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ABSTRACT

The motivation for this work emerges from a desire to explain the
experimental observation that a surprisingly small sample size vis-é-vis
dimension is needed to achieve good signal-to-interference ratio (SIR)
performance with an adaptive predetection filter. The adaptive filter re-
quires estimates as obtained by a recursive stochastic a]gorithm'of the in-
verse of the filter input data covariance matrix. The SIR performance with
sample size is compared for the situations where the covariance matrix esti-
mates are of unstructured (generalized) form and of structured (finite
Toeplitz) form; the latter case is consistent with weak stationarity of the
input data stochastic process. It is argued that a recursive stochastic algo-
rithm operating with a short update period(i.e., with statistically correlated
input data vectors) naturally constrains the covariance matrix estimates to be _
of Toeplitz form and therefore should realize any gain achievable with a (correct)
structure assumption. The expected SIR performance for a generalized covariance
matrix estimate is shown to approach the optimum SIR as =z (1 - %— - N&)’ where
N is the filter dimension and Ns is the sample size. For a consiraingd Toeplitz
covariance matrix estimate, the expected SIR.performance is shown to approach

"'(RAE)_ NN? 1, where n-(N;B) = A + BanN + 1/2N,

S S
where A is Euler's constant and 1<B<<N is the input data stochastic process

the optimum SIR as = [1 -

correlation time. The constrained Toeplitz covariance matrix estimate therefore
o . . . N
operates with an "effective sample size" N = - a ffers th
pera d ect amj 74 S _[n—,—(—“—:[‘)] NS nd offers the
potential of high expected SIR at a sample size N. for which the gencralized
9
estimator may provide excecdingly poor results. Insight is also provided inte

the effect of the specific foi of the desived sianal on expected SIR perforiance.,
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Although the work presented is cast within a specific problem framework that
arises in sonar, radar, or seismic signal processing, the results also apply
to the areas of pattern recognition concerned with nonparametric and para-

metric pattern classifier parameter estimation, e.g., biomedical image recogni-

tion and earth resource satellite multispectral data classification.
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1. INTRODUCTION

A problem of considerable importance is that of detecting a known
signal imbedded in an additive interference noise stochastic process. The
physical implementation of the optimum predetection filter requires that certain
characterizations of the additive interference noise stochastic process be a priori
known. For exampie, if we constrain the filter structure to be causal and
linear, employ an output signal-to-interference ratio (SIR) optimality cri-
terion, and assume the interference noise covariance is a priori known, the

cptimum filter is the Wiener filter.

With specific regard to the detection problem as it arises in the
sonar, seismic, or radar fields, it is not possible to assume that the in-
terference noise covariance is a priori known. A reasonable approach then
is to estimate the completely unknown interference noise covariance required
for the implementation. This technique leads to an adaptive filter, which
designs itself based on estimates formed from the input data. A rather
popular selection for the adaptive filter mechanics is offered by the stochas-

tic version of the gradient search method [1-3].

For the first order, linearly constrained gradient search algorithm, it
is well known that the weight vector (filter) iterates are asymptoticaily un-
biased, provided that the step size parameter is upper bounded by the inverse
of the maximum eigenvalue of the input data covariance matrix. The conver-
gence requirement for the variance of the weight vector iterates is consider-
ably more demanding; it is required that the step size be upper bounded by

(approximately) the inverse of the trace of the input data covariance matrix.




Therefore, the variance of the weight vector iterates and, consequently,

the achievable filter SIR, are directly related to the filter dimension N.
Theory establishes that in order to maintain the variance of the weight
vector iterates at an acceptable level, we must have a small step size when
N is large. This situation in turn suggests a possibly unbearable conver-
gence time encompassing a large number of statistically independent input
data vectors. The form of the optimum Wiener filter involves the iaverse

of the input data covariance matrix and appears to reinforce the belief that
a long convergence time is necessary, because it would appear that N2 ele-
ments (or, at best g(N+1) elerents, if symmetry is invoked) of this matrix

must be estimated.

