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ABSTRACT

This document contains the results of a study to identify those helicopter technology areas
which would result in the largest energy (or fuel) savings when applied to large tandem (100
passenger) civil helicopters in the 1985 time frame. Baseline aircraft using 1975 technology

i in the areas of powerplant, rotor efficiency, parasite drag and structure were sized to a very
short haul mission of 100 N.M. and a short haul mission of 200 N.M. A systematic parametric
analysis was then conducted to assess the impact of technology improvements. Projections of
the technology levels that could be obtained in the 1985 time frame were made and the re-
sources estimated to achieve them. Based on these data, the highest payoff (lowest energy)
helicopter technologies are identified.
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SUMMARY
l	 y^

.^ Previous studies have shown that, on the basis of fuel efficiency, current production helicop-
ters can be competitive with other forms of transportation. Reductions in helicopter energy
consumption can be accomplished through the use of advanced technology in the areas of

	

.,	 powerplant design, improved rotor efficiency, reduced parasite drag and reduced structural

	

ii	 weight empty.

In this study, baseline helicopters incorporating todays' technology were designed for a short

	

'	 range (200 NM) and a very short haul (100 NM) mission scenario. Parametric analyses were
then conducted to determine the impact of technology improvement. Today's technology

^T
levels were projected to the 1985 time frame and the research and development costs to
achieve them were estimated. On the basis of the minimum development cost/unit energy
intensity (EI) for the maximum percent El reduction, the best mix of advanced technologies

'	 were selected. Development programs for each are discussed. They result in a 38.7 percent
_	 reduction in El for the short haul mission and a 36.6 percent reduction in El for the very

	

tiw	 short haul mission. On the basis of passenger miles per gallon, advanced technology offers
the potential for making future helicopters comparable to fixed wing aircraft.
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4.

1.0 INTRODUCTION

On the basis of an over-simplified approach, Figure 1.1, which takes into conside
energy expended per passenger mile in cruise, the present generation of transport
appears inferior to other aircraft and many forms of ground transportation.

To make a more meaningful comparison of helicopters with other forms of transportation, it
was necessary to investigate the energy (fuel) utilization per passenger mile under realistic
operating conditions for the same missions or scenarios. This type of comparison was made
in the study of Reference 1. Figure 1.2 is a typical result of that study.

The conclusions drawn from that study were that current day helicopters, if compared to
ground vehicles on the basis of useful energy utilization (i.e., useful miles traveled), are com-
petitive with them. In areas where ground transportation systems do not presently exist (or
surface geography precludes easy construction of such facilities), the helicopter offers the
potential of both reduced travel time and lower overall energy consumption than a comparable
surface transportation system (assuming the energy consumed for initial construction of such
system is considered). In addition, unique missions exist (e.g., resupply of offshore oil rigs
and logging operations) which cannot be performed effectively by other means of trans-
portation.

The study indicated that improvements in helicopter energy consumption could be accom-
plished through the utilization of advanced technology. In order to determine the mix of
advanced technology resulting in the maximum reduction of energy consumption for the
minimum cost, the current study was undertaken.

^y

Sections 2.0 and 3.0 describe, respectively, the vehicle sizing ground rules and the mission
scenarios used in this study. Section 4.0 deals with the identification of those design para-
meters affecting helicopter energy consumption, the sensitivity of energy consumption to
their variation, and the definition and selection of two baseline helicopters representative of
current technology. Section 5.0 discusses the resizing of the baseline helicopters using ad-
vanced technologies and presents data showing the effects of this resizing on vehicle energy
consumption, gross weight, direct operating cost, and flyaway cost. Section 6.0 describes the
technology areas important in the helicopter resizing of Section 5.0 and provides projections
of their possible development with time and the estimated development costs required to
attain the values shown in the projections. Based on the results of Sections 5.0 and 6.0,
Section 7.0 provides recommendations for further development of advanced civil transport
helicopters.

Appendix A provides a summary of the sizing ground rules referred to in Section 2.0 and
Appendix B contains plots of the advanced technology vehicle parametric resizing data
referred to in Section 5.0. Appendix C provides a brief description of the Helicopter Sizing
and Performance Program (HESCOMP) utilized in this study, and Appendix D describes the
cost methodology used for the determination of direct operating and vehicle flyaway costs.

1-1
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The ground rules utilized in sizing the helicopters of this study are for the most part based on
those employed in NASA Contract NASA 2-8048, "Conceptual Design Studies of 1985
Commercial VTOL Transports That Utilize Rotors" ( Reference 4). They are divided between
those dealing with the configuration design and sizing and those dealing with vehicle costs
and energy consumption. The former can be further separated into the categories of:

(1)	 Fuselage Configuration
(2)	 Rotor Solidity Sizing
(3)	 Engine Sizing
(4)	 Transmission Sizing
(5)	 Parasite Drag Level

7 (6)	 Vehicle Fixed Equipment and Subsystem Weights
(7)	 General

E Assumptions pertaining to the specific areas listed above are briefly summarized in Appendix
A in Tables A-1, A-8 and Figures A-1 and A-2.	 Figures 2.1 and 2.2 illustrate the general
configurations layout and the layout of the passenger accommodations of the 100 passenger
baseline commercial helicopter resulting from the commercial VTOL transport study of
Reference 4. This tandem helicopter configuration, with some modifications,was utilized as
the starting point for this study.

As noted in Table A-1, the use of the two-aisle passenger cabin configuration results in a
relatively wide elliptical fuselage cross-section. 	 In order to reduce parasite drag in cruise
flight and download in hover, the passenger cabin was changed to a single-aisle circular cross-
section fuselage configuration. Table A-2 illustrates the estimated difference in parasite
drag and download obtained by this modification. Detailed information on the methodology

` used to estimate hover download and vehicle subsystem weights is found in References 2 and
4.	 .

Energy Intensity (EI) is defined by the relationship

Mission Fuel Weight X Fuel Heating Value
El =

E	
'`	 Passengers Carried X Distance Travelled

K	 }

Mission fuel is the fuel actually consumed in travel (i.e., total fuel required minus the reserve
E	 fuel) and the fuel heating value is assumed to be 18,400 BTU/lb.
F
!

	

	 The methodology used in calculating vehicle direct operating and flyaway costs is shown in
Appendix D. Table D-1 lists the values used for those calculations. Table D-2 illustrates
the variations in airframe and dynamic system price/pound due to the use of advanced
materials technology. The $/pound values listed were obtained from consideration of the
structural weight empty trends developed in Section 6.0.
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3.0 MISSION SCENARIOS

3.1	 General

R	 ° The mission scenarios chosen for use in this study represent two very different but realistic
operating arenas. The Very Short Haul Mission is representative of a typical air-taxi operation
in a large urban area, while the Short Haul Mission depicts air operations between major city
centers. Table 3.1 presents a summary of mission scenario ground rules for both mission
scenarios.

R 3.2 Mission Scenario Description

3.2.1	 The Very Short Haul Mission Scenario
^r

As noted in Table 3.1, the Very Short Haul Mission Scenario is based on a corresponding
mission in Reference 1 which, in turn, is based on operations in the New York Metropolitan
area. Figure 3.1 illustrates the flight profile, including time spentat each stop. 	 More specific
details regarding the derivation of this scenario can be obtained from Reference 1.

P
J	 y	 -

3.2.2	 Short Haul Mission Scenario

The short haul mission scenario is based on operation in the Northeast Corridor between
Washington, D.C. and New York City. The flight profile utilized by the helicopters assumes
the use of an advanced V/STOL aircraft Air Traffic Control (ATC) system defined in
Reference 3. This system operates independently of existing fixed wing ATC systems, pro-
viding direct airport to airport service with no traffic delays due to interaction with CTOL

r	 °° aircraft.	 Figure 3.2 illustrates the helicopter flight profile. Specific details as to area navi-
gation waypoints and other details of the navigation system can be obtained from Reference
3. As noted in Table 3.1, the total mission distance has been rounded off to 200 N.M., but the
mission segments have been proportioned to the original mission.

i
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TABLE 3.1 MISSION SCENA

VERY SHORT HAUL MISSION SCENAF
HAUL MISSION SCENARIO OF NASA
NAS1-13142) .

• THIS MISSION SCENARI
OF 100 N.M. AND IS C
50 N.M. LEGS EACH CC
THE RATIO OF FLIGHT
DETERMINED IN NASA C
A REALISTIC RESERVE

SHORT HAUL MISSION SCENARIO IS
NASA CONTRACT NAS1-13142

(

..	 s

JND RULES SUMMARY

ASED ON THE VERY SHORT
78 (NASA CONTRACT NO.

I
TOTAL STAGE LENGTH
OF TWO COMPLETE

G OF MULTIPLE HOPS.
OCK TIME IS AS
8 FOR THIS SCENARIO.	 {
QUIREMENT IS UTILIZED.

j

ON SHORT HAUL MISION OF

E	 • THIS MISSION PROFILE IS BASED ON NASA-LANGLEY
-	 ADVANCED NAVIGATION SYSTEM USED IN A'PREVIOUS

STUDY (NAS1- 13142)

E	 • DESIGN MISSION DISTANCE HAS BEEN ROUNDED OFF
TO 200 N.M. (IT WAS 210 N.M.), BUT SEGMENTS
ARE PROPORTIONED TO SAME PROPORTIONS AS IN
ORIGINAL MISSION

• A RESERVE FUEL REQUIREMENT BASED ON FAR AND
USED IN NASA CONTRACT NAS2 -8048 HAS BEEN
ADDED

r

' 	 7
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B	
C	

../ D
10	 15	 15	 '01-4	 10

50 N.M.

gl

g.

1. TAXI (.03 HR) & T/O (.0085 HR) @ (A)
2. CLIMB TO 500 FT
3. CRUISE FOR 10 N.M. @ VBR
4. MAKE SPIRAL DESCENT TO S.L.
5. LAND @(B)
6. TAXI (.05 HR) & (T/O (.0085 HR) @ (B)
7. CLIMB TO 500 FT
8. CRUISE FOR 15 N.M. @ VBR
9. MAKE SPIRAL DESCENT TO S.L.
10. LAND @ (C)
11. TAXI (.11 HR) & T/O (.0085 HR) @ (c)
12. CLIMB TO 500 FT
13. CRUISE FOR 15 N.M. @ VBR
14. MAKE SPIRAL DESCENT TO S.L.
15. LAND @ (D)
16. TAXI (.05 HR) & T/O (.0085 HR) @ (D)
17. CLIMB TO 500 FT
18. CRUISE FOR 10 N.M. @ VBR
19. MAKE SPIRAL DESCENT TO S.L.
20. LAND @ (E)
21. TAXI (.03 HR) & T/O (.0085 HR)
22. FLY REVERSE OF PRECEDING MISSION (FROM PT (E) TO PT (A))
23. UPON DESCENT TO S.L. @ (A), TAXI (.03 HR)
24. RESERVE FUEL (SEE NOTE)

TOTAL MISSION DISTANCE - 100 N.M.

f;	 RESERVE FUEL REQUIREME-M-

1. LOITER FOR 20 MIN. @ 500 FT
2. CRUISE AT CRUISE ALTITUDE (500 FT) FOR 50 N.M. 	 V.99BR

FIGURE S.1 VERY SHORT HAUL MISSION SCENARIO
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2000 FT

1200 FT

700 FT

TAO' -

175 N.M. — ---- LAID

-t— —	 -- 196 N.M.— i

f —
	 -- —	 ---- 2 00

1. TAXI	 (10 MIN)	 (.167 HR)
2. TAKEOFF	 (2 MIN)	 (.0333 HR)
3. CLIMB TO 700 FT.
4. CLIMB TO 2000 FT.
5. CRUISE AT VNRp @ 2000 FT TO 175 N.M.
6. DESCEND TO 1200 FT @ THE END OF 175 N.M. LEG
7. CRUISE AT VNRp @ 1200 FT TO 196 N.M.
8. DESCEND TO SL @ 200 N.M.	 (THE END OF THIS LEG IS

A SPIRAL DESCENT)
9. LAND (HOVER)	 (2 MIN)	 (.0333 HR)

10. TAXI	 (10 MIN)	 (.167 HR)
11. RESERVE FUEL (SEE NOTE)

TOT MISSION DISTANCE — 200 NAUTICAL MILES (NM)

RESERVE FUEL REQUIREMENT

1. CRUISE @ CRUISE ALT (2000 FT) FOR 50 N.M. @ V.99BR

2. LOITER FOR 20 MIN @ 2000 FT	 (.3333 HR)

E
FIGURE 3.2	 SHORT HAUL MISSION SCENARIO
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4.0 SIZING OF A TANDEM ROTOR HELICOPTER BASED ON CURRENT

	

r	 TECHNOLOGY LEVELS
G
r

	

! '	 4.1 Identification of Design Parameters Affecting Helicopter DOC and Energy Consumption
k

Design parameters affecting helicopter direct operating cost and energy consumption can be
divided into two categories:

(1) Configuration geometric and dimensional characteristics.
y (2)	 Configuration technology areas.

S`
The former include:

(1)	 Disc loading
(2)	 Rotor tip speed

lj^
(3)	 Vehicle passenger capacity
(4)	 Vehicle seating arrangement (number of passengers abreast)

The baseline current technology helicopters described later in this section were obtained by
systematic variations of these parameters.

The second category includes:c _^

K
(1)	 Parasite drag level

s.. (2)	 Rotor efficiency WD E and F.M.)
(3)	 Structural empty weight

i_7
(4)	 Specific fuel consumption (SFC)

The effects of the application of advanced technology to current technology helicopters were
I

a
assessed by resizing the current technology baseline vehicles to reflect variations in the tech-	 1
nology levels of the latter category.

4.2 Vehicle Sizing Process

The helicopters analyzed in this study were sized using the HESCOMP computer program. A
brief description of this analytical tool is presented in Appendix C.

Figure 4.1 depicts the design evolution process followed to arrive at the current technology
baseline helicopters. As shown by figure 4.1, the 100 passenger design point vehicle from the
study of Reference 4 was utilized as a starting point. At the outset, in order to investigate the
potential savings in energy consumption realizable through reduction in parasite drag and down-
load by configuration redesign, the vehicle cabin arrangement was modified as noted in Section
2.0 (Table A-2 provides a comparison of the relative download and drag levels of both cabin
arrangements.). Vehicle energy consumption and operating cost were then determined for a 	 r.

r
is

r
}

.__
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NAS2 B048

RESULTEARLIER
STUDY DEFINEDINED
100 PASSENGER, W/A=9, VT	 725
VEHICLE

ft

IN ORDER TO REDUCE
VEHICLE PARASITE DRAG& DOWN LOAD
BY REDUCING FUSELAGE WIDTH,
SINGLE AISLE PASSENGER CABIN fADOPTED li

PASSENGER NUMBER & SEATING
ARRANGEMENT TRADE STUDY -	 -
PASSENGER NUMBER - 50, 75, 100 - ..
SEATS ACROSS ^ 4, 5, G -

SEATING ARRANGE MENT/PASSENGER ....
NUMBER GOM8INATION GIVING
MINIMUM DOC& El SELECTED

SHORTHAUL VERYSHORT -
MISSION W/A - VT TRADE STUDY CONDUCTED HAUL MISSION .

FOR BOTH SHORT HAUL AND VERY j

SHORT HAUL MISSIONS -

COMPROMISE

100 PASSENGER
MIN EI

100 PASSENGER
MIN El 50, 75, 100 PASSENGER	 100 PASSENGERW2ED

100 PASSENGEq
MIN E1 50, 75, 100 PASSENGER 100 PASSENGER

 O/LI (30%O/LI ID O/LT MIN DOC W/A. VT TRADE MIN DOC MIN III

DSN PT DSN PT DSN PT DSN PT HELOS. STUDY VEHICLES DSN. PT HELOS
DSN PT
DSN

HELD HELD HELD PICKED RUN ON VSH PICKED
HELD

I PICKED PICKED PI CKED (SH MSN) MSN IVSH MSNI
PICKED

COMPROMISE
VEHICLE PICKED VERYSHORTHAUL

SHORT HAUL MISSION ON BASIS OF MISSION
50, 75, 100 PASSENGER MIN DOC FROM 50, 75, 100 PASSENGER
MIN DOC DSN PT VERY SHORT HAUL MIN DOC DSN PT

c HELOS REFINED MISSION HELOS REFINED
t (o	 T

TS 
I VN Rp, VEHIC LE REFINED 1u MATCHED TO

e TOR LIMITSROTORTOR LIMI	 INCL) lu MATCHED TO VNRP, ROTOR LIMITS
VN R p, ROTOR LIMITS INCLI.
INCL)

SHORTHAUL VERYSHORTHAUL
50; 75, 100 PASSENGER 50. 75, 100 PASSENGER
DSN PT HELOS DSN PT HELOS

kSELECTED SELECTED

100 PASSENGER	 100 PASSENGER 1DO PASSENGER
C	 - SH DSN PT COMP OSN PT VSH DSN PT r

FIGURE 4.1 VEHICLE DESIGN EVOLUTION
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matrix of helicopters employing the modified cabin arrangement in conjunction with 4, 5, and
6 abreast seating for passenger capacities of 50, 75, and 100. Figures 4.2 and 4.3 illustrate the
effect of various seating arrangements—passenger capacity combinations on vehicle dimen-
sions, download and parasite drag. Figure 4.4 shows vehicle energy consumption and operating
cost for these combinations. The selection of the passenger capacity - seating arrangements
finally chosen is summarized in Table 4.1. Note that 6 abreast seating was chosen for the 75
passenger vehicle.

This selection was made on the basis of the actual closeness of the minimum El and DOC
values for 5 and 6 abreast seating and the desire to retain commonality between the 75 and 100
passenger configurations. Figure 4.5 illustrates the comparative fuselage sizes and shapes of
the selected vehicles.

4.3 Effect of Vehicle Design Parameters on Configuration Characteristics, Operating Cost,
and Energy Consumption

4.3.1 Disc Loading - Tip Speed Trade Study

Figures 4.6 and 4.7 illustrate the variation of El and DOC for various combinations of tip
speed and disc loading for passenger capacities of 50, 75, and 100 in the Short Haul Mission
Scenario. Note that even though increases in the vehicle passenger capacity result in increases
in the physical dimensions and weight, both El and DOC are reduced. _Note also that the data
plots illustrated do not differ appreciably in shape with varying vehicle passenger capacity —
only in the absolute value of El and DOC. Thus, further data plots illustrated will be for the
100 passenger capacity vehicles.

Figures 4.8 and 4.9 illustrate the variation of El and DOC for various combinations of tip
speed and disc loading for the 100 passenger Very Short Haul mission scenario helicopters.

Rotor tip speed and disc loading are very important parameters in the determination of a
vehicle's energy consumption and operating costs. For example, note in Figure 4.6 the
variation of energy intensity with rotor tip speed at a fixed disc loading. Initially, as tip speed
is reduced, power required decreases as advancing blade compressibility effects are reduced,
therefore lowering the values of mission fuel and energy intensity. However, as tip speed
continues to decrease, increases in rotor CT result in corresponding increases in the induced
and retreating blade stall components of power required. This ultimately is reflected in the
growth of power required, leading to a higher value of fuel consumption, gross weight, and
energy intensity. This increase in power required tends to be further accelerated by the fact
that as rotor tip speed decreases, rotor torque increases, causing an increase in the vehicle
propulsion/drive system weight - and ultimately an increase in vehicle empty and gross weights.

Thus, for each disc loading, there is one unique tip speed which results in a minimum energy
consumption point. This characteristic is best illustrated in Figure 4.10 which is simply an
extension of the data of Figure 4.6 to rower tip speeds and disc loadings.

Figure 4.7 illustrates the DOC values of the helicopter configurations whose El's are plotted
in Figure 4.6. Each carpet plot represents a given vehicle passenger capacity. It can be seen
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DIRECT OPERATING COST (DOC) ENERGY INTENSITY (EI) GROSS WEIGHT (GW)

50 passengers - 5 abreast 50 passengers - 5 abreast 50 passengers - 5 abreast

75 passengers - 5 abreast 75 passengers - 5 abreast 75 passengers - 6 abreast

100 passengers - 6 abreast 100 passengers - 6 abreast 100 passengers - 6 abreast
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that for each disc loading there is one tip speed that results in a minimum DOC value.
Furthermore, for each vehicle passenger capacity, there is one combination of disc loading and
tip speed which results in a minimum DOC value for that vehicle size.

Note that for each of the passenger capacities shown in Figure 4.7, the minimum DOC occurs
at a disc loading of from 6 to 8 psf and a rotor tip speed of approximately 700 ft/sec. Also,
note in Figure 4.6, for each of the vehicle passenger capacities plotted, that a minimum El is
not reached above a disc loading of 6 psf and a rotor tip speed of 675 ft/sec., indicating that
the combinations of disc loading and tip speed required for a minimum E I helicopter is
substantially below that needed for a helicopter designed for minimum DOC.

Since DOC is directly related to design gross weight, and the minimum El vehicles appear to
occur at combinations of disc loading and rotor tip speed considerably below the values as-
sociated with a minimum DOC (and therefore minimum gross weight), this intuitively suggests
that minimum El vehicles will have large design gross weights and large physical dimensions
(rotor diameter, etc.) due to their low design disc loadings and tip speeds. Thus, minimum
DOC helicopters look like the more attractive choice from both the aspect of operating costs
and vehicle size.

Accordingly, one minimum DOC design point helicopter representative of each of the vehicle
sizes (50, 75, and 100 passenger) from both the Very Short Haul and Short Haul mission
scenarios of the disc loading - tip speed trade study were selected for further refinement. At
the same time, however, a minimum El trade study based on the 100 passenger Short Haul
vehicle was conducted.

4.3.2 Minimum El Study

Although the energy intensity of the minimum DOC vehicles (current technology) is lower than
earlier technology vehicles, such as the S-61 L, improvement is still needed. Therefore, the
preceding tip speed - disc loading trade study was extended to include still Lower values of tip
speed and disc loading. Figure 4.10 illustrates the variation of energy intensity (Ell with disc
loading and tip speed for a matrix of 100 passenger, zero overlap rotor, Short Haul Mission
helicopters.. Note that, below a disc loading of 4 psf, energy intensity climbs quickly due to a
rapid vehicle weight growth. This growth is, in turn, a by-product of higher propulsion system
weight increments arising from the effects of large diameter - low RPM (i.e. high torque)
rotors. The resulting minimum El helicopter exhibits a 12% decrease (see Table 4.2) in energy
intensity relative to the baseline vehicle, but at a considerable configuration penalty (12%
gross weight increase, 47% rotor diameter increase). This configuration penalty is even more
graphically illustrated by the vehicle geometry comparison of Figure 4.16. Retention of zero
rotor overlap, although beneficial from the point of view of reduced rotor/rotor induced/
interference power effects, results in a vehicle that is very large (rotor diameter = 118 ft.),
awkward, and structurally inefficient.

Figures 4.11, 4.12, and 4.13 depict, respectively, the variation of vehicle direct operating cost,
gross weight, and installed power, for the same disc loading and tip speed combinations as
Figure 4.10. Note that at the low disc loading and tip speed required for minimum El opera-
tion, the vehicle direct operating cost and gross weight are far from being minimum values.
Note also (Figure 4.13) that the region of minimum El operation coincides with region of
minimum vehicle installed power.
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W/A VTIP O/L g/S GW DmR Q EI
DOC

($/STA.MI.)

SHORT HAUL 7.75 715 0 .123 78,820 80.5 .078 5225 .0557
MISSION
(MIN DOC)

COMPROMISE 7 705 0 .1.17 79,257 84.9 .073 5060 .0557	 (SH)
.1214	 (VSH)

SH MSN 4 685 0 .0833 88,400 118.6 .046 4580 .0611
(MIN EI,
0 O/L)

SH MSN 5 663 .338 .142 87,700 105.7 .0635 5080 .0605
(MIN EI,

VAR O/L )

SH MSN 4 705 .30 .1176 90,800 120.2 .0425 4990 .0632
(MIN EI,
30% O/L)
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Obviously, the next step would be to introduce some amount of rotor overlap in an attempt to
reduce the vehicle size/configuration penalties, knowing that some induced power penalty
would be incurred. The results are shown in Figures 4.14 and 4.15 and Table 4.2.

