functional specifications should provide a link

between the requirements specificatibn and detailed
design in terms of a non-procedural description.

Specifications should be formalized.

H Formalization permits automatic consistency checking,
restricts the designer to the level of detail appro-
priate for funectional specifications, and improves

communication between designer(s) and implementer(s)
and among implementers.

Specifications should impact reliability.

A formalized specification system is a step toward
"designing in' rather than "adding on" reliability

and can be accomplished by providing £feedback to
reguirements for design decisions occurring early

in the development process. It can assist in ascer-
taining the correctness of succeeding project devel-
opment steps rather than relying on external machanisms

to remove anomalies.

Specifications should be transparent.

By "transparent" we mean that no reasonable software
structure should be rendered impossible to depict

due to limitations of the language used. Trans-
parency is necessary so that specification require-
ments (such as the incorporation of an existing soft -
ware package) will be possible.

Specifications should be complete and unambiguous.

By completeness, it is meant that all objects created
by the designer are subsequently traceable to a set
of terminal objects that are provided within the lan-

guage., Specification ambiguity can arise in structure,

7
y 4

——

- aman _.(.)

S

&N

ey

Table 2-1. Functional Specification Language Goals (con't.)

if the object interrelationships can be interpreted in
more than one way, or if the basic¢ ocjects of the lan-
guage are not well defined.

SpdciricaLions should have a uuiform level of detail.

The non-procedural nature of a functional specification
larnguage will limit the descriptive potential of the
language to interconnection relationships.

A speciflication language should be machine independent.

Machine dependencies are seldom a desirable level of
detail. Thus, a specifications language should em-
phasize concepftual and abstract objects, -although
recognizable as components of most digital computers.

Specifications should depict interfaces simply and clearly.

In addition to depicting interfaces, the language
should be organized in a manner that encourages the
designer to construct simple, smooth connections, A
specification language should require explicit creation
and usage declarations of all objects. It should af-
ford clear and concise rules for assigning attributes
to each object .and to delineate scope of access.

Specilications should be modifiable.

The degree of ease with which a description can be
modified is partly a function of how it is used by
the designer. A specifications language could assist
by providing mechanisms to isolate and encapsulate
ceritical design decisions. A language should provide
methods for a natural partitioning of the problem
space and provide means for the designer {10 create
sub-partitions.

A specifications language should be eisy to use.

By casy to use, we mean readable by higher levels in

the command chain (managers) and easily communicable
to impiementers. .

2-17

[y
[

Table 2-1. Functional Specification Language Goals (con't.).

Achieving this goal would encourage utilization of the
methodology, abate clerical errors, assist communi-
cation,. and provide permanent documentation. -

Specilications should reflect error handling requiréments.

When project development schedules are underestimated,
misjudging the magnitude of error'analysis'required is
geherally a contributory factor. A specification lan-
guage should incorporate explicit declarations of nec-
essary software error checks.

Specifications should reflect fault tolerant capabilities.

The term '"fault tolerant" means the ability to cope
with errors by the user and in the environment. As
in error handling, explicit declarations should
accompany I/0 accesses.

Specifications should reflect the original requirements.

Generally, the more detailed the design, the more
isolated the designer is from the original require-
ments., A formal specification language could alle-
viate this problem by permitting requirements to be
labeled and attached as attributes to system objects.

2-18

1o
=

i
i
e
H
1

&

_ Another goal is the enforcement of a uniform level of
delail. This is desirable with respect to the top-down program—

| ming philosophy and in assuring that equal attention has been

given all aspects of the design. Specific SSL attributes that

are commensurate with this goal are:

® Utilizationiof»non—procédural language
'constructs only, to focus attention on
static structure rather than algorithm
dynamics.

e . Adoption of the software module as the
elementafy unit of definition; a module
is one or more compilation units (e.g.,
subprograms, procedures).

Examining the entire general attribute list provided
in Table 2-1 confirms that the specific attribute list of SSL

| would be necessarily quite extensive and will therefore not be

| presented in this summary report. A cursory view of SSL is

given in the next subsection.

2.3.2 Partitioning of Specifications

Functional specifications for a software system may be
divided into three areas; environment, data, and control. SSL
provides the capability to specify the minimal set of hardware
characteristics that are inherent in the problem definition and
'thut impact software organization (see ACCESS statement in Figure
2-5 ol subsection 2.3.3). In the data area, SSL offers the
mechaniéms to explicitly describe a variety of data structures
and to specify when the data is used as input (i.e., in the

JUSES clauses illustrated in Figure 2-5 in subsection 2.3.3) or

as output (i.e., in the CREATES or MODIFIES clause shown in Fig-
ure 2-5 in subsection 2.3.3). Moreover, SSL is used to describe
the module/data interconnection structure and a rationale for the

module/data interconnection structure and a rationale for the

2-19

structure based on requirements. Regarding the control area,
E S8, is not designed to depict the control flow within modules.
t@ However, intermodule connections can be depicted by use of the
EXLCUTES statement (in Figure 2-5 of subsection‘2.3.3) in which
conditional, iterative, or recursive execution of modules is
specilied. In addition to providing specifications in these

é@ arcas, SSL ensures that the resulting specifications are suffi-
ciently abstract to prevent selecting a specific machine repre-
sentation.

e '2.3.3 SSL Subsystem and Module Descriptions

SSL allows for partitioning the software into subsys-
'tcms based on the principle of levels of abstractions. A spec-
. ification in SSL is represented as a set of subsystems which is
ilﬁ* shown in Figure 2-4. Each subsystem is defined by a preamble

' and one or more module descriptions. The preamble describes the
local environment for the subsystem and includes: the subsystem
name, the requirementis associated with it, data types, vari-

;ab]es, and constants used within it.

