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ABSTRACT

Magnetospheric radio noise spectra (30 kHz to 10 MHz) taken by IMP--6 and

RAE-2 exhibit time-varying characteristics which are related to space-

craft position and magnetospheric processes. In the mid-frequency range

(100-1000 kHz) intense noise peaks rise a factor of 100 or more above

background; 80% of the peak frequencies are within the band 125 kHz to

600 kHz, and the peak occurs most often (18% of the time) at 280 kHz.

Bandwidths of the peaks range from about 100 kHz to more than 500 kHz;

most often the lower cutoff is at about 100 kHz and the upper at 380 kHz

for a total bandwidth of 280 kHz. This intense mid-frequency noise has

been detected at radial distances from 1.3 Re to 60 Re on all :aides of

the Earth (i.e., all local times) during magnetically quiet as well as

disturbed periods. Maximum occurrence of the mid-frequency noise is in

the evening to midnight hours where splash-type energetic; particle preci-

pitation takes place. "Magnetospheric lightning", characterized by tran-

sient electric current surges of a few to a few tens of microseconds

travelling over distances typically 50 to 250 m, can be invoked to explain

the spectral shape of the observed spectra. The spectral peak frequency

is related to the lightning channel length and the bandwidth is dictated

by the ligb i_n g current duration.



..	 .:_l	 .

ACKNOWLEDGEMENTS

I thank Dr. R.G. Stone of Goddard Space Flight Center for his constant

interest and encouragement throughout the course of the work. Thanks go

also to H.A. Jemison and C.T. Herman of Radio Sciences Co., who helped

considerably with the data reduction and analysis. Mr. Jemison executed

the figures and Mrs. N. Jemison typed the manuscripi- for the final report.

Mr. J.D. Chang and Mr. P. Bankhead of Washington Data Processing, Inc.

produced special computer runs to expedite the analysis.

.
,.



TABLE OF CONTENTS

Abstract

List of Illustrations

1. Introduction 1

2. Representative Spectra 3

3. Statistics of Terrestrial. Kilometric Radiation 29

3.1	 Parameters Used 29

3.2	 Preliminary Analysis 29

3.3	 Computer Analysis 34

3.3.1	 Peak Brightness vs Peak Frequency 35

3.3.2	 Diurnal. Distribution of Peak Frequency 40

3.3.3	 Relationships with Bandwidth 43

3.3.4	 Summary of Spectral Characteristics 48

4. Noise Sources and Generation Mechanisms 52

4.1	 Noise Source Regions 52

4.2	 Generation Mechanisms 58

4.3	 Magnetospheric Lightning 62

5. Summary and Conclusions 70

6. References 73



LiST OF ILLUSTRATIONS

Fig. 1. Spectral distribution of intense radio noise in the magnetosphere

(after Stone, 1973). p.3.

Fig. 2. Sample IMP-6 spectrum with the spacecraft on the evening side

(20.4 LMT) close to Earth (4.6 Re) during quiet planetary mag-

netic conditions (Kp = 1 ). p. 5.

Fig. 3. Sample IMP--6 spectrum taken at approximately same position (21.2

LMT, 5.8 Re) as in previous figure, but with Kp = 8 	 P. 6.

Fig. 4. IMP-6 spectrum in postmidnight sector (03.6 LMT) near apogee

(31.3 Re) during 	 strop	+g	 g geomagnetic disturbance (Kp - 7 ). p. 7.

Fig. 5. IMP-6 spectrum in postmidnight sector (03.1 LMT) near apogee

(29.6 Re) during a moderate geomagnetic disturbance (Kp = 5-).

P. 8.

Fig. 6. Sample spectra derived from data taken by the lunar-orbiting

RAE--2. p. 10.

Fig. 7. IMP-6 orbits projected to ecliptic plane to show relative space-

craft positions (A,B,C,D) corresponding to spectra illustrated

in Figs. 8-11. p. 12p 13.

Fig. 8. IMF-6 noise spectrum taken on the predawn side (03.6 LMT) cor-

responding to position A of Fig. 7. p. 14, 15.

Fig. 9. IMP-6 noise spectrum taken in position R of Fig. 7. p. 16.

Fig. 10. IMP-6 noise spectrum taken at position C of Fig. 7. p. 17.

Fig. 11. IMP--6 noise spectrum taken in the noon sector at position D of

Fig. 7. p. 18.

Fig. 12. IMP-6 spectral peak frequencies over a 24--hr period during a

major geomagnetic disturbance (Aug. 5, 1972). p. 20.

Fig. 13. IMP-6 spectral peak frequencies over the Aug. 6, 1972, 24-hr

period. p. 21.

Fig. 14. IMP-6 spectral peak frequencies for a 24-hr period (Nov. 1, 1971)

of moderate substorm activity. P. 22.

Fig. 15. IMP-6 spectral peak frequencies during a 24-hr period with no

auroral substorms (Jan. 5, 1972). p. 23.

,EPRODUCI .11,117 0^. TTY
I)RIGINAL P At E Is POUR,

3

4
.F



LIST OF ILLUSTRATIONS (CONT)

Fig. 16. IMF-6 ten-minute average spectral peaks for two 1-hr periods

on Aug. 5, 1972 (top) and Aug. 6, 1972 (bottom). p. 25.

Fig. 17. Statistical distribution of TKR peak frequencies based onVV700

IMP-6 data points. p. 31.

Fig. 18. Upper (fu) and lower (f1 ) cutoff-frequency statistical distribu-

tion of TKR enhancements. p. 32.

Fig. 19. Peak brightness as a function of peak frequency derived from N

700 IMP-6 data points. p. 32.

Fig. 20. Peak brightness as a function of peak frequency for the 18-22

LMT time block. P. 36.

Fig. 21. Same as Fig. 20 but for 06-10 LMT time block. p. 37.

Fig. 22. Peak brightness as a Function of peak frequency for quiet mag-

netic conditions. p. 38.

Fig. 23. Same as Fig. 22 but for 2 Z. Kp < 5- . p. 39.

Fig. 24. Same as Fig. 22 but for Kp > 5. p. 39.

Fig. 25. Composite distribution of IMP-6 spectral peak brightnesses as a

function of local, time. p. 41.

Fig. 26. Diurnal distribution of relative occurrence -- frequency of TKIt

peaks. p. 42.

Fig. 27. Distribution of peak frequencies of TKR noise as a function of

local time. p. 44 -

Fig. 28. Diurnal distribution of IMP-6 spectral peak bandwidths. p. 45.

I P 6	 (3 Ann bFag. 29. Peak brightness as a function of 	 M -	 spectral peak	 and

width for the 18-22 LMT time block. 	 p. 46.
T

Fig. 30. Same as Fig. 29 but for 06-10 LMT time block. 	 p. 47.