Figure 4.14 illustrates the variation in vehicle El which occurs when the vehicle disc loading
and tip speed combinations of figure 4.10 are reconfigured to incorporate a tandem rotor
overlap of 30%. Note that compared to the El data of Figure 4.10 the shape of the data plot is
unchanged; but the overall El level is increased. As observed earlier, this is a result of increased
induced power due to tandem rotor interference. Figure 4.15 results from the same sort of
configuration modifications, except that in this case, the distance between rotors has been
fixed and the overlap has been allowed to vary, causing both an upward shift in El and a
change in the shape of the data plot (compared to Figure 4.10).

Although these minimum El vehicles are more compact and structurally efficient (see Figure
4.16 and Table 4.2), they still suffer considerable size penalties (11 to 15% increase in gross
weight and 31 to 49% increase in rotor diameter) for considerably less reduction in energy in-
tensity (3 to 4.5%). This latter fact is of course, a result of reduced hover and cruise efficiency
due to increased rotor/rotor induced interference power effects.

Figure 4.17 summarizes the results of the minimum El trade study in bar chart format. Note
that the incorporation of overlap to reduce overall vehicle size (as depicted in Figure 4.16)
results in an increase of minimum El that substantially negates the initial reduction in energy
intensity achieved by resizing a vehicle at lowered disc loadings and tip speeds.

The conclusion is inescapable, then, that optimization of a vehicle for reduction of El only by
Lowering the disc loading and/or rotor tip speed is not justifiable for that reason alone due to
the attendant large configuration penalties accompanying such a reduction.

4.3.3 Energy Intensity Reduction by Modification of Design Ground Rules

Another method for potential reduction of El is by modification of vehicle sizing ground rules.
What would be the effect on El, for example, of simply eliminating the one-engine-inoperative
(OEI) in hover requirement for engine sizing and designing the helicopter with only two
engines instead of three? In order to find out, the disc loading -tip speed trade study (Short
Haul Mission) referred to earlier was repeated with those modifications to the engine sizing
ground rules. figures 4.18, 4.19, 4.20 and 4.21 show the resulting values of energy intensity,
direct operating cost, gross weight, and installed power. Comparison of this data with the
corresponding plots for the helicopters sized to the original ground rules (Figures 4.10, 4.11,
4.12 and 4.13) reveals substantial reductions in all four parameters. Table 4.3 illustrates a
comparison between the baseline minimum DOC helicopter and a minimum DOC design point
picked from Figure 4.18. Note that the "revised ground rules" design point helicopter exhibits
a 23% reduction in El, lower even than the minimum El helicopters studied earlier - a point
emphasized by Figure 4.22.

The reduction in E  is a direct result of the iterative nature of the vehicle sizing process. That
is, for a vehicle sized to meet specific mission requirements at a fixed payload, any reduction in
en^ipty weight results in a corresponding reduction in vehicle gross weight and therefore a de-
crease in the total fuel required to fly the mission. This means that the helicopter can be
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TABLE 4.3 EFFECT OF OEI SIZING REQUIREMENT ON VEHICLE CHARACTERISTICS

VEHICLE	 GW	 DMR	 o	 EI	 DOC ($/STA.MI.)

SH MSN
(MIN DOC) 78,820 80.5 .078 5225 .0557

SH MSN 71,300 76.53 .078 4040 .0504
(MIN DOC) (9.5% (22.7% (9.5%
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Y

further reduced in size to achieve a match of empty weight plus payload plus mission fuel
equal to some lower design gross weight.

In this particular case, the revision in mission ground rules dictates a smaller propulsion system
(engines, drive system, rotors, etc.) with a resulting reduction in empty weight and therefore
gross weight and El, as noted above.

4.4 Selection of Design Point Vehicles for Further Study

4.4.1 Refinement of Initial Design Point Vehicles

As part of the mission scenario ground rules initially set forth is the requirement for the heli-
copter to cruise at normal rated power (N RP). Another requirement (in this case, a sizing
ground rule) is that the vehicle should have sufficient rotor solidity to maintain 1.0 g level
flight at this speed. Thus a perfectly matched vehicle has sufficient rotor solidity to insure
that the cruise speed at which the rotor limit is reached coincides with VNRP• A helicopter
with less capability is rotor limited. One with more capability is power limited.

The initial minimum DOC design point vehicles resulting from the disc loading - rotor tip speed
trade study referred to in Section 4.3.1 were not completely matched vehicles. That is, these
helicopters' rotor solidities were sized based on the rotor limits shown in Figure A-1, but at
cruise speeds which turned out to be less than VN RP, making them rotor limited. Further re-
finement involved the resizing of the rotor solidity to increase the rotor limit cruise speed so as
to match V NRP speed. This resulted in an increase in solidity which in turn caused escalations
in vehicle empty and gross weights — and therefore E1.

4.4.2 Influence of External Noise Criteria In the Selection of Design Point Vehicles

The effect of external noise criteria on the design of helicopter configurations is extremely
pertinent since external noise and community acceptance may become governing parameters
if operations with V/STOL aircraft are to achieve the advantages of potential block time
savings for the short haul traveller. Such time savings will require operation from high popula-
tion density urban and suburban areas as well as major airports.

The primary design parameters which dictate the rotor rotational and broad band noise are tip
speed and blade area or solidity.

The effect of decreasing solidity and increasing the tip speed reduces the aircraft design gross
weight and increases the sideline perceived noise level and vice versa. Decreasing solidity also
provides decreased direct operating costs.

Figure 4-23 (from Reference 4) shows typical design points from Reference 4 plotted vs. 500
ft sideline noise level. The baseline vehicle is a minimum DOC design point helicopter flying a
short haul mission. Note that attempts to further reduce the baseline vehicle noise level by
the lowering of rotor tip speed and the addition of solidity results in rapid increases in DOC.





Referring back to Figures 4.6 and 4.11 in Section 4.3.1, it can be seen that the minimum DOC
vehicles always occur at moderate values of disc loading and tip speed. Therefore, it can be in-
ferred that optimizing a helicopter for minimum DOC dictates a choice of moderate disc load-
ings and tip speeds which insures that the resulting vehicle falls below the 95PNdB level.

4.4.3 Selection of a Compromise Design Point Helicopter

Up to this point in the vehicle design evolution, the helicopters have been sized for either the
Very Short Haul Mission or the Short Haul Mission. Obviously, a vehicle sized for the Short
Haul Mission can also perform the Very Short Haul Mission at some alternate (Fighter) takeoff
gross weight.

Thus, at this point, it was decided to study a third helicopter configuration which was sized to
perform the Short Haul Mission but was selected on its minimum DOC characteristics when
operated on the Very Short Haul Mission. This was accomplished in the following manner.

First, each one of a configurations in the already sized matrix of helicopters of the Short
Haul Mission disc loading - tip speed trade study (Figure 4.6) was operated on the Very Short
Haul Mission at the (lower) alternate gross weights required to accomplish that particular
mission scenario. From the resulting Very Short Haul Mission DOC data a disc loading - tip
speed combination for each of the passenger capacities (50, 75, and 100) was selected on the
basis of minimum DOC.

Note that the vehicles resulting from this choice are not resized vehicles, but are simply a dif-
ferent set of Short Haul helicopters selected by different ground rules (minimum VSH DOC's
instead of minimum SH DOC's).

Since this particular set of helicopters are Short Haul helicopters chosen on the basis of Very
Short Haul operational characteristics, they have been designated compromise design
helicopters.

Table 4.4 lists the 50, 75, and 100 passenger VSH and SH design point helicopters and the 100
passenger compromise design helicopter. Note that the characteristics for the compromise
design helicopter listed in this table are for the Short Haul Mission.

Note that the 100 passenger compromise design vehicle is superior in both El and DOC charac-
teristics to the corresponding 100 passenger Short Haul vehicle. This is simply a reflection of
the relative flatness of the DOC curves near the minimum point and the difficulty of precisely
picking the correct disc loading - tip speed combinations from data plots such as Figure 4.7.

Figure 4.24 illustrates the comparative values of El for the S-61 L and the VSH and SH design
point helicopters. That the difference in the values of El for the S-61 L and the study heli-
copters is not greater is due, in large part, to the OEI hover requirement, which the S-61 L is
not required to meet.

Figure 4.25 shows the comparison between the El's of the three 100 passenger design point
vehicles.



CA)w

MSN
PAX

CAPAC W/A VT G/S GW DMR Q Fe SHP* EI DOC FC

SH- 50 7 708 .156 45102 64 .090 42.5 8459 6377 $.0808 $3,856,731

75 7 712 .130 64297 76.5 .093 45.6 12011 5859 $.0653 $5,269,882

100 7.75 715 .119 84207 83.2 .106 47.95 16666 5917 $.0581 $6,772,858

VSH 50 7.25 >712 .165 41647 60.5 .088'40.9 7938 6550 $.1736 $3,656,672

75- 7.50 707 .139 60168 71.5 .100 44.12 11751 6175 $.1402 $5,077,112

100 8 720 .127 77300 78.4 .104 46.01 15524 5998 $.1236 $6,363,188

COMPR 100 7 705 .113 84133 87.5 .1.00 47.93 15710 5612 $.0578 $6,754,787

*INSTALLED POWER
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The compromise helicopter is the more efficient approach since it results in one configuration
capable of performing either the Short Haul or Very Short Haul missions. However, in order to
illustrate the relative characteristics of two classes of helicopters (one capable of performing
both missions, the other sized specifically for the air taxi mission), both a 100 passenger com-
promise design helicopter and a Very Short Haul Mission minimum DOC design point heli-
copter have been chosen for further study.

4.5 Design Point Helicopter Description

Tables 4.5, 4.6, 4.7 and 4.8 list, respectively, the major vehicle characteristics, weight break-
downs, initial and direct operating costs, and drag breakdowns of the selected VSH and Com-
promise design point vehicles. Figure 4.26 illustrates a comparison of the fuel consumption of
some existing fixed and rotary-wing vehicles. Spotted on this data are the "mileage" figures for
both the VSH and Compromise design points. Note that both vehicles are more efficient than
most of the currently operating rotary-wing aircraft shown, reflecting the differences between
the underlying technology base of these earlier designed vehicles and current technology. The
one exception is the UTTAS helicopter, which, of course, utilizes the same technology as the
design points. Figure 4.27 shows DOC vs range for the baseline tandem rotor helicopter of
Reference 4. Note that the DOC values from Table 4.7, if superimposed on this data, follow
the same trend, but at higher levels. The difference, of course, is that the data of Reference 4
represents a fully developed advanced technology helicopter, while the data of Table 4.7
represents helicopters designed with current technology.

4.6 Summary of Current Technology Levels Applied to the Design Point Helicopters

4.6.1 Vehicle Structural/Design Technology

The airframe and dynamic systems of the two design point vehicles are wholly conventional in
their design. Table 4.9 Fists their underlying design assumptions. The actual weight trends used
in calculating subsystem weights are as defined in Reference 2. The values of the fixed equip-
ment weights are as given in Table A-2, Appendix A.

4.6.2 Powerplant Technology

The powerplant utilized in this study is the AVCO Lycoming LTC4V-1. This engine is an out-
growth of the T-55L-11 and should be considered representative of current technology axial
flow turboshaft engines in the 5000 to 10,000 SHP class. Its characteristics include an overall
pressure ratio of 16, a maximum turbine inlet temperature (TIT) of 2660 0 R, a weight/power
ratio of 0.15 Ib/SHP (uninstalled), and a specific fuel consumption (SFC) of .42 lb/hp/hr (oL,
90O F takeoff rating). The instal!ation factors applied include inlet and exhaust losses and a 1%p
compressor bleed for air conditioning and pressurization.

4.6.3 Rotor Performance Technology

The rotor employed in this study is of constant chord and has linear twist from cutout to tip.
Airfoil thickness/chord ratio and camber vary along the blade span. The airfoil sections
utilized are Boeing Vertol developed high speed (transonic) sections developed from the NACA
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TABLE 4.5 CURRENT TECHNOLOGY (1975) DESIGN POINT HELICOPTER
CHARACTERISTICS

P

VERY SHORT HAUL
MSN HELICOPTER

COMPROMISE DSN
PT. HELICOPTER

WEIGHTS

DESIGN GROSS WEIGHT 77,300 LB. 84,133 LB.
WEIGHT EMPTY 52,011 LB. 56,073 LB.
FUEL 5,346 LB. 8,117 LB.

NO. OF PASSENGERS 100 100

ROTOR

DISC LOADING 8.0 PSF 7.0 PSF
DIAMETER 78.4 FT. 87.5 FT.
SOLIDITY .104 .100
NO. OF BLADES 4 4
TWIST -12 DEG. -12 DEG.
TIP SPEED 720 FT/SEC 705 FT/SEC

POWER

NO. OF ENGINES 3 3
RATED POWER (S.L.,STD)/
ENGINE 5175 SHP 5237 SHP

FUSELAGE

LENGTH 88.2 FT. 88.2 FT.
WIDTH 12.92 FT. 12.92 FT.
ROTOR GAP/STAGGER .127 .113

PERFORMANCE

VNRP 203.3 KTAS 200.8 KTAS
CRUISE ALTITUDE 500 FT. 2000 FT.
BLOCK SPEED 77.04 KTAS 136.6 KTAS
BLOCK TIME 1.298 HR. 1.464 HR.
FLIGHT TIME 0.724 HR. 1.064 HR.

ENERGY INTENSITY 5998 BTU/PASS- 5612 BTU/PASS
N.M. N.M.

}



BOEING VERTOL COMPANY	 WEIGHT SUMMARY - PRELIMINARY DESIGN
,MIL-STD-1374)  

TABLE 4.6
CURRENT TECHNOLOGY (1975)

DESIGN POINT HELICOPTER
WEIGHT BREAKDOWN

VERY SHORT

HAUL

-DESIGN POINT

COMPROMISE

DESIGN POINT
WING t

ROTOR 8624 0190
TAIL t

SURFACES
ROTOR

BODY ,	 10815 11174
BASIC
SECONDARY

ALIGHTING GEAR GROUP 3092 3365
ENGINE SECTION i	 70P 716

PROPULSION GROUP 11961 13074
ENGINE INST'L 23F 0 2388
EXHAUST SYSTEM 47 48
COOLING
CONTROL'S
STARTING 16 167
PROPELLER INST'L
LUBRICATING 24 24
FUEL 369 _ 560

9791

4198

DRIVE 8902
FLIGHT CONTROLS 3455

i
f

AUX. POWER PLANT 940 940
INSTRUMENTS 575 575

680HYDR. & PNEUMATIC- 680
ELECTRICAL GROUP 1230
AVIONICS GROUP 846
ARMAMENT GROUP
FURN. & EQUIP. GROUP 7535

ACCOM. FO R PERSO N.
MISC. EQUIPMENT
FURNISHINGS
EMERG. EQUIPMENT

AIR CONDITIONING 1150 1,150
ANTI-ICING GROUP 400 400
LOAD AND HANDLING GP.

J Poo

WEIGHT EMPTY 52011 I	 5507

CREW & I'Ruip . 770 770
TRAPPED LIQUIDS 115
ENGINE OIL 132 132

> Ebner	 . F	 i*-, . 16 16
Passenger Accom. 910 91,0

Passemers 18000 18000

FUEL 5346 8117

GROSS WEIGHT 773 ?0 84133

FORM 26391 12/73)	 -38



VEHICLE
(DESIGN POINT)

FLYAWAY COSTS

VSH MISSION
COMPROMISE

(DESIGN POINT)
Airframe Cost $100/Lb $100/Lb

Airframe $3,127,923 $3,285,814
Dynamic System 1,577,316 1,798,309
Engines 1,357,950 1,370,664
Avionics 300,000 300,000

Total $6,363,188 $6,754,787

DIRECT OPERATING COSTS
VEHICLE	 (DOLLARS/SEAT-MILE)

(DESIGN POINT)	 COMPROMISE

	

VSH MISSION	 (DESIGN POINT)

Block Distance	 115.16 S.M.	 230.31 S.M.

Flying Operations
Flight Crew .021411
Fuel and Oil .010838
Hull Insurance .004781

Total Flying Operations .037030

Direct Maintenance
Airframe - Labor .011553

Material .007439
Engines	 - Labor .003576

- Material .007641
Dynamic System -

Labor .002912
Material .003001

Total Direct Maintenace .036123

Maintenance Burden .027062

Total Maintenance .063184

Depreciation .023390

Total Direct Costs .123604

3000 HR/YEAR UTILIZATION

.01208

.01012

.00286

.02505

.00223

.00139

.000997

.001866

.002095

.002151

.010728

.007986

018713

.013992

.057758

TABLE 4.7 CURRENT TECHNOLOGY (1975) DESIGN POINT HELICOPTER
INITIAL AND DIRECT OPERATING COSTS
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TABLE 4.8 CURRENT TECHNOLOGY 0975) DESIGN POINT TANDEM
HELICOPTER DRAG BREAKDOWN

DESIGN POINT VERY SHORT COMPROMISE DESIGN
HAUL MISSION POINT

ITEM DRAG AREA Fe-Ft2 D,RA:G AREA F:e.-Ft2

Fuselage 3.886 8.886

Forward Pylon 2.884 2.884

Aft Pylon 3.0609 3.0609

Nacelles 1.4618 1.4618

Miscellaneous

Oil Cooler 0.3 0.3
Momentum Loss

Air Conditioning 0.5 0.5

Trim 0.09 0.09

Sub Total 17.183 17.183

Rotor Hubs 28.83 30. 75

TOTAL DRAG AREA 46.01 47.93

Drag Loading	 FW
Fe

77300 
= 168046.01

84133 
= 175547.93

lb/ft lb/ft
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VEHICLE COMPONENT MATERIAL/STRUCTURAL
DESIGN PRAC'T'ICES

VERTICAL TAIL ALUMINUM SHEET AND
EXTENSIONS

ROTORS TITANIUM AND FIBERGLASS

BODY ALUMINUM BEAMS, SKIN,
STRINGERS AND FRAMES

LANDING GEAR STEEL

FLIGHT CONTROLS CONVENTIONAL MECHANICAL
SYSTEM

ENGINE SECTION ALUMINUM SHEET

DRIVE SYSTEM CONVENTIONAL
MAIN BOXES

DRIVE SYSTEM CONVENTIONAL
OTHER BOXES

SHAFTING CONVENTIONAL, ALUMINUM

I
l'

4s

I'.

S	 b u

TABLE 4.9 CURRENT TECHNOLOGY (1975) HELICOPTER ASSUMED MATERIAL
AND STRUCTURAL DESIGN PRACTICES



6-series airfoils, and optimized for maximum lift and low pitching moment. Rotor performance
characteristics are a hover efficiency (F.M.) of approximately 75%, a maximum UDE of ap-
proximately 8 and an UD E cruise (at 200 KTAS) of approximately 6. Specific values for
these parameters are listed for each of the design point vehicles in Table 5.1. Rotor stall
flutter limits are as specified in Figure A-1, Appendix A.

4.6.4 Parasite Drag Technology

Figure 4.28 is a plot of parasite drag loading versus gross weight. For reference, the drag value
of the YUH-61A (UTTAS) helicopter is spotted on the data. The difference in drag trend level
between the UTTAS point and the trend employed in this study (1975 technology tandem
helicopters drag trend) reflects the difference between fixed and retractable landing gear.

N
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5.0 RESIZING OF DESIGN POINT VEHICLES USING ADVANCED TECHNOLOGIES

5.1 Advanced Technology Resizing Data Format

As noted in Section 4.4, the design points chosen for resizing by application of advanced tech-
nologies are the 100 passenger Very Short Haul Mission and Compromise design point helicop-
ters. Each of these vehicles was resized by allowing only one parameter at a time to be varied.
Figure 5.1 is a diagrammatic representation of the typical format employed in presenting the re-
sulting matrix of design point vehicle characteristics (in this case, percentage reductions in
vehicle El). Note the variety of combinations of independent variables whose effect on the de-
pendent variable can be assessed. For example, if Point A is assumed to be a baseline design
point, movement from Point A to Point B demonstrates the effect on El of a 10% reduction in
vehicle structural empty/gross weight. Continued movement to Point D shows the further
effect of a 5% reduction in fuel flow..

5.2 Parameter Variation

The parameters (and their variation) utilized in this study are as follows:

Parasite Drag	 - 0, 25, 50% Reduction
Fuel Consumption	 - 0, 5, 10% Reduction
Structural Empty/
Gross Weight Ratio	 - Of 5, 10, 15% Reduction
Rotor Hover Efficiency (F.M.) - 0, 5, 10, 15% Increase
Rotor Cruise Efficiency (L/D E) - 0, 10, 20% Increase

The parametric value levels assumed for this study are for the purpose of defining the sensitivity
of energy consumption—and should not necessarily be assumed to be attainable. The actual
technology levels estimated to be attainable are defined in Section 6.0.

5.3 Parameter Definitions

5.3.1 Parasite Drag

Parasite drag is the total configuration drag (including rotor hub(s)) which must be overcome by
the helicopter in forward flight. As used in this study, it is expressed as equivalent parasite drag
area (drag/dynamic pressure), or Fe, whose units are square feet. Values of the baseline vehicle
parasite drags are given in Tables 4.8 and 5.1.

5.3.2 Fuel Consumptions

No attempt is made to reflect fuel consumption reductions due to improvement in specific fuel
consumptions only over a limited range of power settings (i.e., a modification of SFC vs. power
characteristics). Rather it is assumed that SFC is reduced over the entire operating range of the
engine. For example, a 5%o reduction in fuel consumption (compared to the baseline vehicles)
refers to an across the board reduction of 5% in engine SFC.

5-1
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5.3.3 Structural Empty/Gross Weight Ratio-	 i

`	 Structural empty weight is defined as empty weight minus the fixed equipment weight. For
example, the structural empty weight of the compromise design point helicopter is 56,073 lb
-13,356 lb = 42,717 lb. for comparisons of vehicle weight reductions due to materials/structures
technology improvements, structural empty weight is a more meaningful parameter than total
empty weight, since it is freed of the obscuring effect of fixed equipment weight, which itself is
only a function of the design mission. Likewise, percentage reductions in the structural empty/
gross weight ratio are a more meaningful means of evaluating materials/structures technology
improvements than percentage reductions in empty weight, since the structural empty/gross
weight ratio automatically reflects the iterative scaling effect of empty weight reduction on gross
weight in the sizing process. Therefore, all the empty weight reductions presented will be in 	 ?
terms of percentage reductions in structural empty/gross weight.

5.3.4 Rotor Hover Efficiency

Hover efficiency or F.M. is a measure of a rotor's efficiency in converting power into static
(hover) thrust. The F.M.'s referred to in this study are the design point condition (SL, 90°F)
values used in configuration engine sizing. Note that the percentage improvement in F.M. re-
ferred to in Section 5.2 is not a o F.M. to be added to the baseline F.M., but is a percentage
change of that baseline value. For example, a 10% improvement to a baseline F.M. of .75 is
.75+.075 = .825, not .75 + .10 = .85.

5.3.5 Rotor Cruise Efficiency

Rotor cruise efficiency, or L/D E , is a measure of a rotor's efficiency in producing lift while
overcoming its own equivalent drag. The L/D E 's varied in this study are the cruise L/DE's

'	 occurring at the vehicle normal rated power speed. As such, they are lower than the rotor's
maximum L/D E value which occurs at a lower speed.

It should also be noted that these are isolated rotor L/DE's. This is of interest since inherently
a tandem rotor configuration suffers from mutual rotor interference effects (reduced to some
extent by decreasing rotor overlap), which results in a lowering of the overall L/D E for both
rotors. Percentage improvements in L/D E are defined in the same manner as for F.M. in Sec-
tion 5.3.4.