Recent work [4] provides qualitative arguments indicating that the
gradient search algorithm operating with a short update period A based solely
on the frequency content (i.e., Nyquist criteria) of the input data stochastic
process does not pretend to attempt to estimate the N2 elements of the input
data covariance matrix. The sequence of input data vectors obtained at the
update period A is generally highly correlated; the use of these vectors
causes the estimate of the input data covariance matrix employed by the
gradient search algorithm to be constrained to he of (finite) Toeplitz form.
We denote the Toeplitz form estimate as ﬁT(-). The situation is illustrated
in Figure 1 with specific parameters utilized to aid the visualization. The
stochastic sequence {X(ia)) or, more compactiy, {X{i)} i=0,1,2,..., reprecsents
the input data sequence with the input data vector X[(i+1)a] formed from X(ia)

by simply shifting the temporally olcest sample out of X(ia) and shifting in



the most recent sample. Also shown in Figure 1 is the generalized form
input data covariance matrix estimate ﬁb(-) that results when the update
period is lengthened to LA, where LA is an integer multiple of the input
data stochastic process correlation time, i.e., the stochastic sequence

{X(iLa)} i=0,1,2,..., is mutually uncorrelated.

We see that operation at the short update period is implicitly con-
sistent with the oft-invoked assumption of weak stationarity or quasi-sta-
tionarity, i.e., weak stationarity over some interval of time, of the input
data stochastic process and leads to a Toeplitz form input data covariance
matrix estimate which requires only N elements for complete description.
Operation at the short update period is generally considered in practice
to be normal operation, with operation at the long update period of academic
interest primarily because it leads to a much more tractable mathematical
treatment of the statistical moment properties of the weight vector iterates.
The implication of the above observation is that for a fixed real time interval
the transient behavior of the weight vector iterates should be better for
operation at the short update period vis-é-vis operation at the long update
period, assuming that the input data stochastic process is indeed weakly sta-
tionary. We do note that the reverse should be true of the steady state be-
haviors, simply because operation at the short update period involves large
nunbers c¢f highly correlated input data vectors. This latter point is really
of lTittle practical concern, i.e., the weight vector iterates are generally

always in the transient state for real sonar, seismic, or radar data.




There is experimental evidence which appears to substantiate these
qualitative arguments [4]. In the referenced work, real active sonar data
was processed utilizing a first order, linearly constrained gradient search
algorithm. The filter dimension utilized was N=256 (complex, i.e., analytic
signal samples) and the short update period A= 1/5W, where W denotes the
bandwidth of the input data stochastic process. Quite gocod filter SIR per-
formance was obtained with a step size setting leading to a gradient search
algorithm averaging time which encompassed only a small number NSsN of sta-
tistically independent input data vectors. Results of this nature are very
jmportant in signal detection problems where rapid convergence demands must
be met. The suprisingly small sample size NS required is conjectured to be
a result of two factors: (1) possibility of proximity of the filter SIR
to the optimum SIR although the weight vector iterates
may not be near the optimum Wiener weight vector and (2) operation of the
gradient search method with a short update period wherein the input data

covariance matrix estimates employed are constrained to be of Toeplitz form.

We test these conjectures in this work. The starting point is the deri-
vation of the expected filter SIR performance for input data co-
variance matrix estimates of both the generalized and constrained Toeplitz
forms. The expected SIR is evaluated for several input data true covariance
matrix examples of interest. The results are compared as a function of sample
size NS for two particular values of N with some generalization given for other

values of N.

.
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2. SIGNAL-TO-INTERFERENCE NOISE RATIO PERFORMANCE CRITERION

With regard to a detection processor in which the primary goal is
a decision as to whether a desired signal is present (H]) or absent (Ho)
in interference noise, the processor output signal-to-interference noise
power ratio (SIR) serves as a reasonably good performance criterion. The
interference noise consists of ever-present ambient noise plus noises at-
tributed to other than the desired signal source, e.g., shipping traffic
noise or reverberation noise in the passive and active sonar cases, respec-

tively.

Using traditional binary hypothesis notation, the detection problem

may be expressed as,

Hy: X(1)

N(3)

Hy: X() = S + N(i) (1)
where X(i) and N(i) are the NX1-dimensional stochastic (real) input data and
interference noise vectors obtained at the i%" sampling instant and S is the
NX1-dimensional a priori known (real) signal vector. The total signal time
duration is NA, the extent of the time interval Id on which the detection
problem is defined. The interference noise vector stochastic process is simply
modeled as zero-mean and weakly stationary on a time interval several times the
length of Id and otherwise is assumed completely unknown. We call

the Tonger time interval Ie; it is within Ie that the interference noise

vector stochastic process must be estimated.



The detection processor SIR conditioned on the Nx1-dimensional

stochastic filter weight vector W is given by,

ECz(1)[H, W] - EL2{i)|H .H]
E[z(i)lHotbl] (2)

[SIR{W] =

where the output power statistic z(i) is,
2(1) = WIX()XT () (2a)

From Equations (1) and (2) we obtain.