Fig. 31. Peak frequency (ordinate) as a function of 3-d$ bandwidth in

the 02-06 LMT time block.	 p. 49.
i

Fig. 32. Same as Fig. 31 but for 14-18 LMT time block. 	 p. 50.
i

Fig. 33. Distribu*'on of 200 kHz whistler-mode noise observed by Alouette

2.	 p. S3 .
i

Fig. 34. Idealized representation of auroral particle precipitation. 	 p. 55. -

Fig. 35. Direction finding measu rements on IMP-6 for 110 kHz noise. 	 p. 56.

a
i



LIST OF ILLUSTRATIONS (CONT)

Fig. 36. (A) Representative TKR spectra.

(B) Contours of relative occurrence probability of TKR noise.

p. 57.

Fig,. 37. Direction-finding measurements of TKR source regions by RAE-2

occultation techniques. p. 59.

Fig. 38. Distribution of radial distances to TKR sources determined by

M-2 occultations. p. 60.

Fig. 39. Normalized IMP-6 TKR spectrum from Fig. 9 compared to theore-

tical spectrum generated by magnetospheric lightning with two

streamer channels. p. 66.

Fig. 40. Normalized TKR spectrum from Fig. 3 compared to theoretical

spectrum generated by magnetospheric lightning with two stream-

er channels. p. 67.



1.	 INTRODUCTION

Radio noise generated above the ionosphere has come to be recog-

i

nized as an important manifestation of magnetospheric dynamics. 	 Its .'

discovery (Ellis, 1957) and early study of-some of its characteristics
i¢.

(Jorgensen, 1966) were made with ground--based observation techniques, ^^<

1 and numerous rocket and satellite measurements in subsequent years have

E
1

shown it to be a complex, multifaceted phenomenon which is intimately':

related to dynamic processes in the magnetosphere.

The radio emissions constituting this noise have been identified

as either electromagnetic waves (Dunckel, et al, 1970) or electrostatic

F waves (Kennel., et al, 1970), depending upon the relative positions of the ^.

f
observing satellite and suspected region of noise generation. 	 In many

'^.
cases no unambiguous determination could be made of which type of wave {

was being observed.	 The observed waves may also be non-propagating f;=

plasma resonances (Bauer and Stone, 1968), or propagating in various modes: a

b` according to their radio frequency and the region of space in which they
...:

are observed.	 Propagation modes deduced from measurements of presumably

electromagnetic waves include free-space, whistler, and ducted modes.
i

^	 q

Noise in the magnetosphere has been observed on frequencies ranging from

a few Hertz (Hz) representing mostly magnetic fluctuations to se-eral s

megahertz (MHz) representing electrostatic and electromagnetic radiation.

Source regions of the radio noise have been broadly defined by

Herman (1974), based upon the fundamental fact that radiation will be

produced by accelerating electrons wherever they may be found. 	 On this
3

basis, the regions include the trapped radiation belts (Frankel, 1973),
i

the night-side auroral oval (Barrington, et al, 1971), the dayside polar

cusp (James, 1973), the magnetotail and the plasma sheath. 	 Simultaneous:'
.k

measurements of precipitating electrons and noise emissions by Gurnett

and Frank (1972) and Hoffman and Laaspere (1972) support the suggested

model of source regions.

Several generation mechanisms within these source regions have

been proposed, including the cerenkov process (Ellis, 1957; Taylor and

Shawhan, 1974); gyrosynchrotron radiation (Frankel, 1973); excitation of

a
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I

k

odd harmonics of the gyrofrequency (Kennel, et al, 1970; Fredericks, 1971)

among others.

To organize and clarify these multi-faceted aspects of magneto-

spheric radio noise, it is helpful to consider the spectral characteristics

(the frequency dependence) of the emissions, and their variations with

time and observing location. A number of satellite experiments have

measured magnetospheric noise in various parts of the radio spectrum from

a few Hertz to several megahertz, but the widest frequency range of simul-

taneous measurements has been provided by the Radio Astronomy Branch at

Goddard Space Flight Center from experiments on the IMP-6 and RAE--2 satel-

lites under the direction of R.G. Stone. Noise spectra from these two

satellites are therefore utilized it this report in an attempt to show

how the spectral characteristics change with time, satellite location, and

magnetospheric conditions.

Representative spectra taken at various times are discussed in

section 2, where it will be seen that significant enhancements of noise

intensity appear in different parts of the spectrum. The most striking

of these intensity peaks appears in many spectra on frequencies near 300

kHz. Occurrence statistics of the peaks are investigated in section 3.

Source regions and generation mechanisms of the noise and their

effects on spectral characteristics, are treated in section 4.

i	 55

l	

.



2, REPRESENTATIVE SPECTRA

A composite spectrum illustrating the major features of interest

in this report is given in Fig. 1. Apart from the galactic background

noise, the spectrum has two major components attributable to magnetospheric

sources. The mid-frequency peak near 250 kHz is highly variable with time;

the peak amplitude varies by a factor of 100 in brightness, and the peak

frequency ranges from about 150 kHz to 51D0 kHz. The statistics of these

variations are treated in the next section. This component is referred

to as "terrestrial kilometric radiation," or TKR, after Kaiser and Alexan-

der (1975).
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}	 A broadband component overlaps the TKR peak and extends downward

C	 in frequency to about 25 kHz. It varies in amplitude with time but the

spectral index remains approximately constant at --2.8. As will become

evident below, subsidiary peaks akin Eo the TKR peak sometimes are super-

imposed on this quasi-continuous background component.

The detailed shape and average intensity of the noise spectra

often depart considerably from this illustrative spectri.ra (Fig. 1), depen-

ding upon spacecraft position, particle precipitation, and magnetic storm

or substorm activity. A series of hourly-averaged spectra taken by the

IMP-6 spacecraft under various conditions will serve to demonstrate these

changes.
x

The 1-hr average spectrum in Fig. 2 was made with IMP-6 on Earth's

f	 evening side (20.4 LMT) at a radial distance of 4.6 Re, during quiet geo-

magnetic conditions. TtL time of measurement places IMP-6 outside the plas-

3	 mapause. The TKR peak is evident at about 300 kHz, but the lower frequency

quasi-continuoiis background reaches a comparable intensity at about 60 kHz.

A subsidiary peaR is superimposed on this background at about 140 kHz. The

intensity of this spectrum does not exceed 10
-19 

Wm-2 Hz-1 at any frequency.

(A contribution from galactic background noise in the band 1-3 MHz can be

seen, aad at and above 5 MHz there is some evidence of high frequency (HF)

noise or interference penetrating through the ionosphere from the ground.

In this report no analysis will be given to these two contributors.)

Another spectrum taken at roughly the same spacecraft, position

(5.8 Re, 21.2 LMT) during a magnetic storm (Kp = 8 +) is given in Fig. 3

for comparison. Note that here the TKR peak brightness is nearly two

orders of magnitude higher than that in Fig. 2, and its peak frequency at

400 kHz is higher than that i n the quiet-time spectrum (Fig. 2). nico in

Fig. 3, a lower frequency peak appears at about 40 kHz with an intensity

approximately a factor of six greater than the 60 kHz peak appearing in

Fig. 2. The largest peak in Fig. 3 occurs at about 3 MHz; this is probably

not due to terrestrial interference, but it may be related to the strong

2-4 MHz emissions observed at much lower altitudes by James, et al (1974).

