General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

-
"
. Faa
-
:
3

(NASA-CF=-144271) NASR2 SOFTWAERE N76-22946
SPECIFICATION AND EVAIUATICN SYSTEM DESIGN,

PART 2 Final Report (Science Applications,

Inc., Huntsville, Ala.) 211 p HC $7.75 Unclas
CSCL OSE G3/61 26773

44

SAI-77-555-HU

NASA SOFTWARE SPECIFICATION
AND EVALUATION SYSTEM DESIGN
FINAL REPORT PART II

SOFTWARE VERIFICATION/VALIDATION TECHNIQUES

CONTRACT NAS8-31379

Prepared under the direction of:
Mr. Bobby C. Hodges

Marshall Space Flight Center
National Aeronautics and Space Administration

March 19, 1976

SCIZE N CE APPLICATIONS, I N C.
2109 W. Clinton Avenue, Suite 800, Huntsville, AL 35805

(205) 533-5900
7 —
y 4

S et

.
2.

3.

201

TABLE OF CONTENTS

Page
INTRODUC T ION . , « v vttt ettt ta et e et s s oonsss . 1-1
SOFTWARE SPECIFICATIONS....f e e e e 2-1
THE LANGUAGE . © .t ittt ittt ettt ittt enansanaeaanes 2-2
2.1.1 INtroduction............eeeeuioineennns 2-2
2.1.1.1 Need for SSL...... [- 2-2
2.1.1.2 Unique Features of SSL........ 2-3
2.1.1.3 Background.......... B b e 2-4
2.1.2 The Grammal.....oeeeereeaseeneessasaess 2=D
2.1.2.1 Metalanguage Description...... 2-5
-2.1.2.2 Overview of SSL Grammar....... 2-6
2.1.2.3 Basic Vocabulary.............. 2-8
2.1.2.4 Basic Language Elements....... 2-10
2.1.2.5 Requirement Declaration....... 2-14
2.1.2.6 Data Type and Variable
: ‘Declaration.........ccvven.n 2-17
2.1.2.7 Constant Declaration.......... 2-31
2.1.2.8 Data References............ v.e. 2-32
2,1.2.9 Expressions and Assertions.... 2-34
2.1.2.10 Module Descriptions........... 2-44
2.1.2.11 Subsystem Descriptions........ 2-55
2.1.3 Example..... ..ttt 2-58
2. SEMANTIC DESCRIPTION OF SSL.w. v e 2-64
2.3 OVERVIEW OF THE SSL TRANSLATOR 2-70
2.3.1 The Formal Software Requirement........ 2-70
2.3.2 Functional Design Overview............. 2-78
2.3.3 Detailed Design Notes.................. 2-81
2.3.3.1 Assessing Data Availability... 2-82
2.3.3.2 Assessing Consistency of
Data Usage............ . oo 2-83
2.3,3.3 Ordering Modules for Analysis. 2-84
2.3.3.4 Construction and Closure
of Dependency Matrices........ 2-85
2.83.3.5 Recursive Analysis Using
Dependency Matrices........... 2-86
DATA BASE VERIFIER SUBSYSTEM DESIGN...... e e e 3-1
3.1 DML STATEMENT PROCESSING......c0otttieniuwnnnns 3-8
3.2 SUBSCHEMA INFORMATION PROCESSING.............. 3-9
3.3 TFUNCTIONAL REQUIREMENTS FOR THE DBVS........ .. 3-9
3.4 TFUNCTIONAL SPECIFICATIONS FOR THE DBVS......,. 3-23

“f—
ii y 4

TABLE OF CONTENTS

Page
'STATIC CODE ANALYSIS........viiruuenennnannnns T . |
REFERENCES . « vttt e ettteee e teneeeeeenenaeaeeennens 5-1

iii

Figure

} l ! 1 | 1
@ NSO Ss W N -

LIST OF FIGURES

Page
Syntactical Overview of an SSL Specification... 2-7
Module Structure Chart for Example............. 2-60
SSL Description for Example.........ccciiuennnn 2-62
SRD for SSL Translator.........oeoeeieieranesnens 2-73
Block Diagram for SSL Translator............... 2-79
A Module Ordering Example....... .. viennnens. 2-86
An Example D MatTiX....''eeeeennnsoeeneenuanes 2-88
An Example D Matrix........ovvieirieerniennenn 2-90
Subsystem Software Requirement Document for

152 20 P 3-16
DBVS Subsystem Preamble............... ... 3-25
DML RECOGNIZER Module Description.............. 3-36
INITIALIZE SYSTEM Module Description........... 3-38
SUBSCHEMA PROCESS Module Description........... 3-39
REALM_PROCESS Module Description............... 3-40
SET PROCESS Module Description................. 3-41
RECORD PROCESS Module Description.............. 3-42
ERROR _PROCESS Module Description............... 3-44
OUTPUT_SUMMARY Module Description.............. 3-45
Module Structure Chart for DBVS................ 3-48

[—
iv Aﬁy ’

3-10
3-11
3-12
3-13
3-14
3-15

4-1

LIST OF TABLES

Page
SSL Special SYMDOLS.eeuuureeeennneeeeannnnn 2-9
SSL Reserved WOTdS.ccuuerurmreennennn. 2-11
Arithmetic Operations....... :..........r.; 2-37
 Operation HiCTarChy. oo oot et et ieeeeeannnns 2-40
- Logical Operator Truth Table............. ..., 2-41
Boolean and Relational Operations.............. 2-42
Module Descriptions for Example................ 2-61
DBVS Desecription Outline.........eeevnenennen.. 3-2
Character Table........ouuiinuunrinneenannennans - 3-4
FORTRAN DML Command Table.............. e e 3-5
Allowable Keywords Within DML Statements....... 3-5
Identifier Sequence Elements................... 3-6
List Item Sequence Elements............. 00, 3-8
Subschema Table Record Description............. 3-10
Realm Table Record Description................. 3-11
Set Table Record DesSCTription.eeweeeen... 3-12
Record Table Record Description................ 3-13
Error Status Table Record Description.......... 3-15
S INPUE FOTMALS . o ot v et ettt et e ieeeeeee e - 3-18
Meta—Symbol MeaningS.....o.oeve e ernennennenn e.. 3-21
Outline of SSL ComponentsS........ovuieneeransan 3-24
Module Descriptions for the DBVS............... 3-46
New Faces Capabilities......... .oy 4-2

1. INTRODUCTION

Initial work performed under this contract (in response
to SOW Tdsks'Phase A, B, and C (Itemvl) consisted of conducting
a survey and analysis of the existing methods, tools, and
techniques that were being currently employed in the development
of software. As a result of this effort, we made the following
recommendations for the construction of reliable software which

pertain to all phases of the software development cycle:

® The software requirements stage should result in a
structured, formal document which leads naturally
into the software specification stage. It should
be produced by an experienced analyst working in
conjunction with the user. Origination of key soft-
ware testcases should be an integral part of this
stage. ‘

° Software functional design specifications should
be carried out through a formal language which is
capable of reflecting fidelity of design with soft-
ware requirements.

) Program code should be implemented using a struc=
tured programming language in which control struc-
tures are operationally apparent and as few in
number as tolerable. Hence a structured prepro-
cessor should be employed for code implementation
if a structured compiler language isn't available.

'Y A programming language which promotes standard-
ization of methods for accessing and operating
on stored data bases such as the CODASYL Data
Manipulation Language should be adopted and
employed for purposes of data base verification.

o Software testing should be automated to establish
user confidence while minimizing cost. Both
static and dynamic testing are required. A
static analyzer should enforce programming
standards, while a dynamic analyzer should
check the reliability of the code during execu-
tibn. Structural and requirements testcase gen-
erators would greatly'enhance the utility of the
‘analyzers. A structural testcase generator pro-
duces data to test as many branches of the code as
pdssible and should be employed for determination
of software reliability. A requirements testcase
generator produces data to determine the consis-
tency of the code with the software requirements.

® Maintenance documentation needs to be an integral
part of software. Documentation guidelines need
to be established.

As work progressed, we translated our analysis results
inté viable software designs for three of the SSES tools. This
work was done in accordance with SOW Tasks Phase A, items 1, 3,
4a, 4b, 4e, and 4f and Phase C, items 1 and 2. In the remainder
of this report, we present functional software designs for the
Software Specifications Language (SSL) (including a language
relference manual) and the Data Base Verifier Subsystem (DBVS).
In addition, a detailed (build-to) software design is described
for the new capabilities to be incorporated into the static
analyzer, FACES (FORTRAN Automated Code Evaluation System).

REPRODUCIBILITY OF 77

ORIGINAL PAGE I8 i

2. SOFTWARE SPECIFICATION

A primary goal of the SSES system is to provide early
soltware feasibility and testing. Commensurate with this goal
wo have defined the Software Specification Language (SSL) for
which the design is contained within this section. SSL is
capable of representing all the information inherent in a
functional block diagram of a software system. In addition, it
is capable of (a) explicitly denoting the internal structure of
data, (b) more completely denoting module interdepend.ucies, and
(¢) expressing the input and output variables of each module.
lHowever, the most distinctive aspect of the language is the
abilily to attach requirement attributes to modules and vari-

ables which may be used in performing consistency checks.

The experience gained thus far in using SSL indicates
that it requires slightly more effort than is normally applied
to functional design. Howéver, the effort is rewarded during
detailed design as the module interconnections are much more
evident and module functions tend to be more uniform and

tractable.

AEPRODUCIBILITY orF THE

e TEV DO
ARk AT, PAGE I8 POUR

2.1 THE LANGUAGE

2.1.1 Introduction

SSLi (Software Specification Language) is a new forma-
lism for the definition of specifications for softwar:2 systems.
The language provides « linear format for the representation
of the information normally displayed in a two-dimensional
module inter-dependency diagram. 1In comparing SSL to FORTRAN
or ALGOL, one finds the comparison to be largely complementary
to the algorithmic (procedural) languages. SSIL is capable of
representing explicitly module interconnections and global
data flow, information which is deeply imbedded in the
algorithmic languages. On the other hand, SSL is not designed
to depict the control flow within modules. We refer to the
SSI, level of software design which explicitly depicts inter-
module data flow as a functional specification.

We wish to express our appreciation to Mr. Bobby
Hodges of Data System Labortory, George C. Marshall Space
4,Flight Center for his guidance and support in the performance
of this task. |

2.1.1.1 Need for SSL

The current state of the art in software development
permits insufficient formal evaluation prior to implementation.

Such questions as:

® Are all requirements fulfilled?
Have all software elements been defined?
Are the element interconnections consistent?

cannot be answered in a mahner that is independent of the
designer's opinion. The intent of SSIL is to formalize, through
a Janguage, the statement of the functional specification for
‘a software system. Given this formal statement expressed in
8SL and a translator for the SSL language, an independent
evaluation of the softWare‘may begin much earlier in the

‘development cycle.

7—!
2-2 | g 4

In addition to evaluation, other aspects of SSI, can
aid both the designer and implementer. Several things that
are characteristjcally omitted or inadequately performed
during early design but required in SSI, are:

° A complete and consistent statement of the

software requirement

® Unamtiguous communication of software organiza-
tion to the detailed designer

o Enumeration of intraprogram c.=sistency checks
(assertions) useful during checkout.
A translator also provides tables and summaries for the final
software documentation and a software element cross reference
file. The latter could be used to statically verify the

fidelity of the final code to original specifications.
2.1.1.2 Unique Features of SSL

The major contribution of SSI, is the formal approach
it brings to a phase or software development previously
relegated to heuristic techniques as discussed above. Within
this framework, there are several unique technical features
possessed by SSL.. First, the projection of a specialized
form of software requirements onto the objects being defined
establishes a rationale for the software structure not present
in other methodologies. These requirements are an important
aspect of consistency checking when evaluating a specific
functional design. Second, the incorporation of levels'of
abstractions directly in a design methodology is a step forward
in software engineering. Lastly, an automated SSL translator
ig being designed that is one of several interlocking software
design and evaluatieon tools collectively called Software
Specificaticn und Evaluation System (SSES). SSES includes a
static code analyzer, a dynamic code analyzer, and a test
case analyzer. The specific capability that SSL brings SSES
is the ability to test and evaluate software design early in
the development cycle.

SSI, also incorporates a flexible data abstraction
capability and places emphasis on assertions as a means of
describing the dynamic behavior of the software being designed.
Although neither of these is unique, they are relatively new
concepts in the field of computer science.

2.1.1.3 Background

In evaluating a new software system, particularly a
programming language, it is important to trace the historical
developments to which it relates and upon which it is based.
The MIL (Module Interconnection Language) system [1] was a
principal contributor to the concepts of data creation and
data availability restrictions among modules within SSI.
Guidelines imposed for the partition of programs into sub-
systems are derived from the principles embodied in the concept
of levels of abstraction [2] . Module descriptions in SSL
are a linearlized form of the information available in the
two-dimensional diagrams referred to as structure charts[3].
The data description capability is largely the same as that of
PASCAL [4]. The syntax for expressions is derived from, but
not identical to, that of ALGOL 60 [5]. Assertions in SSL
have. the form‘and appearance of those in the language
NUCLEUS [6].

7/ —
2-4 £ 4 .

2.1.2 The Grammar

.4

The material in this section is arranged in the form
of a reference guide to the language, and not tutorially in the
manner of a user's manual. To aid the reader, a cross reference

index is provided in the last section.
2.1.2.1 Metalanguage Description

For the purposes of automatic translation and unambig-
uous communication, it is desirable to express SSL via a formal
grammar. The vehicle selected for this purpose is the Backus-
Naur-Form (BNF) metalanguage [5].BNF has the advantages of being
well known and compact in representation. In addition, most
formal methodologies for analyzing grammars are based upon

BNF representation.

Any nontrivial language contains an infinite number of
legal sentences. ILach sentence, in turn, is composed of the
concatenation of strings; strings are composed of characters.

A grammar uses strings as operands and combines them under the
operation of concatenation to finitely depict, all legal senten-
ces. The way in which this is done in BNF can best be inter-

preted via an example. Consider the following production:
<ab> :: = a|b| <ab> a

Sequences of characters enclosed within the brackets < >repre-
sent metalinquistic variables called nonterminal symbols. The
marks "::=" and "|" are metalinquistic connectives meaning "is
composed of" and "or" respectively. Any string not a nonterminal
or connective denotesvitself and is called a terminal symbol.
Juxtaposition of symbols between connectives in a formula, such
as the example, signifies that the symbols must be in the exact
order denoted. The above production indicates that <ab> may

7
9 4

have the values:

a
b

' a, aa, aaa,
b

, ba, baa, ...

In BNF, the null string is designated by <emptY§\:: =

SSL is represented as a context-free graﬁmar whiich

means:

® There exist a finite number of prdﬁuctions

of the type of the above example.

® The left part of each production (i.e., left
of ::=) consists of a single nonterminal
symbol.
) There exists a unique nonterminal symbol (called

the distinguished symbol) which is in the right
part of no production except its own.

2.1.2.2 Overview df SSL Grammar

Prior to examining the detailed structure of SSL com-
ponents, it will be useful to identify the overall structure of
a software specification expressed in SSL. Figure 2-1 depicts
the sequencing of the syntactical items used to describe an

SSL specification.

A specification consists of one or more subsystems,
cach but the first having a name. The first subsystem is
referred fo as the “main”‘subsystem and each subsystem is
composed of a preamble and one or more module descriptions.
The preamble dgfines the local environment for the subsystem

oF TEER
ETRODUCHHIIPZ " T
?&“GBNAl&PAiHSIS POUL

”,

SUBSYSTEM
DESCRIPTION

SPECIFICATION

SUBSYSTEM
DESCRIPTION

REQUIREMENT
DECLARATION

TYPE
DECLARATION

VARIABLE
DECLARATION

CONSTANT

DECLARATION ¥

Figure 2-1

SUBSYSTEM SUBSYSTEM
SUBSYSTEM IDENTIFIER 3 | DESCRIPTION n
2/
) MODULE MODULE
MODULE IGENTIFIER DEFINITION

STATEMENT

SA1-0034

Syntactical Overview of an SSL Specification

(constants, requirements, data formats, etc.) and the module
descriptions indicate operational aspects of program units
(program units are subprograms, procedures, etc.).

In the following subsections, thé detailed syntactical

descriptions will be presented.

2.1.2.3 Basic Vocabulary

The basic vocabulary of SSL consists of special
symbols, letters, digits, and reserved words. Each special
symbol (Table 2-1) is primarily a single character except
where limited computer character fonts require the concatena-
tion of two characters. Where a special symbol consists of
more than one character, it must be written without an inter-
vening blank. Subsequently, special symbols other than ".",
"@', and " " will be referred to as delimeters. Each char-
acter in Table 2-1 is available within the ANSI standard codes
[7] for ASCII-8, EBCDIC-8, and HOLLERITH-256. Substitutions
may be necessary if an SSL translator is implementéd in an
environment not conforming to the standard character codes.

Letters and digits do not have individual meanings
but are used to construct identifiers, numbers, and reserved
words. The following basic productions enumerate these ele-

ments of the vocabulary:

<letter> alb] ... |z

<digit> ::= 0|1] ... |9

TABLE 2-1 SSL SPECIAL SYMBOLS

Reserved words (Table 2-2) are composed entirely of
scquences of letters. 1In this document, they are normally
underlined. A reserved word may not contain imbedded blanks

and must always be followed by a blank or a delimeter.

The construct

/* any sequence of symbols not containing '*/" ¥/

may be inserted between any two identifiers, numbers, delimeters,
or reserved words. It is called a comment any may be removed

from the program text without altering its meaning.

2.1.2.4 Basic Language Elements

2.1.2.4.1 Identifiers

Syntax

<identifier> ::= <letter>|<identifier> <letter>

|<identifier> <digit>|<identifier> _

Examples

Legal ‘Illegal

a 5ad

b27 sr$p

cr_1l4dr

i/

TABLE 2-2 SSL RESERVED WORDS

Access
Accesses
Analog

And

Array
Assume
Assumes
Boolean
Case

Char
Conditionally
Constant
Constants
Constraint
Constraints
Create
Creates
Digital
Doubleprecision
End

Entry

Liqu
Execute
Executes
False

File

For

TForall

From

Fulfil
Fulfills
Global
Implies

In

Input
Inputs
Integér
Iteratively
Modify
Modifies
Module

of

Or

Output
Outputs
Real
Receive
Receives
Record
Requirement
Requirements
Satisfies
Satisfy

Set
Subjectto
Subsystem
Text

To

Transduction
Transdﬁctions
Transmit
Transmits
True

- Type

Types

Use

Uses
Using
Variable
Variables

A4

REPRODUCIBILITY OF 7T:iif

URIGINAL FAGHE 1o YUOUR

Semantics

Identifiers must begin with an alphabetic character
and contain only letters, digits, and the " " symbol. The
latter is known as the break character. Identifiers have no
inherent meaning, but serve as identification for variables,
g madules, subsystems, and other elements of a software specifica-

tion.

Identifiers may be of arbitrary length but must be
unique within the first twelve characters. No identifier may
be equivalent to the first twelve characters of a reserved word.
The same identifier may not be used to denote two different
quantities within a subsystem with the exception of field names

in different records.

2.1.2.4.2 Numbers

Syntax

< unsigned integer> ::=<digit> [<unsigned integer>
<digit>

<sign > 1 = + | -

< exponent part > !:! = e <unsigned integer >
|e <sign> <unsigned integer>
|d <unsigned integer>

_ |d <sign> <unsigned integer>

< decimal number > :: = <unsigned integer>v
| <unsigned integer>
<unsigned integer>

< unsighed number >:: = <decimal number >

| <decimal number> <exponent

part>

o/ —-
y 4

Examples

Legal Illegal

57 3,746 B
14d10 XII P
3.7 e-5 et+7

0.2 .14

Semantics

Decimal numbers have their conventional arithmetic

meaning. The expohent is a scale factor expressed as an integal o
power of 10. A number expressed with neither a scale factor nor
a decimal fraction is assumed to be of type integer. A number
which uses the "d" form for the exponent part is assumed to be
double precision. Otherwise, the number is assumed to be typé
real. Note that if a number contains a decimal point, at least
one digit must precede and succeed the point.

2.1.2.4.3 Logical Values . ?

Syntax

<logical value> ::= true |false

Semantics : e

> Logical values have their conventional meaning and may
be deflfined by describing. their combination under the operations
"union' and "intersection''. The union of the logical value true
with any other logical value alwayé yields the result true. The
1ntcrsection of the logical value false With any other logical

value always yields the result false.

2.1.2.5 Requirement Declaration

The several parts of the requirement declaration are
used to identify the data flow between the software package
"being described and other parts of the total system. In add-
ition, they identify processing steps (called transductions)
and restrictions (called constraints) which are attached to both

modules and variables.

Syntax
<requirement declaration> ::= <requirement or
requirements>

<requirement statement group> end

<requirement or requirements> ::= requirement
|requirements

<requirement statement group> ::= <requirement
statement part>
|<requirement statement group> ;
<requirement statement part>

<requirement statement part> ::= <input part>

| <output part>|<transduction part>

| <constraint part>

2.1.2.5.1 Input and Output Parts

An input is a system level input (or stimulus) which
a software package receives from an external source. An output
is a system level respdnse which has a purpose beyond the
immediate concern of the software package being described.

9-14 y 4

Syntax

<input part> :: = <input or inputs> <entire

variable list»>

<output part> :: = <output or outputss> <entire variable
lists

<input or inputs> :: = input |irputs

<output or outputs>:: = output|outputs

Examples

e input state_vedfor s
e inputs mass, velocity, distance ;
e Output concordance_list ;

Semantics

A variable may be in both an input and an output list.
A variable in an output list not used within the subsystem
other than in the module in which it is initialized is not
required to have a requirement transduction attribute. The
strugture of all variables in input and output lists must be
described within the wvariable statements of the subsystem pre-
amble, Each subsystem preamble must have a requirement declar-

ation with an output part,.

2.1.2.5.2 Transduction Parts

Transductions are identifiers representing processing
steps. - They are derived by first writing a high level pseudo-
program to "transduce' the input variables into the output
variables and then extracting and listing the major verbs of
the program, ‘Just as the processing steps of the pseudo-pro-
gram may be nested, the transductions may likewise be nested.
Ideally, for each subsystem there should be from three to
seven transductions that are not nested within any others.

i
i
4
i

Syntax

< transduction part> :: = <transduction or

transductions >

<transduction clause>

| <transduction part> ; <transduction
clause >
< transduction or transductions >:: = transduction
| transductions
< transduction clause> :: = <transduction list>
| <transduction list> in <transduction
list >
< transduction list> :: = <transduction identifier>
| <transduction 1list >, <transduction
identifier>
< transduction identifier >:: = <identifier>
Examples

» transduction sum expense, sub_deduct 1in tax compute;

write_ paycheck;

» transductions save options; read card in parse;

Semantics

Within a transduction clause, each processing step re-
presented by a transduction identifier to the left of in must
be a substep of the processing steps listed on the right of in.
Fach transduction iduntifier represents a unique processing step,
but may be reused to show different substep relationships. Sub-
step relationships must be consistent, i.e., the complete set of
substep relationships partially order the transduction identif-~

iers.

o
2-16 y 4 ,

2.1.2.5.3 Constraint Parts

Syntax
< constraint part> ::= <constraint or constraints>
< constraint list>
<constraint. or constraints >::= constraint
| constraints
< c¢onstraint 1list > ::= <constraint identifier >
|<constraint list >, <constraint
identifier>
< constraint identifier> ::= <identifier>
Ixamples
® constraint carpool_size ;
® constraints max_targets, minimum_distance ;

Semantics
Zach constraint identifier defined must be attached

as an attribute to some module in the subsystem.

2.1.2.6 Data Type and Variable Declarations

- Explicit description of data and the ability to define
and use new data types is one of the greatest assets of SSL.
A new data type may be described directly as part of a variable

declaration, or described independently for subsequent use.