(W's)
[SIR[H] = —— (3)

T
W Ry
‘where R, is the (NxN)-dimensional zero lag interference noise (auto) co-
variance matrix. The conditional SIR given by Equation
(3) is seen to be equivalent to that obtained with RNN replaced by R, the
zero lag input data covariance matrix, save for a constant bias under H].

We make this replacement in the ensuing calculations; this is equivalent to the
assumption that Ho is true for iA e le.
To establish the relationship pertinent to this work, we let,

= aRls (4)



where a is a scalar and'ﬁ is a nonsingular, unbiased estimate of R.
Precisely put, we have W = E(N;NS) and R -‘ﬁ(N;NS). but we maintain the
dependencies on dimension and statistically independent sample size im-
plicit, for notational convenience. Taking the expectation of Equation (4),

vwe obtain,
E[W] 2 u* = a RS (5)

the optimum Wiener weight vector W*, Substituting Equation (4) in Equa-

tion (3),

2
A (sR7s)
[SIR|R] =
RIRs (6)

The estimate R of the input data covariance matrix may be written as,

R=R+E (7)

where £ is a zero-mean stochastic error matrix. From Equation (7), we have,

L [1 + R-]F]'] R
2
2 [1-RTE+ RE) ] R (&)
taking up to the quadratic term in l‘.']E in the Neumann series expansion of
o=1 . : : S\ J
R ", Substituting Lquation (8) in Lquation (6) and maintaining consisiency

with the quadratic approxiration in Equation (8), we have,
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[SIR[R] = & Rix - 3+ TR

- W RR R

2
(30 Rt

e —

e TRl (9)

utilizing the optimum weight vector of Equation (5) with « (arbitrarily) set
equal to unity. The result of Equation (9) provides a most useful means whereby
the expected SIR may be evaluated conditioned on various elements of the set of
nonsingular unbiased covariance eslimators R3. e mention that the approxima-
tion of Equation (8) holds well for moderate values of SIR and is biuased slight-
1y high at low SIR. Furthermore, we deem it unnecessary to cxamine the condi-
tional variance of the SIR, because the largest stochastic contributions will be

to fourth order in R']E. |

s e e ————

e -

R R
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3. RELIEVING THE CONDITION FOR SPECIFIC COVARIANCE MATRIX_SIRUCTURES

In this section, we relieve the cendition of Equation (9) for two
covariance matrix estimator structures of interest: (1) a generalized
‘ B (N _ . . . R B -
estimator RG(“S) and a constrained Toeplitz estimator L](hs) of R, The
manipulations assume that the available input cata sequence {X(i)} inplu.
say, 120,1,2,...,Mg=1, is ‘N-variate) Gaussian, zero-mean, mutualiy
| uncorrelated, and weakly stationary. The Gaussian assumption facilitates

the evaluation of the fourth order moments that arise in the calculations.

Case 1: The gencralized estimator assumes no particular structure for
the input data covariance matvix, save for symmetry; it is given by,

Ns—l

He) = 4= & X(n)X' () N2 (10)

(o el
S n=0 h

G\
It is well known [5] that this estimator is the maximum
likelihood estimator (MLE) of the input dala covariance matrix R over the

domain of positive definit~ NxN - dimensional matrices. Inserting Equa-

tion (10) in Equation (9) and taking the expectation, we have,




E LTy O oF THR N
1;!!"§0I“J AGE 1S POOR

1\\?\!"‘3’\\‘

2 where W * denotes the 1th

7 with xi(n) the ith

' element of R 1;

element of W* and ’;}ij(n) = [xi(n)xj(n)]
element of X(n). The scalar 93 is the (i,j)th
the matrix R has the (i,j)th element given by Pij*
To evaluate Ecuation (11) we need the fourth order moment expression

for the (weakly stationary) Gaussian stochastic varictes, i.e.,

Pij Pk nzm
E[/p\.'J(n)?kE(m)] =

Pi5Pke * PikPye t PypPyk MM (12)

Utilizing Equation (12), Equation (11) reduces to the very simple and

revealing form,

(NS-H—4)

NS

T

ELSIR[R.] = W' Ru (13)

irrespective of R and S.
We note that the expected SIR for a covariance matrix estimate of gen-

eralized form is 0.8 times the optimum SIR (i.e., within =z 1 dB) given

T

n

§ by W* RW* [cf. Equatior (3) evaluated at W = W*] when No = 5N+20=5N, for

S
large N. The indication is that a considerably smaller sample size is
required to achieve most acceptable expected SIR vis-a-vis what would be

required to estimate the matrix R (or R']) to provide a refined estimate

l of the optimum weight vector. Thus, the first conjecture is dispatched.
The behavior of Equation (13) is similar to th> result obtained by Allais as
discussed by Kanal, et. al. [11] for the minimum mean squared error (MMSE)

l associated with the MLE of the ideal predictor assuming Gaussian statistics.