Two spectra taken on a single pass with IMP--6 near apogee (' V 30 Re)

on the morning side (we 0300 LT) during a magnetic disturbance (Kp^ 5-)

li

a

4

a
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Fig. 2. Sample IMP -6 spectrum with the spacecraft on the
evening side (20.4 LMT) close to Earth (4.6 Re) during quiet
planetary magnetic conditions (Kp = 1-).

are sho[m in Figs. 4 and 5 to illustrate time variations in spectral

character. At the earlier universal time (Fig. 4) the 1-hour average 'TKR

5
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i	 has a single large peak at about 150 kHz; above about 3 MHz ground break-

through of noise from below the ionosphere increases in intensity with j

increasing frequency.	 Twelve hours later (Fig. 5) the spacecraft is s(:^

still in nearly the same place with respect to the sun and the earth, but
i

^-
j

now the TKR exhibits two peaks at about 180 kHz and 370 kHz. 	 The charac-

ter of ground breakthrough noise above 3 MHz has not changed much. 	 In

the frequency range of about 40 to 100 kHz, the noise intensity is greater

for Kp = 7+ (Fig. 4) than it is for Kp = 5 	 (Fig. 5).

To gain a different perspective, sample relative spectra derived

from RAE-2 calibration-temperature data are presented in Fig. 6. 	 These

were taken with the lunar-orbiting spacecraft located in the magnetotail

near local midnight (full moon) at two times when the earth-moon-space-

craft-antenna geometry was nearly identical.	 The variable of interest

is the Kp index, being 2} for one spectrum and 5+ for the other.	 Even {

though the observing lczation is at a distance of 60 Re, nearly twice the

distance of IMP-5 apogee, a pronounced TKR peak is evident at about 475

kHz when Kp = 2^.	 Two days later with a magnetic index of 5^, the whole

spectrum is shifted upward in magnitude by 20-30 dB, and the spacecraft

radiometers are saturated in the TKR range of 250-425 kHz. 	 The disturbed-

day spectrum is also saturated below 70 kHz. To compare these two spectra

with the IMP-6 spectra in the earlier figures, use can be made of the re-

lation

b- 2 k
2

where b is brightness (Wm -2 Hz-1 ), k is Boltzmann's constant (1.38 x 10-23

3 OK-1 ), T is the noise 6emperature ( OK), and j\ is the observing wave-

length W.

From this relation, it can be seen that the RAE-2 TKR peak centered

on 300 kHz with Kp = 5+ saturates at about 3 x 10
-18 

Wm-2 Hz-1 and is thus

comparable in magnitude to the IMP-6 spectral peaks in Figs. 3, 4 and 5. 	 a

For the lower Kp in Fig. 6, the peak temperature corresponds to a bright-

ness of about. 10 -20 Wm 2 Hz-1 , compared to about 10
-19 

observed by IMP-6

f
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on the midnight side under quiet conditions (July 13) and 	
s

13 orbits Later under moderately disturbed conditions (July 15).

in Fig. 2.

Principal features of the spectra in Figs. 2-6 are illustrative of

several general characteristics of magnetospheric noise spectra. That is,
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the high intensity peak occurring at frequencies in the approximate range },

of 150-450 kHz is observed on the evening and night sides of Earth at radi-

al distances from 4.5 Re to 60 Re at all Kp levels.	 There is some indica-

tion that the intensity is higher during magnetically disturbed periods ?

compared to quiet periods, but as will become evident below, a high Kp lev-

el is not a requisite for intense noise peaks.

The next series of spectra presented here serve to illustrate chan-

ging characteristics as a function of local time with IMP-6 at apogee and

Kpj 2'.	 Fig. 7 shows the position of the spacecraft relative to the sun and

I magnetospheric orientation. 	 Position B, near local midnight, has IMP-6 im-

mersed in the magnetotail, while A,C, and D, for morning, evening, and mid-

: day positions, places IMP-6 outside the magnetosphere.
N

On the postmidnight side in orbit A, the spectrum (Fig. 8) has a

peak brightness of about 2 x 10 -1$ Wm-2 Hz
-1
 near 200 kHz, discounting the

high intensity spike at 3 MHz.	 In the tail (Fig. 9), the TKR peak at about
i

300 kHz is a factor of 10 higher and somewhat broader than the enhancement
-

in Fig. S.	 On the evening side (Fig. 10), the peak brightness of V 2 x 10-17 t
a ^
j is comparable to that in the midnight sector but its width is more narrow.

The spectrum taken in the noon sector (Fig. 11) has a TKR peak of about 10-19

Wm 2 Hzr1 centered near 200 kHz, with a sharp spike a factor of 10 higher

at 130 kHz.
j

f

In all four cases (Figs. 8-11), the noise below 100 kHz has a ten-

dency to decrease with increasing frequency, cosmic noise background peaking

near 3 MHz is always evident, and ground-breakthrough noise increases with

increasing frequency above 3 MHz.

The dayside spectrum from orbit D (Fig. 11) in the frequency band

100-500 kHz is similar to spectra derived from ISIS-1 data by James (1973)

at times when the spacecraft was in the dayside auroral oval (polar cusp)

at altitudes of 2000-3000 km (i.e., radial distances of#VI.3-1.5 Re). 	 The

spectral shape at both 31.2 Re (Fig. 11) and at 1.5 Re ;James, 1973, not

shown) is marked by a peak near 200 kHz and rather sharp upper and lower cut-

offs at about 300 kHz and 100 kHz, respectively.
r,

To see how the spectra vary over the course of a 24-hr period, let ?

us consider only peak enhancements.	 In Fig. 3, for example, an 	 average
i

"baseline" - or background - level can be established which is gradually

11 i3	 i

J

i'	 y



Fig. 7. IMP-6 orbits projected to ecliptic plane to show
relative spacecraft positions (A,B,C,D) corresponding to
spectra illustrated in Figs. 8-11.
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Fig. 8. IMP-6 noise spectrum taken on the predawn side
(03.6 LMT) corresponding to position A of Fig. 7.
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decreasing from 2 x 10-19 Wm 2 Hz
-1

 at 25 kHz to 2 x 10-20 at I MHz -nd	 i
1

j	 then increasing through 10
-19 

at 5 MHz. The magnitude of the peaks found 	 .,

at the frequencies of 44-55 kHz, 375-425 kHz, 1450-kHz, 3250-kHz, and
it

4900-kHz in Fig. 3 are expressed as the decibel W) increase above the

established baseline. Successive hourly--averaged spectra are treated in

the same way. The results for August 5, 1972, are shown in Fig. 12.