5.4 Baseline Vehicle Characteristics

Table 5.1 summarizes the major vehicle characteristics of the baseline vehicles and their reduced
parasite drag derivatives. Table 5.2 provides a summary of the baseline values of rotor hover
efficiency (F.M.), rotor cruise efficiency (L/D E ), vehicle structural empty weight fraction, and
normal rated power speed for these vehicles. These tables also present somewhat of an anamoly
ire that the vehicles with reduced parasite drag levels are heavier and exhibit a reduction in El
substantially less than would be expected for the decrease in parasite drag Level shown. The
explanation, however, is simple. As briefly noted in section 4.4.1, there is a groundrule require-
ment for all vehicles to be rotor limit/cruise power matched. Now, initially when the baseline
design point vehicles were resized to reduced parasite drag levels, it was found that the resulting
vehicles were li ghter and had reduced values of El. However, it was noted that because of the
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DESIGN
POINT

VEHICLES
LOADING

PSF

ROTOR
TIP
SPEED
FPS

ROTOR
CAP/
STAGGER
RATIO

GROSS
WEIGHT

LB

ROTOR
DIN =,.R

FT

ROTOR
SOLIDI Fe

FT

INSTALLED
POWER

SHP

ENERGY
DUENSITY

BS N.M.
OPERATING

$/
 COST

 MILE

FLYAtiW
COST

$

Compromise 7 705 .113 84133 87.5 .100 47.93 15710 5612 .0578 6,754,787
(0% Reductio
in Fe )

Compromise 7 705 .113 84507 87.7 .103 36.02 15864 5547 .0571 6,809,659
(.25o Reduc-
tion in Fe)

Compromise
(50o Reduc-

7 705 .113 84702 87.8 .106 24.04 15970 5456 .0564 6,847,939

tion in Fe)

Very Short
Haul Msn
(0o Reduc-

8

i

720 .127 77300 78.4 .104 46.01 15524 5998 .1236 6,363,188

tion in Fe)

Very Short
Haul Msn
(25% Reduc-

8 720 .126 77604 78.6 .108 34.57 15661 5890 .1220 6,408,248

tion in Fe)

Very Short
Haul Msn
(50o Reduc-
tion in Fe)

8 720 .126 77803 78.7 .111 23.08 15770 5748 .1202 6,444,674

i
i

TABLE 5.1 SUMMARY OF MAJOR VEHICLE CHARACTERISTICS CURRENT TECHNOLOGY
DESIGN POINT VEHICLES AND THEIR REDUCED PARASITE DRAG DERIVATIVES 	 `—



DESIGN
POINT
VEHICLE

GROSS
WEIGHT
(LB)

STRUCTURAA—L-R-0MR
EW/GW SOLIDITY

Fe
(FT2)

DESIGN
FIGURE
OF

MERIT

ROTOR
L/De
@

VNRP

VNRP
(KTAS)

Compromise 84133 .508 .100 47.93 .749 5.95 200.8
(0a Red-in
Fe)

Compromise 84507 .511 .103 36.02 .746 5.50 206.6

(25% Red.
in Fe)
Compromise 84702 .514 .106 24.04 .743 5.20 211.2
(50% Red.
in FP)

Very Short 77300 .500 .104 46.01 .745 5.55 203.3
Haul Mission
(0% Red.	 in
Fe)

Very Short 77604 .503 .108 34.57 .741 5.25 208.1
Haul Mission
(250 Red.
in Fe)

Very Short 77803 .506 .111 23.08 .739 4.75 215.4
Haul Mission
(50% Red.	 in
Fe)

cn
in

TABLE 5.2 SUMMARY OF PERFORMANCE CHARACTERISTICS CURRENT TECHNOLOGY
DESIGN POINT VEHICLES AND THEIR REDUCED PARASITE DRAG DERIVATIVES
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f
reduced parasite drag power requirements, rotor limits were encountered before the NRP cruise

[	 speed was attained.

As noted in section 4.4.1, strict adherence to the study groundrules therefore dictated an in-
crease in rotor solidity to allow matching of the rotor limit cruise speeds and NRP cruise speeds.
However, the increase in solidity resulted in an increase in the rotor and rotor system weights
plus a degradation in hover performance resulting in more engine growth—all contributing to a
net increase in the design gross weight of the vehicle and a subsequent reduction in the relative
El savings realized.

5.5 Data Utilization and Interpretation

This data is meant to be used in determining the effect of various technology improvements on
the energy consumption, gross weight, and developmental and operating costs of a tandem rotor
commercial helicopter. Used in conjunction with a given set of technology improvement esti-
mates and the baseline vehicle data of Tables 5.1 and 5.2, the data enables a quick, accurate
estimate of the size, energy usage, and cost of such a vehicle.

It should be noted that although this study was performed assuming a tandem rotor configura-
tion, the overall trends of El, gross weight, and DOC obtained are just as applicable to single
rotor helicopter configurations.

For example, although the single rotor helicopter does not suffer a rotor interference power
penalty in cruise flight, it does have a tail rotor power increment to consider. Thus, comparing
single and tandem rotor vehicles of equal capabilities, the power required characteristics are
almost identical (and so are the El's).

Now, the major component of the vehicle empty weight which reflects configuration differences
is the propulsion system. Although a single rotor helicopter has only one main rotor (compared
to the two of the tandem), it also has the smaller tail rotor which operates at a different RPM
than the main rotor, necessitating extra gear reduction boxes, etc. Thus, the total propulsion
system weights of comparable tandem and single rotor helicopters are very close, considering
all configuration differences. Obviously this results in very similar values of structural/empty
gross weight for both configurations.

Since El (or mission fuel consumed) and the structural empty/gross weight ratio (and ultimately
gross weight) do not differ greatly for comparable vehicles of either configurations it can be
inferred that the same applies to DOC, which depends strongly on both mission fuel consumed
and vehicle gross weight. Thus, although the points for minimum DOC and El operation of a
single rotor helicopter may occur at different combinations of top speed and disc loading than
those for a tandem rotor helicopter, the minimum points themselves will be at the same level.

Consider Table 5.3. The values shown are the projected technology improvements attainable
by 1985 (see Section 6.0) and the values of energy intensity reduction realized for the com-
promise design point helicopter assuming each technology improvement is individually obtained.
As illustrated in Figure 5.1, the determination of the energy intensity reduction, based on the
variation of one parameter at a time, is simply a matter of "sliding" along the applicable data
plot.
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TABLE 5.3 PROJECTED TECHNOLOGY IMPROVEMENTS AND THEIR EFFECT
ON ENERGY INTENSITY

4.76%

9.3%

20%

54%

Y,	12.1%

Technology Improvement

reduction in SFC

increase in F.M.

increase in L/DE

reduction in parasite drag

reduction in structural EW/GW

% Reduction in Energy Intensity

5.8%

9.20

6.5%

3.10

12.5%



At times, data interpolation is required, since each data plot is for a given combination of para-
site drag reduction and rotor figure of merit improvement. For example, the figure of merit
improvement projected by 1985 is 9.3%. Determination of the corresponding energy intensity
reduction requires that data be read from Figures B-1, B-2 and B-4, Appendix B (figure of merit
improvements = 0, 5 and 10%, parasite drag reductions = 0%), assuming zero change in the other
parameters (EW/GW, fuel consumption, and UDE), and cross plotted.

More extensive interpolation and cross plotting is needed if the effect of the simultaneous varia-
tion of several parameters on energy intensity is to be obtained. For example, determination of
the energy intensity reduction resulting from the combined effect of all the technology improve-
ments listed in Table 5.3 is as follows:

(1) Data is read from Figures B-1, B-2 and B-3 for values of fuel consumption reduction,
EW/GW reduction, and UD E improvement of 4.76, 12.1 and 20%, respectively. The
resulting percentage energy intensity reductions are plotted versus figure of merit
improvement and the percentage energy intensity reduction for a figure of merit
improvement of 9.3% determined.

(2) The procedure of (1) is repeated for parasite drag reductions of 25 and 50% using
Figures B-5, B-6, B-7, B-9, B-10 and B-11.

(3) The resulting values of percentage energy intensity reduction are plotted versus
parasite drag reduction and the value of energy intensity reduction for a 54%
reduction in parasite drag read off.

It is very important to note that the effect of combined parameter variation on the data of this
study is not obtainable by simple addition of the individual components. For example, summa-
tion of the individual energy intensity reductions listed in Table 5.3 results in a total value of
37.1 % compared to the actual value of 30.35% obtained by the interpolation process discussed
above.

Inspection of the data reveals that, comparatively speaking, the largest decreases in energy in-
tensity are obtained when the structural empty/gross weight ratio is reduced and the rotor hover
efficiency is improved. The former is due to the beneficial influence that reducing the structural
empty weight fraction has on the vehicle sizing process itself. The latter is simply a manifesta-
tion of improved fuel consumption due to the smaller sized engines dictated by the higher figure
of merit.

5.6 Data Presentation

The technology improvement resizing data, contained in Appendix B, is grouped in the follow-
ing manner:

3

Figure B-1	 B-12
Figure B-13 -• B-24
Figure B-25	 B-36
Figure B-37	 B-48
Figure B-49	 B-60

Energy Intensity (Compromise Design)
Gross Weight (Compromise Design)
Direct Operating Cost (Compromise Design)
Flyaway Cost (Compromise Design)
Energy Intensity (Very Short Haul Mission)
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Gross Weight (Very Short Haul Mission)	 Figure B-61 - B-72
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6.0 PROJECTION OF HELICOPTER TECHNOLOGY TRENDS

In this section, the salient helicopter 'technologies which impact energy consumption are identi-
fied. The current state of the art for each is given and then improvements are projected as a
function of time to the 1985 time frame. The actions needed to achieve the projected levels and
the resources required are then quantified.

For the purpose of this study, the resources consist of the estimated research, development and
W	

test dollars required to develop each technology to the point where it could be applied to civil
helicopter applications. Production tooling, engineering and other production related costs are
not considered. It should be noted, however, that the production costs could significantly in-
crease total development costs. Estimation of production costs was beyond the scope of this
study since they depend strongly on production quantities and individual contractors facilities.
The areas which are discussed are generally applicable to both single and tandem rotor helicop-
ters, although they will be applied only to the tandem rotor helicopters discussed in previous
sections.

Powerplant improvements, increased rotor efficiency, improved materials and reduced parasite
drag levels have the potential for reducing energy consumption. These technology improvements
will enhance the helicopter's capabilities to perform the specified missions. The technology pro-
jections presented form the basis for determining the most cost effective mix of advanced tech-
nology for reducing energy consumption.

6.1 Powerplant Improvements

Technology advances in turboshaft engines are directed toward achieving lower engine SFC and
weight. The primary factor driving reduced to .42 lb/hp-hr. Typically, these engines operate at
turbine inlet temperatures of approximately 2200°F with pressure ratios between 12 and 16.
For example, the Allison T701 derivativQ engine developed for the Heavy Lift Helicopter has a
pressure ratio of 12.8 and a turbine inlet temperature of 2240°F operating at military power.
Because this engine was optimized to operate at 50% part power, its SFC was increased to .47

- lb/hp-hr. If it had been optimized for rated power, the SFC would have been reduced to .43
b/hp-hr. The Lycoming LTC4V-1 engine, under development since 1967 has a design pressure

ratio of 16 and a trubine inlet temperature of 2200°F. It has achieved an SFC of .425 lb/hp-hr.
Currently, there is no active development program for this engine.

For this study, two engine concepts have been examined to determine which concept has the
greatest potential for reduced SFC for the 1985 time frame. The two concepts are the conven-
tional turboshaft engine operating at higher design pressure ratios and turbine inlet temperatures
and the second is a regenerative turboshaft engine. The advanced conventional turboshaft engine
was selected because the technology is available and the regenerative engine concept was chosen
because it offers reduced SFC, both at design power rating and at part powers. This feature
could be important for some mission applications.

Figure 6.1 shows the trend of engine SFC with time for conventional turboshaft engines and for
regenerative engines. For the conventional turboshaft engine, an SFC of 0.4 can be reached by
the late 1980's. The improvement in SFC is accomplished principally by increasing compressor
design pressure ratio and turbine inlet temperature. For the regenerative engine concept, the
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figure shows a potential SFC of .36 lb/hp-hr. This is accomplished by the addition of a heat ex-
changer between the engine exhaust gas and the compressor exit airflow which improves the
thermal efficiency of the engine by recovering some of the heat energy normally lost in the
exhaust.

6.1.1 Conventional Turboshaft Engine Concepts

Figure 6.2 shows the design point performance relationships for the conventional turboshaft
engine. 'The figure shows higher turbine inlet temperature and compressor pressure ratios result
in decreased fuel consumption. It is expected that increases in compressor component capability
will decrease the number of stages required to obtain a desired overall pressure ratio and higher
turbine inlet temperatures can be achieved with air-cooled nozzle vanes, turbine blades, and
disks. For the 1935 time frame, overall compressor pressure ratios between 16 and 20 and tur-
bine inlet temperatures between 2400°F and :2500°F should be attainable. This is shown on the
figure. Also shown on the figure is today's technology. It should be noted from Figure 6.2 that
further reductions in conventional turboshaft SFC can only be achieved by extremely large
changes in pressure or temperature — well beyond the projected state of the art.

Although Figure 6.2 is for design-point performance, it is useful also to indicate part-power per-
=- formance of an engine (indicated by the dash line). Lower compressor pressure ratio arld tur-

bine-inlet temperature at part-power result in higher SFC than the design point. The trend in
advanced-technology engines is to optimize the output shaft speed at a part-power condition,
and minimize the penalty associated with nonoptimum free turbine speed.

6.1.2 Regenerative Engine Concepts

The conventional turboshaft engine dissipates a large proportion of the input fuel energy as ex-
'-

	

	 haust heat. The regenerative turboshaft engine uses a heat exchanger to recover much of the
energy normally lost in the exhaust gases. The addition of a heat excahnger between the engine
exhaust gas and the compressor exit air improves the thermal efficiency of the engine by re-
covering some of this energy, transferring heat to compressor discharge air, and reducing the
amount of fuel required by the combustor to achieve desired turbine-inlet temperatures. The
result is an improvement in the SFC of the regenerative engine compared to the conventional
turboshaft engine.

The design-point SFC of the regenerative engine is lower than that of the conventional engine,
but even more significant than the improvement in design-point performance is the further im-
provement in SFC at part-power conditions.

Figure 6.3 illustrates design-point performance trends for conventional and regenerative turbo-
shaft engines for a given level of component technology, and shows the improvement in SFC as
a function of compressor pressure ratio. The -2500°F turbine-inlet temperature is projected for
the 1985 time period.

The major characteristic of the regenerative engine is that the SFC optimizes at a relatively low
pressure ratio. The relatively low pressure ratio results in -a simpler compressor design with
fewer stages required.
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Although Figure 6.3 presents design-point performance, it is representative of off-design
performance as well. The regenerative engine trend curves illustrate the advantage of maintaining
a high turbine-inlet temperature down to part-power operation. Part-power operation at a
constant high turbine inlet temperature requires variable flow characteristics for the turbine and
variable turbine stator vanes are necessary. Variable power turbine stator vanes permit engine
part-power operation at design turbine temperature and result in a flat SFC characteristic over
most of the operating range. Figure 6.4 (from Reference 5) illustrates the SFC characteristics
that can be anticipated for a hypothetical variable geometry engine with a design compressor
ratio of 10.

6.1.3 Development Costs

Estimated engine development coF_s as a function of shaft horsepower were presented in
Reference 6 as a function of rated horsepower. They were originally developed by the RAND
Corporation (Reference 7) and updated by Boeing. They included the research and development,
military qualification testing and production tooling costs. Estimated production tooling costs
were substracted. Fiugre 6.5 shows the estimated development costs for conventional and
regenerative engines. They included initial contractor preliminary design, engineering, proto-
type tooling, material, fabrication, assembly and bench testing, and a 50 hour endurance test.
At this point the engine could be used for prototype anf flight testing. Regenerative engines
are 20% higher than conventional turboshaft engines. This increase reflects the increased costs
associated with developing the regenerator, since the costs would be the same. If a new
advanced engine of approximately 5000 horsepower, with reduced SFC were to be developed
for the 1985 time frame, Figure 6.5 shows the development cost for a conventional turboshaft
engine to be 61 million dollars and a regenerative engine to be 73 million dollars. The develop-
ment time required is typically 4 years.

6.2 Improved Rotor Efficiency

Rotor efficiency is measured by Figure of Merit for the static condition and the ratio of lift to
effective drag (L/D E) in cruise flight. In this section, both Figure of Merit and cruise (L/DF)
are discussed.

6.2.1 Improvement in Rotor Figure of Merit

During the first thirty years after the first successful helicopter flights in the 1930's, Figure of
Merit had only increased from the high 60%'s to the low 70%'s. But in the last few years,
motivated by the U.S. Army to develop the lifting capability of cargo carrying helicopters,
the slope of Figure of Merit improvement versus time has been increasing. A Figure of Merit of
75% has been demonstrated on a whirl tower for an HLH rotor. This is by no means the
maximum obtainable, and figures of merit of 83% can be achieved by the mid 1980's.

The two major components of Figure of Merit which have to be improved are the induced
and profile powers. The induced power is the theoretical power used m generate lift in the
absence of any airfoil profile drag. Momentum theory shows that the induced drag is minimized
when a uniform distribution of perpendicular induced or downwash velocity is ahcieved through
the rotor. Increasing the number of blades and/or having nonlinear values of twist result in more
uniform induced velocities with the associated increase in Figure of Merit.
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The other major component of actual hover power, the profile power, is dependent on the best
obtainable lift-to-drag ratio. This is a function of local Mach number. For the airfoils in use to-
day, blade sections would have to operate at C L = 0.8 0.9 to achieve the highest lift-to-drag
ratio.

Rotors have traditionally avoided C L's of this magnitude because of the difficulty of the struc-
tural requirements for high speed flight and because of the additional costs of resorting to a
tapered planform which is also required. Tor an optimum hovering rotor, the outboard sections
need to be more heavily loaded. This indicates the need for less chord outboard by tapering the
blade. If it can be done without sacrificing forward flight capability, a potential exists for re
ducing profile power to about one-half of today's levels.

By twist and planform modifications, it should be possible to achieve Figures of Merit of 83%.
Figure 6.6 shows the improvements obtained in a recent test (Reference 8) due to tailored
geometry.

Initially, we need to further understand, by model tests, the effects of geometry (nonlinear twist
and planform) and to understand the effects of Reynolds number by two-dimensional tests at
the Reynolds number of the rotor model blades. Computer models need to be developed that
will predict the results of model tests so that analyses can be used for selecting follow on model
and full scale tests. These computer models should contain the necessary aeroelastic character-
istics such that the high Figure of Merit rotor characteristics can be evaluated for their effects
on high speed forward flight and performance. Finally, the optimized hovering rotor must be
flight evaluated on the RSRA and guide lines prepared following such tests. Figure 6.7 depicts
the required research and development program and Figure 6.8 shows the expected improve-
merit in figure of merit as a function of time and the cumulative dollar expenditures.

6.2.2 Increased Rotor Lift/Effective Drag (L/DE)

Work is in progress in industry, NASA, and the Army to increase the L/D E (presently near 6) to
values approaching 7 or 8. The most interesting of this work is that variable twist changes the
span and azimuthal loading of the rotor and decreases the blade cyclic loads. With variable
twist, both the aerodynamic and structural speed limits of rotors as well as increased L/D E at a
given airspeed can be obtained. The variable twist can be put in mechanically (Kaman) or through
blade aeroelastic features of such nature as to favorably redistribute the loadings over the rotor
disk (Boeing). Experiments and analyses are also being conducted (Boeing/Army) to extend

-:	 efficient L/D E values to higheradvance ratios (	 .6). Preliminary test results show that rotor
propulsive forces with adequate lift and t_/D E 's of 7.5 can be developed by conventional rotors
up to 250 kts forward speed by the use of high values of cyclic pitch, The direction of the in-
creased rotor L/D E research program in the future is assumed to require live twist and large
cyclic pitch inputs at highspeed. In addition, higher harmonic cyclic pitch should be analyzed.
The cost and schedule to develop a rotor with 20% higher L/D at high speeds is shown in Figure
6.9. We project that the research will yield design data such that rotors could be designed with
L/D E 's vs time as shown on Figure 6.10. Research expenditures are also shown. It should be
noted that although research in the next three years (limited to minor changes of existing rotor
systems) will show 10-15% improvement in L/D E , the rear progress substantiation will come
only with full scale flight test of substantially changed rotor systems wherein the performance
and handling qualities of this high speed rotor can be verified.
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SCHEDULE
ITEM COST1976 1977 1978 1979 1980 1981 1982

HOVER TESTS (MODEL)TO ISOLATE
GEOMETRY EFFEcr5 $	 200,000 

AIRFOIL TESTS TO OBTAIN CHARACTER-
ISTICS AT SAME REYNOLDS NUMBER AS
HOVER MODEL TESTS 50,000
DEVELOP COMPUTER MODEL THAT PRE-

_

DICTS EFFECT OF TIP SHAPE, TWIST,
PLANFORM, AND AIRFOIL 75,000_
ASSESS THE LOADS AND PERFORMANCE
OF THE HIGH FIGURE OF MERIT ROTOR
IN HIGH SPEED FORWARD FLIGHT BY
COMPUTER ANALYSES 100,000
DESIGN AND CONSTRUCT ROTOR MODEL
THAT CONTAINS THE BEST BLADE
SHAPES AND AIRFOILS FOR HOVER
AND CRUISE 200,000

CONDUCT MODEL TESTS AND WRITE REPORT 200,000

DESIGN AND CONSTRUCT OPTIMUM FULL
SCALE ROTOR FOR RSRA 4,000,000

INSTALL#, TEST, AND EVALUATE
OPTIMUM ROTOR ON RSRA 3,000,000

WRITE GUIDELINES ® 150,000

FIGURE 6.7 PROGRAM SCHEDULE AND ESTIMATED RESEARCH AND DEVELOPMENT
COSTS FOR INCREASED FIGURE OF MERIT
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FIGURE 6.9 PROGRAM SCHEDULE AND ESTIMATED RESEARCF
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TILT AND CYCLIC PITCH $	 200,000
DESIGN, BUILT, AND TEST WIND TUNNEL
MODEL FOR OPTIMUM PERFORMANCE AND
LOADS 150,000

REVISE COMPUTER PROGRAM 50,000

CONDUCT FURTHER WIND TUNNEL TESTS
TO EVALUATE EFFECTS OF AEROELASTIC
ADAPTIVITY ON OPTIMUM SOLIDITY,
AIRFOIL CRITERIA, ETC. 300,000

REVISE COMPUTER PROGRAM 175,000

DESIGN, BUILD, AND TEST FULL SCALE
ROTOR FOR RSRA TO VERIFY PERFOR—
MANCE AND HANDLING QUALITIES 7,000,000

PREPARE DESIGN GUIDELINES BASED
ON FULL SCALE TESTS AND ANALYSES ® 150,000
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SCHEDULE
ITLM COST1976 1977 1978 1979 1980 1931 1982

HOVER TESTS (MODEL) TO ISOLATE
GEOMETRY EFFECTS $	 200,000

AIRFOIL TESTS TO OBTAIN CHARACTER-
ISTICS AT SAME REYNOLDS NUMBER AS
HOVER MODEL TESTS _ _ 50,000
DEVELOP COMPUTER MODEL THAT PRE-
DICTS EFFECT OF TIP SHAPE, TWIST,
PLANFORM, AND AIRFOIL 75,000
ASSESS THE LOADS AND PERFORMANCE
OF THE HIGH FIGURE OF MERIT ROTOR
IN HIGH SPEED FORWARD FLIGHT BY
COMPUTER ANALYSES 100,000
DESIGN AND CO14STRUCT ROTOR MODEL
THAT CONTAINS THE BEST BLADE
SHAPES AND AIRFOILS FOR HOVER
AND CRUISE 200,000

CONDUCT MODEL TESTS AND WRITE REPORT 200,000

DESIGN AND C014STRUCT OPTIMUM FULL
SCALE ROTOR FOR RSRA 4,000,000

INSTALL, TEST, AND EVALUATE
OPTIMUM ROTOR ON RS RA 3, 000 , 000

WRITE GUIDELINES
_FT ® 150,000

rn
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6.3 Reduced Parasite Drag

The importance of reducing helicopter cruise power requirements is increasingly evident in the
light of higher speeds demanded of new helicopter designs. Means available to improve forward
flight performance include optimizing the rotor geometry to reduce the induced and profile
power requirements, and designing a low drag airframe to minimize parasite power requirements.
As shown by the breakdown of level flight power required in Figure 6.11, the maximum reduc-
tion in power and, therefore, energy consumption is achieved by reducing parasite drag. This
represents over 45% of the total power required. Figure 6.11 was computed for a 150 knot
helicopter and, therefore, the parasite drag contribution will be larger as speed increases. A
secondary benefit provided by the reduction in parasite drag is the improvement in the flow
environment behind the fuselage. For single rotor aircraft, the increase in wake momentum will
result in improved tail rotor and stabilizer effectiveness.