_ Modules are basgsic system objects in an SSL system
;doscription, In Figure 2-5, we present a portion of the SSL
:grummar for module descriptions. A correspondence between the
module items identified by SSL and the specific statements used

to implement these are shown below:

Module Item SSL Statement
. module name MODULE, ENTRY
> input data USES
] output data CREATES, MODIFIES
e conditions placed on ASSUMES, SATISFIES,
T data upon entry to and
v exit from the module
§ e dependence on environ- ACCESSES, EXECUTES
; mental objects and other
; modules
ﬁ@ o requirement attributes FULFILLS
g _ In Figure 2-6, we present a simple example of SSI,
design for a module.
’ >y

2-20

Lo

Tz-¢

s e e e s -
] &
SPECIFICATION
SUBSYSTEM SUBSYSTEM SUBSYSTEM
™! DESCRIFTION IDENTIFIER —‘-@—" DESCRIPTION m
REQUIREMENT
DECLARATION O\
N\
SUBSYSTEM DECLARATION
DESCRIFTION . MADULE MODULE
) MODULE IDENTIFIER DEFINITION
VARIABLE ETATEMENT
DECLARATION
CONSTANT
DECLARATION

FPigure 2-4,.

Syutax Diagram

5A)-0093

of an SSL Specification

Hvd TYNIOIO

uisud 81
THI, J0 ALITIEI0NAC

adad

~r

MODULI"
ENTRY

Figure 2-85.

< MODULE NAME > ;

ASSUMES

FULFILLS

USES

ACCESSES

CREATES

MODIFIES

EXECUTES

SATISFIES

< ASSERTION LIST > ;

< REQUIREMENT LIST > ;

< DATA OBJECT LIST > ;

< ENVIRONMENT OBJECT LIST > ;
< DATA OBJECT LIST > ;

[USING < DATA OBJECT LIST >] ;

< DATA OBJECT LIST > ;
[USING < DATA OBJECT LIST >] ;

< MODULE NAME LIST > ;

A

ASSERTION LIST > ;

SSI: Skeletal Definition for Modules

ﬂ

S

2-22

g€2-a

/
G

MODULE SORT

(N: INTEGER)

/* MODULE TO SORT ARRAY */
/* ARRAY IS INITIALIZED FROM CARD READER */

ASSUMES N > 0

FULFILLS ORDERED _ VALUE;

ACCESSES CARD_READER;

MODIFIES SARRAY USING N;

SATISFIES FORALL (T:INTEGER)
I > 0 AND T < N
AND
SARRAY [I1 = SARRAY [I+1]

END;
Figure 2-8. Description of Module in SSL

oY

- [These general language attributes have direct implication upon

"|these implications are as follows:

2.4 LANGUAGE DESIGN FOR RELIABLE PROGRAMSI

The consistent production of reliable computer prcgrams
makes stringent demands upon the selection of the programming
language employed. For example, to minimize the effort required
to carry out a program proof of correctness, the language con-
trol structures should be as simple in conecept and as few in

number as possible. To produce programs that are clearly

understood and easily modified, one should construct code in
modular units using the top-down philosophy. We suggest the
following attributes as being worthwhile goals in the selection

of a machine processable language:

Simple to use

Easy to understand

Quickly Machine Processable

Reliably Machine Diagnosible
Translatable into Efficient Machine Code

the structure of the programming language employed. Some of

e The language should follow naturally from a
top-down approach and should be able to reflect
the problem at hand

® The language promotes a sequential implementation

* Control structures should be clear and explicit

and should be kept to a minimum

® The language should exhibit the same syntax

structure for semanticzlly similar constructs

7—
2-24 l

The language should allow indentation and a
type of modularization that clearly defines
the boundary of each module and allows each
module to be clearly and completely locally

understood

The language should have meaningful reserved

words

The language should allow the programmer to
write often used constructs with a minimum of
detail

The language should offer a non-restrictive
placement of comments which facilitates

trouble free usage

Side effect changes of data should be made

explicit and restricted to a minimum

Data types and other information crucial to
correct execution should be explicitly specified
preferably in several different ways

The language should have context-free syntax

The language should allow amenability to auto-

matic code analysis tools

Machine overhead of often used constructs
should be kept to a minimum

e e . o e —————— e

I

©)

(3

G

@

Maximal compatibility with FORTRAN - the language most used by
NASA ~ demands that we try to achieve the above language goals
through a structured FORTRAN preprocessor. The central struc-
tures of the preprocessor are being designed to include the
above features. A full description of this preprocessor will
be included within a follow-up contract. Along with the pre-
processor, a programming methodology is being formulated

which pinpoints questionable coding practices, for it is quite
possible to construct poor software with the best of languages.
Many of these practices are defined in subsection 2.5 (and also
2.5.1) on static analysis.

<
g 4

2-26

)

e,

{'i

i
H
!
i

;Cx

REPROTDUCIBILITY OF THE
ORIGINAL PAGE IS POOR

2.0 STATIC CODE ANALYSIS

A static analyzer for ANSI FORTRAN code accepts source
program code as input and evaluates the code in a static manner,
i.e., the program being checked is not in execution. A static
analyzer can be used to accomplish a variety of functions.

After combining our ideas of static analysis with those in the

available literature[:ZJ - [6:L we identified three areas into

which all the functions of a static analyzer can be classified:

® Reliability Enhancement

The static analyzer could enforce technical
coding standards, i.e., the identification and
characterization of critical areas and items in
the code which are likely candidates for incon-
The NASA tool FACES is
directly concerned with this function.

sistencies and errors.

] Verification Determination

The functional specifications written in SSL
(Software Specification Language) can be verified
by a static code analyzer, i.e., the consistency
of the program code with certain specifications
can be checked. This statie verification could
compare variable and module interconnections of

the program with SSL specifications.

) Documentation Assistance

The documentation of pertinent program informa-
tion, which will be used during the code test-
ing/debugging and maintenance phases of the soft-
ware development, can be provided by a static
code analyzer.

Pertaining to reliability enhancement, we constructed

in Table 2~2, a list of catagories for source code program check-

ing,

2-27

¥
Table 2-2., Bource Code Program Checks
Al Syntactical and semantic checks which
0. involve evaluation by element, express-
o . ion, and statement
B. Logical structural checks which involve

analysis of the program as a single entity
and of the entire system of programs as

5'7 a whole

N :

- C. Machine independence checks

; D. Clarity enhancements (such as requiring

nested DO loops to have unique targets)

s

@

©

)

iy

(€

&

Performing these checks would provide a comprehensive source
code analysis as to style, format, and structure. As illus-
trated in the following subsection, our efforts in static
analysis have been concentrated in this area.

In reference to verification determination, we ascer-

tained that the effort necessary to incorperate the capability
of matching source code with SSL specifications was beyond the
scope of this contract. However, we recommend this task for a
[uture project since it would represent a significant step to~
ward automated software verification.

