
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

7

1
sto"IPK lrov-*>

i APP11
INCO^

(NASA-CP-1_ . -	 l	 NASD SOFTi

i	

SPECIFICATION AND EVAIUATIC!
PAFT 2 Final Report iScien(
Inc., Huntsville, Ala.)	 211

,

":^

'[

t

I^

1

^'^

	

1	 i

	

^^r,^1'	 -
.d-^.^.

..._.-..: ___._.._	 s.,.. ;,

.	 ^.

i

i
s

L

i

f

TABLE OF CONTENTS

Page

I.	 INTRODUCTION.. 1-1

2.	 SOFTWARE	 SPECIFICATIONS 2-1

2.1 	 THE	 LANGUAGE 2-2

2.1.1	 Introduction 2-2

2.1.1.1	 Need	 for	 SSL 2-2
2.1.1.2	 Unique Features of SSL........ 2-3
2.1'.1.3	 Background......	 2-4

2.1.2	 The	 Grammar........... 2-5

2.1.2.1	 Metalanguage Description...... 2-5
2.1.2.2	 Overview of SSL Grammar....... 2-6
2.1.2.3	 Basic	 Vocabulary.............. 2-8
2.1.2.4	 Basic Language Elements....... 2-10
2.1.2.5	 Requirement Declaration....... 2-14
2.1.2.6	 Data Type and Variable

Declaration.	 2-17
2.1.2.7	 Constant Declaration.......... 2-31
2.1.2.8	 Data	 References..	 2-32
2,1.2.9	 Expressions and Assertions.... 2-34
2.1.2.10 Module Descriptions.... 	 2-44
2.1.2.11 Subsystem Descriptions. 	 ... 2-55

2.1.3	 Example..................	 2-58

2.2	 SEMANTIC DESCRIPTION OF 	 SSL 2-64

2.3	 OVERVIEW OF THE SSL TRANSLATOR•.• 2-70

2.3.1	 The Formal Software Requirement........ 2-70

2.3.2	 Functional Design Overview 2-78

2.3.3	 Detailed Design	 Notes.	 2-81

2.3.3.1	 Assessing Data Availability... 2-82
2.3.3.2	 Assessing Consistency of

Data	 Usage.	 2-83
2.3,3.3	 Ordering Modules for Analysis.- 2-84
2.3.3.4	 Construction and Closure

of Dependency ;Matrices 2-85
2.3.3.5	 Recursive Analysis Using

Dependency Matrices.....,.	 2-86

3.	 DATA BASE VERIFIER SUBSYSTEM DESIGN................. 3-1

3.1.	 DML	 STATEMENT PROCESSING 3-3

:3.2	 SUBSCHEMA INFORMATION PROCESSING 3-9

:3.3	 FUNCTIONAL REQUIREMENTS FOR THE DBVS.......... 3-9

3.4	 FUNCTIONAL SPECIFICATIONS FOR THE DBVS........ 3-23

i
ii	 — -

-

u^

iv'

xx

^. _	 _.
...

_ --	 -

{	

_

X

,;	 V	 ^"

r^

t:
^.

^̀,	

;^	 ^ ,

Per—
T

'	 1-1	 ///
}

e

s Software testing should be automated to establish

'	 user confidence while minimizing cost. Both

static and dynamic testing are required. Ay	 g	 q
static analyzer should enforce programming

r	 standards, while a dynamic analyzer should

check the reliability of the code during execu-

tion. Structural and requirements testcase gen-

erators would greatly enhance the utility of the	 iiq

analyzers. A structural testcase generator pro-

duces data to test as many branches of the code as

possible and should be employed for determination

of software reliability. A requirements testcase K
generator produces data to determine the consis-

tency of the code with the software requirements.

• Maintenance documentation needs to be an integral

art of software. Documentation•	 E	 p	 guidelines need

to be established.

As work progressed, we translated our analysis results

into viable software designs for threeof the SSES tools. This

work was done in accordance with SOW Tasks Phase A, items 1, 3,

4a, 4b, 4e, and 4f and Phase C, items 1 and 2. In the remainder

of this report, we present functional software designs for the

Software Specifications Language SSLp() (including a language	 ;3

reference manual) and the Data Base Verifier Subsystem (DBVS).

In addition, a detailed (build-to) software design is described
i

for the new capabilities to be incorporated into the static 	 a

analyzer;, FACES (FORTRAN Automated Code Evaluation System).

ORIGTNAL PAGE'

1

f
l-2	 M0061

i

2. SOFTWARE SPECIFICATION

A primary goal of the SSES system is to provide early

so l'twa.x •e feasibility and testing. Commensurate with this goal

we have defined the Software Specification Language (SSL) for

which the design is contained within this section. SSL is

capable of representing all the information inherent in a

functional block diagram of a software system. In addition, it

i.s capable of (a) explicitly denoting the internal structure of

data, (b) more completely denoting module interdepend%<<icies, and

((.) expressing the input and output variables of each module.

11owevor, the most distinctive aspect of the language is the

ability to attach requirement attributes to modules and vari-

aM e.s which may be used in performing consistency checks.

The experience gained thus far in using SSL indicates

that it requires slightly more effort than is normally applied

to ('unctional design. However, the effort is rewarded during

detailed design as the module interconnections are much more

ovi.dent and module functions tend to be more uniform and

tractable.

oppgol)UCIBILYN Or THE
'3 ^a	 i`

OW

a

J

9
M

4

j

z
9

I

3

_ 2-1	 AMPFff

t^

A

i
c
t

2.1	 THE LANGUAGE

2.1,1	 Introduction

SSIJ (Software Specification Language) is a new forma-

lism for the definition of specifications for softwar ^ systems.
The language provides a linear format for the representation

of the information normally displayed in a two-dimensional

module inter-dependency diagram. In comparing SSL to FORTRAN

or ALGOL, one finds the comparison to be largely complementary

to the algorithmic (procedural) languages. SSI, is capable of

representing explicitly module interconnections and global

data flow, information which is deeply imbedded in the

algorithmic languages. On the other hand, SSI. is not designed

to depict the control flow within modules. We refer to the

SSI, level of software design which explicitly depicts inter-

module data flow as a functional specification.

We wish to express our appreciation to Mr. Bobby

Hodges of Data System Labortory, George C. Marshall Space

Flight Center for his guidance and support in the performance

of this task:

2.1.1.1 Need for SSL

The current state of the art in software development

permits insufficient formal evaluation prior to implementation.

Such questions as

•	 Are all requirements fulfilled?
•	 Have all software elements been defined?

0	 Are the element interconnections consistent?

cannot be answered in a manner that is independent of the

designer's opinion. The intent of SSI, is to formalize, through

a language, the statement of the functional cpecification for
a software system. Given this formal statement expressed in

SSL and a translator for the SSL language, an independent

evaluation of the software may begin much earlier in the

development cycle.

2-2

1

r

1 z

r

I

^"

v<
IT,

1

In addition to evaluation, other aspects of SSL can

aid both the designer and implementer. Several things that

^^.r^: characteristically omitted or inadequately performed

during early design but required in SSI, are:

•	 A complete and consistent statement of the
software requirement

•	 Unamtiguous communication of software organiza-
tion to the detailed designer

•	 Enumeration of int.r.aprogram e-7-sistency checks
(assertions) useful during checkout.

A -translator also provides tables and summaries for the final

software documentation and a software element cross reference

file. The latter could be used to statically verify the

fidelity of the final code to original specifications.

2.1.7..2 Unique Features of SSL

The major contribution of SSI, is the formal approach

it brings to a phase of software development previously

relegated to heuristic techniques as discussed above. Within

this framework, there are several unique technical features

possessed by SSL. First, the projection of a specialized

form of software requirements onto the objects being defined

establishes a rationale for the software structure not present

in other methodologies. These requirements are an important

aspect of consistency checking when evaluating a specific

functional design. Second, the incorporation of levels of

abstractions directly in a design methodology is a step forward

in software engineering. Lastly, an automated SSL translator

is being designed that is one of several interlocking software

design'`and evaluation tools collectively called Software

Specificatioa? and Evaluation System (SSES). SSES includes a

static code analyzer, a dynamic code analyzer, and a test

case analyzer. The specific capability that SSI, brings SSES

is the ability to test and evaluate software design ,early in

the development cycle.

t

ti

3

i

2-3
I

{a

t^

a

j

i

r
!t

fSSL also incorporates a flexible data abstraction

capability and places emphasis on assertions as a means of

describing the dynamic behavior of the software being designed.

Although neither of these is unique, they are relatively new

concepts in the field of computer science.

2.1.1.3 Background

In evaluating a new software system, particularly a

programming language, it is important to trace the historical

developments to which it relates and upon which it is based.

Tl'ke MIL (Module Interconnection Language) system [1] was a

principal contributor to the concepts of data creation and

data availability restrictions among modules within SSL'.

Guidelines imposed for the partition of programs into sub-

systems are derived from the principles embodied in the conceptsi

of levels of abstraction [2] 	 Module descriptions in SSL

are a linearlized form of the information available in the

two-da_menGional diagrams referred to as structure charts[3].

The data description capability is largely the same as that of

PASCAL [4]. The syntax for expressions is derived from, but

not identical to, that of ALGOL 60 [5]. Assertions in SSL

have the form and appearance of those in the language

NUCLEUS [6).

2-4	 ^^p

r

2.1.2 The Grammar

The material in this section is arranged in the form

of a reference guide to the language, and not tutorially in the

manner of a user's manual. To aid the reader, a cross reference

index is provided in the last section.

2.1.2.1 Metalanguage Description

For the ,purposes of automatic translation and unambig-

uous communication, it is desirable to express SSL via a formal

grammar. The vehicle selected for this purpose is the Backus-

Naur-Form (BNF) metalanguage [5].BNF has the advantages of being

well known and compact in representation. In addition, most

formal methodologies for analyzing grammars are based upon

BNF representation.

Any nontrivial language contains an infinite number of

legal sentences. Each sentence, in turn, is composed of the

concatenation of strings; strings are composed of characters.

A grammar uses strings as operands and combines them under the

operation of concatenation to finitely depict, all legal senten-

ces. The way in which this is done in BNF can best be inter-

preted via an example. Consider the following production:

'	 <ab>	 alb <ab> a

4

	

	
Sequences of characters enclosed within the brackets < >repre

sent metalinquistic variables called nonterminal symbols. The

marks "::=" and	 are metalinquistic connectives meaning "is

composed of" and "or" respectively. Any string not a nonterminal

)r connective denotes itself and is called a terminal symbol.

Juxtaposition of symbols between connectives in a formula, such

as the example, signifies that the symbols must be in the exact

rder denoted. The above production indicates that <ab> may

have the values:

Af

(•iy 2-5

T
z

j
3

r

a
i

vq

,T

1
i
1

L
I
t
I

1
3
L

i
I
r--^i	

AOV"2-6
di

5.

f
`' 1x
r:-

=z

I

i f

1

Y
:t

d

3

I

F_

r

(constants, requirements, data formats, etc.) and the module

descriptions indicate operational aspects of program units

(program units are subprograms, procedures, etc.).

In the following subsections, the detailed syntactical

descriptions will be presented.

2.1.2.3	 Basic Vocabulary

The basic vocabulary of SSL consists of special

symbols, letters, digits, and reserved words. Each special

symbol (Table 2-1) is primarily a single character except

where limited computer character fonts require the concatena-

tion of two characters. Where a special symbol consists of

more than one character, it must be written without an inter-

vening blank. Subsequently, special symbols other than ".",

"(?", and "_" will be referred to as delimeters. Each char-

acter in Table 2-1 is available within the ANSI standard codes
[7] for ASCII-8, EBCDIC-8, and HOLLERITH-256. Substitutions

may be necessary if an SSL translator is implemented in an

environment not conforming to the standard character codes.

Letters and digits do not have individual meanings

but are used to construct identifiers, numbers, and reserved

words. The following basic productions enumerate these ele-

ments of the vocabulary:

2-$

f

3

^^	 2-9	 //

i

Reserved words (Table 2-2) are composed entirely of
	

4

sequences of letters. In this document, they are normally

underlined. A reserved word may not contain imbedded blanks

and must always be followed by a blank or a delimeter.

is

y

r^	 ANOFff
2-10

-- -- - -	
A,

}

^"
2-11

REPRODUCIBILITY OF 'J's'

Semantics

Identifiers must begin with an alphabetic character

and contain only letters, digits, and the "—" symbol. The

Latter is known as the break character. Identifiers have no

inherent meaning, but serve as identification for variables,

modules, subsystems, and other elements of a software specifica-

tion.

Identifiers may be of arbitrary length but must be

unique within the first twelve characters. No identifier may

be equivalent to the first twelve characters of a reserved word.

'I'lin samo identifier may not be used to denote two different

quantities within a subsystem with the exception of field names

in different records.

2. 1.2./1.2 Numbers

Syntax

unsigned integer> ::=<digit> I <unsigned integer>

<digit>

< sign	 > : : = + I	 -

< exponent Part >	 e <unsigned integer >

i.
	 le <sign> <unsigned integer>

Id <unsigned integer>

Id <sign> <unsigned integer>
< decimal number >	 <unsigned integer>

I<unsigned integer>

<unsigned integer>

< unsigned number >::	 <decimal number >

J<decimal number> <exponent

part>

Aff

2-12

2-13

2.1.2.5 Requirement Declaration

The several parts of the requirement declaration are

used to identify the data flow between the software package

being described and other parts of the total system. In add-

ition, they identify processing steps (called transductioas)

and restrictions (called constraints) which are attached to both

modules and variables.

Syntax

<requirement declaration> 	 <requirement or

requirements>

<requirement statement group> end

I	 <requirement or requirements> 	 reau.irement

Irequirements

<requirement statement group> :. <requirement

statement part>

I<
requirement statement group>

<requirement statement part>

<requirement statement part> :.= <input part>

-`s

j

s

3

a

it

2-14	 AVVff

Syntax

<input part>	 <input or inputs> <entire
variable list>

I
yyr

sr

2-15

i" 1 I

< transduction or transductions >:: = transduction

transductions

< transduction clause> :.	 <transduction list>

I<transduction list> in <transduction

list >

< transduction list> :. = <transduction identifier>

I<transduction list >, <transduction

identif ier>

< transduction identifier >:: = <identifier>

Examples

transduction sum expense, sub deduct in tax compute;

write paycheck;

transductions save_options; read card in parse;

< transduction part> :. _ <transduction or

transductions >

<transduction clause>

I<transduction part>	 <transduction

clause >

f	 2-16	 ^.+®
4

I°

j

f

^	 a

2,1,2.5.3 Constraint Parts

,3yntax

consLraintpart>	 _ <constraint or constraints>

< constraint list>

< constrai.nt or constraints >::= constraint

constraints

(sonst.raint list >	 <constraint identifier >

I<constraint list >,	 <constraint

identifier>

< c:.onstra.i nt identifier> :. _ <identifier>

Examples

• constraint	 carpool size

•(constraints	 max targets, minimum distance

.`^r^manti nc

:,each constraint identifier defined must be attached
as an attribute to some module in the subsystem.

2.1.2.6 Data Type and Variable Declarations

.Explicit description of data and the ability to define

and use now data types is one of the greatest assets of SSL.

A new dat-: type may be described directly as part of a variable

declaration, or described independently for subsequent use.

Syntax

< tYhO' declaration> :.= <type or types>

<type definition>

(< type declaration> 	 <type definition>

< typ E, or ;types>	 type types global type
Ig obal types

Alf

2-7	

AOOC

y

I
t
l
t
t
i

< LYpO definition>	 <identifier> = <type>t	 ,• typo >::= <simple type> I <structured type>

t	 f <pointer type>

<var:i-able declaration> 	 <variable or variables>

<variable definition>

1<variable declaration> ; <variable definition>

<'klari.able or variables> :.=	 variable I variables

<variable definition>	 :._ <identifier list>	 :< type>

I<identifier list> <type>	 ; <for clause>

I<identifier list> <type>	 ; <subjeetto clause>

<identifier list> <type>	 ; <for clause>;

<subjectto clause>

<I'or clause> :.= for <transduction list>

<sub,jectto clause> :.= stibjectto <assertion list>

<assertion list>	 <assertion>

I< assertion list> ; <assertion>

<identifier list>	 <identifier> I< identifier list>

<identifier>

Semantics

A type declaration list is used to define new data
types. Each type is named and may be referenced by the identi-
Pier to the left of "_" in the <type definition> production.

The normal scope of a type identifier is the subsystem in which
it .s defined. However, the scope of a global type is the

entire SSL program. Global types may be defined only in the	 u

main subsystem.

Afl2-18	
X04

A data type need not be named if it is defined in-

tiinsic to the variable declaration. Both type and variable

declarations may use data types defii►ed and named elsewhere.
Examples of both are given in the following subsections.

The <for clause> of the variable declaration is used

to attach requirement attributes. Requirement attributes limit

the availability of variables within the modules of the sub-

system. All variable declarations must contain a for clause

with the exception of output variables identified in the require

ment statement.

i

i

i

The <subjectto clause> identifies the global assertions

associated with the variables being declared. A global

assertion is one that must be true upon exit from the module

croating the variable, and true on both entry and exit of modules

using the variable.

2.1.2.6.1 Simple Types

Simple types are data types for which the designer,

Using SSL, need not define the internal structure or the inter

na'l structure has previously been defined and named.

Syntax

<si,mple type> :.= <basic type> I <scalar type>

I<subrange type> I <type identifier>

2-19^o

1
2.1.2.6.1:^1l '13asic Types

The basic data types are those which are implicity
(Jo l*ined 1),y, tt e SSL language.