Case 2:

consistent with the weak stationarity of the input data stochastic

process; the elements of’ﬁT(Ns) are given by,

%g(nlxg{)-k|

We utilize the same notation for the elements of the covariance matrix esti-

mator as in Case 1 with no fear of confusion.

in Equation (9) and taking the expectation, we obtain,

The constrained Toeplitz form estimator assumes a structure

Jok=1,2,...N

Inserting Equation (14)

12

(14)

ECSIRIR,] =50 TRite
N_- !
] r“ ’S“‘\]r-“:“-—.N T
b A Y L v W 1
st nm?i) K& Jk 7 (N‘Ii"Jl)(ﬂ-lk—ﬁ[) .

N-]i—jl.‘l-]k-;l
& z

p:'] q:']
NS-1 N
- e o R Wiy *w "
NSJ(J- RH¥) nmij kg
N-li-j|N-|k-2]
L ¥ Elx (n)x_[n) . n)x (m) ..
=1 =1 L (mdepfnd g %q Mg m).,

1
D (mxpfnd_g%q(M%q{mh_y | f

{ TR *
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Appealing to Equation (12), we may cast Equation (15) in the form,

T

E[SIR[R-] = W+ Rt
N
1 zzrr w¥ow *[a(li-j|.|k-2]) + b(|i-d|,|k-2])]
N fLEe ¢ o
S
3 N

; i wi*wk*wj*wz*[a(Ii-jl,|k-1|) + b(]i-3|s|k-2])]
(16)

where &
N—|i~j|N—|k—£|

2 % 1
a(li-j|,|k-2() A — D) ) '
(1-31[k-2]) = (N-T1-3]) (R-Tk-2]) p=1 q=1 p‘p'qlplp‘q+li~il‘!k“1!|

(16a)
e[ [N [ k=2 |
i p L il A rar i SR ’ - 3
= -[3-37T) (H-Tk=2T) o a) Ip-q- k-2 |?|p-q+]i-j|]

(16b)

The quantities a{-), b(+) serve to account for the fact that the distinct

s - e . ] ’
elements of R1(HC) are obtained by summing along the diagonal and sub-

§ = " . /‘, - = . =% -
diagonals of L((JP) for each input data vector. There are no more than
A

N
(N=]i=3] ) (N-]k-£])/2 distinct terms in a(<) and b(¢), because the synmetry

of R gives rise to the relations,



i

a(li-jl,|k-2])

b(|i-j|,|k-2])

It is difficult to reduce Equation (16) further; however, bounding argu-

ments and the aid of Equation (17) permits the following to be established,

E[SIRR,) < ELSIRIR,] (18)

when the approximation of Equation (8) holds for Case 1

It is important to note that with the op-
timum SIR held constant, Equation (13) depends simply on NS’ N; whereas,
Equation (16) depends also on the Toeplitz form input data covariance matrix
R and the signal vector S. The bound of Equation (18) is thus over all R
and (non-trivial) S. We desire a more concrete idea of how much the Case 2
results upper bound those of Case 1 for situations of practical interest;

the next sections assist in this regard.

a(jk-2],]1-3]) (172)

b(|k-2],]i=3]) (17b)




4, SEVERAL EXAMPLES OF FINITE TOEPLITZ FORM

The approach we take is to select five examples of input data co-
variance matrices of finite Toeplitz form and evaluate Equation (16) for
each, comparing the results obtained with Fquation (13). The initial results
presented are for N=5; this dimension avoids the non-inductive results that
scmetimes obtain with two dimensional examples, but is not so large as to re-
quire exhaustive computational time. A1l covariance matrix examples are

normalized in the sense that the diagonal elements are unity.
Example 1: White Process

In this case, we have R=I, the NxN - dimensional identitiy matrix.
This situation corresponds to an input data white noise stochastic
process (correlation time A). We use this example for comparative
purposes, realizing that rarely dcoes this situation obtain, because
the detection processor will generally be proceeded by a filter

which will increase the correlation time.
Example 2: Tridiagonal Correlation

This example provides a model for R which permits first sub-diagonal

correlation only, viz.,

.-] . -
p 1 ¢ O
] (19)
R = [ f
() ’ ] f
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To insure that R is of positive definite form, care must be taken in

selecting the value of p. The eigenspectrum {A} of R is readily computed

to be,

Ap =V - 2|plcos () el (20)

