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2.1	 GENERAL

u
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2. SSES METITODOL.GY	 G,,,IGMAL PtGE is '

Right months ago, SAT and NASA jointly began a soft
ware research effort to develop methods which will reduce the
effort expended (usually 5.0%) in a typical software test and

verification effort. The initial emphasis was toward developing

techniques that would allow efficient automatic verification ofof

Software without a consequent loss in user confidence. Such a.
.ri

verification procedure could be constructed to perform consis-

tently only if stringent demands and checks were put on the soft--

ware throughout its development The software development stages
generally are understood to be requirements specifications,

`	 code, test, and.maintenance. We concluded that an entire soft-
ware development methodology would have to be developed to en-

sure that at no stage of the development could major inconsis-

tencies remain undetected, and that from requirements onward the
sol'Lware product would have to be quite formal.. The design of

our methodology is center red . about five goals.

1	 Early Program Feasibility and Testing
2. Requirements/Specification Completeness and . Trace-

ability

3. Reliable Code Implementation

4. Sufficient Test Capability
5. Sufficient Maintenance Capability

Achieving these ends demanded the development of a Formal soft.
ware requirements methodology, a formal specifications language

which could traceably . embody requirements, a high level pro-

gramming language which could be easily and faithfully generated.
Cram specifications and could promote a. logical error-free code
implementation, a language . preprocessor to allow compatability

of the methodology with existing compilers, and finally, auto-

matic code analysis tools to attain Our original objective
that of reducing software test and'` verification 'effort. The

2--1.
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w,ity in which these techniques would be used in a.software de-
velopment project is depicted in Figure 2-1.

The.construction of our.unifi:ed methodology demanded

Lhat each tool and technique take allowance of the other tech-

niques which would be employed prior to and following it. Our

original work goal the allowance of a reduction in software
test effort  without a corresponding loss in user confidence
meant automatic test tools had to be employed and their func-	 !
Lions ['first had to be defined. After realizing this implication,

wo conol uded that the efficacious performance of these test tool.
made vortai'n demands on the programs analyzed. and on the very

pi-ogra.mmzng language employed. Similarly, program language to--

sLric[:ions have placed demands upon the way in which specifi.ca-
v

Liens.I'nr 'those programs were to be written; and specification
rosLricLiens have an impact upon requirements which would give

3r • i Sri Lo hose specifications. Hence,. it was. decided that. the
clovo I opment . of our software methodology had to . be carried out

in roverse. order from that of software development.
Such a methodology an integrated Software Specification

and . Lvaluation System (SSES),I is being developed for NASA/MSFC
Some SSES components are entirely original - like the software

specifications language, the data base verifier, and testcase	 r

generator (and indeed the whole integrated system itself) while
some are improvements upon already existing technology - like
the structured programming language and the static analyzer..
The Executive Summary does not attempt to treat in depth any one

SSLS component but only to present the technical highlights and
`	 uni:rication of our software methodology. Detailed discussions

Lhe various system components will be the topics ` of Part l l
0 f` this report

fAIF
2-2
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2.2	 SOFTWARE REQUIREMENTS METHODOLOGY

The basis for the software requirements methodology was

initiated within the Septembe.r . 18th progress report of this

contract. Subsections of that report dealing with the software
requirements decomposition methodology have been edited for

inclusion below:

2.2.1	 Software Requirements and Traceability

Our efforts toward the semantic definition of a formal.
software specification language have necessitated an analysis

of the manner in.which . software requi..remeats are stated. In

subsection 2.2.1.1, we present our view of the early develop -
ment stages which is compatible with `curre.ct NASA procedures and

guidelines. Subsection 2.2.1.2 discusses requirements . de.compo:si
tion in more detail, listing the necessary elements of a decom-

position. Subsection.2.2.1.8 presents.an examp'.e. The names

that have been assigned the components are working titles, sub -
ject to change.

2.2.1..1 Introduction

Requirements analysis is a continuing effort from

problem recognition to problem statement to 'solution recomm.en-

dation. It is the final phase, solution recommendation, teat

As of importance to . the process of software module specification.
_

In this report, we are not.concerned with how the recommendation

was derived, but only how it is stated. In effect, we are stat-
ing our assumptions concerning what information i,s contained

within a requirement and recommending a format to make that in-

formation explicit. To do this requires that we state our view

of the activities ' b,iid deliverabl es associated with the early
stages of design.,

Figure 2-2 illustrates 'the: activit ies:and :documents . cur

rently depicted: in NASA working papers on software development
procodures...(Acti.vities are represented by hexagons). We have

divided the NASA activity "Preliminary Design" into several sub

activities` as will be presently explained.

f.
2=4	
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Principal documents and activities of the early phases

of development are.:

Systems Requirements Specification A document describ-

ing the functional and environmental charac-

teristics of the problem solution..

,Software Requirements Specification A document which
describes the .software .interfaces with the

environment in which it perf=orms as well as.key

Assumptions and constraints

Software Requir.einents. Definition An activity whose
purpose is to derive the Software Requirements

Specification . from the Systems Requirements
Specification.

Preliminary Software Design Specification - A document

describing the data structures and software.
functions which will comprise the finished soft--

ware system.
Preliminary.Design (PD) An activity whose purpose is

to derive thePreliminary Software Design Speci-

fication..

Preliminary Software Requirements Decomposition (PSRD)
A subactivity of PD whose purpose is the dec-

laration -of .the actions to be performed by a

a single software package; emphasis is on what

to . do and not how (nor how well) to do it.
Software Requirement Decomposition (SRD) A subactivity

of PD whose purpose is the detailed declaration
..of the actions- to . be performed by.  single soft

r	 -



2-7

{

r Subsystem Software Requirement Decomposition (SSRD) - A

subactivity of PD whose purpose is a declaration

with the same form and substance as the SRD ex-

cept it pertains to only one subsystem within	 i

the software package.

The next subsection contains a detailed summary of the constit-

	

-4	 Dents of PSRD, SRD, and SSRD.

2.2.1.2 Contents of the Software Requirement DocumentsT.

In this subsection, we state in detail the (quite

--	 similar) PSRD, SRD, and SSRD subactivities. In doing so we Y

have included only those facets of a requirement that directly

affect the software organization. Noticeably absent are such

requirement categories as:

0 Manpower and schedules

® Applicable documents

Acceptance criteria.

She wish to emphasize once more that our purpose is to state the

information derived from Software Requirement Decomposition and

not the methodology employed.

For the purpose of module specification there are two

types of requirement decomposition subactivities. The first is

the Software Requirement Decomposition which is an expansion of

PSRD. The SRD embraces the recommended solution of the original

problem obtained,froin the customer. The second type is the Sub-

system Software Requirement Decomposition which nearly always	 =

I
expands on a subsystem or real time process derived from the SRD

or a preceding; SSRD. There may be from none to several SSRD

activities and they are performed by the analyst at any time up

to the conclusion of detailed design. There will be a broader

	

r	 discussion of subsystems within the example of subsection 2.2.1.3.

