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ABSTRACT

,	 We have computed the path-integrated gain of parallel pro-

pagating whistlers driven unstable by an anisotropic distri-

bution of relativistic electrons	 in the stable trapping region

-.of.Jupiter's inner magnetosphere.	 The requirement that a gain

of 3 e-foldings of power balance the power lost by imperfect reflec=
tion along the flux tube sets a stably-trapped flux of elec-

trons J* = 4 x 1010E-4 cm 2 sec -1 which is close to the non-relativistic

result.	 Comparison with measurements shows that observed fluxes

are near the stably-trapped limit, which suggests that whistler

wave intensities may be high enough to cause significant dif-

fusion of electrons accounting for the observed reduction of

phase space densities.	 A crude estimate of the wave intensity - -

necessary to diffuse electrons on a radial diffusion time scale .

yields a magnetic field fluctuation intensity of

I	 = 1.5	 10-is (0	 /w) 2La- 2watts m 2Hz 
1 as a lower limit.
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I	 INTRODUCTION

j'ILt^t?G11IaIT:Y i T^,

ORIGIN- AL 1'=`''^

Decreases in observed phase space densities of energetic

electrons in Jupiter's inner magnetosphere have led to the sug-

gestion that pitch angle scattering of the particles by wave

microturbulence is an active loss mechanism (Fillius et al.,

1975; McIlwain and Fillius, 1975; Baker and Van Allen, 1976).

A likely suspect is the electron whistler wave or R mode, the

theory of which when applied to earth's environment has been

successful in explaining electron precipitation losses in the

stable trapping region of the inner magnetosphere (Kennel and

Petschek, 1966; Lyons et al., 1972).

Radio observations at decimeter wavelengths of the synchro-

tron emissions from Jupiter's radiation belts indicated long

before Pioneer 10 that the electron distribution was highly

anisotropic and that most of the energetic electrons were con-

fined to the magnetic equator by a pancaked pitch angle dis-

tribution (Roberts and Komesaroff, 1965; Thorne, 1965). Pioneers

10 and 11 confirmed this expectation and also verified the theory

that the immediate source of the radiation belt electrons was

inward radial diffusion which, conserving the first and second

particle adiabatic invariants, would flatten the pitch angle

distribution. Since induced emission of whistlers is a con-

sequence of anisotropic distribution, the hypothesis that whistler

turbulence is responsible for observed losses is an attractive

one both because of the ample growth rates possible and the

theoretical simplicity of the instability.

&,
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The.first hint that non-synchrotron associated losses were

present at Jupiter was given by Stansberry and White (1974)

before Pioneer 10. They set up a radial diffusion model for

electrons to compute the strip-scan brightness and flux den-

sity spectrum of synchrotron emissions and found that an ad

hoc loss process was needed at low L values for a reasonable

fit with radio observations. Coroniti (1974), in deriving a

comprehensive theoretical model of radiation belt electron fluxes,

employed the stably-trapped limit concept for whistlers using

the best pre-Pioneer 10 values for relevant parameters. The

data from Pioneers 10 and 11 have narrowed the range of param-

eter space (in particular, the cold plasma density and aniso-

tropy) available for theoretical models and the observed losses

Invite a reexamination of the relativistic electron-whistler

interaction.

The purpose of this paper is to detail some of the con-

sequences of relativistic electrons in stably-trapped equilibrium

with parallel-propagating whistler waves. Approximate scaling

laws for the stably-trapped electron flux and equilibrium wave

intensity are derived. For simplicity of analysis and clarity

of content, the major restrictions to our model are the following:

1) we treat the waves as generated locally and travelling strict '_y

parallel to the ambient dipole magnetic field; 2) all reso-

nant electrons are ultrarelativistic in that the total energy

is proportional to particle momentum, E = pc.

