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ABSTRACT

We present Ha filtergram observations of a number of the

'	 Type III-RS (reverse slope) bursts that occurred on August 12,

1975. Solar radio emission was peculiar on that date in that 	 i I

a large number, and proportion, of the usually rare reverse

slope bursts were observed (Tarnstrom and Zehntner, 1975).

We show that the radio bursts coincide in time with a homo--
	 -- .1

logous set of Ha flares located at the limbward edge of spot

group Mt. Wilson 19598. We propose a model in which the

reverse slope bursts are the downward branches of U bursts,

whose upward branches are hidden behind the cor.oral density

enhancement over the spot group.
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I.	 INTRODUCTION

Tarnstrom and Zehntner (1975), hereafter TZ, have called

attention to the peculiar solar radio emission on August 12,

1975. In particular, they observed a large number and propor-

tion of Type III-RS (reverse slope) bursts. We have studied

the Ha filtergram movies taken at Big Bear Solar Observatory

on August 12 and believe the combination of the Ha and radio

data indicates a simple explanation for the preponderance of

reverse slope bursts that day. Our argument is as follows:

We consider each Type III-RS burst as the downward branch of

a U burst whose upward branch is for some reason unobservable.

From the Ha films we identify the sources of the Type III

bursts as a series of flares at a satellite magnetic pole on

the preceding edge of sunspot group Mt. Wilson 19598. We also

identify a magnetic arch connecting the site of these flares

with the following part of the group, which demonstrates a

closed field structure necessary for a U burst. This spot

group was at- 45° W longitude on August 12, so our line of

sight to the source of the Type III's lay through the coronal

density enhancement over the group. Therefore the radio ray

paths were reflected higher in the solar atmosphere on the

preceding side of the group than on the following. The bursts

were thus seen only with reverse slope because at a given

frequency the plasma level, which is the site of the emission

at that frequency, was observable only on the followin g side

of the group, where the electron stream was moving down in the

atmosphere.
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II.	 OBSERVATIONS

The first point is the identification of the reverse

slope bursts as the downward branches of U bursts. TZ show

that at least two of their events, 1102 and 1507 UT, were

downward branches, unusual in being more intense than their

corresponding upward branches. Three additional events, 1220,

1651, and 1713 UT, were identified (-s U bursts by the groups

at Harvard and at Weissenau (Solar-Geophys. Data, 1975).

Since TZ see those as purely reverse slope, they must also

have more intense downward branches. We will demonstrate

below that at least one reverse burst, 1508 UT, was produced

by activity identical to that of the U bursts at 1507, 1651

and 1713. By extension we will consider that all the reverse

slope bursts on August 12 were in fact downward branches of

U bursts. Our problem is then to determine why the upward

branches were weak or unobservable.

Observations at Big Bear on August 12 covered 1420 - 0020

UT. The data used for this study were taken with the 22 and

25 cm vacuum refractors. Numerous small flares and surges

occurred in Mt. Wilson 19598 throughout the day, with most

of the activity taking place at the locations marked in

Figure 1. A was a satellite magnetic pole near the preceding

spots which produced a series of flares and surges, and is

the site we identify as the source of the electron streams

that produce the Type III bursts. Although present on August

11 and 13, A did not flare on those dates. B was an emerqinq

flux region that appeared overnight and produced flares at 1445,

1625 and 2204 UT. C was a site among the following spots

1	 -
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that produced nearly continuous slow surging.

Two series of events occurred at A. Events slightly to

the north were at 1525, 1825, 2030, 2052, and 2310 UT. These

were principally surge events, with flare brightening either

absent or having a slow onset. The second series, sliqhtly

to the south, was at 1425, 1435, 1457, 1507, 1651 and 1713 UT.

These events were flares in the chromosphere above the satellite

pole, with surges following after, if at all. The 1425 and

and 1435 events were relatively slow, but the others had one

or more (at 1507 and 1713) impulsive flashes. It is this set

of impulsive events that we can associate with the radio bursts.

We now show the detailed correspondence.