From Equation (20) we see that we must have

1
< - (21)
2 cos GN;T)

o]

in order for R to be of positive definite form; furthermore, |p|<1/2

if R is to be of positive definite form for all N. For this example,

we choose the elements of R as,

p = 0.3679 |i-j| =1

it

p_ij " p'i'-jl -~ ]-0 I""JI 0 1,‘]:],2’-..,N=5 (22)

0 otherwise

Example 3: Markov Process

The Markov process is one of extreme practical interest; the (con-

tinuous) covariance of the input data stochastic process is of ex-

penential form, i.e.,

oy =l o (23

We consider two situations, which differ in terms of stochastic process

correlation time: y=2.5 and v=5.0; the first has a correlation time

S —

il

e S MR
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twice that of the second. It can be shown [6] that the eigenspectrum {i}
of the corresponding input data covariance matrix is given by,
1 - p?
P n=1,2,...,N (24a)
3 1 - 2pcos¢n + p2

where the On? (o FESETIUN [ 0<¢] <hp +en <gp<m, are the solutions of,

sin[(N+1)¢n] 2psin(N¢n) pzsin[(N—])¢n]
——— - - + = <
sing, sing, sThe, 0 m=1,2,...,N (24b)
and
e (24c)
For this example, we choose the elements of R as,
/1.0 [i-j] = 0
0.6065 |i-j| =1
sio s glizib govalt=g) o 03679 [i=dl =2 y=2.5 (25a)
1 A
0.2231 |i-j| = 3
\0.1353 li-j| = 4
[FRURRES a Seg
0.3679  |i-j| = 1
0.1353  [i-j| = 2y = 5.0 (25b)
0,04‘)8 li-—JI = 3
0.0183  |i-j| = 4



Example 4: Periodic Process

When the input data stochastic process is periodic with period Na,

the resulting covariance matrix is a circulant, i.e.,

Po P71 P2 PN-1

R=|PN-1P0 P PN-2

PR P3 Po
Such matrices are a special type of Toeplitz matrix, arise in the

modeling of certain spatial-temporal interference noise field models

[4], and are utilized tc explain the asymptotic (No+=)behavior of Toeplitz
matrices. We may write R in the following manner [7],

N=1

Ry 64
n=0 "

0 120 6}

5= |00300
0040 1|
11 00 0]

n

where

From the eigenvectors of J, we directly obtain the (normalized)eigen-

vectors [“ n=1,2,.:.sNs 0of R,

(26)

(27a)

(27b)
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1 :
E =N Z e~2nd (n=1) (k-1)/K K= 1,2,...,N (28)

The eigenspectrum {1} is given by,

L2l Ly 2 (e

152500000
(29)

= py + 2py cOS {?ﬂjﬂ—]j]+ 2py COS [4ngz-1}]+ ees N

invoking the symmetry of R. The 1ast term in the continued series of
Equation (29) depends on wh2ther N is even or odd. We see from Equation (29)
that the eigenvalues of a circulant matrix are simply given by the discrete
Fourier transform (DFT) of the first row of elements. For this example,

we choose the elements of R as,

1.0 li-i] = 0
Ny ) 70.3679  |i-j] =1
ij = Pli-3] " PIN-li-3)
| | 0.1353 |i-j| = 2 (30)



L iae L

RFEPRODUCIBILITY OF THE
ORIGINAL PAGE I8 POOR 20

5. PERFORMANCE EVALUATION

Figure 2 presents the results of evaluating Equation (13) and
Equation (16) for the four covariance matrix examples of Section 4 as
a function of sample size NS’ In the calculations, the optimum SIR is

TRyf = 1. The (Case 2) curves of Figure 2 are

fixed at unity, viz., W*
dependent on the choice of signal vector S, as mentioned in Section 3.
The discussion below provides some insight into the detection performance
behavior as a function of § and the rationale for the choice of S used

for the curves of Figure 2.

We find that the quantity E[SIRlﬁT] appears to be close to its
minimum when the N elements of S are chosen to be equal, e.g., S = 1,
each element equal to unity. The quantity E[SIR]ﬁT] is close to its
maximum if the first element of S is chosen as unit with the remaining N-1
elements zero; we denote this signal vector as S = S§1. A heuristic argument
for these extrema may be given in terms of the asymptotic (N»+=) properties
of the input data stochastic process. We note that the covariance matrix ex-
amples of Section 4, with the exception of Example 1, correspond to lowpass
input data stochastic processes, which have continuous power spectral density
(psd) functions. A periodogram estimate of the psd (under the zero mean,
Gaussian assumption) is not consistent; specifically, the asymptotic variance
at a frequency is proportional to the square of the psd at that frequency [8].
A choice § = 1 accentuates the zero frequency component of the input data

stochastic process, for which the spectral estimation variance is greatest;



thus, the detection performance with such a signal is expected to be poor.