The drag levels of current production helicopters are summarized in Figure 6.12. As shown,
current fixed landing gear transport helicopters have weight-to-drag (equivalent flat plate area)
ratios of 1100 or less. For example, the CH-47C transport helicopter has weight-to-drag ratio
of 1070 Ib/ft 2. If the landing gear were retractable, the weight-to-drag ratio would be 1329
Ib/ft2. This corresponds to typical fixed wing levels in the 50,000 lb gross weight category of
approximately 6000.

The component drag breakdown associated with a typical fixed landing gear, single rotor heli-
copter is illustrated inFigure 6.13. This data was developed from drag/weight trends and de-
flects an aircraft with side loading access, conventional articulated main and tail rotor hubs, and
engine nacelles positioned adjacent to the airframe. The largest drag producing items are the
hub and landing gear which account for over 50% of the drag. Also contained in Figure 6.13
are the component drag levels obtainable. These configuration improvements include such
items as retractable gear, faired hingeless main rotor, flex strap tail rotor and streamlined fuselage
with properly positioned and faired protuberances. Incorporation of these potential drag re-
ductions will result in an aircraft with 66% lower drag (Reference 9), as shown in Figure 6.14,
and will reduce the current disparity between fixed wing and helicopter drag levels. Also shown
on the figure is the weight-to-drag ratio associated with retractable landing gear helicopters.

.Based on the data and results presented in Reference 7 and shown in Figure 6.13, the following
percent reductions in parasite drag (Figure 6.15) are attainable in the mid-1980 time frame.
For a fixed landing gear configuration, a 66% drag reduction can be achieved, and for a retract-
able landing gear configuration a 54% reduction is achievable.

The solution of many helicopter drag problems are already known. For example, no new tech-
nology is needed to achieve large reductions of friction drag, leakage drag, or small protuberance
drag. All that is needed in these areas is to systematically compile the information and develop
a handbook of guide lines which designers and engineers can use.

The major unsolved problem areas are the rotor hub, shaft, blade shanks and controls. These are
corposed of aerodynamically bluff shapes which are not readily amenable to historical solutions.
Figure 6.16 shows the program schedule and research and development costs required to solve
the parasite drag problem. The program involves first, the compilation of existing design knowl-
edge followed by a broad program of analytical development and systematic testing to solve the
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*
DRAG REDUCTION N %

FIXED GEAR
DRAG REDUCTION —%
RETRACTING GEAR

F

USELAGE 8 10

G GEAR 24 NOT APPLICABLE

MAIN ROTOR HUB 16 21

NACELLES 5 6

TAILS 1 1

TAIL ROTOR HUB 6 8

PROTUBERENCES 4 5

ROUGHNESS, LEAKAGE 2 3
AND COOLING MOMENTUN

TOTAL ^' % 66 54

* As a percentage of drag of the basic fixed gear aircraft

**As a percentage of drag of a basic retractable gear
aircraft	 _.

E

C

i

t

FIGURE 6.15 PARASITE DRAG REDUCTION POTENTIAL FOR TYPICAL
SINGLE ROTOR HELICOPTER 	 -
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SCHEDULE
ITEM COST1976 11977 19781 1979 1980 1981,_1 1982 1983 j1984

Develop a handbook, for use by
designers and engineers which
contains guidelines for use in $	 75,000
designing low drag ratary wing
aircraft (based on existing
test data).

Develop a drag prediction method
to include separation, viscous
effects, rotor wake effects, hub $	 200,000
rotation, interference and
cyclic and collective pitch
of "'ects

Conduct experimental studies to
understand bluff body separa-
tion, Reynolds numbers, rota- $	 540,000
tion and interference effects.
Test basic shapes and fairings.

Integrate analytical and
experimental studies to define $	 75,000
guidelines for low drag hubs.

Scale verification_ of low drag
hubs

$	 150,000

Modify and Flight Test ? q̂RA to
demonstrate low drag

$3,000,000

l
1	 FIGURE 6.16 PROGRAM, SCHEDULE AND ESTIMATED DEVELOPMENT COSTS
tI	 FOR REDUCED PARASITE DRAG

I
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bluff body three-dimensional flow problem. The analytical and experimental work is then
integrated *,o define low drag hub/pylon/fuselage configuration. Scale testing is then required
to verify the solutions. Following this, a flight vehicle such as the RSRA could be modified
and used to demonstrate the achievement of low drag at full scale. Figure 6.17 shows the esti-
mated cumulative cost and improvement gains as a function of time.

6.4 Weight Reduction Through Use of Composite Materials

Significant reductions in the structural weight of fatigue-critical airframes can have a major
impact an aircraft size. For a given mission, each pound of weight reduced from the structure
will result in approximately 1.7 pounds of weight removed from the total aircraft. A lighter
structure dictates a lighter landing gear, smaller engines, smaller rotor, and less fuel. If a
material having the same structural strength and stiffness as aluminum at half its weight can be
used, the impact on airframe weight, size, acquisition cost, and operating cost will be significant
The potential weight reductions possible with composite materials compared to aluminum are
shown in Figure 6-18; and research, development and use of composite materials and structures
to reduce helicopter empty weight is progressing at a rapid rate as shown in Figure 6.19. The
development and use of these materials will demand the resources of several government
agencies as well as those of applicable industries such as materials suppliers and fabricators.
The general magnitude of the research, development and test funding required and the break-
down of the job to be done is shown in Figure 6.20. These data assume that composite heli-
copter development will occur first with a military aircraft, with civil helicopters making use of
the technology. It should be emphasized that these are only the estimated additional costs for
achieving the flight evaluation of composite technology. Development costs for production
could be substantially higher.

The end results of composite material research will result in the reduction in the ratio of
structural empty weight to gross weight. Structural empty weight is defined as empty weight
minus the fixed equipment weight. For example, the structural empty weight.of the com-
promise design point helicopter is 56,073 lb. minus 13,356 lb. = 42,717 lb. It should be noted
that the term "structural empty weight" is somewhat of a misnomer in that some non-
structural items such as the rotor system, engines, and drive system are lumped together with
obvious structural items such as the airframe. For comparisons of vehicle weight reductions
due to 	 technology improvements, structural empty weight is a more
meaningful parameter than total empty weight, since it is freed of the obscuring effect of fixed
equipment weight, which itself is only a function of the design mission. Likewise, percentage
reductions in the structural empty/gross weight ratio are a more meaningful means of evaluating
materials/structures technology improvements than percentage reductions in empty weight,
since the structural empty/gross weight ratio automatically reflects the iterative scaling effect
of empty weight reduction on gross weight in the sizing process. A 12.1 % reduction in the
structural weight/gross weight ratio is possible for the 1985 time frame if composite materials
are utilized in all the areas shown in Figure 6.20.

This reduction is based on the results of Reference 10, "Advanced Helicopter Structural
Design Investigation".
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FIGURE 6.19 STATUS CHART COMPOSITE MATERIAL APPLICATION
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In this study advanced structural helicopter configurations were defined using the latest
it	 analytical, material and fabrication technology to satisfy requirements of structural efficiency,

fail safety, safety and prod ucib i I ity/cost. A risk/feasibility assessment of advanced structural
concepts was made to determine the areas of greatest payoff and the supporting research to

u	 achieve the necessary advanced structural technology was made. This study showed the
greatest benefits for composite material useage in the fuselage and drive system.
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7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

Baseline helicopters using 1975 technology were sized in Section 4.0 for a very short haul
(100 NM) and a short haul (200 NM) mission. Characteristics of these baseline helicopters,
which were selected on the basis of least energy and D.O.C., are shown in Table 7.1. A sys-
tematic parametric analysis was then conducted to determine -the impact of technology im-
provements on the baseline vehicles. Projection of the technology levels that could be
achieved in the 1985 time frame were made and the resources refer to the research, develop-
ment and test dollars required to bring a given advanced technology to the point where it
could be used in an advanced civil helicopter. Production costs are not included. Table 7.2
summarizes the technology improvements that could be achieved in the 1985 time frame, the
resources required and the reduction in energy intensity for each of the technologies con-
sidered taken separately.

As noted in Table 7.2, there are six independent technology improvements possible, some
combination of which results in the maximum reduction of El for the minimum expenditure
of Research and Development money. Determining the El reduction for all the possible com-
binations would be a staggering task since the number of such combinations is 6! or 720.
Therefore a judicious selection of possible high payoff combinations was made after careful
scrutiny of the El reductions obtained by individual technology improvements. The four
combinations finally chosen for closer study, along with the resulting E! reductions and de-
velopment cost/unit E  reduction are illustrated in Table 7.3. Note that the basis for com-
parison is development cost/unit E  reduction. This parameter is simply the total development
cost of all the technology improvements divided by the total El reduction realized. Obviously,
the most cost effective combination will be the one resulting in the minimum development
cost/unit El reduction for the maximum percent El reduction (which translates into savings of
nonreplaceable fuel). Perusal of Table 7.3 reveals that the last combination meets this require-
ment. Although Table 7.3 was done for the compromise design mission, the results are similar
for the very short haul mission.

L i

s-

i;M

Figures 7.1, 7.2, 7.3 and 7.4 illustrate respectively the percentage reduction in El and unit de-
velopment cost for the six individual technology improvements and the last two technology
improvement combinations listed in Table 7.3 for both the Compromise Design point and
Very Short Nat.! mission scenarios. It should be noted from Figures 7.1 and 7.3 that the sum
of the individual reduction in energy intensity is greater than the overall reduction in energy
intensity shown by Lhe most cost effective combination. This points out the fact that tech-
nology improvements are not linearly additive. From these figures the most effective mix of
technologies from an energy viewpoint is the one in which all of the projected improvements
in technology are utilized. The percentage technology improvements are shown in the last
group in Table 7.3 and the required development programs for each has been discussed in de-
tail in Section 6.0. With this combination, a 38.1% reduction in El is obtained for the short
haul mission and a 36,6%a reduction is obtained in the very short haul mission.
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VERY SHORT HAUL	 COMPROMISE DSN
MSN HELICOPTER	 PT. HELICOPTER

WEIGHTS

DESIGN GROSS WEIGHT 77,300 LB. -	 °- 84,133 LB.
WEIGHT EMPTY 52,011 LB. 56,073 LB.
FUEL 5,346 LB. 8,117 LB.

NO. OF PASSENGERS 100 100

ROTOR ---

DISC LOADING 8.0 PSF 7.0 PSF
DIAMETER 78.4 FT.	 "' ° ' - '	 87 .5 FT.
SOLIDITY .104 .100
NO. OF BLADES	 - 4 4
TWIST _12 DEG. __	 -12 DEG..
TIP SPEED 720 FT/SEC 705 FT/SEC

POWER

NO. OF ENGINES 3 3
RATED POWER (S.L.,STD)/
ENGINE 5175 SHP 5237 SHP

FUSELAGE

LENGTH 88.2 FT. 88.2 FT.
WIDTH 12.92 FT. 12.92 FT.
ROTOR GAP/STAGGER .127 .113

PERFORMANCE

VNRp 203.3 KTAS 200.8 KTAS
CRUISE ALTITUDE 500 FT. 2000 FT.
BLOCK SPEED 77.04 KTAS •136.6 KTAS
BLOCK TIME 1.298 HR. 1.464 HR.
FLIGHT TIME- 0.724 HR. 1.064 HR.

ENERGY INTENSITY 5998 BTU/PASS- 5612 BTU/PASS
N.M. N.M.



IMPROVED ROTOR
w	 EFFICIENCY

FIGURE OF MERIT .75 .83
L/DE 6(Cruise) 7.2

REDUCED PARASITE GW/.fe ,-1750 54%
DRAG (Retractable Reduction

Landing Gear,
W '84000 LB)

MMUCED STRUC- Conventional 12.1% Reduction
`I`URAL ",SIGHT Structure from Conventional

Structure

7,975,000 9.2 / 6.9
8,025,000 6.5 / 3.7

4,040,000 3.1 / 4.7

1

55,000,000 12.5 / 11.4

Fr	 r
g . 

TABLE 7.2 SUMMARY OF TECHNOLOGY IMPROVEMENTS

o EI REDUCTION
i	 FOR EACH

i	 I	 TECHNOLOGY INDIVIDUALLY
1975 TECHNOLOGY	 1985 =RM MEN`?' ' RESEARCH AND

ITEM?.	 LEVEL	 GOAL	 DEVELOPMENT $	 COMP"IISE, VERY SHORTMISSION	 HAUL

IMPROVED SFC	 .42	 .40 Conventional. 61,000,000 	 5.8 /	 5.3
Turboshaft	 73,000,000	 16.6	 16.2

	

36 - Regenerative	 t
Engine 1



TABLE 7.3 COMPARISON OF SEVERAL TECHNOLOGY IMPROVEMENT COMBINATIONS
(COMPROMISE DESIGN POINT MISSION)

TOTAL TOTAL
ECHNOLOGY IMPROVEMENT % CHANGE % EI REDUCTION DEVELOPMENT $/UNIT EI

REDUCTION

IMPROVED F.M. 9.3% INCREASE
IMPROVED-L/DE 20% INCREASE 15.9% $22,459
REDUCED	 Fe 54% DECREASE

IMPROVED F.M. 9.3% INCREASE
IMPROVED L/DE 20% INCREASE 26.2% $51,037
REDUCED	 Fe 54% DECREASE
REDUCED EWST,R/GW 12.1% DECREASE

IMPROVED F.M. 9.3% INCREASE
IMPROVED L/DE 20% INCREASE
REDUCED	 Fe 54% DECREASE 30.35% $79,873
REDUCED	 EWSTR/GW 12.1% DECREASE
IMPROVED SFC 4.76% DECREASE

(CONVENTIONAL ENGINES)

IMPROVED F.M. 9.3% INCREASE
IMPROVED L/DE 20% INCREASE
REDUCED	 Fe' 54% DECREASE 38.1% $69,235,.
REDUCED EWSTR/GW 12.1% DECREASE
IMPROVED SFC 14.3% DECREASE

(REGENERATIVE ENGINES)
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It is recommended that figure of merit, rotor L/D E and vehicle parasite drag reduction should
be pursued on an accelerated basis since they offer large payoffs with relatively little expen-
ditures. Figures 7.5 and 7.6, which show how direct operating costs (DOC) vary with technology
improvement, indicate that structural weight empty improvement using composite materials
significantly reduces DOC. Much of the work in this area is currently being directed at military

y helicopters. It is recommended that additional work in composites be directed towards civil
applications in order to achieve the benefits indicated. This study indicates a large payoff in
energy reduction can be obtained by the use of regenerative engines. The technology related to

k y	 developing the regenerator should be pursued and then if the civil helicopter market grows,
an advanced engine could be available.

f Two advanced technology civil helicopters, one for each mission, based on the best mix of
technologies discussed in previous paragraphs have been sized. Design point characteristics
are shown in Table 7.4. A comparison with the current technology helicopter shown in
Table 7.1 shows a substantial reduction in weight empty and therefore design gross weight,
engine size and energy intensity.

,V
Another way of illustrating the benefits of technology improvement0s shown by Figure 7.7.
This figure shows passenger miles per gallon as a function of range.. This data is from Reference
11 The calculation of passenger miles per gallon uses the published design load and the fuel
consumed from takeoff to landing excluding reserve fuel. The data forms two bands, with
helicopters falling into the lower grouping and Fixed Wing aircraft in the upper band. The
1975 baseline helicopters are plotted and fall into the upper side of the band for helicopters.
When the advanced technologies discussed in this report are incorporated, the advanced
vehicles (Table 7.4) show a nearly b0% increase in passenger miles per gallon which make

_ them comparable to fixed wing aircraft.

7.2 Recommendations
a..

Previous studies (Reference 1) have shown that, on the basis of fuel efficiency current pro-
. = duction helicopters can be competitive with other forms of transportation in some missions.

Current levels of helicopter energy utilizintio can be reduced, however, through the infusion
-	 #	 I of advanced technology into the design process. Improvements in helicopter energy con-

ti... sumption can be accomplished through the utilization of advanced technology in the areas
of powerplant design, rotor efficiency, reduced parasite drag and reduced structural weight

i empty.

Based on this study, the following recommendations are made for future studies.

1.	 Develop the high payoff technologies identified in this study so they can be in-
corporated into the next generation of transport helicopters.

2.	 Perform a preliminary design study of the advanced technology civil transport
helicopter identified in this study. 	 Integrate all of the applicable technologies and
ascertain whether additional problems exist which must be solved before a successful
vehicle could be built.

7-g
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VERY SHORT HAUL
MSN HELICOPTER

COMPROMISE DSN
PT. HELICOPTER

EIGHTS

DESIGN GROSS WEIGHT 65,101 LB. 68,924 LB.
WEIGHT EMPTY 41,741 LB. 43,910 LB.
FUEL 3,416 LB. 5,071 LB.

O. OF PASSENGERS 100 100

ROTOR

DISC LOADING 8.0 PSF 7.0 PSF
DIAMETER 72.0 FT. 79.2 FT.
SOLIDITY .111 .106
NO. OF BLADES 4 4
TWIST -12 DEG. -12 DEG.
TIP SPEED 720 FT/SEC 705 FT/SEC

POWER

NO. OF ENGINES 3
RATED POWER

(S.L.,STD)/ENGINE 4037 SHP 3982 SHP

FUSELAGE

LENGTH 88.2 FT. 88.2 FT.
WIDTH 12.92 FT. 12.92 FT.
ROTOR GAP/STAGGGER .138 .125

PERFORMANCE

VNRP 215 KTAS 213 KTAS
CRUISE ALTITUDE 500 FT. 2000 FT.
BLOCK SPEED 82.44 KTAS 142.6 KTAS
BLOCK TIME 1.213 HR. 1.403 HR.
FLIGHT TIME 0.639 HR. 1.003 HR.

NERGY INTENSITY 3792 BTU/PASS- 3473 BTU/PASS-
N.M. N.M.

i

I i
f'

. X	 E

t

TABLE 7.4 ADVANCED TECHNOLOGY (1985) DESIGN POINT HELICOPTER
CHARACTERISTICS
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APPENDIX A

` VEHICLE SIZING GROUND RULES

Table A-1 summarizes the configuration design ground rules adhered to in the sizing of the
helicopters of this study. These ground rules can be categorized under the following headings:

(1)	 Fuselage Configuration
(2)	 Rotor Solidity Sizing
(3)	 Engine Sizing

u
k	 . (4)	 Transmission Sizing

(5)	 Parasite Drag LevelP- -
(6)	 Vehicle Fixed Equipment and Subsystem Weights
(7)	 General

More detailed information pertaining to the specific headings listed above are presented by
Tables A-2 thru A-8 and Figs. A-1 and A-2.

Table A-2 shows the comparative hover download and parasite drag characteristics of the
- 2-aisle cabin cross-section of Reference 4 and the 1-aisle circular cabin cross-section used in

this study.

Table A-3 lists the vehicle Fixed Equipment weights for the 50, 75 and 100 passenger helicopters
of this study - and for the Boeing 737-200 airliner on which they are based.^.er

h.
E	 - Tables A-4, A-5, A-6 and A-7 list respecitively the Flight Deck Accommodation, Passenger

Accommodations, Cargo Accommodations and Emergency Equipment weights which are
components of the Fixed Equipment weights of Table A-3 while Table A-8 lists the configura-
tions Useful Load Weights.

Fig. A-1 depicts the rotor limit characteristics used for sizing these vehicles and Fig. A-2 shows
the parasite drag levels assumed.

E
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TABLE A-1 VEHICLE SIZING GROUND RULES SUMMARY

FUSELAGE CONFIGURATION

THE HELICOPTER DESIGN CHARACTERISTICS SPECIFIED UNDER
NASA CONTRACT NAS2-8048 (SEE FIGURES 2.1 AND 2.2)
UTILIZE A 2 AISLE, 6 SEAT ACROSS CONFIGURATION RESULT-
ING IN A RELATIVELY WIDE FUSELAGE. THIS HAS BEEN MODI-
FIED TO A 1 AISLE CONFIGURATION, ACHIEVING A REDUCTION
IN ROTOR DOWNLOAD AND PARASITE DRAG.

MANEUVER LOAD FACTOR (MLF) = 3.5 (REQUIRED BY FAR,
PART 29)

ROTOR SOLIDITY SIZING

ROTOR SOLIDITY WILL BE SIZED FOR 1.25g OPERATION AT
CRUISE ALTITUDE AND DESIGN CRUISE SPEED (SEE
FIGURE A-1 FOR TYPICAL ROTOR STALL FLUTTER - MAX CT/Q
LIMIT LINE)

ENGINE SIZING

3 ENGINES WILL BE USED

ENGINES WILL BE SIZED FOR OEI OPERATION @ SL, 90°F,
WITH REMAINING ENGINES OPERATING @ EMERGENCY RATING
OF 1.09X MAX TAKEOFF RATING 	 -

FOR CONTROL PURPOSES, THERE SHALL BE SUFFICIENT POWER
INSTALLED TO ACHIEVE (@ SL, 90°F):

F/W = 1.05 (BOTH ENGINES)
F/W	 1.03 (OEI)

THIS RESULTS IN A DESIGN T/W OF:

T/W	 1 + D.L. + (F/W - 1.0)

TRANSMISSION SIZING

XMSN SIZED FOR 100% OF POWER REQUIRED @ SL, STD

4

k	 A-2
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TABLE A-1	 VEHICLE SIZING GROUND RULES SUMMARY (continued)

PARASITE DRAG

PARASITE DRAG LEVEL(S) SHALL BE AS INDICATED IN
FIGURE A-2, WITH ADVANCED TECHNOLOGY A/C HAVING
DRAG REDUCED ACCORDINGLY.

WEIGHTS DATA

VEHICLE FIXED EQUIPMENT WEIGHTS (WITH THE EXCEPTION
OF THOSE INDICATED) AND FIXED USEFUL LOAD WEIGHTS
DEVELOPED UNDER CONTRACT NAS2-8048 WILL BE UTILIZED.
THESE WEIGHTS ARE BASED ON DATA FOR THE STD BOEING
737-200 AIRLINER (WITH SUITABLE DEVIATIONS DICTATED
BY HELICOPTER COMMERCIAL OPERATIONS).

A DETAILED BREAKDOWN OF THESE WEIGHTS IS GIVEN AS
FOLLOWS:

TABLE	 A-3	 — TOTAL FIXED EQUIPMENT WEIGHT
TABLE	 A-4	 — FLIGHT DECK ACCOMMODATIONS
TABLE	 A-5	 — PASSENGER ACCOMMODATIONS
TABLE	 A-6	 — CARGO ACCOMMODATIONS
TABLE	 A-7	 — EMERGENCY ACCOMMODATIONS
TABLE	 A-8	 — TOTAL USEFUL LOAD

VEHICLE SUBSYSTEM WEIGHTS WILL BE DEVELOPED AS A
FUNCTION OF TECHNOLOGY LEVEL.

GENERAL

DESIGN (SIZE) HELICOPTERS FOR BOTH THE VERY SHORT HAUL
AND SHORT HAUL MISSION SCENARIOS.

I	 IN THE CASE OF THE HELICOPTER SIZED FOR THE
SHORT HAUL MISSION, USE THE VSH MISSION AS A
SECONDARY MISSION REQUIREMENT AND DETERMINE
THE FUEL EXPENDED FLYING IT.