August 5, 1972 was a highly disturbed day; the KV 3-hourly inc:ax

ranged from 6^ to 9 , and the AE hourly index, as indicated in Fig. 12,

was as high as 1165. Multiple spectral peaks From the IMP--6 data occurred

in all 1-hr average spectra. The most intense ones in Fig. 12 range from

185 to 737 kHz in the TKR band, and appear on 4.9 MHz for most of the 24

hours. The very strong peak at 3250 kHz (see also Fig. 3) persists for

four hours early in the day, and appears again in the 2600 kHz channel in

the hourly spectrum centered at 20 UT (Fig. 12). During the period covered

by Fig. 12, IMP-6 was on an outward bound orbit on the night side, starting

at a radial distance of 5.8 Re and reaching 25.4 Re by 24 UT. In this

plot there appears to be no pattern for a systematic variation in peak

frequency or peak magnitude as a function of magnetic index AE or radial

distance. The following day, August 6, 1972 was also magnetically dis-

turbed, with Kp ranging from 3+ to 7} . The radio frequency and magnitude

of spectral peaks derived as before are shown in Fig. 13. During this day

IMP-6 progressed from a radial distance of 25 . 9 Re to 31 . 2 Re and moved

in local time from 02.7 hours to 03.5 hours. In general the peak inten-

sities do not rise as far out of the background level as they did on the

previous day. It should be noted, however, that an intense peak appears

at 3250 kHz for 3 hour, early in the universal day, during a time when

IMP-6 was at a radial distance of 26-27 Re. Its magnitude is comparable

to the peak on the same frequency occurring on the previous day at dis-

tances of 6-9 Re (Fig. 12).

On both days, the AE index as noted in Figs. 12 and 13 is variable

but quite high, ranging from 332 to 1186, and TKR peaks persist at all AE

Levels in this range.	 Days selected for moderate (AE 88 to 828) and mini-

mum (AE 19 to 194) substorm activity are shown in Figs. 14 and 15, respec-

tively, where it can be seen that TKR peaks occur even during magnetically
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quiet periods.

On October 1, 1971 (Fig. 14), Kp ranged from 3 to 5 , radial

distance varied from 31.9 to 25 Re on an inbound pass, and local time for

IMP-6 remained almost constant near midnight (23.8 to 0.4 LT). As with

major substorm activity (Figs. 12 and 13), TKR peak occurrence during

moderate activity (Fig. 14) exhibits no obvious relationship to the mag-

nitude of AE.

On January 5, 1972 (Fig. 15), Kp ranged from I to 2 , IMP-6 was

inbound moving from 20.8 to 14.1 Re on the evening side of Earth (18.0

to 19.5 LT). Again, TKR peaks occur even at the lowest levels (AE X 20)
of auroral magnetic activity. Part of the reason for seeing TKR enhance-

ments > 30 dB in the early and middle portions of the day in Fig. 15 is

that the background curve for this day is considerably lower than those

applicable to the other days in this series (Figs. 12-14). The peaks

tend to cover a broader frequency range at the low compared to high AE

values, but this generalization has significant exceptions which negate

its applicability.

In all four sununary figures (12-15), a peak is always evident

with some variation in magnitude at 4900 kHz. This might stem from a

calibration problem in the particular radiometer channel or from an in-

correct deduction of the noise background level in this part of the spec-

trum. Until these possibilities are resolved, no attempt will be made to

deduce any physical significance for its presence.

All of the foregoing spectra, as indicated earlier, are hourly

averages. In a preliminary attempt to determine how the spectral charac-

teristics might change in periods of less than an hour, several 10-min

average spectra were generated from the data. Two sets of these, for the

hours of 0120-0220 UT, August 5, 1972, and 1132-1232 UT, August 6, 1972, 

are illustrated in Fig. 16. The upper set corresponds to the hourly

spectrum centered at 0200 UT in Fig. 12, and the lower to the spectrum

centered at 1200 UT in Fig. 13. The format for Fig. 16 differs in that

six levels of peak magnitude are given instead of four. Also, the back-

ground curves used to discern the peaks were derived solely from the 10-

min average spectra, and they are different from the whole-day background

24	 '
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curves used for August 5 and 6 in Figs. 12 and 13. For these reasons a

direct comparison of the 10-min spectra (or their summation) with their

corresponding hourly spectrum must be made carefully.

In the 0120-0220 spectra of Fig. 16, peaks persist for the whole

hour at 375, 1450, 3250 and 4900 kHz, and these are also evident at 0200

UT in Fig. 12. The shorter-lived peak at 55 kHz (0130--0200 UT) also ap-

pears in the hourly spectrum, but those appearing in only a single 10-min

period (i.e., at 92, 110, and 870 kHz) are washed out in the hourly spec-

trum. The peak appearing at 1030 kHz in two 10-min spectra are not seen

in the hourly average, but the one at 44 kHz (0130-0140 UT) does persist

in the 1-hr spectrum.

In the 1132-1232 UT spectra of Fig. 16, 3 strong peaks occur at

155, 210, and 292 kHz, each separated by one radiometer channel. In the

hourly spectrum centered at 12 UT (Fig. 13), these peaks at 155 and 210

kHz overlap and produce a single peak at 185 kHz, and the 292 kHz peak

remains separate. The 4900 kHz peak in all six 10-min spectra carry over

into the 1--hr spectrum, but the remaining rather numerous shorter--lived

peaks are washed out in the hourly average.

The main point of Fig. 16 is that the strong spectral peaks seen

in many 3_-hr average spectra appear because the noise is intense for the

whole hour. Enhancements of shorter duration do occur, sometimes strong

enough to affect the hourly average, but often not. This indicates that

Dourly--averaged spectra can be utilized to investigate the physical pro-

cesses which produce the noise.

From the study of the above selected spectra (Figs. 2-16) and

others not illustrated here, some general features of the broad spectral

characteristics of magnetospheric radio noise have emerged. They are

summarized here, and in the next section some s tatistics of TKR peaks are

discussed.

In the lower end of the spectra (f < 1C0 kHz) the noise magnitude

has a general tendency to decrease with increasing frequency as illustrated

in Fig. 1 and Fig. 11 as a quasi-continuous background, but the shape is

often modified. At times the TKR radiation extends below 100 kHz and adds

to the background which results in a flattening of the spectrum (c.f., Fig.

26
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10), or even a positive slope (c.f., Fig. 9). At other times an apparent

enhancement or peak appears below 100 kHz, as in Figs. 2 or 3, which tends

to obscure the quasi-continuous (q.c.) background. This occasional peak

may arise from a process similar to that generating the TKR peaks near

300 '&Hz, or it may be a cutoff effect. That is, the q.c. background may

have risen to a high value, but the lower frequency cutoff which is usu-

ally below the bottom frequency of the observed spectrum (25 kHz) has

also increased to perhaps 40--50 kHz; the overall result of this combina-

tion would be the appearance of a peak at a frequency slightly higher

than this lower cutoff.

In the higher end of the spectra (t 1 MHz) there appear to be two

main contributors to a background level, upon which is superimposed en-

hancements that are apparently related to magnetic disturbances. Between

1 and approximately 4 MHz, cosmic noise which peaks at about 3 MHz (see

Fig. 1) is usually prominent in the total spectrum but the magnitude is

sometimes greater than that attributable to cosmic noise alone. From

about 4 MHz up to the observed top frequency at 10 MHz, the noise magni-

tude nearly always increases. This positive slope is indicative of the

incursion of terrestrial radio noise and interference penetrating from

below the ionosphere to the satellite - that is, the "ground breakthrough"

noise. Superimposed on these two background components is noise due pro-

bably to magnetospheric processes (e.g., particle precipitation) during

magnetic disturbances; a preferred frequency for the peak of this noise

seems to be near 3250 kHz.