We believe that a static code analyzer could expedite
the code maintenance process by providing a comprehensive pro-

gram report consisting of the items in the following table.

Table 2-3. Program Report Items

Language element categorization

Subprogram cross reference listing

Variable usage (i.e., type) inconsistency flags
COMMON summary

Variable or array initialization summary

= O ooz &

=

Special variable role summary

Adjustable array dimension
DO loop control variable
Assigned GO TO variable
Computed GO TO variable
Input/output unit designator

G. Input/output reference summary

However, due to higher SSES priorities, implementation of this
agspect of static analysis is not currently pianned.

2.5.1 Static Code Analyzer Enhancements

During the contract period, documentation for the NASA
tool FACES (TORTRAN Automated Code Evaluation System) became
available.. Shown in Table 2-4 are the capabilities currently

71—
2-29 &

oe-¢

/

TABLE 2-4.

Non-executable Statement Checks

PRESENTLY KNOWN CAPABILITIES OF FACES

Executable Statement Checks

Subroutine, function and COMMON
BLOCK names are not FORTRAN '"re-

served" words or ANSI standard
function names

All COMMON BLOCKS are checked
for alignment, i.e., corres-
ponding elements in COMMON
must agree in number, type,
dimension, name, and size

All DATA statements involving
COMMON BLCCE variables which

are not in BLOCK DATA are de-
tected

All parameter lists are check-
ed for alignment, i.e., cor-
responding parameters must

agree in number, type, and
dimension

Potential cyeclic calling patterns
among routines are flagged

A DO loop index can not be used
outside the loop

A DO loop variable or parameter

should not be redefined within
the loop

Funection subroutines should not
alter input parameters

Two-way, three-way, IFs and
computed GO TOs should have the

next sequential statement as one
of the targets

An uninitialized wvariable and
array element search is periformed

Occurrences of local variables

in assignment statements are
flagged

~

90
10d SI ZOVd TVNIDL
aoogo AIITIE0RAOEdE

fHL

€

@

-~
iy

‘provided in Part II of this final report.

featured in FACES. New capabilities deemed desirable and feasi-
ble by NASA and SAI are shown in Table 2-5. The detailed speci-
fications for incorporating these new capabilities into FACES are

2-31

£

&

TABLE 2-5 NEW FACES CAPABILITIES

EQUIVALENCE and EXTERNAL statements are flagged.

COMMONs not named are flagged.

ALI, COMMON BLOCK arrays must be dimensioned in
COMMON BLOCK statements.

DIMENSION statement and variable which contain
an adjustable (variable) dimension are flagged.

Constants, hollerith, or arithmetic expression
arguments used in subroutine argument lists are

flagged.

All occurrences where the same variable exists in
multiple positions in an actual parameter list are

flagged.

Targets of branches should not be other branches,

especially single GO TOs.

2~32

¢

)

[

w5

TABLE 2-5 NEW FACES CAPABILITIES (Cont.)

Variable which is If0 unit designator is flagged.

Statement labels must appear in increasing order.

Arithmetic IFs are flagged.

Occurrences of error-prone FORTRAN statements such
as ASSIGN statement, assigned GO TO, and PAUSE are
flagged.

The appearance of the same COMMON variable in more
than one DATA statement is flagged.

2.6 DATA BASE VERIFICATION

The problem of verifying the structure and contents of
a stored data base (i.e., the part of a data base which resides
on permanent storage) is difficult. However, the problem be-
comes more complex when it is coupled with the task of ensuring
the continued integrity of the stored data base throughout ac-
cessing and updating operations. Since the late 1960's the
CODASYL (Conference of Data Systems Language) and other orga-
nizations have been engaged in the formalization of their ap-
proach to these and other problems concerning data bases [7].
The CODASYL has directed its efforts toward developing language
standards for describing extensions to existing high level lan-
guages (such as FORTRAN) which will allow access and operation
on the data base components as well as describe the part

ol a data base which resides on permanent storage.

As background for discussing our approach to data
base verification, we present CODASYL's view of a data base
management system. A data base management system is a2 system
which manages and maintains data in a noaredundant structure
for the purpose of being processed by one or more applications.
In the environment depicted in Figure 2-7, an applications
programmer writes a program in a high order programming language
such as FORTRAN or COBOL which has been extended to incorporate
Data Manipulation Language (DML) commands. The DML statements
are data base access mechanisms, i.e., they provide application
program interfaces to the data base during execution. (Note:
CODASYL's usage of the term "data base" is the same as our def-

inition of stored data base.)

A schema DDL (Data Description Language) completely de-
fines the data base:; it includes the names and descriptions of

7 —-
y

SE-é&

e e e g e B

DATA BASE MANAGEMENT

ot SYSTEM

APPLICATIONS
PROGRAM

USER
WORIKING
AREA

APPLICATION
PROGRAMMER

*BUILT AND MAINTAINED BY THE DATA BASE ADMINISTRATOR

Figure 2-7.

Architecture of a CODASYL Data Base Management System

DATA
BASE*

400d_§I A9V TYNIDIEO
THL 40 ALrO9INA0adHy

7

N

ww

(5]

S

all the areas, set types, record types and associated data
items and data aggregates as they exist in the data base [5;]
and arce known to the data management programs. However, an
applications program must be concerned with the description of
only that part of a data base which is useful and meaningful

to it. This description is called a subschema. A subschema is
a subset of a schema which allows the applications program to
view only those portions of the data base declared necessary
for that particular program. Therefore, the remainder of the
data base is insulated from the execution of an applications
program or a subsystem of programs. The characteristics of

the data items (and the arrangement of items within records)
described by the subschema may be different from the character-
istics of those data base items defined by the schema. Since

a program depends only on the subschema for data base infor-
mation, changes may be made to the schema of the data base and
the data base may be appropriately adjusted without affecting
the programs using the data. Correspondingly, a subschema may
be modified to provide compatibility with a specific program-

ming language, and the schema will not be affected.

The actual mapping or conversion of subschema descrip-
tions to schema definitions is performed by the data base man-
agement system (DBMS). (The subschema contains the mapping
definition which specifies the correspondence between the sub-
schema and schema.) Thus a degree of data independence is es-
tablished by employing the schema and subkschema mechanisms. At
the same time, flexibility in the choice of programming lan-
guages is supported since that part of a data base known to a
program can be described according to any particulrr program-

ming language conventions.