A selection of S = S1 causes all frequency components of the lowpass stochas-
tic processes to be utilized, thereby reducing the statistical variability

of E[SIRlﬁT] through an averaging. This situation is strongly exhibited

in the case of Example 1, and less so for Example 2, wherein a choice S = S1
gives rise to good detection performance by permitting the constrained Toeplitz
form estimator of Equation (14) to utilize the statistical independence of- the
elements within each input data vector X(n) to further reduce estimate variance.
Such a choice is therefore expected to provide nearly optimum detection per-

formance for finite N and no signal bandwidth constraint, if the eigenvalue

dispersion (condition number) of the input data covariance matrix is smali.

The situation is not unlike the use of diversity to improve comnunications

TR,

system performance.

In view of the above, the signal vector S admits a useful representation
in terms of the members of the complete orthonormal (CON) set of (real) eigen-

-vectors {E} associated with the input data covariance matrix R, i.e.,

N
S = ¢ sE (31a)

s =E§ nEf, 2iisal (31b)




When sn=l n=1,2,...,N, S possesses unit length along each principal

component associateu with the input data stochastic precess. For finite 1
N, this choice for S parallels the asymptotic arguments that obtain when f
$=S1, except for the case of Example 1, for which S degenerates to 1, k
causing poor detection performance. The exclusion of Example 1 is ex-

plained simply by noting that the white stochastic process may be expanded

in terms of any CON set. The poor detection performance we refer to obtains

th position and zeroes elsewhere; however, we can

when gﬂ has unity in the n
choose the CON set {E} differently so that the white stochastic process, and
S as in Equation (31a) with the expansion coefficients equal to unity, does

not give rise to anomalous detection performance. For S as in Equation (31a)

with the expan<inn coefficients equal to unity, the optimum weight vector "™

is calculated from Equation (5) (with a=1) to be, ‘
N
Tk o= 3
W=z Al E (32)
n=1

where {1} is the eigeaspectrum of R. Since S shows no preference for one
principal component vis-a-vis another, the optimum weighting for a principal

component is simply inversely proportional to the respective eigenvalue,

The Case 2 solid curves of Figure 2 are for S as computed from Lqua-
tion (31) with the expansion coeflicients equal to unity. 1In arriving at S for
the covariance matrix examples shown, the eigenvector set (F) was computed

for each of the examples. The eigenspectrum (1)} was also computed for each of



the examples and checked against Equations (20), (24), and (29). The

eigenvalues are arranged in descending orcer (over [%1 in the case of
Example 4) inverted, scaled to a maximum of unity, and displayed in Figure 3
as the optimum weighting applied to each principal component. The Case 2

dashed curves of Figure 2 are for Examples 1 and 2 when $=51.

The data presented in Figure 2 may be coalesced in a most meaningful

form. Examination of Equation (13) indicates that the cxpected SIR for the
N_-N-4
generalized covariance matrix estimator varies as(v-N ); the trend in the
3

curves of Figure 2 suggests that the expected SIR for the constrained Toeplitz

covariance matrix estimator varies with sam:ic size in the following manner,

NZ -N-4
ELSIR[R,] b TRtk __2__“)
N;
S

where the "effective sample size" N; is given by,
NS = ﬁNS g21
and p=p(S), i.e., B carries implicit dependence on S. Evaluating the

multiplicative factor g from Equation (33) ard the data of Figure 2, we

obtain the results shown in Table 1.

. e
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0 " .‘ ‘:, P( ".
(ﬁ&“3“ﬂPdJ'P R |
Covariance
Matrix R
Examp]e i
1 1.06
WP S= S]) 2.38
551 5:48 '
..P, FE “&) 2.41
3 (MP, v=2.5) 1.87
4 (PP) 2.53

TABLE
EFFECTIVE SAMPLE SIZE INCREASE

OF TOEPLITZ ESTIMATOR OVER
GENERALIZED ESTINATOR, N=5

We infer from the values of Table 1 that, on ne average, a sample siz. ;e-
duction of 2.12 is possible with the constrained Toeplitz estimator vis-é-vis
the generalized estimator for N=5. This result is highly significant when the
input data stochastic process is quasi-stationary, because the (real) time

necessary to achieve good detection performance is reduced to approximately

0.47 times that normally required.