In Section II the equatorial growth rate for whistlers

is derived for a distribution modeled as f(p) p-(N+2)sinMB.
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The logarithmic gain for maximally-amplified waves is computed

by an approximation to the path-integrated growth rate along

a flux tube and the stably-trapped limit is defined as that

which will produce 3 e-foldings of power. A similar model for

the distribution was used by Liemohn (1967) to compute whistler

amplification by relativistic electrons at earth. Schulz and	 r

Vampola (1975) considered an artificial radiation belt produced

by the beta decay of nuclear-fission debris and computed the

relativistic stably-trapped limit fora distribution with an

angular distribution similar to ours but with an exponential

energy dependence. Our procedure and results are consistent
with the above authors. The stably-trapped limit of relativistic

electron fluxes is found to compare closely with non-relativistic

Kennel-Petchek theory. Comparison with measurements shows that

observed fluxes lie near the limit, which lends support to the

idea that whistlers are active. In Section III we briefly treat

the aspects of quasilinear diffusion of relativistic electrons

and estimate a level of wave intensity that will support dif-

fusion (losses) on a time scale comparable to radial diffusion.
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II	 RELATIVISTIC ELECTRON-WHISTLER INTERACTION

a. Equatorial Growth Rate

If we restrict our attention to whistlers propagating paral-

lei to the local magnetic field B o = Boz, the dispersion relation

for R modes with k i = 0 is (Lerche, 1969)

K (k, w) = 0 - k— +1 +^7m_w J dpW
Y - kpl m + 0^ 

^f	 k	 efo	 of

' 
b po 

+ mwy pl a pz pz 0 ps	 (1 )

The	 represents a sum over particle species (species labels

on all quantities are implicit), y = I I +p 2/m2c 2
]
j , m is the

particle rest mass, and C1 = q6me . 'if the particle distribution

function fo (p) is composed of a cold plasma background and a

small relativisxic component f, then defining t = p/mc and
p.B

x = cos 6 = pB °, equation (1) can be written in spherical
0

coordinates, assuming azimuthal symmetry in 'p-space, as

2
k2c2	 wp	

- S' 4,2e2

—^ = 1 + T—Oci + w) Cnce - wl	
mw kc

^to :2 1 1	
1 - x 2 dx f + hf(kc _ x11 (2)

	

o	 -1 x - (tub + Ol 0 t ax coy tlJ
kct

where

	

4rrn e 2 	I e6
uuP =	 m	 and	

nce = I me



for the electrons. If the wave number has a small imaginary
- K.

part, k = k r +ik i , we can approximate k  'DK Dk and integrating

around the indented pole of the integrand for the electron con-

tribution yields

k-, "A' i = 2 2	 ^  dt t 2 1 - x^1	 +,D f( _ x1^	
(3)

mk c3 t	
_

J^e t ebt Y t jl	
toyo	 x =	 ce

cuY _ {lcekct

The integration is taken along the resonance contour x =
kct

and to represents the minimum momentum (magnitude) satisfying

-1 = wYkctnCe• The subscript on the real part of the wavenumber
0

h: s been dropped F k r ♦ kI and

k2c 2	 2	 w2

W2 = n
	 1 + 

nci +^' "ce - cu	
(4)

The resonance curve in momentum space is a hyperbola, plotted

In Fig. 1, satisfying the relation

z1 n2-1 (nom-1-)^ n -1

_	 O
with	 _ 1 = Ce	 The minimum momentum is given by

W	
tU

t	 ni-•P2+n2- 1	 (6)
°	 n - 1

The resonance curve crosses the t l axis at the point tl - 
F71

and asymptotes to the angle cp = sin -1 1 . The passage to the

non-relativistic regime requires n>> 1, t << 1 and the resonance

curve flattens to approximately a straight line. Equation (6)



1

6

then gives the familiar result -t 	 t	
VR 

where vR .=1o	 R c	 c	 n	 n

for w « 1 and E R = -rnVR (Kennel and Petchek, 1966). Relativistic

particles can interact with whistlers either by Doppler-shifting

the wave frequency up to the local electron gyrofrequency or

by lowering their gyrofrequency sufficiently by a mass increase,

thus I the resonance curve departs from a straight line. Induced

emission or absorption of the whistler depends on the local

derivatives of the distribution function along the resonance

curve. The growth or damping of -'a mode depends on the net energy	 A

contribution to a wave from the particles.- For a distribution

such as f =sin 
M 
0,  a given frequency may be unstable by equation

(3) but for those particles with p z - 0, be e-r/2= 0 and con-

sequently those particles are energized by the growing mode.