A-3
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TABLE A-3 FIXED EQUIPMENT WEIGHTS

737-200 HELICOPTER
88 50 75 100

PASSENGERS PASSENGERS PASSENGERS PASSENGERS

Lbs Lbs Lbs Lbs	
i

APU 830 470 700 940
Instruments 552 575 575 575
Electronics 846 846 846 846
Electrical 1,081 615 920 1,230

=Hydraulics & Pneumatics 864 390 555 680

:Flight Deck Accommod. 587 568 568 ;	 568

Ln	 Passenger Accommodations
l

6,239 3,307 5,060 ;.	 6,502

;Cargo Accommodations 613 160 240 320

j	 ;Emergency Accommodations. 363 128 138 145

!Air Conditioning 1,190 575 890 1,150

_Anti-Icing 212 1	 225 325 1	 400
a

TOTAL FIXED EQUIPMENT 13,377 7,859
............._1.^

10,817 13,356
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737-200 HELICOPTERS
88	 50 75	 100

PASSENGERS	 PASSENGER PASSENGER	 PASSENGER

(Lbs)	 (Lbs) (Lbs)	 (Lbs)

Seats and Belts (	 129	 (110) (110)	 (110)
Pilot-Copilot 40*x2 80 80	 80
Observer	 30 xl (	 30 30	 30

'Instrument Boards I	 105	 105 105	 i	 105

Control Stands 70	 70 70	 70

Sound-Proofing 98	 98 98	 ?	 98

Lining 62	 62 62	 {	 62

Manuals 5	 5 5	 5

Windshield Wiper 9	 9 9	 9

D 22	 22 22	 22
rn

Rain Repellent System

Misc. Equipment (23)	 (23) (23)	 (23)
Sun Visor 5	 5 5	 5
Mirror 1	 1 1	 1
Foot Rests (	 2,	 2 2	 2
Waste. Containers 3	 3 3	 3
Ash Trays & Cup 3	 3 3	 !	 3
Holders

Stowage & Holders 7	 7 7	 7
Overhead Drain Tube 2	 I	

2 2	 j	 2

Lighting 34	 34 34	 j	 34

Wiring, Etc. 30	 30 30	 30^

TOTAL FLIGHT DECK 587	 568 568	 I	 568
ACCOMMODATIONS

*Quote from Study Outline

TABLE A-4	 WEIGHTS FOR FLIGHT DECK ACCOivAMODATIONS



^ 737-200 HELICOPTER
I	 88 50	 1 75 100 ----

PASSENGERS PASSENGERS PASSENGERS PASSENGERS

Lbs Lbs Lbs Lbs

Seats and Belts (2,285) (1,144) (1,694) (2,244)

Passengers 22# Each 2,227 1,100 1,650 2,200

! !	 Attendants 22# Each ' 58 r	 44 44 44

!Lavatories 453 227 453 453	 {

Stowage (	 456) (	 258) (	 389) (	 515)

Overhead 305 175 263 350

Magazine 8 4 8 8

Coat Racks 74 40 60 80
t Food Trays 10 5 8 10

Under Seat 59 34 50 67

Soundproofing 686 390	 ) 585 780

Lining 989 563 844 1,125
D	 ;Floor Covering 296 170 255 340 (	 1

Beverage Service 424 240 361 482 a
Attendant's Panels 21 15 20 20

Partitions 89 45 90 90

Window Shades 55 30 45 60

'Lowered Ceiling 130 --- --- ---
Wash & Drinking Fac. 67 34	 1 50 67
Signs and Markings 2 2 2 2

Lighting 243 160 230 280

Safety Straps 4 4 4 4
;Finishing Panels 39 25 38 40	 f

TOTAL PASSENGER I	

iv --- =.

ACCOMMODATIONS 6,239 3,307 5,060 6,502
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247

19

47

73

17

76

613
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.Baggage Compartments

Insulation

Lining
r

Ties-Down

Mets

D
w Partitions

Warm Air Ducts

Attachments

TOTAL CARGO
ACCOMMODATIONS

f

HELICOPTERS
50 75 100

PASSENGERS PASSENGERS PASSENGERS

(Lbs) (Lbs) (Lbs)

40 60 80

40 60
{

80

80 120 160

i

160

1

240

i

320

737-200
88

PASSENGERS

(Lbs)
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737-200 HELICOPTERS

88 50 75 100
PASSENGERS PASSENGERS PASSENGERS PASSENGERS

(Lbs)
1

(Lbs) (Lbs) (Lbs)

Oxygen System (132) -- -- --
Passenger 95 -- -- --

^	 Crew 37 -- -- --

F,	 Fire & Smoke Protection (115) (87) (97) (104)
Detection 58 42 50 58
Extinguishing 46 45 47 46
Viewers-Cargo Comp. 11 -- -- --

D	 & Gear Downlock
in

Escape Provisions, (75) -- -- --
Slides 65 '	 -- -- --
Ropes 10 -- -- --

Hand Fire Extinguishers 31 31 31 31

First Aid 6
6 6 6

Axes 4 4 4 4

TOTAL EMERGENCY EQUIPMENTI

C

363 k	 128 138 145	 j

TABLE A-7	 EMERGENCY EQUIPMENT - HELICOPTER ---^^---
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737-200 HELICOPTER
88 50 75 100i

i PASSENGERS PASSENGERS PASSENGERS PASSENGERS

i

Lb s Lbs Lbs	 i Lbs j

Flight Crew 340 340 340 340.
Flight Attendants 390	 ! 140 280 280
Crew Baggage 125 94 125 125
Brief Cases & Naviga-

tional Equipment 25 25	 i 25 25
:Unusable Fuel 115 70 90	 i 115
;Oil 132 95 114 132
iEmergency Equipment (	 187) (	 16) (	 16) (	 16)

Oxygen 36 -- -- --
Escape Slides 132 -- -- --
Fire Axe 3 -- -- --

o	
Oranasal Masks 5 5 5 5
Smoke Goggles 1 1 1 1	 1

i	 Hand Megaphones 10 10 10 10
Passenger Accommodations (1,464) (	 455) (	 696) (	 910)	 1

Water 179 100 150 200
Toilet Chemicals 50 25 50 50

,-	 Beverage 171 97	 L 146 194
Serving Trays 12	 i 7	 i 11 14
Galley Structure 600 --	 j -- --
Galley Service Equip. 228. 114	 j 171 228	 !	 !4	
Passenger Service Equip. 224 112 168 224

Passengers 15,840 9,000 13,500 18,000

TOTAL USEFUL LOAD ' f
INCLUDING FUEL),: (NOT .18,618 10,235 15,186 19,943

TABLE A.8	 USEFUL LOAD j
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APPENDIX B

ADVANCED TECHNOLOGY VEHICLE PARAMETRIC RESIZING DATA

B.1 Parameter Variation

_	 The parameters (and their variation) utilized in this study are as follows:

'	 Parasite Drag	 -	 - 0, 25, 50% Reduction
Fuel Consumption	 - 0, 5, 10% Reduction
Structural Empty/Gross
Weight Ratio	 - 0, 5, 10, 15% Reduction
Rotor Hover Efficiency (F.M.) 	 - 0, 5, 10, 15% Increase

fr	

Rotor Cruise Efficiency (L/D E )	 0, 10, 20% Increase

The parametric value levels assumed for this study are for the purpose of defining the sensitivity
of energy consumption -- and should not necessarily be assumed to be attainable. The actual
technology levels estimated to be attainable are defined in Section 6.0.

B.2 Parameter Definitions

B.2.1 Parasite Drag

Parasite drag is the total configuration drag (including rotor hub(s)) which must be overcome
by the helicopter in forward flight. As used in this study, it is expressed as equivalent parasite
drag area (drag/dynamic pressure), or F e, whose units are square feet. Values of the baseline
vehicle parasite drags are given in Tables 4.8 and 5.1.

B.2.2 Fuel Consumption

No attempt is made to reject fuel consumption reductions due to improvements in specific
fuel-consumption only over a limited range of power settings (i.e., a modification of SFC vs.
power characteristics). Rather it is assumed that SFC is reduced over the entire operating
range of the engine. For example, a 5% reduction in fuel consumption (compared to the base-
line vehicles) refers town across the board reduction of 5% in engine SFC.

B.2.3 Structural Empty/Gross Weight Ratio

Structural empty weight is defined as empty weight minus the fixed equipment weight. For
example, the structural empty weight of the compromise design point helicopter is 56,073 lb
-13,356 lb = 42,717 lb. For comparisons of vehicle weight reductions due to materials/
structures technology improvements, structural empty weight is amore meaningful parameter
than total empty weight, since it is freed of the obscuring effect of fixed equipment weight,
which itself is only a function of the design mission. Likewise, percentage reductions in the
structurai empty/gross weight ratio are a more meaningful means of evaluating materials/
structures technology; improvements than percentage reductions in empty weight, since the

i
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structural empty/gross weight ratio automatically reflects the iterative scaling effect of empty
E

	

	

weight reduction on gross weight in the sizing process. Therefore, all the empty weight reductions
presented will be in terms of percentage reductions in structural empty/gross weight.

B.2.4 Rotor Hover Efficiency

Hover efficiency or F.M. is a measure of a rotor's efficiency in converting power into static
(hover) thrust. The F.M.'s referred to in this study are the design point condition (SL, 900F)
values used in configuration engine sizing. Note that the percentage improvement in F.M.
referred to in Section 5.2 is not a F.M. to be added to the baseline F.M., but is a percentage
change of that baseline value. For example, a 10% improvement to`a baseline F.M. of .75 is
.75 + .075 = .825, not .75 + .10 = .85.

B.2.5 Rotor Cruise Efficiency

Rotor cruise efficiency, or L/D E , is a measure of a rotor's efficiency in producing lift while
overcoming its own equivalent drag. the L/D E 's varied in this study are the cruise L/DE's
occurring at the vehicle normal rated power speed. As such, they are lower than the rotor's
maximum L/D E value which occurs at a lower speed.

It should also be noted that these are isolated rotor L/D E 's. This is of interest since inherently
a tandem rotor configuration suffers from mutual rotor interference effects (reduced to some
extent by decreasing rotor overlap), which results in a lowering of the overall L/D E for both
rotors. Percentage improvements in L/D E are defined in the same manner as for F.M.
in Section B.2.4.

B.3 Data Utilization and Interpretation

This data is meant to be used in deteri-ninign the effect of various technology improvements
on the energy consumption, gross weight, and developmental and operating costs of a tandem
rotor commercial helicopter. Used in conjunction with a given set of technology improvement'
estimates and the baseline vehicle data of Tables 5.1 and 5.2, the data enables a quick, accurate
estimate of the size, energy usage, and cost of such a vehicle. As illustrated in Figure 5,1, the
determination of the energy intensity reduction, based on the variation of one parameter at
a time, is simply a matter of "sliding" along the applicable data plot.

At times, data interpolation is required, since each data plot is for a given combination of
parasite drag reduction and rotor figure of merit improvement. For example, the figure of
merit improvement projected by 1985 is 9.3%. Determination of the corresponding energy
intensity reduction requires that data be read from Figures B-1, B-2 and B-3 (figure of merit
improvements= 0, 5 and 10%, parasite drag reductions = 0%), assuming zero change in the
other parameters (EW/GW, fuel consumption, and L/D E ), and cross plotted.

More extensive interpolation and cross plotting is needed if the effect of the simultaneous
variation of several parameters on energy intensity is to be obtained. For example, determining

B-2
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More extensive interpolation and cross plotting is needed if the effect of the simultaneous
variation of several parameters on energy intensity is to be obtained. For example, determina-
tion of the energy intensity reducticn resulting from the combined effect of all the technology
improvements listed in Table 5.3 is as follows:

(1) Data is read from Figures B-1, B-2, and B-3 for values of fuel consumption reduction,
EW/GW reduction, and L/D E improvement of 4.76, 12.1 and 20%, respectively. The
resulting percentage energy intensity reductions are plotted vt^sus figure of merit
improvement and the percentage energy intensity reduction for a figure of merit
improvement of 9.3% determined.

(2) The procedure of (1) is repeated for parasite drag reductions of 25 and 50% using
Figures B-5, B-6, B-7, B-9, 8-10, and B-11.

(3) The resulting values of percentage energy intensity reductin o are plotted versus
parasite drag reduction and the value of energy intensity reduction for a 54% re-
duction in parasite drag read off.

It is very important to note tha the effect of combined parameter variation on the data of this
study is not obtainable by simple addition of the individual components. For example,
summation of the individual energy intensity reductions listed in Table 5.3 results in a total
value of 37.1% compared to the actual value of 30.35% obtained by the interpolation process
discussed above.

Inspection of the data reveals that, comparatively speaking, the largest decreases in energy
intensity are obtained when the structural empty/gross weight ratio is reduced and the rotor
hover efficiency is improved. The former is due to the beneficial influence that reducing the
structural empty weight fraction has on the vehicle sizing process itself, The latter is simply
a manifestation of improved fuel consumption due to the smaller sized engines dictated by
the higher figure of merit.

B.4 Data Presentation

The technology improvement resizing data, is grouped in the following manner:

Energy Intensity (Compromise Design) 	 Figure B-1	 B-12
Gross Weight (Compromise Design)	 Figure 8-13 i	 B-24
Direct Operating Cost (Compromise Design)	 Figure B-25 -	 B-36
Flyaway Cost (Compromise Design) 	 Figure B-37	 B-48

Energy Intensity (Very Short Haul Mission) 	 Figure B-49	 8-60
Gross Weight (Very Short Haul Mission) 	 Figure B-61	 B-72
Direct Operating Cost (Very Short Haul Mission) 	 Figure B-73	 -	 B-84
Flyaway Cost (Very Short Haul Mission) 	 Figure B-85	 B-96

jl
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Ŵ C
Y •`

CL	 .050o
j	 U4	 ^

is

0i

nnq



A

E
iodW

Ul H
.I

mc

n
0
mm
a

i8

55	 %redUc

0 emPtyl9rossWt"ructural
0

O
s

o P̂ 5	 1p
a4^ f,

150 co*

Notes:
1. Compromise design mission
2. Parasite drag reduction 25%
3. 1975$
4. Figure of merit improvement = 15%



.058

.055

Notes:
1. Compromise design mission
2. Parasite drag reduction = 50%
3. 1975$
4. Figure of merit improvement= 0

redUC

es
0 

tY/gros r̂ t,,, tUra/
rati

E
Y

T	 AR1.	 y

0vac
ti
`m
o_
a

d .050

n

O
o^P

aG^f

0;

t



0% improvement
in rotor L/DE

10% improvement
in rotor L/DE

20% improvement
in rotor L/DE

.055

H

NOU
W	 ^
CA)
	 .050

o.0
YUd

mPtY/9roon MStR/css 
wt ratiotura/

0

o	 s

0

Po,

401-.o^

G

Notes:
1. Compromise design mission
2. Parasite drag reduction = 50%
3. 1975$
4. Figure of merit improvement = 5%

FIGURE B-34 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE DIRECT
OPERATING COST

.058



.058

7

.055

Notes:
1. Compromise design mission
2. Parasite drag reduction = 50%
3. 1975$
4. Figure of merit improvement = 10%

dE
Yf0dN

W	 VN
W	 ^
0	 c

.050

iz0
YVd
Q

I..

reductio,%0
mpty/gross wt 

gat o rural
0

%'
Off,

Pa
GV

^s
GP/

G

0

O
S

\	 1^

5

0% improvement
in rotor L/D 

E	 10% improvement	 20% improvement

.043

i	 FIGURE B-35 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE DIRECT 	
--L

OPERATING COST	 I
I

I	 f



.057

.055

d,E

md

N
a, .050

W	 d
a.

W	 oCO

a^

O

.045

n4.1

FIGURE B-36 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE DIRECT 	 j
OPERATING COST	 ^



7

6

0u
W
A 3

d

Ld

4
]{j1

C



6

NOU

Q	 ^

m
U
Ld

5

0% improvement	 10% improvement 	 20% improvement
in rotor UD E	in rotor L/DE	 in rotor L/DE

I

.z

4

FIGURE B-38 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE FLYAWAY COST

I



7

%reduction in structural
emp ty/gross wt ratio

Notes:
1. Compromise design mission
2. Parasite drag reduction = 0
3. 1975$
4. Figure of merit improvement

0% improvement 	 10% improvement 	 20% improvement
in rotor L/D E	in rotor L/DE	in rotor L/DE

6

w
N 3m

m
v
r
a^

5



_.,I

7 x 10"
N otes:
1. Compromise design mission
2. Parasite drag reduction = 0
3. 1975$

% reduction in structural
	

4. Figure of merit improvement= 15%
empty/gross wt ratio

n	 n	 n



% reduction in structural0 empty/gross wt ratio

o s

5O^

oa
Gcf^.

Notes:
0	 0	 1. Compromise design mission

2. Parasite drag reduction = 25%
S	 3. 1975$

'o S	 ^„	 4. Figure of merit improvement= 0

6

N
V

f03ATW
^ m
^ v

L

IF

d

5

4

0% improvement
	

10% improvement	 20% improvement
in rotor L/DE	 in rotor L/D E	in rotor L/DE

I

FIGURE B -41 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE FLYAWAY COST



3

v3
W

^	 ^

^.,	 Ln

V

T

3
f w

a^

i
5

7x106

Notes:
% reduction in structural	

1. Compromise design mission
empty/gross Wt ratio 	 0	 0	 2. Parasite drag reduction = 25%

0	 3. 1975$
4. Figure of merit improvement = 5%

(9	 S	 ^^ 	 S	 49	 S	 /p

5	 5	 5

o^

PaGcfO

Oi
G

^icoo	 10	 10	 10
sG

^Af

15	 15	 15

0% improvement	 10% improvement	 20% improvement

in rotor L/D E	in rotor L/DE	in rotor L/DE

FIGURE B-42 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE FLYAWAY COST



10% improvement
in rotor L/DE

20% improvement
in rotor L/DE

•Dotes:

1. Compromise design mission
2. Parasite drag reduction = 25%

0	 3. 1975$

I	
^'
a

^	 o
F	 U

^	 a

pp
	 ca

f	
W	

w

w
A	 drn	 v

% reduction in structural
0 empty/gross wt ratio 	 0

0	 0
^oi	 5	 5

°r
Pa

'f
GPf

coy,.	 10

Alamo

\- i5

0% improvement
in rotor L/DE

FIGURE B -43 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE FLYAWAY COST



/ x 1V
Notes:
1. Compromise design mission
2. Parasite drag reduction 25%
3. 1975$
4. Figure of merit improvement

15%

%reduction in structural
empty/gross wt ratio

n	 n	 n

6'

cc

NOU

M
T

^	 y

^A	 vV	 t
m

5

0% improvement	 10% improvement	 20% improvement
in rotor L/D E	in rotor L/DE	in rotor L/DE

l

ii

4

FIGURE B -44 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE FLYAWAY COST



i x iu

6

I
NOU
T
f93
T
_d
U

^ m00

e

5

_4



0% improvement	 10% improvement	 20% improvement
in rotor L/D E 	in rotor L/D ` 	in rotor L/DE

7x106

%reduction in structural
emp ty/gross wt ratio

Notes:
1. Compromise design mission

0	 0	 2. Parasite drag reduction= 50%
3. 1975$
4. Figure of merit improvement = 5%

V.

c
c

r- IUUrSC D-'t0 Cf- f CIr I Ur I L-%,i I v	 1 11". .— --..... — . ._. .....	 . — .. .... .. _..._ .



Notes:
1. Compromise design mission

reduction in structural	 2. Parasite drag reduction = 50%
em pty/gross wt ratio	 3. 1975$

n	 0	 0	 r -	 -- ------,,,^,

i)



00

% reduction in structural
emp ty/gross wt ratio

n

1. Compromise design mission

2. Parasite drag reduction = 50%

3. 1975$
4. Figure of merit improvement 15%

7
Notes:

6

0

ca
3
cc

U_
t
d

5

0% improvement	 10% improvement
in rotor L/D E	in rotor LADE

20% improvement
in rotor L; DE

FIGURE B-48 EFFECT OF TECHNOLOGY



U

5

10
Cd
C

Ln
N c

d 15
U

r_
dJ
C

•C
O

•U

d 20-

25

30

FIGURE B-49 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE ENERGY INTENSITY



1. Very short haul mission
2. Parasite drag reduction = 0

C:

2
0

5

0
10

c
m
c
rn
a`oc
m
a^

15
W
in
CA)

c

0
0
Li

d

0

Notes:



0

Notes:
F

	 1. Very short haul mission
2. Parasite drag reduction = 0
3. Figure of merit improvement =-10%

T

15c'T
rn

W c
CJ7

m

m

s
m

20c
0
v

m
C

20% improvement
in rotor L/D,!

33
FIGURE B-51 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE ENERGY INTENSITY



0

5

10
0

Y
-N

d
C
QI
d 15cud
w
.0L

W d̂
C

Ul o
20

d

25

70 0

20% improvement
in rotor L/D E

S \

0

1p 0
s

10% improvement
in rotor L/DE

iY IMPROVEMENTS ON VEHICLE ENERGY INTENSITY



0

5

0

y 10Cd
E

rn
m

d
U

C7 L
15in

.c

a_

20

25

Notes:
1. Very short haul mission
2. Parasite drag reduction = 25%

P° 3. Figure of merit improvement = 0

7
COo m

1 c

/0

^f

^ cO,,rG o

h c °°
o ^

d O
O

o O

O
S

0
S

v+ S
10

G ^

0% improvement
10

of rotor L/D E o
70

0

v+

15
10% improvement
of rotor L/D E

20% improvement
of rotor L/DF



0

5

10

T
c
c

a`o

00
c

15
(J1 UV ,c

c
0

20

25

Notes:
1. Very short haul mission
2. Parasite drag reduction = 25%
3. Figure of merit improvement = 5%

cc o	 Pay
3	 cf

1 c	
0

aPi1

0

^ c^ no ^

o	 d

O

`^	 s

CA
s

J0

^O	 J

0% improvement	 J
in rota r L/DE

J
10% improvement °	 P	 '0%improvement
in rctor L/DE	 in rotor L/DE

30

= 1GURE B-54 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE ENl_RGY INTENSITY



0
.c

LTI

00 L
C.0

O

d

a

Notes:
1. Very short haul mission
2. Parasite drag reduction = 25%

10 3. Figure of merit improvement = 10%

°reaGCf

c	
0

/0,

o
fGP/

0 SG	 0
15 ^ ^ 'bpt^o

;; 0 0
o^ 5

s;, o

0

20
0

10 ^	 S

5 S

5
25 . .

0% improvement 70
in rotor L/DE 10

15
70

10

15
10% improvement

30 in rotor L/D E 15

20% improvement
in rotor L/DE

FIGURE B-55 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE ENERGY INTENSITY

4



10

15

20
0

00 d 25

co
s

.c

0
U7

30

o^
Pp.

	

o	 G^/p
^•

c o
	

/pfp
P

	w 	 %
N

	

^L	 r/O7

	

^.	 0
O G

5

s

10	
0

0% improvement
in rotor L/DE

10	 0

!s

10% improvement
in rotor L/DE

0

5

s

10	 !0

s

20% improvement
in rotor L/DE

i

\s I

i

ti

FIGURE B-56 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE ENERGY INTENSITY



0
10

.y
Cd
C
'T

' 07V
d

cu
d

d

00 15
cu

o
r
2

f ^

d

ff
k

20

25

i

30

\,^-1



5

10

0

15d
i=
•T

cp
c31
d
U
d
C 20O
U7
d

f

25

30

35



10

15

S
I

20
o

I Y
.y
CdYC
•T
C
m
C.
d

2

N m
c.0

0
c.,

_ m
ac 3

Notes:
1. Very short haul mission

o	

1101>	
2. Parasite drag reduction = 50%

o	 ;^	 3. Figure of merit improvement = 10%

H °	

CIO

G

^^	 o
o	 0	 0

d 0

cs+

5	 0

5

5	 5

10

	

	
o

G

10 o	 ^
10

0

a
0% improvement
in rotor L/D E

10% improvement
in rotor L/DE	

20% improvement
i	 in ro*rs L/DE

n



IU

15

20
t o

T
F •C

CI
C
d

25co
t^

p

CA)

0•Y
V
7

d
°C

I

30

f

i
35

40

FIGURE B-60 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE ENERGY INTENSITY

1

S



f uu

.a

r

3 70^
Y yO

C7

t
Y

60

0% improvement	 5% improvement	 10% improvement
in rotor L/D E	 in rotor L/D E	 in rotor L/DE

_.I

% reduction in structural0 empty/gross wt ratio

O	 S

rP 5

Nntac

FIGURE B-61 EFFECT OF TECHNOLOGY Irv-PROVEMENTS ON VEHICLE GROSS WEIGHT



Notes:
1. Very short haul mission
2. Parasite drag reduction = 0
3. Figure of merit improvement = 5%

15

20% improvement
in rotor L/DE

80

^ s

d3'yN
70

60

FIGURE B -62 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE_ GROSS WEIGHT



0% improvement in
rotor LID E

10% improvement	 20% improvement
in rotor L/D E	in rotor L/DE

IA IU

% reduction in structural

	

empty/gross wt ratio	 0
0
O	 6	 O

70

o,.	 5
NdGCt'G17

GAO/CIO,
	 10

pilot -

Notes:
1. Very short haul mission
2. Parasite drag reduction = 0

0	 3. Figure of merit improvement =10%

5

60

2

W o;
CD 3N

i?