Syntax
< Lype: declaration> ::= <type or types>
<type definition>
|< type declaration> ; <type definition>
< type or types> ::= type | types| global type

|global types

< Lype definition> ::= <identifier> = <type>
~Lype >::= <simple type> |<structured type>
| <pointer type>
<variable declaration> ::= <variable or variables>

<variable definition>
| <variable declaration> ; <variable definition>

<variable or variables> ::= variable | variables

<variable definition> ::= <identifier list> :< type>

| <identifier list> : <type> ; <for clause>
]<identifier list> : <type> ; <subjectto clause>

| <identifier list> : <type> ; <for clause>;

<subjectto clause>

<for clause> ::= for <transduction list>
<subjectto clause> ::= subjectto <assertion list>
<assertion list> ::= <assertion>

|<assertion list> ; <assertion>

<identilier list> ::= <identifier> |<identifier list>

7

<identifier>

Semantics

A type declaration list is used to define new data
Lypes. Tach type is named and may be referenced by the identi-
fier to the left of "=" in the <type definition> production.
The normal scope of a type identifier is the subsystem in which
it is defined. However, the scope of a global type is the
contire SSL program. Global types may be defined only in the

main subsystem.

A data type need not be named if it is defined in-
trinsic to the variable declaration. Both type and variable
declarations may use data types defined and named elsewhere.

kxamples of both are given in the following subsections.

The <for clause> of the variable declaration is used
to attach requirement attributes. Requirement attributes limit
the availability of variables within the modules of the sub-
system. All variable declarations must contain a for clause
Qith the exception of output variables identified in the require-

ment statement.,

The <subjectto clause> identifies the global assertions
associated with the variables being declared. A global
assertion is one that must be true upon exit from the module
creating the variable, and true on both entry and exit of modules

using the variable.

2.1.2.6.1 Simple Types

Simple types are data types for which the designer,
using SSL, need not define the internal structure or the inter-
nal structure has previously been defined and named.

Syntax

<simple type> ::= <basic type> |<scalar type>
| <subrange type> | <type identifier>

< type identifier> ::= <identifier>

Semantics

A type identifier must previously have been used to

the Teflft of an "=" in a type definition.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS PCOR

1.2.6. 1571iBasic Types
Tho basic data types are those which are 1mp1101ty

dolxnoo by the SSL language.

< basic type> ::= integer| real| boolean

Idoublepreéision |char| analog]| text

Examples
e Vvariables I, J, K: integer; for count_people :
e variables height: real;

for record status;

subjeqtto, height >0.0 ;-
height <= 10.0 ;

employed: boolean ;

. for record_status ;
DY
1
Semantics

Thg tybes integer, real, boolean, and doubleprecision
have Lhe cohventional meaning. The type char indicates a
single unit of hollerith information. Type text indicates
hollerith datﬁ with unspecified length. Since the length of a
text item va&l s, it may not be combined with other variables
in forming - structured data types. The type analog desighates
a data 1tem\whlch contains analog signal information. Like the

text type, t may not be combined with other wvariables "to form

structured tybes.

2.1.2.6.1.2 Scalar Types

Scalar types are used to'designate a finite number of
disjointl slates which a variable may represent. In conventional
programming languages, it is customary to declare the variable
of type integer and assign it only the cardinal numbers 1, 2,...,

n where each value represents one state of the several possible.

Syntax

< gealar type> 1= (<identifier list>)

Examples

® type marital _status = (single, married, divorced);

variable ms: marital_status; for emp_record;

» variable color: (Red, blue, yellow, green) :

Semantics

Conceptually, the elements of scalar types are ordered
roegardless of whether or not the underlying set of states is
ordered. The order is always the same as that of the identifiers
in the identifier list. This enables a designer to use rela-
tional tests (< ,>, etc.) in assertions involving scalar type

[P

variables.s

2.1.2.6.1.3 Subrange Types

Subrange types are used to designate a subset of integ-

ors or scalars which a data item may assume.

Syntax
<subrange type> ::= <constant> .. <constant>
<constant> ::= <unsigned integer>

| <sign> <unsigned integer>

| <constant identifier>

" |<sign> <constant identifier>

| <logical value>

< constant identifier> ::= <identifier>
Examples
evariables weight: 10..350; for ins_compute;

dependents: 0..15; for tax compute;

elype color = (purple, blue, red, yellow, gréen, black);

variable primary color: blue..green;
Semantics

A subrange simply indicates the least and largest con-
stant values an item may assume. The lower bound (left-most
constant in the production) must be less than the upper bound.
A subrange with bounds expressed in types other than integer or
scalar is not permitted.

Constant identifiers may arise from two contexts. The
first is the appearance of an identifier to the left of "=" in
a constant declaration. The second (illustrated by the abo%e
‘lexample) is the appearance of an identifier as a scalar element.
Constant identifiers arising from the second context may not be

preceeded by a unary sign.

2.1.2.6.2 Structured Types

A structured type is a data type composed of more

clementary data types.

REPRODUCIBILITY OF THE

ORIGTNAL PAGE 1§ P ’/ ‘
- 2-22 4

Syntax
< structured type> :@:= <array type>]<rec0rd type>

| <digital type>| <set type>

| <sequence type>

Semantics

An SSL structured data type is used to indicate the
general form and content of a data structure, not precise imple-
mentation word and storage formats. In SSL, the following

definitions are used:

Array - A fixed number of data items, all of the
' same type and length and accessed by

computed index.

Record - A fixed number of data items, each of fixed

length, and each equally accessible.

Digital- A record having additional restrictions which

are discussed in a subsequent subsection.

Set‘ — An element of the powerset of a finite number
of basic elements.

Sequence A variable number of data items, all of the
or -

Tile same type and length; however, each element

is not equally accessible at all times.

Stronger connotations (such as elements of an array are seq-

uentially stored) arenot implied by the semantics of SSL.

2.1.2.6.2.1 Arrays

An array is a fixed number of data elements, each of
the same type and length and each equally accessible. Elements

of an array are ordered and each element is accessed by a

cardinal number called its index.

Syntax

il

< array type >:: array '[<index 1ist> | of

<component type>

Il

< index list> <index type> |<index 1list> ,

<index type>

< index type >:: <simple type>

< component type> ::= <type>
Examples

e variable matrix: array ‘[1..10, O..2Q] of real;

for tfa ;

e type people = (adams, buckles, jones, smith);
variable employee: array [peoplé]‘_gi, 1..50 ;

for ta;

Semantics

Index types must have a finite range and be ordered.
This rcequirement eliminates index type of integer, real, and
doubleo-precision. However, subranges of integers are permitted.

For the purpose of ordering, false <true for boolean type

J indices.

2.1.2.6.2.2 Records

A record is a structure containing a number of com-
ponents called fields. Fields are not constrained to be of
identical type but must be of fixed length. A single record

Llype is permitted to have variants.

Syntax

<record type ::= record <field list> end

< Tield list> ::= <fixed part> | <fixed part> ;

 <variant part> | <variant part>
< fixed part> ::= <record section> |<fixed part> ;
A <record section > ‘

< record section> ::= <field identifier list> : <type>

< field identifier 1list> ::= <field identifier>
| < field identifier list> , <field identifier>

<variant part> ::= case <tag field> <type identifier>
of <variant list>

<varian£‘Iist> ;1= <yariant> | <variant list> ;
<variant> ;

<tag field> ::= '<field identifier>

<Tield jdentifier> ::= <identifier>

<variant> ::= <case label list> : (<field list>)
|<case label list> :()

<case label list> ::= <case label> |<case label list>

< case label> |
< case label> ::= <constant>

Ekamples
e Type employee = Record
Number: Integer;

Salary:Real;
Name:Array E;..24j of char

'End;

e Variable machine part:Record
Part No, Order Quantity:Integer;
Weight:Real

End;
for customer billing;

real part, imag part:real End;

e Type complex = Record
e Type farm =(peaches, cotton, soybeans);
Type land use = Record

Owner Name:Array El..lgj of char;

Plot No:Integer;
Case Crop:Farm of

peaches: (tree count:Integer);
cotton, soybeans:(plant_date:Integer ;
herbicide, insecticide:boolean)

End;

e Variable sizes:Array [}..10] of Record

Height:Integer;
Weight:Real

T T

for health file update;

subjectto height >0; height <120;
weight >0.0; weight <500.0 ;

Semantics

Fields may not be of basic types text or analog. A

record may be a component of another record, but a digital type
may not. The scope of a field identifier is the smallest record
in which it is defined. ZField identifiers with disjoint scopes

miay be reused. Access of a component is always by the field

identifier and never by a computed value.

The type associated with the tag field of a variant
must contain only a finite number of elements. This limits it
to boolean, subrange, and scalar. All elements of the type
must appear in some case label list of the variant. If the
field list for case label IL 1is empty, the form is:

L: (C)

A record may contain only one variant part and it must
succeed the fixed part. However, a variant may contain variants.
That is, it is possible to have nested variants. All field
names of the same record must be unique even if they are in

different variants.

2.1.2.6.2.3 Digital Types

Digital types are a restricted form of records to

represent real time digital signals.
Syntax

<digital type> ::= digital <fixed part> end

REPRODUCIBILITY OF THF,
Example ORIGINAL PAGE IS POOR

e Variable Signal In: digital
| Valve 1: boolean;
LOX_Switch: 1..3;
Command: (Idle, stopped, running)
End; '

for check_status;

'

Semantics

Due to their physical intewpretation, the type of
components within digital types may only be boolean, scalar,
or subrange. Digital types may not have variant parts and
they may not be used as components of any other type.

2.1.2,6.2.4 B8et Types

Set types represent elements of powersets over a
finite set of elements called the base type. Conceptually,
a set type variable may be viewed as a bitstring of length
equal to the number of elements in the base type. Each bit
is associated with a unique element and is '"'on' or "off"
if the element is a member or not a member of the powerset.

Syntax

<set type> ::= set of <base type>

|

<base type>::= <simple type>

Examples
e Type members = (father, mother, big_sister;
little sister, big sister, little_brother);
Variable family: set of members; for arrange;
e Variable Even_numbers: set of -10..10;
for compute_something;

74
2-28 r /A

Semantics

;The’base type must be either scalar or subraﬁge.

2.1.2.6.2.5 Sequence (File) Types

A seqﬁencé differs from an array in that it may vary
- dynamically in length and is referenced through a "window"
called its buffer (not by computed index). Examples of physical
representations of sequences include linked lists and mass
storage files.

Syntax

< sequence type> ::= <file or sequence> of <type>

<file or sequence> ::= file | sequence

Examples

e Variable Assembly: sequence of record

part name: array [i..ﬁ]:of char;
order no: integer;
drilled, pﬁnched, stamped, purchased:
boolean
End; for update_ orders ;

° zxpg,rOstér_entry'= record
| _name: array [@..20]_9; char;
rank: 1,.16; base_code: 1000..5000
End; ,
Variable roster: file of roster_entry;

for assign_new_base ;

Semantics

All components of sequences must be of identical type.
and length. A sequence may not have sequence type or text type
components. Furthermore, digital and analog types may not be

combined as sequences.

2.1.2.6.3 Pointer Types

Variables of type pointer are "bound" to a particular
type. That is, the contents of a pointer is used to indicate
a second variable, and the second variable is required to be of

a predetermined, specific type.

Syntax
<pointer type>

@ <type identifier>

Ekamples

e Type combination = record n, p: integer End ;

Variable comb_ptr: @ combination; for select_band;

® Type weather station = record hi,lo: integer;

rain: real End;

Variable ws_ptr: @ weather station;

for record temperature;

Semantics

The contents of a pointer may be altered, but the
data element the pointer indicates is always of the same type.

2.1.2.7 Constant Declarations

In SSL, constant declarations may appear in the
preamble of any subsystem and are used to communicate actual
values or parameters to the detailed designer. Normally,

a constant declaration would be used only for critical values
for which the effects are to be isolated in the final code.

Syntax

<constant declaration> ::= <constant or constants>
<constant definition list>

<constant or constants> ::= constant| constants

< constant definition list> ::= <constant definition>
| <constant definition list>;<constant definition>
< constant definition> ::= <identifier> = <constant>

|<identifier> = <simple type>

Examples

Constant a = 10.0 ; max count = Integer,
Constants Low = true;

Tax cut = 1,.5 ;

Semantics

An identifier declared equal to a simple type indicates
that the exact value is not known at the time of specification,
hut will be provided before implementation. An identifier used
in a constant declaration may subsequently be used any place
that a constant (of the same type) may be used.

Ral

2.1.2.8 Data References

Data elements may be referenced by variable name,
by selected component, or pointer. A variable has components
only if it is a record, digital signal, file, or array.

Syntax

< variable> ::= <entire variable>

| <component variable>

| <referenced variable>

2.1.2.8.1 Entire Variables

<entire variable ::;= <identifier>

‘Semantics

A reference to an entire variable includes all fields

of a record or digital signal, all elements of an array, or all
records of a file. If the data element is a simple, unstruct-
ured variable (integer, boolean, etc.) it may only be refer-

enced as an entire variable.

2.1.2.8.2 Component Variables

Syntax

< component variable> ::= <indexed variable >
| <field designator>
| <file buffer>

<indexed yariable> ::= <array variable>

[<expression list%]

REPRODUCIBILITY OF Tt
ORIGINAL PAGE I8 POU:L

<array variable>

<expression list>

<field designator>::

<record variable>

<file buffer> <fi

<file variable> <

Examples

Char_Array E;S]

Inverse_Matrix E5, I, 16]

Employee.Name

Owner [15] . Acc
Name_ Record.Char
Transaction_File
Transaction File

Transaction TFile

Semantics

Indexed variables have the conventional meaning.

designators denote which field component of a record or digital

gsignal type is to be selected.
the current active element of

comprise the file.

<variable>
<expression>[<expression list>
<expression>
«record variable> <field
identifier>

<variable>

le variable> @

variable>

essed_Value

acter [?]

@
@ . Date
@ . Date. Month

Field

A file buffer variable designates

the sequence of elements that

A4

Since arrays, files, and records can be combined in
various ways (a record of records, file of arrays, array of re-
cords, etc.) a component variable can be arbitrarily complex.

It is recommended that data structures be as limited in complex-
ity as the problem permits.

2.1.2.,8.3 Referenced Variables

Syntax

<referenced variable> ::= <pointer variable> @
<pointer variable> ::= <variable>

Examples

Symbol Pointer @
Student_Name [6] @
Assembly@.Manufacturer@

Semantics

The data structure denoted by the contents of the
pointer variable is substituted for the referenced variable

in expression evaluation.

2.1.2.9 Expressions and Assertions

Expressions arise in two contexts: subscripts of
arrays and as terms within assertions. Assertions may appear

in either wariable declarations or module descriptions.

2-34 l

SITT SRR R

2.1.2.9.1

Arithmetic Expressions

Arithmetic expressions in SSL are similar to those in

other high level languages. Results of expressions are single

valued wi

stituent

th type determined by the operation and the con-

operands.
Syntax
<arithmetic expression> ::= <term> | <sign> <term>
|< arithmetic expression> <sign> <term>
<term> ::= <factor> | <term> <multiplying operator>
<factor>
<factor> ::= <primary> | <factor> ** <primary>|<set>
<primary> ::= <constant identifier> | <unsigned
number>] <variable> | < function designator >
| (<arithmetic expression>)
<get> 1:= E<e1ement 1ist>]
<element list> ::= <empty> | <element> | <element
list>, <element>
<element> ;:=<expression> <expression>
<expression>
< multiplying operator>::= *]/
<function designator> ::= <function identifier>
(<expression list>)
<function jdentifier> ::= <identifier>

Examples

a+b

3.0 * sin (r + 1.0)

2 *¥ (ifix(c) + blank common.icount)
name. fieldl '

name_set + Boe, fre@

Semantics

Mixed mode expressions are prohibited with the excep-
1ion of the exponentiation operator as indicated in Table 2-3.
In Table 2-3, any operand of type integer may be replaced by
an operand of type integer subrange. The symbol "dp'" indicates
double precision. The unary '"+'" may be used with any operand
permitiing a unary '-", but is semantically superfluous (i.e. +
is the identity operation). If a type is not included in the
operand type columns of Table 2-3 then its use with the desig-
nated operator is not permitted. Note, however, that integer

and integer subrange are interchangable.

SSL does not contain intrinsically defined functions.
All function identifiers are accepted, but it is suggested that
those embodied in the proposed implementation language be
adopted for each Specification. Function types are not explic-
ity declared, but must be consistently used throughout the
speeification. In addition to the basic types (integer, real,
ete.), the permissible function types include scalar and sub-

ranges of integers and scalars.

LET

/’

Operator

*k

TABLE 2-3 ARITHMETIC OPERATIONS

V1
Gperation

Arithmetic Negation

Addition, Subtraction

Set Union,
Set Difference

Multiplication,
Division
Set Intersection

Exponenciation

|!OP"
V1l Type

Integer
Real

dp
Set

Integer
Real
dp

Set

Integer
Real
Real

V2

V2 Type

Integer
Real
dap

Integer
Real
dp

Set

Integer
Real
dp

Set

Integer
Integer
Real
Integer
Real

dp

Result Type

Integer
Real
dp

Integer

Real
dp

Set

Integer
Real
dp

Set

Integer
Real

‘Real

dp
dp
dp

oo

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

2.1.2.9.2 Boolean Expressions

Combining arithmetic expressions with the boolean
operations produces the expressions used in SSL assertions
and array sSubscript lists.

‘ Syntax

<expressiomn> ::= <implication>|<expression> equ

<implication>

dmplication > ::= <poolean term>|<implication>

implies <boolean term>

<boolean term ::= <boolean factor>|<boolean term> or

<boolean factor>

<boolean factor> ::= <boolean secondary>|<boolean

factor> and <boolean secondary>

hoolean secondary” = <boolean primary>[1<boolean

primary>

<boolean primary> ::= <logical value>]|<arithmetic

expression>|<relation>|(<assertion>)

<relation> ::= <arithmetic expression><relational
operator><arithmetic expression>

<relational operator> ::= <|<=| = >= (—j = | i

Examgles

Rate = 7.0

Value and Qual

a>b Implies ¢>0.0

S—=t Equ p<t

Color ig'[red, green, yellow]

abs (buffer @.velocity) <16.0 and weight >= 14,0

Semantics

The arithmetic and boolean operators are grouped into
hierarchial levels as exhibited in Table 2-4. Operations are
performed in the order of highest hierarchial level first
Tollowed by equal hierarchial levels from left to right. This
sequence may be overridden by parentheses, in which case the
innermost operations are performed first. The meaning of the
logical operators - (not), and, or, implies, and equ (equi-

B Sw—

valent) is given in Table 2-5.

Table 2-6 depicts the required operand types for the
boolean and relational operators. For set types, the symbols
'1:]” stand for the empty set. When comparing set types to
- scalars, the base type of the set must be the same as that of
the scdlars. The operators <, <=, =, >=, > 4 = stand for less
than, less than or equal, equal, greater than or equal,
greater than, and not equal respectively. Relational operators
(other than in) may be used to compare arrays of equal length
composed of characters, in which case they denote alphabetical

ordering.

TABLE 2-4 OPERATION HIERARCHY

Level Operations
1 Equ
2 Implies
3 or
4 And
5
' 1
6 <, <=, =, >,> — =, 1In
7 +, -
8 *, /
9 * %

TABLE 2-5 LOGICAL OPERATOR TRUTH TABLE
bl false false true true
b2 false true false true

-— bl frue true false false
bl And b2 false false false true
b1l Or b2 false true true true
bl Implies b2 true true false true
bl LEqu b2 true false false true

7—
y 4

TABLE 2-6 BOOLEAN AND RELATIONAL OPERATIONS
V1l "op" V2
Operator Operation V1l Type V2 Type Result Type
<, £, =, Compare Integer Integer
>= > — = Real Real
dp dp Boolean
Boolean Boolean
Char Char
Scalar Scalar
T
g In Set Inclusion Scalar Set
Set Scalar
Set Set 4 Boolean
Subrange Set
Set Subrange
- Logical Inversion Boolean Boolean Boolean
And Logical "And" Boolean Boolean Boolean
\ \ Or Logical "Or" Boolean Boolean Boolean
Implies Logical Impli-
..... cation Boolean Boolean Boolean
Equ Logical Equi- Boolean Boolean Boolean

valence

REPRODUCIBILITY OF “Lrir
ORIGINAL PAGE IS POOR

2.1.2.9.3 Assertions

Assertions are conditiohs which may assume only true/
false values. They are attached to variables at their point
ol declaration and to modules. Module assertions depict entry

and exit data conditions.

Syntax

<assertion> ::= <expression><forall clause>
<forall clause> ::= <empty>| forall didentifier =

<set>

Examples

e a[i] =0.0forall i = [1..n-I)
(b.c[3]= t[x]foralr j =[1,3,4..16]) forail

k = [16..30]

e big>small

e code = 1 implies (eof equ true)

Semantics

The scope of the identifier in the <forall clause> is
the assertion in which it is used and must not overlap that
of a local or global variable of the same name. Its type is
agsumed to be the base type of the set within the <forall
clause>. The set must represent a finite number of elements
and may not be empty.

The expression within the assertion may agsume only the
values true and false. If the <forall clause> is present, the
expression is evaluated once for each unique value which the
<forall identifier> can assume from the set.

2-43

2.1.2.10 Module Descriptions

Modules are basic system objects in an SSL system

description. In using SSL, one identifies for each module:

The module name
Input and output data
Conditions placed on data upon entry to and
exit from” the module
° Depéndence of the module on environmental

objects and other modules

The rule of correspondence between input and output data is

nol stated in SSL. Its statement is a function of detailed

design.

Syntax

<module description> ::= <module statement>;
<module definition part> end

<module definition part> ::= <module definition
statement>|<module definition part> ;
<module definition statement>

<module definition statement> ::= <assumes statement>
|<satisfies statement>[<fulfills statement>
| <accesses statement >|<modifies statement>
|[<creates statement>|<uses statement>
| <receives statement>|<transmits statement>
| <executes statement>

2.1.2.10.1 Module Statement

The module statement is always the first statement
of a module description. It identifies the module by name
and declares the local variables (if any).

Syntax

<module statement> ::= <module or entrv> <module

identifier> <release variable group>

<module or entry> ::= module|entry

<release variable group> ::= <empty>|(<re1ease variable
list>)

<release variable list> ::= <release variable>|<release

variable list>; <release variable>

<release variable> ::= <variable > |<local variables>
<local variables> ::= <identifier list>:<simple type>
<module identifier> ::=<identifier>

Examples

e Mmodule matrix multiply;
e entry push stack (stack_item:stack_entry);

e module permutation (m, n:integer; elements:p_array);

2-45

Semantics

A module statement introduced by module can only be

referenced from within the subsystem in which it is declared.

A module statement introduced by entry can be refer-
enced only from subsystems other than the one in which it is

declared.

Release variables occur both in module statements and
virtual references within execute statements. Local variables
within a release group serve strictly for communication bet~
ween the module and those calling it. 1In this respect, they
differ from global variables declared in the subsystem pre-
amble which serve to communicate among modules having common
requirement attributes. Local variable identifiers must be
unique throughout a subsystem. Only the module statements
ihtroducing entry modules are permitted release variables
"which are not local variables. The variables of a release
group for a module statement of an entry module must agree
in type, number, and sequence to each virtual reference to

it from other subsystems.

2.1.2.10.2 Assumes and Satisfies Statemehfs

The assumes and satisfies statements specify truth

conditions for data.

Syntax

<assumes statement> ::= <assume oOr.assumes>

!