The middle portion of the spectra (100-1000 kHz) is where the TKR

radiation is always found. This noise, first discovered by Dunckel, et

al (1970), and independently by Stone (1973), James (1973), and Gurnett

(1974), peaks near 200-300 k}4z. It is one of the most striking features

of magnetospheric noise spectra, and contrary to the findings of Gurnett

(1974) it exists not only during geomagnetic storms and substorms, but

also at times of very low activity as we have shown in Fig. 15.

This TKR radiation has been detected by IMP-6 at radial distances

from 5 to 30 Re, by RAE-2 at 60 Re, and by ISIS-1 (James, 1973) as close

as 1.3 Re. It has been seen by IMP-6 on all sides of the earth (that is,
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at all local times), although the intensity does seem to be greatest in

the evening and midnight sectors, less in the post-midnight to early

morning sector, and least on the dayside. It persists at all levels of

geomagnetic activity with a slight tendency toward highest intensity

during major substorm activity.

These characteristics and the statistical properties of TKR ra-

diation are examined in more detail in the next section.
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3. STATISTICS OF TERRESTRIAL KILOMETRIC RADIATION

I 3.1 Parameters Used	 s..
I	 j

To statistically investigate changes in the characteristics of

magnetospheric radio noise spectra, several key parameters are utilized.

The spectrum in Fig. 3, for example, illustrates the definition of these

parameters.

Peak Frequency_ (fp) - the frequency at which the noise brightness

exhibits a local maximum. In Fig. 3, multiple fp's occur at

44, 375, 1450, 3250, and 4900 kHz.

Peak Brightness (Bp) - the noise intensity (Wm-2 Hz-1 ) at fp.

Up2er Cutoff Frequency (fu ) - the frequency at which an enhance-

meet centered at fp returns to the background level on the

high-frequency side of the peak. In Fig. 3, these occur at

82, 600, 1850, 3900, and 5700 kHz.

Lower Cutoff Frequency (f l ) - same as fu except it is on the low-

frequency side of a peak. In Fig. 3, these are 30, 210, 1250,

2600, and 3900 kHz.

Peak Bandwidth (PBW) - the difference between f u and fl in kHz.

These definitiorxs were used in an initial manual analysis of

approximately 700 hourly spectra, to ascertain their variations as a func-

tion of local time (LMT), radial distance (R) and magnetic activity (Kp).

The 700 spectra were generated by a computer routine which searched the

IMP-6 data base and extracted periods with high noise levels. The routine,

designated the "Angle Plot Program", was developed by Washington Data

Processing, Inc.

3.2 Preliminary Analysis

The results indicate that the value of the peak frequency has no

obvious relationship with R, LMT or Kp. Scatter plots of fp against these

three variables show that a high (or low) peak frequency can occur at any

radial distance, local time or level of magnetic activity. Also, no pat-

tern relating Bp or PBW to these varial)les could be found.
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Therefore, a purely statistical determinations of the distribu-

tion of fp was made. The data base utilized for this (er700 points) was

derived from spectra taken at all local times, months (or seasons), radi-

al distances and degrees of magnetic activity. The result is shown in

Fig. 17, where the number of occurrences of a given fp is expressed as a

fraction of the total number of points. The peak occurs most often (18%

of the time) at a frequency of about 280 kHz, and the distribution about

this mode is approximately log-normal. The small secondary peak at 3250

kHz may be due to the fact that the wavelength of this frequency is equi-

valent to the antenna half-wavelength (M. Kaiser, private communisation).

Integration of the curve in Fig. 17 reveals that about 80% of

the TU peak frequencies lie between 125 kHz anu 600 kHz, 10% fall below

125 kHz and 10% fall above 600 kHz. The fluctuation in position of the

peak frequency is probably related to the source generation mechanism

rather than propagation factors, as will be discussed in subsequent sec-

tions of this report.

The distributions of upper and lower cutoff frequencies as defined

above were derived in a similar manner, with the results shown in Fig. 18.

There is an overlap between 100 and 700 kHz because both the lower and

upper cutoffs shift up or down the frequency scale more or less in con-

cert with the shift of the peak frequency itself. In any event, the lower

cutoff is found most often at about 100 kHz, and the upper at 380 kHz.

These results indicate that the mid-frequency portion of the

typical composite spectrum rr ported by Stone (1973; see Fig. 1) needs

only slight modification, in that it appears that the fall off in inten-

sity is sharper above the peak than below it. As will be seen in the next

graph (Fig. 19), the peak brightness as indicated by Stone should be in-

creased by a factor of about 100, at least on the basis of the IMP-6

spectra analyzed here.

The final relationship derived from the manually-extracted para-

meters of the 700 spectra concerns the variation in peak brightness as a

function of peak frequency (Fig. 19). It turns out that the sharply de-

fined upper limit on this scatter plot is fixed by the saturation level

of the IMP-6 radiometers, which increases monotonically with channel fre-
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quency (M. Kaiser, private communication). The important point of this

figure is thus the concentration of points near saturation, with relativel

few at lower brightness magnitudes, regardless of frequency.

Y

3.3 Com uter Analysis

On the basis of these manually derived, preliminary statistics,m

it was decided to employ modifications of the Angle Plot Program for co-

puter analysis of the entire IMP-6 data base. To do this, the parameters

listed in section 3.1 were slightly modified. A curve-fitting routine

developed by J.D. Chang of Washington Data Processing, Inc. finds the

peak frequency and associated peak brightness; the upper and lower cutoff

frequencies are defined at the first point above and below the peak where

the brightness has decreased by a factor of two (3 dB), and the bandwidth

is the difference between these two frequencies. An enhancement of at

least 3 dB is required for a peak to be called out.

To improve the statistics, local mean time was grouped into six

4-hr time blocks centered on local midnight (2200-0200 LMT), local noon

(1000-1400 LMT), and so on. The frequency range of interest was restric -

ted to 100-1000 kHz. For each time block, the following plots were made:

a. peak brightness vs. peak frequency

b. peak brightness vs. bandwidth of peak

c. peak brightness vs. UIT

d. peak frequency vs. bandwidth

e. peak frequency vs. LMT

f. bandwidth vs. LMT

0	 Kp 1 2

2	 Kp	 5

Kp	 5

In addition, plots of peak brightness vs. peak frequency were made using

all local times, radial distances, and months, for magnetic conditions

defined by

4
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The results of this analysis reveal several interesting features

which must be taken into account when considering noise source generation

mechanisms.

3.3.1 Peak Brightness vs. Peak Frequency
i

Examples of peak brightness as a function of peak frequency are

given in Figs. 20 and 21 for the evening (18-22 LIT) and morning (06-10

LMT) time blocks, respectively. These two periods have the greatest and

least number of peaks, respectively, of all the six 4-hr time blocks.