70



^D

10

Notes:
1. Very short haul mission
2. Parasite drag reduction = 0
3. Figure of merit improvement = 15%

15 \

20% improvement
in rotor L/D E

80:
k

s
•d

N
TT
VI ^

J

Ali

CD
O

6L

FIGURE B-64 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE GROSS WEIGHT

a	 w-	
_



au

.n
00

CA .n
CA

—

co s
70

cu
3

NO
cm

60

r

1



80 10"

reduction in structural
—empty/gross wt ratio

Notes:
1. Very short haul mission
2. Parasite drag reduction = 25%
3. Figure of merit improvement = 5%

.a

s
703

cc NO
C7

5
P̂aG^^OG

GPi

^O

0% improvement	 10% improvement	 20% improvement
in rotor L/DE	 in rotor L/D E	in rotor L/DE

60

FIGURE B-66 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE GROSS WEIGHT



10% improvement
in rotor L/DE

20% improvement
in rotor L/D E

15

0% improvement
in rotor L/DE

80.

0o a
v };
O	 .^

.3

H
70

t uV

% reduction in structural
empty/gross wt ratio

0
4	

S

5

1141,
 

GP/_

Notes:
1. Very short haul mission
2. Parasite drag reduction = 25%
3. Figure of merit improvement= 10%

FIGURE B-67 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE GROSS WEIGHT

1



80,;

W
v

70
3

10'

% reduction in structural
empty/gross wt ratio	 0

0

5
0-
wt/ 

Qx

Notes:
1. Very short haul mission
2. Parasite drag reduction = 25%
3. Figure of merit improvement =15%

0

FIGURE B-68 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE GROSS WEIGHT



Notes:

I

N

.n

LO)

3 70
NNO

C.7

0% improvement 	 10% improvement 	 20% improvement
in rotor L/DE	 in rotor L/D E	in rotor L/D=

60



80

L
Q!

3
Q
C

00
v
w

70

i

f.'

sn

0% improvement	 10% improvement	 20% improvement
in rotor L/D E	 in rotor L/DE	 in rotor L/D E

^ 10'

% reduction in structural
empty/gross wt ratio

0

O	 V

5
PaG^r^o

GP/_

Notes:
1. Very short haul mission
2. Parasite drag reduction = 501/a
3. Figure of merit improvement = 5%

\^O



80 x 10'

^ s

4^h 3 70
o:>,

C

RO



'r 80

W

V -
L
'm
3 70
N
L

{

CD

l

60



.is

.12
m

E

0
W - ^
V c

c0
vm
0

0 %'reduction i ►► stru
emptl'^9ross	 ctural

wt ratio

p	 0

S
o	 ^p

^PqG	
5	 0

ct^

^o
4s
G

4

n

in rotor L/DE	 20% improvement
in rotor L/DE

.10

5

15

0% improveme
in rotor L/DE



.13

.12d

Y

co N
v 0

c
•Y

nf' c

1 C_

^ ,11

j

C,

_an



Notes:
1. Very short haul mission

reductionduction in
1975$

.12 0 mpr 	 structurale	 Y/gross wt ratio
I Parasite drag reduction = 0
4. Figure of merit improvement =10%>_

N
0

o 0

D
n

QU
tM $	 5

°aG^f

S

^O	 .9 S	 -119

o° °^;
5

5
^LQ/

°	 .11
c
o% 10

o
oJO

 10

10

15

0% improvement
15	

15

i

in rotor L/DE
10% improvement

1 0 in rotor L/D E	 20% improvement
in rotor L/DE

L-

FIGURE B-75 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE DIRECT
OPERATING COST

f



.12

CD
i E

.11
'a
dh

b?

OU
cmC

d.J 0
CO Ud

.10

n4



0% imps
in rotor I

I

.13

.12dE
d

t0
U
Cf

C

V
60 V

CL0
F V

.11

I
4

feducti

O empt	
on in structural

y/9roSS Wt ratio

O
S

o	 ^4
o^0a	 5

co
os

G
10

O'

'i	 in



.13

d
E .12w
N

0U
cl
C

e0

m
Oo c

m
L_

1

0%° improvement	 —"^15
in rotor L/D E	 10% improvement

in rotor L/D
E	 20% improvement

in rotor L/D E

FIGURE B-78 EFFECT OF TECHNOLOGY IMPROVEMENTS ON VEHICLE DI REU I
OPERATING COST



.12

.11E
Y

m

tss

0
U

TTMW C

6o
N m

CL
0

a^

O

44

f

Yo reduction in strut	
Notes:

	

0 empty/gross wtra tiotural
	0	 1. Very short haul mission

2. 1975$

	

s	 3. Parasite drag reduction = 25%
O	 p	 0	 4. Figure of merit improvement =10%0	 S
0	 5

o^PaG	

5	
O  O

,	

S
ct̂o 	p

of	 5
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APPENDIX C

HELICOPTER SIZING METHODOLOGY

The use of a computerized helicopter sizing program allows the configuration analyst to
rapidly and systematically assess the effects of a multitude of design variables and display
their impact on overall vehicle size and performance. Boeing Vertol currently utilizes such
a computer program (called HESCOMP) for sizing helicopters.

The following description of HESCOMP shows the flexibility of the program as an analytical
tool in the preliminary design process. Symbolically, the main input/output operations
are shown in Figure C-1. A more detailed review of the program's capabilities is given in
Reference 22.

The purpose of this program is to serve as a rapid computational tool, giving visibility to
comparative design studies of helicopter systems. Program attributes include:

1. Capability to size a wide range of helicopter configurations for complex missions
of up to 50 segments.

2. Input description of helicopter layout can be in sufficient detail to evaluate
subtle differences in design (over 100 input design parameters).

3. A wide variety of program mode options can be selected to minimize compu-
tation and input time.

4. Detailed performance assessment with mission time histories can be provided
in any desired increments with instantaneous values of performance ; engine
condition and weight parameters.

5. Rapidly accomplished trade studies tht nugh supplementary computer input, of
variable parameter(s) only, to a baseline case.

6. Detail printouts of helicopter dimensions, weights, propulsion system charac-
teristics and performance.

This program has two primary independent applications and a third which is a combination
of the first two. It may be used for the sizing of a specified vehicle to a given mission
profile. Alternatively, it may be used for mission calculations for rotorcraft whose
sizing details (gross weight, fuel available, engine power and fuel consumption, etc.) are
known. As a combination of these two capabilities, the program may be used to first
size a vehicle for a given mission and then calculate the off-design-point performance for
other missions.

In the sizing mode, this program integrates the inputs from the main preliminary design
areas of physical design (helicopter geometry) aerodynamics, weights, and propulsion
utilizing size trend equations which reflect the variation of vehicle dimensions with gross
weight, detailed statistical weight-trend equations, a routine for sizing engines to match
airframe requirements, a comprehensive library of engine cycle data, and real engine
performance data. These inputs to the program primarily consist of a series of single
point values specifying, for example, the geometry of the fuselage, the type of

C-1
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propulsion system, a description of the misison profile, weights of fixed equipment, fixed9
useful load and payload.

The engine performance data, referred power, gas producer speed, turbine speed and fuel
flows are input as a function of Mach number and referred turbine temperature. The user
may input limits on engine operation by setting maximum values of fuel flow, torque or
gas generator or power turbine shaft rpm. In addition, nonlinear scaling effects of real en-
gines may be included by input of Reynolds number-based correction factors. Degrada-
tion in performance of turboshaft engines operating at non-optimum power turbine
speed can be calculated by the program at the option of the user. The library engine
cycles may this be used with no additional input, or by appropriate additional input may
be made to include the effects of multiple operating restrictions and other factors charac-
teristic of real engine cycles.

Helicopter sizing, weights, propulsion and aerodynamic information are printed out during
a sizing run and followed by mission performance data (for both sizing and performance
runs). The performance data is a time history of the mission, including speed, distance,
weight, power, fuel used, etc.

Variations in key parameters to establish sensitivity trades are accomplished by inputting
only that item to be studied as a supplemental case. All other inputs will remain un-
altered and the program will resize the helicopter..

Figure C-2 illustrates the output of a typical sizing case from this study.
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HELICOPTER SIZI14G & PERFORMANCE C011PUTER PROGRAM 	 8-91

THE FOLLOWING IS A CARL' BY CARD REPRODJCTIO N OF THE INPUT DECK FR THIS CASE	 - -- --

LOC. CORRESPHNDS TO LOCATION NUMBER GIVEN ON INPvT SHEET
NUM	 STANDS FOR THE NUMBER OF SEQUENTIAL INPUT VALUES STARTING WITH LOC. (MAX. -5)•- -• -- -	 - -- -

d	
VAL	 EQUALS VALUE FOR VARIABLE CORRESPONDING TO LOC-
VAL1	 VALUE	 CORRESPONDING TO LUC•+0001

1^	 -VAL2 - -	 VALUE ----	 --- CORRESPONDING TO LOO-+0002 	 - - -
b	 ETC-

LOC.	 NUM	 VAL	 -	 VAL1	 VAL2	 VAL3	 VAL4	 -

N OTE 0 IN USING AUXILIARY--ENGI N ES-;-AUXILIA RY ENGINE CYCLE I.4PUT'LOCATIO NS CAN BE-CREATED

"	 BY PLACIN G A66666 CARD IN FRONT AND BEHIND A STANDARD ENGINE CYCLE
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1316	 3	 2900.0	 3150.0	 3400.0
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ti	 FIGURE C-2 OUTPUT OF ATYPICAL HESCOMP SIZING CASE
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1+11 3 1.OS+c 1.0`--30 1.052,,
1+90 3 1•:JeO 1.1060• 1.1.5:
1-9a 3 1•]SAO	 - -	 1.1570 1.156)
1502.
1503

1
5

1.0000
1625.0 3100.0 2700.0 2+00.0 P650.0

3501 3 2900.0	 --• --•- 3150 . 0 3•00•a - --"

3537 1 3•o000
1512 3 -	 •00.^.00 •P 0000 •40000

' 1318 --- 3 ---- • 3 550[ '••3656[ -- -'	 • 3 7 160	 --•- --
152+ 3 •52190 •52660 •53370

1530 3 •75[30 •75380 •76210
1536 ---3-- • 9[650 •91000 ----•9359,, ----- -
15+2 3 •99.••0 1.0020 1.0120
15^P 3 1.0710 3.•0790 1.0920

- 155+	 - 3 -- -•- 1 • :390 - -- I • 1500	 ---  6 	 -•--	 1: 21 36300
-- '----- - -'-

:360 3 1.2010 1.2190  -
160:
1603 • --

2
-- 5 -.-

••2000
. 99500E-02

-9.0000
-•2100E-01--- -- • 26200	 -	 -- -- •27600 ---- 2i6500

1606
1609

7
S

•8650[
•9D000E-02.• 2.8200 •900DOE-01 1.000 .11400E-OP

-	 161+	 _ [ -. ___._ ..75800 --.•_ - .71300	 - -
1636
]a17

1
S

10.300
•DODO[ •+0000E•02 .70000E-02 •900DDE-02 .10000E-01

1622-- 5 --- .17000E-01 -•:1500E-0:-- ----	 .12000E-01 ---- .15500E-01-- --.22000E-01 -

1627 S 3.•0:10 1.ORDO 3.15+0 1.2330 1.2790

7632 S 1.31+c 1+3270 1.3370 1.36+0 1•3970

163- 1
5

-	 1.0000	 -
1+0000

--	 -
1.0000 2.0000

'
1.0000 2.0000

6 1.0000 ••0000 7.0000 1.0000

--- 12 -- 2 _	 •1.0000 .DDOUD -- ---	 --'	 --- -- --
18
20

1.
5

•00700
2.0000 1.700[ 1.0000 45000• •00000

25 5 •00]00 - - --- -•OOODO •00000 •3+700 230.00 ----

3C 225.[0 3.3000 1.0000 •00000 3.0000

'35 5 1•:30[ 2.0000 3.0000 3•[000 4•0000

- +0 - - - S -•--5 . 0000 +•0000 -- - 5 .0000 ---- -- 6.0000 ••0000

+5 2.0000 1.0000 9.0000 40.000 60.000

50 1 100.0E
99	 - 1 ^. 0000
:20
122

1
5

•13190
12.920 12.920 1.3932 1.7029 61.170

327- 1 .00000 ---- -
132. 1 •00000
1,2 1 .00000 .00000 ..00000 •0000Q

152 -	 S. •1700	 --- -	 •63500 -	 •161 O0 •33500

is T 5 •3030C •33300 •42500 •52501 11.700

7 7 7 ] +•2,,00 2.0000
-12.000 - --

7.0000
- • 25 000 -•12000 X15000

-.176
.1 8 1

5 +•0000.
7[5.00 •13600. 1.0635 219.00 1000.0

:86 5 •OOJOc .7b900E-01 %.2500 1.2500 1.0000

•	 191 2 1.535C -	 •00000 - _•-	 -'
193 2 •87000 •87000
217	 - 1 2.5100

- 219 - -3-- -3.0.00. •00007 ---.--1.0000---------
223.
227

2
5

•.97,,00
•00,,00

150.00
3.1135 31.000 •62713 1.0000

232 2 ._ . 1 •,,900 -__-_	 .-.00000 _--
23t 1 .82713
31P 2 1269.0 •48110

FIGURE C-2 OUTPUT OF ATYPICAL HESCOMP SIZING CASE (CONTINUED)
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721 1 1 .0"00
330

•
..	 1 •00000

2502 7 13356• :9x3.0 12000+
2605 3 •00000 •OU"00. '•ou•00
2508 5 1.0000	 -- •00000' •000 00 •00000	 - •00000	 ----
2613 S 2,•2.00 2(3•000 3.•000:000000000

-	 2612 • 150.00 •00000 •00000 •00000
- 2622 --- - S --_^- 125.00 2•d0a0 .r.0o0E-01 •4.000	 -- -__ •00000

•	 2627 5 1.0000 %ocoo 00.0 00000 •00000
-	 2632 S •00000 •.00000 •.(3000 •00000 •00000

- - 2637 - 5 --- ••• 000 H 00000 - 63 . 000 ---- • 290o0 - 1.0000
26r2 S 1•o.J 00 :•0000 :•0000 1.0000 250.00
26.7 S 5.0000 •00000 •0(300(3 •00000 .69000E-01

-	 -. 2657 -2 -.000 .00000 --- ---- - -
265• 5 !•000) 1.0000 1.0000 1.0000 1.0000
2653 S 1.0]00 1.0000 1•UOoo 1.0000 1.00.0

h - 2266•	 • ---5	 - -	 1 . 0000 1.0000	 ---- 1•u000 1.0000•--•-- 1 . 0000 -- --
2669 S 1.0000 1.0000 1.0000 1.0000 1.00c0
A7
352 -

?
-- S

3.000.^.
•00000

7.0000
•300.0	 -

0"000
•]6000

3011
_••0000	 --

:•@000
30000

•	 759 2 000
361. S .112"0

. 9

.97000E-01 •9G000E•O1 --
- -	 . -

318 5 •11200 9)0006-01 90000E-01 +450006-01 60000[-OS
373 2 .52000E-01 .52000E-01

-375 ------ 5 -•11230 .37000E-01 --•90000E-01---- • 9;0006-01 60000!-OS-
-	 380 2 •520n0E-04 .52000E-03

"
•01 2 •00000 •00000

--	 • 11	 - ._	 2 __.. .14700	 --_"-' .16770	 _.- .-_.. __•_--	 - _.... _.-.----_-. _	 7

(7 ••1 2 •02713 .82713
•61 2 1.0000 1.0000

^.
_

-- • il -- -7 .;,0000 •00(300 --
511 2

0000
•00000

521. 2 l-C•r.0 1.0.00
531 2	 _ -	 .16700E-01 167006.01•	 ...... -----	 -- --- --- --

.	 S•1 2 .42713 .427:3
551 2 •33300E•01 .33300E-01

- 571 -• --2 -2.0000 2.0000	 - ---- -
581 2 100.00 100.00

`
391 2 .0000" .00000

-	 621 -	 2 -	 . _. 250.00 - - -250.00	 - • -	 _	 - -	 -- --	 --- --
631 2. •2.0000 7.0000 _ ---i.
661 2 700.00 2000.0 .j

t .__ 651-- ._ 2 .. 42713 .42713 -_-- ]V

121 • 1.0000 1.0000 2.9000 4•0000 iI
733 1 100.00
7r1 .00000 - --	 .nocoo- -. •00000 •00000
771 • 10.000 2•ooa0 1.0000 10.000
781 . 2.0000. 2.0000 2.0000 2.0000

.791 -^-• --- 1.75.00 196.00 - 200.00 -•--.-_ 250.00
801827138271332713 .42713
871 7 2•nnUO 2.0000• 2.0070
iRl ] lJ0.a0 •, - 100.00	 •- 100.00 3---^"^891 3 •00000 .00000 3.0000
911 3 •00000 •00000 •00000
321 --.-. 3 _--- 100.00 100.00
9.1 3 1200.0 700.00 •00000
951 3 500.00 500.00 500.00 -
961 3 175.00	 •-	 --- --	 196.00 200.00 -- ----
971 3 .d2713 •82733 •82713

1031 1 •00000 -
1061 ---t----•-• 1311 0 - -- -

FIGURE C-2 OUTPUT OF ATYPICAL HESCOMP SIZING CASE (CONTINUED)



_	 fl	 a	 ^	 `l
	 a	 -.^	 . 	 ...	 ^	 . 	 A.. _. .	 ^	 -.A	 L	 9	 8'	 Y	 1;

3

1071	 1	 •82713
1081	 .1•33330	 -	 ---.._—.
1 18 1	 1	 2000.0
1191	 1	 .00000
1201	 5	 .00000	 •00000	 1.0000	 2.0000	 1.0000 - —	 -
1206	 1	 •00000
1222	 3	 1.1150	 1.2070	 1.0000

WG	 .450009E 05 WFA n .502391E 49 WFR n .765020E 45	 — ---- — -
WG n .450000E 05 hFA n - . 120417E 05 WFR n .455905E 04
WG	 .687154E 05 WFA n .210967E 03 WFR n .675138E 04

C7 	 '

FIGURE C-2 OUTPUT OF ATYPICAL HESCOMP SIZING CASE (CONTINUED)



H E S C 0 M P
HELICVPTER'SIZING G PERFORMANCE COMPUTER PROGRAM	 8.91

`	 TAt DE4 ROTOR
-

PUKE HELICOPTER

S	 I	 Z E— 0 A T A	 TKIS, RUN ,CONVERGED	 IN•• 3 ITERATIONS-- . — _ ___._—. .__ __	 .._...	 _. ,---.—.	 •_....

GROSS WEIGHT	 84133•	 LB

FUSELAGE

_----—	 Lf	 — -	 _.._.__ LENGTH	 _...	 __	 _—	 .----	 —.. ---	 .. ...	 88.2 FT. • -----
LC,	 CABIN LENGTH 48.2 FT.
CELTAXI	 FD: ROTOR LOCATION .8 FT.
DELTAX2	 AFT ROTOR LOCATION .4 FT.
WF	 WIDTH 12.9 FT•
G/S	 RUT6R GAP/STAGGER RATIO •113

--_._-- • -	 (O/L/D) --	 -_ ROTOR OVERLAP/DIAMETER RATIO 	 .. ------------ •000	 -- ---
` SF	 WETTED AREA 3564.8 SO- FT-

WING
NO WING USED

FORWARD ROTOR PYLON

0
AR	 ASPECT RATIO .188 - --

_ SFP	 NETTED AREA 47.6 SO• FT•

'; FAFP	 FRONTAL AREA 9.5 So.
99

FT•	 i
-----	 HP1	 —	 HEIGHT	 _..._.-.—.. --------	 - -	 --.— ..._._ 1.9 FT.---	

--C[7APFP	 MEAN CHORD 9.8 FT.
LAMBDA FP	 TAPER RATIO .335

-	 (T/C)R	 R OT	 THICKNESS/CHORD	 - .411
(T/C)T	 TIP THICKNESS/CHORD •835

- -__.AFT ROTnR PYLO14	 _ _	 ---- -°° — ---------- --- -- .. __^. —

Jt AR	 ASPECT RATIO .625
}^

f
€ SAP	 WETTED A RE A 479.3 SO- FT-ji

HP2	 HEIGHT 11.7 FT.
CBARAP	 MEAN CHORD 18.7 FT.
LAMBDA	 AP—	 _.- — . TAPER. RATIO .525
(T/C)R	 ROOT THICKNESS/CHORD .300
(T/C)T	 TIP THICKNESS/CHORD .333

s
^ PRIMARY ENGINE NACELLE

^t

LN	 —	 LENGTH •0 FT•. —.._._-
ON	 MEAN DIAIETER 0• FT •

C SN	 WETTED AREA(TOTAL FOR ALL ENGINES) .0 Sp. FT-

AUXILIARY INDEPENDENT ENGINE NACELLE



Vld

PROPELLERtAUXILIARY PROPULSION)

n NO PROPELLER USED

MAIM ROTOR

0 ,'F:	 DIAMETER 87.5 FT •	 1
SlGVR	 SOLIDITY .100
wt; /A 	 .	 DISC LOADING 7.0 LB/SG. FT.
CT/SIGMA	 THRUST COEFF./SOLIDITY .077
NR	 NO. OF keTOFS 2•
N^.	 BLADES	 --	 NO.	 OF	 BLADES /ROTOR 	_.	 _-- u--	 ._.. q,
THETA	 BLADE TWIST -12.000 DEG.
XC	 BLADE CUTOUT/RADIUS RATIO .250	 j
VTIP	 ------- ._. –.. TIP 	 SPEED- 704• FT. /SEC.------	 —	 !

i
d

FIGURE C-2	 OUTPUT OF'ATYPICAL HESCOMP SIZING CASE (CONTINUED)



H E S C 0 M P -
HELICOPTER SIZING 6 PERFORMANCE COMPUTER PROGRAM	 B-91

V. E	 I	 G H T	 S	 D A T	 A IN LBS

-	 -	 MLF	 --	 •- -----MANEUVER LOAD FACTOR . --
ULF ULTIMATE LOAD FACTOR 5.250

P ROPULSION GROUP
PRG TOTAL t.AIN P.CTOR GROUP 1019-}•

K12 WPRS MAIN ROTOR BLADE	 (PER ROTOR) 3199•
-'-	 --	 K13 h PH ----	 MAIN ROTOR HUB	 (FER ROTOR)	

....
-	 1896.---..-- ---

Y,BF BLADE F OLCING(PER RCTOR) 0.
K15 WAR AUXILIARY PROPULSION ROTOR GROUP 0.

W DS DRIVE SYSTEM 9791•
K16 h PUS MAIN ROTOR DRIVE SYSTEM 9791•
K20 -TRDS TAIL ROTOR DRIVE SYSTEM 0.

-- - -	 X17 h ADS - •--	 AUXILIARY PROPULSION D R IVE SYSTEM- ---	 -	 0•-	 -
K18 WEP

-	
PRIMARY ENGINES 2388.

K19	 i•EA AUXILAHY .ENGINES U•
WPEI PRIMARY ENGINE INSTALLATION 1051•	 -
WAEI AUXILIARY ENGINE INSTALLATION 0•
WFS FUEL SYSTEM 560•

DELTA NP PROPULSION GROUP WEIGHT INCREMENT 	 - - -: 0• -	 --
hP TOTAL PROPULSION GROUP .WEIGHT 23980•

STRUCTUPES GROUP ... -
n	 Y.8	 WW WING 0.

