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David A. Landgrebe

Abstract

Methods of efficiently generating and classifying

samples with specified multivariate normal distributions are

discussed. Conservative confidence tables for sample sizes

are given for selective sampling. Simulation results are

compared with classified training data. Techniques for com- 	 i 1

paring error and separability measures for two normal pat-

terns are investigated and used to display the relationship

between error and the Chernoff bound.

*The work described in this paper was supported by National
Aeronautics and Space Administration Grant No. NGL 15-005-112.
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INTRODUCTION

There has been a significant amount of effort devoted

to the design and evaluation of functions which "measure"

the relative effectiveness of statistical pattern_ recogni-

tion schemes in classifying data. Two of the more notable

ones are the Bhattacharyya distance [5] (a special case of

distribution pairs of the subsequent Chernoff bound [6,

16, pp. 116-126]), and the divergence [7,8]. The motivation

for these "distance measures" is that in some cases, theo-

retical recognition error cannot be obtained easily. In

i	 the case of the normal assumption, the error expression is

generally difficult if not impossible to evaluate analytical-

lv. R technique [9,101 has been developed for obtaining

theoretical error in a two-class problem using a Bayes de-

cisio,, rule and gaussian assumption. But error in

recognition problems with an arbitrary number of normal

classes has not in general been expressed in a manner which

can be analyzed easily.

Because of this problem, "distance" measures and bounds

have great appeal. In multiple-class problems, some sort

of average of the distance between pairs of classes often

is used as a performance measure of various classification

schemes (such as selecting featur- sets).

J	 _ _
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	 formance in statistical pattern recognition ultimately de-

pends on its relationship with theoretical error. Some re-

lationships between error and the Bhattacharyya distance

and divergence are known [11,12,13,14]. These relationships

are in the form of bounds on error. For the two cited

separability measures, the most important relationship is

that two-class error is bounded by one-half of the Bhatta-

charyya coefficient [12], and accuracy (one minus error) for

two normal classes appears to be bounded above and below by

an empirical relationship with the divergence described in

[15]. From this empirical. relationship, it ap pears that

probability of correct recognition is less than or equal to

the value of the normal distribution function at one-half

of the square root of the divergence. That is

P < erf * ( D 2) ,	 (1)
V

although this has not been proven yet.

It is interesting to note that in [15], the paper to

which much of the motivation for use of divergence has been

attributed, part of tale relationship between divergence and

accuracy was obtained using a Monte-Carlo type of simula-

tion. It seems apparent, in looking over some of the litera-

ture dealing with these and other error bounds, that a

simulation type of analysis would have something to offer in

understanding the relationship between error and these bounds.

3
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Many advances in the use of error bounds have improved (at

a cost of high mathematical complexity in some cases) error

prediction in very specific areas (for instance, the use

of the Chernoff bound in information theory and likelihood

decoding error analysis [17, pp. 131-135; 18, pp. 394-398;

19]). In the case of two gaussian distributions, one of

the tightest known bounds on error which can be easily

evaluated, the Chernoff bound, is "close" in predicting

error for only special cases (such as in [16, pp. 126-133]).

For more general two-class problems such as the one used

in [15], an example in [10, p. 731 shows a case where this

bound does insignificantly better than the Bhattacharyya

coefficient (tightest known bound for normal data which can

be expressed explicitly), which, in this case, isn't very

close to actual error. Experience has shown that this is

often the case in data from natural patterns such as multi-

spectral data [1] modeled by the normal distribution. 	 i

In many problems, however, it is not so important that

a distance measure bound error, as it is that it should tend

to indicate which classification scheme is best (not

necessarily the same thing). This is especially important

in the case of multiple-hypothesis pattern recognition, be-

cause even the ti ghtest bounds lose most of their "potency"

when they are averaged over all pairs of classes [20]. Also,

measures which aren't averages over class pairs have yet to

yield any analytic simplicity [2]. However, if one
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separability measure has a weaker relationship with theo-

retical error than another, it must be considered as a less

reliable source of separability information.

Simulation can provide a useful relationship between

specific classification problems and the numbers produced

by separability measures. For instance, the average di-

vergence might be used to narrow a large number of feature

sets down to several which have the highest value. Then,

rather than classify the training samples using these fea-

ture sets and compare (especially if this is physically

cumbersome), one might generate and classify samples with

the same distribution as the training classes. Or, it may be

the case that a researcher requires easy access to a large

number of samples with a specific distribution in order to

make a carefully controlled comparison of classification

error and separability measures.