For each application program, there is defined a user
working area (UWA) which contains locations for all data de-
livered to the program from the data base and vice versa. The

program refers to these locations via names in the subschema.

c P STEIR

Wt

i

A

In fact, the UWA is set up by the DBMS according to the sub-

schema which is evoked by each applications program [9}-

In the process of creating and meintaining a data base
management system, the need for human involvement becomes ap-
parent. The human activities are performed by the data base
administrator (DBA). According to CODASYL, the DBA is respon-
sible for:

@ Writing the schema and subschema

© Modifying the schema and subschema to

reflect changing user needs

® Designing, assembling, and loading the data
base
o Monitoring the use and performance of the

data base and reorganizing the data base for

greater performance efficiency if required.
] Assigning data to physical devices

@ Assigning privacy locks and issuing privacy
keys to users for specific portions of the

data base

® Recovering the data base after system malfun-

ctions.

Since the DBA is responsible for data management as indicated
by the above functions, the application programmer is relieved
of this responsibility and can concentrate on other aspecls of

programming.,

This discussion of the interworkings of the DBMS
companents provides a basis for a series of data base veri-
fication subsystems which when integrated would form a data
base verification system, The data base verifier that we de-

sipned can be ennsidered as one of these subsystems. Qur data

2-37

——_—

€3

L I ——

Semgant e

e

®

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

base verification subsystem concentrates on the FORTRAN appli-

cations program which, according to CODASYL, must be written
in ANSI FORTRAN that is extended to incorporate Data Manipu-

lation Language (DML) commands.

As input. our data hase verifier accepts CODASYL FORTRAN
Dita Manipulation Language. The specifications for this lan-
guage are still being refined and will not be finalized until
the end of this calendar year. However, we obtained a CODASYL
FORTRAN Data Base Facility Journal of Development which was
printed on November 25, 1975. Though this document is only a
working paper for the FORTRAN Data Base Manipulation Language
Committee, we used it as the foundation of our design, since
the basic problems to be analyzed and sclved will remain con-
stant though the syntax may be altered by the committee during
the refinement stages.

A brief summary of the functions of our data base veri-

fier are the following:
o Accepts FORTRAN DML source code as input

] Statically analyzes the program and constructs
tables which describe the stored data base that

the program accesses and manipulates

e Prints a summary of all the information
collected about the components and the
structure of the stored data bhase.

The user must then establish the consistency and validity of
the stored data base within the framework of the program de-
seriptions by cross referencing these tables. A future en-
huncement to our data base verifier includes the automatic con-
sistency checking of these data base descriptions as set forth
by the applications program. Part II of this reporit contains
functional specitications (i.e., S38L descriplions) of the data

Yase verifier subsystem.

2-38

a

&

2.7 GRAPH ANALYSIS AND INSTRUMENTATION

The key to most program analysis systems is the selec-
tion of a model which yields the correct program characteristics
to base analyses on. The standard approach that is used
in systems built for software testing is to use a program-graph
model. We will describe the general process of formulating a

program-graph, and present the pertinent manipulations which
support a dynamic analysis system. In the first section, the
procedure for [orming the program-graph is described. The next

section contains a description of DD-PATHS in a program-graph.

2.7.1 The Program Graph

A program-graph is formed from a program unit (main
procedure or subroutine) by mapping selected program statements
into nodes and corresponding edges. To illustrate the program
graph construction, we present in Figure 2-8 an exhaustive de-
composition of the elements in the ANSI FORTRAN. This type
of language construction could be carried out for anv language.
The set ol abbreviations on the right hand side serve a two-
fold purpose: (1) they identify the particular statement types
that must be addressed:; (2) they provide a convenient short form
to refer to each of these statement types. Note that compound
IT statements are completely decomposed in this table so that
111 constituent parts can be identified; for example, IF3 re-

fers Lo a statement of the form
¥ (logical expression) IF (arithmetic expression) n,m,p.

The set of FORTRAN elements directly referenced in Fig-
ure 2-8 are the only elements which are mapped into the program-
graph.

There are nine mapping formulae. In each of these cases
the statement is mapped direectly into a node; decisions are made

only concerning the formation of edges from that node.

2-39

el T T I IIT n, v e e S e i om T e e e © | ripe e oo A S T YT 1. RS e . T 2 0,72

B REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

P
b ¢ Executable
s Assignment
@ Arithmetic AS]
- » Logical AS2
P & 8 GOTO AS3
‘ s Control
ﬂ » GOTO
& Unconditional 601
i o Assigned €o2
Cm e Computed G03
T s IF
' ¢ Arithmetic ’ If1
@ Logical T
¢ Simple
Lo & With GOTO IF2
o » With RETURM 1F3
’ o Other IF4
@ Compound
= o With Arithmetic IF IF5
' s With Computed GOTO IF6
& 8 With Assigned GOTD 1F7
s CALL CAl
o RETURN or END RE1
o CONTINUE co1
: s STOP or PAUSE ST
N e DO
o With Unique Terminal Dot
8 With Shared Terminal Doz
. s 1/0 101
¢ Non-Exacutable (Headings)
& 8 Main Program Implicit Begin HE1
s SUBROUTINE HE2
s FUNCTION HE3
L Figure 2-8. ANSI FORTRAN Statement Table
.': %

BaFss Frp AP

1. Direct Sequential, Single: A single edge is formed
between the given node and the next sequential node.

2. Dir;ct Sequential, Double: Two edges are formed as
in #1.

3. Termination: A single edge is formed to the design-
ed terminal node.

4, Direct Defined, Single: An edge is formed between
the given node and another node specified as its
target.

5. Direct Defined, Multiple: ©Several edges are formed
as in #4.

6. Mix 1-4: Two edges are formed; one as in #l, the
other as in #4.

7. Mix 1-5: Several edges are formed; one as in #1,
the others as in #5.

8. Mix 1-3: Two edges are formed; one as in #1, the
other to a node designated as the terminal (as in
#3).

9. Loop: Three edges are formed; one as in #1, the
second from a designated target node back to the
given node, and the third from a designated target
node to another designated target node.