Within a SRD or SSRD there are seven divisions:

Direction - A general. statement of the boundaries ofy.

the problem.

REPRODUCIBILITY Or THE
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Transductions - A list of processes to be performed,

each of which translates a stimulus - into a

is

i'

T
V!

}

response.

Input -	 Data or documents available to the software

system from external sources.

Output - Data or documents produced by the software

for external purposes.

Constraints -- A list of capabilities, design objectives,

or resources to be observed.

Preconceptions - A list of specific design alternatives

to be observed.

Implications - A binary relation existing between cer-

tain transductions.

Of the seven divisions, only the direction and a subset of the

transductions are required for the Preliminary Software Require-

ment Decomposition. (The specific subset of the transductions

necessary will be shown in the next subsection). If there are no

implications, all transductions are assumed to be independent.

Figure 2-3 illustrates the relationship between software and sub-

system requirements for a particular system.

2.2.1.3 A Software Requirements Example

Assume that an employer wishes to establish a list of

employees based on proximity of residence for the purpose of

carpooling. He desires the results compiled in two formats:

(1) an alphabetical list of employees and their assigned car-

pool number, and (2) a list of carpools with individual partic-

ipants. With the aid of an analyst, he derives the following

Preliminary Software Requirement Decomposition:

Direction

Construct carpool lists by individual and by carpool

number.

Af

2-8	 ^^^
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INPUT
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OUTPUT
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REQUIREMENT

lFigure 2-3. Requirements Document Structure
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notes or appended subparagraphs. Particularly important to this

problem is a list of available documents such as employee file

and street/coordinate tape.

The analyst now assumes primary responsibility and

attempts to add, perhaps in consultation with the customer, the

following items:

e Constraints that are both problem oriented and

computer oriented

e Additional transductions that are either implied

by the original transductions or are made necessary

by the constraints

The implication list

6 The preconception list

a The input and output lists

The results of this analysis (which complete Software Require-

ment Decomposition) are stated below:

ANWAWAF

t
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Precord: Print an employee name and address.

Find:	 Find the most eligible individual to add to

an existing carpool.

Span:	 Compute the minimum tree span of a set of

nodes specified via planar coordinates.

Match:	 Search the street/coordinate file for the

nearest point to a given address.

Reject:	 Delete all employees for which street name or

street number is not on coordinate file.

Sorte:	 Sort carpool file.

Name and address of each

employee.

Correlation of street addresses

with an (x,y)-coordinate system.

Input

Employee file:

Coordinate file:

Output

List 1.

List 2:

An alphabetical list of employees with

carpool assignments.

List of carpools, with individuals as-

signed.

Constraints

Memory:	 Use no more than 32K words

Machine:	 Use IBM 5360/65 for development

Language: Use ANSI Standard FOR'T'RAN without the

arithmetic IF

Size:	 No carpool may contain more than five

persons

Distance: The sum of the distances associated with the

edges of a minimum spanning tree of resi-

dences of members of a single carpool must

be less than two kilometers.

2-11
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ImRl icat ions

Translate ] Match	 P'rintl ] Precord

Translate ] Reject	 Print2 ] Precord

Assign.	 ] Find	 Reject ] Precord

Assign	 ] Span	 Printl ] Sorte

•	 i

Preconceptions

Sort: Use a shell sort to produce the Print 1 listing 	 !

Presume that the analyst determines that clustering

should be implemented as. a major independent subsystem. (He/she

may make this decision at any point prior to comple#:ing the

design.) The desired subsystem will: .	 -	 A

(1) Cluster the employee file based on proximity of

residence

(2) Write the clusters onto a segmented file, one

cluster per segment

(3) Sequentially read the cluster file with end of

segment markers.

t

^A

Commensurate with these goals, the analyst next performs the

SSRD. The results are as follows:

TI Y "-,. +- i _"

Cluster and order an employee/coordinate file.

Transductions

Initialize: Find the n farthest apart points in the

file to use as initial cluster centroids;

n will be an input parameter.

Cluster:	 Match each point in the file to the near-

est centroid.

Restart:	 Compute the centroids of each cluster.

Segment:	 Order clusters into segments and save.

Fetch:	 Fetch the next element of the current

cluster.

2-12
1
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Input:

Out ut

Mark:	 Test for end of cluster.

Measure:	 Find the point nearest a given point from

a given set of points.

Swap:	 Exchange two employee records

Point file: A file containing a sequence of ^,x,y)-

coordinates with a unique identifier

attached to each

Neighbor: An entry from the point file
i9	

Eos:
	

An end of segment marker

Eof.	 An end of file marker

Constraints

Number:	 n < 50 (the number of clusters).

Halt: Continue attempts to cluster until the

centroids remain unchanged on two con-

secutive tries.

Implications

Measure C Initialize

Measure C Cluster

Swap	 [ Segment

Preconceptions

None

TYe analyst now embarks upon the second phase of Prelim-

inary Design, module specification. However, he/she may con-

tinue to reduce portions of the system to subsystems. Sub-

s'ystems are similar to levels of abstraction [11 and have four

distinctive characteristics:

(1) The modules within a subsystem do not share any

global data (e.g., files or COMMON) with modules

not in the subsystem.

2-13
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(2) The modules located at the subsystem entry points

are referenced (called) only by modules not in

the subsystem.

(3) No module referenced (called) directly by a module

within the subsystem is ever referenced directly

by modules not in the subsystem.

(4) All subsystems satisfy one or more of the follow-

ing criteria:

(a) Information hiding -- The subsystem isolates

design decisions likely to change.

(b) Resource management -- The subsystem has

exclusive control of particular resources

such as a peripheral or data structure.

(c) Division of labor - The subsystem is logically

complete, apart from the original require-

ments, i.e., it is a reuseable component.

(d) Real time process - The subsystem operates as

an asynchronous activity within a real time

application.

2-14
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2.3	 SOFTWARE SPECIFICATION LANGUAGE

Witham the course of this contract, a formal language

was designed for the purpose of conveying the Preliminary Design

specifications of software. In the following subsections, we

discuss the purpose, goals, and specific attributes of our Soft-

ware Specification Language (SSL) as well as provide a simple

example of how SSL is used.

2.3.1	 Purpose and Goals of SSL

In the software development process, the step between

producing software requirements and constructing a detailed

specification of the. code has been informally supported by charts

and diagrams, procedural languages, descriptive systems, and

K--diagrams. Therefore, we have developed a software specifica-
tion language, the function of which is to formally describe the

overall software system (or functional) structure, and thereby

provide a firm foundation for the aforementioned software de-

velopment step. Additionally, SSL fulfills another primary

goal, the goa.1 of traceable requirements, by incorporating the

capability to Lag requirements and attach them to specific

software objects. In Table 2-1, the goals for our functional

specification language are presented along with a brief dis-

cussion of each goa,..