For application to energetic electrons in Jupiter's magneto-

sphere it is conveni pnt to use the ultrarelativi.stic approxi-

mation where t >> 1. In that case the resonance curve can be

approximated by x - n [ 1 - O/t] valid so long as t o " 1 +n >' 1

If the relativistic electron distribution obeys a power law

in momenta (energy) we can model the distribution at the mag-
M

netic equator as f(t)	 tiN+ where M and N are the pitch angle

and spectral indices of the distribution and B is a normali-

zation. A convenient normalization is in terms of the omni-

directional integral flux. For relativistic particles where

Y = , 1 + t 2 - t we have

N- 1 	( M +^\
f(t) _ (N- 1)Y	 J ?v	 2 r	 2 J sinMQ	 (1)

-rc	 ITT r (M 2 2) tN+
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such that J(>y) _	 dye 
Orr 

dot cf (t ).
y 

on the distribution above to by (3),

Since the growth rate depends

if we consider frequencies

such that to lies in the domain where (7) is valid, we do not

have to specify the behavior of the distribution at low energies.

When (7) is inserted into the growth rate and the change of.

variable x	 1- n/t] is made we have the following expres-

sion for the logarithmic gain scaled to a Jovian radius at the

magnetic equator:

n	

J

2eR	 [_yN-1
kiRJOw0(L)
	 c	 ttn]	 F ( N , M, u)	 (8)

0

wive, re

(M J
U

F(N, M , u) _ (N-1)n r̂ M-+2 j- dx(u-x)N-1
r( 2 )	 1

-x2) 2Fu(N+2)(1 -x 2) +Mx(1 - ux)] (9)

and u =	 is the normalized phase velocity of the wave. The

growth rate in the relativistic approximation is dependent more

fundamentally on the refractive index (actually phase veloc-

ity) rather than frequency.

If the quantity t R = 6/n is considered as an effective 2
.n eR^

resonant momentum, we can interpret equation (8) such that B
0

Is the electromagnetic coupling of the wave to the distribution,

—]	 is the number "density" of particles with momenta
Me

t ItR , and F(N, M, u) is the kinematical resonance integral

over the curvature of the distribution. Figure 2 is a plot



 _ 	 I
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of F(N, M, u) for N	 3 and M	 0, 2, A, 6, 8. Negative values

of k i RJ correspond to growth. At low frequencies, w • 0, the

growth rate goes to zero falling off tike tR -N. At higher fre-

quencies where u ,-0.5, the growth rate turns over and goes to

zero since at a high enough phase velocity as much energy is

taken from the wave as is given, the resonance curve in Fig.

1 becoming increasingly concave.

If the cold plasma density is known the growth rate can

be computed as a function of frequency through the transforma-

tion	 n(w). A basic role of the cold plasma density is to

determine a range of possible values for the refractive index:

nMAX(to - 0) Z n W x nMIN(wp or 2ce)' nMIN occurring at the lesser
of cup or rce•	

This range specifies a phase velocity window

which restricts the values of u in Fig. 2. For Jupiter, Frank

et al. (1976) have reported cold proton densities, which have

been used to plot Fig. 3. The cross-hatched region represents

the accessible values of phase velocity at each L - R/ R J on

the magnetic equator. By comparison with Fig. 2, using repre-

sentative values of M - 4 and N - 3 for the pitch angle and

spectral indices, there exists a range of unstable frequencies

for 1 sLs12.