In Figure 2- 9, the elements in the statement table are matched
with their corresponding mapping formula. Note that the map-
ping formula simply follow the potential flow of control from
each statement. Formula #2 is used for the DO statement; the
third edge connects the DO target with the statement which is

executed once the DO is satisfied.

The FORTRAN DO statement, following ANSI documen-
tation. is expected to behave so that the loop index is set tao
the first parameter, the lcop (s «xvocuted. and then the index
incremented and checked against the ferminal parameter. In this
fashion, it appears that control is centered in the DO target
statement rather than the DO itself; hence, the edges ::2 formed

as described in #8.

-

Yo
R 4

o

L=

Formula.

1.

2.

3.

4,

5.

6.

7.

8.

9.

Direct Sequential,
Single

Direct Sequential,
Double

Termination

Direct Defined,
Single

Direct Defined,
Multipie

Hix 1-4
Mix 1-5
Mix 1-3

Loop

Elements

As1-3, CAl1, CO1, ST, 107,
HET-3 [IF NONE OF THE ABOVE
ARE THE DO TARGET -- IN WHICH
CASE #9 APPLIES]

1F4

602, GO3, IF1

IF2
IF5, IF6, IF7
IF3

po1-2

Figure 2-9.

Mapping Formula Against Statement Types

o

.

e

The program-graph is formed in a two stage process. The
first stage involves the lexical scan of the program and the
identilication of statement type and auxiliary pointers. These
pointers reference the node(s) to which the given node is to be
connected when such nodes are not the next sequential node num-

ber. Consider as an example the statement

IF (A.GT.B) IF (C) 10, 20, 30

which in this scheme would be identified as I¥5,; the pointers
which must be determined are three in number; pointer to the
node which corresponds to label 10, the same for label 20, and

for label 30.

The DO loop poses special problems since the target
statement takes on the semblance (from a program-graph view-
point) of a control statement. The usual procedure for a DO
is then to identify the target statement via a pointer. Some
confusion arises when several DO statements share a common tar-
get (DO2); hence, it is recommended that in this case, an arti-
fFicial target is added to allow only DO1's to occur in the pro-
gram,

The program-graph for a sample program, Figure 2-10, is

shown in Figure 2-11.
2.7.2 DD Paths

The program-graph representation accurately reflects
the control flow within a program. It is also the case that
there is a reduced form for the program-graph which also cap-
tures that control flow. The DD Path program-graph is formed
from the program-graph by collapsing linear segments of the
structure. A linear segment is a series of nodes which have

a single edge in and a single edge out.

7—

o

REPRODUCIBILITY OF THL
ORIGINAL PAGE IS POO4

20
30

10

50
40

:jEfOCn~40un4ag”u_4 l

Taxt Type
SUBROUTINE SAMPLE HEZ

SET = SET + 1. AS1

ASSIGN 10 TO LABEL AS3

GOTO LABEL GOT

CALL ouT CAl

IF (EXP) 20,30,40 IF1

SET = SET + 2. AS

IF (EXP1) GOTO (10,20,30,40), I IF5

G0OTO 20 GO1

ISET = ISET + 3 AS1

CALL QUT CAl

DO 50 J = 1,9 D02 12
SET = SET + 1. AS1 13
D0 50 K = 5,6 D02 14
CALL oUT CAl 15
CONTINUE Co1 16
GOTO 20 &01 17
RETURN RE] 18

Figure 2-10. BSample Program
5A1-0216
Figure 2-11. Program-Graph for Sample

2-44

=
o
.
1]

ayy
1/ |

FEy
o

G

The flow of control within a program is induced by the
program branches; likewise the flow within a program-graph is
induced by the branch nodes (nodes with more than a single em-
anating edge). A DD Path is a path in the program graph which
begins and ends on a decision node (D node). The D nodes are
the branch nodes, the entry node, and the terminal node; in

the sample program-graph (Figure 2-11) the D nodes are:
1, 6, 8, 16, 18

carresponding to statements
HE2, IF1, IF5, CO1 (D0O2), REL

The table iu Figure 2-12 is the collection of DD Paths
for the sample program-graph. The DD Path graph is shown in
Figure 2-13.

Each DD Path begins with a decision node; however, the
actual path is a collection of edges and each edge corresponds
to an outcome from a node. A DD Path is, then, representative
ol a set of outcomes from each D node; there is a condition as-
sociated with the selection of each DD Path. The contents of a
DD path are simple to derive, and since all but the first node
have only one successor node,it is easy to describe each DD path

by its constituent nodes without loss of information.

A point to be discussed in the next subsection is that
the DD Paths are identified by numbers and the numbers are as-
signed in a manner which is unique (it can be relied upon to
give the same numbering each time). This numbering algorithm

is Lthe following:

1. Order the DD paths by their initial node

2. Within each group of DD paths with the same
initial node order the elements by their cor-
respondence to the D node decision outcome.
The ordering by outcome is:

f—
2-45 y 4

e R e PR ey R ot et L,

e e e

3]

¢

2

@

L SRS AT MR S dy e R TIIT S T

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POUR

DD PATHS

Ho.

o e W M

10
Ik
12

From:To
1:16

6:6
6:8
6:18
8:16

B:6
16:16
16:16
16:6

Contents

1-2-3-4-70-11-12-
-16

13-14-14
6-5-6
6-7-8
6-18

8-10-11-12-13-14-

15-16
8-5-6

8-7-8

8-18

B-9-5-6

76-12-13-14-15-16

16-14-15-16
16-17-5-6

Condition
entry

EXP .LT. 0
EXP .EQ. O
EXP .GT. O

EXP1 .EQ. TRUE
JAND. T .EQ. 1

EXP1 .EQ. TRUE
LAND, I, EQ. 2

EXP1 .EQ. TRUE
JAND. I. EQ. 3

EXP1 .EQ. TRUE
AHD. 1. EQ. 4

EXPT .EQ. FALSE
BO @ 12 Loop
DO @ 14 Loop

D0 nest completion

Figure 2-12,

DD Paths for Sample

€

NIl R

(e8]

C

Figure 2-13.

SA1-0217

DD Path Graph for Sample

2-47

,CS

i

TS
(%3

2.1 True before Ealse

If there are several trues (or falses)
order them by the lexical order of their
target definitions in the original program
statement .