One of the specified goals in Table 2-1 is "formality."

Ft)rmality (i.e., rigorous definition) is necessary for auto-
mation. Specific attributes of SSL that fulfill this general

goal or attribute are:

*	 A context-free grammar representable in

Backus-Naur Form

•	 Semantics that are defined via set theory

2-15	 ^1f



Table 2-1. Functional Specification Language Goals

Specif':ications should describe the overall software system

structure.

Functional specifications should provide a link

between the requirements specification and detailed

design in terms of a non-procedural description.

Specifications should be formalized.

Formalization permits automatic consistency checking,

restricts the designer to the level of detail appro-

priate for functional specifications, and improves

communication between designer(s) and implementer(s)

and among implementers.

Specifications should impact reliability.

A formalized specification system is a step toward

"designing in" rather than "adding on" reliability

and can be accomplished by providing feedback to

requirements for design decisions occurring early

in the development process. It can assist in ascer-

taining the correctness of succeeding project devel-

opment steps rather than relying on external machanisms

to remove anomalies.

Specifications should be transparent.

By "transparent" we mean that no reasonable software

structure should be rendered impossible to depict

due to limitations of the language used. Trans-

parency is necessary so that specification require-

ments (such as the incorporation of an existing soft-

ware package) will be possible.

Specifications should be complete and unambiguous.

By completeness, it is meant that all objects created

by the designer are subsequently traceable to a set

of terminal objects that are provided within the lan-

guage. Specification ambiguity can arise in structure,

l M
AWPVW AF

P
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Table 2-1

J

Achieving this goal would enc

methodology, abate clerical e.

cation,.,and provide permanent

Specirications should reflect error handling requirements.

When project development schedules are underestimated,

misjudging the magnitude of error analysis required is

generally a contributory factor. A specification lan-

guage should incorporate explicit declarations of nec--

. essary software error checks.

Specifications should reflect fault tolerant capabilities.

The term "fault tolerant" means the ability to cope

with errors by the user andin the environment. As

in error handling, explicit declarations should

accompany I/O accesses.

Specifications should reflect the original requirements.
Generally, the more detailed the design, the more

isolated the designer is from the original require-
ments. A formal specification language could alle-
viate this problem by permitting requirements to be

labeled and attached as attributes to system objects.

a

rAfl.
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Another goal is the enforcement of a uniform level of

dc.,Lai l . This is desirable with respect to the top--down program-
ming philosophy and in assuring that equal attention has been

given all aspects of the design. Specific SSL attributes that

are commensurate with this goal.are:

s Utilization of non-procedural language

constructs only, .-o focus attention on

static structure rather than algorithm

dynamics.

Adoption of the software module as the

elementary unit of definition; a module

is one or more compilation units (e.g.,

subprograms, procedures).

Examining the entire general attribute list provided

i.n Table 2--1 confirms that the specific attribute list of SSL

would be necessarily quite extensive and will therefore not be

presented in this summary report. A cursory view of SSL is

given in the next subsection.

2.3.2	 Partitioning of Specifications

Functional specifications for a software system may be

divided into three areas; environment, data, and control. SSL

provides the capability to specify the minimal set of hardware

characteristics.that are inherent in the problem definition and

that impact software organization (see ACCESS statement in Figure

2-5 of subsection 2.3.3). In the data area, SSL offers the

mechanisms to explicitly describe a variety of data structures

and to specify when the data is used as input (i.e., in the

USES clauses illustrated in Figure 2-5 in subsection 2.3.3) or

l as output (i.e., in the CREATES or MODIFIES clause shown in Fig-

ure 2-5 in subsection 2.3.3). Moreover, SSL is used to describe

the module/data interconnection structure and a rationale for the

module/data interconnection structure and a rationale for the

ri
2-19	 fmOFsA



SSL Statement

MODULE, ENTRY

USES

CREATES, MODIFIES

ASSUMES, SATISFIES,

ACCESSES, EXECUTES

2-20

tk	 i

structure based on requirements. Regarding the control area,

SSL. is not designed to depict the control flow within modules.

How over, intermodule connections can be depicted by use of the

EXECUTES statement (in Figure 2-5 of subsection 2.3.3) in which

conditional, iterative, or recursive execution of modules is

specified. In addition to providing specifications in these

areas, SSL ensures that the resulting specifications are suffi-

cirntly abstract to prevent selecting a specific machine repre-

sentation.

2.3.3	 SSL Subsystem and Module Descriptions

SSL allows for partitioning the software into subsys-

tems based on the principle of levels of abstractions. A spec-

irication in SSL is represented as a set of subsystems which is

.shown in Figure 2-4. Each subsystem is defined by a preamble

and one or more module descriptions. The preamble describes the

local environment for the subsystem anC includes: the subsystem

name, the requirements associated with it, data types, vari-

ables, and constants used within it.

Modules are basic system objects in an SSL system

description. In Figure 2--5, we present a portion of the SSL

grammar for module descriptions. A correspondence between the

module items identified by SSL and the specific statements used

to implement these are shown below:

Module Item

• module name

a	 input data

• output data

• conditions placed on
data upon entry to and
exit from the module

• dependence on environ-
mental objects and other
modules

•	 requirement attributes FULFILLS

In Figure 2-6. we present a simple example of SSL

design ro r a. module.
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N

W

MODULE SORT (N:INTEGER)
I* MODULE TO SORT ARRAY I
/* ARRAY IS INITIALIZED FROM CARD READER/

ASSUMES	 N > 0 ;

EELS	 ORDERED - VALUE;

ACCESSES	 CARD-READER;

MODIFIES	 SARRAY USING N;

SATISFIES	 EORALL (I:I_NTEGER)

I > 0 M I < N--1

AND

SARRAY Cif	 SARRAY 1I+11

m;

Figure 2-6. Description of Module in SSL

ry
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2.4	 LANGUAGE DESIGN FOR RELIABLE PROGRAMS

The consistent production of reliable computer programs

makes stringent demands upon the selection of the programming

language employed. For example, to minimize the effort required

to carry out a program proof of correctness, the language con-

trol structures should be as simple in concept and as few in

number as possible. To produce programs that are clearly

understood and easily modified, one should construct code in

modular units using the top-down philosophy. We suggest the

following attributes as being worthwhile goals in the selection

of a machine processable language:

s	 Simple to use

•	 Easy to understand

®	 Quickly Machine Processable

i	 Reliably Machine Diagnosible
•	 Translatable into Efficient Machine Code

These general language attributes have direct implication upon

the structure of the programming language employed. Some of

these implications are as follows:

•	 The language should follow naturally from a
top-down approach and should be able to reflect

the problem at hand

•	 The language promotes a sequential implementation

•	 Control structures should be clear and explicit

and should be kept to a minimum

to	 The language should exhibit the same syntax

structure for semantically similar constructs

,
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o The language should allow indentation and a

type of modularization that clearly defines

the boundary of each module and allows each

module to be clearly and completely locally

understood

s	 The language should have meaningful reserved

words

The language should allow the programmer to

write often used constructs with a minimum of

detail

•	 The language should offer a non-restrictive
placement of comments which facilitates

trouble free usage

•	 Side effect changes of data should be made
explicit and restricted to a minimum

•	 Data types and other information crucial to
correct execution should be explicitly specified

preferably in several different ways

a	 The language should have context-free syntax

a	 The language should allow amenability to auto-

matic code analysis tools

r	 Machine overhead of often used constructs

should be kept to a minimum

JP//
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2.5	 STATIC CODE ANALYSIS

A static analyzer for ANSI FORTRAN code accepts source

program code as input and evaluates the code in a static manner,

i.e., the program being checked is not in execution. A static

analyzer can be used to accomplish a variety of functions.