The 1507 event had two flashes (Fig. 2). The initial

brightening, from 106:43 to 1507:15 matches the 1506.9 -

1507.2 radio event. This was followed by emission surges

and then a second brightening at 1508:03 to 1508:23 that

matches the 1508.2 - 1508.4 radio event. This second brighten-

ing was evident in its extension onto the penumbra of the

large preceding spot.

The 1651 event (Fia. 3) was the sim plest. It consisted

of a bright flash in two points at the satellite pole at 1605:50 -

1651:01, which matches the radio event of 1650.9 - 1651.1.

No surge appeared at any time.

The 1713 event (Fig. 4) was the largest of the day at

Location A. Initial brightening occurred at 1712:57. Brighten-

ing extended onto the penumbra of the large spot at 1713:41.

Peak brilliance occurred at 1714:00. Emission surging followed



- 6 -

this flare. The radio event covers 1713.0 - 1715.6; the

part shown by TZ in Figure la of their paper corresponds

to the time of the peak brilliance.

The correspondence of radio and Ha activity is not

perfect. First, we observed an Ha event at 1457 with a loca-

tion and character similar to those which produced bursts,

yet no radio event was seen. This is not a serious problem

since previous studies (Kuiper and Pasachoff, 1973; Kuiper,

1973) have shown that the high resolution of the Big Bear

data permits detection of Ha activity which has no radio

counterpart. Second, there was a radio burst at 1452.7 -

1452.9 for which there was no Ha activity at A. Figure 5

shows that at the time of the burst the only Ha activity is

a rapid motion of emission material in an arch away from B.

This was a part of the 1445 flare. If this activity did

produce the 1453 burst, it is not clear why that burst should

be similar to those produced at A, i.e. reverse slope. This

one burst thus is a serious problem to our model.

one requirement for a U burst is a closed magnetic field,

so that the electron stream is returned to a region of higher

density. Figure 6 shows a closed magnetic arch connecting the

preceding field which surrounds A with the followinq spots.

Shortly after the onset of the 2310 emission surqe at A, a

portion of an arch appeared at the following spots. As the

event continued, a two-pronged absorption surge was produced,reach-

ing maximum height at 2320. At 2323 an extension of the arch

, i
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from the following spots suddenly appeared, and in projection

reached nearly to the preceding spots. This long arch was

also two-stranded, arid the material in it was downflowing,

toward the following spots. We interpret this event as bulk

motion of the surge material from A along a pair of closed

field lines to the following part of the group. This is

probably not the exact path followed by the burst electrons,

since from Figure 1 of TZ the half travel time is ;, 2.3 sec

ar.d at a velocity of c/3, the path length a 460,000 km. The

observed arch appears to lie too low to be that lonq. It

should be noted that we do not observe any Ha brightening in

the Following part of the group at the times of the radio

bursts, which would correspond to the impact of the electron

stream at the footpoint of the closed field line.

III.	 THE MODEL

From our full disk photographs at N 1700 UT we measure

positions of the large preceding spot to be 9°N, 49 °W, and

the centroid of the following spots to be 11°N, 38°W. Our

line of sight to A lies directly over the center of the group,

through the coronal density enhancement produced by the region.

Newkirk (1961) has shown that the radio ray paths over an

active region are reflected higher on the li.mbward side of

the active region than on the side nearer disk center. Since

reflection occurs at the point of maximum electron density

along the ray path, this implies that at a given frequency we

cannot observe plasma level on the limbward side of the group

Using the radio data as a probe of the coronal density struc'_ure

I^
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in Mt. Wilson 19598, we can demonstrate the effect for this

particular active region.