For example, the statement
IF (EXP1l) GOTO (10, 20, 30, 40), I

in a program would obviously have 5 DD paths stemming from its

assigned node; these paths would be ordered by

a. EXP1 .EQ. TRUE .AND. I .EQ.
b. EXP1l .EQ. TRUE .AND. I .EQ.

¢. EXPL EQ. TRUE .AND. I .EQ.
EXP1 .EQ. TRUE .AND. I .EQ.
EXP1 .EQ. FALSE

I R

Aside from the above description of the ordering pro-
cedure as external source views it, there is a simpler internal
description. Since statements are scanned sequentially in orden
the edge list is formed iun order by beginning node number. The
edge list for a single node follows from the lexical scan so
that in, say, the above example a, b, ¢, d are in the natural
order. Since the edge list is already ordered, the DD Paths
arc created in the desired order by simply using the edgeﬁlist
and assigning DD Path numbers in a sequential fashion starting
'rom the first D node in the edge list.

To clarify the above "simpler" internal description,
consider the edge list for the sample program. The first sev-

eral entries of their list would be

to 2
to 3
to 4
to 10
to 6

U s W N

7
y 4

2-48

®

o

6 to 5

6 to 7

G to 18

te 8 REPRODUCIBILITY OF THE
ete. ORIGINAL PAGE IS POCT

The D nodes, as presented earlier, are 1, 8, 3, 16, 18. 'The
DD Paths would be, then,

1 to 2 to . . . nil
6 to 5 to . . . n2
6 to 7 to . . . n3
6 to 18

cte.

The above sequence of DD Paths obeys the external order stand-~
point, although it is created from purely straightforward de-

vices.

2.7.3 Probe Numbers and DD Paths

One probe is placed for each DD Path in the program-

graph.

The probe numbers are the DD Path numbers. See the
following subsection for a complete discussion of probe pluce-

ment algorithms.

2.7.4 Instrumentation Templates

A software probe is a CALL to an auditing subroutine;
{the subroutine, in turn, records the identity of the actual
probe which evoked it.

Probes are placed in the software so that they can inter-
cept the passage of the program control point. Since paths are
induced in the program by the branch statements,it is neces-
sury Lo position probes only at those branch points. (The ex-
ceptions to this rule are the entry and exit points from the
program which are advantageous to probe.)

17—
2-49 y 4

e i e

. The placement of probes is carried out by a macro-ex-
E:® pansion technique for each branch point in the program. As

L ca¢h branch point is determined the branch is replaced (expand-
3 ed) into a composite program segment which incorporates a probe
without loss of the logical capability of that branch. For

example, the statement

iF (X .EQ. Y) A = B+C

would be expanded into

IF (X .EQ. Y) GOTO 99
CALL PROBE (*)

= GOTO 98

99 CALL PROBE (*)
A = B+C

98 CONTINUE

2.7.4.1 ANSI FORTRAN Branch Statements

ANSI FORTRAN branch statements can be considered in
Ltwo classes: simple and compound. The simple statements are

DO :
IF (~THEN) :
- IF-ARITHMETIC
v COMPUTED-GOTO
ASSIGNED-GOTO

The compound statements involve the combination of an IF (-THEN)

b e with another branch statement; the most straightforward type to o
o i

handle is

IF-COMPUTED-GOTO
. IF-ASSIGNED-GOTO
N IF-IF-ARITHMETIC

7
L% 2-50 y 4

For convenience,we will treat branch statements in the groups

deseribed above.

The macros for the given FORTRAN statement types in-
volve the use of auxiliary statement labels. It is assumed

that a facility will be maintained which will assign these

labels so no program conflicts arise. For the examples shown,

these auxiliary labels will be given numbers decending sequen-
tially from 99998,

The exact nature of the arguments which are passed in

the probe envocation is not described in this paper; hence the
probe CALL will be noted simply by the key word "PROBE."

DO f{1abel] [index] = [n], [m]. [o]

[1abei] [statement]

% % okok ok E

DO [label] [index] = [n], [m], [o]

v PROBE

R

[1abel] [statement]

PROBE

B. IF (-THEN)

IF [exrression] [mon-branch statement or
simple GOTO]

®

EE XX R

IF [expression] GOTO 99999
PROBE
GOTO 99998
99999 PROBE
[non-branch statement or simple GOTO]

99998 CONTINUE

C. IF-ARITHMETIC
IF [expression] [1abel-al], [label-b], [label—r]
&0k koo ok
17 [expression] 99999,99998,99997
99999 PROBE
coTo [label-a]
99998 DPROBE
GOTO [Label-b)
99997 PROBE

GOTO [label-c]

D. COMPUTED GOTO

GOTO ([2] , [b] , [2]). [index]
[temp] = [index]

PROBE-SPECIAL

GOTO ([a] , [b] , [z]). [temp]
Note: Since the value of [indﬂx] must be an integer and since
probes are assigned integer identification numbers, then it is
straightforward to create the situation where the probe number
+an be computed using [index] . The PROBE-SPECIAL is a prob:
vvaociation which takes into account the value of [index].

1‘/""'“""‘

Ay
. dr

ok

=

2

E. ASSIGNED GOTO

GOTO [index]} , ([a], [v],[z]

& ook ok
[temp] = [index]
PROBE-SPECIAL
GOTO [temp], ([a], [®], ... ,[2]

F. IF-COMPUTED GOTO

17 [expression] GOTO ([a], ... , [z]). [index]

ok ok oK ok

IF [expression] GOTO 99999
PROBE
GOTO 99998

99998 [temp] = [index]
PROBE-SPECIAL
coto ([a], ... , [z]), [temp)

99998 CONTINUE

G. IF-ASSIGNED GOTO

See B and F for obvious solution.

H. IF-IF-ARITHMETIC

See B, C, and F for obvious solution.

74
9-53 y 4

Lt

REPRODUCIBILITY OF Tiik

2.8 DYNAMIC ANALYSIS ORIGINAL PAGE IS PCOR

2
x

. Introduction

Implementation of an automatic code analysis tool can
be carried out using the theory developed in subsection 2.7.
Such an analysis tool would monitor code execution and would
be capable of performing the following functions:

® Indicate unexercised code segments

® Indicate execution statistics for exercised
segments within each module

™ Indicate execution statistics for whole modiules

o Monitor variable principal values and the point
within the code these values were attained

These functions would be supplied through probe information
supplied by the user. A tenative description of how the user

might interface with a dynamic analyzer is described below.