<assertion list>
<satisfies statement> ::= <satisfy or satisfies>

<assertion list>

it

<assume or assumes> assume| assumes

<satisfy or satisfies> ::= satisfy| satisfies

9-46 g 4

Examples

e Assume a >0.0 ;
e Satisfies big sister in family; count — = 0 ;

Semantics

The assumes statement specifies data conditions
that must be true upon module entry. The satisfies statement
specifies data conditions that must be true upon module exit.
Variables used in assertions must be either local variables
in the release set or in the availability set pertinent to
the module. (The availability set consists of those variables
having requirement attributes which subsume all requirement

attributes of the module.)

2.1.2.10.3 Fulfills Statement

-The fulfills statement attaches requirement attributes

to a module.

Syntax

<fulfills statement> ::= <fulfil or fulfills>

<requirement attribute list>

<requirement attribute list> ::= <attribute identifier>
| <requirement attribute list> , <attribute
identifier>

<attribute identifier> ::= <transduction identifier>
| <constraint identifier>

<fulfil or fulfills> ::= fulfil | fulfills

Examples

o fulfills size constraint, cluster;

o fulfil name list ;

Semantics

A1l modules must have at least one transduction

identifier attached as a requirement attribute. All attribute

identifiers must be declared in the preamble to the subsystem

in which the module is declared.

2.1.2.10.4 Accesses Statement

The accesses statement is used to indicate which

environmental objects (chiefly peripherals) are -utilized by

a module.

Syntax

<accesses statement> ::= <acecess or accesses>
<environmental object list>

<access or accesses> = access] accesses

<environmental object list> ::= <environmental
object identifier>| <environmental object list> ,
<environmental object identifier>

<environmental object identifier> ::=<identifier>

Examples

e Access line printer;
e Accesses real time_clock, system disk ;
Semantics

For each environmental object there must be a unique

identifier for which the scope is the entire specification.

2.1.2.10.5 Receives and Transmits Statements

The receives and transmits statements are used to in-
dicate real time data activity such as is associated with

telecommunications, analog, and digital signals.

Syntax

<receives statement> ::3 <receive or receives>

<from clause>|<receives statement> ; <from clause>

<from clause> ::= <entire variable list> from

<environmental object identifier>

<transmits statement> ::= <transmit or transmits>
<to clause>|<transmits statement> ;

<to clause>

<to clause> ::= <entire variable list> to

<environmental object identifier>

‘<receive or receives> ::= receive | receives

<transmil or transmits> ::= transmit | transmits
<entire variable list> ::= <entire variable>

|<entire variable list> , <entire variable>
‘Examples

eBReceive weight from strain_gage 1;
eTransmits course_correction to ground_control,
Semantics

The scope of the environmental object name is the
entire specification. Note that components of structured

variables may not be transmitted or received.

2.1.2.10.6 Creates, Modifies, and Uses Statements

The creates, modifies, and uses statements distinguish
between input and output data variables. They may also in-
dicate how the two are related in a manner short of a rule of
correspondence. A complete rule of correspondence (algorithm)
is a task of detailed design and not of SSL.

Syntax

<ecreates statement> ::= <create or creates>
<create list>

<modiflies statement> ::= <modify or madifies>

<modify list>

<modify list> ::= <variable list><using clause>

[<modify list>; <variable listx<using clause>

<create list>::= <entire variable list><using clause>

|<create list>;<entire variable list><using clause>

<uses statement> ::= <use or uses> <variable list>

<create or creates> ::= create]creates

<modify or modifies> ::= modify|modifies

<use or uses> ::= use|uses

<using clause> ::= <empty>|using <variable list>

<variable list> ::= <variable>| <variable list >,
<variable>

Examples

ecreale employee_ array using name_ file;

emodifies count, fica rate wusing tax table,

salary scales;
emodily pressure-weight [4] , names [ﬁq] -initials;

euses cluster@, transaction_ file;

Semantics

The order of the variable references in any variable

list has no significance. .

The variables within a using clause or a uses state-
ment are input variables. A variable may be both input and out-
put. An input variable in a using clause indicates that its
contents are instrumental in determining the final contents of
the output variables within the same statement extending to the
first semicolon on the left. ‘

The presence of a variable in the output list of a
creates statement indicates the first use (in a dynamic sense)
of that variable. This does not mean, however, that the vari-
able may not appear previously in the sequential listing of the
SSL program. The implication of the creates statement is that
all variables in the output list are first computed or initia-
lized in the module being described. All variables declared
in the subsystem preamble must appear as an output variable in
exactly one creates statement within the subsystem unless it is

a release variable of an entry module.

All variables appearing in a creates, modifies or uses
statement (other than the output list of the creates statement)
must be in the availability set for the module. A variable is
in the availability set of a module if the transduction require-
ment attributes of the variable subsume all the transduction
requirement attributes of the module.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOK

2.1.2.10.7 IExecute Statement

" The execute statement designates modules which are
called by the module being described. It may indicate that
specific modules are called iteratively, conditionally, or

both.

Syntax

<executes statement> ::= <eXecute or executes>

<call 1list>|<executes statement>; <call list>

<call lisi> ::= <module reference list>| <module

reference list> <call list tail>

|<call list tail>

<call list tail> ::= <iteratively clause >

| <conditionally clause>

<iteratively clause> ::= iteratively <module

reference list> | iteratively <call list tail>

<conditionally clause> ::= conditionally <module

reference list>

<execute or executes >::= execute|executes

<module reference list> ::= <module reference>

| <module reference list> , <module reference>

<module reference> ::= <concrete reference>

| <virtual reference>

] —
2-53 £ 4

<¢onecrete reference> ::= <module identifier>

<virtual reference> ::= <subsystem identifier>

<module identifier><release variable group>

Examples

e ILxecute matrix multiply, cluster-group (pointer@);

® Execute iteratively suba, subb;

conditionally subc, subd, sube;

e Ixecutes sqrt; iteratively cos conditionally sin;

Semantics

The order of module identifiers in the module reference
lists is not significant. The domain of either an iteratively
or conditionally clause extends to the next semicolon. An

iteratively clause may overlap another clause.

Presence of a module identifier in a iteratively clause
connotates that it is called from within a loop. Presence in
a conditionally clause connotates the module is not always
called. 1If present in neither, the module is called uncon-

ditionally but not from within a loop.

A concrete reference is a call to a module within the
same subsystem., A concrete reference may nevef be to an entry
module. A virtual reference is a call to a module of a
different subsystem and must always be to an entry module.

Within the release variable group, the local variable
format must be used for variables never before defined. A
variable may have been defined in the preamble to the sub-
system or in the last module statement. The entry module
to which the virtual reference refers must have the same
release list with respect to number, order, and type of
variables. All variable types used in a virtual reference

release list must be either intrinsically defined (boolean,

real, text, etc.) or global types.

2.1.2.11 Subsystem Descriptions

Subsystems are independent software units, each with
its own requirement declaration. Subsystems may not share
global variables but communicate via the release group var-
iables of virtual references and entry modules. The only
identifiers with scope greater than a single subsystem are
global type identifiers, environment object identifiers,

subsystem identifiers, and function identifiers.

Syntax

<subsystem description> ::= <subsystem preamble> ;

<module description list> end

<module description list> ::= <module description>
| < module description list>; <module

description>

<subsystem preamble> :!:= <preamble declaration list>
| subsystem <subsystem identifier> ; <preamble

declaration list>

7—
y 4

<gubsystem identifier> ::= <identifier>

<pfeamble declaration list> ::= <preamble declaration>
l<preamble declaration list> ; <preamble

declaration>

<preamble declaration> ::= <requirement declaration>
| <type declaration>|<variable declaration>

| <constant declaration>

<gubsystem description list> ::= <subsystem
description>|<subsystem description list> ;

<gsubsystem description>

<specification> ::= <subsystem description list>

end

Example

Requirement transduction sort descend; input n,

sort_array; output sort array end,

Variable sort array:array [ﬁ..lOOO] of real,;
for sort_ descend;
subjectto sort_array[}] >0.0 forall i =

[i..n-l] ;

n:1..1000; for sort_ descend;

Module sort;

fulfills sort_descend;

accesses card reader, line printer;
creates n, sort_array,

modifies sort_array using n, sort_array,;

satisfieé sort_array[ﬁ] >= sort_array[§+i]

forall i = [1..n-1]

Semantics

Fach subsystem must have a requirement declaration
that contains at least one transduction identifier and one
output variable. There must also be at least one module

description. The first subsystem declared (called the ''main"
subsystem) does not have a subsystem identifier; all others

must have a unique identifier. The scope of the subsystem

identiflier is the entire specification.

The nonterminal symbol <specification> is the
distinguished symbol of the SSL grammar.

2.1.3 Example

The example of this section was selected to demonstrate
hboth Lhe descriptive level of SSL and as mary language elements
as possible. The requirement of the problem may be stated as
foHyws[S]:

"A program is required to process a stream

of telegrams. This stream is available as a
sequence of letters, digits and blanks on some
device and can be transferred in sections of
predetermined size into a buffer where it is to
be processed. The words in the telegram are
separated by sequences of blanks and each
telegram is delimited by the word 'ZZZZ'.

The stream is terminated by the occurrence

of the empty telegram, that is a‘telegram
with no words. Each telegram is to be pro-
cessed to determine the number of chargeable
wofds and to check for occurrences of over-
length words. The words 'ZZZ%Z' and 'STOP' are
not chargeable and words of more than twelve
letters are considered overlength. The

result of the processing is to be a neat
listing of the telegrams, each accompanied

by the word count and a message indicating

the occurrence of an overlength word.,"

To complete the problem statement, several assumptions are
neccessary. The following alternatives were selected for the

purpose ol this exposition:

3!

° The character stream from which the telegrams
are constructed resides on a drum having fixed
length records; the record length itself is left

as an implementation option,.

° The chargeable word count is the value to be

printed and overlength words count as one word.

™ If a physical end of file is encountered before
the logical end of the data stream, an error

message and the partial telegram is printed.

The software is organized into four modules as indicated
by Figure 2-2. The purpose of each module is given in Table
2-7. Tigure 2-3 contains the SSL description of the telegram
processor. The right margin of the statement listing contains
reference notes to subsections containing detailed descriptions

ol the language elements used.

A careful examination of Figure 2-3 will indicate an
interesting application of the subsystem capability. The
subroutines GET_CHAR and FILL_BUFFER occupy a separate sub-
system with the sole purpose of handling file I/O. The char-
acleristics of the device on which the telegrams are stored

are cencapsulated within these two modules.

LINE_

GET_TELEGRAM PRINTER

¥ 4
LINE_
GET_WORD PRINTER
GET_CHAR
7
DISK FILL_BUFFER

NOTES:

“A" CALLS uan

A | A" CALLS "B"”
CONDITIONALLY

ZYcLicaLLy

T—(®

“A’ USES SYSTEM SERVICE “B”

SAI-0312

Figure 2-2 Module Structure Chart for Example

9

2-60 g 4

TABLE 2-7

MODULE

GET TELEGRAM

GET_WORD

GET_CHAR

FILL_BUFFER

MODULE DESCRIPTIONS FOR EXAMPLE

PURPOSE

Collects words belonging to each
telegram and prints them in a neat

~manner along with the chargeable

word count.

Collects characters into words and
prints error messages denoting over-
length word or physical record end
of file.

Returns the next character in the

telegram file.

Enters the next physical record

from the drum into the character buffer.

] —
2-61 4

REPRODUCIBILITY OF T3

/* hepinning of main subsystem preamble */

ORIGINAL PAGE IS POUR

2.1.2.3

reurenent

saviahle

epd: /*

/* main
/* print

module ¢

/* suhrou
/* words

transductinns
collect in print;

output ‘l
telegram, charge_counﬁf’ 2.1.2.5

end}
telegram: text;
for print;

subjectto charge_count 20
word_count;integer;

charge_count:integer; :}

for print; TGRS
subjectto word_count » charge_count; - L 2,1.2.6)

word.array 1%] oi char; - 2.1.2.6.2.1 S
for p11nL)

eof flag: boolean. -
for print { 2.1.2.6.1.1)

end of main subsystem preamble */

routine to collect words and */
telegram with chargeable word count*/

et _telegram:

fulfills print;

creates telegram, charge_count using word;
¢reates word_c.unt; '

modifies word_count;

uses eof_flag;

accesses line_printer; 2.1.2.10
executes cyvclically get_word:

satisfies

eof_{lag or word_count = 0
end: -

tine &0 collect characters into */
*/

module get_word: { 2.1.2.10)

fulfills collect; S
executes cyclically i _o.get_ char(a char:char;eof flag). 2.1.2.10.1

creates word, Pof*flag,

nccesses 11ne printer /*prints error messages */ 2,1.2.10.4
- p— .2.10.

end; /* end of main subsystem */

Figure 2-3 SSL Description for Example

-y
V' 4
262 /I/ N

/* beginning of i_o subsystem preamble */

subsysitem i_o; : { 2.1.2.11)

requlirement

input character_file; { 2.1.2.5.1)
transductions }_;7 N

read in separate; f—z-l—2-5 >
. output a_char, eof_flag .1.2.5,

end;

.

/* parameterize record length */
constant record_length = integer;

type character_record = array [ﬁ..record_lengtﬁ] of char:

variable character_file:sequence 9f character_record;e—
for read;
buffer:character_record;
for separate;
a4_char:@char
{of separate;

char_index:1..record-length;

T N
for separate; - . 2.1.2.6.1.3;

eof_ flag:boolean;

for separate «— 2.1.2.6

end: /* end of subsystem preamble */

/* subroutine to fetch next */
/* character from file */ .

entry t _char har; f fla ;

entry gel_char (a_char; eof_flag) (2.1.2.10.1)
fulfiils separate;
executes conditionally fill_buffer; 2.1.2.10.3

modifies char_index;

crentes a_char using buffer Echar_indegj , eof flag;
creates character_file, char_index;
satisfies eof_flag implies a_char = buffer [?har_inqexj
end:

-
/% subroutine to fetch next physical */
/* record from character file */

mndule fi11l_buffer;
fulfills read; . {2,1.2.10.3)
assumes char_index = record_length;. N
fﬂSES £8 disk; ——————_*_——‘_M_—____~_————~———__ 2.1.2.10.2
creaibs buffer, eof_flag using character fileg, ; e
satisfies —
eof_ flag implies buffer = character_file@
. end Y -
. % - —~{ 2.1.2.9.2)
end /* end of subsystem ¥/

end; /¢ end of specification */

Figure 2-3 SSL Description for Example (continued)

2-63 y 4

2.2 SEMANTIC DESCRIPTION OF SSL

Our semantic description of SSL is in terms of sets and
sol functions grouped into n-tuples. The initial construct is
the Vertex Correlation Tuple which forms the basis for definition
of a single subsystem of the softwaré structure. This tuple con-
sists of a set of nodes, some of which have module names attach-
ed. Virtual nodes do not represent program modules, but evoca-
tions of entry nodes of separate subsystems. Modules are repre-
sented by concrete nodes. Special types of concrete nodes,
called entry nodes, are a distinctive characteristic of sub-
systems other than the main subsystem and have special properties.

F'irst, they must have attached module names, so they can be ref-
erenced by other subsystems. Second, (as we shall see in the Re-
quirements Graph) their predecessor may only be the root node of
the subsystem which is not permitted an attached module name.

Vertex Correlation Tuple

x = (N,C,V,G,Z,M,mod)
where
(1) N = a finite set of labeled nodes
(2) C = a subset of N called concrete nodes
(3) V = a subset of N called virtual nodes; VAC =90
(4) G = a subset of C called entry nodes
(5) Z = a diétinguished node called the root
(6) M = a finite set of module names
(7) mod : N - M: a module name mapping function

(a) If neC, then cardinality (mod (n)) = 0 or 1.

(b) If neG, then mod (n) # ¢; entry nodes are required
to have an attached module name.

(c) If neV, then mod (n) # ¢; virtual nodes are required
to have an attached module name. ,

(d) If G # o, then mod (Z) = &; the root nodes of sub-
systems other than the main subsystem are not per-

mitted to have attached module names.

s
2-64 vy

[

The module mapping function (mod) implies:
(1) Not all concrete nodes have an associated module
name.
(2) Module names associated with virtual nodes are
not necessarily unique; each evocation of an entry

node is represented by a distinct virtual node.

The nodes in x will be collected into a weakly-connected
digraph based on a mapping of nodes to subsets of requirements.
(For reasons of clarity and stand-alone interpretation, we are
using '""requirements'" in the sense we used "transductions'" in
the previous part.) To accomplish this, the requirements are
partially ordered by implication. If R is a set of require-
ments, ry, Ty eR, we write'rl T, (read "r1 is implied by rz”).
For example, consider a line editor. The requirements are:

edit, search file, delete_line, add line
The implications between these requirements are as follows:

(1) delete _line < edit

(2) add _line < edit

(3) search _file < edit

(4) Search_file < delete_line

(5) search file <

(6) delete_line ¢ add_line, add_line gdelete_ line:
i.e., {delete_line, add line} is unordered.

add_line

With nodes mapped onto subsets of a set of partially
ordered requirements, it is possible to define the predecessor
relationship between nodes by a function. The function (called
simply the predecessor function) requires that rg <1y in order

for n, to be a predecessor of n, where ry is a certain require-

1
ment attribute of n, depending on Ty

The Requirements Graph

where
(1)
(2)

(3)

(4)req:N+2R;

(5) pr:N-28

T = (x,R,B,req,pr)

(a)
(b)

(a)
(b)

(e)

(d)

(e)

()

(g)

"If n epr(nz) then we define (nl,nz) to be adja-

= A Vertex Correlation Tuple

a finite set of labeled requirements, parti-

ally ordered by implication

= a base set of R; if rleB, thenlﬁ/rz,
rzeR, Ty # T, such that T,<T,

= the requirements mapping set function; a sub-
set of R is associated with each node

req(Z) = B
If n € N then req(n) # @
=" the predecessor set function

pr(2) =9¢; if n # Z then pr(n) # &

1
cent in a digraph sense
If rzsreq(nz), nlepr(nz) then there exists

r ereq(nl) such that Ty < ry

1
If nl,nzepr(nS), rlereq(nl), rzsreq(nz) then

T £ To, Ty £ ry, i.e., the requirement at-
tributes if taken one each from the predecessors

of a node are unordered

If nlepr(nz) then nleC; i,e., virtual nodes may

not have successors

If n3eV, nlepr(nB), nzepr(ng) then n; = n, #o;
i.e., virtual nodes have exactly one predecessor

If nlepr(nz), HZEV then req(nl) = req(nz); i.e.,

| the same as those of the creating node. These attributes de-

virtual nodes have the same requirement attri-

butes as their predecessor
(h) If neG then pr(n) = {2}

In addition to modules at graphical nodes, the other
resources available to a software system are environment objects
and data objects. Data objects are created at one and only one
point within the system for use elsewhere; environment objects
arc not '"created" but may be used or '"accessed'" at various points
wilhin the structure. A further distinction is that data ob-
Jecets, but not environment objects, have requirement attributes.

The requirement attributes of data objects are not necessarily
limit{ where within a structure a data object may be used.

Objcect Distribution Graph

A= (rm, Q, E, cr, drq, acc)

whore

(1) 7 = A Requirements Graph

(2) Q@ = DUL a finite set of labeled data objects;
DAL =¢; 1if deD then d is called a global data
object; if deL then d is called a local data
object

(3) I = a finite set of labeled environment objects

(1) cr:C+2D = object creation set function

(a) If deD, decr(nl), dscr(nz) then oy
an object is created at one and only one node

= Dy i.e.,

(b) Il deD then decr(n) for some n: i.e., all data
objects are created within the system

(9) drq:D*ZR = data requirements set function

. I ; . .
(6) acc:C»+2° = environment access set function; ecacc(n) if

cecll and e is accessed at concrete

node n ’/
2-67 &

B |

Thus far, the constituents of a software structure that

have been developed are:

(1) Nodes with attached modules

(2) Node interconnections based on requirements order-
ing

(3) Data objects created and environment objects

accessed.

In order to complete the interconnection graph, it is necessary
to depict the utilization of data objects. A global data obj-

ect is assigned requirement attributes via the drq function and
these attributes are compared to those of potential user nodes.
If n is a concrete node then d, a data object, is available for

use only if for each r,ereq(n) there exists rzedrq(d),such that

r, <rypordisa membér of the release set of n or an immediate
successor of n. In effect, data object requirement attributes

place an upper bound on the generality of modules permitted use
as well as limit the object's scope to specific segments of the

graph.

Subsystem Structure Graph
r = (A, rel, av, use)

where

(1) A = an Object Distribution Graph

(2) rel:(NdN)ézQ = release set function;
if rel(nl,n2) # ¢ then nlepr(nz); i.e., ng and n,
must be adjacent in a digraph sense if n, may re-

lease objects to n,
(3) ' av:N+2Q = availability set function:

(a) If deD, neC, deav(n), rlsreq(n) then r, < Ty
for some rzedrq(d); i.e., each requirement
attribute of a concrete node must be sub-
sumed by at least one of the requirment
attributes of the global data object.

4
2-68 &

REPRODUCIBILITY OF THE

OO,

ORIQINAL PAGH 1§ POOR

(b) If deL, nleN, deav{nl) then either derel
(nl,nz) or derel(nz,nl); i.e., local data
objects may be shared only by pairs of nodes

that are adjacent in a digraph sense.

(c) 1If deav(n), neV then derel(nl,n) where
pr(n) = {nl}; i.e., a data object available at
a virtual node must have been released by its

parent.

(d) If derel(c,v) then deav(c) where ceC, deQ,
i.s., concrete nodes may release to virtual
nodes only those data objects which are ele-
ments of the availability set of the concrete

node.

(4) use:N+2D = usage set function; deuse(n) if deav(n)
and d "is used'" at n as determined by the

designer.,

The definition of the System Structure Graph is the final
step in describing the semantics of SSL. The ultimate goal is

an automated version of SSL which will:

°® Permit partial system definition with con-
sistency checking at the appropriate level
of detail, and

) Participate in the design by supplying derived
information and indicating the next logical steps

in an incremental development.

Accomplishing this will depend on discerning higher order rela-
tionships among the functions describing SSL. This involves
identifying theorems and algorithms that derive the set defined
by one function through the sets defined by other functions.

A subsequent section represents our efforts in this direction.

2-69 l’/_——J

2.3 OVERVIEW OF THE SSL TRANSLATOR

In this section we give the formal software requirement
for the translator, the functional design, and notes on detail-
ed design. Significantly more detailed information exists on
the functional design, including a description in the SSL lan-
guage, than that presented here. The format and notation used
Tor the functional design description in this report is more

conventional.

The notes on detailed design concentrate on the more

critical semantic and structure analysis phase. Included are:

o A method for determing the legitimacy of
data/module interconnections

° A method for ordering modules in a manner
that facilitates module interconnection

and recursive analysis

° A method for constructing a matrix over which
module interconnection and recursive analysis

can be performed

° Rules for determining which modules are poten-

tially recursive.

2.3.1 The Formal Software Reguirement

In our terminology, the software requirement is a de-
tailed declaration of the actions to be performed by a single
software package. It includes what is to be done as well as
initial estimates of "when'" and "how well" wvarious actions are
to bhe performed. The constituent parts of the software regquire-

ment decomposition are:

Direction -~ A general statement of the boundaries

of the problem

Input - Data or documents available to the soft-
ware system or subsystem from external

sources

7
2-70 g 4

Transductions - A list of processing steps to be per-
formed, each of which translate a

stimulus into a response

Output - Data or documents produced by the soft-
ware for external purposes

Constraints - A list of capacities, design objectives,
or resources to be observed

Preconceptions - A list of specific design alternatives

to be observed

Implications ~ A binary relation existing between
certain pairs of transductions, indi-

cating which are substeps of others.

Of the seven divisions, the constraints and preconceptions are
optional. TIf all transductions are independent, the implica-

tions may also be omitted.