In the non-relativistic regime one can determine the mar-

ginally stable frequency and the corresponding -resonant par-

ticle energy above which whistlers are unstable. For relativistic

particles, since the resonance curve is hyperbolic, the mar-

ginal stability point is model-dependent and a function of M

and N. We can estimate 
EM.S. 

as follows. Choosing ,y - 3 and



M	 4, the marginally stable refractive n 	 X29. if nMiN "' DM.S.

EM.S. is non-relativistic and all relativistic electrons resQ_

nate with unstable whistlers. If n .	 0(i), t
o 	t
	 M.S.

	

2	 M N	
M•S• "moss

	 1•.

Taking w <<I  gives tM.S. ' Di( "M.S.; 1) and
P

•	
B2

EM.S	
2 2

• ^mc 	 CnM.S. - 1) ^ 2	 (10)

•	 WPC	
o

essentially the non-relativistic result.

b) Path Integrated Growth

The actual logarithmic power gain of a ducted whistler
S

requires the path—integrated quantity G --2J 2k i (s)ds along
s

a flux tube. With certain approximations the t integr!tion can

be done analytically and the result is good at least to the•

accuracy that fluxes are measured. We treat the cold plasma

density as constant along the flux tube and require equal con-

tributions to the gain from above and below the magnetic equator.

As the wave convects along the tube from one hemisphere to the

other, the phase velocity changes as demonstrated in Fig. 2

by either of the arrows A or B depending on the phase veloc-

ity (frequency) at the initial point. Liemohn (1967) found

that waves which were locally damped at the magnetic equator

could have a net positive gain because of greater growth con-

tributions at higher latitudes. This situation is demonstrated

by the arrow A for the curve M - 4. However, the stably-trapped

flux is determined by the waves with maximal gain, which case
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is represented by the arrow B; the situation marries the maxi-

. mum of F(M, N, u) with the maximum flux of resonant particles

at the equator. But from inspection of Fig. 2, if we choose

N - 3 and M - 4 the excursion due to F (M, N, u) is small pro-

vided we consider phase velocities such that u(w) ti .35. We

thus approximate F(M, N, u) as constant in this frequency range

and having the constant value F(N - 3, M - 4, u 0) _ - 5/16

(dotted lines) along the flux tube. The path integration then

simply involves the scaling of the other factors in equation (8)

along the flux tube. The coupling scales like (B o/B) off the

equator. For a sin M0 distribution the flux scales like (Bo/B)'/2

(Roe,"Aor < r, 1970) . If n - 0(l),  t  = a/n scales like ( B/Bo ) .

The growth rate along the tube is then approximately

B M+2N	 B 5
ki (s) _ ( A 2 ki (E4) = ( B—°) ki (E4)	 (11)

S

Then if G	 - 4jomaxk i (s)ds and using the harmonic approximation

B/Bo = 1+ s 2/so for a dipole magnetic field where so = ^L2RJ

we have

(M+2N)

G	 4ki(E4)LRJIo max dy(1+y 2 )	 2	 (12)

When ymax = 1 we are at the limit of the harmonic approximation,

but since the integrand has decreased significantly, we extend

the upper limit to infinity and for N = 3, M = 4 the integra-

tion yields G = -4k i R j L(O.2).  Thus
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We note that in scaling t  (B=	 ) we required n = 0(1). If the

°	 B 3/2opposite extreme prevailed, n>> 1, then t ti (— )	 and
B 6	 R Bo

ki (s) = ( BB ) ki (EQ), with the integration providing G = - 4kiRJL(0.18),

a slight difference. All quantities in equation (13) refer

to the equator and (13) is valid for frequencies such that

u (m) < 0.35.