< basic type>	 integer I real I boolean

Idou leprecision Icharl analogl,text

Examples

e _vlariables	 I, J, K: integer; for countt—people

0 variables	 height: real;

for record status;

subjectto	 height >0..0

height <= 10.0

employed: boolean

for record—status

Semantics

The types integer, real, boolean, and doubleprecision
have the conventional meaning. The type char indicates a
singIc unit o`,r hollerith information. Type text indicates.
hol . lerith dataR with unspecified length. Since the length of a
text item v4)ri^s, it may not be combined with other variables
in l'orming-8triietured data types. The type analog designates
a data itemlwhil ch contains analog signal information. Like the
text type, , it may not be combined with other variables'to form
structured tyj)es.

A10
2-20

7

__ 	 _^-^~'-=~~^==.===='=^ -"
i

- -^ --='^^=========`~-^=~=^^^^

'

'

'^^
2-2I	 =~-=^"=°

2-22

a

i

2-23^^
a,

{

s

t

F

z

`

SST

i

2-24

t
c

f
1

1

P "

7

x

A

t

2--25	 ANOW 9

4

2-26	 AlWff ff

1.

1
I

for health—file—update;

subjectto height >0; height <120;

weight >0.0; weight <500.0

Semantics

Fields may not be of basic types text or analog. A

record may be a component of another record, but a digital type

may not. The scope of a field identifier is the smallest record

in which it is defined. Field identifiers with disjoint scopes

may be reused. Access of a component is always by the field

identifier and never by a computed value.

The type associated with the tag field of a variant

must contain only a finite number of elements. This limits it

to boolean, subrange, and scalar. All elements of the: type

must appear in some case label list of the variant. If the

field list for case label L is empty, the form is:

L : ()

A record may contain only one variant part and it must

succeed the fixed part. However, a variant may contain variants.

Ttaat is, it is possible to have nested variants.	 All field
names of the same record must be unique even if they 	 inq	 Y
differentferent variants .

2.1.2.6 .,2..3 Digital Types

Digital types are a restricted form of records to

represent real time digital signals.

Syntax

<digi.tal type>	 digital <fixed part> end

2-27	 w
it
1

REPRODUCIBILITY OF TII
ORIGINAL PAGE IS POOR

Signal_In: digital

Valve 1: boolean;

LOX—Switch: 1..3;

Command: (Idle, stopped, running)

End;

for check status;

Example

e Variable

,E

t
t

t
i
t

^t

Semantics

Due to their physical interpretation, the type of

components within digital types may only be boolean, scalar,

or subrange. Digital types may not have variant parts and

they may not be used as components of any other type.

2.1.2.6.2.4 Set Types

Set types represent elements of powersets over a

finite set of elements called the base type. Conceptually,

a set type variable may be viewed as a bitstring of length

equal to the number of elements in the base type. Each bit

is associated with a unique element and is "on" or "off"

if the element is a member or not a member of the powerset.

Syntax

<set type>	 = set of <base type>

<base type>:: <simple-type>

Examples

• Type members	 (father, mother, big-sister
little `sister, big sister, little_brothex7);

Variable family: set of members; for arrange

• Variable Even numbers: set of 	 10..10;

for compute something

'	 r
2-28

1

^i

j

Semantics

The base type must be either scalar or subrange.

2.1.2.6.2.5 Sequence (Fi:le') Types

A sequence differs from an array in that it may vary

dynamically in length and is referenced through a "window="

called its buffer (not by computed index). Examples of physical

representations of sequences include linked lists and mass

storage files.

Syntax

<sequence type>	 <file or sequence> of <type>

<file or sequence> 	 file	 sequence

Examples

Variable Assembly: sequence of record

part—name: array [1..6j of char
order no: integer;

drilled, punched, stamped, purchased:

boolean

End; for update orders

^	 2-29

AA

1.
1

0

CI'

i

v

Y

F

2.1.2.7 Constant Declarations

In SSL, constant declarations may appear in the

preamble of any subsystem and are used to communicate actual

values or parameters to the detailed designer. Normally,

a constant declaration would be used only for critical values

for which the effects are to be isolated in the final code.

Syntax

<constant declaration> :. <constant or constants>

<constant definition list>

<csonsta.nt or constants> :.= constant I constants

• constant definition list> 	 <constant definition>

1<constant definition list>;<constant definition>

• constant definition> .= <identif ier> = <constant>
(<identifier> = <simple type>

Examples

• Constant a = 10.0 ; max count = Integer;

• Constants Low = true;

Tax cut	 1..5

r•	 '

t

M

c

2-31 ^^

r

2. 1.2.8 Data References

Data elements may be referenced by variable name,

by selected component, or pointer. A variable has components

only if it is a record, digital signal, file, or array.

i

2-32	 AWOFffAF
T

5

tREPRODUC1131LITY OF ►'"

ORIGINAL PM,'E IS P001-

<a.rr. ay variable>	 _ <variable>

<exprossion list> :._ <expression> <expression list>,

<expression>

<field designator>::= <record variable> . <field

identifier>

<record variable> 	 <variable>

<file buffer>	 <file variable> @

<rile variable> ::= <variable>

Examples

A

Char_Array [15]

Inverse Matrix E5, L, 16]

Employee.Name

Owner [15] . Accessed—Value

Name_Record.Character [6]

Transaction File @

Transaction File @ Date

Transaction File @ Date. Month

Semantics

Indexed variables have the conventional meaning. Field

designators denote which field component of a record or digital

signal type is to be selected. A file buffer variable designate<
the current active element of the sequence of elements that

comprise the file.

fA01r

2-33	

Aoo^

.a

3

Since arrays, files, and records can be combined in 	 k.

various ways (a record of records, file of arrays, array of re-

cords, etc.) a component variable can be arbitrarily complex.

It is recommended that data structures be as limited in complex-
ity as the problem permits.1

1
t
1

1

1
1

1
1
1
1

2-34	 AOr.fAf'

i

f

^r

<Functi.on gdesi nator> •_ <function identifier>

r	 (<expression list>

<Cunction identifier>	 <identifier>

ArAg

	

2-35	

j

1'.
L

U

AY

ft:

141

3

C.^4

S	

^W&2-36

F_	 I

r

2.7.2.9.2 Boolean Expressions

Combining arithmetic expressions with the Boolean

operations produces the expressions used in SSL assertions

and array subscript lists.

Syntax

<expession>	 <implication> I <expression>

<implication>

amplicati,on > :.= <boolean term> I <implication>
implies <boolean term>

<boolean tern- :: <boolean factor >I<boolean term> or
<boolean factor>

<boolean factor> :.= <boolean secondary> l <boolean

factor> and <boolean secondary>

2-38	 A*VfAF

i

i
i

J

7

2-39	 ^0^

R

l

2-40	 IIOFS

r,	 n

i

2-41	 AOV/AF

-x

0

RE R	 +	 lik,
ORIGINAL PACE IS POOR

2.1.2.9.3	 Assertions

Assertions are conditions which may assume only true/

i Ca.lse values.	 They are attached to variables at their point

or declaration and to modules. 	 Module assertions depict entry

and exit data conditions.

d

Syntax j.

r

<assertion> ;.= <expression><forall clause>

_<forall clause> :.- <empty>l	 forall	 identifieri
<set>

w

ExaT la p es

• a [i^	 = 0.0 forall	 i = [1 . , n-1^
(b, c [j] =	 t [k] forall	 j = E1,3,4-163) forall

k ' = . [16	 .30]

• big>small

• code = 1 implies	 (eof equ true)

Semantics
1

The scope of the identifier in the <' forall clause> is
the assertion in which it is used and must not overlap that

of a local or global variable of the same name. 	 its type is

assumed to be the base type of the set within the <forall

clause>.	 The set must represent a finite number of elements

and may not be empty.

The expression within the assertion may assume only the
x

€
values true and false.	 If the <f'orall clause> is present, the

expression is evaluated once for each unique value which the

-crorall ident fier> can assume from the set.

A00el2-43

-44 AOP%JFAS

r (,

2.1.2.1.0.1 Module Statement

The module statement is always the first statement

of a module description. It identifies the module by name

and declares the local variables (if any).

Syntax

<module statement>	 <module or entrv> <module

identifier> <release variable group>

<module or entry> :.= module'e,ntry

<release variable group>	 <empty>j(<release variable

lst>)

<release variable list> 	 _ <release variable>l<release

variable list>; <release variable>

<release variable> 	 <variable > I<local variables>

<local, variables> ;._ <identif ier list>:<simple type>

<module identifier> ::=<identifier>

Examples

e module matrix multiply;

• entry push-stack (stack item:stack_entry);

• module permutation (m, n:integer; elements:p_array);

2-45	 AlOFffAF

Semantics
}

G

{

d I
i

1

w

A module statement introduced by module can only be

1

...	

.ry

Examples

0 Assume a >0.0 ;

I
• Satisfies big_sister in family; count -7 = 0 ;

Semantics

The assumes statement specifies data conditions

that must be true upon module entry. The satisfies statement

specifies data conditions that must be true upon module exit.

Variables used in assertions must be either local variables

.n the release set or in the availability set pertinent to

the module. (The availability set consists of those variables

heaving requirement attributes which subsume all requirement

attributes of the module.)

2.1.2.10.3 Fulfills Statement

The fulfills statement attaches requirement attributes

to a module.

Syntax

< Pu1 f'1,1.s statement> 	 <fulfil or fulfills>

<requirement attribute list>

I

7

,...,_	 2-47	 AOOrffO

f	 t	 2-48^^	 '

I Examples

9 fulfills size constraint, cluster;

r

i
t

t

c

Examples

* Access line printer;

• Accesses real time clock, system disk

Semantics

For each environmental object there must be a unique

identifier for which the . scope is the entire specification.

2.1.2.7.0.5 Receives and Transmits Statements

The receives and transmits statements are used to in-

dicate real time data activity such as is associated with

telecommunications, analog, and digital signals.

Syntax

2-49	 ASOFffAF

r •*

7

1

I

r;	 3

kwi

I

J

2-50^^

2-51	 ANOW Af

I

Lin

rTl

U-1

^ 	 1,

1
I Semantics

t
T

l
t

The order of the variable'references in any variable

list has no significance..

The variables within a using clause or a uses state-

ment are input variables.. A variable may be both input and out-

put. An input variable in a using clause indicates that its

contents are instrumental in determining the final contents of

the output variables within the same statement extending to the

:first semicolon on the left.

The presence of a variable in the output list of a

creates statement indicates the first use (in a dynamic sense)

of that variable. This does not mean, however, that the vari-

able may not appear previously in the sequential listing of the

SSL program. The implication of the creates statement is that

all variables in the output list are first computed or initia-

lized in the module being described. All variables declared

in the subsystem preamble must appear as an output variable in

exactly one creates statement within the subsystem unless it is

a release variable of an entry module.

All variables appearing in a creates, modifies or uses

statement (other than the output list of the creates statement)

must be in the availability set for the module. A variable is

in the availability set of a module if the transduction require-

ment attributes of the variable subsume all the transduction

requirement attributes of the module.

2-52

1	
,}

I

W.

2,1.2.10.7 Execute Statement

The execute statement designates modules which are

ca7lod by the module being described. It may indicate that

specific modules are .called iteratively, conditionally, or

both.

Syntax

^r

<,oxecutes statement>	 <execute or executes>

	

t	 <call list>1<executes statement>; <call list>

<call lis >	 <module reference list> <module

reference list> <call list tail>
C

1 <cal-1- list tail>

<call list tail>	 <iteratively clause >
L

I<conditionally clause>

-i `erativel	 -	 <m< ^	 Y clause> :.-- iteratively	 odule

reference list> I iteratively <call list tail>

<c;onditi.onally clause> 	 _ conditionally <module

reference list>

<exec;u-te or executes >::= execute executes

<module reference list> :.= <module reference>

1 <module reference list>	 <module reference>

	

.,	 <modu]:e reference> :. _ <concrete reference>

1 <virtual referen ce>

Ar

t	
2-53	 •

i

r

i

a

3

a

2-54	 ^^^

i

f

Y

P . «a

tsiJ

^n
f

n -,

bxf

a

i

A

Within the release variable group, the local variable

format must be used for variables never before defined. A

variable may have been defined in the preamble to the sub-

system or in the last module statement. The entry module

to which the virtual reference refers must have the same

release list with respect to number, order, and type of

variables. All variable types used in a virtual reference

release list must be either intrinsically defined (boolean,

real, text, etc.) or global types.

2.1.2.11 Subsystem Descriptions

Subsystems are independent software units, each with

its own requirement declaration. Subsystems may not share

global variables but communicate via the release group var-

iables of virtual references and entry modules. The only

identifiers with scope greater than a single subsystem are

global type identifiers, environment object identifiers,

subsystem identifiers, and function identifiers.

P

I

2-55	
^^^

2-56	 ^"

Row-

2-57^^
a

i

^a

j2.1.3 Example

TI)o example of this section was selected to demonstrate

hoth the descriptive level of SSL and as m^-.ny language elements

as possible. The requirement of the problem may be stated as

follows [8]

"A program is required to process a stream

of telegrams. This stream is available as a

sequence of letters, digits and blanks on some

device and can be transferred in sections of

predetermined size into a buffer where it is to

be processed. The words in the telegram are

separated by sequences of blanks and each

telegram is delimited'by the word 'ZZZZ'.

The stream is terminated by the occurrence

of the empty telegram, that is a telegram

with no words. Each telegram is to be pro-

cessed to determine the number of chargeable

words and to check for occurrences of over-

length words. The words 'ZZZZ' and 'STOP' are

not chargeable and words of more than twelve

letters are considered overlength. The

result of the processing is to be a neat

r listing of the telegrams, each accompanied

by the word count and a message indicating

the occurrence of an overlength word."

`1'o complete the problem statement, several assumptions are	 >-

ne<:c-issary. . The following alternatives were selected for the
ptir. pose of' this , exposition :

XAr
2-58

b

1

ai
r,

•	 The character stream from which the telegrams

are constructed resides on a drum having fixed

length records; the record length itself is left

as an implementation option.

•	 The chargeable word count is the value to be

printed and overlength words count as one word.

u •	 If a physical end of file is encountered before

the logical end of the data stream, an error

message and the partial telegram is printed.

The software is organized into four modules as indicated

by Figure 2-2. The purpose of each module is given in Table
2-7. Figure 2-3 contains the SSL description of the telegram

processor. The right margin of the statement listing contains

reference notes to subsections containing detailed descriptions

4
	 of the language elements used.

A careful examination of Figure 2-3 will indicate an

interesting application of the subsystem capability. The

subroutines GET CHAR and FILL BUFFER occupy a separate sub-

system with the sole purpose of handling file I/0. The char-

acteristics of the device on which the telegrams are stored

i- 	are encapsulated within these two modules.

_^u

c

__	 z
ppir- '	 a

LINE_
GET_TELEGRAM	 PRINTER

1

LINE-

	

GET
—
WORD	 PRINTER

GET—CHAR

DISK	 FILL_BUFFER

NOTES:

A "A" CALLS "B"	 A "A" CALLS "B"
CYCLICALLY	 CONDITIONALLY

B	 E

ET____0
"A" OSES SYSTEM SERVICE "B"

SAI-0312

Figure 2-2 Module Structure Chart for Example

=	 2-6Q
1)	 LALI

fir- .

J

Y.	
2-61	 A.^9

-_	 i

REPROD

PAGE IS POuA

/* beginning of main subsystem preamble */ 	 2.1.2.3

p 'III I r, nuvi t

transdurtinns
collect in print;

outpu
output

t am, charge count
end;

variable_.^ telegram: text;

charge_count integer;
for	 pi, int; y^12.
sub,jectto rharge_count >.0

word_count;int.9 r;
for print;

2
s̀ ub,jectto word count 3 charge_count;

word:arrah	 ..121	 of char;
for print;

eof_flag:boolean;
for print

f+nd;	 /* end of main subsystem preamble */

/*	 main routine	 to collect words and */
/*	 print telegram with chargeable word count*/

module get telegram:

fulfills	 print;
creates telegram,	 charge_count using word;
creates uord	 c_.)unt;
modifies ward count;
uses eof_flag; 2.1.2.10
accesses	 line_printer;
executes cyclically get—word:
satisfies

eof_flag or word_count = 0
end:

1

i _a

j/* subroutine to collect characters into */
/* words */

mudu:lr__iet word:	 2.1.2.10

fulfills collect;—
2,1.2.10.1executes cyclicnlly i p.get_char(a char;char;eof flag);

creates wor	 eo	 lag;
accesses line_printer /*prints error messages

Pa-11—

end; /* end of main subsystem */

1

/• beginning of 1-0 subsystem preamble */

subsystem i_o;
2.1.2.11

Le(u 1 r,_.,men t

input character_file;- 2.1.2.5.1
transductions) J
read in separate;

2.1.2.5.2output a_char,	 eof_flag
end;

2.1.2.5.1
/* pnrameterize record length */

constnnt record_length = integer; 2.1.2.7

CS, p(: rharacter_record = arra y ll..record_length]	 of char;
— 2.1.2.6

varinblo character file:squence of character-record:e
- 2.1.2.6..2.5.

for read;
buffer character record;

for separate;
a_charschar

t_or separate;
char_index:1- record-length;

for separate; 2.1.2.6.1.3;

eof_flag:boolean;
for separate

2.1.2.6

end; /* end of subsystem preamble */

subroutine to fetch next */

/' character from file */

,̂ gt .z;y grt_char (a char;	 eof_flag)
- 2.1,2.10.1

fulfills separate;
executes conditionally fill buffer;
modifies char index;
creates a char using buffer Ichar_inde-I	 eof_
creates character file,	 char index; 2.1.2.10.7

Satisfies	 eof flag implies a char = buffer	 [char_index]
end:	

- -	
l^^ 2.1.2.10.6

subroutine to fetch next physical */ 2.1.2.10.2
record from character	 file +/

2.1.2.8.2
mndul p	fill-buffer;

fulfills	 read; 2^ 3 1
n nTcs char-index	 ",rd length'
iccc;,.s	 disk;
ereat^s bufi'er,	 eof_flag using, characterfile 	 ;- g^ 2.1,2.10.2
satisfies

eof_flag implies buffer = character fileia 2.1.2.8.2'
end -

.
2.1.2..9.2.

e^id /+ end of subsystem +/
end;	 / 0 end of specification */

Figure 2-3 SSL Description for Example (continued)

t`
r	

2-63	 ASV//

I
r

Our semantic description of SSL is in terms of sets and

s oL N.inotions grouped into n-tuples. The initial construct is

Lhe Vertex Correlation Tuple which forms the basis for definition

of a single subsystem of the software structure. This tuple con-

sists of a set of nodes, some of which have module names attach-

ed. Virtual nodes do not represent program modules, but evoca-

tions of entry nodes of separate subsystems. Modules are repre-

sented by concrete nodes. Special types of concrete nodes,

called entry nodes, are a distinctive characteristic of sub-

systems other than the main subsystem and have special properties.