The level of detail required for the SRD is generally
greater than could be expected of a casual user of data pro-
cessing services. For this reason, it is expected that the SRD
will be completed by an experienced computer specialist after
reviewing the user requirments. Completing the SRD is the be-

ginning step of functional design.

Figure 2-4 depicts the SRD for the SSL translator.
There are three major segments within the transductions: pro-
gram analysis, structure analysis, and report summarization.
The implication relations between tranductions is represented
in Figure 2-4 by indentation within the transduction division

rather than within a separate implications division.

The only system (or requirement) level input is the SSL

source. language. System output consists of eight items. In

addition to the source listing, syntax and semantic errors, these

consist of:

Module concordance - An alphabetical list of all modules;
for each module the following information 1is
given: 1) modules it calls, 2) modules which
call it, 3) variables referenced, 4) environmen-
tal objects referenced, and 5) requirement at-

tributes

Variable concordance - An alphabetical list of all
variables; for each variable the following
information is given: 1) requirment attributes

and 2) modules which reference it

Requirement concordance - An alphabetical list of all
requirment transductions and constraints; for
each, the following information is given:

1) modules to which attached as an attribute,

2) variables to which attached as an attribute,
3) (for transductions) the transductions immed-
iately above and below it in a partially ordered

sense

Summary - A summarization of the number of modules,
variables, errors, etc. by subsystem

Index ~ A cross reference guide to facilitate access
to parts of the SSIL generated report

€L-2

///’r DIRECTION

INPUT

SOURCE: A set of logically connected SSL statements.

TRANSDUCTIONS

TA PROG_ANALYSIS: Analyze the SSL program
TB_SYNTAX: Analyze the program syntax
TC_TOKEN: Reduce the next lexical token
TD CARD: Read and print the next card image

TC TABLES: Construct dynamic tables
TD _REQ ST: Process requirement statement
TD_CONS_ST: Process constant statement
TD_FUL ST:* Process fulfills statement
TD_TYPE ST: Process type statement

Figure 2-4. SRD for SSL Translator

Implement an automated translator for Software Specification Language (SSL).

TC_SYN ERR: Perform syntax error recovery procedures

TE_RECORD: Process record and digital forms

7%

¥L-C

///” TF_ARRAYS: Process array forms ~
TF_SUBRANGE :

Process subrange forms
TF_SCALARS: Process scalar forms
TF_BASIC: Process basis type forms
TF_POINTER: Process pointer forms
TE_FILE: Frocess file and sequence forms
TF_ARRAYS, TF SUBRANGE, TF_SCALARS, TF BASIC, TF POINTER
TD_VAR _ST: Process variable statement
TE FOR: Process for clause
TE POLISH: Analyze a polish string
TE_RECORD, TE FILE
TD_MOD _ENT_ ST: Process module and entry statements
TF BASIC
TE RELEASE
TD_SUBSYS_ST: Process subsystem statement
TD_EXEC _ST: Process executes statement
TE_RELEASE: Process release form
TF _BASIC
TD _USES_ST: Process uses statement
TE _DATA LIST: Add items to data list
TD_MOD_CR_ST: Process modifies or creates statement
TE_DATA LIST
TD_XMIT RX ST: Process transmit or receives statement
TE_DATA_LIST

TD_ASUM_SAT ST: Process assumes and satisfies statement
TE POLISH ‘E /

Figure 2-4. BSRD for SSL Translator (continued)

G.-2

///lfTA—STRUC_ANALYSIS: Analyze the software decomposition structure

7

-

TB_ELEMENTS: Ascertain all elements are consistent within themselves
TC_SUB_DEF: Evaluate all subsystem definitions
TC_MOD_DEF: Evaluate all module definitions
TC_VAR DEF: Evaluate all variable definitions
TC_TYPE DEF: Evaluate all type definitions
TC_REQ_DEF: Evaluate all requirement definitions
TB SETS: Construct and evaluate all interelement relationships
TC_REQ VS REQ: Ascertain requirement definitions are consistent
TD_REQ_CON: Construct requirement concordance lists
TE MDR MATRIX: Construct a module/data/requirement matrix
TE_NEXT REQ: Find next alphabetically ordered requirement
TE _MOD_ATT: Construct list of modules to which requirement
attached
TE_SUP_ATT: Construct list of superstep transductions
TC_MOD_VS REQ: Ascertain module hierachy consistent with requirements
TD _MOD_VECT: Construct a module requirement vector
TD_CLOS_VECT: Perform closure over a requirement vector
TC_MOD_VS DAT: Ascertain modules use data consistent with reguirements
TD_AD VECT: Construct a variable avallability vector
TD_MOD_VECT, TD CLOS VECT
TD_DAT_CON: Construct data concordance list
TE_DAT_MATRIX: Construct data concordance list
TE NEXT DAT: Find next alphabetically ordered variable

TE_REFER: Construct list of modules reverencing
data object 7

Figure 2-4. SRD for SSL Translator (Continued) l

9L+4

o

2
£

TC_MOD VI MOD:

TD ORDER: Order modules by forward paths
TD MATRIX: Construct D* Matrix

TD_RECURSIVE: Perform recursive analysis

TE_POT RECUR:

TE_LAT HEAD: Mark latch and head modules

TD_INV_HIER: Construct inverse hierarchial list
TE_INV_MOD:

TC_REPORT GEN:

Mark recursive modules

Find next inverse call module
Generate report .

TD REQ_REPORT:
TD_DAT REPORT:
TD_MOD_REPORT:

Print requirement conccrdance
Print variable concordance

Print module concordance
Summaries and index report
TB_SVMMARY:

TB_TOC:

TA_REPORT:

Print summary of software report
Print table of contents for report
TC_MOD_LIST: Print modules in alphabetical order
TD_NAME PAGE: Print a single name and page number
TC_DAT LIST: Print variables in alphabetical order

" TD_NAME_PAGE |

TC _REQ_LIST: Print requirements in alphabetical order
TD NAME_ PAGE

OUTPUT

SOURCE_LISTING:

source listing
Figure 2-4.

SRD for SSL Translator (continued)

A line printer listing of the original SSL source
SYN ERRORS: SSL syntax error diagnostics interleaved with the

y 4

///’f TC_MOD VS REL: Ascertain module release sets are consistent

Ascertain module calling hierarchy consistent

7

0NaoYdEd

wod O EDVd Ty NIDIYO

T

17, d0 ALITIN

-
¥

|

LlL—2

////7 SEM ERRORS: A printed summary of all semantic incongruities
HIER LIST: A list (alphabetical) of all modules which includes modules
referenced, inverse hierarchy, data referenced, environment

objects referenced, and requirement attributes.

DATA LIST: A 1list (alphabetical) of all variables accompanied by the names

of modules which use them and requirement attributes assigned.

REQ LIST: A list (alphabetical) of all requirements cross referenced with

modules, variables, and other requirements

SW_SUMMARY: A summarization of the software which includes counts for

modules, variables, errors, etc.

INDEX LIST: A cross reference guide for facilitating access to parts of
the SSL generated report

IMPLICATIONS

(Implications are represented by indentation within the transductions substation.)

CONSTRAINTS

LANGUAGE: ANSI FORTRAN IV will be used to implement the translator

HOST MACHINE: The translator will be written in a manner amenable to trans-
portability; the host machines shall at least include the IBM

S360/65 and Univac 1108.
N — ST

Figure 2-4. SRD for SSL Translator (continued) l

2.3.2 Functional Design Overview

The module decomposition follows closely the requirement
decomposition of Figure 2-4. There are three phases. The first
phase analyzes the SSL source input and constructs a hierarchical
file cmntaining all object attributes and interrelationships.

The second phase analyzes the information within the hierarchi-
cal file for semantic errors, then geherates a report on the
software organization. The third phase prints a summary and

generates an index to the report.

Figure 2-5 depicts a high level view of the software
organization. The three phases depicted are executed once con-
secutively to produce the report from the SSL source program.
The block labeled "SSL Translator Main Program' is the control
program. The actions performed hy each of the phases is dis-

cussced in the paragraphs below.

The first phase (controlled by the block labeled '"Syn-
tax Analyzer" in Figure 2-5) is the source program analysis
phase. Its function is to read the source program and construct
the lile used in subsequent phases. The purposes of the princi-

pal blocks are as follows:

e Syntax Analyzer - The subroutines of this block
parse input source statements, emit syntax diag-
nostics and pass the parse trees (polish notation)

to the semantic analyzer

o Lexical Analyzer - The subroutines of this block
read and print the source statements; from the
source statements, the tokens. (numbers, reserved
words, delimeters, and identifiers) are collected

and returned to the syntax analyzer

o Semantic Analyzer - The subroutines of this sec-
tion collect the parse trees and, when one is
sufficiently complete, passes it to lower level

74
5-78 y 4

6.-2

SSL TRANSLATOR MAIN PROGRAM

SYNTAX ANALYZER STRUCTURE ANALYZER POST_ANALYSIS PHASE
3
i SEMANTIC ELEMENT SET SUMMARY INDEX
LEXICAL ANALYZER ANALYZER ANALYZER ANALYZER GENERATOR GENERATOR
|
9 \ l)
MODULE VAR TYPE)) SET REPORT RECORD
STATE. STATE. sTate,| |MODULES| | REQS. 1...] VAR'S. CONSTRUCTION GENERATION FORMATTER
\ \ Y \
MODULES VS. SUBSYSTEMS VARIABLES V& MODULE VARIABLE . .| REQUIREMENT
REQUIREMENTS VS. MODULES MODULES CONCORDANCE | | CONCORDANCE CONCORDANCE
SA1.0533

Figure 2-5.

Block Diagfam for SSL Translator

y

subroutines; the lower level subroutines called
by the semantic analyzer are differentiated by
statement type and each constructs a specific part

of the hierarchical file.

The second phase (controlled by the block labeled
"Structure Analyzer' in Figure 2-5) is where the software inter-
connections aré examined for consistency. Each element (sub-
system, module, variable, etc.) is examined first for internal
or self-congistency. Self-consistency includes each element be-
ing delined, referenced, and having all attributes assigned.
After clement analysis, set analysis takes place. Set analysis
involves testing the consistency of all interelement references.
This task is performed in two parts. The first part constructs
the interelement relationships in the form of a set of boolean
matrices. Semantic error analysis is carried out from the
matrices and their representation is converted to a list struc-
ture. This list structure is used in the second part of set

analysis to generate the software structure report.

The role of the second phase can be further clarified

by examining the function of each of the blocks in Figure 2-5.
o Structure Analyzer - Control routine for phase 2

° ILlement Analyzer - On a subsystem by subsystem
basis, the subroutines of this block examine the
various elements that comprize the subsystem for
intraelement consistency; the lower level sub-
routines that the element analyzer calls are dif-

lferentiated on the basis of element type.

® Set Analyzer - Control routine for set analysis.

U

) Set Construction - The subroutines of this block
construct a data base containing interelement de-
pendencies, and alalyze the dependences for seman-
tic errors; the lower level subroutines called by
set construction are differentiated on the basis
of element type pairs (modules vs. requirements,

‘subsystems vs. modules, etc.).

® © Report Generation - The subroutines of this block
generate the software structure report; the lower
level subroutines called by report generation are
differentiated on the basis of the various sections
of the report (modules, variables, etc.).

The third phase (controlled by the block labeled '"Post-
Analysis Phase'" in Figure 2-5) summarizes and prints an index for
the report previously generated. The major blocks of this phase

may be summarized as follows:

° Post-Analysis Phase -~ Control routine for the third
phase.
) Summary Generator - Prints a summary of the soft-

ware structure such as the number of modules,
number of variables, and number of errors per sub-

system.

® Index Generator - The subroutines of this block
generate a index list for each module, variable,
etc., including which page of the source listling

and concordance listings it occurred.

) Record Formatter ~ Prints a single line of the inde¥

which includes a name with page numbers.

2.3.3 Detailed Design Notes

Phase 1 of the translator is a standard parser combined
with data structure synthesis routines. Phase 3 is simply an
output editor. The crucial subset is phase two in which the

7
9-81 | y

TSRS = 4% e e vt e - “ . ARSI

interelement relations are analyzed semantically. The purpose
of this section is to expound both algorithmically and theoreti-

cally on some of these relationships.
2.3.3.1 Assessing Data Availability

Recall that requirement attributes are attached to both
modules and data objects as a means of providing requirements
traceability. A secondary effect of requirement attributes is
that they limit the availability of data objects; i.e., a data
object may not be used at a concrete node unless all the require-
ments attributes of its module are equal to or implied by re-
quirement attributes of the data object. Therefore, one might
expect a close relationship between the requirement attribute
functions (req, drq) and the availability function (av). This

rcelationship is expounded below.

Let R = Ty, Tg, -« - T be a set of requirements.Let
P(d) = (pl, Po, - .,pk) be a data object requirement vector
where:
1 if rj edrq(d) or r‘j <rg where r, € drg(d)
Pj = v
0 otherwise.
Let Q(n) =(q1: Aoy - = = qk) be a node requirement vector where:
1 if rj ereq(n), n ¢ C
qj =
0 otherwise.
Theorem Kk

For any n € C, d € av(n) if and only if ; a; = P(d) - Q(n),
Pronf (necessary) assume ne C and d € av(n). Théﬁ} by definition
of the av function, for any ry € req(n) there exists an T, in
drq(d) such that r

So qj=1 =>rj £ req(n) =>rj ivrk for some
r «« drg(d) => pj)

92T -
k =L

k
n a; = P(d) + Q(n).
i=1 '

The sufficiency part of the proof is carried out similarly.

END OF PROOTF

74
2-82 l

Note that the theorem applies only to concrete nodes
since virtual nodes, unlike concrete nodes, depend additionally

on the release function (rel).

2.3.3.2 Assessing Consistency of Data Usage

Data object usage at a module is dependent upon its
availability at that module. However, the two sets are derived
from different perspectives and féquire cross checking. Ano-
malies should prompt the designer to re-think the requirement
attributes assigned objects, a healthy exercist.

Let's begin by recalling that a data object, d, is not
eligible to be used at a module, n, unless d € av(n). Let D =
{d;, @5, - . ., d) be the set of data objects within the
system. For some node n, let U(n) = Up, Ugs o o vy um] ,

the usage vector, be a vector where

1 if di g use(n), n € C where C is concrete node

u, = ;y i=1,2,, m
0 otherwise.
Let W(n) = Wis Wou o o wm} , the candidate vector, be a
vector where
1 if di g av(n), ne C; i =1, 2, . . ., m
W, =

0 otherwise.
Given U(n) and W(n) the usage set assigned to node n is legiti=-
mate only if ‘
ui = ui - Wy ; i=1, 2, . . ., m
Furthermore, if the set is illegal, the culpable object is

identified by the element of U(n) for which the above test fails.

'/ RE?RODUCIBILY]\.‘YWQE‘Q_ TV‘E
ORIGINAL PAGS I8 3o

7 —
2-83 y 74

2.3.3.3 Ordering Modules for Analysis

The predecessor relation defined in SSL semantics only
partially orders the nodes (modules). There exists more than
one lotal order that adequately reflects the partially ordered

properties of

select a (total) ordering algorithm in order to perform analysis

in a deterministc manner.

The algorithm preserves the patural partial order of the

modules. Defi

ord(m)

pr(m)

n
#S

The algorithm
(1)
(2)
(3)

(4)

any nontrivial module set. It is necessary to

nition of the following terms are necessary:

A unique module called the root or entry module
(of a subsystem)

The order number of module m; initially zero for
all modules

The predecessor function for module m as defined
in the SSL semantics; pr—l(m) is the successor
function

The set of modules

The cardinality of the set S

is as follows:

Let S1 = e ; set ord (e) = 1
Let p =1, k =1
If m e S, and there exists mg & NN (pr"l(mp)-sk>,

then

(a) For each m_ such that p < ord (mr) < #8y,
increase ord (mr) by 1

(b) Define ord (mq) =p + 1, Sk+l = Sk\J (mq>

(c) Increase p and k each by 1

(d) Return to step (3).

If p >1, decrease p by 1 and return to step (3);

otherwise stop.

7
9-84 y 4

- ar

This algorithm assigns an order number to each module. Further-
more, the order numbers increase monotonically along forward
(non-recursive) calling paths. Figure 2-6 illustrates the order
number assignments for an arbitrary block diagram. Note that
moTe than one order assignment combination fulfills the criterion

of increasing order numbers along forward paths.
2.3.3.4 Construction and Closure of Dependency Matrices

A dependency matrix (or adjacency matrix) is an n x n
boolean matrix where there are n modules. Rows and columns must
be ordered equivalently to the order numbers acquired from the
algorithm given above. The elements of the dependency matrix,
D, are as follows:

true if module of order i references module of
order j

d. .
13

false otherwise
Once constructed, the rows of D yield ""called" lists and the

columns ''called by" lists.

Closure of D - In the closure of the matrix D (denoted
D+) an element dij will be true if there exists a sequence in D,

d. ,d . d4d_, . . .,d ., all of which are true.
ip pg ’ gr 5] + th
One way of deriving D is by raising D to the n nOwWer .
The algorithm given here is much more efficient.
D: array [} ..on, 1. . n] of boolean;

i, J, k: dinteger;

for j = 1 to n do
begin
for i = 1 to n do
, if D [i, j| and i # j then
for k = 1 to n do
D[i,k] =0 [i, k] or D [3, 1]
end
end;

¥

A

H@}

ol

ANVA

2.3.3.5 Recursive Analysis Using Dependency Matrices

It has already been noted that "called" and '"called by"
lists are explicitly represented in D. What remains is the
derivation of the recursive information required for the module
concordance of the previous section. Specifically, the deter-
mination of head modules, latch modules, and potentially recur-
sive modules. (A latch module, in the context of recursive
analysis, is one that makes a recursive call. A head module is

one to which a recursive call is made).

Theorem
If dij = true and j < i then
i is the order no. of a latch module and j is the order

no. of a head module of a recursive subsystem.

Proof

Assume ord(ml) = i and ord(mz) = j. Since dij = true,
mq calls m,, - If there exists a forward calling path from m, to
my then the call of m,, by my is clearly recursive with my being
the latch and m, being the head. So, assume there is no forward
path from m,, to m,. If there does not exist a forward path from

1
m,, to my then the path (ml, m2) is a forward reference. This

implies ord(m.) <j, contradicting the original assumption.
1

End of Proof

Figure 2-7 is the D matrix for the dependency chart of
Figure 2-6. It illustrates that 4 (Module I) is a latch module
and 2(Module E) is a head module.

Theorem
If di: = true and 1 = ord(m) then m is potentially
recursive (i.e., there exists a path from m back to itself).

Proof '

By definition, d{i is true if there exists a sequence,
dir’ drs’ ey dti’ all of which are true. This implies the
existence of a reference path, m, my, My, ..., m, thus m is

potentially recursive.
End of Proof

58-2

O X0 N OO H WM

Figure 2-7.

4 9 6
t t

t

t

An Example D Matrix

SAL-0071

Figure 2-8 is the D+ matrix for the dependency chart of
Figure 2-6. It illustrates that 2 and 4 (Modules E and I) are
potentially recursive.

Note that the existence of a recursive path does not
necessarily prove that modules on the path are recursive. During
executiaon, the recursive path may never be traversed. Note also
that a recursive call made unconditionally by a latch module is
a potential infinite loop.

The techniques above were discussed in the context of the
module concordance. A subset of the same methods would apply
also to the data concordance and to the analysis of the require-

ment transductions.

06-¢

tom\lm(n-bw(\)..s.

2 3 4 S 6 9
i t t t t t
® t
t -t
f ®
t
Figure 2-8. An Example D+ Matrix

S

3. DATA BASE VERIFIER SUBSYSTEM DESIGN

As a result of the study and analysis conducted under
SOW task Phase A, item 3, we performed a high level design
(i.e., software development through the requirements and func-
tional specification stages) of a data base verifier subsystem
(DBVS). The functions of this data base verifier subsystem are
analysis of the Data Manipulation Language (DML) commands
within a FORTRAN source deck collection of pertinent descrip-
tions of the stored data base as viewed by the program(s), and
printing of the subschema information in a user oriented for-
mat. The accomplishment of these functions was the goal of

each step in the DBVS software design.

At the requirements stage of the development of the
DBVS, we produced a Subsystem Software Requirements Document
(SSRD). This document was written in accordance with the
requirements methodology that we recommended as a result of
analysis performed during this contract period (cf. Part I,
subsection 2.1 of this report). Subsection 3.3 contains the
SSRD which formed the basis of the functional design of the
DBVS. For the specification stage, we used the Software Speci-
fication Language (SSL) that was designed under this contract
and which is explained in Part I, subsection 2.2 and Part II,
gection 2 of this final report and in the special report,

""SSL-A Software Specification Language.'

A general description of the two main phases of the
data base verifier, DML Statement Processing and Subschema
Information Processing, are presented in subsections 3.1 and

3.2. These subsections are outlined in Table 3-1.

7/ —
3-1 k J"

1.1

TABLE 3-1.

DBVS Description Outline

Data Base Verifier Subsystem

DML Command Processing

1.1.1
1.1.2
1.1.3

DML, Statement Recognition
DML Statement Parsing
DML Statement Components Storage

Subschema Information Processing

1.2.1

Subschema, realm, set, record,

privacy, or error information

retrieval

Subschema, realm, set, record,

privacy, or error information

tabulation

Summary Reporting

1.2.3.1 Subschema, realm, set,
record, privacy, or

error information printing

A4

LIPS e § I G

3.1 DML STATEMENT PROCESSING

As each source statement is read, the first label
(after the statement number field) of a non-comment statement
ig isolated by the DBVS using the information in Table 3-2.
If this label is succeeded by a left parenthesis, the DBVS com-
pares this label with the keywords contained in the FORTRAN
DML, Command Table (cf. Table 3-2). When a match is found, the
label is entered into the keyword sequence, and parsing of

the statement continues. (During parsing of the DML statements,
the identified components of each clause or statement, i.e.,

the keywords, identifiers, or list items, are placed in three
sequences. The sequence types were chosen because this type
may vary dynamically in length in response to the variance of
the number of keywords, identifiers, and list items within a
DML statement).

Within each DML clause, identifiers (which occur to the
right hand sidé of the equal sign) must be isolated and entered
into the identifier sequence. These identifiers could contain
CODASYL keywords as shown in Table 3-4 or one of the items
(some of which contain keywords) in Table 3-35.

Some DML statements such as FETCH, MODIFY, etc. allow
specification of 1list items which must be isolated and entered
into the list item sequence. According to CODASYL, the items

fall into the two categories described in Table 3-6.

The processing of DML statements including the con-
struction of the keyword, identifier, or list item sequences
continues in -the manner described above until the entire state-
ment has been parsed. Then the appropriate module is evoked
according to the DML statement and its associated subschema

information.

LIy OF ThE
REPRODUCIEILLS =

N

ORIGINAL PACE I 2

] —
y 4

CHARACTER TABLE

TABLE 3-2.

i 1 o o B

m o= Rh M 3=

i/

TABLE 3-3.

FORTRAN DML COMMAND TABLE

1. TFETCH 9. ORDER
2. TFIND , 10. INVOKE
3. GET 11. READY
4. STORE 12. FINISH
5. MODIFY 13. ACCEPT
6. ERASE 14. USE
7. CONNECT 15. PRIVACY
8. DISCONNECT 16. QUIT
TABLE 3-4. ALLOWABLE KEYWORDS WITHIN DML STATEMENTS
1. SUBSCHEMA 14. DUPLICATE 27. INSERT
5. SCHEMA 15. ANY 28. REMOVE
3. ALL 16. OFFSET 99. STORE
4. SET 17. FIRST 30. MODIFY
5. REALM 18. LAST 31. FIND
6. UPDATE 19. NEXT 32. GET
7. RETRIEVAL 20. PRIOR 33. ERASE
8. EXCLUSIVE 21. CURRENT 34. TFETCH
9. PROTECTED 22. OWNER 35. ORDER
10. CONCURRENT | 23. RSE 36. CONNECT
11. ERROR 24. TUSING 37. DISCONNECT
12. RECORD 95. DISPLAY 38. OTHER
13. KLY 26. PRIVACY 39, STATUS

] —
y 4

TABLE 3-5. IDENTIFIER SEQUENCE ELEMENTS

NOTE: These CODASYL definitions are predicated on the working
document, '"FORTREV,'" of the ANS committee for the proposed
revised FORTRAN, (X3.9). This document was printed in the
March 1976 issue of SIGPLAN Notices under the title, '"Draft
Proposed ANS FORTRAN."