Since the above results are tendered on a specific dimensionality, we
make an attempt to establish the dependence of 8 on N. To do this, we repeat
the calculations for N=10, The larger Exanple 1 and 2 matrices are natural
extensions of those in Section 4; the elements of the larger Lxample 3 mat-
rices are readily computed from Equation (25) with 4=0.1, v=2.5 and 5.0;

and the Example 4 matrix elements are given by,
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(1.0 li-§| = 0
0.6065 |i-j| = 1
0.3679 |i-j| = 2
P15 % Pli-g] = PIN-li-31]3 0.2231 4|i4] = 3 (33)
0.1353 |i-j| = 4
0.0821 [i-j] = 5

Figure 4 displays the expected SIR curves for N=10, and Figure 5
illustrates the optimum principal component weighting. Generally, we
observe the same trends in Figure 4 as exhibited by the curves of Figure 2,
except for the results pertaining to the Example 2 (tridiagonal) covariance.
In this case, the differenc2 in detection performance obtained with S as in
Equation (31) and $=S1 is ncticeably less at the higher dimension. The in-
ference s that asymptotic arguments appear to hold for the Example 2 co-
variance at the moderate dimension N=10, i.e., the eigenvectors of the Ex-
ample 2 covariance matrix are apparently near those of Equation (28). Evuiv
ating the multiplicative factor g from Equation (33) and the data of Figure 4,

we obtain the results shown in Table 2.

e
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Covariance

Matrix B

Example
1 (WP) | 4
% %JHSY §=§1_) 3.86

10, s=51) 3:66
3 (MP, v=5.0) 3107
3 (MP, y=2.5) 2716
4 (PP) 3.57

TABLE 2
EFFECTIVE SAMPLE SIZE INCREASE
OF TOEPLITZ FSTIMATOR OVER -

GENCRALIZED ESTIMATOR, N=10

We infer from the values of Table 2 that, on the average, a sample size re-

duction of 3.12 is possible with the constrained Toeplitz estimator for N=10.

We now attempt to generalize detection performance behavior for
Case 2 and N>10; in doing this, we obtain a rather interesting result. The
expected SIR of Equation (16) may be solved in closed form when the input data
stochastic process is white (Example 1) and $=S1.  Performing the calculations,

we obtain,

; ~ N ‘ 7/
= Wr TR [ zw.»”_s_”:_’_‘_;zm_} (35a)
7N} s

ELSIR|R,]

WP,S1

where

= A+ on N+ 1720 (35b)
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and A = 0.577 is Euler's constant. The harmonic series w(N) exhibits a /N'
behavior for small N and is divergent with an asymptotic approach consistent with
the natural logarithm. The result of Equation (35) is felt to hold for a wide
variety of signal vectors whose psd's are relativeiy flat over the unconstrained..
bandwidth. Examination of the behavior of Equation (16) appears to indicate that
the approximation to the series n(N) is modified to n“(N) in the following manner
when the input data stochastic process is not white, but the input data vectors -

still contain a large number of degrees of freedom,
n*(N;B) = A + BanN + 1/2N B>1 : (36)

where BA is the input data stochastic process correlation time, e.g., B=2
for the Example 2 (triadiagonal) case. Now, comparing Equation (33) to Equa-
tions (35) and (36) we obtain a generalization for the multiplicative factor

By 1.€.,

a
= w7(N;B)

™
i

N
3 (37)
A + BenN 4 1/2N
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Several observations concerning Equation (37) are worth mentioning:
(1) use of Equation (37) in Equation (33) with B selected appropriately provides
results which compare favorably with the data of Figures 2 and 4 and Tables 1 and
2, and (2) the multiplicative factor B is divergent. The second point is very

significant, indicating that a sample size Ns < N for which the generalized es-

A
Rg

fective sample size NS‘ which provides good detection performance when used with

timator of Equation (10) is not even of full rank may be equivalent to an ef-

the constrained Toeplitz estimator’ﬁ} of Equation (14). An example will aid in
understanding these remarks and also serve to dispatch the second conjecture put
forth in Section 1. For the short update experimental results mentioned in Section
1, the filter dimension N=256. The correlation time of the input data stochastic
process is approximately BA = 8/5W, where W denotes the bandwidth of the stochastic
process; thus, there are approximately 32 uncorrelated time segments within each
input data vector. The value of B as computed from Equation (37) is 5.70. A
sample size NS = N = 256 then provides us with an expected SIR of .827 times the
optimum SIR (performance equivalent to 0.82 dB from the optimum SIR) from Equation
(33). The real time required to gather the irput data necessary to achieve this
performance is 4 s, the gradient search algorithm averaging time utilized. We

note that for Ng = N = 256, Equation (13) for the generalized estimator is way out

of the range for which the approximation of Equation (8) is valid.
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6. CONCLUDING REMARKS