2.8.2 User Interface

The dynamic analysis tool would have two main oper-
ational parts. The first part performs syntactic analysis for
instrumentation purposes; the second processes and interprets
the instrumentation (run-time) data. Due to this natural
organization, it makes sense to partition the user interface

along the same lines.
The user interface facilities are:

@ Commands
——— Probe Placement (instrumentation)

—-—— Variable Value monitoring

--— Reporting Options
@ Reports

-== Archival Listing
- DDP Identification

Bt b

€

[}

at

-~ DDP Conditions
- Variables Codes for Reference

——-~ Coverage Reports

- Effectiveness of Module Testing
- DDP Coverage Per Module

Variable Value Information

l

User commands are processed during the first phase
(syntactic analyses) and the appropriate capabilities added
to the '‘arget program. THE USER WILL BE GIVEN THE ADDITIONAL
FEATURE OF SOURCE LANGUAGE SELECTION -- ANSI FCORTRAN OR
STRUCTURED FORTRAM.

According to user commands the archival listing will
incorporate ALL syntactic information so that reports can
reference DDPs by number, and variables by a symbolic name (or

code).

The advantage of this approach is there is no need to
save any syntactic program information to carry ocut a complete
coverage analysis, The user can refer to the archival list-
ing for all collaborative information, i.e., DDP elements, DDP

conditions, actuzl variable names, etc.

2.8.3 Commands

PROBE module _name

This command causes the indicated program module to
be instrumented for coverage purroses. Module _name equal to
"MAIN" causes the main program to be instrumented (FORTRAN
only); "ALL" causes all procedures, subprograms,and functions
to be probed.

MONITOR variable name (type) [IN module_name]

7—
2-55 y 4

U

G

This command will monitor the principal values of the
indicated variable at all DDP control points in the specified
module. MAIN is assumed if no module name is given. The
"type'" Tield must contain the type of the variable in the
module (INTEGER, REAL, LOGICAL, etc.). The specified module
must have been instrumented (explicitly or implicitly) by a
PROBE command.

SELECT (ANSIFORT or STRFORT)

Indicates whether an ANSI FORTRAN or structured
FORTRAN is being analyzed.

NOLIST module name

Suppresses the archival listing for a particular

module.

NOSUMMARY module name

Suppresses the test effectiveness summary for a

particular module.

REPORT module name [VARIABLES]

Causes the printing of a detailed DDP coverage report
for the indicated module, with or without variable monitoring

information (see below).

7—
y

- B

2.8.1 Reports

Figures 2~14, 2-15, and 2-16 show sample formats of the

various reportis.

o
y 4

.
e

tw
=

L

REPRODUCIBILITY OF Fi
ORIGINAL PAGE 18 BQOj;

ARCHIVAL LISTING MODULE xxxxxx

LINE # TEXT

1 XAKXXXK

2 AAXKXXK

3 XXX

4 KXRAXKARAXR

5 AXXFUXAXRRXANK

& NAXXKXXA

7 XAURENAAK

g XAXARNK

9 AXREEAAXXXAXKK X RAXK

10 AXEREAYXRAX XX R X

13 RAXAXXXLX

12 ARRXKLET XXAXKK

DO PATH CONSISTS OF {LINE #s) CONDIT1ON CONDITION YALUE
] n-n-n-n-n X+3 .GT.0
2 n-ren X .LT. ¥ TRUE

3 n-n-n-n-n-n 1 JEQL 7
4 H-n-n J ASSIGHED 99
5 n-n-n CNOT. 7 FALSE
CODnE MONITORED VARIABLE TYPE

1 X INTEGER

2 SA176 LOGICAL

3 p{i0} REAL

Figure 2-14. Sample Archival Listing

C

&

MODULE TESTING EFFECTIVENESS SUMMARY

MODULE TIMES TNVOKED

7 DD PATHS #CXECUTEL % COVERAGE

AXX 1 7 5 71.5
XAXX 2 5 3 60.0
XXRXX 7 K| K| 100.0
TOTAL 15 n 73.5
*(AT LEAST ONCE)

Figure 2-15. Summary Report Sample
DETAILED TEST REPORT MODULE xxxxx
MODULE xxxxx WAS INVOKED 1 TIME
DD PATHS TOTAL COVERAGE PROFILE

{Percent £xecuted} 100%

1 10 ®k
2 20 thkk
3 10 wk
4 10 k&
5 50 Ak ek hd ok kk
[4]
7 0
TOTALS
7 100 PERCENTAGE DD PATHS 71.5
VARTABLE MONITORING
CODE [RITAL fINAL MINIMUM MIN DDP MAXIMUM MAX DDP
1 0 0 0 1 5 |
2 17.6 -3.05 -20.6 1 17.6 1
3 TRUE FALSE - - - -

Filgure 2-16.

Detailed Module Test Report

han
wr

2.9 AUTOMATIC TEST CASE GENERATION

2.9.1 Testcase Generation Functions

The theory presented in section 2.7 helps form the basis
for the design of an automatic test case generator. Functions

performed by this automatic tool would include:

. Facility to indicate input variables of the
program
» Facility to estimate total number of execu-

table paths

® Facility to determine a minimal collection

of paths for execution of all code

® Facility to determine paths which execute

selected code segments

e Facility to generate data to exercise specific

code segments

The lirst three capabilities can be obtained directly through
the graph formation and manipulation techniques described in
in section 2.7. The last two capabilities are more difficult
and, in a certain sense, impossible. We shall describe the
sense in which an automatic test case generator can assist tne

user in generating test data.

2.9.2 Language Considerations

The test case generator would work optimally on pro-
grams written in a well designed language. The basis of such
a language, in the form of a structured FORTRAN preprocessor,
has been formed in sectionZ2.4. The control structures of

that language were chosen to insure clarity and minimality,

2~60

i/ —

) -

&

4

a

&

N LR L A £ 4 4 4 e 1 ok . At 8t r i o e

while retaining as much of the versatility and compactness of
the original FORTRAN as possible. For example, the ordinary

FORTRAN DO loop is replaced by

FOR =1, i,, [13]

code

END FOR

As opposed to FORTRAN, this loop executes if and only if i2 is
greater than il' In a similar way, if one uses a well designed
language, all segments of code are associated with a particular
condition either on control indices and/or program variables.
(Such conditions are, in fact, recorded in the archival list-
ing of the dynamic analyzer.) The testcase generator uses all
the conditions associated with z particular path to attempt to
generate input data to exercise that path. If one choose a
particular module within the code, the testcase generator
attempts to determine feasible paths which'reach from a pro-
grim input position to that module; and next it attempts to
generate data to exercise that path. We need to emphasize here
that building a program to guarantee solving a system of sim-
ultanecous equations and inequalities is theoretically impossible
However, a program can be built which in most cases can suc-

ceed in generating at least one set of correct data.