® Character constant - is an apostrophe followed by
a non-empty string of characters followed by an
apostrophe.

e Character expression - is used to express a charac-
ter string consisting of a character primary alone
or concatenated with other character primaries. A
cha}acter primary may be a character constant, sym—
bolic name of a character constant, character vari-
able reference, character array element reference,
character substring referencé, character function
reference, or character expression enclosed in paren-
theses (cf. FORTREV 75-09-26, Section 4).

® Character variable - FORTRAN variable of type
character.

e Data base key - Integer variable. (FORTREV's

' definition of variable excludes array elements.)

e Data base name - record name, set name, realm name,
or character expression. (The first 3 are names in
the subschema being used.)

e Data base names - data base name.

e Error phrase - contains keyword error and either
statement number or subroutine (with arguments if
applicable) name.

e Retain - conta;ns keyword RETAINING and either
1) the keyword RECORD, REALM, SET or 2) keyword SET
and appropriate data base names, or contains keywords
RETAINING and MULTIPLE.

3-6 y 4

Record selection expression - The various record‘
seléction expressions are given in Table 3-12 under
the explanation of the FIND statement.

Statement number - consists of one to five digits
Subroutine name - consists of one to six letters or
digits, the first of which must be a letter.

Usage - one of each of the following groups of
keywords: 1) PROTECTED, EXCLUSIVE, CONCURRENT

2) RETRIEVAL, UPDATE. '

TABLE 3-6. LIST ITEM SEQUENCE ELEMENTS

Input list item which must be one of the following:
variable name, array element name, character sub-
string name, array name, or array block item (cf.
FORTRLEV 12.8.2.1).

Implied-DO list item consisting of one of the
following: a variable name, an array element name,
a character substring name, an array name, Or an
array block item (cf. FORTREV 12.8.2.3).

vvvvv

3.2 SUBSCHEMA INFORMATION PROCESSING

After the identifier, keyword, and list item
sequences have been constructed, the various components
of the DML statement containine subschema, REALM, SET,
record, privacy, and error information must be extracted
from these sequences. This information is then appropri-
ately entered into one of the following tables: subschema,
realm, set, record, or error status. The record description
for each of these tables is given in Tables 3-7 through
3-11, respectively. These record description tables contain
specific information about the subschema which can be col-
lected from the DML statements. Moreover, the printing of
these tables in a highly readable format will provide the
user with different descriptions of the data base components
which were established by the DML statements. With these
labels, the user can cross reference the information and
thereby determine the consistency of the data base descrip-

tions within the bounds of the applications program.
3.3 FUNCTIONAL REQUIREMENTS FCR THE DBVS

As stated previously in Part I of this report, the
specifications for the CODASYL DML are not in final form.
The pertinent section of the CODASYL FORTRAN Data Base Fac-
iliily Journal of Development (November 25, 1975), written by

the Data Base Manipulation Language Committee, was presented in
the January 1976 monthly progress repott in Appendix A. It
should be used as a reference for understanding the subsystem
software requirements document subsequently presented in

F'igure 3-1.

REPRGUUCIBILITY GF THE
ORIGINAL PAGE I8 POOR

TABLE 3-7. SUBSCHEMA TABLE RECORD DESCRIPTION

Item Name

Subschema Name
Schema Name

Privacy Key (assoc. with'
INVOKE or PRIVACY state-
ment)

DML Command Indicator
Indicates reference by
one of the following
DML commands:

INVOKE
PRIVACY
Line Number

Indicates line number of
DML command in listing

Data Type

(cf. FORTREV,
Section 4.8.1)

(cf. FORTREV,
Section 4.8.1)

(cf. FORTREV,
Section 4.8.1)

Integer constant
Integer data

[

Integer constant
Integer data

TABLE 3-8. REALM TABLE RECORD DESCRIPTION

Item Name

Realm Name
Set Names
Usage indicator

Indicates one item from
each of the following
groups:

1. PROTECTED, EXCLUSIVE,
CONCURRENT
2. RETRIEVAL, UPDATE

Statement number or subroutine
name for error handling

Record Name
Subschema name
Privacy Key (assoc. with

PRIVACY statement)

DML Command
Indicator

Indicates reference by
one of the following
DML commands:

READY, FINISH, FIND,
FETCH, OR PRIVACY

Line Number

Indicates line number of
DML command in listing"

Data Type

Integer variable
Hollerith data

Integer variables
Hollerith data

Integer constant
Integer data

Integer variable
Hollerith data

Integer variables
Hollerith data

{cf. FORTREV,
Section 4.8.1)

(cf. FORTREV,
Section 6.2)

Integer constant
Integer data

Integer constant
Integer data

TABLE 3-9. SET TABLE RECORD DESCRIPTION

Item Name Data Type

Set Name Integer variable
: Hollerith data

Record Names Integer variable
Hollerith data

Modification Indicator Integer constant
Integer data

Indicates that set rela-
tionship has been changed
within the program.

Privacy Key (assoc. witn (cf. FORTREV,
PRIVACY statement) Section 6.2)
DML Command Integer constant
Indicator Integer data

Indicates reference by
one of the following
DML commands:

CONNECT, DISCONNECT, MODIFY,
FIND, FETCH, ERASE, or PRIVACY

Statement Number or Integer wvariable
Subroutine Name for Hollerith data
Error Handling

Record Delete Indicator Integer constant
: Integer data

Subschema Name Integer variable
’ Hollerith data

Line Number Integer constant
Integer data

Indicates line number of
DML command in listing.

o
3-12 Y 4

TABLE 3-10, RECORD TABLE RECORD DESCRIPTION

Item Name

Record Name

Set Name

Realm Name

Subschema Name

Modification Indicator

Indicates that set
relationship has been
changed within the

program.

Statement Number
or Subroutine Name

Data Base Key Name

Data Item Names

Privacy Key (assoc.

PRIVACY statement)

DML Command
Indicator

with

Indicates reference by
one of the following

DML commands:

FIND, GET, FETCH, STORE,

MODIFY, ERASE, CONNECT,
DISCONNECT, or PRIVACY

Data Type

Integer variable
Hollerith data-:

Integer variakles
Hollerith data -

Integer variables
Hollerith data

(¢f. FORTREV,
Section 4.8.1)

Integer constant
Integer data

Integer variables
Hollerith data

Integer variables
Integer data

Integer variables
Integer data

(cf. FORTREV,
Section 6.2)

Integer constant
Integer data

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

TABLE 3-10. (Continued)

Item Name ' Data Type
Line Number . Integer constant

Integer data

Indicates line number of !
DML command in listing ' ;

DML Statement Indicator’ ‘ Integer constant %
Integer data ?

Indicates privacy access
by one of the following
DML commands:

INSERT, REMOVE, STORE,
MODIFY, FIND, GET,
FETCH, or ERASE |

Record Delete Indicator Integer constant
Integer data

Indicates PERMANENT,
SELECTIVE, or ALL
record delete &

‘ 4
3-14 r 2 4

TABLE 3-11. ERROR STATUS TABLE
RECORD DESCRIPTION

Item Name Data Type
Procedure Name Integer variable

Hollerith data

ALL indicator Integer variable
Hollerith data

OTHER indicator Integer variabie
Integer data

STATUS indicator Integer variable
Integer data

Problem Statement:

Design a data base verifier subsystem that analyzes
FORTRAN Data Manipulation Language (DML) statements
for the purpose of ensuring a consistent and valid
data base evocation by the program. Print the results
of this analysis in a form easily interpretable by the
user.

SYSTEM SOFTWARE REQUIREMENTS DOCUMENT

Direction

Design a data base verifier subsystem that analyzes all
FORTRAN DML statements and organizes the subschema, realm,
set, record, privacy, and error information contained
within the DML statements into appropriate output for the
user.

Input
LINE BUFFER: FORTRAN DML source card

Transductions

INITIALIZE;SYSTEM: Initialize DML command, character,
and keyword tables, line number
counter, etc.

CHECK_ DML _COMMAND: Check first keyword for a match in
the DML command (Table 3-3)

CHECK_DML_KEYWORD: Check keyword for a match in the
keyword table (Table 3-4)

BUILD _KEYWORD SEQ: Build keyword sequence for each DML
statement

BUILD_ IDENTIFIER SEQ: Build identifier sequence for
' each statement

Figure 3-1. Subsystem Software Requirement Document for

DBVS
q—
3-16 - 7 4

BUILD LIST ITEM SEQ: Build list item sequence for each
statement

BUILD DML TABLE: Construct DML command table
BUILD KEYWORD TABLE: Construct keyword table
READ_LINE: Read a line of source code

EVOKE_MODULE: Evoke appropriate module after processing
each DML statement or QUIT command.

Output

SUBSCHEMA INFO: Subschema, realm, set, record, privacy,
and error handling information in tabu-
lar form

Constraints

Input: The source code must be written in CODASYL
extended FORTRAN which contains DML state-
ments for program/data base interaction. The
acceptable input formats are listed in Table
3-12.

Implications

BUILD DML _TABLE (C CHECK DML _COMMAND
BUILD KEYWORD TABLE (C CHECK DML_KEYWORD
READ LINE C_ CHECK DML_COMMAND

READ_LINE (T CHECK DML_KEYWORD

READ LINE (C BUILD KEYWORD FILE

REPRODUCIBILITY OF Tii..
ORIGINAL PAGE IS PQUR

Figure 3-1. (Continued)

10.

TABLE 3-12. INPUT FORMATS
INVOKE (SUBSCHEMA=<char const>*,SCHEMA=<char const>*
{, PRIVACY = <char const> *J)

READY ({ALL| {SET = <db names>*}I{REALM <db names>*}},
<usage>*[,<error>*])

FINISH({ALL]{SET = <db names>*}|{REALM = <db names>*}}
[,<error*>])

CONNECT ([RECORD = <db name>*]{ALLISET =<db names>*}}
[,<error>%*]) .

DISCONNECT([RECORD =<db name>*,] {ALL |{SET =<db names>*}},

[, <error> *})

ACCEPT(CURRENCY =<db key>[, <currency type> }[,<error>])
<currency type>::={{RECORD|SET}=<db name>|RUNUNIT|
REALM=<db name>

or
ACCEPT (REALM NAME=<char var>[,<name ty e>][<error>])
<name type>::={{RECORD|SET}= <db name>}T RUNUNIT|{KEY—

<db key>}

FIND({<rse>{RSE=<char exp>*}}[,<retain>*][,<error>*])
<rse>:: =<rse l»]|<rse 2>|<rse 8> |<rse 4>|<rse 5> |
<rse 6> | <rse 7>
<rse 1>::= KEY =<db key>[,RECORD=<db name>]
<rse 2>::={DUPLICATE|ANY},RECORD=<db name>
<rse 3>:: DUPLICATE,SET=<db name>,USING=<id list>
<rse 4>::=<posit>[,RECORD=<db name>]

[, {REALM|SET}=<db name>]
<posit>::={OFFSET=<int exp>}]FIRST]LAST[NEXTIPRIOR

<rse 5>::=CURRENT [,RECORD=<db name>][{REALM|SET}—
<db name>]
<rse 6>::=0WNER, SET <db name>
<rse 7>: —RECORD—<db name>, [CURRENT] SET=<db name>
[,USING=<id 1list>]
GET([RECORD=<db name>][<error>])[<item list>]

FETCH({<rse>|{RSE=<char exp>*}}[, <reta1n>*][<errors*])
[<item list>*]

STORE (RECORD=<db name>*[,<retain>*][,<er£or>*])

* Meta symbols are explained in Tab1e13—13.

11.

12.

13.

TABLE 3-12. (Continued)

MODIFY([RECORD=<db name>*]
([,ALL|{SET=<db names>*}][,ONLY] [, <error>*])
[<id 1list>*])

ERASE ([RECORD=<db name>*,] [<member type>]
[,MEMBERS=<db names>*][,SET=<db names>*]
[,<error>*])

<member type>:: = PERMANENT|SELECTIVE|ALL

PRIVACY(SUBSCHEMA =<char con>*[,DISPLAY],<priv key>%)
<priv key>: —PRIVACY—{<char exp>|<pr1v key proc> }
<priv key proc>:: = FORTRAN subroutine name

PRIVACY [(SUBSCHEMA=<name>*] REALM=<db name>*
,<usage mode>*,<priv key>*)

<usage mode> ;
[, {PROTECTEDIEXCLUSIVE}][RETRIEVALIUPDATE]

PRIVACY([SUBSCHEMA=<char con>*,] RECORD=<db names>*
[,<dml stmt>*] <priv key>*)

<dml stmt>::=

{INSERT|REMOVE | STORE | <erase> | MODIFY|FIND | GET
FETCH}

<erase>: :=ERASE{PERMANENT | SELECTIVE|ALL}

PRIVACY([SUBSCHEMA=<char con>*,]SET=<db names>*
[,<dml type>*],<priv key>*

<dml type>: —ORDER]CONNECT[DISCONNECT]<erase>[FIND|
FETCH

<erase>::= ERASE{PERMANENT | SELECTIVE |ALL}

PRIVACY ([SUBSCHEMA=<char con>* ,1<item dml>,<priv key>%*)

[<id list>*]

<item dml>::=MODIFY{GET|FETCH }

* Meta symbols are explained in Table 3-13.

14.

15.

TABLE 3-12. (Continued)

USE(PROCEDURE=<identifier>*[, {ALL|OTHER| { STATUS=
<status list>*}}]

ORDER({SET=<db name>*}[,LOCALLY]{,<sort spec>...}[,<error>]

- <sort spec>::={ASCENDING|DESCENDING}=(RECORD |KEY |<sort

field>...)

<sort field>::=ITEM=<id Iist>|KEY=<db names>|RECORD=
<db names> :

* Meta symbols are explained in Table 3-13.

TABLE 3-13.

Meta-Symbols

<char wvar>

<char const>

<char exp>

<db key>

<db name>

<db names>

<error>

<id spec>

META-SYMBOL MEANINGS

Meaning

character variable - FORTREV variable

of type character
character constant - is an apostrophe

followed by a non-empty string of
characters followed by an apostrophe
character expression - is used to

express a character string consisting
of a character primary alone or concate
nated with other character primaries.
A character primary may be a character
constant, symbolic name of a character
constant, character variable reference,
character array element reference,
character substring reference, charac-
ter function reference, or character
expression enclosed in parentheses.
(See TFORTREV 75-09-26, Section 4)

data base key - integer variable
(FORTREV's definition of variable ex~
cludes array elements) ,

data base name - record name, set name,
realm name, or character expression.
(The first 3 are names in the subschema
being used)

data base names -~ data base name

error phrase - contains keyword ERROR
and either statement number or sub-
routine (with arguments if applicable)
name

item specification - input list item
which must be one of the following:
variable name, array element name,
character substring name, array name,
or array block item (See FORTREV
12.8.2.1) ‘

TABLE 3-13. (Ceontinued)

Meta-Symbols

<identifier>
<id list>

<item spec>

<item list>

<priv key proc>

<retain>

- <usage>

<rse>

(See Table 3-13
number 7 input
format)

<rse 1>
<rse 2>
<rse 3>
<rse 4>
<rse 5>
<rse 6>
<rse 7>

REPRODUCIBILITY OF TIiT
ORIGINAL PAGE IS P

Meaning

identifier - item specification

identifier list - item specification(s)

identifier specification -~ item speci-
fication or implied-DO lists consis-
ting of one of the following: a vari-
able name, an array (lement name, a
character substring name, an array
name or an array block item (12.8.2.3)

item list - identifier specification

subroutine.ngme - consists of one to
six letters or digits, the first of
which must be a letter

retain - contains keyword RETAINING and
either 1) the keyword RECORD, REALM,
SET OR 2) keyword SET and appropriate
data base names; or contains keywords
RETAINING and MULTIPLE

usage - one of each of the following
groups of keywords: 1) PROTECTED,
EXCLUSIVE, CONCURRENT 2) RETRIEVAL,
UPDATE

record selection expressions - are used
to specify criteria whereby the data
base management system is to select a
record in the data base. The various
record-selection expressions are used
as follows:

Format 1 - direct access

Format 2 - calculate mode access
Format 3 - set search access

Format 4 - positional access

Format 5 - currency indicator access
Format 6 - set owner access

Format 7 - set occurrence selection

rules access

3.4 FUNCTIONAL SPECIFICATIONS FOR THE DBVS

To facilitate the understanding of the DBVS functional
specifications, the following documents should be used as

references:

the portion of the '""CODASYL' FORTRAN Data Base
Facility Journal of Development''(November 25, 1975]
which was printed in Appendix A of the January
1976 monthly progress report ;

the special report, "SSL-A Software Specification
Language," which was prepared for this contract
the''draft proposed ANS FORTRAN, BSR X3.9, X3J8/76"
which appeared in the March 1976 issue of SIGPLAN
Notices. Any references to FORTREV appearing in
the specifications are synonymous with those of
the aforementioned ANS FORTRAN document.

In the special report on SSL, explicit descriptions of the
preamble components as well as subsystem and module descrip-
tions for designing a software system are presented. A simple
outline of this document (Table 3-14) will serve as a guide to
understanding the SSL description of the data base verifier.
In accordance with the SSL report, the subsystem preamble will
be presented first (Figure 3-2) and then the module descrip-
tions (Figures 3-3 through 3-10). To accompany these specifi-
cations, a module structure chart for the DBVS (cf. Figure
3-11) and a table containing a summary of the module descrip-

tions (cf. Table 3-15) are given.

II.

IIT.

TABLE 3-14. OUTLINE OF SSL COMPONENTS

Preamble Description

1.

3.

Requirement Declaration

a. Input and Output Parts

b. Transduction Parts

c. Constraint Declarations

Data Type and Variable Declarations
a. Simple Types

b. Structured Types

c. Pointer Types

Constant Declarations

Module Description

Gy U W

Module Statement

Assumes and Satisfies Statements
Fulfills Statement

Accesses Statement

Receives and Transmits Statements
Creates, Modifies, and Uses Statements

Execute Statement

Subsystem Description

1.
2.

Subsystem Preamble
Module Description

3~24

/*preamble for DBVS subsystem*/

Requirement
Input line_buffer; /*FORTRAN dml source card*/

Transductions
initialize system; /*initialize dml command, char4
acter, and keyword tables, line number -
counter, *) :
check_dml_ command;/*check first keyword for a
match in the dml command table (Table 3-3)
including terminate keyword quit#*/

check dml_keyword;/*check keyword for a match
in the keyword table (Table 3-4)*/

build keyword_seq;/*build keyword sequence for
each dml statement*/ '

build_identifier seq;/*build identifier sequence
for each statement*/

build list_item seq;/*build list item sequence
for each statement*/

build dml_table in check dml command;/*construct
dml command table*/

build_keywbrd_table in check dml keyword;
/*construct keyword table¥/

read_line in check dml_command, check dml_
keyword, build keyword_ seq;/*read a line
of source code*/

evoke module;/*evoke appropriate module after
processing each dml statement or quit

command*/

Figure 3-2. iDBVS Subsystem Preamble

save_subschema_ info;/*save subschema, schema or
privacy key names, and the dml command
indicator in subschema table (Table 3-7)*/

save_realm info;/*store set or realm information
and usage information in realm table (Table
3-8)x/

save_set_info;/*store record (if specified) and
set information in record and set tables,
(Table 3-9 and 3-10,respectively)

save_record_info;/*store record name information,
and if specified, item dml, record items, and
privacy key irformation for record in record
table (Table 3-10)and pertinent record infor-
mation in set table (Table 3-9)*/

save_subschema-privacy in save_subschema_info;
/*store subschema name and privacy key infor-
mation for subschema in subschema table*/

save_realm privacy in save realm info;
/*store realm name, subschema name (if
specified), usage indicator, and privacy
key information in realm table*/

save_set privacy in save_set_ info;/*store set
name, subschema name (if specified) dml
type indicator, and privacy key information
for set in set table (dml type indicator
reflects one of the following commands; order,
connect, disconnect, find, fetch, permanent,

selective, or all)*/

TFigure 3-2. (Continued)

save record privacy in save_record_info;/*store
record name and if specified, subschema name,
dml statement (indicating insert, remove,
store, erase (permanent, selective, all),
modify, find, get, fetch) and privacy key
information for record in record table*/

save_item privacy in save record info;/*store
item dml (modify, get, fetch) and privacy key
information and if specified, subschema name
and item names in record table*/

save_error_table_info;/*store error information
in error table (Table 3-11)*/

print_tables;/*read and write information from
subschema, realm, set, record, and error
tables and write to printer*/

Outpuif; subschema_info;/*subschema, realm, set,
record, privacy, and error handling information

in tabular form*/
end;

/* beginning of data description within the preamble*/
variable dml_intrinsic; array @..5] of text;/*

contains current dml command for check dml -

command* /

for check dml command, check dml keyword, build
keyword_seq, build_ identifier_seq, build list]
item_séq, evoke module, :ead line, save_sub-
schema_info, save_subschema privacy, save
realm info, save_realm privacy, save_set
info, save_set privacy, save_record_info,
save record_privacy, save_item privacy;

Figure 3-2. (Continued)

* 74
3-27 Y 4

variable keyword table: array @“.39, l..é] of
text; /*Table 3-4(allowable keywords within dml
statements)*/
for build keyword_table, check dml_ command,
check dml keyword, build keyword seq, build_
identifier_seq, build_list_ item seq, evoke
module, read_ line, save_subschema info,
save_subschema_privacy, save realm info,
save realm privacy, save_set_info, save_set_
privacy, save record_ info, save record pri-
vacy,save_item privacy, save_error_table
info, build _dml_table, initialize system,;
variable list_item: array [1..%] of text;/* con-
tains user specified list item*/
for check dml_ command, check_dml keyword, build
keyword_seq, build_identifier_ seq, build
list_item_seq, evoke module, read line,
save_record_info, save record privacy, save_
item privacy,
variable identifier; array [1..@ of text;/* con-
tains user specified identifier*/
for check dml_command, check dml keyword, build
keyword_seq, build identifier_ seq, build
list_item seq, evoke module, read line,
save subschema info, save subschema privacy,
save_realm info, save_realm privacy, save_
set_info, save_set privacy, save record_info,
save record_privacy, save_item privacy, save_
error_table_info;
type ident_seq=sequence of text
ident: array [1..@] of text/* identifier name*/

Tigure 3-2. (Continued)

3-28 4

variable dml command_ table: array [}..16, 1..@) of
text;/*contains commands of Table 3-3%/
for build dml_table, check dml_command, check dml
keyword, build keyword_seq, build identifier
seq, build_list_item seq, evoke_module, read |
line, initialize_system, build keyword
table;
variable keyword: array [i.,@ of text;/* contains
user specified keyword*/
for check dml_command, check dml keyword, build_
keyword seq, build_identifier seq, build
list-item seq, evoke_module, read line, save_
subschema_info, save_subschema privacy, save
realm info, save realm privacy, save set
info, save_set_privacy, save_record privacy,
save_item_privacy, save_error_table info,
save_record_info;
type line buffr = array (1..72) of char;
/*¥reflection of program card*/
variable line buffer: line buffr;/*contains current
source statement being analyzed*/
for read_line, check dml_ command, check dml__
keyword, build keyword_seq, build_identifier
seq, build_list_item seq, evoke module;
variable char_table; array [1..4@] of char;/*
A..Z, 0..9 , blank, =, +, *, /, (,)y s -» 3,
D, B/
for check dml command, check dml_keyword, build
keyword_seq, build identifier seq, build_
list_item seq, evoke module, read_line,
initialize system, build_dml_table, build_
keyword table;