We have examined two conjectures put forth in Section 1 pertaining
to the suprisingly small sample size required Lo achieve good SIR perform-
ance with an adaptive signal detection filter. The first conjecture involves
the possibility of convergence of the SIR well before convergence of the
filter impulse response; the second, with the possibility that the mechanics
of a certain adaptive filter algorithm are intelligent enough to capitalize
on the structure of the input data stochastic proccss. Specifically, the
structure referred to is the (finite) Toeplitz form of the input data co-

variance matrix.
The principal results of this work are as follows:

(1) Equation (9), the expected SIR, conditioned on the estimator R

of the input data covariance matrix R;

(2) Equations (13) and (16), the expected SIR (under the stated assump-
tions) with the condition relieved for generalized ﬁh and con-

strained Toep]itz'ﬁ} estimators, respectively; and

(3) Equations (33), (35), (36) and (37), synergistically providing a
model of the behavior of the constrained Toeplitz estimator with

dimension, sample size, true covariance matrix, and signal vector.

Sl - sr.... .
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e Use of the generalized estimator results in the expected SIR approach-
~ing the optimum SIR as & (1 - ﬁg - as). where N s the filter dimension and Ng

is the S¢ﬁ§18 size, In this case, No & 5N + 20 samples are needed to come within

'Wiida of the optimum SIR; this is a relatively small number of samples, being
:iEonsiderabiy less than that required to estimate the (Nz + N)/2 unique elements

of a generalized covariance matrix. Use of the constrained Toeplitz estimator
" results in the expected SIR approaching the optimum SIR as & [1 - % N;B)_ Nj%-]
where =“(N;B) behaves as BenN, 1<B<<N, for large N. This result is 3er1ved frgm a
combination of the data analyses presented in Section 5 for small-to-moderate.

N using the covariance matrix examples of Section 4, and heuristic asymptotic
arguments. The importance of the results is evident. The constrained Toeplitz
estimator operates with an "effective sample size" N§ =[?!TN)1NS and therefore
has the potential to provide high expected SIR at a sample size NS for which

the generalized estimator may provide exceedingly poor results. The reduction
in required sample size reflects as a reduction in the amount of (real) time
required for the adaptive algorithm performance to converge and, therefore,

corresponds to an increase in the ability of the filter to accommodate realistic

situations wherein the input data stochastic process is quasi-stationary.

The improved performance is naturally achieved with an adaptive algorithm,

e.g., a first order, linearly constrained gradient search algorithm, operating
at a so-called slow update rate, because the covariance matrix estimate formed
is of constrained Toeplitz form. This observation suggests that the proposed

scheme of Farden [9] for first forming a constrained Toeplitz form estimate of

the input data covariance matrix and then inserting the estimate in the adaptive

algorithm is unnecessary, if a slow update rate is employed. We do note that
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ere 1s a slight difference in the estimate utilized by a gradient search
-algorithm and that of Equation (14) employed for the calculations in this work
i;,ﬁh;t:the (first order) gradient search algorithm introduces exponential
xﬁempbraiﬁwe1ght1ng. whereas Equation (14) employs uniform tempc:al weigh*ing.

This difference is second order to the calculations presented here.

In many problems of interest, we deal with an adaptive filter which
operates concurrently on a number, say K, of N-dimensional input data vectors
;k(i) k=1, 2,...,K, at the ith sampling instant. The index on k may be a
spatial reference, i.e., time records of length NA from K sensor locations are
processed by the algorithm. If the (spatial) sequence of input data vectors
are organized as in reference [4] and the resulting KN-dimensional input data
vector stochastic process is assumed to be weakly stationary, then the input
data covariance matrix if of (finite) block Toeplitz form. Extension of the

results presented in this work to this case are iimediate.

To broaden the areas of study that may benefit from this work, we mention
the general area of pattern recognition. The problem discussed here corresponds
to the situation where the form for the discriminant function is known and the
samples are used to estimate the values of parameters of the classifier, i.e.,
the nonparametric problem. The results provided are also useful for relating
sample size and dimensionality for the parametric problem, i.e., the form of the
underlying probability distribution is known and the samples are used to estimate

the values of parameters of the classifier [10].
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