First, they must have attached module names, so they can be ref-

erenced by other subsystems. Second, (as we shall see in the Re-

quirements Graph) their predecessor may only be the root node of

the subsystem which is not permitted an attached module name.

Vertex Correlation Tuple

X	 (N,C,V,G,Z,M,mod)

where

(1) N	 = a finite set of labeled nodes

(2) C	 = a subset of N called concrete nodes

(3) V	 = a subset of N called virtual nodes; VAC = 0

(4) G	 = a subset of C called entry nodes

(5) Z	 = a distinguished node called the root

(6) M - _ a finite set of module names

(7) mod N } M: a module name mapping function

(a) If nEC, then cardinality (mod (n)) = 0 or 1.

(b) If nEG, then mod (n) # ^D; entry nodes are required

to have an attached module name.

(c) If nEV, then mod (n) ^ 0; virtual nodes are required

to have an attached module name.
1

` (d) If G # 4), then mod (Z) 0; the root nodes of sub-

systems other than the main subsystem are not per-

mitted to have attached module names.

ow

a

2-64

i
a

ji

.^z
(1) delete line < edit

(2) add line < edit

(3) search file < edit

(4) Search file < delete line

(5) search file < add line

(6) delete line add_line, add _line 	 delete line:

i.e., {delete line,	 add line} is unordered.

x J

^....	 (
is
Al

f

The module mapping function (mod) implies:

(1) Not all concrete nodes have an associated module

name.

Module names associated with virtual nodes are

not necessarily unique; each evocation of an entry

node is represented by a distinct virtual node.

The nodes in X will be collected into a weakly-connected

digraph based on a mapping of nodes to subsets of requirements.

(For reasons of clarity and stand-alone interpretation, we are

using "requirements" in the sense we used "transductions" in

the previous part.) To accomplish this, the requirements are

partially ordered by implication. If R is a set of require-

ments, r l , r2 ER, we write r l < r2 (read "r l is implied by r2")

For example, consider a line editor. The requirements are:

edit, search file, delete line, add line .

The implications between these requirements are as follows:

2-'65^^

ti

71

2-66

^. _
...	 . ^	 x

^.._	 ___-	 -_ __	 - ___	 I_____ _______ w _ __ ^_ 	 _ __.:_. _ . _ _ _	 -	 ^

\^ .	

...	 _.

,^

t

z
t

`^

f
f
1
1

''
1
1
1
1
1

a
a

t

x

^s

2-68	 AlOF®9
z J	

g;EtQDUCII3ILI1,V OF THE

z

j

T,

ti

2-69	 AOrff ff

y

`a

2.3	 OVERVIEW OF THE SSL TRANSLATOR

In this section we give the formal software requirement

I'or the translator, the functional design, and notes on detail-

ed design. Significantly more detailed information exists on

the functional design, including a description in the SSL lan-

guage, than that presented here. The format and notation used

for the functional design description in this report is more

conventional.

The notes on detailed design concentrate on the more

critical semantic and structure analysis phase. Included are:

L^a

c^a

z

r:

•	 A method for determing the legitimacy of

data/module interconnections

s	 A method for ordering modules in a manner

that facilitates module interconnection

and recursive analysis

• A method for constructing a matrix over which

module interconnection and recursive analysis

can be performed

•-	 Rules for determining which modules are poten-

tially recursive.

2-70	 rt

i

l
i

c .]

Transductions - A list of processing steps to be per-

formed, each of which translate a

stimulus into a response

Output	 - Data or documents produced by the soft-

ware for external purposes

Constraints	 - A list of capacities, design objectives,

or resources to be observed

Preconceptions - A list of specific design alternatives

to be observed

Implications	 A binary relation existing between

certain pairs of transductions, indi-

cating which are substeps of others.O:f.' the seven divisions, the constraints and preconceptions are
optional. If all transductions are independent, the implica-

tions may also be omitted.

The level of detail required for the SRD is generally

greater than could be expected of a casual user of data pro-

cessing services. For this reason, it is expected that the SRD

will be completed by an experienced computer specialist after

reviewing the user requirments. Completing the SRD is the be-

ginning step of functional design.

Figure 2-4 depicts the SRD for the SSL translator.

There are three major segments within the transductions: pro-

gram analysis, structure analysis, and report summarization.

The implication relations between tranductions is represented

in Figure 2-4 by indentation within the transduction division

rather than within a separate implications division.

The only system (or requirement) level input is the SSL

source language. System output consists of eight items. In

addition to the source listing, syntax and semantic errors, these

consist of:

i

1. s^

2-71^,

Module concordance - An alphabetical list of all modules;

for each module the following information is

given: 1) modules it calls, 2) modules which

call it, 3) variables referenced, 4) environmen-

tal objects referenced, and 5) requirement at-

tributes

"	 Variable concordance - An alphabetical list of all

variables; for each variable the following

information is given: 1) requirment attributes

and 2) modules which reference it

Requirement concordance - An alphabetical list of all

requirment transductions and constraints; for

each, the following information is given:

1) modules to which attached as an attribute,

2) variables to which attached as an attribute,

3) (for transductions) the transductions immed-

iately above and below it in a partially ordered

sense

--	 Summary - A summarization of the number of modules, 	 ;?

variables, errors, etc. by subsystem	
t.

Index	 - A cross reference guide to facilitate access

to parts of the SSL generated report

s

1

F

N

°T	 ddY

. .3	 Af
2-72

1

-4

L	 ,„	 ,	 j	 (^	
J	

i	 (t^	 ,'t	 --raj	
"""..^

I	 e
°(J

i

;f

f'7

DIRECTION

Implement an automated translator for Software Specification Language (SSL).

I	 I'♦

INPUT

SOURCE: A set of logically connected SSL statements.

NI
'	 w

TRANSDUCTIONS

TA PROG ANALYSIS': Analyze the SSL program

TB SYNTAX: Analyze the program syntax

TC TOKEN: Reduce the next lexical token

TD CARD: Read and print the next card image

TC SYN ERR: Perform syntax error recovery procedures

TC TABLES: Construct dynamic tables

TD REQ ST: Process requirement statement

TD-CONS-ST: Process constant statement

TD FUL ST:' Process fulfills statement

TD-TYPE-ST: Process type statement

TE RECORD Process record and digital forms

Moel
Figure 2-4. SRD for SSL Translator

p

TFARRAYS: Process array forms

TF SUBRAVGE: Process subrange forms

TF SCALARS: Process scalar forms

TF BASIC: Process basis type forms
a	 —	 _

TF POINTER: Process pointer forms

TE FILE: Process file and sequence forms

TF ARRAYS, TF SUBRANGE, TF SCALARS, TF BASIC, TF POINTER

TD—VAR—ST: Process variable statement

TE FOR: Process for clause

_TE POLISH: Analyze a polish string

TE RECORD, TE FILE

TD—MOD—ENT—ST: Process module and entry statements

TF—BASIC

TE RELEASE

TD SUBSYS—ST: Process subsystem statement

TD—EXEC—ST: Process executes statement

TE RELEASE: Process release form

TF BASIC

TD—USES—ST: Process uses statement

TE DATA LIST: Add items to data list

TD MOD CR ST: Process modifies or creates statement

TE DATA LIST

TD XMIT RX ST: Process transmit or receives statement

TE DATA LIST

TD_ASUM_SAT_ST: Process assumes and satisfies statement

TE POLISH

Figure 2-4. SRD for SSL Translator (continued)

NI

Y	 n
_y G

l

N
1

cn

TA-STRUC ANALYSIS:	 Analyze the software decomposition structure'

TB ELEMENTS: Ascertain all elements are consistent within themselves 	 _<

TC SUB DEF: Evaluate all subsystem definitions

TC MOD DEF: Evaluate all module definitions

TC VAR DEF: Evaluate all variable definitions

TC TYPE DEF: Evaluate all type definitions

TC REQ_DEF: Evaluate all requirement definitions

TB—SETS: Construct and evaluate all interelement relationships

TC REQ VS—REQ: Ascertain requirement definitions are consistent

TD_REQ_CON: Construct requirement concordance lists

TE_MDR_MATRIX: Construct a module/data/requirement matrix

TE_NEXT REQ: Find next alphabetically ordered requirement

TE-MOD—ATT: Construct list of modules to which requirement

attached

TE SUP ATT: Construct list of superstep transductions

TC MOD VS—REQ: Ascertain module hierachy consistent with requirements

TD MOD—VECT: Construct a module requirement vector

TD CLOS VECT: Perform closure over a requirement vector

TC_MOD VS DAT: Ascertain modules use data consistent with requirements

TD AD_VECT: Construct a variable availability vector

TD MOD VECT, TD CLOS VECT

TD DAT CON: Construct data concordance list

TE DAT MATRIX: Construct data concordance list

TE NEXT DAT: Find next alphabetically ordered variable

TE—REFER: Construct list of modules reverencing

data objectdata

 2-4. SRD for SSL Translator (Continued)	 ^jJI

L.

j0WWffiEWM05PW^- -

tQ

rn

TC— MOD —VS—REL: Ascertain module release sets are consistent
TC—MOD—VI—MOD: Ascertain module calling hierarchy consistent

TD—ORDER: Order modules by forward paths
TD MATRIX: Construct D+ Matrix
TD RECURSIVE: Perform recursive analysis

TE—POT—RECUR: Mark recursive modules
TE LAT HEAD: Mark latch and head modules

TD—INV—HIER: Construct inverse hierarchial list
TE INV MOD: Find next inverse call module

TC— REPORT —GEN: Generate report
TD—REQ—REPORT: Print requirement concordance
TD DAT REPORT: Print variable concordance
TD MOD REPORT: Print module concordance

TA—REPORT: Summaries and index report
TB—STTMMARY: Print summary of software report
TB—TOC: Print table of contents for report

TC--MOD—LIST: Print modules in alphabetical order
TD—NAME—PAGE: Print a single name and page number

TC—DAT—LIST: Print variables in alphabetical order
TD—NAME—PAGE

TC—REQ—LIST: Print requirements in alphabetical order
TD—NAME PAGE

OUTPUT

SOURCE LISTING: A line printer listing of the original SSL source
1WSYN—ER	

Iff
ERRORS: SSL syntax error diagnostics interleaved with the 	

W/<znii-ro,n li^tincr

0 ^d
^d t-Li

F-d

^d

C,-

C)

y

SEMI ERRORS: A printed summary of all semantic incongruities

HIER LIST: A list (alphabetical) of all modules which includes modules

referenced, inverse hierarchy, data referenced, environment

objects referenced, and requirement attributes.

DATA LIST: A list (alphabetical) of all variables accompanied by the names
of modules which use them and requirement attributes assigned.

REQ LIST: A list (alphabetical) of all requirements cross referenced with

modules, variables, and other requirements

SW SUMMARY A summarization of the software which includes counts for

modules, variables, errors, etc.

ITNDEX LIST: A cross reference guide for facilitating access to parts of
the SSL generated report

IMPLICATIONS

(Implications are represented by indentation within the transductions substation.)

CONSTRAINTS

LANGUAGE: ANSI FORTRAN IV will be used to implement the translator

HOST MACHINE: The translator will be written in a manner amenable to trans-

portability; the host machines shall at least include the IBM

5360/65 and Univac 1108.

Figure 2-4. SRD for SSL Translator (continued) i

i

N

6

'i

UEJ

L;1

ti_ rJ

tl^..

J

1

•lF

112.3.2	 Functional Design Overview

The module decomposition follows closely the requirement

decomposition of Figure 2-4. There are three phases. The first

phase analyzes the SSL source input and constructs a hierarchical

rile c-.bntaining all object attributes and interrelationships.

The second phase analyzes the information within the hierarchi-

cal file for semantic errors, then generates a report on the

software organization. The third phase prints a summary and

generates an index to the report:

4

Figure 2-5 depicts a high level view of the software

organi-zation. The three phases depicted az-e executed once con-

secuti.vely to produce the report from the SSL source program.

The block labeled "SSL Translator Main Program" is the control

pr•o,gram. The actions performed by each of the phases is dis-

cussed in the paragraphs below.

The first phase (controlled by the block labeled "Syn-

tax Analyzer" in Figure 2-5) is the source program analysis

phase. Its function is to read the source program and construct

the file used in subsequent phases. The purposes of the princi-

pal. blocks are as follows:

•	 Syntax Analyzer - The subroutines of this block

parse input source statements, emit syntax diag-

nostics and pass the parse trees (polish notation)

to the semantic analyzer

2-78	 I^^^

A00CA001

:^ 4

...rw.w...rti.:.r ^.	 Wall"	
..	

}

i

P

C

SSL TRANSLATOR MAIN PROGRAM

i
1

^'	 1

i
lr	

1

SYNTAX ANALYZER	 STRUCTURE ANALYZER	 POST_ANALYSIS PHASE

SEMANTIC	 ELEMENT	 SET	 SUMMARY INDEX

J

i

LEXICAL ANALYZER ANALYZER ANALYZER ANALYZER GENERATOR GENERATOR {

N

MODULE VAR
•'

TYPE MODULES REQ'S. ••• VAR'S. SET REPORT RECORD

%i

STATE.	 STATE.	 STA€E.	 CONSTRUCTION GENERATION FORMATTER

i

MODULES VS.	 SUBSYSTEMS	 ... VARIABLES VJ	 MODULE	 VARIABLE REQUIREMENT
I!	 i

REQUIREMENTS VS. MODULES MODULES CONCORDANCE CONCORDANCE CONCORDANCE E

SAS -0583

Figure 2-5.	 Block Diagram for SSL Translator

subroutines; the lower level subroutines called

by the semantic analyzer are differentiated by

statement type and each constructs a specific part

of the hierarchical file.

The second phase (controlled by the block labeled

"Structure Analyzer" in Figure 2-5) is where the software inter-

connections are examined for consistency. Each element (sub-

system, module, variable, etc.) is examined first for internal

or soll'-consistency. Self-consistency includes each element be-

ing defined, referenced, and having all attributes assigned.

After element analysis, set analysis takes place. Set analysis

involves testing the consistency of all interelement references.

This task is performed in two parts. The first part constructs

tho interelement relationships in the form of a set of boolean

matrices. Semantic error analysis is carried out from the

matrices and their representation is converted to a list struc-

ture.. This list structure is used in the second part of set

analysis to generate the software structure report.

The role of the second phase can be further clarified

by examining the function of each of the blocks in Figure 2-5.

•	 Structure Analyzer - Control routine for phase 2

• Element Analyzer - On a subsystem by subsystem

basis, the subroutines of this block examine the

various elements that comprize the subsystem for

intraelement consistency; the lower level sub-

routines that the element analyzer calls are dif-

ierentiated on the basis of element type.

e	 Set Analyzer - Control routine for set analysis.

p

a:	 2-80

I

trl:A

r-"

1^11tj

r^

'Ls

s

,i

rl)

•	 Set Construction The subroutines of this block

construct a data base containing interelement de-

pendencies, and alalyze the dependences for seman-

tic errors; the lower level subroutines called by

set construction are differentiated on the basis

of element type pairs (modules vs. requirements,

subsystems vs. modules, etc.).

•	 Report Generation - The subroutines of this block

generate the software structure report; the lower

level subroutines called by report generation are

differentiated on the basis of the various sections

of the report (modules, variables, etc.).

The third phase (controlled by the block labeled "Post-

Analysis Phase" in Figure 2-5) summarizes and prints an index for

the report previously generated. The major blocks of this phase

may be summarized as follows:

•	 Post-Analysis Phase--Control routine for the third)

phase.

•	 Summary Generator Prints a summary of the soft-

ware structure such as the number of modules,

number of variables, and number of errors per sub-

system.

Index Generator - The subroutines of this block

generate a index list for each module, variable,

etc., including which page of the source liFting

and concordance listings it occurred.

Record Formatter - Prints a single line of the inde>

which includes a name with page numbers.

2.3.3	 Detailed Design Notes

Phase 1 of the translator is a standard parser combined

with data structure synthesis routines. Phase 3 is simply an

output editor. The crucial subset is phase two in which the

rAf-fl i

(2-81	 A*Wff/
	

LI

1.
I.
I
t

1

p = 1 0
Let Q(n) = (q l', q 2 7

i

qj =

0

if r Edrq(d) or r < r where r1 E drq(d)

otherwise.