Figure 3-2. (Continued)

3-29 l

variable identifier seq: ident_seq;/*sequence
containing all identifiers associated with
one statementx*/
for build_identifier_seq,check_dml_command,
check dml keyword, build keyword seq, build_
list_seq, evoke_module, read line, save_
subschema_info, save subschema privacy, save_
realm info, save realm privacy, save set
info, save_set privacy, save_record_info,
save record_privacy, save_item privacy, save_
error_table_info;
type list_itm seq = sequence of text
parametr: array [1..@ of text;/*list_item name*/

end;
variable list_item seq: list_itm seq;/*sequence
containingball list items associated with one
statement*/
for build list item seq, check_dml_command:
check:ﬁml_keyword, build keyword seq, build
identifier_seq, evoke module, read line;
type keywrd seq = sequence of records
keyword: array [i..é] of text;/*name of keyword*/
identifier counter; integer;/*contains number
of identifiers (i.e., no. of times to read
the identifier sequence amsociated with each

keyword*/

end;

variable keyword seq: keywrd seq;/*contains keyword

number of identifier, associated with each

keyword*/

for check dml command, check dml keyword, build
keyword seq, build identifier_ sedq, build_
list_item seq, evoke module, read line,
build keyword seq, save_subschema_info,
save_subschema_privacy, save_realm info,

Figure 3-2. (Continued)
V4
_ 3-30 l .

save_realm privacy, save_set_info, save_
set privacy, save_record info, save_record_
privacy, save_item privacy, save_error_
table_info;
variable list item seq ind: integer;/*indicates
number of 1list items associated with a fetch,
get, modify, or privacy statement, i.e., it
indicates number of entries in the list item
sequence*/
for check_dml command, check dml_ keyword, build
item_seq, evoke module, read line, save_
record info, save_ record privacy, save_
item privacy, initialize_system, build_ dml_
table, build keyword table/;
type subschema tabl=file of records

subschema_ name: array [}..%] of text;
schema name: array [1..%] of text;
privacy key: array [}..@ of text;
dml_intrinsic: array [1..5] of text;
/*dml intrinsic represents either the invoke
or privacy statement*/

line no; integer; /*line number of dml command* /

end;
variable subschema table: subschema_tabl;/*the sub-
schema table contains the subschema name and
depending on the options exercised by the
invoke and privacy statements, the schema
name, and privacy key*/
for save subschema info, save_subschema_ privacy,
print_tables,;
type realm tabl = file of records

realm name: array [}..g of text;
set_name: array @”.é) of text;
usage indicator: integer;/*indicates either

protected, exclusive, concurrent and either
: retrieval or update ;
Tigure 3-2. (Continued)

3-31

error_handling: array [?..@ of text;

record name: array [;..é] of text;

subschema_name; array [;..@ of text;

privacy key: array [}. 3] of text;

dml_intrinsic: array [i @ of text;
/*¥dml intrinsic represents one of the
following statements-ready, finish, find,
fetch, or privacy*/

line _no; integer;/*line number of dml command

in listing*/

end;

variable realm table: realm_tabl;

for save realm info, save_realm privacy,
save_record_info, save_record privacy,
save_item privacy, print_tables;

type set_tabl=file of records

Figure 3-2.

set name: array [}..@ of text;

record name: array @..@ of text;

mod_indicator: integer;/*indicates that set
relationship has been changed within the
program*/

privacy_key: array [i é] of text;

dml_ intrinsic: array [1 j of text;/*
dml intrinsic represents one of the follow-
ing statements-connect, disconnect, modify,
find, fetch, erase, or privacy*/

error_handling: array [1..@ of text;

record delete_ind: integer;/*0O-indicates no
record deletions, l-indicates normal dele-
tion, Z2-indicates permanent deletion 3-
indicates selective deletion, 4-indicates
all deletion*/

subschema_name: array @..é] of text;

line _no: integer;/*1line number of dml command in
listing*/

end,

(Continued) l/
: 3-32 ¥ 4

variable set table: set_tabl;/* the set table
contains mainly set and record information

depending on the options exercised by the
connect, disconnect, modify, find, fetch, erase,
or privacy statements*/

for save_set_info, save record info, save_set_

privacy, save_record _privacy, save_item

privacy, print_tables;

type record_tabl=file of records
record_name: array [1..@] of text;

set_name: array [}..@] of text;
realm name: array E}..? of text;

subschema_name: array 1..%] of text;
integer;/* indicates that

modification ind:
set relationship has been changed within

the program*/
error_handling: array [}..3 of text;
1..%] of text;

data_base_key_name: array

data_item name: array Ei..S, 1..%] of text;/*
contains first five names in a list of

THE
Ponn

data item names*/
privacy_key: array [;..é] of text;

dml_intrinsic: array [}..é] of text;/*

dml intrinsic represents one of the
find, get, fetch,

disconnect,

BILITY op
% 19

1B

following statements:

erase, connect,

CRODUC
GINAT,

‘store, modify,

or privacy*/
integer; /*line number of dml command

ORig

line no:
in listing*/
integer; /*indicates privacy access

dml_stmt ind:
insert,

by one of the following dml commands:
remove, store, modify, find, get, fetch, or
erase*/

record _delete_ind: integer;/*indicates that
record is to be deleted*/

end; |
7 —

(Continued)
>

Figure 3-2.
3~33

variable record_table: record_tabl;/* the record
table contains primarily record and set informa-
tion depending on the options exercised by the
find, get, fetch, store, modify, erase, connect,
disconnect, or privacy statements*/
for save record_info, save_set info, save_set_
privacy, save record privacy, save_ item

privacy, print_tables;

type error status_tabl=file of records
procedure_name: array [}..é] of text;
/* subroutine procedure which is to be
called in the event a data base exception
condition is encountered*/
all~indicator: integer; /* the indicated pro-
cedure will be called for all data base
exception processing¥*/
other indicator: integer; /*the indicated pro—
cedure will‘be called for any data base
exception conditions which are not previous-
ly established*/
status-indicator: integer;/*the indicated pro-
cedure will be called whenever any of the
conditions in the associated status list are
called*/
line no: integer; /*line number of dml command
in listing */
end;
variable error_ status_table; error_status_tabl; /*
the error status table contains information con-
cerning the options exercised in the use state-
ment*/
for save_error_ table_info, print_tables;
variable line-no-counter: integer; /* contains line
number of statement as it appears in the
listing */

TFigure 3-2, (Continued) l/

for check_dml_ command, check_ dml_keyword,
build keyword seq, build identifier_seq.
build list_item seq, evoke module, read_
line, save_subschema_info, save subschema__
privacy, save_realm info, save realm
privacy, save_set_info, save_set privacy,
save_record_info, save_record_privacy, save_
item privacy, save_error_table_info,
initialize_system, build dml_table, build_

keyword_table;

end;

/*end of data description within the preamble*/
/*end of preamble for DBVS subsystem*/

P

/*module description for dml recognizer and control module*/

module dml_ recognizer;

fulfills check dml_ command, check_dml_keyword,
build keyword seq, build identifier seq,
build list_item seq, evoke_module,fread;iine;

/*initialize system*/
creates line buffer, dml_intrinsic, keyword, list
item, identifier, identifier_seq, list_item seq,

keyword seq;

/*read card and fill line buffer*/
accesses card_reader; modify line buffer;

/*determine dml command*/
modifies dml_intrinsic using line buffer, char_table,

dml_command table;

- /*isolate dml keyword*/
modifies keyword using line_ buffer, char table,
keyword table;

/*construct keyword sequence*/
modifies keyword seq using keyword;

/*¥isolate identifier*/
modifies identifier using line buffer, char_ table;

/*construct identifier sequence*/
modifies identifier_ seq using identifier;

[*isolate list items for dml statements*/
modifies list_item using line buffer, char table;

/*construct list item sequence*/

modifies list item seq using list item;

Figure 3-3. DML - RECOGNIZER Module Description l/ »

3-36 g 4

modifies list item seq_ind;

executes conditiconally

subschema process, realm process,
set_process, record_process, error_process, output_
summary ;

executes initialize_system;

end;

Figure 3-3, DML-RECOGNIZER Module Description (Continued)

“/—
3-37 P 4

/*module description for initialize system*/

module initialize system;

TFigure 3-4. INITIALIZE-SYSTEM Module Description

fulfills initialize_system, build_dml_table,
read_line, build_keyword_ table;

create dml_command table, char_ table, keyword table,

line no_counter, list_item seq_ind;

/*construct dml command tables*/

modifies dml_ command_table;

/*construct char_table*/

modifies char_table;

/*construct keyword_ table*/
modifies keyword table;

/*initialize line number counter¥*/

modifies line no_counter,

/*initialize list item sequence indicator*/

modifies list_item seq ind;

3-38 y 4

/*module description for subschema processing*/

module subschema_ process,

end;

Figure 3-5. SUBSCHEMA-PROCESS Module Description

fulfills save_subschema_info, save_ subschema privacy;

creates subschema_table;

modifies keyword using keyword seq @.keyword, keyword

modifies identifier using keyword seq @.identifier

modifies subschema_table @.subschema name,

/*retrieve subschema, schema, privacy, or dis-

play keywords*/
table;

/*retrieve subschema, schema or privacy key

name*/
counter, identifier_seq;
/*construct record for subschema table*/

subschema_table @.schema name,

subschema_table @.privacy_key,

subschema_table @.dml_intrinsic,
subschema_table @.line no using keyword, iden%

tifier, dml_intrinsic, line_no_counter;

/*module description for realm processing¥*/

module realm process;

end;

fulfills save realm info, save_realm privacy;
creates realm table;

/¥retrieve all, set, realm, protected, concurrent,
exclusive, retrieval, update, error keywords*/
modifies keyword using keyword-seq @.keyword, keyword
table;

/*¥retrieve realm, set, subschema, error or
privacy key name*/
modifies identifier using keyword-seq @ .identifier

counter, identifier_ seq;

/*construct partial record for realm table*/

modifies realm table @ .realm name,

realm table @ .set_name,

realm table @ usage indicator,

realm table @ .error_handling,

realm table @ .subschema_name,

realm table @ .privacy key,

realm table @.dml intrinsic,

realm table @.line-no, using keyword, iden-

tifier, dml_intrinsic, line no counter;

Figure 3-6. REALM-PROCESS Module Description

S TSR R e vy e R e a

REPRODUCIBILITY OF THE
DRIGINAT, PAGE IS POOR

/*¥module description for set processing*/

module set-process;
fulfills save_set_info, save_set privacy,
creates set_table, record_table;

/*¥retrieves record, all, set, error, only, sub-
schema, order, connect, disconnect, permanent,
selective, all, find, and fetch keywords*/

modifies keyword using keyword seq @ keyword, keyword
table;

/*retrieve record, set, error, privacy, key, or
subschema name* /
modifies identifier using keyword seq @.identifier

counter, identifier seq;

/*construct partial record for set table*/
modifies set_table @.set_name,
set table @.record name,
set_table @.mod_indicator,
set_table @.privacy key,
-set_table @.dml_intrinsic,
set_table @.line-no,
set_table @.error_handling,
set table @.subschema name using keyword,

identifier, dml_intrinsic, line_no_counter;

/*construct partial record for record table*/
modifies record table @.record_name,
record _table @.set name,
record_table @.modification_ind,
record table @ ,dml_intrinsic,
record_table @,line no using keyword, iden-

tifier, dml_intrinsic, line_no_counter;

Figure 3-7. SET-PROCESS Module Description

3~-41

/*module description for record processing*/

module record_process;

fulfills save record _info, save_record privacy,

save_item privacy;
creates record table, set_table, realm table;

/*retrieve record, key, duplicate, any, set,

using first, last, next, prior, realm, offset,
current, owner, rse, multiple, error, all, only,
‘members, permanent, selective, all, subschema,
insert, remove, store, modify, find, get, or
fetch keywords*/

modifies keyword using keyword _seq @.keyword, keyword

table;

/*retrieve recorud, key, set, using, offset,
"realm, rse, error, member or subschema name*/
modifies identifier using keyword_seq @.identifier

counter, identifier_seq;

/*¥construct partial record for record table*/
modifies record_table @.record name,
record_table @.set_name,
record table @.realm name,
record table @.subschema name,
record_table @.modification_ind,
record_table @.error_ handling,
record table @.database key name,
record_table @.data item name,
récord_table .privacy_key,

record_table @.dml_intrinsic,

® @ @ @ & ® ® @ ® ®

record table @.line no,

FFigure 3-8 RECORD-PROCESS Module Description

7
3-42 P 4

record table @ .dml_stmt ind,
record _table @.record delete ing using
keyword, identifier, dml_intrinsic, line_

no_counter, list item;

/*¥construct partial record for set table*/

modifies set table @.set name,

set_table @.record_name,
set_table @.mod_indicator,
set_table @.dml_intrinsic,
set_table @.line_ no,

set_table @.record_delete ind using keyword,

identifier, dml_intrinsic, line no_counter;

/*¥construct partial record for realm table*/
modifies realm table @.realm name,
realm table @.record_name,
realm table @.subschema name,
realm table @.dml intrinsic,
realm_table @.,line no using keyword, identi-"

fier, dml intrinsic, line no counter,

/*¥retrieve list items (actually data item names)
that have been saved as a result of a fetch,
get, modify, or privacy statement*/

modifies list_item seq ind;

F'igure 3-8. (Continued)

/*module description for error processing¥*/

module error process;

cnd;

fulfills save_ error_table info;
creates error_status_table;

/*¥retrieve procedure, all, other, status keywords¥*
modifies keyword using keyword seq @.keyword, keyword
table,

/*retrieve procedure or status names*/
modifies identifier using keyword seq @.identifier

counter, identifier seq;

/*¥construct partial record for error status table*
modifies error_status_table @.procedure name,

error_status_table .ail_indicator,

error_status_table @.other_indicator,

error_status_table @.status_ indicator,

® ® ® ®

error_status table @.line_no using keyword,

identifier, line no_counter;

Figure 3-9. ERROR-PROCESS Module Description

</
3-44 g -

/*module description for print process*/

module output summary;
fulfills print-tables:

/*read and print subschema table records*/

access line-printer using subschema_ table;

/*read and print realm table records*/

access line printer using realm table;

/*read and print set table rascords*/

access line printer using set table;

/*read and print record table records*/

access line_printer using record _talle,

/*read and print error status table records*/

access line printer using error status_table,

end;

/*end of main subsystem*/

Figure 3-10. OUTPUT-SUMMARY Module Description

3-45 4

Table 3-15. Module Descriptions for the DBVS
DML_RECOGNIZER

To isolate data manipulation language (DML) key-
words and associated identifiers and list items.
To construct appropriate keyword, identifier, and
list item sequences. To evoke initialization or
report modules, or to evoke appropriate DML state-

ment processor modules.
INITIALIZE SYSTEM

To initialize the line number counter, the list
item segquence indicator, and the following tables:
dml command, character, and keyword.

SUBSCHEMA PROCESS

To collect subschema information and enter it into

the subschema table.
REALM_PROCESS

To collect realm information and enter it into the
realm table.

SET_PROCESS

To collect set information and enter it into the
set table.

RECORD_ PROCESS

To collect record information and enter it into
the record table.

7
3-46 y 4

Table 3-15. (Continued)
LRROR_PROCESS

To collect error information and enter it into

the error status table.
OUTPUT SUMMARY

To read and print the following tables: subschema,

realm, set, record, and error status.

71—
3-47 - ,l |

CARD
READER DML_RECOGNIZER

BEEEEEEE——— SUBSCHEMA _PROCESS

INITIALIZE_SYSTEM

———— TR REALM_PROCESS

| RS—— SET_PROCESS

RECORD_PROCESS

S I—— ERROR_PROCESS

/
, LINE
FE— OUTPUT_SUMMARY _’Qmmea

NOTES:
A | “A”cALLs “B" “A" CALLS "B"
CYCLICALLY CONDITIONALLY
8 B
s =)
“A" USES SYSTEM SERVICE "B" SALOATA

Figure 3-11. Module Structure Chart for DBVS
V4

3-48 g 4

4. STATIC CODE ANALYSIS

In this section, we present the detailed design (build-to)
specifications for the capabilities listed in Table 4-1 which
will be incorporated into FACES. For each of the twelve cap-

abilities, we provide a detailed Unit Module Description in-

cluding a flowchart which is sufficient for coding. However,
for complete understanding of this documentation, the following

FACES documentation must be used:

° Version 2, Mod O, Fortran Automatic Code Evaluation
System SYSTEM DOCUMENTATION, September 1975,
Browne and Ramamoorthy Inc.

° Version 2, FACES User's Manual, September 1975,

Browne and Ramamoorthy, Inc.
° Version 2, Mod X FACES Program Listing

The unit module descriptions correspond to those set forth in
NASA's "Guidelines For Software Detailed Design Specification
(Conni-TO)," while the flowcharts follow ANSI FORTRAN flow-
chartihg recommendations. The detailed specifications for the
capabilities will appear in order according to Table 4-1.

(New capabilities 5 and g and capabilities 7 and 8 are treated

under the same unit module description.

=

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS PCOR

] —
-

TABLE 4-1. NEW FACES CAPABILITIES

EQUIVALENCE and EXTERNAL statements are flagged.

COMMONs not named are flagged.

ALL, COMMON BLCCK arrays must be dimensioned in
COMMON BLOCK statements.

DIMENSION statement and variable which contain
an adjustable (variable) dimension are flagged.

Constants, hollerith, or arithmetic expression
arguments used in subroutine argument lists are

flagged.
All occurrences where the same variable exists in
multiple positions in an actual parameter 1list are
flagged.

Arithmetic IFs are flagged.

Targets of branches should not be other branches,

especially single GO TOs.

Variable which is I/O unit designator is flagged.

i/

G . 3 %»mi 4' H . ! E ‘va.,a

alitadid

10.

11.

12.

TABLE 4-1. NEW FACES CAPABILITIES (Cont.)

Statement labels must appear in increasing order.

Occurrences of error-prone FORTRAN statements such
as ASSIGN statement, assigned GO TO, and PAUSE are
flagged.

The appearance of the same COMMON variable in more

than one DATA statement is flagged.

i/ —

IDENTIFICATION

AIR Modifications

STORAGE ALLOCATION

1K hexadecimal bytes

PURPOSE

UNIT MODULE DESCRIPTION

Process new query numbers for new FACES capabilities.

DIESCRIPTION

These modifications cause AIR to recognize the new query

numbers and call the new subroutine or modified subroutine

as it processes original query numbers.

HHOW ENTERED

Called by LNKAIR

CALLING SEQUENCE

CALL AIR

UNIT MODULE OR OTHER ROUTINES CALLED

New Modules: ER230
ER240
ER250
ER260

Modi fied Modules:

ER275
ER280
ER290

CONALC
COMBAL
MULBRA

y 4

SET/USE PARAMETERS

No new parameters are introduced NUMBER, the standard variable

for query number is used.

SIGNIFICANT INTERNAL VARIABLES

No new variables are introduced.

LIMITATIONS AND RESTRICTIONS

All variables are set by IMPLICIT INTEGER (A-Z).

DETAILED FLOWCHART

Only the modifications are included on the following flowchart.

7 —

FUAG ARITHOE TIC
1S

FEAG COMMON BLOCKS

PHAT AR NOT -_—

TAMLLED

ARG 15 O) uu/\NHns
SHOULD NOT B OTHER
HHANCIHTES, E5PECIALLY
LSINGLE GO TS

SASKIGN, GO T, &
PAUSE STATFMINTS
TLAGGID

FOLHVATLNGE AND
| %11 HNAL
SIATEMENTS ARE

I AGGED

ADDTHONSG TO
SUBROUTINE
AR AFTER
FAC 463

e

2000 -~
auLay
_/'Ium
—-<. NUMBE R

‘wmm

auyeny
2107

2102

QUL RY
2212

2207

OULRY
230

NUMDER.NE
2307

.

e
OUIRY
2907
NUMBER.NE.

\Q

NO

NUMBER.NE.

NUMAER.NE,

S WHITt ON X
MULBRA y;/r,,"m,,,_ s;%anAL&w
(NUMBER) ™7 ourny T0 BACK

NUMBER

RLTURN TO CHECK
TO CHECK
NEXT QUERY

GCOMBAL
(NUMBER) |

MULBRA
(NUMBER) |[™]

YES

SAI 0486

™ THL
RODUCIBIL JLITY OF
%I%?GINAL PAGE I8 PUL OR

FLAG VARIABLES
USED AS1/0
DESIGNATORS

SUBPROGRAM DUMMY
PARAMETERS THAT ARE
NEVER USED ARE
FLAGGED

¢ ey
STATEMENT NUMBERS

NOT IN ASCENDING === —""—"" QUERY

ORDER FLAGGED

VARIABLE IN PARAMETER LIST
OF HEAD STATEMENT WHICH

15 USED AS AN ADJUSTBLE e e —— QUERY

(VARIABL C) DIMENSION FOR
AN ARRAY IS FLAGGED

" ALl COMMON BLOCK |
ARIAYS MUST BE

DIMENSIONED IN [QUERY

COMMON BLOCK
_ STATEMENTS

DIMI NSION STATEMENT AND
VARIABLLE WHICH CONTAIN
AN ADJUSTABLE (VARIABLE)
DIMENSION ARE FLAGGED

CONSTANTS, HOLLERITH SHOULD

-~
=——-—>"0UERY

T~ > QUERY

2507
NUMBER.
NE.250

QUERY
2552

NUMBER.
NE.255

260?
NUMBER.
NE.260

2657
NUMBER.
NE.265

270?
NUMBER.
NE.270

2757
NUMBER,
NE.275

NOT B USED IN SUBROUTINE S

CALUING ARGUMENT LISTS

. - EYRERSTRLR Y
ARIGINAL PAGE 13 w40

ER 250 .

ER256 ".

ER260 1
‘ B

ER265 1. .

ER 270 1.

ER 275 1.

1
ER 280 .

SA|-0488

REPRODUCIZILITY &

ALl OCCURRENCES OF SAME
VARIABLE IN PARAMETER
LIST ARE FLAGGED

e = e e

UL APPEARANGE OF THE SAME
COMMON VARIABLE IN MORE TIIAN
tDATA STATFMENT IS FLAGGED

QUERY
2852

NUMBER.
£0.285

YES ER 285

QUERY
2900?

CONCOM

NUMBER.
EQ.290

ER 290

CONTINUE
PROCESSING
EXISTING QUERIES

SAI-0489

UNIT MODULE DESCRIPTION

IDENTIFICATION

ER24Q —- Error‘240 routine

STORAGE ALLOCATION REQUIREMENT (estimate)

2K (hexadecimal bytes)
PURPOSE
I"lag BEQUIVALENCE and EXTERNAL statements

DISCRIPTION

The routine checks each module for statement type.
is a 12 (EQUIVALENCE) or 40 (EXTERNAL) the routine flags the

statement in Flag File.

1HIOW ENTERED

Called by AIR

CALLING SEQUENCE

Call IKR240

No Arguments

ROUTINES CALLED

Ik
GETE
GETL
Pop

If type

T
y 4

b siectesl

SET/USE PARAMETERS

ST

“Global:

USI

Global:

CQMMON/SPEREG/
LR(10) -- Error registers

 NOTE: Only ER(3) and ER(4) are set.