After combining our ideas of static analysis with those in the

available literature [21 - [6 1, we identified three areas into

which all the functions of a static analyzer can be classified:

•	 Reliability Enhancement
The static analyzer could enforce technical

coding standards, i.e., the identification and

characterization of critical areas and items in

the code which are likely candidates for incon-

sistencies and errors. The NASA tool FACES is

directly concerned with this function.

0	 Verification Determination

The functional specifications written in SSL

(Software Specification Language) can be verified

by a static code analyzer, i.e., the consistency

of the program code with certain specifications

can be checked. This static verification could

compare variable and module interconnections of

the program with SSL specifications.

•	 Documentation Assistance

U

The documentation of pertinent program informa-

tion, which will be used during the code test-

ing/debugging and maintenance phases of the soft-

ware development, can be provided by a static

code analyzer.

Pertaining to reliability enhancement, we constructed

in Table 2--2, a list of catagories for source code program check-

ing.	 ^

i
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Table 2--2. Source Code Program Checks

A. Syntactical and semantic checks which
involve evaluation by element, express-
ion, and statement

B. Logical structural checks which involve
analysis of the program as a single entity
and of the entire system of programs as
a whole

C. Machine independence checks

D. Clarity enhancements (such as requiring
nested DO loops to have unique targets)

2-2s	 ^'/ 1



Performing these checks would provide a comprehensive source

code analysis as to style, format, and structure. As illus-

trated in the following subsection, our efforts in static

analysis have been concentrated in this area.

In reference to verification determination, we ascer-

tained that the effort necessary to incorporate the capability

of matching source code with SSL specifications was beyond the

scope of this contract. However, we recommend this task for a

future project since it would represent a significant step to-

ward automated software verification.

We believe that a static code analyzer could expedite

the code maintenance process by providing a comprehensive pro-

gram report consisting of the items in the following table.

1

i

i

Table 2-3. Program Report Items

A. Language element categorization

B. Subprogram cross reference listing

C. Variable usage (i.e., type) inconsistency flags

D_	 COMMON summary

E. Variable or array initialization summary

F. Special variable role summary

o	 Adjustable array dimension

DO loop control variable

•	 Assigned GO TO variable

•	 Computed GO TO variable

Input/output unit designator

G. input/output reference summary

However, due to higher SSES priorities, implementation of this

aspect of static analysis is not currently p^_anned.

2.5.1	 Static Code Analyzer Enhancements

During the contract period, documentation for the NASA

tool FACES (FORTRAN Automated Code Evaluation System) became

available.. Shown in Table 2-4 are the capabilities currently

/Jfw/-
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TABLE 2-4. PRESENTLY KNOWN CAPABILITIES OF FACES

Non--executable Statement Checks	 Executable Statement Checks	 C

0 Subroutine, function and COMMON 	 a Potential cyclic calling patterns
BLOCK names are not FORTRAN "re-	 among routines are flagged
served" words or ANSI standard
function names
	 & A DO loop index can not be used

outside the loop
• All COMMON BLOCKS are checked 	

a A DO loop variable or parameterfor alignment, i. e., corres-	
should not be redefined withinponding elements in COMMON 	
the loopmust agree in number, type,

dimension, name, and size	 a Function subroutines should not
alter input parameters• All DATA statements involving

COMMON BLOCK variables which
	

• Two--way, three-way, IFs and
are not in BLOCK DATA are de-	 computed GO TOs should have the

i
	

tected
	

next sequential statement as onew
a
	

of the targets• All parameter lists are check-
ed for alignment, i.e., cor-	 a An uninitialized variable and
responding parameters must
	

array element search is performed
agree in number, type, and	 • Occurrences of local variablesdimension	

in assignment statements are
flagged	

o0

^x
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featured in FACES. New capabilities deemed desirable and feasi-

ble by NASA and SAT are shown in Table 2--5. The detailed speci-

fications for incorporating these new capabilities into FACES are

provided in Part ZT of this final report.
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TABLE 2-5 NEW FACES CAPABILITIES

EQUIVALENCE and EXTERNAL statements are flagged.

COMMONs not named are flagged.

ALL COMMON BLOCS arrays must be dimensioned in

COMMON BLOCK statements.

DIMENSION statement and variable which contain

an adjustable (variable) dimension are flagged.

Constants, hollerith, or arithmetic expression

arguments used in subroutine argument lists are

flagged.

All occurrences where the same variable exists in

multiple positions in an actual parameter list are

flagged.	 i

Targets of branches should not be other branches,

especially single GO TOs.

Ar

v	 ;

i

S
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TABLE 2-5 NEW FACES CAPABILITIES (Cont.)

Variable which is !/0 unit designator is flagged.

Statement labels mutt appear in increasing order.

Arithmetic IFs are flagged.

Occurrences of error-prone FORTRAN statements such
as ASSIGN statement, assigned GO TO, and PAUSE are

flagged.

The appearance of the same COMMON variable in more
than one DATA statement is flagged.
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2.6	 DATA BASE VERIFICATION

The problem of verifying the structure and contents of

a stored data base (i.e., the part of a data base which resides

can permanent storage) is difficult. However, the problem be-

comes more complex when it is coupled with the task of ensuring

the continued integrity of the stored data base throughout ac-

cessing and updating operations. Since the late 1960's the

CODASYL (Conference of Data Systems Language) and other orga-

nizations have been engaged in the formalization of their ap-

proach to these and other problems concerning data bases [7].

The CODASYL has directed its efforts toward developing language

standards for describin g extensions to existing high level lan-

guages (such as FORTRAN) which will allow access and operation

on the data base components as well as describe the part

of a data base which resides on permanent storage.

As background for discussing our approach to data

base verification, we present CODASYL's view of a data base

management system. A data base management system is a system

which manages and maintains data in a nonredundant structure

I'or the purpose of being processed by one or more applications.