The most striking feature is the bimodal distribution of points in both

figures. The appearance of the other four 4-hr time blocks (not shown)

is similar in this respect.

The main cluster of points (Fig. 20) is near the saturation level

as found before (Fig. 19), but a second major clustering is near a bright-

ness level of 10x19 Wm 2 Hz-l . Relatively few points fall between these

two maxima, and very few points fall below 10 -19 in the evening time sec-

tor. The midnight (22-02 LMT) and predawn (02--06 LMT) sectors have dis-

tributions similar to Fig. 20, except in the latter sector there are

fewer peaks at saturation and a gradual thickening of the population be-

low the 1 0-1 
9 

level.

Going into the morning side (06-10 LMT) there are fewer peaks

near saturation and more below 10-19 as is evident in Fig. 21. The noon

sector (10-14 LMT) has a distribution quite similar to that of Fig. 21.

The afternoon sector (14-18 LMT) has a bimodal distribution which is

like Fig. 20, but there are relatively more peaks with brightnesses less

than 10-19.

The grouping near 10 -19 Ldm-2 Hz-1 shows only a slight decrease in

brightness with increasing frequency. It occurs in all time blocks and

makes its presence felt in other parameters investigated, as will become

evident shortly. To see if it, along with the second grouping near satu-

ration change appreciably with magnetic activity, the data base (3000

points total) was analyzed as a function of Kp. The results, for the Kp

intervals specified abovc, are illustrated in Figs. 22, 23 and 24.

At the lowest level of magnetic activity (Fig. 22) the bimodal
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Fig. 20. Peak brightness as a function of peak frequency
for the 18-22 LMT time block derived from IMP-6 data by
"Angle Plot Program" computer routine. Includes all radial
distances and magnetic activity levels.

distribution is strongly evident, indicating that large peaks occur even

during quiet times, and the flat cluster at 10
-19 

is still evident. There

are a significant number of peaks below 10 -19 , negating any idea that this

level is due to instrumentation threshold effects. A similar situation
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Fig.	 Same as Fig. 20 but for 06-10 LMT time block.

exists for moderate levels of Kp (Fig. 23), and it is only with high Kp

(Fig. 24) that the low-brightness peaks (< 10
-19 

Wm 2 Hz -1 ) disappear.

Here (Fig. 24) it appears that there are relatively more peaks near satu-

ration than near the low-brightness peak level.

Time has not permitted an analysis of the bimodal distribution

with radial distance as the parameter. One might suspect, on the basis

of comparing the spectra in Figs. 2 and 3 against Fig. 4, that the peaks
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Fig. 22. Peak brightness as a function of peak frequency
for quiet magnetic conditions (0-5 Kp < 2 - ); all IMP-6
radial distances and local times included.

near 10
-19 

Wm-2 Hz
-1
 inight represent those occurring close in (4-6 Re),

while those near saturation are seen with IMP-6 near apogee. This suspi-

cion should be further investigated at a later date.

Apart from the possible influence of radial distance, the bimodal

distribution is maintained at all levels of magnetic activity, titres of
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Fig. 23. Same as Fig. 22 but for 2< Kp < 5-.

day, and frequencies in the TKR range. If the low-brightness cluster

represents a background level which fluctuates about a mean with minor

peaks (N 3 dB), the appearance of peaks near saturation would imply that

the emission source is either very strong or non-existent. That is, it

is either "on" or "off" most of the time, although occasionally it is

moderately active as indicated by the appearance of peaks with brightnesses
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Fig. 24. Same as Fig. 22 but for Kp > 5.

between 10
-19 

and saturation.

3.3.2 Diurnal Distribution of Peak Occurrence

The di , :rnal variations implicit in the previous section have been

investigated by plotting the peak brightnesses as a function of local time.

A composite of the results is given in Fig. 25. (Note the brightness scale
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Fig. 25. Composite distribution of IMP-6 spectral peak bright-
nesses as a function of local time, computed in 4-hr time
blocks. Note scale change at 1400 I.T.

change at 14 LMT and the 22-02 LMT block positioned at 22-26 LMT.) For

the whole local day, a strong component of peak brightness persists at

about 10
-19 

Wm 2 H2-i . A second strong component is seen between 10-17
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ant'. 10-1 ' from about 14 LMT to 24 LINT, which becomes less pronounced be-

tween midnight and 04 LMT, and is quite faint during the day time hours

of 06 to 14 LMT, Again, there is a relative sparsity of peaks between

these two components, and there are more low-brightness peaks during the

day than the night hours.

The total number of peaks regardless of magnitude or frequency

(between 100 and 1000 kIiz) for each time block gives an indication of the

diurnal variation as illustrated in Fig. 26. The histogram based on 3006

E

i}

3

y

f

i

Uj
-2600 POINTS TOTAL.

^ ---3D00 POINTS TOTAL
W
Cr
cr 30
UUO

z
W	 ----
C.]

^I I 	 _ I	 I	 I

01004	 O6	 12	 16

1 nf:Di	 UFAKI T1 MF

Fig. 26. Diurnal distribution of relative occurrence - 	 q

frequency of TKR peaks. (Area under the histogram = 1.00).
r

points corresponds to the data base used in Figs. 22 through 25. The

one for 2500 points is appropriate for the series of plots exemplified

by Figs. 20 and 21. The 2500 points are a subset of the 3000, and both

histograms are shown to indicate the degree of statistical fluctuation I
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imposed by two different set sizes. In this format it is clear that there

is a significant diurnal change marked by a minimum in the forenoon hours

and a maximum in the premidnight hours. This distribution is reminiscent

of the diurnal variation of "splash-type" 10-keV electron precipitation

events (Hartz and Brice, 1967; Hartz, 1971), wherein the maximum number

of events occur in the 18-24 LT sector.

The diurnal distribution of peak frequencies is shown in Fig. 27

for the range 30 to 1000 kHz. For the whole day peaks occur between

about 100 to 300 kHz; during the evening and night hours there is a

tendency for a slight upward shift wherein a few peaks are seen up to

nearly 750 kHz but relatively fewer are evident below about 150 kHz. The

24-hr blank between 292 and 360 kHz is due to lack of data in this fre-

quency range. On the day side there are few occurrences above 300 kHz

and rather more below 150 kHz. Thus, if there is a diurnal trend for

the peak frequencies, it is toward an upward displacement on the evening

and night sides, and the peaks tend to occur over a wider range of fre-

quencies on the evening side compared to the noon and forenoon sides.

3.3.3 Relationships With Bandwidth

The 3--dB bandwidth of the peaks exhibits a similar diurnal pat-

tern (Fig. 28). On the evening and night sides the width of the peak

varies over a wider range of bandwidths than it does on the day side.

There is a tendency for the width to be broader at night than during day

for both the minimum and maximum bandwidths.