FBR -- forward/backward register

COMMON/FLAG/
FLAGFL -- input/output designator

COMMON/ 1/
HB -- hollerith B
HF -- hollerith F

COMMON/ TABLE/

HDIR -- directory table
HUSE1l -- use table

HSYM -~ symbol table
HNOD -~ node table

SIGNIFICANT INTERNAL VARIABLES

I0, I1, I3, I4 -- integer constants
‘K —-- error flag

SCIND -- source code indicator
FSTAT -- first statement number
LSTAT -- last statement number

BF —-- general purpose flag

STATYP -- statement type storage

LIMITATIONS AND RESTRICTIONS

All variables are set IMPLICIT INTEGER (A-2)

DITAILED FLOWCHART

At tLached

4-11

t/____J
g 4

FRBR240

INITIALIZE

IMPLICIT INTEGER {A-2)

LABEL LED COMMON/FLAG/,/H/,
/SPEREG/,/TABLE/

THIS ROUTINE FLAGS EXTERNAL
AND EQUIVALENCE STATEMENTS
STATYPE 40, 12

INTEGER VARIABLES
10,11, 13,14 =
0,1.3,4

INITIALIZE
ERROR NUMBER
K-240

e

y

SET FORWARD/
BACKWARD FLAG
TO FORWARD

1,2 FBR - HF

1E

(HDIR, BF)
SELECT A
MODULE

TO EXAMINE

ARE ALL
EXAMINED
BF,EQ.2;

© GFTE
{HDIR, 13)
NEXT ELEMENT
IN MODULE

RETURN

SET FBR = HB
FOR -
BACKWARD >

FLOW

NO

GETL

{(BF)

FETCH LINE
OF CODE

!

GETE

(HDIR, 14}
GET SOURCE
CODE INDEX

ORIGINAL PAGE I8

SA10462

e e —— —

S§1 1 SOURCH
CODF INDEX
L SCIND - FR{)

A

e X

1]
{HNOD, TR}
CHICK FOR FND
OF NODFE TABLE

B T

S 1 1 ORWARD/
BACKWARD REGISTER
P8R - HF

IND OF
1ARLS
WF NE 2

N

o

(A

{HNOD, 1D .
Ff1CH STATEMENT
ryer

SUISTATEMINT
FYet
SIALYP TR

Lo b e e

[
SIATEMENT
ERROIE CONDETION
STALYPEQ?
ORSTATYE
P00

YES

#0118
PO STACK UP

RESTT FBR HB
BACKWARD
FLOW

GETE
{1INOD, 17)
FETCH
FSTAT NO.

STORE 1iRs8

STATIMINT NO,

FSTAT = FiH(13)

ONE
ar
{HNOD, 18)
2 FETCH LAST

STATEMENT NO.

3

STOHE LAST
STATEMINT
LSTAT 1 RUMD

WRIE ERIOR
TOFRLAGFL

4-13

FORMAT {1{2x, 1h],2)
‘FR240.. 7, 4{2x,04]))
PARAMETER LIST: [1, SCIND,
FSTAT, LSTAT, K, 10,10, 10, (0

SALOABA

UNIT MODULE DESCRIPTION

IDENTIFICATION

COMBAL addition

STORAGLE ALLOCATION (estimate)

Additional 250 hexadecimal bytes
PURPOSE
Flag unlabelled COMMON

DILSCRIPTION

The routine contains a check on the Common Block name. If it

is blank the statement is flagged.

NOTE: There are no new variables and subroutines; there is

only a new error message and an additional check.

DETAILED TLOWCHART

Sce attachments

] —

EXAMINE
NEXT
COMMON BLOCK

COMMONS b e e ———
NOT NAMED
ARL FLAGGED
(210}

IS THIS
LABELLED
(NAME(1).NE.HBL.
OR.NAME(2)
NE.HBL)

VES EXAMINE LIST OF MODULES
THAT CONTAIN THIS BLOCK

GETE

(HDIR, 14)
FETCH AND
STORE SOURCE
CODE INDEX

SCIND(1} = ER(3)
STORE INDEX

GETE {HNOD, 17)
FETCH FIRST
STATEMENT NO.

1

STORE FIRST
STATEMENT NO.
FSTAT(1) = ER{13)

/

GETE (HNOD, 18)
- FETCH LAST
STATEMENT NO.

STORE LAST
STATEMENT NO.
LSTAT{1) = ER{13)

@ s A ot o ey b

SET ERROR NO.
101 FORMAT (5(2x, Ib), 2x) K ~210
COMBAL. . 4{2x, 15)}
PARAMETER LIST: {1, SCIND(1)
FSTAT(1), LSTAT(2), K, O,
10,10, 10

WRITE ERROR
MESSAGE
TO FILE FLAG

SA1.0462

PRODUCIBILITY OF 171
4-15 CRIGINAL PAGE I8 PG

UNIT MODULE DESCRIPTION

IDENTIFICATION

Modification to CONALC

STORAGE ALLOCATION (estimate)

Additional 500 hexadecimal bytes.
PURPOSE

¥Flag Common Block arrays that are not dimensioned in Common

nlock statements.

DESCRIPTION

The modification locates the source and writes a message to
FLAG FILE to indicate that an array in a COMMON BLOCK is

dimensioned elsewhere.

HHOW INTERED

The code occurs at the point where a Common Block variable is

dimensioned other than in a Common Block.

DETAILED FLOWCHART

See attachments.

ARBAY IN COMMON
BLOCK DIMENSIONED
ELSEWHERE

v

ALL COMMON BLOCK ARRAYS
MUST BE DIMEMEIINED IN
COMMON BLOCY LRRAY {270)

GETL

(BF)

LOCATE LINE
OF CODE

Il

GETE

(HDIR' 14)
FETCH SOURCE
CODE INDEX

|

SET SOURCE
CODE INDEX
SCIND(1) = ER(13)

i
GETE
(HNOD' 17)
GET LOCATION OF
STATEMENT

y

SET FIRST
STATEMENT NO.
FSTAT(11) = ER{13)

GETE

(HNOD' 16)

GET LAST
STATEMENT NO.

\

SET LAST
STAGEMENT NO.
LSTAT(1} = ER(13)

SET FRAROR
CODE
K =270

REPRODUCIBILITY Of" ‘1.,
ORIGINAL PAGE IS PCOR

WRITE
MESSAGE
TO FLAGFL

801 FORMAT (5{2x, I5), ‘CONALC. ., 4(2x,15))
1/O PARAMETER LIST:

11, SCIND({1), FSTAT(1), LSTAT(1),

10,10, 10, 10

CONTINUE WITH PROGRAM

SAI-0461

2

UNIT MODULE DESCRIPTION

IDENTIFICATION

ER275

STORAGE ALLOCATION (estimate)

2K (hexadecimal bytes)

PURPOSE

Flag DIMENSION statement and variable which contains an
adjustable (variable) dimension ,

DESCRIPTION

This subroutine searches a module for statement type 28

(DIMENSION) then examines each array element for a use code
15 (Array dimension). When this condition exists the error
is recorded. At the end of the statement search each array

is flagged that has a variable dimension.

1HIOW ENTERED

Called by AIR subroutine if query is selected. There are no

arguments,

CALLING SEQUENCE

Call BR275

OTHER ROUTINES CALLED

IE
GETE
GETL
TT

'] —
4-18 4

SLT/USE PARAMETERS

USE
COMMON/FLAG/
FLAGFL -- I/O designator

COMMON/H/
HB -- hollerith B
HF -- hollerith ¥

COMMON/TABLE/

HDIR -- directory

HUSE2 -~ linked Test Statement
HUSEl -- 1linked List Use

HNOD -- Node Table

COMMON / SPEREG/
ER(10) -~ table information turn array
FBR -~ program flow register

SIGNIFICANT INTERNAL VARIABLES

1o, 11, 12, 13, 14, I5, I8, I7, I8, I9 = 0 - 9

K -- error flag number

SCIND -- module indicator

FSTAT —~— first statement number of error
LSTAT -- last statement number of error
NUMOCC -- counter for error
RESTRICTIONS

All variables are IMPLICIT INTEGER (A-Z)

DETAILED FLOWCHART

Attached

4-19

ER2:S

MPLHE INIFGER A /)

-
LABEELLD COMMON/HLISPEREGLITARLLIF | AG!
> o FLAG DIMENSION STATEMENT AND VARIAHLE
WHILH CONTAINED AN ADJUSTABLE (VARIABLE
DIMENSION USE —
R * N STOHT INDE X
- A e——— SCIND £U3t

INIHIALIZE 1,2
INTFGER VARIABLE e
0w, LI
03 .9
(18
THNOD, HF)
INITIALIZE
ENTRY 10
RGNS S — e
INITIAL IZE
ERROA NO
K 28
I R aaatamnns ALL
STATEMENTS
CHECKED
BF.EQ 2
- R L
INEEIATL E2E
DIREL HON FLAG
10 FORWARD
FHA HF
— GETE
S {HNOD, 11)
(A GET STATEMENT
.. TYPE

It IHDIR, BF)
INIT AL ENTRY
10 DIRECTORY
] s
FTELC
- % Low ﬁs(ms NOT A
DIMENSION
tan ranos ERI3I NE.28
o ~
A MoDULES™
14T DEPLEFED

NO

RETURN

8F €027
— GETE
{HNOD, 7)
GET
STATEMENT
R 151 LOCATION
GETT
1HDIK, 13} \
GE1 MODULE
NUMBER
o) FSTAT ~ CAlIY
o T — SET FIRST
LOCATION
/"(]
-7 NO SER
IABLES YES PAGKWARD/
AVAILABLE FORWARD GUTE
£al3) FUR HB IHNOD, 18]
(0o GET LAST
STATEMENT
- , [mo LOCATION
Gtil
iy
I1HING MODULE STAT - ER(H
IN1O MLMORY ;'g; LA;;‘ fa
e STATEMENT
l LOCATION
GF 18
(HNIA, 141
FETCH SOURCE
ODE INDEX
1
SA10417
#

REPRONUCTET 1’[“{ ¢

*

5

el

NUMOGCC 0
SUT LOUNTFER TO
ZERU FOR /

Of ERROR EVENTS

1
(USE2, 1F)
LINK 10 USE
TAILE FOR THIS
STATEMENT

AT

AtLENTRIES
HEEN

EXAMINED

\\\421501

psoshns s - —

SET FLOW
FLAGTO
FORWARD
FBR~HF

B0 R —
GFIE

(USE2,12)

CHECK NEXT ENIRY.
IN STATEMENT

L
- <
RAETITEN
NOT ARRAY

SUBSCHRIPYL
ER{13).NE. 15

NO

NUMOGC

NUMOGE 1
INCREMENT OCCUR
RANCE COUNTY

1T
(HUSE, WF)
TALE TO
JABLE
TRANSITION

END OF
TABLE
HF.EQ.2

FOR VARIABLE USED

-4 AS AN ARRAY DIMENSION

USE 15

CHECK [ACI ELEMENT

SET FLOW TO
HACKWARD
FBR * HB

..

SET FLOW TO
BACK
FAR - HA

ERAOR HAS OCCURRED
FIND VARJABLE NAME
AND WRITE THE NAME,
LOCATION & EAROR /I
r0O FLAG FILE, KEEP
CHECKING STATEMENT

17

{HSYM, BF)
TRANSFER 70
SYMBOL TaBLE

POP (RF)
MOVE SYM
UPIN.
CONTROL
STACK

GETE
(HSYM, 11)
GET SYMBOI.
NAME

SAVE NAME
SVNM1 = ER(I3}
SVNM2 = ER {14)

WRITE FLAGFL
THAT ARRAY
HAS VARIABLE
DIMENSION

501 FGRMAT (512X, 151,

{'ER275. ., 3(2x, 16}, 1X, 244}

PARAMETER LIST: 11,
STIND, FSTAT, LSTAY
K. NUMOCC, 10, 10,

SVNM1, SVNM2

SAY 0478

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS PCOR

- IDENTIFICATION

UNIT MODULE DESCRIPTION

ER280

STORAGE ALLOCATION (estimate)

PURPOSE

Flags subroutine calls with constants and hollerith arguments
and flags all occurences where the same variable exists in

multiple positions.

DESCRIPTION

This routine searches the parameter list of each cALI, statement
(statement type 34) for either equal variable symbols or
constants (symbol class 8) and holleriths (symbol type 6) used
as an entire argument (ysy table use code 19 and 17).

HOW ENTERED

Called by AIR subroutine

CALLING SEQUENCE

Call ER280 (QNUM)
QNUM is the query number = 280 or 285

OTHER ROUTINES CALLED

I
GETE
GETL
CONALP
POP

7—
y 4

LR Lvopagied 6B

SET/USE PARAMETERS

USE
GLOBAL: COMMON/ALINFO/
COMMON /FLAG/

FLAGFL -- input/output deésignator

COMMON /H/

HB -- hollerith B
HF -- hollerith F

COMMON / SPEREG/
ER(10) -- Error registers
NOTE: Only ER(3) and ER(4) are set.
FBR -- forward/backward register
COMMON /TABLE/

HDIR -- directory table
HUSEl -- use table

HSYM -- symbol table
HNOD -- node table

SIGNIFICANT INTERNAL VARIABLES

OVFLG -- Output variable from CONALP; table overflow
ERFLG -- Output variable from CONALP; error flag
PTR -~ Input variable to CONALP; pointer to statement

10, I1, ..., I9 —- represent integers 1 - 9
K —— error flag
SCIND -- source code indicator

FSTAT »—- ﬂirst statement number

LSTAT ~- last statement number
BF —-- general purpose flag l/

/ 4-23 | 4

| LIMITATIONS AND RESTRICTIONS

All variables are set by IMPLICIT INTEGER (A-2)

DETATLED FLOWCHART

Attached

7—
y 4

N

£H280
{anum)

f— e —— e —

INtTIALIZE

CGONSTANT
n.h,.. 18
0.1...8

SET ERROR
NUMHER YO

QUFRY

NUMBE R
ALSOCIATED WITH IT
WITH T

K QNUM

SET FLOW
REGISTER
10 FORWARD
FItH = HF

13
IHDIR, JF)
INITIAL ENTRY
IN DIRECTORY

MODULES
LIST DEPLETED
HF EQ2
’

GETE
(HDIR, 13)
GET MODULE
NUMBER
(ER(I3)

ROUTING PROCESSES QUERY 280, 285; 280 FLAG!
CONHTANTI AND HOLLERITHS, 285 DUPILICATE
VARIABEE NAMES INACTUALSURROUTINE
PARAMETFIR LISTS.

IMPLICIT, INTEGER (A-Z)' LABELS ED COMMON
JALI A, IFUAG/, ISPEREG/,/TABIE/

JALINFOQ/

12,34,

“CIND =
ER(I3)

|

oN

Fi.3G 10 .
HACKWARD
- FBR = HB

RETURN

NO

TAlLES
AVAILABLE-
. ER(3), EQ.0

YES

FBR HIE
SET BACKWARD/
FORWARD

INTO MEMORY

GEre
IHDIR, 14}
GETCH SOURCE
CODE

GF r

{RF)

HHING MODULE
[INDICAT()H

REPROTV
ORCH

4-25

SET FIND YES

E

{HNOD, BF)
INITIAV IZE
ENTRY TO
NODE TABLE

Al
STATEMENTS
CHECKED
WFEQ.2

GETE
[HNOD, 17}
GET
STATEMENT
1YPE

STATEMENT
ER{13L.NE,34

GETE

(HNOD, 17)
GET
SIATEMENT
1st LOCATION

FSTAT (11} = ER{{3)
SET FIRST
LOCATION

!

GETE
{HNOD, 13}
GET LAS*
LOCATION

LsTAT {11) = ER {13}
SET LAST
SIATEMENT

| OCATION

SAI 0480

lﬂ)

FETCH INFORMATION FOR CONSTRUGTING PARAMETER

TO PASS TO CONALP

LT, LOCATE THE HTATEMENT IN THE USE TABLE

SET FORWARD
FLOW
FBR -~ HF

r

|l

IUSE2, WF)
TRANSFER
INTO USE 2
TABLE

strertow
FLAGTO |
BACK FBR - HB

BF.EQ,2 TRY
ANOTHER
STATEMENT

I.SFI POINTER PIR < PR REGISTE‘;]

coNaLP

(PTR, 1, FSTAL,
LSTAT, OVFG,
ERFG)
CONSTRUCT
PARAMETEH LIST
FOR STATEMENT

WRITE TO

WAS THERE PANTFL
AN ERROR IN SURROUTINE
PARAMETER

CHECK OVER

WRITE TO
PANTFL THAT
CHECKX MAY
NOT it VALID

IS THERE
AN OVERLFLOW
OVFG EQ.1

FBR =~ HA
FLOW
BACKWARDS

15 THIS
CONSTANT
HOLLERITH
CHECK?

CHECK FOR WHICH COMPARISON I 1O UE
MADE, THEN SEARCH PARAMETER LIST FOR
THAT SITUATION, ONLY ALJIGNMENT LIST 1
IS USED.

S5A1 0482

CONSTANT/HOL LERITH

— e em — —{ CHECK
SET FOR TABLE 221 FORMAT
CHECK (5(2X, 151, 2X, ER2860. . ,
Pr1-3,PC1-4 r - 312x15).244). 10 LIST: 12,
Pt 1~ PLALI{Y) SCIND (1), FSEAT(), LS12T(), ¥
ERCNT -0 : EACNT, 10, 10, NAME
|
]

WRITE FLAG
FILE, LOCATION

END OF ANY ERRORS

PARAMETER THIS LIST NAME, TYPE
LIST PT1 »PLY ERCNT, ERROR, ERCOUNT,
GT.0 '
NO
SET FLOW
TO BACK
FHR *HB
1
[RE FITHE
HOL LERITH YES :;%%R&;“ENT -~
PARAMETER COUNT ER e
ALIGN (1, PT1). ERCNT = ERCNT 1
EQ.6
NO
1S IHIS A
CONSTANT YES | ,INCREMENT
PARAMETER ERROR COUNT >
ALIGN {1,PC1). ERCNT = ERCNT 11
EQ.8
NO
LET POINTEHS T0
NEXT PARAMETER
P11 BT U TABES LAVIGN 11, PTT 4 1))*3 1 6
PeY Py)
SAIl-0481

SETFARAME TR CHECK
VARIABEES PV 11, X 1
{ALIGN (1, 211 114)*3) 15
M7 12, pX72 X1t
TRONT 0

Mt LAt ()

#1111 1AS

1T HECS FORMULTIPLE
VARIABLE OCCURRENCES

Y 221 FORMA - SAVISFILES
END OF 1110 1 THIS ERROR :150 1/0
PARAME 1ER FLOW o T stinon), .
1157 BACK r FSTA (1}, LSTAT{T), K, ERCNT, 10, 10,
el PIT R FUR - HE / 1 PLY, PL2
|
e - - s —— - 1
{
I
- WRIE 10 {
PX1 P YES .":lL}\(l_LOW FLAGF{ 1 “TEAR
NEX1I PAR A LO ATION LOUN
EMND OF FRR . HB PARAME | ER NAME AND ER{NT =0
1St “OUN1T
NO
VARIASLE INTREMEN | y
NAMES EQUAI ERROR - .
1 (P11 EQ PXT, EACNT ~ INCREMENT
AND PIZ EQ. ERGNT 1 1 INITIAL PARAM
X2 AFTER NAME
PIT - PHT 4 IABS (ALIGN
PI2=PIT= 11
SET 1O FIRST INCREMENT YO
NEXT PARAMETER NEXT VARIABLE
NAME PIT- i1 4 1ABS {ALIGN (1, P11
PX1 PX1 1 IADS (ALIGN v Ta)) 3
(1, PX1 114} *3 15 PIZ=PIT1+ 11
X2 ~PX11 11
SAI0ATY

REPRODUCIBILITY OF T

ORIGINAL PAGE IS POUR

UNIT MODULE DESCRIPTION

IDENTIFICATION

MULBRA additions

STORAGE ALLOCATION REQUIREMENT (estimate)

Total after additions 2K hexadecimal bytes

PURPOSE

Flag arithmetic IFs and flag GO TOs that are targets of other
GO TOs.

DESCRIPTION

One addition to MULBRA will flag GO TO statements which are
the targets of previous GO TO statements. The program will
scarch for statement type 45 that has a use code of 9. When
this occurs the statement is flagged with a message to the
Flag File (220). '

The second addition to MULBRA flags Arithmetic IFs. In this
case an IF statement (statement type 10) with more than 2
branch targets is flagged by an érror message to the flag
file (220).

HOW ENTERED

Called by AIR upon query request.

CALLING SEQUENCE

CALL MULBRA (Number)
Number is query number 150, 200, or 220; all are processed

in this subroutine.

AN

OTHER ROUTINES CALLED

No additional routines are called.

SET/USE PARAMETERS

There are no additional parameters used or set.

SIGNIFICANT INTERNAL VARIABLESl

USECD -- use code variable
NSUC -- number of targets
BFLAG -- branch flag

DETAILED FLOWCHART

Attached

4-30

ONLY THE ADDITIONS ARL
“EODE K DETAY

NO L

MUTIRA IMPHICIT INTEGE R (A 2}
(NUMRE 1) LABELLF) COMMON/TLAG/, /M /SPERLG/,/TABLE/
.- NUMBER 1S POSSBLE QUERY 150, 200, 220
‘_A _____ INCLUDES SEARCH FOR ARITHMETIC IFS AND

GOTOS THAT ARE TARGETS OF QTHER GOTOS

INTHIALIZE
CONSTANTS
AND-DIRECIION

b me e SONEDS

(,}_

>

INITIALRZE
FORENTRY
TO DIRECTORY

HAVE ALL
MODULES
BEEN
EXAMINED,

RETURN

BHING MODULE
INTO MAIN
MEMORY

!

FIND SOQUNCE
CODE INDEX

i

BRING IN A
STATEMENT

ARE ALL
EXAMINED?

SET
STATEMENT
TYPE STATYP

\
RLSEY
BRANCH FLAG
TO ZERO
BFLAG = 10

RESET TARGET
COUNT #+LAG
TQ ZFRO
NSUC - 10

SA1 0470

REPRODUCIBILITY OF THI

4-31 ORIGINAL PAGE IS POOR

i
SIATEMENT
1 an Gorn

NO

R a

BACKWARD
HEOW

NOTL- ONILY THE ADDITIONS ARE
TEODE 10T DCTAN

15

STATEMENT
GOTOAND QUERY

2200

STATYR.EQALAND
NUMBER,EQ.2207

Yrs ST

FiH 1F
TORWARD/BACKWARD
F'LAG TO FORWARD

T
(HUSE2,BF}

EXAMINE ELEMENTS
OF GOTO STATEMENT

ALL
ELEMENTS
EXAMINED
BF.EQ.127

GETH
{HUSL?, (2)

GET USE

CODE FOR ELEMENT

SET USE CODE
USE CD = ER{I3}

15
CLEMENT
A STATEMENT
LABEL DEFINITION
USECD,EQ.97

K =220 L.@

SI.T FORWARD/
HACKWARD FLAG
TO BACK

FBR = HB

sAl 0471

4-32

[- o sy e L T e

STATIMENT
HAS ONLY 1
Sucersson

St1FrLOW 1
vis FLAG T
! BACK
FHR HB

STORL
STATEMENT
NO.

FIND | OCATION
OF THE
BHANCHING
STATEMENT

. y >

DETERMINE IF
STATEMENT
AFTEH MULTIPLE
BRANCH IS
BRANCH TARGET

K = 150 ——>®

iS BIRANCH
1S A GOTO
WITH A FOLI OWING
STATEMENT NO,
{BRANCH.EQ.STAFOL).
AND.{STATYPL.£Q.45)?

POP{BF) ——-—-—.@

1S IF WITH
HIANCH TO FOLLOWING

STATEMENT BRANCH.EQ.
\ STAFOL

YES BFLAG = 1

] NO | g
INGREMENT
b i COUNTER
o $A10472

GETE

{HNOD, 12)

GET AN ELEMENT
FROM NODE TABLE

L

FELUSE
{12, ER(3), A)

TRANSFER
THROYUGH A
VARIABLE VALUE
A(13).£Q.23?