In the environment depicted in Figure 2-7, an applications

programmer writes a program in a high order programming language

such as FORTRAN or COBOL which has been extended to incorporate

Data Manipulation Language (DML) commands. The DML statements

are data base access mechanisms, i.e., they provide application

program interfaces to the data base during execution. (Note:

CODASYL's usage of the term "data base" is the same as our def-

inition of stored data base.)
9

A schema DDL (Data Description Language) completely de-

fines t.ie data base; it includes the names and descriptions of

I
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DATA BASE MANAGEMENT	 DATA
SYSTEM	 BASE*

APPLICATIONS t USER

PROGRAM	 WORKING	 SUBSCHEMA•	 SCHEMA"
AREA

02^ `2d

APPLICATION
PROGRAMMER	

^? O
C n

*BUILT AND MAINTAINED BY THE DATA BASE ADMINISTRATOR

Figure 2-7. Architecture of a CODASYL Data Base lanagement System
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all the areas, set types, record types and associated data

items and data aggregates as they exist in the data base C g
and are known to the data management programs. However, an

applications program must be concerned with the description of

only that part of a data base which is useful and meaningful

to it. This description is called a subschema. A subschema is

a subset of a schema which allows the applications program to

view only those portions of the data base declared necessary

for that particular program. Therefore, the remainder of the

data base is insulated from the execution of an applications

program or a subsystem of programs. The characteristics of

the data items (and the arrangement of items within records)

described by the subschema may be different from the character-

istics of those data base items defined by the schema. ,Since

a program depends only on the subschema for data base infor-

mation, changes may be made to the schema of the data base and

the data base may be appropriately adjusted without affecting

the programs using the data. Correspondingly, a subschema may

be modified to provide compatibility with a specific program-

ming language, and the schema will not be affected.

The actual mapping or conversion of subschema descrip-

tions to schema definitions is performed by the data base man-

agement system (DBMS). (The subschema contains the mapping

definition which specifies the correspondence between the sub-

schema and schema.) Thus a degree of data independence is es-

tablished by employing the schema and subschema mechanisms. At

the same time, flexibility in the choice of programming lan-

guages is supported since that part of a data base known to a

program can be described according to any particul a r program-

ming language conventions.

For each application program, there is defined a user

working area (UWA) which contains locations for all data de-

livered to the program from the data base and vice versa. The

program refers to these locations via names in the subschema.

AMW
AV
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In fact, the UWA is set up by the DBMS according to the sub-

schema which is evoked by each application program [9]•

In the process of creating and mc.intaining a data base

management system, the need for human involvement becomes ap-

parent. The human activities are performed by the data base

administrator (DBA). According to CODASYL, the DBA is respon-

sible for:

Writing the schema and subschema

o	 Modifying the schema and subschema to

reflect changing user needs

a	 Designing, assembling, and loading the data

base

®	 Monitoring the use and performance of the

data base and reorganizing the data base for

greater performance efficiency if required.

a	 Assigning data to physical devices

Assigning privacy locks and issuing privacy

keys to users for specific portions of the

data base

Recovering the data base after system malfun-

ctions.

Since the DBA is responsible for data management as indicated

by the above functions, the application programmer is relieved

(if' this rc!sp()nsibi l i ty and can concentrate on ether aspects of

programming.

This discussion of the interworkings of the DBMS

f d(nni ,nont5 provides a basis for a series o	 ata base ve,

f i coat, icon subsystems which when integrated would form a data

base veri f"icat ion system. The data base verifier that we de-
:, i Vned can bo considered as one of these subsystems. Our data

or

i
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base verification subsystem concentrates on the FORTRAN appli-

cations program which, according to CODASYL, must be written

in ANSI FORTRAN that is extended to incorporate Data Manipu-

r a t i c )n Language: ( DML) commands.

I

As input, our data base verifier accepts; CODASYL FORTRAN

Data Manipulation Language. The specifications for this lan-

gttzge are still being refined and will not be finalized until

the end of this calendar year. However, we obtained a CODASYL

FORTRAN Data Base Facility Journal of Development which was

printed on November 25, 1975. Though this document is only a

working paper for the FORTRAN Data Base Manipulation Language

Committee, we used it as the foundation of our design, since

the basic problems to be analyzed and solved will remain con-

stant though the syntax may be altered by the committee during

the refinement stages.

A brief summary of the functions of our data base veri-

fier are the following:

0	 Accepts FORTRAN DML source code as input

3	 Statically analyzes the program and constructs
tables which describe the stored data base that

the program accesses and manipulates

e	 Prints a summary of all the information
colleLted about the components and the

structure of the stored data base.

Thr user must then establish tho consistency and validity of

the  ,Lored data base within the framework of the program de-
,irriptions by crass referencing these tables. A future en--

h.-inc:eme.nt to our data bases verifier includes the automatic con-
:;ist.cncy checking or these data base descriptions as set forth
Icy the appl icat ions program. Part 11 of this report contains
functional specifications (i.e., SSL descriptions) of the data

l ase verifier subsystem.

2--38
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GRAPH ANALYSIS AND INSTRUMENTATION

The ley to most program analysis systems is the selec-

tion of a model which yields the correct program characteristics

to base analyses on. The standard approach that is used

in systems built for software testing is to use a program-graph

model. We will describe the general process of formulating a

program-graph, and present the pertinent manipulations which

,-^ijpport a dynamic: analysis system. In the first section, the

procedure for forming the program-graph is described. The next

section contains a description of DD-PATHS in a program-graph.

A program-graph is formed from a program unit (main

procedure or subroutine) by mapping selected program statements

into nodes and corresponding edges. To illustrate the program

graph construction, we present in Figure 2-8 an exhaustive de-

composition of the elements in the ANSI FORTRAN. This type

Of language construction could be carried out for any Language.

'i'lhc , scat cal' abbreviations on the right hand side serve a two-
h)ld purpose: (1) they identify the particular statement types

that, must be addressed: (2) they provide a convenient short form

t() rrl'er to each of these statement types. Note that compound

IF st-itements are completely decomposed in this table so that

;ill c •.onstituent parts can be identified; for example, IF5 re-
lers Co a statement of the form

IF (logical expression) IF (arithmetic expression) n,m,p.

The set of FORTRAN elements directly referenced in Fig-

tire 2-8 are the only elements which are mapped into the program--
graph.

There are nine mapping formulae. In each of these cases

t h(^ ^;ca t emont is mapped directly into a node; decisions are made
only c • on( , orning the formation of edges from that node.
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Direct Se uential Single: A single edge is formed
between the given node and the next sequential node.

Direct Sequential, Double: Two edges are formed as
in #1.

Termination: A single edge is formed to the design-
ed terminal node.

Direct Defined, Single: An edge is formed between
the given node and another node specified as its
target.

Direct Defined, Multiple: Several edges are formed
as in #4.

Mix 1-4: Two edges are formed; one as in #1, the
other as in #4.

Mix 1-5: Several edges are formed; one as in #1,
the others as in #5.