The major disadvantage, when compared to most separa-

bility measures, is the amount Df machine time used to

classify the samples. Also, the method is Monte-Carlo and

not exact. Hence the degree of confidence varies with the

number of samples used. These two drawbacks will be examined
x

in this note.	 Also, certain properties of pairs of normal

k
In a forthcoming piper a new statistic for error will be
introduced for cases where distributions are specified.

.4
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patterns are used to reduce the size of the sample space of

mean vectors in case the relationship between recognition

rate and other pair-wise separability measures is to be

studied. Examples of all of the techniques are presented.

Much of the material is tutorial in nature, but provides a

necessary background for the methods described.

A THEORETICAL BASIS FOR SIMULATION AND

CONFIDENCE BOUNDS FOR THE RESULTS

If one has available samples from the mixture density, a

method of estimating error in using a decision rule which

partitions the sample space is well known [4]. This method,

random sampling or error counting, does not give estimates

of conditional class error. However, precise confidence

tables are available [22,4,10, p. 1471 for computing sample

size. Another method known as selective [4] or stratified

[3, p. 2551 sampling does yield these estimates and has an

estimate for error with smaller variance than random

sampling. Some conservative confidence tables are now de-

veloped for selective sampling. No assumption of class

distributions is made.

Suppose that one has N i samples from class i, and that

the classification scheme under consideration classifies Li

of these samples correctly. Let P ci be the conditional

probability of correct classification for class i using this

scheme. Since r  is binomial with parameters N i and P ci , it

I1

. /

1s

If
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is well known that the maximum likelihood estimate P . for
ci

Pis
ci

L.
P	 = 1

	ci 	 N.
1

unbiased. Further, suppose that there are M classes in this

particular example,and that N.
1

	P.N, where P i is the a

priori probability of class i, so that a total of N samples

are used. Then the maximum likelihood estimate (see [10,

pp. 145-1481 and [27, pp. 47-48]) for overall theoretical

error P = EP.P . is
C	 1 ci

f

' 	

(M	

M

4	

Pc	 L	 P	
(3)

Pici	 N	
Li 

i=1	 i=1

(2)

unbiased. The absolute error in P c is 1P c - PC I, and its
variance is EP i P ci (1	 Pci)/N [10]. Using a basic inequal-

ity of probability theory [21, p. 1571, it can be shown that

for any d > 0,

EP. P(1 - P	 )
P{I Pc - Pcl>61	 <	 i ci	 ci = B1	 (4)

N b

(all summations from 1 to M). That is, the probability that

the estimated overall error P differs from the actual over-
t

all Error P c by more than b is bounded by B l . But note that

B 1 depends on the individual P ci . If these were known, Pc

could be computed exactly.

J1
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A confidence bound with no dependence on the individual

Pci may be easily obtained by noting that

max(EPiPci(1 - P ci )] = 4	 (5)
P
ci

Hence

P {IPc - P c I>5} < B 1 '	 = B 2	(6)
4N6

So we use N = 1/(43252)

As an example, suppose that for a ten class problem, it

is desired that the error in the estimate be greater than

0.01 not more than 5% of the time. This corresponds to a

95% confidence that P c is within 0.01 of P c . For B 2 = 0.05,

M = 10, equal priors P i , and d = 0.01, we find N = 50,000

(5000 per class) sarr,ples required. For comparison, the

assumption that Pci = .8 and use of B 1 would result in the

requirement that 32,000 samples be used.

It might be noted that some similarity exists between

this confidence expression and the classic confidence tables

of (22] for random sampling. In the case of the latter,

however, it is known that the distribution of the error in

the estimate is oinomial. This allows one to construct a

much tighter confidence interval (or looking at it another

way, use fewer samples). IPc	 P 
c 
I is in general binomial

only for M = 2 in this paper. Further, the confidence of

1 - B 2 (which is >P {IP c - Pc I <d}) corresponds to the

interval

1.

P
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P -	 1	 < P	 < P +	 1	 (7)
c	 2	 2— c_ c	 2 YrtQry

In the classic confidence tables, these intervals are not

symmetric unless P c = 0.5. As an example, let P c = 0.5.