. ., q k) be a node requirement vector where:

if r Ereq (n) , n E C

otherwise.

i

.;n

Un

JUD

v

interelement relations are analyzed semantically. The purpose

of this section is to expound both algorithmically and theoreti-

cally on some of these relationships.

2.3.3.1 Assessing Data Availability

Recall that requirement attributes are attached to both

modules and data objects as a means of providing requirements

traceability. A secondary effect of requirement attributes is

that they limit the availability of data objects; i.e., a data

object may not be used at a concrete node unless all the require-

ments attributes of its module are equal to or implied by re-

quireinent attributes of the data object. Therefore, one might

expect a close relationship between the requirement attribute

-functions (req, drq) and the availability function (av). This

relationship is expounded below.

	

Let R =	 rl, r 2 , .	 .,rk	 be a set of requirements.Let

	

P(d) = (p l) p2,	 ,pk) be a data object requirement vector

where:

Theorem	 k

For any n E C, d E av(n) if and only if E q. = P(d) • Q(n)._ i
Pron-f (necessary) assume ne C and d E av(n). Then by definition

of the av function, for any r1 E req(n) there exists an r2 in
drq(d) such that r 2 >r i . So qj=1 =>r

1
 e req(n) =>rj < r for some

r t. drq(d) => p 	 1;

k
);	

Vii.
= P(d)	 Q(n).

i=l

The .sufficiency part of the proof is carried out similarly.

END OF PROOF
	

/low/
2-82	 AWOFffJ'

r

•a
F`

Note that the theorem applies only to concrete nodes

since virtual nodes, unlike concrete nodes, depend additionally

on the release function (rel).

2.3.3.2 Assessing Consistency of Data Usage

Data object usage at a module is dependent upon its

availability at that module. However, the two sets are derived

from different perspectives and require cross checking. Ano-

malies should prompt the designer to re-think the requirement

attributes assigned objects, a healthy exercist.

Let's begin by recalling that a data object, d, is not

eligible to be used at a module, n, unless d E av(n). Let D =

(dl' d2 , . .	 dm) be the set of data objects within the

system. For some node n, let U(n) = ru l , u2 ,	 uml

the usage vector, be a vector where	 LL	
JJ

1 if d i E use(n), n E C where C is concrete node

ui =	 ; i = 1, 2, . . .	 m

0 otherwise.

Let W(n) = 11%) w2 ,	 wml 	 the candidate vector, be a

voctor where	 1

1 if d i E av(n), n E C; i = 1, 2,	 m
W. =
i

0 otherwise.

Given U(n) and W(n) the usage set assigned to node n is legiti-

mate only if

u 	 u . w 	 i = 1, 2,	 m
Furthermore, if the set is illegal, the culpable object is

identiried by the element of U(n) for which the above test fails.

2-83

a'

wy

2.3.3.3 Ordering Modules for Analysis

The predecessor relation defined in SSL semantics only

partially orders the nodes (modules). There exists more than

one total order that adequately reflects the partially ordered

properties of any nontrivial module set. It is necessary to

se ect a (total) ordering algorithm in order to perform analysis

in a determinists manner.

The algorithm preserves the Natural partial order of the

modules. Definition of the following terms are necessary:

e	 A unique module called the root or entry module

(of a subsystem)

ord(m)	 The order number of module m; initially zero for

all modules

pr(m)	 The predecessor function for module m as defined

in the SSL semantics; pr -1 (m) is the successor

function

n	 The set of modules

#S	 The cardinality of the set S

The algorithm is as follows:

(1)	 Let S 1 = e	 set ord (e) = 1

(2)	 Let p = 1, k = 1

(3)	 If m e S and there exists m e N(1 (pr-
1 (m p)-S k),

then

(a) For each mr such that p < ord (mr) < #S k)

increase ord (m r)by 1

(b) Define ord (m q)= p + 1 ' Sk+l - Sk V (mq
(c) Increase p and k each by 1

(d) Return to step (3).

(4)	 If p >1, decrease p by 1 and return to step (3);

otherwise stop.

F	 2 -84	 A1PFff/

r

w

r
Lk

L
I

i

This algorithm assigns an order number to each module. Further-

more, the order numbers increase monotonically along forward

(non-recursive) calling paths. Figure 2-6 illustrates the order

number assignments for an arbitrary block diagram. Note that

more than one order assignment combination fulfills the criterion

of increasing order numbers along forward paths.

2.3.3.4 Construction and Closure of Dependency Matrices

A dependency matrix (or adjacency matrix) is an n x n

boolean matrix where there are n modules. Rows and columns must

be ordered equivalently to the order numbers acquired from the

algorithm given above. The elements of the dependency matrix,

D, are as follows:

true if module of order i references module of
d .j	 order j

false otherwise
Once constructed, the rows of D yield "called" lists and the

columns "called by" lists.

Closure of D - In the closure of the matrix D (denoted

D) an element dii will be true if there exists a sequence in D,

d ip , d pq	 qr	 s jd , . . .,d , all of which are true.

One way of deriving D+ is by raising D to the n th power.

The algorithm given here is much more efficient.

D: array 11	 n, 1	 n] of boolean ;
i, j, k: integer;

for j= 1 to n do
begin
for i 1 t n do

if D [i, j] and i	 j then
for k = 1 to n do

	

D [i, k]	 D	 [i, k] or D [j, k]

	

2-85	 i^

tl

00
CD

AMOVI&I

a _	 l
Y

2.3.3.5 Recursive Analysis Using Dependency Matrices

It has already been noted that "called" and "called by"

lists are explicitly represented in D. What remains is the

derivation of the recursive information required for the module

concordance of the previous section. Specifically, the deter-

mination of head modules, latch modules, and potentially recur-

sive modules. (A latch module, in the context of recursive

analysis, is one that makes a recursive call. A head module is

one to which a recursive call is made).

Theorem

If dij = true and j < i then

i is the order no. of a latch module and j is the order

no. of a head module of a recursive subsystem.

i

1
1

Proof

Assume ord(m1 = i and oxd(m2) = j. Since d ij = true,

ml calls m2 . If there exists a forward calling path from m2 to

ml then the call of m2 by ml is clearly recursive with ml being

the latch and m2 being the head. So, assume there is no forward

path from m2 to ml . If there does not exist a forward path from

m2 to ml then the path (ml , m2) is a forward reference. This

implies ord(m1) <j, contradicting the original assumption.

End of Proof

Figure 2-7 is the D matrix for the dependency chart of

Figure 2-6. It illustrates that 4 (Module I) is a latch module

and 2(Module E) is a head module.

Theorem

If di =true and i = ord(m) then m is potentially

recursive (i.e., there exists a path from m back to itself).

Proof

By definition, d i is true if there exists a sequence,

d ir , drs , ...) dti , all of which are true. This implies the

existence of a reference path, m, ml , m2 ,	 m, thus m is

potentially recursive:

End of Proof

N

Aglrff I

00
x

i,t
A(y

r
6

Figure 2-8 is the D+ matrix for the dependency chart of

Figure 2-6.	 It illustrates that 2 and 4 (:Modules F and I) are
a

potentially recursive. a
Note that the existence of a recursive path does not

necessarily prove that modules on the path are recursive. 	 During

execution, the recursive path may never be traversed. 	 Note also

that a recursive call made unconditionally by a latch module is -v
a potential infinite loop.

The techniques above were discussed in the context of the

module concordance.	 A subset of the same methods would apply

also to the data concordance and to the analysis of the require-

ment transductions.

d

r	 .

a
Pa

2-89

N

AOIFffff

x

a

3. DATA BASE VERIFIER SUBSYSTEM DESIGN

As a result of the study and analysis conducted under

SOW task Phase A, item 3, we performed a high level design

(i.e., software development through the requirements and func-

tional specification stages) of a data base verifier subsystem

(DBVS). The functions of this data base verifier subsystem are

analysis of the Data Manipulation Language (DML) commands

within a FORTRAN source deck collection of pertinent descrip-

tions of the stored data base as viewed by the program(s), and

printing of the subschema information in a user oriented for-

mat. The accomplishment of these functions was the goal of

each step in the DBVS software design.

At the requirements stage of the development of the

DBVS`, we produced a Subsystem Software Requirements Document

(SSRD). This document was written in accordance with the

requirements methodology that we recommended as a result of

analysis performed during this contract period (cf. Part I,

subsection 2.1 of this report). Subsection 3.3 contains the

SSRD which formed the basis of the functional design of the

DBVS. For the specification stage, we used the Software Speci-

fication Language (SSL) that was designed under this contract

and which is explained in Part I, subsection 2.2 and Part II,

section 2 of this final report and in the special report,

"SSL-A Software Specification Language."

A general description of the two main phases of the

data base verifier, DML Statement Processing and Subschema

Information Processing, are presented in subsections 3.1 and

3.2. These subsections are outlined in Table 3-1.

f

3-1

a^x

t L - - ---------

i
1
t

r _.

"J

S]

f^

L7
1-

T". :I

L	 .r	 I
3-2

1

3-3

Il r
"

'
M

oo lol l P 1
,

1

3-5

TABLE 3-5. IDENTIFIER SEQUENCE ELEMENTS

NOTE: These CODASYL definitions are predicated on the working

document, "FORTREV," of the ANS committee for the proposed

revised FORTRAN, (X3.9). This document was printed in the

March 1976 issue of SIGPLAN Notices under the title, "Draft

Proposed ANS FORTRAN.

• Character constant - is an apostrophe followed by

a non-empty string of characters followed by an

apostrophe..

• Character expression - is used to express a charac-

ter string consisting of a character primary alone

or concatenated with other character primaries. A

character primary may be a character constant, sym-

bolic name of a character constant, character vari-

able reference, character array element reference,

character substring reference, character function

reference, or character expression enclosed in paren-

theses (cf. FORTRa,V 75-09-26, Section 4)

• Character variable - FORTRAN variable of type

character.

• Data base key - Integer variable. (FORTREV's

definition of variable excludes array elements.)

• Data base name - record name, set name, realm name,

or character expression. (The first 3 are names in

the subschema being used.)

• Data base names - data base name.

• Error phrase contains keyword error and either

statement number or subroutine (witharguments if

applicable) name.

• Retain contains keyword RETAINING and either

1) the keyword RECORD, REALM, SET or 2) keyword SET

and appropriate data base names, or contains keywords

RETAININGand MULTIPLE.

l
AVOW*

{
k

t

3	 AoOv.O/

tT

I	

1	 r

a

i

PE]

r	 <^

raw

1

r

r^

i..I

i

L'	 r

1

TABLE 3-6. LIST ITEM SEQUENCE ELEMENTS

Input list item which must be one of the following:

variable name, array element name, character sub-

string name, array name, or array block item (cf.

FORTREV 12.8.2.1).

Implied-DO list item consisting of one of the

following: a variable name, an array element name,

a character substring name, an array name, or an

array block item (cf. FORTREV 12.8.2.3),

j

i
i

I

i

31i
I

7

J

4	 3-8 ANOFffAF `

6

r

3.2	 SUBSCHEMA INFORMATION PROCESSING

After the identifier, keyword, and list item

sequences have been constructed, the various components

of the DML statement containing subschema, REALM, SET,

record, privacy, and error information must be extracted

from these sequences.	 This information is then appropri-

ately entered into one of the following tables: subschema,

realm, set, record, or error status.	 The record description

r ° for each of these tables is given in Tables 3-7 through

3-11, respectively.	 These record description tables contain

specific information about the subschema which can be col-

4 i
lected from the DML statements. 	 Moreover, the printing of

these tables in a highly readable format will provide the

user with different descriptions of the data base components

which were established by the DML statements. 	 With these

labels, the user can cross reference the information and

thereby determine the consistency of the data base descrip-

tions within the bounds of the applications program.

3.3	 FUNCTIONAL REQUIREMENTS FOR THE DBVS
x

As stated previously in Part I of this report, the

specifications for the CODASYL DML are not in final form.
---4-4	 .F	 -i-L..-.	 ry!'1T A 0'VT	 'M/'1D TT] A TT	 T%-4—..	 Dom, --	 ti...-.

y

nj

I r

ility Journal of Development (November 25, 1975), written by

the Data Base Manipulation Language Committee,was presented in
the January 1976 monthly progress repott in Appendix A. It

should be used as a reference for understanding the subsystem
Software requirements document subsequently presented in

Figure 3-1.

OF THE
ORIG1NNAL PAGE 1 POOR

y

;,'

Af

3-9

I

i

11 1

ti	 3-10	 ell

.
i

3-11

ll

	
TABLE 3-9. SET TABLE RECORD DESCRIPTION

L_

Item Name Data Type

Set Name Integer variable
Hollerith data

Record Names Integer variable
Hollerith data

Modification Indicator Integer constant
Integer data

Indicates that set rela-
tionship has been changed
within the program.

Privacy Key (assoc. with (cf.	 FORTREJ',
PRIVACY statement) Section 6.2)

DML Command Integer constant
Indicator Integer data

Indicates reference by
one of the following
DML commands:

CONNECT, DISCONNECT, MODIFY,
FIND, FETCH, ERASE, or PRIVACY

Statement Number or Integer variable
Subroutine Name for Hollerith data
Error Handling

Record Delete Indicator Integer constant
Tnt po, i=r rintn.

3-12	 ANOFfff

wJ►^	 '...:LTA.v—'K:.`w1S'.un.^':MYC:,.Y_.:..•,"x,^_`._y^.'..—Y:-........^---i:,.izr-Y"raMVa-v^^t	 .^_...,..:.:..

TABLE 3-10, RECORD TABLE RECORD DESCRIPTION

Item Name
	

Data Type

Record Name
	

Integer variable
Hollerith data

Set Name	 Integer variables
Hollerith data

Realm Name	 Integer variables
Hollerith data

Subschema Name
	

(cf. FORTREV,
Section 4.8.1)

Modification Indicator
	

Integer constant
Integer data

3-13

{

i

I

^7

7

a

a

^'S
,	 3-14	 ;
t

NN

ERROR STATUS TABLE
RECORD DESCRIPTION

Data Tyne

Integer variable
Hollerith data

Integer variable
Hollerith data

TABLE 3-11

Item Name

Procedure Name

ALL indicator

OTHER indicator	 Integer variable
Integer data

STATUS indicator 	 Integer variable
Integer data

i

j

v

f

1

3-15

Problem Statement:

Design a data base verifier subsystem that analyzes
FORTRAN Data Manipulation Language (DML) statements
for the purpose of ensuring a consistent and valid
data base evocation by the program. Print the results
of this analysis in a form easily interpretable by the
user.

SYSTEM SOFTWARE REQUIREMENTS DOCUMENT

Direction

Design a data base verifier subsystem that analyzes all
FORTRAN DML statements and organizes the subschema, realm,
set, record, privacy, and error information contained
within the DML statements into appropriate output for the
user.

Input

LINE BUFFER FORTRAN DML source card

Transductions

INITIALIZE SYSTEM:

CHECK DML COMMAND:

II

Initialize DML command, character,
and keyword tables, line number 	 T
counter, etc.