Mix 1-3: Two edges are formed; one as in 1#1, the
other to a node designated as the terminal (as in
#3).

t^

= 4^

'	 ds
Kr

r'

9. Loot: Three edges are formed; one as in #l, the
second from a designated target node back to the
given node, and the third from a designated target
node to another designated target node.

In Figure 2- 9, the elements in the statement table are matched

with their corresponding mapping formula. Note that the map-

ping formula simply follow the potential flow of control from

each statement. Formula #9 is used for the DO statement; the

third edge connects the DO target with the statement which is

executed once the DO is satisfied.

The FORTRAN DO statement, following ANSI documen-

tation. is expected to behave so that the loop index is set. tQ

the first parameter, the lcop i.:} t-. ,.>cuted. and then the index
incremented and checked against the terminal parameter. In this

fashion,it appears that control is centered in the DO target

statement rather than the DO itself; hence, the edges =ia formed

as described in #9.
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Formula. Elements

1. Direct Sequential, ASI-3, CAL COI, ST1, 101,

Single HET-3	 jIF NONE OF THE ABOVE

ARE THE DO TARGET -- IN WHICH
CASE F9 APPLIES]

2. Direct Sequential, IF4

Double

3. Termination RE1

4. Direct Defined, Gol

Single

5. Direct Defined, G02, G03, I.9

Multiple

6. Mix 1-4 IF2

7. Mix 1-5 IFS, IF6, IF7

8. Mix 1-3 IF3

9. Loop D01-2

Figure 2-9. Mapping Formula Against Statement Types

f
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The program-graph is formed in a two stage process. The

f*irsL stage involves the lexical scan of the program and the
identil'ication of statement type and auxiliary pointers. These
pf)inLers reference the node(s) to which the given node is to be

connected when such nodes are not the next sequential node num-
her. Consider as an example the statement

IF (A.GT.B) IF (C) 10, 20, 30

which in this scheme would be identified as IF5; the pointers

which must be determined are three in number; pointer to the

node which corresponds to label 10, the same for label 20, and

for label 30.

The DO loop poses special problems since the target

statement takes on the semblance (from a program--graph view-

point) of a control statement. The usual procedure for a DO

is then to identify the target statement via a pointer. Some

confusion arises when several DO statements share a common tar-

get (D02); hence,it is recommended that in this case, an arti-

ficial target is added to allow only DOl ` s to occur in the pro-

gram.

The program-graph for a sample program, Figure 2-10, is

shown in Figure 2-11.

2.7.2	 DD Paths

The program-graph representation accurately reflects

the control flow within a program. It is also the case that

there is a reduced form for the program-graph which also cap-

tures that control flow. The DD Path program-graph is formed

from the program-graph by collapsing linear segments of the

structure. A linear segment is a series of nodes which have

a single edge in and a single edge out.
,s
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Text

SUBROUTINE SAMPLE
SET = SET + I.
ASSIGN 10 TO LABEL
GOTO LABEL

20 CALL OUT
IF (EXP) 20,30,40

30 SET = SET + 2_
IF (EXP1) GOTO (10,20,30,40), I
GOTO 20

10 ISET W ISET + 3
CALL OUT
DO50J=1,9
SET = SET +1,
DO SO K = 5,6
CALL OUT

'50 CONTINUE
GOTO 20

40 RETURN

Figure 2--10. Sample Program

SAI-0216

Figure 2-11. Program--Graph for Sample

lowl,
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The flow of control within a program is induced by the
progy am branches; likewise the flow within a program-graph is

induced by the branch nodes (nodes with more than a single em-

anating edge). A DD Path is a path in the program graph which

begins and ends on a decision node (D node). The D nodes are

the branch nodes, the entry node, and the terminal node; in

the sample program-graph (Figure 2-11) the D nodes are:

1, 6, 8, 16, 1S

c-(jrrosponding to statements

HE2, 1F1, 1F5, C01 (D02),RE1

The table in Figure 2-12 is the collection of DD Paths

for the sample program-graph. The DD Path graph is shown in

Figure 2-13.

Each DD Path begins with a decision node; however, the

actual path is a collection of edges and each edge corresponds
f.1

to an outcome from a node. A DD Path is, then, representative

of* a set of outcomes from each D node; there is a condition as-

soc.iated with the selection of each DD Path. The contents of a

DD path are simple to derive, and since all but the first node

have only one successor node,it is easy to describe each DD path

by its constituent nodes without loss of information.

A point to be discussed in the next subsection is that

tho DD Paths are identified by numbers and the numbers are as-

signed in a manner which is unique (it can be relied upon to

give the same numbering each time). This numbering algorithm
is the following:

1. Order the DD paths by their initial node

2. Within each group of DD paths with the same
initial node order the elements by their cor-
respondence to the D node decision outcome.
Thu ordering by outcome is:

Ii
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DO PATHS

Na.

1

2

3

4

5

6

7

8

9

10

11

12

From:To

1:16

6:6

6:8

6:19

8:16

8:6

8:8

8:18

8:6

16:16

16:16

16:6

Contents

1-2-3-4-10-11-12-
13-14-14-16

6-5-6

6-7--8

6-18

8-10-11-12-13--14-
15-16

8-5-6

8-7-8

8-18

8-9-5-6

,6--12-13-14-15-16

16-14-15-16

16-17-5-6

Condition

entry

EXP .LT. 0

EXP .EQ. 0

EXP .CT. 0

EXPI .EQ. TRUE
.AND. I .EQ. 1

EXPI .EQ. TRUE
.AND. I. EQ. 2

EXPI .EQ. TRUE
.AND. I. EQ. 3

EXPI .EQ. TRUE
.AND. I. EQ. 4

EXPI .EQ. FALSE

DO @ 12 Loop

DO @ 14 Loop

DO nest completion

Figure 2-12. DD Paths for Sample
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Figure 2-13. DD Path Graph for Sample
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2.1 True before False

2.2 If there are several trues (or falses)
order them by the lexical order of their
target definitions in the original program
statement.

For example, the statement

IF (EXPI) GOTO (10, 20, 30, 40), 1

in a program would obviously have 5 DD paths stemming from its

assigned node; these paths would be ordered by

a. EXPI EQ. TRUE AND. I .EQ. 1

b. EXP1 EQ. TRUE .AND. I .EQ. 2

EX13 1 EQ. TRUE . AND. I EQ. 3

d. EXPI EQ. TRUE .AND. I .EQ. 4

e. EXPI .EQ. FALSE

Aside from the above description of the ordering pro-

cedure as external source views it, there is a simpler internal

description. Since statements are scanned sequentially in order

the edge list is formed in order by beginning node number. The

edge list for a single node follows from the lexical scan so

that in, say, the above example a, b, c, d are in the natural

order. Since the edge list is already ordered, the DD Paths

are created in the desired order by simply using the edge list

and assigning DD Path numbers in a sequential fashion starting

1'rom the first D node in the edge list.