2.9.3 Theoretical Foundations

A new approach to program testing, called symbolic
execution [10] could help form the basis for a testcase gene-
rator. It describes, in terms of original input variables, the
actions of the program's successive processing steps. Assume
input variables to be xj... X, and that after k processing
steps, the first branch statement is reached, which in terms of

xl... xn is of the form

17—
2-61 ’ 4

Lo

IF F (x1 - xn) .GT. O

THEN GO To 20 REPRODUCIBILITY OF TH:
ELSE GO TO 30 ORIGINAL PAGE IS POOR

END IF

The testcase generator tries one acceptable input value of the
voector Xye-. X, Say aj--.a.. If F(al...an)>0 we would attempt
1o alter a -..a, S0 that F<0, to exercise the other side of the

branch. Ti do this we would compute the negative gradient of

F, -dF(xl - Xn) and, to decrease the value of F, alter a; - a, by
a vector of z predefined length in the directon of —dF(x1 - xn).
The testcase generator again computes F at the new value and
essentially by the steepest descent method, attempts to find a
value of ag---a, which would make ¥ negative. Thus, using these
simple techniques, we could construct an automatic testcase
generator to successively generate data to exerecise all program
path much like a mouse finding its way through a maze; but

Lthe implementation of such a testcase generator has yet to be

carricd out.

&y

:,4':,—

2.10 SOFTWARE REQUIREMENTS TESTCASE GENERATOR

The conception of a computer program - at the require-
moents stage - should be an optimal time for the establishment
ol most benchmark testcases by which the program can be fair-
ly assessed. Through two SSES methods already presented we
fcel the antomatie generation of test cases from software re-

gquirements is a realistic possibility.

Recall that one of the principal features of the Soft-
ware Specification Language .c¢f. section 2.3) is the fact that
it tags all software modules with the particular requirements
which that module was constructed to fulfill; thus it physi-
cally maps requirements into the software. Combining this
feature of SSL with the way in which automatic structural test-

case generation can be accomplished, we see that automatic re-

quirements testcase. generation is a distinct possibility, as
is illustrated in Figure 2-17. In selecting a requirement,
one, via SSL, also selects all software modules which fulfill
that requirement. Then, through the use of the automatic
structural testcase generator, one obtains testcases which
exercise those modules. Though the implementation of the
scheme has yet to be carried out, its feasibility seems to

be clear; we feel its value is obvious.

¥9-¢

Figure 2-17.

Software Requirements Testcase Generation

&’ R [tl J o NS
REQUIREMENTS R
SsL DATA TCDATA 2
BASE
TESTCASE
GENERATOR TCDATA 1
MODULE B /
MODULE A
SAL04ED

B T

aw

L2

3. CONCLUSIONS

The aim of the work done under this contract was to
make exploratory studies in a variety of research fields which
could potentially make valuable <sontributions to reliability
of software. By distilling and summarizing our efforts, we
obtain the following advocations about building computer pro-

grams:

® The software requirements stage (c¢f. Figure 2-1)

should result in a structured, formal document

which leads naturally into ths scftware
specification stage. It should be produced
by an experienced analyst working in con-
Junction with the user. Origination of key
software testcases should be an integral part
of this stage.

. Software functional design specifications
should be carried out through a formal lan-
guage which is capable of reflecting fidelity

of design with software requirements.

) Program code should be implemented using a
structured programming language in which
control structures are operationally apparent

and as few in number as tolerable. Hence, a

7 —

r——

T et

P
.

)

structured preprocessor should be employed for
code implementation if a structured compiler
language isn't available.

A programming language which promotes standard-
ization of methods for accessing and operating
on stored data bases such as the CODASYL Data
Manipulation Langvage should be adopted and
employed for purpcses of data base verification.

Software testing should be automated to establish
user confidence while minimizing cost. Both
static and dynamic testing are required. A
static analyzer should enforece programming
standards, while a dynamic analyzer should
check the reliability of the code during ex-
ecution. Structural and requirements testcase
generators would greatly enhance the utility
of the analyzers. A structural testcase gen-
erator produces data to test as many branches
of the code as possible and should be employed
for determination of software reliability. A
requirements testcase generator produces data
to determine the consistency of the code with

the software requirements,

Maintenance documentation needs to be an
integral part of software. Documentation
guidelines need to be established.

10.

4. REFERENCES

Liskov, B, H., "A Design Methodology for Reliable
Software," Proceedings of the AFIPS 1872 FJCC, Vol. 41
(1972), pp. 191-199.

Lyon, Gordon, "Static Language Analysis', October 1973,
Contract Report Number NBS TN-797 for National Bureau
of Standards, Department of Commerce.

Hsia, Pei, "Survey and Recommendations on Verification
Methodologies to Improve Software Quality', March 1975,
Contract Report for Computer Sciences Corporation.

Kernighan, Brian and Plaugher, P, J., The Elements of
Programming Style, McGraw-Hill Book Company, 1274,

Ramamoorthy, C. V. and Ho, S. F., "Testing Large Software
with Automated Software Evaluation Systems", Proceedings

International Conference on Reliable Software, April 1975.

Ledgard, Henry F., Programming Proverbs, Hayden Book
Company, Inc., 1975.

Palmer, Ian, Data Base Systems: A Practical Reference,
Q. E. D, Information Sciences, June 1975, pp. 3-5.

CODASYL Data Description Language,'" Journal of bevelop-
ment, June 1973, National Bureau of Standards Handbook

113, page 2.6.

Date, C. J., An Introduction toc Datahase Systems,
Addison-Wesley Publishing Company, 1875, page 227.

King, J, C., A New Approach to Program Testing, Proc.
Int. Conf. on Reliable Software, April 1975.

7—