Check first keyword for a match in
the DML command (Table 3-3)

CHECK-DML--KEYWORD: C

BUILD_ KEYWORD_SEQ: 	 E

f
BUILD_IDENTIFIER_SEQ:

j figure 3-1.	 Subsyste
DBVS

eck keyword for a match in the
yword table (Table 3-4)

ild keyword sequence for each DML
atement

Build identifier sequence for
each statement

i

Ai

Software Requirement Document for

Af

Al3-16

a^

i

1

3-17

7T	 §J

-	 3-18

k

3-19	 AOVW

t

i

'i
i
f

ii

1

i

T

IT

IT,

_yr

A
5g??

n^

Lh

c^y

IT

^ItJ

I

`	

3-20	 ^^^5

i

T

3

a
j

character variable - FORTREV variable
of type character
character constant - is an apostrophe
followed by a non-empty string of
characters followed by an apostrophe
character expression 	 9.s used to
express a character string consisting
of a character primary alone or concate
nated with other character primaries.
A character primary may be a character
constant, symbolic name of a character
constant, character variable reference,
character array element reference,
character substring reference, charac-
ter function reference, or character
expression enclosed in parentheses.
(See FORTREV 75-09-26, Section 4)

<db key >
	

data base key integer variable
(FORTREV's definition of variable ex-
cludes array elements)

<db name>	 data base name - record name, set .name,Il
realm name, or character expression
(The first 3 are names in the subschema
being used) 6

>f

3-21	 ^^^

<item spec> identifier specification - item speci-
fication or implied-Do lists consis-
ting of one of the following: a vari-
able name, an array (Dement name, a
cYaracter sub_string name, an array
name or an array block item (12.8.2.3)

<item list> item list - identifier specification

<priv key proc> subroutine _name - consists of one to
six letters or digits, the first of
which must be a letter

<retain> retain - containi> keyword RETAINING and
either 1) the keyword RECORD, REALM,
SET OR 2) keyword 'SET and appropriate
data base names; or contains keywords
RETAINING and MULTIPLE

<usage> usage - one of each of the following
groups of keywords: 1) PROTECTED,
EXCLUSIVE, CONCURRENT 2) RETRIEVAL,
UPDATE

<rse> record selection expressions - are used
(See Table 3-13 to specify criteria whereby the data
number 7_input base management system is to select a
format) record in the data base. 	 The various

record-selection expressions are used
as follows:i

I

{

1

u

TABLE 3-13. (Continued)

Meta-Symbols	 Meaning

<identifier>	 identifier - item specification

<id list>	 identifier list - item specifications)

3

;.

k

'	 a

3-22	 A10F'/

J}
^...	 -	 ^.

r	 '

_ r-_	 -._ _ __^_--_ _ ___
_	 ^,

-_	 ---	 ^	 ..---____.__.____	 _	 __ _^._.z.	 _.^_.	 ,_.._..._ ^__. ^_._ _ _^_, 	 ^

^'

r.	 .
r,

TABLE 3-14•	 OUTLINE OF SSL COMPONENTS

I.	 Preamble Description

1. Requirement Declaration

a.	 Input and Output Parts

b.	 Transduction Parts

C.	 Constraint Declarations

2.. Data Type and Variable Declarations

a.	 Simple Types

b.	 Structured Types

C.	 Pointer Types

V 3. Constant Declarations

,., II.	 Module Description

1. Module Statement

2. Assumes and Satisfies Statements
^r

3. Fulfills Statement
4. Accesses Statement

5. Receives and Transmits Statements

6. Creates, Modifies, and Uses Statements

7. Execute Statement

III.	 Subsystem Description

1. Subsystem Preamble

2. Module Description

r

/*preamble for DBVS subsystem*/

Requirement

Input line buffer; /*FORTRAN dml source card*/

Transductions

initialize system; /*initialize dml command, char-
acter, and keyword tables, line number
counter,*)

cI,ieck_dm1_ command ; / *check first keyword for a
match: in the dml command table (Table 3.-3)
including terminate keyword quit*/

check- . dml keyword;/*check keyword for a match

in the keyword table (Table 3-4)*/

build_keyword_seq;/*build keyword sequence for

each dml statement*/

build_identifier_seq;/*build identifier sequence

for each statement*/
build list item seq;/*build list item sequence

for each statement*/

build—dml—table in check dml_command;/*construct

dml command table*/

3-25.^^
^r

i

d

ii

r

^a*a

i<
w^

i

^s

/lt

save—subschema info;/*save subschema, schema or

privacy key names, and the dml command

indicator in subschema table (Table 3-7)*/

save—realm info;/*store set or realm information

and usage information in realm table (Table
3-8)*/

save_set_info;./*store record (if specified) and

set information in record and set tables,

(Table 3-9 and 3-10,respectively)

save_record_info;f*store record name information,

and if specified, item dml, record items, and

privacy key information for record in record

table (Table 3-1.0)and pertinent record infor-

mation in set table (Table 3-9)*/

save—subschema-privacy in save—subschema—info;

/*store subschema name and privacy key infor-

mation for subschema in subschema table*/

save—realm—privacy in save—realm—info;

/*store realm name, subschema name (if

specified), usage indicator, and privacy

key information in realm table*/

save_ set_ privacy in save set_info;/*store set

name, subschema name (if specified) dml

type indicator, and privacy key information

Wei

^.y

a^

3-26	 lam'/

save record privacy in save —record_info;/*store

record name and if specified, subschema name,

dml statementindicatin insert removestatement(indicating ,

store, erase (permanent, selective, all),

modify, find, get, fetch) and privacy key
't

information for record in record table*/

save—item privacy in save record—info;/*store	 }

item dml (modify, get, fetch) and privacy key

ji	 information and if specified, subschema name

ti
and item names in record table*/

1 save _error —table —info;/*store error information

in error table (Table 3-11)*/

print_tables;/*read and write information from

subschema, realm, set, record, and error

tables and write to printer*/

Output subschema info;/*subschema, realm, set,

record, privacy, and error handling information

in tabular form*/
end;'

'.;	 /* beginning of data description within the preamble*/

N	 variable dml intrinsic; array L1--5J of text;/*

contains current dml command for check_dml_

command*/

for check _dml_command, check dml keyword, build _

keyword_seq, build—identifier _seq, build list

item seq, evoke module, -.-ead_line, save _sub-

schema info, save subschema privacy, save

realm— info, save_realm_privacy, save set

info save set privacy, save record info,

save record_ privacy, save item privacy;

i

t	
figure 3-2. (Continued_)

AfAfl

3-27	

AOOC

Y
 .t	

,.	 A

E
T

Y.

z:m

r^.

rte.

variable keyword table: array [1..39, 1..5j of

text; /*Table 3-4(allowable keywords within dml

statements)*/

for build—keyword—table, check dml command,

check_dml keyword, build keyword seq, build_

identifier seq, build—list—item seq, evoke_

module, read—line, save_subschema_info,

save _subschema privacy, save—realm—info,

save—realm—privacy, save—set—info, save-

set-privacy, save—record—info, save_record pri-
vacy,save item privacy, save—error—table-
info, build_dml table, initialize_ system

variable list item: array 1 1..3] of text;/* con-
tains user specified list item*/

for check_dml_command, check_dml keyword, build_

keyword seq, build_i.dentifier_seq, build_

list item seq, evoke module, read line,

save—record—info, save_record_privacy, save_

item_privacy;

variable identifier; array 1 1..]3 of text;/* con-
twins user specified identifier*/

for check dml command, check dml keyword, build

keyword_seq, build_identifier_seq, build_

list_item_seq, evoke module, read—line,

save subschema info, save subschema privacy,

save—realm—info, save—realm—privacy, save-
set—info, save_set_privacy, save—record—info,

save record privacy, save—item—privacy, save-
error—table—info;

type ident seq=sequence of text

ident array 11..3j of text/* identifier name*/

An	 3-28	 MOWS

Z
T
1

,.r

G^

rc>

t
variable dml_command_table: array 11..16, 1..5j of

text;/*contains commands of Table 3-3*/

for build dml—table, check—dml_command, check—dml

keyword, build keyword seq, build identifier

seq, build—list—item—seq, evoke module, read—

line, initialize—system, build—keyword-
table;

variable keyword: array ^1.,] of text;/* contains

user specified keyword*/

for check—dml—command, check dml keyword, build—

keyword_seq, build—identifier—seq, build-
list-item seq, evoke module, read line, save_

subschema info, save—subschema privacy, save-

realm—info, save_realm_privacy, save—set-
info, save—set—privacy, save_ record_privacy,

save—item—privacy, save—error—table_info,

save record, info;

	

type line—buffr	 array ^l..72] of char
/*reflection of program card*/

variable line buffer: line buffr;/*contains current

source statement being analyzed*/

for read line, check dml command, check dml

keyword, build—keyword—seq, build—identifier-

seq, build—list _item seq, evoke—module;

variable chartable; array F1 4Q of char;/*

A..Z,	 0..9	 blank, =, +, '^, /^ (),

for check_dml_command, check dml keyword, build_

keyword seq, build identifier seq, build

list item seq, evoke module, read line,

initialize system, build dml table, build

keyword table;

R

Figure 3-2. (Continued)

fAA W/If

r

3-29

Y,

°s

_1.

E

variable identifier

—

seq: ident seq;/*sequence

containing all identifiers associated with

one statement*/

for build identifier seq,check dml command,

check dml keyword, build—keyword—seq, build_

list_seq, evoke module, read line, save_

subschema info, save_subschema_privacy, save -
realm—info, save—realm privacy, save—set-
info, save set privacy, save _record info,

save record_privacy, save_item_privacy, save

error _table_info;

type list_itm_seq = sequence of text
parametr: array 11..3 of text;/*list_item_name*/
end;

variable list item seq: list_itm seq;/*sequence

containing all list items associated with one

statement*

for build list—item—seq, check dml_command,+

check dml keyword, build—keyword—seq, build-
identifier—seq, evoke module, read line;

type keywrd_seq = sequence of records

keyword: array C1.. 3] of text; /*name of keyword*/
identifier counter; integer; /*contains number

of identifiers (i.e., no. of times to read
the identifier sequence associated with each

keyword*/

end;

variable keyword seq: keywrd_seq;/*contains keyword

number of identifier, associated with each

keyword*

for check dml_command, check dml keyword, build_

keyword seq, build identifier_ seq, build

list-item-seq, evoke module, read line,

?	 build keyword seq, save_subschema_info,
' save_subschema rivacp	 y, save realm info,

r

c

I(-	
3-31	 ANOFff®<

4

l^

}

i

error handling: array C1..] of text;

record name: array [1..3D of text;

subschema name; array 1. .3 of text;

privacy key: array 1..3] of text;

dml intrinsic: array Cl..^ of text;

/*dml intrinsic represents one of the

following statements-ready, finish, find,	 r 's
fetch, or privacy*/

line no; integer;/*line number of dml command

in listing*/

end;

variable realm table: realm tabl;-	
i

for save_ realm_ info, save realm privacy,

save_record_info, save_record privacy,

save_ item_ privacy, print tables;

type set_tabl =file of records

set name: array C1..^ of text;

record-name: array C .. J of text;
mod indicator: integer;/*indicates that set

relationship has been changed within the	 b
program*/

privacy key: array [1..33 of text;
dml-intrinsic: array 11..0 of text;/*

dml intrinsic represents one of the follow-

ing statements-connect, disconnect, modify,

find, fetch, erase, or privacy*/

error_ handling: array C1..^ of text
x

record delete_ind: integer;/*O-indicates no

` "+`

	

	 record deletions, l-indicates normal dele-

tion, 2-indicate permanent deletion 3-

indicates selective deletion 4-indicates

all deletion*/

subschema name: array C..3] of text

-	 s line no: integer;/*lime number of dml command in

listing*/

end;

T'igure 3-2. (Continued)

3-32

y

_

variable set table: set tabl * the set table

contains mainly set and record information

depending on the options exercised by the

connect, disconnect, modify, find, fetch, erase,

or privacy statements*/

for save set info, save record info, save set_

privacy, save–record–privacy, save–item-
privacy, print tables;

type record_tabl=file of records
f	

record name: array [1..3] of text;

set name: array [1..3] of text;

realm name array 11- 3 of text
subschema name: array 1..3] of text;

modification ind: integer;/* indicates that
era	 —

set relationship has been changed within

the program*/

error–handling:	 ('1..3 of text— C
data base key name: array 1..3] of text;

data item name:array ^l. , 5, 1. . 3^ of text;/*
contains first five names in a list of

data item names*/
privacy_key : array ^1.. J of text;
dml–intrinsic: array 11.. 5^ of text;/*

F,	
dml intrinsic represents one of the

following statements: find, get, fetch,

store, modify, erase, connect, disconnect,

or privacy*/

dine no: integer; /*line number of dml command
}	

in listing*/

dml stmt ind: integer;/*indicates privacy access

by one of the following dml commands: insert,

r`	 remove, store, modify, find, get, fetch, or

"erase*/

record delete ind: integer ;/* indicates that

record is to be deleted*/ {
p"I	 end;

Figure 3-2. (Continued)

333

t	 ^

3-34	 AllOFff9

t

i

L

^41

I
41

F ^,

1	

^

for check_dml_command, check dml keyword,

build_keyword_seq, build_identifier_seq.

build list_item_seq, evoke module, read_

line, save_subschema_info, save_subschema

privacy, save—realm—info, save—realm-
privacy, save—set—info, save—set—privacy,

save—record—info, save record privacy, save

item privacy, save_ error_table_info,

initialize—system, build_dml_table, build_

keyword table;

ond;

/*end of data description within the preamble*/

/*end of preamble for DBVS subsystem*/

i

3

i

i

3-35
a.^s

A

3-36	 AO

I

modifies list—item—seq—ind;

executes conditionally

subschemaprocess, realm process,

set—process, record—process, error__process, output_

summary;

executes initialize system;

end;

Figure 3-3, DML-RECOGNIZER Module Description (Continued)

1-^71—
3-37	 AOOFff J'

1,.

ilip

Ki

i

a

/*module description for initialize system*/

module initialize_system;

fulfills initialize system, build—dml—table,

read line, build--keyword—table;

,F

Jf

create dml_oommand_table, chartable, keyword table,

line—no—counter, list_item_seq_ind

/*construct dml command tables*/

modifies dml command table;

/*construct char table*/

modifies char table;

/*construct keyword _table*/

modifies keyword table;

/*initialize line number counter*/

modifies line no counter;

/*initialize list item sequence indicator*/

modifies list item seq ind;

-;	
3-38^^

4

- -----------

At

3-39t.

a r,

1
i

Af

ni	
3-40

 .J

A

r

1

Ri

r.7

LJ

n
Q

r	(IF'1

}

T I

r

3-41

1?. -I

a

3_42

1	 ;

a

a	 s^E

?_z

3-43^^

/ ''^ |	
_	

====~=`~~==^===^_=_^^~_~^~`~,^'~^==^_^=^	
-	

`=,!,^==__	 '^_' ^| .'-^ __ '~`

.'	 .

.^	 .

'

.1

^'

}

Table 3-15. Module Descriptions for the DBVS

3

lr.#"
^ Y

1.717

i

I
Grp

DML RECOCNIZER

To isolate data manipulation language (DML) key-

words and associated identifiers and list items.

To construct appropriate keyword, identifier, and

list item sequences. To evoke initialization or

report modules, or to evoke appropriate DML state-

ment processor modules.

INITIALIZE SYSTEM

To initialize the line number counter, the list '.

item sequence indicator, and the following tables:

dml command, character, and keyword.

SUBSCIIEMA_PROCESS

To collect subschema information and enter it into

the subschema table.

REALM PROCESS

To collect realm information and enter it into the

realm table.
3
6

t.

>7

'M

r	
..,	 3-46

CAV`s

y_

5

t

L1
Y

1^^E

L

t:' 1

^* J

iFT

t.;1

r3 .

L 7

9 y^ '

l

"it	3-48	 J//

j

I I

t

E
t

.N.

4. STATIC CODE ANALYSIS

In 'this section, we present the detailed design (build-to)

specifications for the capabilities listed in. Table 4-1 which

will be incorporated into FACES. For each of the twelve cap-

abilities, we provide a detailed Un it Module Description in-

cluding a flowchart which is sufficient for coding. However,

for complete understanding of this documentation, the following

FACES documentation must be used:

•	 Version 2, Mod 0, Fortran Automatic Code Evaluation

System SYSTEM DOCUMENTATION, September 1975,

Browne and Ramamoorthy Inc.

0	 Version 2, FACES User's Manual, September 1975,

Browne and Ramamoorthy, Inc.

•	 Version 2, Mod X FACES Program Listing

The; unit module descriptions correspond to those set forth in

NASA's "Guidelines For Software Detailed Design Specification

(Comp,.-TO)," while the flowcharts follow ANSI FORTRAN flow

charting recommendations. The detailed specifications for the

capabilities will appear in order according to Table 4-1.

(New capabilities 5 and 6 and capabilities 7 and 8 are treated

under the same unit module description.
1
q

M

3

da

µ	 4-1

a6	 k,

a

q1

9

1

f

a

s
TABLE 4-1. NEW FACES CAPABILITIES

i

!I

f	

1.	 EQUIVALENCE and EXTERNAL statements are flagged.

	

2.	 COMMONs not naned are flagged.

F^

r

	 3.	 ALL COMMON BLOCK arrays must be dimensioned in

I

	 COMMON BLOCK statements.

E7

	
4.	 DIMENSION statement and variable which contain

an adjustable (variable) dimension are flagged.

I ^^
f

i

r

I ^a

5.	 Constants, hollerith, or arithmetic expression

arguments used in subroutine argument lists, are

flagged.

r	 AN///
4-2

/j
/j
/j

\\

?q
.:	 ~ (2

\^	 \\

/
/

10. Statement labels mast appear in Increasing order.

ll. Occurrences of error-prone FORTRAN statements such

as ASSIGN Statement, assigned GO TO, and PAUSE are

flagged.

12. The appearance of the Same COMMON variable in more

than one DATA statement is flagged. . 	 .

^	 \ z

»	 C	 ^

:	 .

:4-3	 ^	 \\

.	 w..

k	

4-4	

^.^f

kk

L^

SET/USE PARAMETERS

No new parameters are introduced NUMBER, the standard variable

for query number is used.

SIGNIFICANT INTERNAL VARIABLES

No new variables are introduced.

LIMITATIONS AND RESTRICTIONS

All variables are set by IMPLICIT INTEGER (A-Z).

DETAILED FLOWCHART

Only the modifications are included on the following flowchart.

^f

^'AF
4-5

S

1	 14..

i

AUQII IONS I(I
"IRIt011T 1T i
Alit AFTEfI

..	 FAC 4631

/
/

OIII. RY WHO ION
	a	 ! I Ali ARITlINI 1J C,	 /	 !Il(IF	 YCS	 MI11.111(A	 I'f{NTI'L	 SET FLOW	 ftLTURN TO CHECK

'-C_	 NIIMIICH (NU 	 (t)	 TO BACK	 TO CHECK
NF.7q (P	 NUMUERI) S._...-.-.'—_—'

	 UMBE	 FOR HIT	 NEXTOUEBY

No

	t1;1	 f I AI; t • OMMUN.III OLK"°u
	

QUER	 VCS
2101

Y	 (:UMIIAL
IIIAI AI11 NOT	 '—	 NUMBE:R,NE.	 (NUMBFR)
AIII 1. 1 1. 0	 2107

NO

,..^n 	 _. ._..._ .._._

E ^.

	

rM•-^	 IAII(d ISOI UIIANCIII.S ti,
01111V	 YES.U^1U1 0 NOI U(01 11 u	

_<^NEW FIER,Nt.
'	

MULE

)HA
IIIIANCIII S, 151'I CIA Y 	 (NUMBER)

	

4	 !,INI;II t;0TO'S4
NO

of f if Y
AY; It N. I;O 10, W 	 230	 YES	 ER 230I AI1!;1 SI ATFMI NIS L—	 NI)MUE
1 I A(;	

R,NE
x	 GI U	 230?