To clarify the above "simpler" internal description,

-misider the edge list for the sample program. The first sev--

c, ral entries of their list would be

1 to 2

2 to 3

3 to 4

4 to 10

5 to G

^i
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I to 2 to . . . nl

6 to 5 to . . . n2

6 to 7 to n3

6 to IS

etc.

The above sequence of DD Paths obeys the external order stand-

point, although it is created from purely straightforward de-

vices.

	

2.7.3	 Probe Numbers and DD Paths

One probe is placed for each DD P..th in the program-

graph.

The probe numbers are the DD Path numbers. See the

1'()11owing subsection for a complete discussion of probe place-

ment algorithms.

	

2.7.4	 Instrumentation Templates

A software probe is a CALL to an auditing subroutine;

the subroutine, in turn, records the identity of the actual

probe which evoked it.

Probes are placed in the software so that they can inter-

rvpt the passage of the program control point. Since paths are
induced in the program by the branch statements, it is neces-

sury to position probes only at those branch points. (The ex-

ceptions to this rule are the entry and exit points from the

program  which are advantageous to probe.)

lArWI,
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The placement of probes is carried out by a macro-ex-

l)ansion technique for each branch point in the program. As

^r , ac ,,h branch point is determined the branch is replaced (expand-

ed) into a composite program segment which incorporates a probe

without loss of the logical capability of that branch. For

example, the statement

IF (X .EQ. Y) A = B+C

would be expanded into

IF (X EQ. Y) GOTO 99

CALL PROBE (*)

GOTO 98

99 CALL PROBE ()

A = B+C

98 CONTINUE

2.7.4.1 ANSI FORTRAN Branch Statements

ANSI FORTRAN branch statements can be considered in

two classes: simple and compound. The simple statements are

DO

IF (-THEN)

IF-ARITHMETIC

COMPUTED--GOTO

ASSIGNED-GOTO

They compound statements involve the combination of an IF (-THEN)

with another branch statement; the most straightforward type to

11'andle is

III'-COMPUTED--GOTO

IF-ASSIGNED-GOTO

IF-IF--ARITHMETIC
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IF [expression] GOTO 99999

PROBE

GOTO 99998

PROBE

[non-branch statement or simple GOTO]

CONTINUE

IF-ARITHMETIC

IF [expression]

IF [expression]

9 PROBE

[1 abe 1-a]

99998	 PROBE

GOTO [label-b]

99997	 PROBE

GOTO [label-c]

[label-a] , [label-b] , [label -r•]

99999,99998,99997

A
i

i

zt

•J

D. COMPUTED GOTO

GOTO ( [a] , [b]	 ... , [z] },	 [index]

[temp] _ [index]

PROBE-SPECIAL

GOTO ( [a] , [b]	 [z] ) ,	 [temp]

Nate: Since the value of [index] must be an integer and since

pr()bcs are assigned integer identification numbers, then it is

-traiRhtforward to create the situation where the probe number
i

,11; ho computed using [index] 	 The PROBE-SPECIAL is a probE

e'vova Lion which takes into account the value of [index].

I A 4507/A
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E. ASSIGNED GOTO
F! i

lowl,
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2.8	 DYNAMIC ANALYSIS 	
ORIGINAL PAGE IS POOR

2.8.1	 Introduction

Implementation of an automatic code analysis tool can

be carried out using the theory developed in subsection 2.7.

Such an analysis tool would monitor code execution and would

be capable of performing the following functions:

®	 Indicate unexercised code segments

a	 Indicate execution statistics for exercised

segments within each module

o	 Indicate execution statistics for whole modules

a	 Monitor variable principal values and the Point

within the code these values were attained

These functions would be supplied through probe information

supplied by the user. A tenative description of how the user

might interface with a dynamic analyzer is described 'below.

2.8.2	 User Interface

The dynamic analysis tool would have two main oper-

ational parts. The first part performs syntactic analysis for

instrumentation purposes; the second processes and interprets

the instrumentation (run-time) data. Due to this natural

organization,it makes sense to partition the user interface

along the same lines.

The user interface facilities are:

a Commands

--- Probe Placement (instrumentation)

--- Variable Value monitoring

--- Reporting Options

Reports

--- Archival Listing

- DDP Identification

ri
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- DDP Conditions

- Variables Codes for Reference

---- Coverage Reports

Effectiveness of Module Testing

DDP Coverage Per Module

Variable Value Information

User commands are processed during the first phase

(syntactic analyses) and the appropriate capabilities added

to thc , { arget program. THE USER WILL BE GIVEN THE ADDITIONAL

i'E.ATURL OF SOURCE LANGUAGE SELECTION -- ANSI FORTRAN OR

5'f RUCTURED FORTRAN.

According to user commands the archival listing will

incorporate ALL syntactic information so that reports can

reference DDPs. by number, and variables by a symbolic name (or

code) .

The advantage of this approach is tLere is no need to

save any syntactic program information to carry out a complete

coverage analysis. The user can refer to the archival list-

ing for all collaborative information, i.e., DDP elements, DDP

conditions, actual variable names, etc.

2.8.3	 Commands

PROBE module name

This command causes the indicated program module to

he instrumented for coverage purposes. Module name equal to

"MAIN" causes the main program to be instrumented (FORTRAN

only); "ALL" causes all procedures, subprograms,and functions

to be probed.

MONITOR variable—name (type) [IN module_name]
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This command will monitor the principal values of the

indicated variable at all DDP control points in the specified

module. MAIN is assumed if no module name is given. The

"type" field must contain the type of the variable in the

module (INTEGER, REAL, LOGICAL, etc.). The specified module

must have been instrumented (explicitly or implicitly) by a

PROBE command.

SELECT (ANSIFORT or STRFORT)

Indicates whether an ANSI FORTRAN or structured

FORTRAN is being analyzed.

NOLIST module name

Suppresses the archival listing for a particular

module.

NOSUMMARY module name

Suppresses the test effectiveness summary for a

particular module.

REPORT module name [VARIABLES]

Causes the printing of a detailed DDP coverage report

for the indicated module, with or without variable monitoring

information (see below).
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2.8.4 Reports

Figures 2--14, 2-15, and 2-16 show sample formats of the

var ious reports.