WTG TAIL GROUP 0.
O	 K9	 WHT __...	 HOR.	 TAIL	 ._.	 _.,	 -	 -- 0. -.--	 ----

K14	 "TR TAIL ROTOR 0.
K6	 WB FUSELAGE 10774•
K7	 WLG LANDING DEAR 3365•	 -

WNG NOSE GEAR 673•
w,iG 11A IN	 GEAR 2692•,
WTE5 _.__ . TOTAL ENGINE SECTION	 --•---._-•_ °. 0.	 - -°------
>,PES PRIMARY ENGINE SECTION 0.
WAES AUXILIARY	 E14GINE SECTION 0.

DELTA -ST STRUCTURE WEIGHT	 INCREMENT 400•
wST TOTAL STRUCTURE WEIGHT 14539.

fLISHT CZ-tJTROLS- GROUP	 _-- _-• `-- -• --- _	 ..-	 .___-_.
WPFC PRIMARY FLIGHT CONTROLS 4198•
-CC COCKPIT CONTRCLS	 - 160•

K1	 %RC VAIN ROTOR CONTROLS 2430•	 -•-
K2	 NSC MAIM ROTOR SYSTEMS CONTROLS 1459•
K3	 WFW FIXED WING CONTROLS 09

4T,y	 ...._...___ -TILT MECHANISM	 °--- .-•-__	 ._	 0.
hSAG SAS 150.
WAFC AUXILIARY FLIGHT CONTROLS 0.

K*	 ARCA AUX. PROPULSION ROTOR C 0 N T R 0 L S -	 0.-	 ---•
K5	 -"SCA AUX•	 PROPULSION ROTOR SYS. CONTROLS 0•

WMC MISCELLANEOUS CONTROLS 0.
-	 DELTA WFC-- _.•CONTRCL-WEIGHT- INCREMENT

FIGURE C-2 OUTPUT OF ATYPICAL HESCOMP SIZING CASE (CONTINUED)
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III	 I7m	 _	 _	 . _'

00Y

•¢'

hFC TOTAL CONTROL WEIGHT 	 4198•

WFE	 WEIGHT OF FIXED EQUIPMENT	 13356.

€	 WF	 WEIGHT EMPTY	 56073•

u WFUL FIXED USEFUL LOAD 1943.

n OWE OPERATING WEIGHT EMPTY 58016.

E
.r WPL ' ----- - -PAYLOAD ..	-	 -- -	 ------ -	 -	 _	 .__ _ ._	 _.	 18000.-

F
(WF)A FUEL 8117.

N WG GROSS WEIGHT 84133.

r

1

1

iti

7

FIGURE C-2 OUTPUT OF ATYPICAL HESCOMP SIZING CASE (CONTINUED)
i
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H E S C O M P
HELICC'PTER SIZING 6 PERFORMANCE COMPUTER PROGRAM 	 B-91

P R O P U L S I O N	 D A T A	
-	 _-

PRIMARY PROPULSION CYCLE NO.	 2.510
-	 - -	 TURBOSHAFT ENGINE

n	 3• ENGINES

W	 BHP*P	 MAX- STANDARD S.L• STATIC H.P. 15710.	 H.P.

ENGINE SIZED FOR TAKEOFF AT T/W .1.11
H -	 0. FTr TEMPERATURE = 90.00 DEG.F.i
1.000 ENGINES I:10PERATIVE. AND	 •00 FT/MIN VERTICAL RATL OF CLIMB.

NO CRUISE CO NDITION SPECIFIED.

MAIN RUTOR DRIVE SYSTEM RATING	 15710.	 H.P.

_	 XMSN SIZED AT 100. PERCENT OF TOTAL PRIMARY ENGINE INST ALLED POWER
( M AX. STANDARD S.L. STATIC H.P•)

I	

J

FIGURE C-2 OUTPUT OF ATYPICAL HESCOMP SIZING CASE (CONTINUED)



H E S C A M P
HELICOP TER SIZING S PERFORMANCE COMPUTER PROGRAM 	 D•91

A E R 0 0 Y N A N, I C S D A T'A
FE	 TOTAL 'EFFECTIVE FLATPLATE AREA	 47.92b	 SOFT
SWET	 -	 TOTAL AETTED AREA	 - - --	 4092•	 SOFT - - -
CRAR F	 MEAN SKIN FRICTION COEFF.	 .011713

D R A G 3 R E A K 0 O W N	 IN SOFT
FE W	WING FE	 .000
FEF	 FUSELAGE FE	 47.926
FEFP	 FORWARD(MAIN) ROTOR PYLON FE 	 •000

0
	

— -	 FEAP	 -	 AFT PC-TOR PYLON FE	 _	 --	 •000
_.	 FEMRH	 MAIN R9T'R HUB(S) FE	 •000

A	 FETRH	 TAIL ROTOR HUB FE	 •000
FEVT	 VERTICAL TAIL FE	 •000
FEHT	 HORIZONTAL T A IL FE	 .000
FEN	 PRIMARY ENGINE NACELLE FE	 .000

_.	 FENI	 _ _ AUX. INDEPENDENT CRUISE ENG. NAC. FE -•-	 .000

FE N S	 AUX. INOPENDENT CRUISE ENG. STRUT FE 	 •000
DELT A FE	 INCREMENT&L' FE	 .000

A E R O D Y N A M I C C 0 E F F
AS	 47.92624
A6	 .00000
A7	 __ .._.-	 - _... _..-	 .00000
As	 • 001100
A9	 .00000

d	 E	 O.ING LIFT EFFICIEN,-lc FACTOR	 •00000
EVT	 VERTICAL TAIL LIFT EFFICIENCY FACTOR 	 •00000

FIGURE C-2 OUTPUT OF ATYPICAL HESCOMP SIZING CASE (CONTINUED)
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H E S C O M P
HELICO P TER SIZING S PERFORMANCE COMPUTER PROGRAM 5-91

C ISSIPN PERFORMANCE DATA

TAXI	 FOR .167	 MRS. AT GROUND IDLE ENGINE RATING -
V°V° "-	 -' - ^--	 - ------_-- PRIM PR IM-	 PRI M- TOTAL -AU X . -- AUX•--AUX	 AUX•- ENG •-

FUEL PRESS. TuRB. ENS.	 ENG. FUEL TURB.	 ENG-	 ENG.	 FUEL FLOW
TIME RANGE USED WEIGHT ALT-	 TAS TEMP. CODE	 PEHF FLOW TEMP.	 CODE	 PEHF	 (LBS/HR)
(HRS) [N.M.) (LBS) (LBS-1 (FT)	 - --'(KTS) (R) (LBS/HR) iR)	 --• -	 -- - -	 -- -

•000. •OO •0 84133. 0.	 •0 1665.0 T	 •000 952• ----	 ----	 --..

• 167 •00 158.9 83974. 0•	 •0 1665.0 T	 .000 952• ----	 ----	 .-..

TAKEOF F, HPVER, eR LAND AT	 T/ W -	 1 . 040 FOR	 .033 HRS. --

___. PRIM.	 - .	 PRIM . 	PRIM. TOTAL	 ---- THRUST.
FUEL PRES. TURK- ENG.	 ENG:- FUEL TO

TIME RANGE USED ~EIGHT ALT.	 TAS TEMP. CODE	 PEHF FLOW WEIGHT	 FM	 -3HP	 CT	 CT/SIGMA
(HRS) (N.M•.) (.LP.SI (LBS-1 (FT)	 (KTS) (R) (LBS/HR)

M.ROTOR M. R OTOR T.ROTOR T.ROTOR VRC	 PRIM.ENG AUX•ENG ROTLIM
0 VTIP RHP VTIP RHP -- RHP-•---FUEL FLOW FUEL FLOW CODE ---	 -- --._._	 ---- DELDCM •--- FMI___-CPPRO--LPIND---LDO-
- (FPS) (LBS/HR), (LBS/HR)

(31
-167 -GO 158.9 83974. 0•	 •0 2264.6 P	 '••563 4150• 1.040•	 •737	 ..	 8829- -.062-

703.8 9418• ---- ---- 0.	 4150• A .0000	 •737	 •00009	 •00038 .0092

-_ •184 •00 -228.3 - - 83905•-----.0.____._ .0 -- 2264 . 1- --- P-_ -_-• 562---4147 •1.040-•737.-8819 • 	 • 0062 .062-
703.8 9409. ---- ---- 0•	 4147• A •0000	 •737	 00009	 •00038 •0092

• 200 •00 297.1 83836• 0•	 •0 2263.5 P	 .562 4144. 1.	 4	 -•	 •737._	 8810•_.__•p062.____0 0 •062_
703.8 8400. ---- ---- 0•	 4144. A

_
•0000	 +737	 •00009	 •00038 •0092

CLIMB TO 7CO.	 FT. WITH	 CONSTANT EAS	 AT	 NORMAL	 ENGINE RATING
** TAS(ANO SAS)	 IS THE HORIZONTAL CdMPONENT OF THE FLIGHT PATH SP'E'ED

P R IM • PRIM•	 PRIM• CT PRIME	
-_	 -

FUEL PROS. TURB. ENG.	 ENG- OVER	 ALPHA
- TIME RANGE	 - USED WEIGHT--- ALT.-- - TAS	 -- TEMP.-_..- CODE .,_ » PEHF-'-- EAS-.-- MU---- SIGMA-. D/L	 GAMMA_BHP-R/(,_

(HRS) O'•M.1 (LBS) (LBS.) (FT)	 (KTS) (R) (KTS) (DEG)	 (DEG) (FPM)

AUX•	 AUX•	 AUX.___-._.._-	 AUX•
M. Q OTOR I1.ROTOR T.RCTOR T.ROTOR PROP	 PRIM.ENG • BHP ETAP	 ,UX• ENG. TURB•	 ENG.	 ENG.	 ENG. BHP
VTIP RHP VTIP RHP VTIP	 FUEL FLOW AUX PROP	 TAUX/T FUEL FLOW TEMP.	 CODE	 PEHF	 OR THRUST

-(FPS) (FPSI	 _ -.- ..(FPS)-(LBS/HR) ---- ( LBS/HR I_.-..

CPPRO CPIND. CPPAR CPNUD CUO	 DELCDS DELCDM -CXR	 ROTLIM _._ J CP __... _CT-.. _-. CLI+^._CDW--._-_ RH
CODE

FIGURE C-2	 OUTPUT OF ATYPICAL HESCi'VIP SIZING CASE (CONTINUED)



• 200 •On 297.1 A3k36- 0• 100.0 25,2o•a T •954 100.0 -240 •060 '1.1 l4•S 13392•.2614•
703.8 52.12 -... --.. .._. 5586. ._._ .... .000 .... .... .... ....

--•-
f

. "00715=a. C'. .00nt?A .".05.28 .00.014 • 00916 •n,). •0'0.15 n --_- ___. __-- '--- .•.. .-_-

•202 16
52; 7•

3n6-0 83M27 - 24 0_ 1 004 2500.0 •857 251x•
703.4 5557.

T..
.T.. 000

100-0 .2_1 -060 :L•1 1-_-- 173:1

•Goo 1o9. • 0nn1•n nnn02x• 14.0000 •npl .]T .nnnnl •00014 • "00116 A

'

• 204 •32 31'-9 8311 5Dn- 15.0.7 25.70-0 -T.. 4/ 100. 0 • -1 • l f4. 1. 17274. 2573.
703.E 5222• 552x•

•9
000

---- _ --242 •0.	 60--.. .-._ ----

•0001"9 • 000147 •""05.26 .000014 • 5.5.918 . 5.0001 .07017 •"00116 A

• Zo5 -45 322.1 63911• 7o0• 101.0 2500 . 0 T .444 100.0 •242 •061 -1•! 14.0 13233. 2SS7•
703 . 6 S226. --1. .... -"- 5505. .-.. -... OOJ .... .... .... .... ....
•0001111 •.000143 . nl7n 7.28 .000014 • 5.0920 •00001 •00018 •00011/ A ---- ---- ---- ---- ----- ....

CLIMB TO	 2000 •	il. k1TN	 CMNSTANT EAS	 AT	 HMRMAL ENOINE RATING

_

••	 TASIAND EASI	 IS THE NOR T2DNtAL C0HP!,NENT MF THE FLIGHT PATH SPEED

. • PRIM. GPI?• PR 1M• CT PRIME
' FUEL PPES• TURK. EN3• Eu0• OVER ALPHA

9
TIME RANGE USED WEIGHT ALT. TAS TEMP. CODE PENF EA8 MU SIGMA D/L OAMRA SNP

p IHP91 IN.M.1 IL091 IL85.1 IFTI IkTSI IRI' IKiSI IDE01 local IIPMI

1.
M,	 .RO T On. M.R0 10R RT•OTOR %OTORR PHOP PRIH H. 	 ^ BNP ETAP a5.%• ENG.

AU%.
TURB.

AUX•	 _
ENO.

AU% • "
ENG .

.._.	 .. AUBX.
EN`P• BHP

YT1P RHP v71P pNP vT1P FUEL iLDN AU% PROPT1UX11 FUELFIOY TEMP. CODE PENF DR THRUST
IFP91 IFP9l 1/PSI 1L6 S/HPI IL99/MRIJ
CPPRU CPIND CRPAR CPNUD C00 OELCD6 DELCOM CXP ROTLIM J CP CT CLY CDY RN

CDD

•205 •45 322.1 D3R11•

811.
700- 255.0.0 T

..Cool!

•A4-t 100.0 •242 •061 -1.1 N. 0 2317•
tt

703.! 5225•. _.-1.
'-- -

5	 5.
5505• --_. -. ... ^ -.

^	 ^ 1323]

•000109 •On0143 .nanQ2R .00no14 .•00920 •n05001 .On018 •0001.17
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• 000109 • 00012; - • 700 ^v39	 •00001•

193	 195.37 	 5620 .1 .	 78511•o

'000179 • 0001Z! -.000039	 .000011

'197	 195.66	 5629.8	 78503•

	

50156•	 ----	 - -	 •000	
-...	 .-_-	 ----	 --•-	

....

	

• 02171	 •00255	 •01016 • 000.79	 •	 -`^-	 "-`	 --`-	 •'•. - • •

	

1700 •	201••	 2500.0	 T	 •869 200 . 9	 •690	 •099	 -6.7	 •01679	 1]710-

	

_	 5556.	 -_--	 -•__	 •000	
.._.	 .---	 -..-	 ..-.	

....

	

• C 2170	 •00255	 •01016 •000179	 •	 ---`	 `---	 ---'	 -•-•	 •••^	 •'••

	

1770 .	201.6	 2500•.	 T	 •969 201.0	 •191	 •OSA	 .4.8- -- • 01682 . .. 13756._

	

---`	 5556.	 --•_	 --•-	 •000	
_._.	 .---	 --_-	

..-..	 -...

	

• 02176	 .00256	 •71020 •000 1 90	 1	 --'-	 ---^	 ----	 --••	 .-••	 '-"

	

1200 • 20 1. 6	 2500.0	 T	 •869 201 . 0	 -191	 •059	 -1.8- -03697	 11796•

	

----	 5556•	 ----	 ----	 •000	 •---	 •---	
.-.-	 ...	 ----

	

• 02175	 •00255	 .01020 • 000 . 90	 A	 ---^	 ----- - ---. .__•••: ___ ---.--.. ___-•-•--

	1200 •	20-•1	 2so0•o	 T	 •969 200 . 5	 •189	 •059	 -4.7	 •01677	 13620.

	

_•_•	 5555.	 .___	 -...	 .000	 --.	 ..--	 .•--	 --..	
.... ..

	

• 02156	 •00219	 •01007 . 000177	 A	 ----	 ....	 .-^-	 .r•.	 .---	 --°

	1200 • .... 20•• 1	 2500.0	 T	 .968. 200 .9	•689 ..._•058 - - 6.7.-• 01671_- . 13620 -..

	

•__-	 5555•	 ._-.	 -...	 .000	 •--.	 ....	
..-.	 ....	 ....

	

-02156	 •00219	 •n1007. .000178	 •	 •--•	 •--^	 •••••	 «••	 .•••	 ••••

	

1200 •	201.1	 2500.0	 T	 96.8 200.5	 •489	 -058	 `1.0	 •01679	 13620•

	

5
.0021

555•	 -- 
117 •0(1

--	 •000	 --•-	 -	 -"-	 ----

	

•.2156	 9	 •.1;;171	 •

196.00. N.•MI. AT CONSTANT EAS 	 -	 -

PnIM.	 .RIM•	 PR111.	 CT PRIME

	

-PRES. -	 TURS•	 ENO-	 ENO•	 -•-	 GYER --ALPHA- _-. _..
ALT.	 TAS.	 TEMP•	 CODE	 PEHF	 EAS	 MU	 SIGMA	 D/L	 GAMMA	 8HP	 R/0
If7I	 IKTS1	 IRI	 IK791	 fDEOI lots 	 IrPMI

AUK•	 AUX•	 A•	 AUK-
PROP	 PP1M•ENG	 SHP	 ETAP	 AUX- ENO- TURD. END•	 ENO

U2•
	 ENO. GNP

.vT 1P FUEL FL 1'. AU8 - - PROP -TAU;/T FUEL FLOW TEMP.. CODE -• ►EHf.__._. OR . THRUST—
IFPSI	 ILSS/MRI -	 11.99 /MR I

CDO	 OELCnS	 DELCUM	 CKR ROTLIM	 J	 CP	 CT	 CLN	 CDN	 PN
CODE

	

12n0 •	1.8	 1993.7	 P	 •.255	 100.0	 •216	 -058	 l•6	 '.271	 3992• 900-

	

-_-•	 2515
01•
	 ....	 --..	 .000	 ....	 ....	 ....	 ....	 .-..

	

•On919	 •00000	 .00019 -.000156	 A	 --'-	 ---^	 -.--	 •...	 ....	 ---^

	

1100 •	101.8	 1992.7	 P	 -. .231	 100.0 .-.•211__-- • 050.._.. 1 . 6 _._ .2-1.-3!71• 500•

	

--__	 2509.
	 .000	 -_--	 ---.	 -.	 ...-	 •--•

	

• 00919	 •00000	 •00019 ' • OOn16 u	•	 ----	 --••-	 --`-	 --^+	 --.-	 ----

	

10o0 •	101•.8	 1992.6	 P	 .25•	 100.0	 •261	 •058	 1.6	 -210	 3971- 900•

	

_•__	 .2509.	 '--_	 -•--	 •000	 .r ..	 ....	 ....	 ....	 .-..

• 00919

	

•:10000	 ..001! --000160	 1	 • ...	 ....	 ....	 ...• _._--.---. --••	 ..

	

.900 •	101.9	 1992.5	 P	 •253	 100.0	 •266	 •058.	 1.6	 -2a1	 3!73• 500•

	

....	 2509.	 -•--	 -...	 .000	 ....
	 ....	 .... ..	 .-..

	

•00919	 • 00000 •0001! ^•o00I.U. A	 ....	 ....	 ....	 ....	 ....	 .'-.	
..

	

800 • .	 _101 . 8 : 1992 . 6	 .	 P	 _•253 - 100 . 0	 •711	 -.050.. _. 1.6.	 260.., 3973•. 500.

FIGURE C-2 OUTPUT OF ATYPICAL HESCOMP SIZING CASE (CONTINUED)
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N

703.8	 3701•	 •---	 ----	 ----	 2509•
. • 000179 • Gn001F -•^^0	 919139	 ."On

."On";•00
	 .npnpn

1.2n0	 196•nl•	 5 . 3 7. 1	 l 95 •	7710•101-8
703 . 8	 3708•.	 ---	 ---	 ----	 2509•
•000: •:9 • 00017P -•0nr039	 •0000: 4 •On919	 •00000

CRUISE AT	 IOC•0 KNOTS TASI LIMITED BY NORMAL

FUEL	 PHES•
TIME	 RANGE	 USED	 w0,1G14T	 ALT.	 TAS
ON R$. 1	 I!I•M.1	 ILB51	 ILRS.1	 IFTI	 IKTSI

M•RMTOP	 T•PL•IOR T.ND70R	 PFITP	 PRIM•ENG
vT IP	 RNP	 vIT	 RHP	 Vi I P	FUEL FLOW
IFPSI	 IF PSI	 IFP51	 ILBS/NH)

CPPPO	 CPNND	 C.PP.p	 CPNUD	 CUO	 DELCDS

1;200	 196.0.	 9631•.1	 78195•	 700•	 .100.0
703.8	 1PP3•	 -'--	 ----	 ----	 2890•

. 0001CP • 000127 •OCr028	 .000013 • 00915	 •00000

1 . 210	 197.00	 56f•R•0	 78466•	 700•	 100.0
703.8	 " 2 •	----	 ----	 ----	 28P9•

• 0nO1C3 • on. 17,-	 nn."'. - .000003 • 00915	 •nOn00

1 . 220	 198.00	 569 • •9	 78-37.	 7G0•	 100.0
703 . 8 	 4RPp.	 ----	 ----	 ----	 28R9.

• OOOIOP • 000126	 inc,• 	 •000013 • On915	 •nnn00

1 . 230	 199.0^	 57P3•a	 7840x.	 700.•	 100.0
703 . P	 •1178.	 ---•	 ----.	 ----	 2Ra8•
•000118 • 000126 -On9028	 •60^013 -0 IS	 •00000

1 . 210	 200.00	 5752.7	 78379.	 700•	 100.0
703 . 8	 •876•	 ----	 ----	 ----	 '2988•

• 000103 . 000126 .01)n028	 .000 F.13 . Oni15	 •noGGO

DESCEND TO N .	 0. FT. At CONGTAN T EAS	 11

FIIEL	 PRES•
TIMERANGE	 U;rD	 O^IGNT	 ALT.	 TA5IMPS 
	 IY. M.1	 [Los I
	

OLDS-)	 OFT;	 IKTSI

M.ROT09 M.R M TOR	 %PyTOR T.ROTO 11	 PROP	 PRIM•ENO
v TIP	 RNP	 IT	 NN)'	 +TIP	 FUEL FLM:
IFPSI	 (FPS I	 IFP51	 IL89/PRO

CPPR?	 C-140	 CPPAR	 CPNUD	 COO	 OELCOS

.--.	 -...	 .000	 .•..	 ....	 ....	 •...

•f10019 --RI 	 A	 ---•	 ----	 -•--	 ----	 ----	 ---•

1992.6	 P	 •253	 100.0	 •244	 •058	 1.6	 •2.O	 3973• Soo.
----	 ....	 •000	 --------.	 ----	

•..	 ..•-

.[10019 -.000160. A	 ----	 ---	 ----	 ....	 ....	 ••..

ENGINE RATING

PRIM.	 PRIH•	 PRIM.	 CT PRIME	 -	 --	 -
TURB •	EH% - ENG•	 OVER	 ALPHA	 BPEC-
T EMP.	 CODE	 PENT	 EAS	 MU	 BIG 

'A
	 0/L	 R6HOE	 SH►

LHI	 IKTSI	 - IDE01----.INMrPI-.

	

AUX • AUX •	AUX•	 AUX.
BNr	 ETAP	 ..UX• ENG• TURK. ENO •	 ENG.	 ..	 ENO• /NP .
AUX	 PROP TAUX/T FUEL iLOK TEMP. CODE	 PEHF	 OR iHBUSi

OLD S/HRI

DELCOM	 [%R	 ROTLI.M	 J	 CP	 CT	 CLW	 CDW	 BN

CODE	 -	 --

2062 • n	 P	 •331	 99.0	 •240	 •057	 .-1•2 -• • 03 .60	 SIBS• -_-
_---	 .000	 -...	 ..-..,	 ----	 ^--•	 •-•-

• 00015 • 000115	a	 ----	 ----	 ----	 ----	 ----	 ----

206 1 . 9	 P	 •331	 99.0	 •240	 •057	 -1.2	 •03.61	 5183.
..-.	 -...	 .000	 ----	 ----	 ----	 ---•	 .-..

.OUnIS .000115	 •	 •---	 ---. ......---	 ---..	 _..-.-.. ... .. _.--.___-

2061 • P -	P	 .-130	 99.0	 •210 . • 057	 -1.2	 •03462	 S1SI•
•000	 .-..	 ••-^	 --.-	 •.-.	 ---•

•00015 • 00;10	 •	 ----	 •---	 --•-	 ----	 ----	 -•--

2061 . 7	 P	 .330	 99 . 0	 •210	 •057 ---1.2	 •03462 --_ 5179. -.