	

z^:x	 NO

I QUIVA1 INC[AN[.)	 0111 RYESI x I I IINAI.	 140+	 Y ER 240

	

L.,.s	 ';IAfi MLNTSAIII	 —	 NIIMUER.NE.	 a

NO	 i
2

_	 A

	

+ F	 SAI 0486

3

gD 3RODUCD3ILITY 0:'7
pA D1)0'f)"ORIGINAL	 IS	

i

4-C	
3

G

t

CA
FLAG VARIABLES
USLD AS 1/0
DESIGNATORS	 7 OUERY	 ER 250

/ 250?	 YES	 B
NUMBER.
NE .250

f

- -	
NO	 i

7	
SUBPROGRAM DUMMY
PA itAMFTFIIS THAT ARE

^	 NF VCR USED ARE	 — — OUFRY	 ER255	 t	 1,FI_AGGCD	 255?	 YES	 B
----	 NUMBER.

N E.255

NO

;TAT[MF N F NUMHC-RS
Nor IN ASCENDING

	 ^^B
ORDER FLAGGED 	 QUERY	 ER260

2507	 YES
NUMBER.
N E.260

NO i
VAFIIAIII F IN PARAMETfi11 LIST
Of III AD STATTMENI - WHICH
IS (ISFD AS AN ADJUSTTILF.
(VARIAIII C) DIMENSION FOR	 265?	

YES	 ER265	 t
AN ARRAY IS FLAGGED_	 NUMBER.w	

NE.265

NO

u	 _ AT I COMMON III..00K
All RAYS MUST BE
OIMFNSIONED IN--
COMMON BLOCK	

Oho RY	
YES	 ER 270	 t

STATEMENTS	 NUMBER.	 B1	 _	
NE.270

NO

OIMI NSION STATEMFNT AND
VARIAHLF WHICH CONTAIN
AN AD.IIISFABLE (VARIABLE)	 --- OUERY	 1
DIMF NSION ARE FLAGGED 	 275?	 YES	 ER 275

.	 NUMBER. B

N E.275

NO

CONSTANTS • 1101 f f KITH Sl10ULD
a	 NO III US[D IN SUHROU'FINE t(:AI l INGARG(1MEN7 LISTS	 OUERY

780? 	 YES	 ER 280
NUMBER.	

B

N E.280

NO

3

g

f.
4-7

e,

3
r

?

11

p Al 1 OCCI1RRf.NCFS OF SAME
VARIAHLFINPARAMETER — OUFRY

YES ER 285
l ISF AFiF FLAGGED 285 F3NUMBER.

FO.285

' (t
^ NO

1111	 AI'I'1 ARANCf OF TI It. SAMF
COMMON VARIARII, IN MORE TI IAN — QUERY YES CONCOM ER 290I OAIA STATEMENT IS FLAGGED 2907

t NUMBER. B 'f
EO,290

NO

trs CONTINUE
PROCESSING

r EXISTING OUERIES

i
SAI.0489

I

ii

j

J

1

F

].

!f

I'

4-8

UNIT MODULE DESCRIPTION

IDENTIFICATION

ER24Q -- Error 240 routine

STORAGE ALLOCATION REQUIREMENT (estimate)

2K (hexadecimal bytes)

PURPOSE

Flag EQUIVALENCE and EXTERNAL statements

DESCRIPTION

The routine checks each module for statement type.	 If type

is a 12 (EQUIVALENCE) or 40 (EXTERNAL) the routine flags the

Statement in Flag File.

IIOW ENTERED

Called by AIR

CALLING SEQUENCE

Ca.]L	 ER240

No Arguments

ROUTINES CALLED

IE

GETS
GETL
POP

r

f^

9
t

9

d

a

d

4-9	
^/ /

' 1	 J

• J

r

c;

v

^. a

t: ^r

c7::r

l3

r t

.	
4`10 ^fff

T	 ^^

I,

4

1

ti

f	 4.

ti tS

ss-y

1'^ 1

F^'1

4-11

1 RR240

IMPLICIT INTEGER (A-Z)
LED COMMON/FLAG/./Hl,

/SPE
l

/SPERFG/,/TABLE/
THIS ROUTINE FLAGS EXTERNAL
AND EOUIVALENCE STATEMENTS

--- "— STATYPE 40, 12
r INITIALIZE

+ INTEGER VARIABLES
i 10, 11, 13,14

0,71, 3,4

INITIALIZE
ERROR NUMBER
K-240

f

SLT FORWARD/ it
BACKWARD FLAG

;a 10 FORWARD
1,l FIIH	 HF

A

r
IE

(HDIR, BF)
SELECT A
MODULE

' y TO EXAMINE

iI;r
"Y

ARE ALL	 YES _ L
EXAMINED RETURN
B F, E 0.2; 8

3
P

NO

1

GFTE

(HDIR	 13)
NEXTELEMENT

IN MODULE f,
s	

_j

1

1

END0
THIS	 YES
MODULE

SET FBR = 1113
FOR O

F

:., BACKWARD
ER(13)- FLOW
EO.0) `c

NO
ii

GFTL
(B F) 4
FETCH LINE
OF CODE i!

j pRpDUCIB	 .
F

(HDIR, 14) /^^y ^v{ ^C^13 pt c,B R^3 :-" r
GET SOUR CE Vil+t71`
CODE INDEX

LU {

I

U SAI-0463
3

t ,^

4-1.2

..

}'	
I

^	 G

3

)

SI 1 s(n)Rrl
1:11,11' INDEX
SCINO FR11:11 	 i

IIINOD, IIF)
If CK F01l FNU

+a ;) Of NODr. rABLE	 l{

SI I I OIIWARD/	 - -

	

';	 IIACKWARD RFGISTFFI
11111 -fir

1	
i

NO Of	 YI !;
I	

IIAG T f IFIt 1111	
O)

Altll	 IIACKWAII,1	 A	 j
I1F. NI .2	 FLOW

NO

II I NQO, I1)

	

•= .y	 FF ICII STAT FMFNT
fYI'r

III 1 SIAII MI NF
YI'1

II.AIYI ,	rit(1:1)	 _.

SIAFFMII'NI. 	 GF T1^

	

YI.S	 (I INOD, 17)`	 1101011 CONDITION	 FE TCII
f A I YI' I O. I7.	 rSTAI NO.
1)Il !; TA IYI'

M.

NO
SfOltl. I IHSI

	

rte	 ..	 SfAIf MI NI NO..
101 ((II I	 FSrAT	 ^II(I:))

- VOP S f ACK. Ill'

(IINOT),. NI)
IF fCH LAST

	

-.-.	 STATEMENT NO.

SIO111 LA.
S A F LMI N 1	 FORMAT (!,(2., I5),2a)LSTnI 1 f10;1)	

Tft240..4(20511
— —	 — - — — —. —	 VAIIAMETER LIST. 11, SCIND,. 	 a

FSTAT, LSTAT, K, 10, 10, 10, 10

Wllllr 6111101{
TO FLAG FL	 is

C
SALCJ464

1-to

	

z.izh	 t

t^
4-13	 r, <I

rT

a
a

I

1

is

L	 ,
4-14	 •

I 1

* EXAMINE

NEXT

COMMON BLOCK

e COMMONS	

— — — — — — — — --

NO f NAMED
Alt[FLAGGED
(710)

IS TFHS

}

LABELLED	 YES
(NAMEMNE,HBL. EXAMINE LIST OF MODULES

 OR THAT CONTAIN THIS BLOCK
NE.HBL)

NO
7 r

GETE
" (HDIR, 14)

FETCH AND
STORE SOURCE
CODE INDEX

`T l

SCIND(1) = ER(3)
STORE INDEX

GETE (HNOD, 17)
FETCH FIRST
STATEMENT NO.

S

STORE TIRST I
STATEMENT NO.

— FSTATO) = ER(13)

` GETE (HNOD, 18)
FETCH LAST

s
STATEMENT NO.

STORE LAST
i

STATEMENT NO.
LSTATO) ' ER(13)

101 1 O11MA 1 (.`)(7x, L)), 20
SET ERROR NO.

'(;OMIIAT..'	 4(7x, IS))
K - 210

d
l'AIIAMUTER LIST: 11,SCINDO) — — --- --

STA T(1), LSTAT(2), K. 10, q
lO. 10. IO

ITE ERROR
SAGEf
FILE FLAG

i
SAI.0462

REPRODUmuZTy or,w 4-15

lowl.
ANOVfff

t _

I
x

^ J

-A1

yy
1'v ^

Flag Common Block arrays that are not dimensioned in Common

1lock statements.

The modification locates the source and writes a message to
['LAG FILE to indicate that an array in a COMMON BLOCK is

dimensioned elsewhere.

The code occurs at the point where a Common Block variable is

dimensioned other than in a Common Block.

DETAILED FLOWCHART

4-16

1
5-

ARRAY IN COMMON
BLOCK DIMENSIONED
ELSEWHERE

ALL COMMON BLOCK ARRAYS
— — — —	 —	 MUST BE DIMEP? : 7)NED IN

COMMON BLOC'S »BRAY (270)

;F.TL
(RF)
LOCATE LINE
OF CODE	 1

?-L7

GETE

(IIDIR' 14)
FETCH SOURCE

CODEINDEX^j

SET SOURCE
CODEINDEX
SCIND(1) = ER(13)

GETE
(HNOD' 17)
GET LOCATION OF

	

s=.r	 STATEMENT

	

icy	 '.z

SET FIRST
STATEMENT NO.
FSTATO1) - ER(13)

)

GETE	 REPRODUCIBILITY O.t,` (h;-
^E ° AsT)	ORIGINAL WAGE IS POtM
STATEMENT NO.

SET LAST
4'..r STAGEM ENT NO.

LSTAT(t) = ER(13)

SET FRROR
CODE
K - 270	 801 FORMAT (5(2x, 15), 'CONALC, .', 4(2x,15))

1/0 PARAMETER LIST:
11, SCINDO), FSTAT(1), LSTAT(1),
10,10,10„10

WRITE

	

-..	 MESSAQE
TO FLAGFI_

CONTINUE WITH PROGRAM
u

SAVO461

	

;.,	 4-17
4.

IDENTIFICATION

UNIT MODULE DESCRIPTION

C'

u^

ER275

STORAGE ALLOCATION (estimate)

2K (hexadecimal bytes)

PURPOSE

Flag DIMENSION statement and variable which contains an

adjustable (variable) dimension.

DESCRIPTION

This subroutine searches a module for statement type 28

(DIMENSION) then examines each array element for a use code

1.5 (Array dimension). When this condition exists the error

is recorded. At the end of the statement search each array

is ['lagged that has a variable dimension.

c

7^3

4-18

a

4-19 MOW
g

d

a

SE`i'/OSE PARAMETERS

USE

COMMON/FLAG/

FLAGFL -- I/O designator

COMMON/H/

HB -- hollerith B

HF -- hollerith F

COMMON/TABLE/

HDIR -- directory

HUSE2 -- linked Test Statement

HUSE1 -- linked List Use

HNOD -- Node Table

COMMON/SPEREG/

ER(10) -- table information turn array

FBR -- program flow register

1	 .

11	 1
'	 ^ Fp1Jy•

J_

'—	 Ii
\	 IMr111.1•

ANS 	
INlffiMONIII1

	

F	 1II M 17 SIGN SI I TEME	 I	 fITAN VARIAN-E

WHI
Fl AO DI ONT INED

A N ADJUSTA BL E(VARIABLE
VARICE

CH I ONI AINED AN AOJIIBL
^	 I	 DIMENSION USE

SOlNO 7!11121
IVINIIIALI 9 	1 2	

_.

INIFGEA RIAR L[
Ifl, I I,	 . IE	 D
A 7	 9

IC	 ,
IHNOD, IIFI

	

1	 INITIALI2F

	l.__.. 	 ENTRY 10
_

	+EQ

NOOFTARLE

ERROR NO
X 216

YES
 C

INIIIAIlN
OIRf IIION FIAD
Hn HF ARD
IO HF

OETF
IHNOD, Il l

n -	 OET STATEMENT
TYPE

T..^y IIF II{ II IHD1 R, Nil
I' I O D nI ENIA
^I 10 DIREGTORV

SI'I f0W	 I6

TO	 yE5	 IN IS N07A

	

1	 BACKWARDS	 DIMENSION
	S \ 	

'^\	

FOR • HIT	 ERII]I NE.26	 -

t MO/GULFS
IIt	

YES	 – —^	 NO

	

T DfPLE IED	 NE TURN
eF E0.1 7

	

•'^	 GEIE
IHNOD, 171
GET
STATEMENT

	. 	 iH LOCA TION

114

IL,

GEM BE"
NUM	

— I I1I JI
	C.^	

BE"	 — 	 -^
FSTAT ER112f
SET Fl

R'TLOCATION.

	

NO	 SFI
	IABLES	 YFS	 PA(.XWARDI

\
A VAILARLE	 FORWARD	 GCTE

f

	

Jill 31
	 FOR HD	 IHNOD, 181

	

1110 .. 	GET LAS/
ATEML^	 S7ENT

NO	 /	 NO	 LOCATION	

,.LGk I1	 A
1111 1
I N10 EMOUI:E	 LSTAT ERlu1	 `1IN IO MfiAORY	 SET LAST

r .. .,.	 SIA TEMENT	 -

	

I
LOCATION	

1
^

2

	

GT t

P 	^

	

'
n	

IIIO 	 E	 '
f I
COD

1
SAI 911	 ^1

1

1

I •

t

ŷ	 4-2(7

N

7

I

{

2

(;HFCK IACII E(FMENT
FOR VARIABLE USED
AS AN ARRAY DIMENSION
USE 15

NUMOC(1 0	 ..
SI'I COUNTER TO
ZERO FOR 11

OF ERROR EVENTS

1
1
	 2

IUSE2, BFI
LINK 10 USE	 U
IAI1LL FOR THIS	 -
STATEMENT

	IIAVE	 1	 IHSYM, BFI	 r
/AI I. LNIRIES	 YES	 SET FLOW TO	 TRANSFER TO	 I

C\	BEEN	 IIACKWARD	 0	 SYMBOL TABLE
FXAMINEU	 t

	

BF.F.O.2	 FBR ' HB,

i

i

9
1

NO	
^_	

!
i

i	 WRITE FLAGFLNI1M0(:C	 (HAT ARRAY

	

-•	 IN
CRE	

HAS VARIABLE
<: I. 1

INCREMENT OCCUR 	 DIMENSIONIIANCE COUNT	 -'^^'^ -^ ^ -^^' -^^_^ ^	 rr	 (512%, 151,

	

_	 E:IROR HAS OCCURRED 	 501
gt FOtiMAT

F I NO VARIABLE NAME	 275...', 312x, 151.1X, 2A41

	

I	 T	 -	 PARAMETER LIST' I1,AND WRIT E THE NAME,	 -	 PARAMETER
 FSTAI, ST: 1LOCAPION & ERROR II	 2	 K. N , F ST 10, 10,TO FLAG FILE, KEEP	 SVNM1, SVNM2

	

--^T- —"—	 CHECKING S'TAI'EMENT	 G	 ,i
11 I 1 1SL 1,.IIF1
TAlJI E TO
1ARLF	s3m	 -	 TRANSITION	 ,I

	

a	 F NO OF
TABLE	 YES	

G
BF.E0.2

L	 ,\

2	
SM 04IR.

i

f	
h^a	 I

I

E . REPRODUCIBILITY OF THE
ORIGINAL PAGE IS P0,011

1

4-21
f

"—	 POP (BF)
SE IFLOW	 ENDOF	 YES	 MOVESYM
FLAG TO	 TABLE	 UP IN
FORWARD	 BF.E0.2	 CONTROL
FRR-HF	 STACK

NO

'	 GETE	 2
GF I 	 (FISYM, 11).	 G(USF9. 12)	 GET SYMBOI,
I:HECK NFXI FNI BY	 't	 NAME
IN STATEMENI

1J	

G	 --'

I IIIIS	 .SAVE NAME
/
/NOT ARRAY	 YES.	 SET FLOW TO	 SVNM1 ER(13)

C	 SIIIISCHII'I	 IIACK	 F	 SVNM2=ER (14)
ER(13).NE.15	 FBR ° HR

NOW

E
Z UNIT MODULE DESCRIPTION

STORAGE ALLOCATION (estimate) I
Flags subroutine calls with constants and hollerith arguments

and flags all occurences where the same variable exists in

multiple positions.

IDENTIFICATION

T

t"

^. r

a:

F

All

4-22

GLOBAL: COMMON/ALINFO/

COMMON/FLAG/

FLAGFL -- input/output 21e'signator

COMMON /H/

HB	 hollerith B

HF - hollerith F

COMMON/SPEREG/

ER(10) -- Error registers

NOTE: Only ER(3) and ER(4) are set.