For M = 2 and 95% confidence that the error does not exceed

.05 (P c within .05 of P c at least 95% of the time), we re-

quire 2000 samples using B 2 (and B 1 ), while only about 400

samples are required using the knowledge that N i is binom-

ial.

A graph of error d versus the total number of samples

N is presented in Figure 1 for confidence levels of 75, 90,

95, and 99%. A log-log scale is used in order to present

a useful range of values. Because of the conservative na-

ture of the bound, modest choices of d and confidence level may

lead to large sample sizes. In fact the 95% confidence line

for random sampling with P c = 0.5 would lie just above the 75%

line in Figure 1, even though the variance of the selective

sampling statistic is, in general, smaller. However, if

one needs the estimates Pci , the latter statistic is more

convenient (one may always use the tables of [22) to compute

confidence in the individual P ci ), and does not require

randomization on the class numbers.

When sample sizes are large, an approximation may be

used. For fixed M and increasing N, the distribution func-

tion of P c tends to become normal regardless of the values

of the P ci (21,29, pp . 256-257). The N+1 discontinuities in
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the distribution become small "jumps." The confidence

approximation using (5i becomes

P [ ^P c - P c > Z a/2 1 = 1 - a = B 3 	(8)
2 3^1

where 100a is the percent confidence and Z a/2 is value at which

the normal distribution function is 1 - a/2. Now we use

N = Z 
2
a/2 /(46  2 ). Figure 2 gives the resulting relationship

for 75, 90, 95 and 99% confidence. In the example above

for M = 10, we find that B 3 yields 9600 samples required

(B 32,000; B2 50,000) .	 In the other exar„?le for :•i = 2, we

get 385 (Bit B 2 2000; binomial 400). The latter example

points out the need for large sample sizes in using B 3 . If

M is increased, even larger sizes are probably needed.

EFFICIENT GENERATION Ai.J CLASSIFICATION OF NORMAL SAMPLES

Let us assume that a source of independent, normally

distributed samples is available. Such a source can be

approximated by using a power-residue technique to generate

pseudo-random samples with approximately uniform distribution.

Sets of these samples may then be normalized in accordance

with the cEntral-limit theorem to produce approximately

normal samples. One of the most commonly used techniques

employing this procedure is described in [23, pp. 94 -961

(this reference describes the theoretical basis for the

algorithm used on IBM/360 computers in the SSP subroutine

10

I
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RANDU). Samples generated using this method have little

sample correlation [24]. Anot.ar well known method is the

inverse method. It is faster than the above (using typical

set sizes),requires only one uniforml y distributed sample,

and, for all practical purposes,is not tru., cated. Let the

random variable X be uniformly distributed on the interval

from zero to one. Let NO represent the desired distribu-

tion with inverse F-1 ( • }. Then Y = F -1 (X) has distribution

F( • ). For F normal, good approximations are available

[26, pp. 191-192; see SSP subroutine NDTRI]. This reference

[26] is the reason the method for normal F is sometimes 	 -^

called Hastings method. Other fast procedures are given in

[27, pp. 90-95].
,y

Designate a normal density for class i with n by 1 mean

vector Mi and n by n covariance matrix K  as N ( M i , K i ) . Let

Q i be an orthogonal transformation whi:h diagonalizes K. as

^l
0

QtK i Q i = Ai =	 a2	 (9)	 k

0

n

where A i is the n by n diagonal matrix of eigenvalues X for
r

K  (so that Q  is a matrix w:.th ei_genvectors of K  for its

columns [25, pp. 80-99]). Form n by 1 random vectors X with

density N(O,I) by taking n normal samples with zero mean

and unit variance and use them for the components of X. If
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we define

i

^r

n

then the random vector Y. = Q i A 1/2 X + M. is N(2,i,Ki).

These steps may be graphically depicted as the illus-

tration in Figure 3 shows. Cioss-sections (level surfaces

or surfaces of constant probability) of densities for n=2

are shown which are in this case, ellipses. Figure 3a

represents the desired distribution. A 1/2 scales the samples

tc obtain variances which correspond to those of the prin-

cipal components -`_ the original covariance matrix. Q i ro-

tates the samples (or coordinate system) until the principal

components of the density are parallel to those of the

desired density (same correlation between feurures). Adding

N, i locate- the mean at the aesired value.