--•-	 --..
	 .000.	 ....	 ....	 ....	 .•-.	 .•--

• 00015 •000/15	 •	 ----	 ----	 •-.-	 ----	 ----	 ....

2061.6	 P	 •330	 99.0	 •210	 •057	 -1•!	 •03463	 5177.-'
....	 .000	 -.-..	 .-.•	 -.--	 .-...	 .--.

+00015 •900115	 •	 -_•-	 ••--	 --•-	 ••-•.____.. ........_	 •--...-

IPIRAL DESCEN T PATH - NO RANGE CREDIT)

PIT IM•	
PRIM'
	 PRIM.	 CT PR THE

IURB•	 EHO.	 ENO.	 OVER	 ALPHA

TEMP .	 CODE	 P1,11;	 EAS	 MU	 51GMA	 0/L	 GAMMA	 SNP	 R/S
IRI	 IKTSI	 IDEGI	 IDEOI	 IF►M)

AUX• 	 AUX•	 AUX•	 AUX•
BHP	 ETAP	 AUX• ENO. IUPS• ENO•	 ENO.	 EN G. /H►
AU 	 PROP TAUX/T .UEL FLOW TEMP- CODE	 PEHF_	 ..	 OR THRUST.-----

ILBS/HRI

DELCDM	 CXR. ROTLIM	 J	 CP	 CT	 CLW	 COW	 RK
COOS

0
^O

FIGURE C-2 OUTPUT OF ATYPICAL HESCOMP SIZING CASE (CONTINUED)



NN

j•2 +O 	 200•UC	 5752.7	 714379•	 700•	 101.0	 199`•6	 P	 25♦ 	 100.0	 .242	 •057	 1.6	 •2.8	 3975. 500•
703 . 8	 3711•	 ._2574•	 __.00J	 _-	 ___.	 .._•	 ..-.	 ....
•000.109 • DOGt^S - • C^00714	 .000713 • 00916	 •00010	 •D IIn l6 -•000156	 1	 .-•-	 •---	 •`..	 .••-	 ...•	 -•..

1 . 213	 200.1•	 57. -

	

61.1	 7R 370 • 	.1111•	 101.0	 1993.1	 P	 •252	 100.0	 •242	 •037	 1• a	 -z.e	 3959• eoo.
703 . 8	 369••	 ---	 ----.	 ----	 2529+	 ----	 -	 •100

• 000109 • Oon12S -.Oon039	 •000613 • 007.6	 •001)	 •00016 -•000159	 A	 •--•	 ---•	 •..._	 .•.. _._ .••.

.1 . 2 4 7	 20C•67	 5Jt:9.6	 711352•	 500•	 102.0	 1993.5	 P	 •252	 100 . 0	 •242	 •057	 1.6	 - 2.8	 3!50• 000•
703.8	 3673.	 ••+-	 ._ - _	 __ - .	 2529.	 -	 •300

• 000109 • 001.• 1.25 -•PCCC39	 •000013 • 00316	 •00001	 `00"16 - • 000159. A	 .•..	 ....	 Y

1 . 250	 .201.01	 5778.0	 7835••	 40n• - IOl • O	 1993.6	 P	 •252	 100.0	 •242	 •OS)	 _ 1 • ^	 -2.8 - 3957• 000•-
703•a	 3673•	 -___	 ___.	 _.__	 2529.	 ----	 `---	 •000	 _._-	 .__-	 _..•	 ..-.	 ..-.

• 000109 • 00012 • .600039	 •000013 • 00916	 •00000	 .00016 - • 000(59	 •	 --•.	 •.-•	 ••-•	 ....	 -...	 .•..

1 . 253	 201.35. 578_
	 _

6.4	 78345•	 300•	 IOI•o	 1993.6	 P	 •232	 100.0	 •242	 •057	 1.6	 -2.4	 3907• 500•
703.14	 .3693.	 _..	 __._	 --_	 2529.	 -___ _•`-	 .000	 '-_.	 ...-	 -•-.	 -..•
•00J101. .000126 - • DoUO39	 •000013 : 00916	 •00000	 •00(116 -•000159 	 A	 -•-•	 ---.

1 . 257	 .201.514	 5794.9	 78337•	 200• 	 to; 	 1993.6	 P	 •252	 100•.0	 •242	 •057 t•6	 '2.8	 7137• 500•
703 . 8	 3692.	 -•_-	 _^-_	 2S 2_9•	 ___-	 _-__	 •252	 •__-	 ^---	 --	 --..	 -•-.

Goo

.
• 000109 • OOOIY • - • 600038	 .000013 • 00916	 •00000	 •00016 •• 000159	 A	 -`.`	 ..••

1 . 260	 202•M2	 5803.3	 7R323• .. 100 •	101.	

'

	

• 0	 1993.5	

P••	 •
• 252. 100 . 0	 •242	 •057._.. 1 . 6 -- •2.8 _ 3936• !

703.1	 3612^	 .__-	 ----	 .__-	 252h.	
--•	 00•-

	

___^	 -	 000

	

•	 ^	 •	
-

__-	 ^-.	 .--	 •--•
• 000109 • 00012 4 •. 6900?1	 •OGGoI3 +00916	 •noon;	 .00016 - • 000159	A	 -•-•	 •^•+	 ••••	 ^.

1 . 263	 202•J5	 5811.7	 78320•	 0>	 .10.0.	 1993.5	 P	 •252	 100.0	 •242	 •057	 1•
7 03 . 8	 9692.	 ..__	 -.-	 25218.	 •	

_- 6	 -2.8	 3!!6• 00^•

	

--^-	 ^---	 ----	 ---.	 ..--	 •-.•	 ...-
• 000109 .0001[4 -.000038	 .000013 . 00916 _ .noo00	 •00016 -•00015!	

Aooa
-	 ••-•	 •••.	 ...^_.. _-..^._ -.-• .__.._

T AKEOFF, NOvER, T• R LAND AT T/W - 1 . 040 FOR	 .033 HRS.

1'14IM.	 PRIM• P11.14,	 TOTAL	 THRUST
FUEL	 _ PRES•-	 _Tung.	 ENO•	 ENO.	 .FUEL	 TO	 _

TIME	 RANGE	 L'SEO	 ~LIGHT	 ALT.	 TAS	 7ENP.	 CODE. PEN;	FLOW	 WEIGHT-• FM	 .HP --_CT•	 Cy/8,1111"A
INRS1
	

IN. M.I	 ILBSI	 ILBS•1	 IFTI	 IKTS.1	 IRI	 ILO!/HRI

M.ROTOR M. ROTON	 T.9CTOR T•RO10R	 VPC	 PRIM.ENO	 AU%•ENG	 ROTLIM	
_

V TIP	 pRP	 yTIP	 RHP	 RHP	 FUEL FLO W FUEL FLOW CODE	 OELDCM	 FMl	 C►PRO	 C► IMD	 000
I; PSI	 -	 IL05/NRI	 ILRS/H R I 	 ._...	 .__

1 . 263	 200.OU	 5111`7	 78320.	 0.	 •0	 2273.9	 P	 •515	 3901•	 1.040	 •728	 8070•	 .0059	 .058
703.8	 7682•	 ••--	 ----	 0•	 3901•	 ----	 A	 •0000	 •728  00001. •00034 . •0012

1 . 280	 200.00	 5A76.9	 78255•	 0•	 •a	 7,223••	 P	 •St.	 3898•	 2	 .0611 . 040	 •78	 •
703.8	 7674•	 -"`	 --`-	 0•	 3898•	 -..-	 A	

•005•	 •OS8

	

-	 •0000 _._..728 _..•000Of__•00034 	 •0012_
1.297	 .200•;1	 5941 . 6	 78190•	 0•	 •0	 2223.0	 P	 -51,4	 3095•	 1.040	 .727	 •053•
703.0	 7666.	 .•	 ----	 0•	 3895•	 -	 A	

•0057	 .OS.
0000	 72t	 •000;1	 .00034	 .0012 _•_

TAXI FOR	 .167 HRS-. AT GROUND IDLE ENGINE RATING
PRIM.
	

PRIM- PRI'I•	 TOTAL	 AUK.	 AU1•	 AURA	 AURA ENG.
FUEL	 PRESS-	 TURD.	 ENO.	 ENO.	 FUEL '	 TURe.	 ENO•	 ENO.	 FUEL FLOW

TI ME	 RANGE	 USEC	 *EIGHT	 ALI•	 TAS	 TEMP,	 CODE	 PLHF	 FLOW	 TEMP.	 CODE	 PEMF	 {288/NRI
IHRSI	 (A.M.1	 ILBFI	 ILBS.1	 IF T1	 IKTSI	 IRI	 •	 1LS S/HRT	 181

1 . 297	 200.00	 5941.6	 78190•	 0•-	 •0	 1665.0	 T	 •000	 952•

FIGURE C-2 OUTPUT OF ATYPICAL HESCOMP S;ZING CASE (CONTINUED)
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8.	 ^. T^3	 t` .., : ^ s.. s	 :.^ t	 ':-:•..::, _^	 +:.^	 v.3 r _ ;.7 w-'- ^ ,a...da:r -	 __"^ s	 -,.	 - r...._-.t r	 ..._-- I..:.,.e	 w^ 1~.=.:_:rY K ^ -	 .7 ^.-»-.^	 ^	 "

1 . 464	 200.00 6100.5 78031• 0• •0 1665.0 T •000 952. -- --	 _^^^^_-- ^•^• -__._....

k`n
TRANSFER ALTITUDE TO 2000• FT• - - --"	 - ---- i-

(f	 a FJEL PRES•4,r1"
TIME	 F+AV,E USED WEIGHT ALT. - --	 --

A 1HRS)(N.M•1 (LBS) (LOS-1 (FT)
1.464
1.46+

20O•DO
^.200-•^

6 0 0
0100.0.

78031•
78031•

0•
2000•

CRUISE AT SPEED FOR 99 PER CENT 9EST RANGE WITH HEADWIND OF	 •0 KNOTS
------- FOR--RESERVEFUEL--

` PRIM• PRIM• PRIM• CT PRIME
FUEL PRES. TURB• ENG. EJG. OVER	 - ALPHA ---- SPEC.	 _ .._ ...

T:ME	 RANGE USED WEIGHT ALT. TAS TEMP. CODE PEHF EAS MU SIGMA D/L RANGE SHP
(HPS)	 (N.M.) (LBS) (Li3S.) (FT) IKTG) (R) (KTS) (DEG) (NMPP1

AUX•
-

AUX• AUX•
--- -.

-AUX•
M.RGTBR	 r..R:1T5R T.ROTOR T.RdTt,R PROP PRIM.ENG BHP ETAP .UX:	 ENG. TURK. ENG. ENG. ENG. BHP
VTIP	 RHP VTIP RHP VTIP FUEL FLOW AUX PROP TAUX/T FUEL FLOW TEMP. -CODE	 -", PEHF- - --	 OR THRUST---

i.,. (FPS) (FPS) (FPS) (LOS/HR) (LBS/HR)

CPPRO	 CPIND CPPAR CPNUD CDO DELCDS D•ELCDM CXR ROTLIM J CP CT CLW CDW RN
CODE

1.464	 20C•00 6100.5 78031- 2000• 171.2 2237 . 5 P •555 166.2 •411 •059 -3.3 •04409 8696•
703.8	 3250. -- ..-. _.	 ...-_..- 3885. ..	 .. .-.. _	 .000 ...... ....

• GOC239	 •000038c .nOO138 .000029 . 01436 • 00069 .00468 •000336 A ---- ---- ----

N 1.522	 21C-Or- 632227.3 77804• 2L00• 171.2 2236.6 P •554 166.2 •411 •059 3.3 •04415	 - 8680.
L%) 703.8	 8274. •--- ---- - 3880• --- 000

•000239	 -000079 -000138 -000029 -01434 •00068 -00467 •000336 A ---- ..-- .... ---- .... ----

1.591	 220.00 6553.8 77t^7R-- 2 X̂00• 171.2 2235.7 P •553
'	 -

166.2
-

•411
--

•058
- -•_-

-3:3
__.__._	 _.
•pY421

--
8664.

r703.8 8259. --- ---- ---- 3875. --- - --- •000 ---- .... .. .. . ....
• 000238	 • ODOG79 .Cool38 .000029 . 01432 •00066 .00465 -00033 6 A ---- ---- ---. .-^.

1 . 639	 230.00 6780.0 77351• 2000• 171.2 2234.8 P' -552 166 . 2 -411 •058 -3.3 -04427 8648.	 -	 -
7G3.8	 8243. ---- ------ -- ---- .3870. .000 -	 --- -	 . - - _ ..

t
• 00 0238	 •0?OC/P_ •0OO13i3 .000020 • 01430 •00065 •%0464 .600:336 A ---- ..•.. --.. ..-. ---- ....

1 . 6:7	 240. or 7005.3 77125• 2000• 171.2 2234• 0 P .551 166.2 -411 -058 -3.3 _	 .._•Orr33	 _.8632.
733-8	 82'7- ---- --- ---- 3865• ---- .... •000 .... .... .... .... ....
• 000238	 • 000078 • 00013 3 .1:00028, • o1 4 28 -00064 •00463 .00033 6 A ---- --.- .-t.

, • 756	 250.00 7231.5 76900• 2000• 171.2 2233.1 P -550 166 . 2 •411 •058 -3.3 •04438 8616•
703 . 9	 8212. -- . ---- 3860- ..-- .... .000 .... ---- ---- ..

• 000 2 3 7	-000078 .00013 8 -000028 • 01 4 25 •00063 -00462 •00033 6 A ---- ---- ---- -.-.

LeITER	 FOR .333 HRS• FAR RESERVE FUEL -.

( PRIM• PRIM• PRIM• CT PRIME
FUEL -" "PRES'. TURB- ENG. -	 ENC+ -- OVER ALPHA.--•- -TOTAL

TIME	 RANGE USED HEIGHT ALT. TAS TEMP. CODE PEHF EAS MU SIGMA D/L FUEL FLOW SHP
(HRS)	 1N.M.) (L9S) (LBS-1 (FT) 1KTS) (R) (KTS) (DEG) (LBS/HR)

FIGURE C-2 OUTPUT OF ATYPICAL HESCOMP SIZING CASE (CONTINUED)
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AUX- AUX. AUX* AUX@

M.ROTBI M.RMTOR	 'T.PVTOR i.RUTOR• -PROP	 -PRIM•ENG	 -- 8HP -- ETAP --	 AUX.	 ENO. TUR8.- ENG.--- ENO«- ENG• SHP-

VTIP RHP	 VTIP RHP VTIP	 FUEL FLOW AUX PROP TAUX/T FUEL FLOW TEMP. CODE PEHF OR THRUST

(FPS) (FPS) (FPS)	 (LBS/HR) (LBS/HR)

CPPRO CPIND	 r_PPAR CPNUD CUB	 DELCOS DELCOM CXR ROTLIM	 J CP CT CLW CDW RN
CODE - -	 -- --

1.464 250.00	 7231.5 78031• 2000• ---	 93.2 --2057-1 ---	 P	 -•- -332-  90.5 -- •223-- • 059 -1.0 2913-5120-
70 3 . 8 4821,	 .... .... ....	 .2813. ---- .... _..000	 .... .... .... .... ....

•000105 •000144	 .00002 .000011 •00°11	 •00000 •00011 •000100 A	 ..-` .... .... "" *°^ ^`•`

1.575 250.00	 754..0 77718. 2000•	 - 93.2 
-
2055.9-	 P	 -- ` •330	 90.5	 - .223 -•059 `1.0 2807. 5099•

703.8 4801.	 ---- .... ....	 2807• .. .. .... .000	 .... .... .... .... ....

•000105 •000143	 •000022 .000011 -•00911	 •00000 •90011 •000100 A	 .... .... ......_._...._- ...._..__. .....

1.686 250.90	 7855.9 77406+ 2000•	 93.2 2054.6 P •329	 90.5 •223 •058 `1.0 2801• 5078•

703.8 4780, ------- ---- -_2801---- .... _..... _. .000-•---....	 - ......-.....-.... ...
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FIGURE C-2 OUTPUT OF ATYPICAL HESCOMP SIZING CASE (CONTINUED)
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APPENDIX D

!	 HELICOPTER CO,8TING METHODOLOGY

_tx:
FLYAWAY COSTS

rs

f	 t The airframe cost of the current technology baseline helicopter is calculated using a value
of $100.00 per pound of airframe.	 The airframe weight is arrived at as follows:

t-- Airframe = Empty Weight - (W R + WDR + WEN + WAV)

Where:
i

W R	 = Weight of Rotors
^.

W D R	 = Weight of Drive System

Y"r'EN	 _ Weight of Engines	 ?

WAV	 = Weight of Avionics

It should be noted that in the equations used for calculating airframe maintenance costs,
{` W which use airframe weight, the weight of the avionics systems was included in the air-

.:.: frame since the AIA methodology does not make provision for calculating avionics main
tenance cost as a separate item. 	 Other major systems costs were calcualted as shown
below:

Helicopter Dynamic System Cost = $90 (W DR + WR)

Engine Cost = EN	 ($550HP 0:785)

where:

E N	= Number of Engines

HP	 = Static SHP at SL/STD for 1 engine

Avionics Cost/vehicle = $300,000

OPERATING COSTS

Direct operating costs were developed using the Aerospace Industries Association's (AIA)
"Standard Method of Estimating Direct Operating Costs of Turbine Powered VTOL
Transport Aircraft" dated 1968modified as follows:

3
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Crew Costs

	

$/FH	 = •067 Gross Weight + 185
1000

Engine Maintenance Costs

Labor ($/FH) - 0.65 (AIA Costs)

Material ($/FH) = 0.65 (AIA Costs

Maintenance Burden

	

$/FH	 = 1.5 (DLA F + DLEN + DLDS)

Where:

	

DLAF	= Direct Labor Costs for Airframe Maintenance

	

DLEN	= Direct Labor Costs for Engine Maintenance

	

DLDS	= Direct Labor Costs for Dynamic System Maintenance

The selected utilization, 3000 flight hours per year, reasonably represents the
values corresponding to block times for 100 to 200 n mi average flight distances
as read from the AIA utilization curve.

Table D-1 lists the other factors used in calculating the direct operating costs. Table
D-2 shows the variations in airframe and dynamic system prices per pound due to the
application of advanced materials technology.

The preceding methodology has been incorporated into a samll computer program which
accepts input data directly from the HESCOMP computer program described in Appen-
dix C. Figure D-1 illustrates the output of this cost program for the sizing case illus-
trated in Figure C-2, Appendix C.
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TABLE D-1 GROUND RULES FOR CURRENT TECHNOLOGY COST
CALCULATIONS

ITEM

YEAR DOLLARS•	 •	 .	 .	 .	 .	 .	 .	 .	 . . 1975
AVIONICS PRICE, $/ACFT. 	 .	 .	 .	 . .	 300,000
AIRFRAME PRICE,	 $/LB..	 .	 .	 .	 .	 . .	 100
DYNAMIC SYSTEM PRICE, $/LB.	 .	 . .	 90
ENGINE PRICE, $/RATED SHP .	 . . .	 280	 (HP-785)
CREW COSTS,	 $/HR.	 .	 .	 .	 .	 .	 .	 . .	 0.067 GW

1000	 + 185

FUEL,	 $/U.S.	 GAT,	 •	 •	 •	 .	 •	 • •	 0.25
OIL,	 $/LB	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 1.43
NONREVENUE FACTOR, $. 	 .	 .	 .	 .	 . .	 2
LABOR RATE,	 $/HR•	 .	 •	 •	 .	 .	 .	 . .	 8.60
AIRFRAME LABOR, MH/FH . 	 .	 .	 .	 . . 1.0 X AIA FORMULA
AIRFRAME MATERIAL, $/FH . 	 .	 .	 . . 1.0 X AIA FORMULA
ENGINE LABOR, MH/FH .	 .	 .	 .	 .	 . . 0.65 X AIA FORMULA
ENGINE MATERIAL, $/FH . 	 .	 .	 .	 . . 0.65 X AIA FORMULA
ENGINE	 TBO,	 HR .	 •	 .	 •	 .	 .	 .	 .	 . .	 4500
DYNAMIC SYSTEM LABOR, MH/FH . . . 1.0 X AIA FORMULA
DYNAMIC SYSTEM MATERIAL, $/FH 1.0 X AIA FORMULA
DYNAMIC SYSTEM TBO, HR.	 .	 .	 .	 . .4500
MAINTENANCE BURDEN•	 •	 .	 •	 •	 •	 • . 150% DIRECT LABOR
DEPRECIATION PERIOD, YR 12'
SPARES - %

AIRFRAME .	 .	 .	 .	 • .	 8
ENGINES	 .	 •	 •	 •	 •	 •	 •	 .	 . 40
DYNAMIC SYSTEM	 .	 .	 .	 .	 . .	 20

UTILIZATION, FLT HR/YR .. 	 •	 .	 • .	 3000



TABLE-D-2 VARIATION IN AIRFRAME AND DYNAMIC SYSTEM PRICES/POUND
DUE TO THE USE OF ADVANCED MATERIALS

0
,p

STRUCTURAL WE/GW 0% 5% 10% 15%
REDUCTION

AIRFRAME COST ($/LB) 100 99.37 97.32 93.15

DYNAMIC SYSTEM COST ($/LB) 90 89.71 88.74 86.89

l



PAGE 1

CASE t.O.	 TFCF-N9LC-GY	 IMPROVE h1 ENT	 STUDY-COMP DSN PT(100/6)- EWR-0jLDEI=0/FER=

r

SH9PT	 H Ai:L	 MTSSII+t+;	 BLOCK DISTANCE 230 . 31 S • 	MI•

GRdSS	 W EIGHT	 (LB)	 84133• TOTAL COST 6754787. AVAILABLE SEATS 100•
(^^ -	 N	 IGNT	 EV u TY	 (LB)	 56073•-• $/LB FOR AIRFRAME- 100• vTILIZATION (HR/YR)	 3000.00

W EIGHT OF	 AIRFR A ME	 (LB)	 32853. COST aF AIRFRAME 3285814• BLOCK SPEED (ST-	 MFH)	 157.34
WEIGHT OF	 DYNAMIC SYS	 (LB	 19981. COST OF DYNAMIC SYS 1798309• BLOCK SPEED (KMPH)	 •253922
WEIGHT	 OF	 AVI° NICS	 (LB)-.	 846.	 - -COST OF AVIONICS 300000• 3LOCK FUEL (LB)	 6100.28--
ENGINE RATING	 (SHP)	 5237. COST PER ENGINE 456888. NUMBER OF ENGINES 3•

COST P ER COST PER COST PER COST PER
AIR MILE SEAT MILE AIR	 KM SEAT KM

FLYING OP LR ATI`:NS --
FLIGHT CREW 1.207547 •012075 •750370 •007504

p FIJEL	 AND	 OIL 1.011488 .010115 •628539 •006285
ULL INSURANCE	 ------- —286201 ____ .002 862 - -- •	 •177845 .._.------	 • 001778	 •------

TOTAL FLYING r;PERATLO'NS 2.505236 •025052 1.556753 •015568

DIRECT MAINTENANCE - FLIGHT EQUIP.--
AIRFRAME - LABOR .223185 .002232 •138687 •001387

MATERIAL •138668 •001387 •086169 •000862
ENGINES - LABE L	_	 ---- ------•099676	 - 9000997-•----.. •061939 -	 .__•000619

MATERIAL •186625 •001866 •115969 •001160
DYNAMIC SYSTEM - LABOR .209513 •002095 .130191 •001302

MATERIAL	 -	 - -•	 - •215096	 - •002151	 - •133660 •001337
TOTAL DIRECT MAINTENANCE 1.072761 •010728 •666612 •006666

MAINTENANCE BURDEN .798560 •007986 9496225 •004962
_-	 TOTAL MAINTENAMCE	 ---. __ -- -----i-871321 •018713—.._-__.1.162837 _-_.-_.011628...

DEPRECIATIf'N	 - FLIGHT	 EQUIP. 1.399193 •013992 .869461 •008695
TOTAL DIRECT CAST	 INCL MAINT SURD . .--- 5.775754 •057758 3.589051 •035891	 ---•--

FIGURED-1 OUTPUT OF COST PROGRAM FOR HESCOMP CASE SHOWN IN FIGURE C-2