For maximum brightness versus bandwidth, there appears a bimodal

distribution somewhat like those found for peak brightness as a function

of peak frequency (section 3.3.1). Two of the six 4-hr time block results

are illustrated in Figs. 29 and 30, for the 18--22 LMT and 06-10 LMT blocks,

respectively. The peak brightness near 10
-19 

ldm 2 Hz-1 appears to be in-

dependent of bandwidth, and it is evident in all six time blocks. The

maximum cluster above 10
-17 is related tothe saturation problem, and the

points are more dense on the evening side (Fig. 29) compared to the morn-
.:

. _	 ing side (Fig. 30). Fig. 29 is representative of the time block hours

from 1400 to 0200 LMT, and Fig. 30 is representative of 0600-1400 LMT;
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widths computed in 4-hr time blocks.
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Fig. 30. Same as Fig. 29 but for 06-10 LM1 time block.

the 0200-0600 LMT block has a distributiocL that might De described as an

average of those in these two figures.

Apart from the bandwidth-independent component, there is a

slight tendency for the bandwidth to increase with increasing brightness.

To what extent channel saturation may obscure this relationship cannot

be ascertained with the present data.
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The final result of this phase of the investigation concerns

the relationship betT42en peak frequency and bandwidth of the peak. 	 Here, i

ii.

n	 too, the analysis proceeded in 4-hr time blocks, with the output expressed

graphically.	 Two representative time blocks are illustrated in Figs. 31 t

and 32 for the 02-06 LT and 14--18 LT blocks, respectively. 	 The morning

time block (Fig. 31) is typical of the results for the three blocks en-
4

compassed by the hours 02-14, and the 14-18 LT result is similar to those

i'	 in the 18-22 LT and 22-02 LT blocks. r

The bandwidth exhibits a range of values at each peak frequency
JJ

in all time blocks, but the total range decreases with increasing fre-

quency as is evident in Figs. 31 and 32. 	 The minimum PBW increases with
t

increasing fp, and the maximum PBW goes the opposite way but with a

smaller slope.	 Thus, when spectral peaks occur at the higher frequencies

(1* 400 kHz) their bandwidths tend to be in the range 100-250 kHz, but

peaks at the lower frequencies (Ow 75 kHz) may have bandwidths from less

than :)0 kHz to more than 400 kHz. 	 The minimum PB4! cutoff does not appear

t.o be due to saturation effects, but this possibility has not been com-

pletely ruled out.	 The shape of the envelope of the distribution of

points in Figs. 31 and 32 might have interesting consequences for iden-

tifying the source generation mechanism. 	 It may, for instance, be related

to the (causative ?) precipitating particle energy spectrum in a critical

way, wherein the lower the particle energy, the broader is its Emission

spectrum.

3.3.4	 Summary of Spectral Characteristics

Statistically, peak emission occurs most often (18% of the time)

at a frequency of about 280 kHz, and the occurrence distribution about

this value is nearly log-normal,. 	 Approximately 80% of the time the spec-

tral peak is between 125 and 600 kHz, the other 20% being equally distri-

buted above and below this range.''

The lower cutoff frequency of the dominant TKR peak at 280 kHz

is most often found at about 100 kHz, while the upper cutoff is at about

380 kHz.

The TKR peak has been observed at all hours of the day and all
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Fig. 31. Peak frequency (ordinate) as a function of 3-dB
bandwidth in the 02-06 LMT time block.
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Fig. 32. Same .R Fig. 31 but for 14-18 LMT time block.

levels of magnetic activity (Kp and AE) at radial distances from 1.3 Re

by ISIS-1 (James, 1973) to 60 Re by RAE-2 (this report), and from 4.6 to

31 Re by IMP-6.

`	 The relationship between peak brightness and peak frequency has

a striking bimodal distribution in all hours of the day and all levels of

magnetic activity. One is centered at a peak brightness of about 10-19
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lAWm 2 Hz-1 regardless of peak frequency; the other is at or very near the

saturation level of the IMP-6 receivers which results in an increasing

brightness with increasing frequency.

A bimodal distribution is also evident in the relationship between

peak brightness and bandwidth of the peak. One component is centered at

10
-19 

Wm 
2 

Hz -1 regardless of bandwidth; the other has a tendency toward

increasing brightness with increasing bandwidth which may be partly due

to channel saturation.

A preliminary investigation of large amplitude peaks corresponding

to those near channel saturation revealed no obvious relationship between

the value of the peak frequency and radial distance, local time or level

of magnetic activity.

Taking all peaks together without regard to amplitude, radial dis-

tance of the spacecraft or level of magnetic activity, there does appear
to be a diurnal variation. That is, most peaks occur in the premidnight

hours (18--22 FAT) and fewest on the morning side (06-10 LT). There is a

tendency for the peak frequencies to have higher values on the evening

and night sides compared to the day side, and the range of frequencies

where the peaks occur tends to be somewhat larger on the evening side.
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4. NOISE SOURCES AND GENERATION MECHANISMS

Determination of the location of magnetospheric noise source

depends upon several complicating factors. Perhaps the most important

factor is identification of th,, appropriate generation mechanism, be-

cause the various processes are allowed only in certain regions of space.

Other factors, important especially in the observational determination

of source locations, are related to the noise characteristics, that is,

whet !, ?r the observed noise is electrostatic or electromagnetic, propa-

gating or nonpropagating. Also, the relationship of the observing fre-

quency to the plasma and gyro frequencies of the magnetospheric mudium

plays an important role.

In this section attention is confined essentially to propagating,

electromagnetic noise in the frequency range of approximately 100 to 1000

kHz, in an attempt to establish the source regions and generatio-i mechan-

ism of the TKR radiation discussed in section 3.

4.1 Noise Source Regions

An early determination of the origin of magnetospheric noise in

the range 100-500 kHz was made by Jorgensen (1966) with ground-based ob-

servations at Byrd Station, Antarctica. He showed that the observable

zone of noise "approximates the auroral, precipitation zone". This noise

was observed mainly in the evening hours until shortly after midnight,

with a maximum shortly before Local magnetic midnight at an invariant

latitude (INL) near 70 0 . The normal low latitude boundary was consistent

with the equatorward boundary of the auroral oval at about 65 0 invariant

latitude. The local time dependence of the present IMP-6 results (Fig. 26)

is consistent with Jorgensen`s ground-based findings.

In situ measurements by Alouette 2 of 200 kHz noise presumed to

be propagating in the whistler-mode by Barrington, et al (1971) exhibited

a somewhat similar invariant latitude/local time distribution (Fig. 33).

The observations for Fig. 33 were taken over altitudes from 640 to 3500 km,

with approximately the same number of crossings at all local times. The

most intense noise was observed from about 22 LT to 04 LT between 55 0 and

52

w	 _	 L,	 _



18 06

12

0

Fig. 33. Distribution of 200 kHz whistler-mode noise ob-
served by Alouette 2, plotted in invariant/local mean time
coordinates. Contours are dB above receiver threshold
(Barrington, et al, 1971).

60° INL on the night side, with a second intense region centered at about

21 LT near 70° INL. A fairly intense region persists from shortly before

noon to near midnight between 70
0
 and 80°. Minimum noise was observed on

the dawn side.