This method is quite straightforward, but very time

consuming. Each vector X must be multiplied by the ma::rix

Q i A 1/2 for a total of n 2 multiplications and n 2 additions for

each X. Adding M  to each X could be eliminated by shifting

all of the distributions by that amount. This also raises

the possibility of classifying the X samples directly in a

f

--	 .,	 _
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transformed feature space rather than transforming them first

and classifying in the original space. Since classification

error is invariant under linear transformations and shifts,

•	 and Pci , Pc are the only desired res l ilts, we note that

X = P. i 1/2Q i (yi- b
q
	

(11)

is N(O,I) and transform all of the other class parameters

as (see Appendix A)

K^ 
_ A-1/2Qi K^Q i A

-1/2	
(12)

*	 -1/2
M^ _ ^1 i 	Qit (M^ - M i )	 (13)

Thus we can use N(J,I) sam p les directl y to represent

class i and obtain P ci by classifying these samples using

the above expressions for the other covariance matrices and

mean vectors. This process can be characterized as a trans-

formation of the feature space to fit the sam p les, rather

than a transformation of the samples to fit the feature

(although the two are equivalent). In other words, the fea-

ture space is transformed in a manner analogous to going

bacxw ids in Figure 3 from 3e to 3b.

It might also be noted that the normalizing process

used to obtain N(O,I) samples from uni^ormly distributed

samples could be Incorporated into this procedure to elimin-

ate more unnecessary computations (e.g., don't normalize). 0 

j 
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Also, logiK j I (which is used in the decision rule) is just

loglK j I - loglK i l, so that these reed be computed only once

for the entire simulation.

Applications for Normal Data

The normal assumption appears to • --)rk reasonably well

in classified designs when applied to agricultural categor-

ies of multispectral data [1]. Recently, a powerful test

of normality was developed and used on this data, the results

of which lead one to believe that in some cases, the assump-

tion is not unreasonable [28}. Using the same data with

classes defined in [1}, an experiment was conducted to com-

pare the results of estimatin g P c by simulation with the

value obtained by classifying training samples, using sta-

tistic s0 obtained from those samples. Eight classes (corn,

soybeans, wheat, alfalfa, bare soil, oats, clover, rye) were

used with 12 features (wavelength bands). One thousand

samples per class were generated by the methods described

above for each of the feature sets fl},

The results for estimating overall error, P e = 1 - Pc , and

conditional error, P et	 1	 Pci for the class wheat,are

given in Figure 4, a and b. Agreement seems to be fairly

good, with simulation results appearing more optimistic in

terms of accuracy, as might be expected (the gencrated data

should fit the normal assumption-better).

Onaximue likelihood for mean and covariance with bias correction
applied to the latter.

J
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TWO CLASS PROBLEMS

Simulation studies of two class separability measures	 f

for certain types of distributions may yield useful infor-

mation for classifier design. An example is given in [151,

where recognition rate is compared to divergence values for

two normal patterns. Knowledge of the behavior of such

measures may allow the researcher to define new measures

for M class problems which improve performance in feature

selection.

For normal patterns, it is well known that both covari-

ance matrices may be simultaneously diagonalized, one into

the identity matrix. Then the transformed means of these

classes may be shifted so that the class with identity co-

variance has its mean at the origin. Thus, all cases of

pairs of normal patterns may be simulated by considering

only classes with diagonal covariance matrices, one equal

to the identity with zero mean vector. 	 In

this case computation of separability measures such as the

Chernoff and Bhattacharyya bound, divergence, and even true

error are relatively straightforward ([10, pp. 72, 284,62 -

64;respectively). One need generate values for the parameters

A forthcoming paper will explore this topic.

* V-.
Changing the sign in Equation 3-51 and 3-52 from + to -.

a^
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of the class with arbitary mean vector only.

The major problem is the amount of samples from the

parameter space (of mean and variarn^,e components) needed to
i

obtain representative results. Obvious symmetry (in the

sense of error) allows the use of only non-negative mean

components. Yet another type of symmetry exists. We see

from Figure 5a that there is reflective symmetry arouc li-e=

of equal mean components. Here a two-feature example is

sketched to show that for every set of mean and variance

components chosen in the subset of non-negative mean compon-

ents, a simple permutation of these component values yields

a different distribution with the same error, still contained
I

in this subset. Proceeding to the general case of n features;

it is apparent that this property yields the requirement

that only mean vectors with monotone components are required.