Generalizing this procedure for arbitrary values of M and

N and approximating F(N, M, u) = F(N, M, u = 0) we have	 -

N+1	 M-3	 M+2N-1 2	 N-1
I'( 2 ) I'( 2 ) I'(	 2	 ) n eRJ 4 J(>Y)	 _YG= 9M(N -1) 	 r(M+2N ) r(M+N +3 ) 	 Bo L	 c	 st/n	

(14)

2	 2

We note that over the parameter range M = 2, 4, N = 2, 3, 4,

G is a relatively weak function of the indices, viz.
4

G(N = 2, M = 4) =(1.27) G(N = 4, M = 2) at the extreme. This	 i

is due to the compensating effects of, say, larger growth rate

(M increases) with smaller effective path length from equation

(11). Therefore, over this parameter range we will take equation

(13) as valid generally.

---A
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c. Stably-Trapped Limit

Application of equation (13) to the concept of the stably-

trapped limit (Kennel and Petchek, 1966) requires a knowledge

of the power reflection coefficient, R, for the whistlers in

the flux tube. If we treat the problem as strictly one-dimensional

and define the volume emissivity ,l for parallel-propagating whistlers,
g	

the equation of radiative transfera --2k ; (s)I +rl(s) yields

for the intensity

J_	

dsil(s) exp ^fsMAXds•ki(s,)

ICSMAX'	
^ -

s
MAX	

G s	 (15)
1-Re

It is clear that as Ile G -.1, sufficiently high wave intensities

will result that can relax the distribution on a time scale

comparable to that of the particle source. No in situ wave

measurements have-been conducted at Jupiter, but if we assume

that as in the Kennel-Petchek theory 5% of the wave energy is

reflected, a gain of G = In (1/R) = 3 is sufficient to main-

tain the stably trapped equilibrium. Equation (13) then gives

a stably-trapped flux limit of

J*(>t	 4 x 10 10 E -4 electrons
 ` R)	 cm2 sec

The non-relativistic Kennel-Petschek result scaled to Jupiter

is

(J*N_ R
B R

>E R) = 7 x 1010E -4CB
ER J) = 8. 5 x l O 1 OL- 4 (17)

(16)
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which does not differ greatly from the relativistic result.

This fact is borne out by inspection of (8). The relativistic

aspect is manifest only in the resonance integral F(N, M, u)

and if the distribution is not too different topologically in

the non-relativistic regime, F(N, M, u) should not vary a great

deal. This can be further motivated by assuming a power law

distribution in non-relativistic energy. If we take the dis-
M

tribution with –12mv2	 T as f(v)	 sin 	 where M and N are the

pitch angle and spectral indices, a non-relativistic analysis

yields the result equivalent to equation (8) for W <<I of

n2eR (T/T  )N-1J(>T)
k I R J = B 

J	 R, c
	 —FN-R(N, M, w)	 (18)

0

where

2
.TR = -12-mVR 2 \ ^n

and

M
	 ,^

FN-R ( N , M , w) _ - M(N - 1 )f 	 2ry	 M + 2 1 - 	 _
r( 2	 M(1 - w)

S

TT/2
d8 sin M+lg Cos 2N-19(19)

0

If w << 1 and we neglect the second term in (19), then for N = 3

and M = 4, F N _ R = - ^ compared to F – -16 taken previously.

Equation (16) describes a limit which should not be exceeded

statistically by a flux of electrons at ,any energy. 	 If the



flux J(>y) is known and obeys a power law, the distribution

should depart from the power law and harden considerably at

energies below the transition momentum given by

-	 -	 1
13-1'

t = Y J >v	 (20)
R	 J*(>tR)

since further extrapolation of the distribution by a power law

to lower momenta would produce excessive amplification of the

whistlers.

In Fig. 4 we have plotted J*(>t R) for comparison with observa-

tion. For L< 12 measured electron spectra have spectral indices

from 3- 3.5 at high energies and pitch angle indices from 2- 4

(Van Allen et al., 1974; Baker and Van Allen, 1976). We have

taken the representative values of N = 3 and M = 4 throughout.

The circles are equatorial electron fluxes of 5 Mev electrons

from an empirical formula given by McIlwain and Fillius (1975);

the diamonds are 5 Mev fluxes reported by Baker and Van Allen

(1976) with error bars (D.N. Baker, private communication).