FBR -- forward/backward register

COMMON/TABLE/

HDIR -- directory table

HUSE1 -- use table

HSYM -- symbol table

HNOD -- node table

SIGNIFICANT INTERNAL VARIABLES

OVFLG -- Output variable from CONALP; table overflow

ERFLG -- Output variable from CONALP; error flag

PTR -- Input variable to CONALP; pointer to statement

I0, Il, ..., 19 - represent ialtegers 1 - 9

K -- error flag

SCIND -- source code indicator

FSTAT — first statement number
LSTAT - last statement number

'	 BF	 general j2urpose flag	 A
,,	 4-23

4-24	 AOOFAff 9

i
	f	

^	 1

-.. C(12A1)^
\

\	 li(11111N1 I'li p fl SSfS Ol1ERV 280, 286; 2f40 fLAG:. 	 1
IONUM) 	 CUN:.1 4N1:, AND HOLLERITHS, 281 DUPLICATE

VAHIABI I. NAMES IN ACTUALSU I+ROl1TINE	 A
I I ARAMETI'It I.ISIS,
IMPL H:IT, INTEGER (A . ZY LAHELI ED COMMON
/AL T/,/H/, /F I AG/, /SPEREG/,/TABI F/

^ INITIALIZE	
/ALINFO/

CONST AN C:
I0, 11., . ,TH	 "CIND -

1,2,3,4,
i

D

SFT ERROR	 IE
NUMBER TO	 (HNOD, BFI
UIIf.BY	 INITIAI IZE
NilMRER	

NODE TAPLEA:.SO(:IATED WITH IT
WITII IT
K ONUM

1

—'. At I	 YESSt.f ILOW	 -	 STATEMENTS	 C
REGISTER	 CHECKED'

[O FORWARD	 "F.. .2

—'	 GETE
IF	 (HNOD, 11)
HIDIR, ,IF)	 GET
INITIAI ENTRY	 SlAlEMEN1
IN DIRE"TORY	 IYPE	 1

i1

SET FIND	 IS THIS	 a
t.a.	 MUUU(ES	 YES	

R ETURN
	

BACK I0
WARD	

YES	 NO 'I CALL

L IST DEPLETED 	 HACK	 STATEMENT
HF.EO.2	 FBR = HB	 ER(13).NE.34

i

NO	 NO

GFTF	 G E TE
17)

	

-	 IHDIR, 1:1) - 	 1	 GET
GE MODULE	 STATEMENT

I	 NUMBER	 C	 1st LOCATION
(ER031

f
NO

L 411LI:S	 YES	 I Iilt	 lilt	 FSTAT (111 . ER113)
AVAILABLE 	 St:T IIAGKWARO/	 SET FIRST
ER(3). EO,O	 FOHWARD	 LOCATION

-,
NO I

`-`.'	 7	 GETE
x	 ^GF 11	 n	 (HNOD, 13)

IIIFI	 GET LAS'
rrr

	

	 LOCATIONTIRING MODULE
INTO MI MORY

L::TAT (11.) -. ER (.13)
.,	 _	 _^	 SET I.AST(:F.1F	 SIATEMENTIHDIR, 14)	 I OCATION

(;F TCH SOURCE
CODE
INDICATOR

i^l	 I(
r

SAI0480r

^r.
cg's	

°;^ y^, T1,
Slo1T'Yp ,4.. .°g (TL.3C•,`^-^^UL 3. F r to n s`I	

y«^,(

F `i

4-25

F,i I 	 TCH INI'ORMATION FOR CONSTRUCTING PARAMETER
"ATE THE bTAIEMENT IN THE USE TABLE

TO PASS TO CONAI P

SET FORWARD
FLOW J
FUR • HF

T

TI
(HSF,2, NF)'
TRANSFER
INTO USE 2 '	 }

.^
TABLE

_..__.

q

IF NO
ENTRY 1 i

URF0.2	 TRY SI 1 I IOW -
'	 - ANOTHER FLAG TO D

STATEMENT HACK FUR	 H8

SF 	 POINTER •PIR APR REGISTER

CONALP
(PT n, 11, FSTA 1,
LSIA I, OVFG,

I ERFG)
y

W;Ll CONSTRUCT
PARAMETER LIST
FOR STATEMENT

i
WRITE TO 1

WAS THFIIE	 YES PRNTFL FHA mHR
AN ERROR IN SU(JROIITINE FLOW O

CONALP PARAMETER BACKWARDS

i RFG.EO. CHECK OVER

NO 1

WRITC TO	 -
^;;y IS THFRE	 YES PRNTFL THAT

AN OVERLFLOW CHECK MAY
- OVFG E0.1 NO 	 IN VALID -

`
f

CHECK FOR WHICH COMPARISON J:' '.O IIE
MADE. THEN SEARCH PARAMETER. LIST FOR

-
TI4AT SITUATION, ONLY ALIGNMENT LIST I
IS USED--

Ill.

CONSTANT	 YES
HOLLERITH F

CHECK!

.... NO
4

_
G

G SAI 0482

Ir 4-26

,	
1

3

2

F— — _ — CONSTANT/1101 LERITH
CHECK

_.

Fir,

--	 –

• }	 fi - !:ET FOR TABLE 221 FORMAT
` C CHECK (5(2X, 15), 2X,'ER280., ',

PT I •- 3, PC1 1 4 3(2x, 15),2A41, 1/0 LIST: 	 12,
Pi.	 i Y.

,. Y.ERCN I - 0 i ERCNT, 10, 10, NAME

t_?r

END OF	 YESVES
	 ANY ERRORS WRITE FLAG

1PARAMETER	 THIS LIST FILE, LOCATION
tLIST PTI -^PLI 	 ' ERCNT. NAME , TYPE '

-1 GT.O ERROR, ER COUNT

^T—•NO

NO

SET FLOW
TO RACK
FBR ^ H8 -

D

v % d

TH	 YES !NCREMENT
ER

ERROR

COUNTER
PT1). =ERCN7	 ERCNT 1

Ot

IS I HIS A

NT	 YES ,INCREMENT
ER. ERROR COUNT
PCl)• ERCNT	 ERCNT 11

k,.a NO

yl ',F L POINTERS 10
f

^`^
NFXIPARAMETER

PI1	 1'11 I IARIS IAI ION II, PTY' IW3'!i

- SAI 0481

tiw•

z r	 :,

4-27

1

_

	 _ ,	 ^ -	 .___ r

R	 '

3
i

4

I HL(:n FOR MULI IPLE
-- — — — —	 VARIAIII,E OI.CURRENCES

.51 1 I'AIIAMI 1111 CIII CK
VAIIfABI I S 1'11	 11, P X 1	 PI1 I IABS.

	

!Al IGN 11, 1 1 11 1 141'31 1'.1 	 d
r1,

	 i%, I'XI	 11X1111
111

B
(:N I 0

4	 Pt 1	 PLA11 111

If

{

221 FORMA Sa11SFIIES	 (:
FND OF	 51 1 10	 i	 THIS ERROR ! I•SO 1/04.,..1	 PARAME I E R	 YE	 f LOW	 _	 ' i'T: 11. S' INDO),	 -

I IST	 BACK	 -	 D	 (^	 FSTA 111), I.STAT(1), K. ERCNT, 10, 10,

\
,	 l l • 1'LI	 FOR ' H'I	 PL7, P(.2	 1

y	 ^
NO

I'X 1 • P I 1 YES	 SI 7 FLOW	 ERRORS FOR	 YES	 F lAGF1 O'	 —EAR
PNY

NEXI PAR	 FLAG	 TFII;;	 LO Al ION	 '	 COUN
END OF	 BACK	

PARAMEIER	 NAME AND	 ERVN7 '•0
I IS I.	 FItR 14B'.OUN1

i6	

?

NO

NO

.	 IHF2	 ..5
VAR!A-LE	 YES iN4REMENI

	

NAMES EOUAI	 ERROR	 .--

	

If (I'll FO PX1,	 ERCN' -	 INCREMENT	 _.

	

ANO PI2 FO.	 ER(.NT 1 1	 INITIAL PARAM
'-	 PX2)	 AFTER NAME	 1

PIT • PIT I IABS (ALIGN

	

NO	 PI2= PIT =I1.	 -

F.

Si I TO FIRST	
[NEXT

CREMENT TO
NEXT PARAMETER - 	 VARIABLE
NAME	 T11111 IABS IALIGN(1, PIT
I'X1 PX1 I1ABSIALIGN 	 T41113

	

11,PX1 1 14)'315	 2-PIT t 11
: PX2-PX1 111..

I

H SAT 0479

ucRYPROD nujw or TT

A

1

3

a
QRXCxINI'L PAGE IS P'

rt.

E

4-28

Ib
z ;

UNIT MODULE DESCRIPTION

IDENTIFICATION

r	 MULBRA additions
f

r̂ .	 J

STORAGE ALLOCATION REQUIREMENT (estimate)	 r

1
Total after additions 2K hexadecimal bytes

1

1

PURPOSE

..Flag arithmetic IFs and flag GO TOs that are targets of other

GO TOs.

DESCRIPTION

One addition to MULBRA will flag GO TO statements which are

the targets of previous GO TO statements. The program will

search for statement type 45 that has a use code of 9. When	 j

this occurs the statement is flagged with a message to the

Flag File (220),

The second addition to MULBRA flags Arithmetic IFs. In this	 -

case an IF statement (statement type 10) with more than 2

branch targets is flagged by an error message to the flag
v --

	

	 y
file (220).

 HOW ENTERED

Called by AIR upon query request.

U
CALLING SEQUENCE

CALL MULBRA (Number)
Number is query number 150, 200, or 220; all are processed

in this subroutine.

or

•4-29

OTHER ROUTINES CALLED

No additional routines are called.

r

F-'

Y	
,.

ti G7

r+

Xt

AOV"4-30

^	 a

	

`	 PAI11 IIIIA 11	 IMI-11GIT INIIGTR (A Z)
(Nl1Mlt1 II)	 /	 I All LLFD COMMON/FLAG/,/II/,/SI'LRLG/,/TARLE/

No lmi B Tt IS POSSOLE OUERY 160, 200, 220
INCLUDES SEARCH FOR ARITHMETIC IFS AND
GOTOS THAT ARE TA14GCTS OF OTHER GOTOS

	

4	 ._

NII(I ONlV fill ADDII IONS AM	 11NII IAI I/1
.._..	 ^COOT. I O" DC TAI I	 CONS TAN I!;

AND DIII1(;110 N

A-

1

INIIIALIZI	 -
OR ENTITY

TO DIRECTORY

	

<A

CV ALLyE5
DULES 	

RETURN(TEEN

	

MINED	
{

NO	 +

	

; -	 BRING MODULE
INTO MAIN
MEMORY

t ^

	

._,.	 FIND SOURCE
CODEINDEX

7,:1.4

C

BITING IN
STATEMENT

r

	

c `	 ARE ALL	 YES
EXAMINED?	 A	 /

	

`s	 9

SFT

STATEMENT	 .+

TYPE STATYP]

's

11
[SET

BRANCH FLAG
TO LEHO

UFLAG * 10

	

'	 Ir
	

li TSET TARGET	 "'^yl

COUNT i LAC,	 1
TO ZERO	 i
NSUC • 10

i

	

`	 11	 IAI 04 70

i

I

REPRODUCIBILITY OF "'j"')

	

f 4	
4-31	 ORIGINAL PAGE IS IWA,

'a

e

2

^	 YIS	 SIAf
f

MFNT	 VfS ^ SCT

	

!	 IS	 GOTOAND OUTIIV FJlH IIF
.'1IAI1 MINI	 220)	 f0RWAH0/BACKWARD
II (111 GO TO	 STAIYP . E0.4G. ANO	 FLAG TO FORWARD

NUMBER.E0.220?	
D

NO	 2.5	 IT

EXAMINE ELEMENTS
'3	 OF GOTO STATEMENT

RAC.KWAIII)	 L

	

l:_:	 I I I OW

ALL	 1
ELEMENTS	 YES

EXAMINED	 C
\\\	 BF.E0.12?

NO

Gl if

111

it
	 121

GET USE
CODE FOR ELEMENT

NOII UNI Y 1111 AUDITIONS AIIF.	 -
°CO01 TO" DFTAII..

SET USE CODE
-	 r' :	 USE CD - ER(13)

-.	 -	

+NO

 4

K =220	 E -:.

 +

:i

ST.T FORWARD/
BACKWARD FLAG	 AA

	

-	 10 BACK	 -
FBR = tin

2

0 SA10471)

.:i

4-32

t

All

SL 1 FLOW	 1
STATT MI NI Y 	 FLAG'10
H	

H
- AS ONLY 	 RACK	 -4DS11(:CT S 111 1111	 FRTl	 1111

NO

fORL
TA FELAENT

t

I IND I OCATION
OF THE
RRANCHINO
STATEMENT	

}}

•	 L;	
f

r	 DETL RMfNE IF
STATEMENT

AFTER MULTIPLE
BRANCH IS

ESRANCIf TARGET

FINISHED	 YES

SUCCESSOR.	
K = 150

	

,--,	 SUCCE SSOIIS7

a NO

IS IIRANC.H
IS A GOTO	 1

	

x- •̂ 	 WI Ili. AFOLI OWING	 YES
STAT EMC NTNO.	 POP(BF)	 O

(I)RANCICCO.STAFOL).

	

.	 AND.(STATYPE,(0.45)1 	 }	 ii

L: Ct

(r
NO

i..	 y I

IS IF WI III	 YES
IIIIANCII TO EOLLOWINf;	 Bf•LAG-1

	

--	 STATEMENT BRANCH.EO.
STAFOL

	

s,'rd	 NO	 u

INC,IIF.MEN'f

tw?	 COUNTER	
..

SAI 0477

.T

4-33
E.

4

r it

w

r

7 2

c3 E
l

IT

yo

GETE
(HNOD, 12)
GET AN ELEMENT
FROM NODE TABLE

—z FELUSE
(12, ER(3), A)

USE 2
TRANSFER
THROUGH A	 YESr

VARIABLE VALUE	 01 OD
A (13). EQ.23?w

NO

1
C

SAI.0469

It
4-34

9

^	 4-36	 .^^

3

t5

UNIT MODULE DESCRIPTION

r

IT

=
 r^

-

t::5!

}rte

,q

I
:E
I

USE

Global Common: COMMON/FLAG/

a
9

SET/USE PARAMETERS

SET

Global Common: COMMON/SPEREG/

ER(10) -- Error registers

NOTE: Only ER(3) and ER(4) are set.

FBR -- forward/backward register

{

4-37	 AIOVN/
J

^^'	 - ^'' - - ''^---'------~'^~ `' -`/-----	 ^^----r^--v---	 `-''	 --- `	 `	
,-7^^^	

-	
|	 ^	 '-^'	 -	 ~	 __.	 ' ,=^^=^`~_^= '	 ^	 ' ^_^_=^	 ^	 ^ =	 -	 _ |	 ,^'	 -_-^^_	 _	 '^	 ` '	 -'	 .	 ,

,^
/'
^^`
^^

'^

4

VARIABLE WHICH IS 1/0 UNIT DESIGNATOR
IS FLAGGED: SEARCH FOR SCALARS (CLASS
CODE = 6) WHICH ARE USED AS 1/0 UNIT
SPECIFICATIONS (USE CODE = 26).USES
NAMED COMMON/FLAG/,/H/,/SPEREG/&/TABLE/

SET STANDARD IMPLICIT INTEGER (A — 7)INTEGER VALUES
7

10, 11, ..., 19

I

SET ERROR
FLAG NO. r
K = 250

7

SET FORWARD/
r BACKWARD FLAG

TOFORWARD
FBR = HF

a
^1 5

tr	 nB

gOD^CI^^^_

I E Q^l
(HDIR, BF)
BRING IN A
MODULE TO
SEARCH

{

' SET FORWARD/
BACKWARD FLAG

u^ TO FORWARD r:	 i
FBR = HF

1
Uy

IF END
r

OF MODULES
FLAG is 2	 YES

LEAVE SUBROUTINE RETURN
BF.EQ.2

NO

)

GE1'E i	 3

(HDIR, 13)
uca — FIND END OF THIS r

MODULE

i
r

k

END OF THI^	 YES SET FORWARD/
MODULE? BACKWARD FLAJG --"^)
ER03) >10 FBR = HB s

e ;a ,^
p^3

NO

s
3

1
5

xs A

SAI.0432

4_3g

a .

2
4,6

A

GfTL
(BF)
BRING IN LINE
OF CODETO
ANALYZE

GETE

y DAD IR, 14)

FIND END OF
THIS LINE

SET END OF

i

	

~	 LINE INDICATOR
SCIND = ER (13)

3

IE	 —

(FISYM, BF)
INITIAL ENTRY	 i

	

.,	 TO SYMBOL
TABLE

	

S	 SET FORWARD/
f	 BACKWARD FLAG
l	 FBR = HF

4
IF END	 SET FORWARD/

OF SYMBOL	 YES	 BACKWARD	 B
TABLES t	 FLAG
BF.EO.2	 FBR = HB

t- NO

	

a	
GETE
(HSYM, 13)

	

–	 GET A SYMBOL
TABLE ELEMENT

6

D

SAI 0433

9

4-40

y

4

^

i	 J
(i

3
G

D

i

END OF THIS	 YES
5

lFBR = HB
LINE? SET FORWARD/ A
ER(13) k 6 BACKWARD FLAG

NO

TT
y (HUSE1, BF)

GET USE CODE
LOCATION FROM ^I
USE TABLE

l
t

END	 YES FBR = 148
SET FORWARD/

5
OF TABLE A

BF = 2 BACKWARD FLAG

NO

GETE
(HUSE1, 12)
GET ELEMENT

r-^

FROM TABLE +

n IS THIS 7
AN 1/O UNIT	 YES

- NUMBER ? ER(13) F
- 26

I

E	 NO

I
SET FBR = HB

wS

A

t
SAI-0434

LIU

A

4-41

f'

4

6

F

ff

GETE

(HNBO, 17)
GET BEGINNING
OF NODE

{

FSTAT	 ER (3)
FSTAT IS FIRST
STATEMENT

j NUMBER

,,T,

GETE
}^y^^3^	 7^TT^tq^7p ,> n	 Yy^

L+1L' PROD V CIBI a t x-	 /^I THE
0

(HNOD,I8) O1rIGRJYA11 1'Gia 	
rl+,..