From TZ we take the fDllowing properties of the bursts:

high frequency cutoff- 500 MHz; low frequency turnover c 130 MEZ;

and half travel time V 2.3 sec, implying a total path length

of N 460,000 }:m. We assume that the high frequency cutoff is

caused by the collisional destruction of the electron stream

at the corona-chromosphere transition zone. Thus 500 MHz

corresponds to the plasma frequency at the base of the corona

at the ends of the closed field line. This is a minimum assump-

tion on the density since the stream may degrade by some other

mechanism before reaching the transition zone. The observa-

tion by TZ of Y bursts, which appear to show mirroring of

the stream, indicates observationally that the stream may 	 _f

not always reach the transition zone. If we assume that the

electron path has a rouqhly circular shape, we can use the

total path length and the surface separation of the base

points,- 132,000 km, to solve for the height of the top of

the path. Setting the plasma frequency at the top of the path

to 130 Mliz, we can then derive a density scale height which

is, 40,000 km. Usinq the base density and scale height we

model the density structure over the region as

N (R, 9) = EXP( 1_003-R x 5,0x10 8 + 8.0x10" EXP(-
\ 

0 -43.5 \2 )
e	 ` .0571 /	 \	 5.5J ]

where R is in units of a solar radius. The spherically symmetric
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term represents the quiet corona. Use of a Baumbach density

law for the quiet corona term gives nearly identical results

for the ray reflection over the active region.

Figure 7 shows the result of ray tracing calcu?dtion

using the density model of Equation 1, ignoring ma(Tnetic

fields. The ray reflection levels were determined for 100

and 300 MHz. Each level represents the deepest layer in

the solar atmosphere from which radiation at the given fre-

quency can propagate to earth. Because of the finite step

size of the ray tracing program, the levels plotted are

systematically too deep by-1/2 a step or 7,000 km. It is

easily been that the ray paths penetrate to the plasma level

on the following side of the group, but not on the preceding

side. Type III bursts produced by activity on the precedinq

side of the qroup therefore should not be observable as the

electrons rise in the corona. The bursts will only be seen

on the following side of the group, as the electrons move

downward, producing a reverse slope burst.

There are several constraints which must be met for this

model to apply.	 The observed bursts must be emitted at the

fundamental frequency, 	 not the second harmonic.	 Emission at

the harmonic would not be blocked by the coronal density, and

the upward branch of the U burst would be observed.	 Another

condition	 is that the line of sight lay in the plane of the

arch alonq which the burst electrons travel.	 Soft X-ray

` observations,	 for example Vaiana et al.,	 (1973),	 show	 that

F
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in active regions the coronal density is larger in individual

magnetic arches, with lower densities elsewhere. We are con-

cerned with such a high density arch since the repeated flare

and surge activity at location A must have deposited an excess

of material into a few closed field lines. If the arch was at

an angle to the line of sight, the emission from the upward

branch could be observed through the regions of lower density.

The 2320 UT event indicated that we probably were in t),e plane

of the arch. A related condition is that the corona above the

spot group riot be too inhomogeneous, lest scattering off the

inhomogeneities direct some of the upward branch emission to

Earth. The isolation and simple bipolar Nature of the group,

with activity limited to scales much smaller than the group,

suggest that this condition was also met.

IV.	 DISCUSSION

The basic idea of our model is that an RS burst is emitted

as a U burst but a region of higher density between the ends

of the magnetic arch prevents observation of the upward branch.

Since this model ippears to explain the bursts of Auqust 12,

1975, perhaps it can explain other RS bursts. The alternative

model is that the bursts are emitted only with reverse slope,

either because the electron stream is produced at high altitude

and travels only downward, or some peculiar confiquration of

the fields or density inhibits emission durinq the upward

passage. This last mechanism would be difficult to confirm

1-4
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TABLE 1

Type III-RS Bursts with Ha Data

Date Time(UT) Description

1 8/1/72 0146 Flash in arch at neutral line

2 2118 Similar to 1

3 10/25/72 1136 Large filament activation, 	 X-rays

4 10/26/72 0957 Flare-surge at satellite pole

5 ft 1254 Similar to 3

6 8/9/74 0850 Flare-surge at satellite pole

7 1003 Flare at satellite pole

8 1018 Small filament activation, 	 surge

9 9/11/74 1148 Flare points at satellite pole
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observationally; if the electrons cannot excite plasma

oscillations they probably cannot produce any other observable

phenomena. If the electrons are produced at hiqh altitude,

there are observational consequences. There should be some

weak RS bursts with no 11a event. There should be some bursts

in which the radio travel time between the near and far sides

of an arch is large; these bursts would look liko the inverse

of a merging front event. Bursts associated with Ha flares will

have one of two possible characteristics. If the flare is

produced by the impact of the electrons on the chromosphere,

there should be X-rays from thick target emission. If the

lare is produced by a thermal mechanism, there should be

two Ha ribbons separated by a distance comparable to the

-	 altitude,	 100,000 km.