The theoretical uncertainty is more sensitive to the basic

model we have chosen rather than to M and N values. We have

taken the most efficient situation of parallel-propagation for

which the growth rate is maximum (Fennel and Petschek, 1966);

the finite kl effects should raise V. A reflection coefficient

of 0.50- rather than 5% raises J* by a factor of 1.8. Another

possibility is that centrifugal forces at large L confine the

cold plasma to within ±1 R  of the equator as suggested by Ioannidis

and Brice (1971). The effective path length is then just 2 R 

14
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and for N : 3 1 M - 4 the modification to the limiting flux becomes

J*ti8X 10 9E 3cm 2sec-1 which is also plotted in Fig. 4. within

.the experimental and theoretical uncertainties involved, the

data lie near the stably-trapped limit and suggest that whistlers

may be active and that the transition energy is approximately

5 Mev at low L values.



Af(x, t)"	 _ -1- . JbT 
Q.L.	 b^

(20)

111 DIFFUSION THEORY

a. Homogeneous Quasi-Linear Theory

is

If we consider a homogeneous plasma with parallel-propagating

whistlers described by a one-dimensional electric field spectral

density e(w) for waves travelling in just one direction, then

E 2 X T	 r°°	
—

^—	 T	 " 
eTOT a 2J, duu? (w'),

0

the factor of two includes the waves travelling in the oppo-

site sense. The quasilinear diffusion equation for the reso-

nant electrons can be written

where

J _4^2e2 _,V 	
P, ^u	 I Lf + n[t, f 	 tbf

mc L g I V g - v z ( ^^ t l —y 	 a t
z	

z lb t^
W

nt A	 ntl A

( 1	 Y Z) t s ± Y t z 	 (22 )

A	 A

and t l , t  are unit vectors. Since a relativistic particle

interacts with two waves going in opposite directions, the sum-
^v	 n

mation is over the frequencies satisfying w + 1+ n((u+  c = ce

	

and n(w+)	
Iwlc for the R mode travelling in the + direction
+

along Bo , The combination in the first bracket is proportional
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to the incremental growth rate (see equation (1)) and has a

sign, a - +1 (-1), corresponding to the particles giving (taking)

energy from the wave. The diffusion current is thus proportional

to the spectral density and incremental growth rate and, if

we consider the interaction with just an upward'travelling wave,

has the direction given by the angle *+ (see Fig. S), where

tan *+	 c - nv cos 8
Jz a nv sin 9	 For v a, c we have^	 '	 --

S

*+ - tan - 1[1 n n in	 , 1 +2(1 +a)	 (23)

In general, *+ is directed such that those particles giving

energy increase their pitch angle, 9-TT, and those receiving

energy decrease their pitch angle, 9-0. If n cos 9 « 1,

*+0.  tan -1 [ - tan 9] + !!-(1( 	 +a), which describes pitch angle d i f-

fusion along approximately iso-energy surfaces, since
dt

t 2 +t 2= 	 constant 1 eads to dt Z = - tan	 At 8 - 11/2 ^+	 tan" 1 n,1
but these particles react equally to downgoing waves and the

A

net current is in the t l direction. Thus 901 pitch angle par-

ticles should random-walk along the t l axis to higher energies.

The features of the diffusion are sketched qualitatively in

Fig. 5. The locus of points where the incremental growth is

zero defines a cone inside of which the diffusion is generally

directed outwards. We note that non-relativistically, if we

use the resonance c end i t i on 1 -' cv cos 9

1'+ - tan" 1 [6-  1 )tan 9] + 2(1 +a)	 (24)



is

and for low frequencies, w <<l, pitch angle diffusion results.

b. Radial Diffusion Particle Source

The immediate source of relativistic electrons in the inner

Jovian magnetosphere has been identified as inward radial diffusion

resulting from third adiabatic invariation violation (see, e.g.,

Simpson et al., 1974). As a source term the process can be written

f M. t	 L2 b	 D(25)bT	 bLJ R.D. 	 [72 LL aL	 - 3

where the derivatives, a )	 are taken at constant first and
bL M.J.

second invariant, M and J. If we neglect synchrotron losses

and bounce average, O, equation (21),.the evolution.of the

distribution under combined radial diffusion and quasilinear
L

momentum-space diffusion by parallel-propagating whistlers Is

described by

f x t
	 ^T) R.D.

f 	 +( 	 (26)
bT 	 t7l)Q.L.