Since there are 2n combinations of signs for the components

of an arbitrarily chosen mean vector, and because the re-

striction to positive signs leaves n! choices of inequalities

between components (fix m l on the real line, leaving two

places for m 2 , three for n, 3 , etc.), the restriction of, say,

m l > m 2 > ... > Mn reduces the size of the set of possible

mean vectors with components restricted in magnitude by a

factor of 1/(n!2 n ). Figure 5b depicts this process for n=3

and a > ml > m2 > m3 > 0.

The method is readily applied to experiments where an

attempt to pre-determine covariance and mean values is de-

sired. These values may be incremented by a fixed amount

'f!

^r- 	 F'M

i
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over a range of numbers, so as to insure that repre-

sentative combinations are covered (one objection to a

random approach). Generating random components is a bit more

difficult if one desires a uniform distribution on the set of

possible mean components. This would involve more compli-

cated software to compute the assignment of probability mass

for successive mean components conditioned on the value of

a previous one. Experience has shown fiat order statistics

or random walks (mi uniform on mi+l to a) give satisfactory

results.

As an example, 40,000 sets of parameters were generated,

1,000 each for sets of 2, 3, and 4 components, and 37,000

for one component (due to time considerations in computing

error for n>1), and both P c and the Chernoff bound were

computed. The result is given in Figure 6.	 Order sta-

tistics for uniformly distributed random numbers on the

interval from 0.0 to 6.0 were used to obtain mean components.

Variance values were obtained from numbers uniform on .01

to 25.0. P c was computed using the method of (10].

One interesting possibility raised by the above example

is that a relationship between the Chernoff distance C (minus

the log of the coefficient) and P c , similar to that of the

divergence, may exist. For equal covariance matrices,

P = erf	 (VTC- )	 (14)
C

Plotting the right hand side of (14) with P c yields Figure

suggesting that
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Pc < erf^ (V"2T)

but which has not been proven. A check of the numhers

generated has thus far established erI-lirical agreement

with (15)..

Summary and Conclusion

Motivation for the use of Monte-Carlo type simulation

in the study of classifier design includes avoiding the dif-

ficulty in obtaining error exactly, and the desire to obtain

relationships between error and separability measures for

various classes of density functions. Selective sampling

was reviewed and conservative confidence bounds for sample

sizes developed. The confidence relationships are weaker

than those for random sampling. However, random sampling

does not provide controlled size estimates of conditional

class errors. Methods of generating and classifying normal

data were discussed and an example representing classifica-

tion of multispectral agricultural data was given. For

studies of pair-wise separability measures involving normal

patterns, methods of selecting statistical parameters ef-

ficiently ..!ere given. An example depicting the relationship

between the Chernoff bound and correct recognition was pre-

sented. The results suggest the possibility of the existence

of a tight lower bound on error in terms of the Chernoff

distance for normal patterns.
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APPENDIX A

j	
. 
1

Let Z be N(Mj ,K.). Then X = Ail/2Qt(Z - M i ) has mean

vector

M ; = E[A i l/2Qt(Z - M i )]	 = A
i
l/2Qt(EZ - Mi)

	

= Ail/2Qt (Mj - Mi )	 (Al)

and covariance matrix

K j = E(A i 1/2Q i (Z - M i ) - Ail/2Qt(Mj - Mi)][same]t

= A
i
l/2Qt[E(Z - M j )(Z - Mj)t] QlA-1/2

A i l/2Qi Kj 
Q1Ai1/2
	 (A2)

Thus classifving Z 'L N(M j ,K j ) is equivalent to classifying

X	 N[!`
i l/2Qi( M j - M i ), A i l/2Qi K j Q i A i 1/2 ] = N (M j , Kj)

which for class i is N(O,I). In fact if we define the dis-

criminant for class j at X as

g(X) = C j + logjK j j	 + (X - M,) tK*
-1 (X - M j )	 (A3)

where C  is the cost and a priori probability constant, we

find that substitution of (Al) and (A2) yields

a

.1

r° M

4

f

^s



g(X) = C  + loglK 	̂ logjKij + (Z - M j ) tK i l (Z - M^)

= g(Z) - loglKil 	
(A4)

Thus the discriminant values differ by a constant.
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