To further test these models observationally, we searched

Solar Geophysical Data for the ^.:ars of 1970 through 1974,

and found 11 days with more than two Type III-RS bursts.

Among these days and adjacent ones with bursts from the same

H spot groups, we have Hu data on 9 bursts, listed in Table 1.

Four (4,6,7,9) are identical in character with the Auqust 12

activity. Only two (3,5) have the scale or the X-ray emission

predicted by the hiqh altitude model. Thus we have seven more

_^
events which cannot be explained by alternative models.

Although none of these eve-its has as simple a oeometry as those

on Auqust 12, it is not impossible to construct coronal models

which produce similar blccYing of upward branch emission.
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V.	 SUMMARY

We believe that the unusual number and proportion of

Type III-RS bursts observed on August 12, 1975 can be explained

by a simple geometric configuration. We find that 4 of the

5 bursts for which there is Ha data coincide in time with

impulsive flare brightenings at a satellite magnetic polarity

on the preceding edge of Mt. Wilson 19598. We show that the
	 --a,

preceding field surrounding the satellite pole is connected by

closed field lines to the following field of the group, providing

a necessary configuration for U bursts. Finally we show that

the preceding aide of these closed field lines was unobservable

at meter wavelengths due to the coLonal density enhancement

over the group. Thus a radio burst would only be seen on the

following side, as the electron stream move.; downward in the

corona travelling from the flare site, producinq a reverse

slope. We do note however that at least one RS burst, at

1453 UT, does not fit this model.

This research was supported by NASA under NGR 05 002

034, the National Science Foundation under ATM74-13849, and

the Air Force under F19628-76-C-0055.
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FIGURE CAPTIONS

FIGURE 1:

Mt. Wilson 19598 on August 12, 1975. West is left,

south is up. Times given in UT. At the top the cross

marks disk center. Note the basically bipolar nature of

the spot group and its isolation on the disk. Locations

marked in the bottom photograph are the sites of activity

on August 12. Flares associated with the radio bursts

occurred at A.

FIGURE 2:

Ha activity at 1507 and 1508 UT. Top sequence is
O

Ha + .6 A, lower sequence Ha line center. West is up.

The 1507 radio event corresponds to the initial brightening

at the flare site. The 1508 event matches a second

brightenin g , which also extends onto the penumbra of the

largest p spot.

FIGURE 3:

Ha activity at 1651 UT. At the time of the radio event

there is an impulsive brightening at the satellite pole.

No surge is produced.

FIGURE 4:

Ha activity at 1713 UT. Top sequence is HQ line center,
O

lower sequence Ha + .6 A. The radio event begins at the

time of initial Ha brightening. As in the 1508 event,
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emission extends onto the penumbra of the largest p spot

(1713:41). The portion of the radio event shown by

Tarnstrom and Zehntner (1975) corresponds to the time of

peak Ha intensity, 1714:00.

FIGURE 5:

Ha activity at 1453 UT. Arrow marks the arch of moving

emission material. This is a part of the 1445 flare in

the EFR at location B. Location A shows no rapid change

at this time; only the slow decay of the 1435 event is in

progress.	 I,]
FIGURE 6:

Surge and arch structure at 2320 UT. West is up. The

surge maximum is followed by the appearance of long arch 	 -^

connecting to the following spots. Note that both structures

are double stranded.

FIGURE 7:

Coronal model of Mt. Wilson 19598. Density structure is

given by Equation 1. Dotted lines are density contours;

heavy dashed lines are radio reflection levels; light

dashed lines schematically represents the closed field

line along which the burst electrons travel.

0
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