SA1-0469

GeE-V

ik NOT
{NUSC.LT.3L

€Q.10)

ARITHMETIC IF

AND.[STATYPE.

WRITE
MESSAGE
TO FLAG FILE

1S BRANCH
FLAG SET

K =150

SA1-0473

s

|

UNIT MODULE DESCRIPTION

IDENTIFICATION

ER250 —-- Error 250 Routine

STORAGE ALLOCATION (estimate)
2K (hexadecimal bytes)

PURPOSE

To flag variables used as I/0 designators.

DESCRIPTION

This routine examines each line of code in the source decks

for variables with the classification ''scalar'" (class code = 6)
which are also used as I/O designators (use code = 26). Having
found one which satisfies both requirements, an applicable

message 1is written to the flag file.

MATHEMATICAL EQUATIONS/DEFINITIONS

None

HOW ENTERED

Called by AIR

CALLING SEQUENCE

Subroutine call, no arguments. Call ER250.

UNIT MODULE OR OTHER ROUTINES CALLED

IE
GETE
GETL
TT

R

SET/USE PARAMETERS

SET

Global Common: - COMMON/SPEREG/

ER(10) -- Error registers
NOTE: Only ER(3) and ER(4) are set.

FBR -~ forward/backward register

USE
Global Common: COMMON/FLAG/

FLAGFL -- input/output designator

Global Common: COMMON/H/

HB -- hollerith B
HF -- hollerith F

Global Common: COMMON/TABLE/

HDIR -- directory table
HUSEl -- use table

HSYM ~- symbol table
HNOD -- node table

SIGNIFICANT INTERNAL VARIABLES

10, 11, . . . , I9 -- represent integers 1 - 9
K -- error flag

SCIND -- source code indicator

FSTAT -- first statement number

LSTAT —-- last statement number

BF -- general purpose flag

4-37

CONSTRAINTS

All variables are set to integer by the IMPLICIT statement.

COMPUTATIONAL ACCURACY AND RANGE OF INPUT/OUTPUT VARIABLES

Non-Applicable

ERROR MESSAGES AND SUMMARY

None

DETAILED FLOWCHART

See following pages.

' 7
4-38 l

e

(ER250)

SET STANDARD
INTEGER VALUES

VARIABLE WHICH IS 1/O UNIT DESIGNATOR

IS FLAGGED: SEARCH FOR SCALARS (CLASS
CODE = 6) WHICH ARE USED AS 1/0 UNIT
SPECIFICATIONS (USE CODE = 26),USES

NAMED COMMON/FLAG/,/H/,/SPEREG/&/TABLE/
IMPLICIT INTEGER (A — Z}

10,17,...,19
=0,1,....9

)

SET ERROR
FLAG NO.
K =250

SET FORWARD/
BACKWARD FLAG
TO FORWARD
FBR = HF

\E

(HDIR, BF}
BRING IN A
MODULE TO
SEARCH

SET FORWARD/
BACKWARD FLAG
TO FORWARD
FBR = HF

LEAVE SUBROUTINE
BF.EQ.2

GETE

(HDIR, 13)

FIND END OF THIS
MODULE

END OF THIS
MODULE?
ER{I3} >10

ORI

RETURN

SET FORWARD/
BACKWARD FLAG
FBR = HB

SAI1.0432

1.6

GETL

(BF)
BRING IN LINE
OF CODE TO
ANALYZE

GETE

{HDIR, 14)
FIND END OF
THIS LINE

SET END OF
LINE INDICATOR
SCIND = ER (13}

1E

(HSYM, BF)
INITIAL ENTRY
TO SYMBOL
TABLE

SET FORWARD/
BACKWARD FLAG
FBR = HF

IF END
OF SYMBOL
TABLES?
BF.EQ.2

SET FORWARD/
BACKWARD
FLAG
FBR = HB

GETE

(HSYMm, 13}

GET A SYMBOL
TABLE ELEMENT

SA1 0433

END OF THIS

FBR = HB
SET FORWARD/
BACKWARD FLAG

TT
(HUSE1, BF)

GET USE CODE
LOCATION FROM
USE TABLE

END
OF TABLE
BF =2

ves | FBR=HB 5
SET FORWARD/
BACKWARD FLAG

NO

GETE

(HUSE1, 12)
GET ELEMENT
FROM TABLE

SET FBR = HB

[52]

SA1-0434

4-41

L

i
53

GETE
(HNBO, 17)
GET BEGINNING
OF NODE

!

FSTAT = ER (3)
FSTAT IS FIRST
STATEMENT
NUMBER

GETE
(HNOD, 18)
GET END
OF NODE

LSTAT = ER(3)
LSTAT IS LAST
NODE STATE-

MENT NUMBER

FLAGFL
MESSAGE THAT
VARIABLE IS
/O UNIT

s

REPRODUCIBILIT‘(|
DRIGINAJJ P&A‘sé’ Ea] N

1001 FORMAT (6(2x, 15}, 2x, ER250—--—',
3(2x, 15), 2x, 2A4)

1/0 PARAMETER LIST:

11, SCIND, FSTAT, LSTAT

K, 10,10, 10, 10

SAL0435

UNIT MODULE DESCRIPTION

IDENTIFICATION

ER260 -- Error 260 routine

STORAGE ALLOCATION (estimate)

2K (hexadecimal bytes)

PURPOSE

Flag statement labels not in increasing numerical order.

DESCRIPTION

This routine locates and reconstructs each statement label in
a module. If the current label is less than the previous

label it is flagged.

HOW ENTERED

Called by AIR

CALLING SEQUENCE

Subroutine: Call ER260

There are no calling arguments

UNIT MODULE OR OTHER ROUTINES CALLED

SUBROUTINE: IE
GETE
GETL
CONVER

FUNCTION: FLD

SET/USE PARAMETERS

SET USE
Global: COMMON /SPEREG/ GLOBAL: COMMON/FLAG/
| ER(10) Flagfl -- I/0 file
FBR
NOTE: Only ER(3) is set, COMMON/HOSTWD/
the rest are not FULLWD
referenced. COMMON / B/
HB -- hollerith B
HF -~ hollerith F
COMMON/TABLE/
HDIR
HSYM
HNOD
SIGNIFICANT INTERNAL VARIABLES
10, I1, ... I9 —-- integers 1 - 9
LSAVE —— current label number
K . —— error number flag
SCIND -— source code indicator
FSTAT -—- first statement number of error
LSTAT —— last statement number of error
BF —-— condition flag; return argument
LABEL —--— next reconstructed label number

e

i/

4-44

LIMITATIONS AND RESTRICTIONS

All variables are set to integer by the IMPLICIT statement.

DETAILED FLOWCHART

See Attached

i/ —

ERIR260

SET STANDARD
INTEGER VARIABLES
10.11,...,19=0,1,,,.,9

SET LOCAL
VARIABLE
LSAVE =0

SET FORWARD/
BACKWARD
FLAG FBR = HF

SET ERROR
INDICATOR
K = 260

IE
(HDIR, BF)
BRING IN MODULE
TO SEARCH

SET FORWARD/
BACKWARD FLAG
TO FORWARD

FBR = HF

If END
OF MODULES
LEAVE SUBROQUTINE
BF.EQ.12?

FLAG STATEMENT LABELS NOT IN INCREASING
NUMERICAL ORDER. SEARCH FOR STATEMENT
LABEL: CLASS 5; CHANGE LABEL TO INTEGER;
USES LABELED COMMON/FLAG/,/H/,/HOSTWS/,
/SAEREG/,/TABLE/

IMPLICIT INTEGER (A - 2)

THV
REPRODUCIBILITY OF THT
S RIGINAL PAGE T8 P77,

RETURN

SA|-0458

35

GETE
{HDIR, 13}

END OF
THIS MODULE
ER(13).GT.107

'1 NO

GETL

(BF)
BRING IN A
LINE OF CODE

GETE
(HDIR, 14}
FIND SOURCE INDEX

SET SOURCE INDEX
INDICATOR
SCIND = ER{I3}

IE
(HSYM, BF)
INITIAL ENTRY

INTO SYMBOL TABLE

|

SET FORWARD/
BACKWARD FLAG

FBR = HF

END
OF SYMBOL

TABLE
BF.EQ.I2?

SET FORWARD/
BACKWARD
FLAG FBR = HB

SALD4SE

R

{H5YM™, 13}

GET SYMBOL TABLE
ELEMENT

NOT A
STATEMENT
LABEL

ER(I3).NE.I57

NO

INITIALIZE COUNTER,
DO VARIABLE, AND
ANSWER VARIABLE
J =0, LABEL =0, | =1

GET

{HSYM, 1}

GET ELEMENT FROM
SYMBOL TABLE

4

CONER

(ARRAY, CCUNT)
CONVERT STRING &
DECIMALS TO
POSITIVE NUMERIC
INTEGER }/ALUE

IS THIS
LABEL -+
LAST

LABEL?

GETE

(HNOD, 17)

GET 1st STATEMENT
NUMBER

4

FSTAT ER{I3)
SET INTO QUTPUT
VARIABLE

RECONSTRUCT STATEMENT
~4 LABEL; MACHINE
INDEPENDENT CODE

SA10562

GETE

(HNOD, 18}

GET LAST
STATEMENT NO.

SET INTO
ouTPUT
VARIABLE

LSTAT = ER{13)

1001 FORMAT {5(2X, I5), 2X, ‘ER260..."}

3(2x, 15), 2x, 2A4)

1/0 PARAMETER LIST: 11, SCIND,
FSTAT, LSTAT, K, 10, [0, 10, 10

FLAGFL
MESSAGE THAT

STATEMENT VARIABLE

QUT OF ORDER

SAVE CURRENT
STATEMENT
NUMBER
LSAVE = LABEL

4-49

SA|-0459

UNIT MODULE DESCRIPTION

IDENTIFICATION

ER230 Error 230 routine

STORAGE ALLOCATION (estimate)

3K (hexadecimal bytes)

PURPOSE

Flag ASSIGN, PAUSE and assigned GO TO statements

DESCRIPTION

This routine searches a module for statement 38 (ASSIGN),
50 (PAUSE), or 45 (GO TO). When the first two are fouhd, the

error is written to Flag File immediately.

is checked further for a use code of 23 (transfer through'a
variable value). If the code is 23 a message is written to

the Flag File also.

HOW ENTERED

Called by AIR

CALLING SEQUENCE

CALL ER230
Note: No arguments are used.

UNIT MODULE OR OTHER ROUTINES CALLED

IE
GETE
GETL
FELUSE

The third one

] —
l :

SET/USE PARAMETERS

SET ‘ USE

GLOBAL: COMMON/SPEREG/ GLOBAL: COMMON/FLAG/
ER(10) -- error FLAGFL -- I/0 de-
registers ' signator
NOTE: Only ER(3)
is used COMMON/H/
FBR-- forward/ . HB3 -- hollerith B
backward register " H¥ -- hollerith F

COMMON / TABLE/

HDIR -- directory
table

HNOD ~- node table

HSYM -- symbol
table

HUSEl -~- use table

SIGNIFICANT INTERNAL VARIABLES

10, 11, ..., I9 -- represent integers 1 - 9

K -~ error flag

SCIND -— source code indicator

FSTAT —- first statement number

LSTAT -- last statement number |
BF. -— general purpose flag %
STATYP -- statement type E
A(LO) -- array for return arguments ;
CONSTRAINTS 2

All variables are set to integer by IMPLICIT statement ;

DETAILED FLOWCHART

See attached

§ 230

FLAG I BROR PRONL ASSIGN,

PAUSE, AND ASSIGNED GOTO

STATUMINTS: SEARCH FOH STATEMENTS

38, 45, & 50, USE CODE ON 45 & # 23,

. AU LABELLED COMMON/FLAG/,/H/,/SPEREG/&

SET FRRON FLAG /TABLE/. IMPLICIT INTEGER (A-2)

INITIALIZE INTEGER
VARIABLES
K-23°

16,41,,..,19 0,1,...,9

)

SET FORWARD/
BACKWARD
FLAG 1O
fORWARD

.2 FBR - HF

IN
(o, 8F}
BRINGIN A
MODULE Kihe

GEF FORWARD/
BACKWARD FLLAG
10 FORWARD
FBR HF

ENO OF
MoouULES
BF.EQ.2?

HETURN

Gt
(HOUL, 1R)

LDCATION OF
THIS MODULE

END OF
MODULE
ERUI3) 10

YES SET FBR = HB ___.@

GETL

)

DRING IN
LINE OF CODF

GlLie

e, tal
FIND END OF
LINE

N

SA1 0467

2.3 U1 FURWARD/
UACKWARD 1O
HACK
Fitn - A

=

SI 1 SOURCE.
LODC INDICATOR
SGIND = ER{1J)

13

(HNOD, BF)
INITIAL
ENTAY TO
NODE TABLE

St T TORWARD/
HACKWARD

FLAG YO FORWARD
FBR = HF

END OF
TABLE
WFEQD?

SET FORWARD/
BACKWARD TO
BACK

FBR = HB

GETE
THNOD, IT)

4

SET STATEMENT
TYPE STAYYP « ER{T}

STATEMENT A |
GoTo

ASSIGN

STATEMENT Yes

STATYP.EQ.38

PAUSE
STATEMENT
STATYP.EQ.6Q,

TATYF £Q.4%

GETE

{HNOD, 171

GET FIRST
STATEMENT NUMBER

FSTAT ~ERI)
SET TO

VARJIABLE TO
NO.
GETE

{HNOD, 18)
GEY LAST STATEMENT
NO,

i

SET I/0 VARIABLE
TO LAST STATEMENT
NO. LSTAT = ERNJ)

WRITE
ERANOA TO
FLAGFL

1001 FOAMAY [5{2x, 15), 2%,
EAR230, ., 3(2x, I5), 2A4)
PARAMETER LIST; |1, SCIND,
FSTAT, LSTAT, X, 10,10,
10,10

BAl D488

UNIT MODULE DESCRIPTION

IDENTIFICATION

ER290

STORAGE ALLOCATION REQUIREMENTS (estimate)

4K hexadecimal bytes

PURPOSE

Flag COMMON variables multiply defined in DATA statements.

DESCRIPTION

This routine examines all COMMON blocks. Each module containing
that COMMON block is examined for DATA statements. At this
point the parameter in the COMMON block is compared against the
parameters in the DATA statements. A record is kept only for
each module of multiple definitions. Multiple definitions will

be written on the FLAG FILE.

HOW ENTERED

AIR subroutine calls this subroutine when query 290 is requested|

CALLING SEQUENCE

CALL ER290

ROUTINES CALLED

CONALC IE
CONALP POP
EQUIVL ~ PUSH
GETE TT

7/ —
y 4

e A et et s rerepon et

SET/USE PARAMETERS

SET
GLOBAL: COMMON/SPEREG/
FBR —-- program flow flag

COMMON/ALINFO/
NAME(2) -- name save variable
MNAME(2,2) -- module name save variable
SCIND(2) -- source code index
FSTAT(2) -- first statement number of source code
modules
LSTAT(2) -- last statement number of source code
modules
NUMOCC -- error counter
USE
GLOBAL: COMMON/ALI/
ALIGN (2, 300) -- alignment table
PLALI(2) -- alignment table indicators
COMMON/FLAG
FLAGFL -- I/0 variable for error information
COMMON/H/

HB —-- hollerith B
HF -~ hollerith F

COMMON/ LTS/

LISTAB(500) -~ 1list of equivalenced variables
LLIS -- 1list table pointers

PLLIS ~— list table pointers

MAP(6, 20) -—- list table map

PMAP ~— list table map pointer

PLMAP -— list table map pointer

o
4-55 y 4

USE

COMMON/TABLE/

SIGNIFICANT INTERNAL VARIABLES

"HUSE1l -~ hollerith USEl Use table

COMMON /SPEREG/

ER(10) -- table information storage

HCOM -- hollerith COM for Common block table
HDIR -~ hpllerith DIR for Directory

HMAP -- hollerith MAP for Map table

HNOD -- hollerith NOD for Node table

HSYM -- hollerith SYM Symbol table

HUSE2 -- hollerith USE2 for table

AM -- Indicates which alighment table to be filled
OVFLAG -- overflow flag for tables '
ERFLAG -- irretrieveable error flag

ERINC -~ counts 290 error occurrences

LIMITATIONS AND RESTRICTIONS

All variables are set with IMPLICIT INTEGER (A-Z)

DETAILED

FLOWCHART

Attached

FPRODUCIBILITY op?;g;r
ORIGINAL PAGE IS POUR

I S IR I IR S AT, T T T e e e e e LT SR T S T IS T AT e e T T LIV . e b

ER290

(> FLAGS COMMON VARIABLE THAT IS MULTIPLY 1
——n ey e DEFINED iN DATA STATEMENT ~ GLOBAL CHECK

— —— — — =1 IMPLICIT INTEGER (A-2)

LABELLED COMMON/ALINFO/ /ALI/,/FLAG/,

INITIALIZE INTEGER /H//LTEMP/LIS/,/PRNT/ TABLE

CONSTANTS
10,11,...,19=0,
1,...,9

'

K 290
SET ERROR
FLAG

!

FBR - HF
: SET FLOW
? . FORWARD

(D—

E T
(HCOM, BF)
INITIAL ENTRY
COMMON
BLOCK TABLE

'

RESET FLOW -
TO FORWARD
FBR = HF

BLOCKS
EXHAUSTED
BF.EQ.2?

YES
RETURN

GETE
{HCOM, 11)
GET BLOCK
NAME
SAVE THIS “ | cOMMON BLOCK
BLOCKNAME . PARAMETER TABLE
NAME(11} - ER(I3) GOES IN FIRST
NAME(12) = ER{14} PARAMETER, TABLE

i T
Y |
SET ALIGN | SET FLOW
TABLE INDICATOR | o] FLAGTO
' 101 FORWARD i
‘ FBR = HF

AM =1

SAI-504

7T

(USE2, BF)
TRANSFER
INTO USE2
TABLE

NO ENTRY
PRESENT?
BF.EQ.2

SETPTR
POINTER TO
PR REGISTER

!

CONALP

{PTR, 11, FSTAT,
LSTAT, OVFG,
ERFG)
CONSTRUCT
PARAMETER LIST
FOR STATEMENT

SET FLOW ’
TO BACK b, A
FBR = HB

WRITE TO
PRNTFL

. PARAMETER
CHECK OVER

THERE AN
ERROR IN
CONALP

ERFG.EQ.1

FBR =HB
FLOW
BACKWARDS

IS THERE
AN OVERFLOW
OVFG.EQ.1

NOf
SET FOR

TABLE CHECK
PT1-3,PC1-4
PL2 = PLAL{4)

NOT BE VALID

END OF
PARAMETER
LIST

PT1 > PLY

4-58

SAl-505

LOOK AT
NEXTY LIST
ITEM
ERCNYT ~ 0

poP T
PLACE ITEM
TOP OF
CONTROL
STACK

EQUIVAL
(LISTIVO,
OVERFL)

GET LIST OF =
NAMES

EXAMINE NEXT MODULE
COMMON BILOCK IS IN

CHECK PARAMETER AGAINST
VARIABLES IN DATA
STATEMENT

TABLE
OVERFLOW?
OVERFL.EQ.1

N(l*
T

(HLIN, BF)
EXAMINE
LIST OF

MODULES

Y

SET FORWARD
FLAG FORWARD

BFR = HF

WRITE
PRNTFL / SET FLOW
OVERFLOW FLAG
MAY NOT BE/ FBR = HB
100%

2
INCREMENT
PARAMETER |
LIST POINTERS

CALL GETE
(HLIN, 11)
GET MODULE
REFERENCES

4-59

TT

{HOIR, BF)
TRANSITION
TO DIRECTORY

Y

SET FLOW
FLAG
FBR HF

BF.EQ.2
CAN'T LOCATE
MODULE IN

DIRECTORY?

GETE

{HDIR, 14)
GET MODULE
SCOURCE NO.

Y

SET SOURCE
INDEX COnE
SCIND(2; - ER I3)

GETE

(HDIR, 13}
SET TO BRING
MODULE INTO
MEMORY
GETL
(BF)

BRING MODULE
INTO MEMORY

e

|
1€
(HNOD, BF)
INITIALIZE
ENTRY TO NODE

ALL
STATEMENTS
CHECKED
BF.EQ.2

SAl04a87

GETE
{HNOD, 11}
GET
STATEMENT
TYPE

IS THIS
NOT DATA
STATEMENT

ER{I3L.NE.312

SET FLOW
FLAG
FBR = HB

GETE

{HNQD, 17}
GET
STATEMENT
1st LOCATION

!

FSTAT(1) = ER(13)
SET FIRST
LOCATION

Y

GETE
{HNOD, 18)
GET LAST
LOCATION

l

SAVE LAST
LOCATION

FSTAT {11} =
ERI(3)

O—

TT

{USE2, BF)
TABLE TO
TABLE
TRANSITION

TABLE
NOT

AVAILABLE
BF.EQ.27

SET FLOW
TOBACK |
FBR=HB

GETE
(USEZ2, 12}

GET ITEM IN
DATA ENTRY

SA1-0490

.,EPRODUCIBILITY; i IR
4-61 :gB,IGINAL PAGE 18 «oiv

75
Tr
{HUSE1, BF)
TARLE,
TRANSITION
ERROR SET FLOW
YES FLAG

IN TABLE ?
BF.EQ.2?

T

{HSYM, BF)
ENTER SYMBOL
TABLE

ERROR
IN TABLE ?
BF.EQ.2

GETE

(HSYM, 11)
GET NAME
OF VARIABLE

!

STORE NAMF
OF VARIABLE
VNAME (I1) - ER(13)
VNAME(I2) - ER(i4)

FBR = HB

SET FLOW
FLAG
BACK

POP
{BR)
REMOVE

FROM STACK

FBR = HB

S41.0485

gt e

R

THIS

SAME AS
PARAMETER
NAME?

ERCNT=
ERCNTH1
INCREASE
COUNTER

IS THERE
ANY IN EQUIVL
THAT EQ?

FOR THIS

WRITE TO FLAGFL
COMMON BLOCK,
VARIABLE, MODULE

STATEMENT NO. DEFINED

SET FLOW
TO BACK

- —

e —

FORMAT {5(2x, 15}, "ER290. . .", 3(2x,15),1A4)

I0LIST1 12, 10, 10, K 10, 10, 10, NAME

10 LIST 2 12, FSTAT(2}, LSTATI2}, K, ERCNT,
12, 10, VNAME

SAl-pags

4-63

5. REFERENCES

Frank DeRemer and Hans Kron, "Programming-In-The-
Large Versus Programming-In-The-Small," Proceedings
1975 International Conference on Reliable Software,
114-121 (1975).

B. H. Liskov, "A Design Methodology for Reliable
Software Systems,'" Proceedings Fall Joint Computer
Conference, 191-199 (1972).

Larry L. Constantine, "Structure Charts, A Guide,"
unpublished manuscript (1975).

Kathleen Jensen and Niklaus Wirth, PASCAL User Manual
and Report, Springer-Verlag, New York, N.Y. (1975).

Peter Naur (ed.), "Revised Report on the Algorithmic
Language ALGOL 60,'" Comm. ACM 6, 1-17 (Jan. 1963).

D.I. Good and L. C. Ragland, "NUCLEUS - A Language of
Provable Programs," In William C. Hetzel (ed.),
Program Test Methods, Prentice-Hall, Englewood Cliffs,
N.J., 29-40 (1973).

E. Lohse (ed.), "Correspondence of 8~Bit Hollerith
Codes for Computer Environments,' Comm, ACM 11 ,
783-789 (Nov. 1968).

P. Henderson and R. Snowdon, '"An Experiment in
Structured Programming," BIT 21, 38-53 (1972).