If electric field intensities are small the first term domi-

nates, but if the distribution is sufficiently unstable to whistlers

and in a stably-trapped equilibrium, quasilinear diffusion must

occur on a time scale comparable to that of radial diffusion.

The solution of (26) in the steady state is formidable, but

we can extract a crude approximation of the bounce-averaged

Ww)) in the stably-trapped regime. The radial diffusion coefficient
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, can be modeled as DLL = DoLa where Do -.10-10 sec - 1 and a —4 (Barbosa

and Coroniti, 1975). Thus we estimate ' r R.D. — 	^_2- WritingDo L
(21) in spherical coordinates, we estimate the Q.L. relaxation

m2c2t2 
I V 'v

z	 The crudeness of the approxi-time as TQ.L. " 4 2 2 (V P.(^u )'
mation is manifest in the neglect of the pitch angle dependence

L. and also by the neglect of the derivatives in (22)Of TQ 

and (25) which to some degree are compensatory. Equating charac-

teristic times yields

	

(V e' (w) ) - (IE (w) ) — 4rT2_ 	 DoLa2 V - vZ	 '2	 (27)
g	 Orr e	 g

If !Vg - vZ I ti c and t = tR = S2/n, then letting 21r y = w we have

for themagnetic field intensity of modes travelling parallel

to the field in one direction

<I (v) > = 2 rt <n2 I (w) > ti 1.5 x 10 -18-2 La-2 WATTS	 (28)
B	 E	

m2Hz

<IB> is a lower limit such that intensities much lower than

(28) will not produce significant decreases-in phase space den-

sities evolving under pure radial diffusion.

We can estimate typical fluctuation field strengths from

(28) . If the bandwidth Dv ti v ti 2ce , then (T7r 
2 

ti V av< 3 (V)>
g

and 6B ti.5 myLh(a-5) = .5 myL h for a = 4. Such fields should

be detectable by future spacecraft to Jupiter.
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IV	 DISCUSSION

The evaluation of the limiting flux assumed whistlers were

generated locally and did not propagate across L-shells. With-

out more detailed knowledge of the cold plasma distribution,

ray path computations would be speculative. However, the fact

that observed fluxes are lower than the limiting flux inside

of L c, 4, where phase space losses are still apparent, suggests

that whistlers may propagate inward.
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FIGURE CAPTIONS

Figure 1. ResonanT curves plotted in normalized momentum space
w

for R = 
A	

- 1. The solid line is the resonance with
ce

a whistler (^
_
 10, n = 1 .94) travelling along the

field; the dashed line with a whistler 	 4, n	 1.53)

travelling anti-parallel.

Figure 2. Plot of the resonance function F(M, N, u) for M = 0,

2, 4, 6, 8 and N - 3. Growth occurs for negative values

of F(M, N, u) increasing with M. The arrows repre-

sent convective changes of F along the flux tube.

Figure 3. Accessible phase velocities for whistlers using Frank

et al. (1976) cold plasma observations.

Figure 4. Plot of the limiting flux *(>t R). The circles are

5 Mev equatorial fluxes of NcIlwain and Fillius (1975);

the diamonds are 5 Mev fluxes of Baker and Van Allen

(1976) with error bars. The dotted line is the modi-

fication to J* from centrifugal effects.

Figure 5. Qualitative view of diffusion in normalized momen-

tum space arising from interaction with whistler pro-

pagating parai.el to Bo only. The small arrows give

only the direction of the diffusion. The cone edge

is defined by the integrand of (3) being zero for N - 3

and M - 4.
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