Ii
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xxxxxxARCHIVAL LISTING _-- MODULE

LINE R	 TEXT

I	 xxxxxx
2	 xxxxxxx

3	 xxx

4	 xxxxxxxxxxx

5	 xxxxxxxxxxxxxx

b	 xxxxxxxx

7	 x xxXXxx;(x
E	 xxxxxx
9	 xxxxxxxxxxxxxxxxxxx

10	 xxxxxxxxxxxxxxx

11	 xxxxxxxxx

12	 xxxxxxxx.xxxxxx

DD PATH	 CONSISTS OF {LINE #s)

1	 n-n-n-n-n
2	 n- n-n
3	 n-n-n-n-n-n
4	 N-n-n
5	 n-n-n

CODE	 MONITORED VARIABLE

1	 X

2	 SAI76
3	 D(10)

CONDITION	 CONDITION VALUE

X + 3 .GT.O

X .LT.	 Y TRUE
I EQ. 7
i ASSIGNED 99
.NOT. z FALSE

TYPE

INTEGER

	 I
LOGICAL 
REAL

r

i

Figure 2-14. Sample Archival Listing

t

6

I ANOW f
Ii
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MODULE TESTING EFFECTIVENESS SUMMARY

FODULE	 TIMES INVOKED # DD PATXs ;EXECUTED % COVERAGE

xxx	 1 7 5 71.5

xxxx	 2 5 3 60.0

xxxxx	 7 3 3 100.0

TOTAL 15 11 73.5

r (AT LEAST ONCE)

4

3

F i gij rr • 2-15.	 Summary Ropni r S.imp t o

2--59	 ^^^

1



;i

2.9	 AUTOMATIC TEST CASE GENERATION

2.9.1	 Testcase Generation Functions

The theory presented in section 2.7 helps form the basis

I'«r the design of an automatic test case generator. Functions

performed by this automatic tool would include:

•	 Facility

program

a	 Facility

table pa

•	 Facility

of paths

to indicate input variables of the

to estimate total number of execu-

ths

to determine a minimal collection

for execution of all code

•	 Facility to determine paths which execute

selected code segments

•
	

Facility to generate data to exercise specific

code segments

,rho rirst three capabilities can be obtained directly through

the graph formation and manipulation techniques described in

in section 2.7. The last two capabilities are more difficult

and, in a certain sense, impossible. We shall describe the

sense in which an automatic test case generator can assist tree

user in generating test data.

2.9.2	 Language Considerations

The test case generator would work optimally on pro-

grams written in a well designed language. The basis of such

a language, in the form of a structured FORTRAN preprocessor,

has been formed in section 2.4. The control structures of

that fangtlage were chosen to insure clarity and minimality,

2-ga
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x l ... x  is of the form

a
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while retaining as much of the versatility and compactness of

tho original FORTRAN as possible. For example, the ordinary

FORTRAN DO loop is replaced by

FOR	 i = i l , i2 , [i3]

code

END FOR

As opposed to FORTRAN, this loop executes if and only if i 2 is

greater than i l . In a similar way, if one uses a well designed

language, all segments of code are associated with a particular

condition either on control indices and/or program variables.

(Such conditions are, in fact, recorded in the archival list-

ing of the dynamic analyzer.) The testcase generator uses all

the conditions associated with a particular path to attempt to

generate input data to exercise that path. If one choose a

particular module within the code, the testcase generator

attempts to determine feasible paths which reach from a pro-

gram input position to that module; and next it attempts to

generate data to exercise that path. We need to emphasize here

that building a program to guarantee solving a system of sim-

tiltnneous equations and inequalities is theoretically impossible
	 r

However, a program can be built which in most cases can suc-

ceed in generating at least one set of correct data.

2.9.3	 Theoretical Foundations

A new approach to program testing, called symbolic

execution [10) could help form the basis for a testcase gene-

rator. It describes, in terms of original input variables, the

actions of the program's successive processing steps. Assume

input variables to be x l ... x  and that after k processing

steps, the first branch statement is reached, which in terms of



IP
i

(xl - x n ) .GT. 0

THEN GO TO 20	 REPRODUCIBILITY OF TAI

ELSE GO TO 30
	 iQRIGINAL PAGE IS POOR

1F

The testcase generator tries one acceptable input value of the

voc;t:or x l ... 'n , say a l . - . an . If F(al ... an )>0 we would attempt

to alter a l ...an so that F<0, to exercise the other side of the

branch. To do this we would compute the negative gradient of

F, -dF(x 1 - xR ) and, to decrease the value of F, alter a l - an by

a vector of a predefined length in the directors of -dF(x 1 -- xn).

The testcase generator again computes F at the new value and

essentially by the steepest descent method, attempts to find a

'value of a l ...an which would make F negative. Thus, using these

simple techniques, we could construct an automatic testcase

generator to successively generate data to exercise all program

path much like a mouse finding its way through a maze; but

tho implementation of such a testcase generator has yet to be
rar• r• i+rd cut.
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SOFTWARE REQUIREMENTS TESTCASE GENERATOR

The conception of a computer program -- at the require-

mont.s stage -- should be an optimal time for the establishment

td' most benchmark testcases by which the program can be fair-

ly assessed. Through tevo SSES methods already presented we

I'oel the automatic generation of test cases from software re-

(auirements is a realistic possibility.

Recall that one of the principal features of the Soft-

ware Specification Language k- cf. section 2.3) is the fact that

it tags all software modules with the particular requirements

which that module was constructed to fulfill; thus it physi-

cally maps requirements into the software. Combining this

['eature of SSL with the way in which automatic structural test-

oa.se generati .*:.)n can be accomplished, we see that automatic re-

quirements testcase. generation is a distinct possibility, as

is illustrated in Figure 2-17. In selecting a requirement,

one, via SSL, also selects all software modules which fulfill

that requirement. Then, through the use of the automatic

structural testcase generator, one obtains testcases which

exercise those modules. Though the implementation of the

scheme has yet to be carried out, its feasibility seems to

be clear; we feel its value is obvious.
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Figure 2-17. Software Requirements Testcase Generation

At
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The aim of the work done under this contract was to

make exploratory studies in a variety of research fields which

could potentially make valuable .:ontributions to reliability

of software. By distilling and summarizing our efforts, we

obtain the following advocations about building computer pro-

grams:

a	 The software requirements stage (cf. Figure 2-1)

should result in a structured, formal document

which leads naturally into thF software

specification stage. It should be produced

by an experienced analyst working in con-

junction with the user. Origination of key

software testcases should be an integral part

of this stage.

0	 Software functional design specifications
should be carried out through a formal lan-

guage which is capable of reflecting fidelity

of design with software requirements.

e	 Program code should be implemented using a
structured programming language in which

control structures are operationally apparent

and as few in number as tolerable. Hence, a

;

..i

0
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structured preprocessor should be employed for

code implementation if a structured compiler

language isn't available.

o	 A programming language which promotes standard-

ization of methods for accessing and operating

on stored data bases such as the CODASYL Data

Manipulation Language should be adopted and

employed for purposes of data base verification.

Software testing should be automated to establish

user confidence while minimizing cost. Both

static and dynamic testing are required. A

static analyzer should enforce programming

standards, while a dynamic analyzer should

check the reliability of the code during ex-

ecution. Structural and requirements testcase

generators would greatly enhance the utility

of the analyzers. A structural testcase gen-

erator produces data to test as many branches

of the code as possible and should be employed

for determination of software reliability. A

requirements testcase generator produces data

to determine the consistency of the code with

the software requirements.

e	 Maintenance documentation needs to be an

integral part of software. Documentation

guidelines need to be established.

3-2
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