GET END
OF NODE

LSTAT = ER(3) 3
LSTAT IS LAST
NODE STATE-
MENT NUMBER

FLAGFL

MESSAGE THAT h
VARIABLE IS
1/0 UNIT

1001 FORMAT (5(2x, 15),2x, ER2o0----',
3(2x, 15), 2x, 2A4)
1/0 PARAMETER LIST:

r	 L^
5 11, SCIND, FSTAT, LSTAT

F
K. 10, 10, 10, 10

f

SAI.0435

f

1
4-42

l

I ()
\T

4_43	 i^ff^

I

7;

r7

A7

rAF /
4-44

t

t

1

1

AOOF^^
4-45

=i

A

[•131:260
FLAG STATEMENT LABELS NOT IN INCREASING

}£
NUMERICAL ORDER. SEARCH FOR STATEMENT
LABEL: CLASS 5; CHANGE LABEL TO INTEGER;
USES LABELED COMMON/FLAG/,/H/,/HOSTWP/,
/SAEREG/,/TABLE/
IMPLICIT INTEGER (A - Z)

SET STANDARD
INTEGER VARIABLES

ttl 10, 11,...,19=0,1,,..,9

SET LOCAL
S VARIABLE /

LSAVE = 0

i
SET FORWARD/
BACKWARD
FLAG FBR = HF

SET ERROR
INDICATOR

v 2 K = 260

_ A OF Tkl1'
Zpg,OptTCIBILITY

OItIGTNAL PAGE
IS pp.^^";J

IE
(HDIR, BF)
BRING IN MODULE

- TO SEARCH
u 1

SET FORWARD/
BACKWARD FLAG
TO FORWARD
FBR = HF +^'

IF END 9
OF MODULES YES

LEAVE SUBROUTINE RETURN
BF.E0.12?

NO

- 2

e
1

SAW458

}

C

4-46
YY

Al

i4

2

B 5

L GETS
(HDIR, 13)

r	 ,
c:

1

END OF	 YES SET FORWARD/THIS MODULE BACKWARD A 't	 i ER(13),GT.107 FLAG FBR = HB
}}`

- 35

NO

GETL

u (B F)a BRING IN A
LINE OF CODE

:

GETS
(HDIR, 14)
FIND SOURCE INDEX

SET SOURCE INDEX
INDICATOR
SCIND = ER(13)

j

.,

I
a

i (HSYM, BF)Y
INITIAL ENTRY
INTO SYMBOL TABLE

SET FORWARD/
BACKWARD FLAG
FBR = HF

,a

END	 YES
OF SYMBOL

TABLE
BF.ED.127

NO y

2
C

SAI.o4ss

a

4-47
=zy
a

3

c

("Fit
(IISYM, 13)

I t GE tSYMBOL TABLE
' ELrMENf

NOT A 2
7^k STATEMENT	 YES

LABEL D
^r ER(131.NE,157

J

NO RECONSTRUCT STATEMENT
— — — — — — — — — — — — LABEL, MACHINE

INDEPENDENT CODE

INITIALIZE COUNTER,
DO VARIABLE, AND
ANSWER VARIABLE
J=O, LABEL -0,1=1

)

GET
(HSYM, 1)
GET ELEMENT FROM
SYMBOL TABLE

LONER
(ARRAY, COUNT)
CONVERT" STRING &
DECIMALS TO
POSITIVE NUMERIC

' INTEGER VALUE +

{

IS THIS 4
LABEL:	 YES
LAST I

^-1 .LABEL?

1

?GETE
UANOD, 17)

c	 ^'^ GET 1st STATEMENT
NUMBER

fl
}	 v^

tj	 p̂p

4 FSTAT	 Eli{13)
t

SET INTO OUTPUT
t# VARIABLE

y...
SAI-0562 1

4-48 q

r

i

1

^a

3
i
r

GETE''r (HNOD, 18)
GET LAST
STATEMENT NO.

1001 FORMAT (5(2X, 15),2X, 'ER260., .')
_r 3(2x, 15), 2x, 2A4)

1/0 PARAMETER LIST; 11, SCIND,
_ FSTAT, LSTAT, K, 10, 10, 10, 10

SET INTO
OUTPUT

_ VARIABLE
LSTAT = ER(13)

LA
UT

GFL
ESSAGE THAT

[

FTATEMENT VARIABLE
R Q OF ORDER

3
t

5

I o- SAVE CURRENT;
STATEMENT 3
NUMBER
LSAVE = LABEL

1.. 2 -

` D

SA 1.0459

3

i

rw

4-4

UNIT MODULE DESCRIPTION

IDENTIFICATION

ER230 Error 230 routine

STORAGE ALLOCATION (estimate)

3K (hexadecimal bytes)

PURPOSE

Flag ASSIGN, PAUSE and assigned GO TO statements

DESCRIPTION

This routine searches a module for statement 38 (ASSIGN),

50 (PAUSE), or 45 (GO TO). When the first two are found, the

error is written to Flag File immediately.. The third one

is checked further for a use code of 23 (transfer through a

variable value). If the code is 23 a message is written to

the Flag File also.

HOW ENTERED

Called by AIR

CALLING SEQUENCE

CALL ER230

T1ote No arguments are used.
a
j

UNIT MODULE OR OTHER ROUTINES CALLED

IE

GETS

GETL

FELUSE	 Ar

4-50	 •

T

4-51	 MOW

PROM. ASSIGN,FLAG IAND	
fOTI'At1SE, AND ASSIGNED 	 O

STATCMINTS. SEARCH FO1(STATEMENTS
3B, 45, & 50 USE CODE ON 45 &a 23.
LABELLED COMMON/FLAf(11-11,1SPEREGI&_	

_	 .--

SCI fliROlt PLAT. /TABLE/. IMPLICIT INTEGER (A•Z)
Rr INICIAL17L INTEGE(I

VARIABLES
i	 r K 23°

" 10.11	 19	 0.7.....0

'
BACKWARDBCKWARDy
FLAG TO r
fOBWARD . ..

?• 2 FOR ' HF

(IIOI R, Bf-)
IIIIING IN A
MODULE

Of I fOIIWARU/
BACKWARO.FLAT;

..., TO F011WARD
FBR	 HF

< INOOF	 YES -
`. MOOl1LLS RETURNT, I4F.E0.7>

.	 ,. NO

(14011(, 13) 1

^
LOCATION OF

a THIS MODULE

T
r?.y FNU OF	 YES

MODULE .SET FBR = H8 A
4 ER113)	 'i0	 ,.

NO

:a
1

,.--.GI. TL

-
11111
IIRIND IN

r^ LINE OF CODF .

(IlUllt, IAI
"..	 rn IINO ENO 9F -

j

i

LINE

z 2

i $A)0467

^r

s

4-52n

z	 , .	 F	 .:__:._

i 2

11

R W ISOURCE.
CODE INDICATOR

7.J W^1 F ORWARDI

SCIND • F,gIIJI

IIACRWARD TO
.	 { C 11ACN,RR

nn	 fin
it
ItINOD, BF)
INITIAL
ENTRY TO
NOD[TABLE

5E(IORWARO/
IACKWARD

1
G

FLAL' TO FORWARD
F 	 • HE

__	 1

END OF	 YES
SET FORWARD/

''^'•'^ - (ABLE BACKWARD TO A
IIF.E0.2T BACK

fBq • HB

1 NO

GETE
. INNOD, 111

- TYFE STATYF • ERIJ) ^ n	 '.

.. ;.AESIGN
YES GETESTATEMENT IHNOD,ITI 1"	 `STATY►.EO.JE GET FIRST r $	 "^

y	 t STATEMENT NUMRER

NO
FSTAT • ER1131
;F.T TO

rsn VARIABLE TO
/ PAUSE

STATEMENT	 YES
NO.

1

-	 STATYP.E0.50
GETE I'/

- GET LAST STATEMENT
NO.

1' ^.] J
. TATVP E04.,. 	 YES SET 1/0 VARIABLE ,	

:}

I STAIEMENTA	 F TO LAST STATEMENT ;.y
IiOTO NO. LSTAT • ER1131 1001 FORMAT 1512.,151. Z.,

'ERR230.. , 312^, 151, 2A41
--	 ---

— _
--- PARAMETER LIST: II, SCIND, ';	 4

I. NO FSTAT, LSTAT, K, 10, 10,
10.10

-	 u 2 WRITE
C TOFLAGF

2

is

rTl

4-53

4-54

r

i
^i

r

^.4

art

f+^ q

{'r tx

ru

s

1.

171

i

43 i

lai „f

lx,A

T

f I

4-55	 ANOW 9

f

COMMON/SPEREG/	 {

ER(10) -- table information storage

i

USE

COMMON/TABLE/

HCOM -- hollerith COM for Common block table	 I

HDIR -- hollerith DIR for Directory

HMAP -- hollerith MAP for Map table

HNOD -- hollerith NOD for Node table

HSYM - hollerith SYM Symbol table

HUSE1 -- hollerith USE1 Use table

HUSE2 -- hollerith USE2 for table

SIGNIFICANT INTERNAL VARIABLES

AM	 Indicates which alignment table to be filled	 #

'	 OVFLAG -- overflow flag for tables

ERFLAG - irretrieveable error flag

ERINC -- counts 290 error occurrences
x	

y

LIMITATIONS AND RESTRICTIONS

All variables are set with IMPLICIT INTEGER (A-Z)

`	 DETAILED FLOWCHART

Attached

R^PRODUCIBILIT QI
+' Tklr

ORIGIN
t RAGS IS po'c:.

rr

4-LJ V	 ..

ER290
^A

--FLAGS COMMON VARIABLE THAT IS MULTIPLY 1i
^„

DFFINED IN DATA STATEMENT - GLOBAL CHECK
----- IMPLICIT INTEGER (A-Z)

LABELLED COMMON/ALINFO/,/ALI/,/FLAG/,
INITIALIZE INTEGER I

/H/,/LTEMP/LIS/,/PRNT/,TABLE
CONSTANTS
10,	 1919=0,

1

K	 290
"i SET ERROR

FLAG

FUR	 HF
SET FLOW

2 FORWARD

A

^ IF

(HCOM, BFI
t

y
INITIAL ENTRY
COMMON I
BLOCK TABLE

RESET FLOW
TOFORWARD
FBR = HF

}
BLOCKS	 YES

1

l
EXHAUSTED	 RETURN
B F.E O.2?

NO
GETE
(HCOM, 11)
GET BLOCK
NAME

SAVE THIS COMMON BLOCK
BLOCKNAME PARAMETER TABLE
NAME(M	 ER(13) GOES IN FIRST
NAME(12) ' ER(14) PARAMETER, TABLE

SET ALIGN
TABLE INDICATOR

SET FLOW	 2
FLAG TO	 B

f

T91 FORWARD
AM-, I FBA = HF

SAI.504

i

i

4-57 ,
l

n

i

21
B

TT

(USF:2, BF)
TRANSFER	 1

INTO USE2
TABLE

t
^	 NO ENTRY	 YES	 SET FLOW

PRESENT?	 TO BACK	 A)	 '
BF.E0.2	 FBR =H8	 ^J

N0

SET PTR	 i
POINTER TO
PR REGISTER

r^	 f
r

1

CONALP	 3
(PTR, 11, FSTAT,
LSTAT, OVFG,
ERFG)
CONSTRUCT
PARAMETER LIST
FOR STATEMENT	

3

1`1	 i

THERE ANRITE	 1
ERROR IN	 YES	 PRNTFLO	 FBR =HB

FLOW
CONALP	 PARAMETER	 BACKWARDS	

A

ERFG.EO.1	 CHECK OVER

NO
WRITE

i.

l^

IS THERE	 YES TO PRNTFL THAT
AN OVERFLOW	 CHECK MAY
OVFG,E0,1	 NOT BE VALID

NO

SET FOR	 j
TABLE CHECK
PT 1 - 3, PC1 —4
PI-2 = PLAL1(4)	 is

•;	

END OF YES
PARAMETER
	 i

ALIST
PT1 -,,PL1

i^

NO
-	 3	

SAI.505	
s '

`	
D	

(`
I

7

I ,:^is

^a

	

=	 i

	

y ^l	 ftj

	

^	 Y

rIL

1	 4-58i
r

.,	 b

3

LOOK AT
NEXT LIST
ITEM,
ERCN'(0

POP
PLACEITEM
TOP OF
CONTROL
STACK

EOUIVAL	 }(LISTIVO,
OVERFL)	 FGET LIST OF =
NAMES

TABLE	 WRITE
YES PRNTFL	 SET FLOW

OVERFLOW?	 OVERFLOW	 FLAG
OVERFL.EQ.1	 MAY NOT BE	 FBR = HB

EXAMINE NF XT MODULE	 100%
COMMON BLOCKS IN 	 NO
CHL GK PARAMETER AGAINST
VARIABLES IN DATA
STATEMENT	 TT	 I

(HLIN, BF).
EXAMINE

/.	 LIST OF
\(MODULES

SET FORWARD	 J
FLAG FORWARD
BFR = HF

2

tMODULE

ES INCREMENT
PARAMETER	 C	 rLIST POINTERS	 I

F	 yr 4

^	
E

i^
1

Y.:
s?

4-59

^	 L

4

3
E

TT
(HDIR, [IF)
TgANSITION

° TO DIRECTORY

SET FLOW
FLAG
FBR	 HF

iiF,

3	
f

 YES<N'Ak
 F

GETE
(HDIR, IA)
GET MODULE
SCOURCE NO.

SETSOURCE
INDEX COPE
SCIND(2i - FP (13)

i

GETE
(HDIR, 13)
SET TO BRING ?
MODULE INTO
MEMORY

GETL
(BF)
BRING MODULE

B INTO MEMORY
I H

IE
at	 - (HNOD, BF)

INITIALIZE

it
ENTRY TO NODE

rr
3ALL	 YESSTATEMENTS FCHECKED

BF. E0.2

NO

5
G	 SAI 0497

4-60

r

AM

5
4

G

GETE

(HNOD, 11)
GET
STATEMENT
TYPE

4
IS THIS

NOT DATA	 YES SET FLOW
STATEMENT FLAG H

31? FBR = HB

I

g

T
ON

FSTAT (11)= ER(13)
SET FIRST
LOCATION

GETE)
(HNOD, 18)
GET LAST
LOCATION

a
4

i
SAVE LAST
LOCATION)
FSTAT (11)
ER(3)

i	 y

6

J
I '^'9

TT
(USE2, BF) „r

TABLE TO
r TABLE

TRANSITION

~ TABLE
NOT	 YES

4
SET FLOW

T AVAILABLE TO BACK H
BF.E0,2? FBR=H6

NO
GETE
(USE2, I2)

^ l GET ITEM IN
DATAENTRY

6

I

e
SA14490

R	 p oDUCJBIL	 (t' S=	 w a
:EP4-61

i

A

1

J

6	
J

o

?'S

(HUSE1, BF)
Tr.

-.

TABLF.
TRANSITION

_ 5
ERROR

IN TABLE ?
BF.E0.2?

YES
SET FLOW
FLAG
FBR = HB -.Woj

NO

TT
(IISYM, HF)
ENTERSYMBOL
TABLE

,

ERROR
IN TABLE?
BF.EO,2

SET FLOW
FLAG
BACK
FBR = HB

POP
(BR)
REMOVE
FROM STACK 0

*i
GETSV (HSYM, 11) r,
GET NAME

` OF VARIABLE

STORE NAME
OF VARIABLE
VNAME (I1) - EA(13)
VNAME(12)	 ER(14)

K
i

SAG0485

4-62

K

i

ANY 6
THIS

YES ERCNT= DUPES YES	 WRITE TO FLAGFL
f SAME AS ERCNT+1 FOR THIS COMMON BLOCK,	 SET FLOW

1PARAMETER INCREASE PARAMETER? VARIABLE, MODULE	 TO BACK co
NAME? COUNTER ERCNT STATEMENT NO. DEFINED

c 1

t	
j NO

6	
NO

I
i

IS THERE	 YES
ANY IN EQUIVL _ _ FORMAT (512x, 15),'ER290...", 3(2x,15),IA4)

THAT EQ? IOLIST1 12, 10, 10, K 10. 10, 10, NAME
10 LIST 2 12, FSTAT(2), LSTAT(2), K. ERCNT,

12, 10, VNAME

NO
6

1 SAI-0486 i

tRE

,I

G
j

Frank DeRemer and Hans Kron, "Programming-In-The-
Large Versus Programming-In-The Small," Proceedings
1975 International Conference on Reliable Software,
114-121 (1975).

B. H. Liskov, "A Design Methodology for Reliable
Software Systems," Proceedings Fall Joint Computer
Conference, 191-199 (1972).

Larry L. Constantine, "Structure Charts, A Guide,"
unpublished manuscript (1975).

Kathleen Jensen and Niklaus Wirth, PASCAL User Manual
and Report, Springer-Verlag, New York, N.Y. (1975).

Peter Naur (ed.), "Revised Report on the Algorithmic
Language ALGOL 60," Comm. ACM 6, 1-17 (Jan. 1963).

D.I. Good and L. C. Ragland, "NUCLEUS - A Language of
Provable Programs," In William C. Hetzel (ed.),
Program Test Methods, Prentice-Hall, Englewood Cliffs,
N.J., 29-40 (1973).

E. Lohse (ed.), "Correspondence of 8-Bit Hollerith	 r
Codes for Computer Environments," Comm. ACM 11
783-789 (Nov. 1968).

8,	 P. Henderson and R. Snowdon, "An Experiment in
Structured Programming," BIT 21, 38-53 (1972).