With OGO-6, Laaspere, et al (1971) observed 200-kHz noise at all

hours of the day at altitudes between 400 and 1100 km, in invariant lati-

tudes bounded by 70°-80° on the day side and 65 0-750 on the midnight side.

The 200-kllz noise observed by these three groups (Jorgensen, 1966;

Barrington, et al, 1971; Laaspere, et al, 1971) is presumed to have been

propagating in the whistler mode because at the low altitudes of the space-
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craft measurements the observing frequency is less than the local plasma

:.

	

	 frequency and the gyrofrequency. The ground-based observations of Jorgen-

sen (1966) must have been of whistler-mode noise because only in this mode
i

could it have penetrated through the ionosphere to the ground.	 i
i

It is possible, however, that at least some of the noise observed

by Barrington and by Laaspere could have been electrostatic. James (1973)

deduced that 100-500 kHz noise detected by Alouette 2 in the dayside

auroral oval (the polar cusp) was electrostatic. Maximum noise was ob-

served as the satellite passed directly through a field-aligned sheet of 	 j

precipitating electrons.

Whether the noise was electrostatic or electromagnetic propagating

in the whistler mode, both James (1973) and Hartz (1971) who used the Bar-

rington, et al (1971) data, came to the conclusion that the noise is gen-

erated not far above the satellite. The region of observed noise in the

TKR range approximates the pattern of auroral particle precipitation given

by Paulikas (1971), as reproduced in Fig. 34.

'these early results indicate that TKR radiation is generated with-

in a narrow range of invariant latitudes, or equivalently on a narrow

band of Mcllwain L shells near the boundary of open and .closed field lines.

The noise occurs most often in the premidnight hours where splasb-type

precipitation maximizes, but is also seen on the dayside where cusp par-

ticles precipitate (Fig. 34). Minimum noise occurs on the morning side

where the combination of soft, cusp-particle and splash-particle precip-

itation appears to be a minimum.

None of these results, however, provides an indication of the

height (or radial distance) at which the noise is generated. To find

this parameter, direction finding techniques have been used by several 	 1

investigators.
i

The first application of this technique was made by Fainberg, et

al (1972) and Sto gie (1973), who utilized the spinning dipole antenna on

the IMP-6 spacecraft to determine the null direction of noise at a num-

ber of points along the IMP-6 orbit. The intersection of these direction

lines (Fig. 35) for 110 kHz nulls indicates that the noise was emanating

from a region on the forenoon side bounded approximately by radial. distances
^a
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Fig. 34. Idealized representation of auroral particle pre-
cipitation, plotted in coordinates of invariant latitude and
magnetic local. time. Splash-type precipitation (electron
energy E wi10 keV) is indicated by triangles, drizzle precipi-
tation (E^0 40 keV) by dots, and soft electron (El 500 eV)
precipitation into the dayside polar cusp by stars (Paulikas,
1971).
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Fig. 35. Direction finding measurements on IMF-6 show daytime
source region for 110 kHz noise to be in vicinity of polar
cusp (position A in lower panel) in the forenoon sector.
Higher frequency noise near 250 kHz detected in magnetotail
near position B (after Stone, 1973).

of 2 to 5 Re. This places the source region in or near the polar cusp

where low-energy K 1 keV) electron precipitation takes place on a contin-
uous basis (Heikkila and Winningham, 1971). Other preliminary results

with 250 kHz null directions located a strong source region on the night

side along field lines within the auroral oval.

Additional application of this method by Kaiser and Stone (1975)

using IMF-6 130-kHz nulls revealed two main source regions, one on the

forenoon side and the second near midnight (Fig. 36 B). The spectral

shape of the 'KKR for the two regions is indicated in Fig. 36 A, where it
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Fig. 36. (A) Representative TKR spectra showing a relatively
low intensity peak on the dayside (upper panel) and a high
intensity peak on the night side (lower panel).
(B) Contours of relative occurrence probability of TKR noise
projected onto the ecliptic plane, showing maximum occurrence
of intense noise in late evening magnetic local time and of
low-intensity peaks on forenoon side. (After Kaiser and
Stone, 1975).

can be seen that the night side source is much more intense than that on

the dayside. The occurrence-percentage contours in Fig. 36 B are projected

onto the ecliptic plane; how far above or below the plane the source is

located cannot be determined unambiguously by this method.

Analysis of one year of the lunar-orbiting Radio Astronomy Explorer-

2 (RAE-2) 130 kHz data (Kaiser and Stone, 1975) has found the most intense

source to be located on the evening side, visible from about 16 LT to 04

LT. Lower intensity noise was observed in all hours from 04 LT to 16 LT.

To gain a measure of the radial distance of the source on the

evening side, Kaiser and Alexander (1975) utilized the effect of occulta-

tions of Earth by the lunar surface on RAE-2 data. By noting the times

of appearance and disappearance of intense noise on 250 kHz, they were

able to fix the position of the source as seen from lunar orbit on the
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evening side. An example of their findings is illustrated in Fig. 37.`:Y.
E

Three determinations were made at different universal times and different E,
:revels of magnetic activity as indicated by the AE index. The first time,

two source regions (both labeled 1 in the Figure) were identified, one at

17 Re in the tail, the second much closer in so that in the projection it

appears on Earth's surface. The second and third revealed sources at

about 2 and 3 Re, respectively. The distribution of 112 determinations

at 250 kHz for the July--Dec. 1973 period is shown in Fig. 38. The average

of all projected distances is 3.4 Re; about 1/3 of the sources are beyond

3.5 Re and 10% are further than 7.0 Re. As noted in Fig. 38, the electron

gyrofrequency (fH) equal to 250 kHz and its first harmonic lie Earthward

of these distances, which has important ramifications for the theories

discussed in the next section.

Other direction-finding measurements by Kurth, et al (1975) and

Gurnett (1974) have been concentrated on the nightside intense noise

region. Kurth, et al (1975), using Hawkeye-1 and IMP-8 data, found the

average source location for 178 kHz to be at about 22 LT at a radial dis-

tance of about 1.75 Re in the equatorial plane. Gurnett (1974) deduced

that the radiation must emanate from regions located in the evening and

night auroral zone at radial distances less than 3.0 Re.

The work by Stone and associates, and the present results, indi-

cate that at least two major source regions must exist, one on the fore-

noon side which emits relatively lower intensity noise in the TKR range,

and the other in the auroral oval which emits intense sporadic TKR noise

especially on the evening side. The latter source is in agreement with

the findings of Gurnett and associates, whose equipment sensitivity pre-

cluded investigation of low-intensity radiation.

4.2 Generation Mechanisms

Several proposals have been advanced to explain the generation

process for magnetospheric noise, all of which depend upon the existence

of precipitating particles in one way or another. The earliest seems to 	 j

have been incoherent Cerenkov radiation (Ellis, 1958), but this process a.i

was shown to be inadequate to explain the obser-ed intensities by several
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Fig. 37. Direction-finding measurements of TKR source regions
by RAE-2 occultation techniques. Determination of source loca-
tions (note the double source), 2 and 3 made at indicated times
when AE index was high, low, and moderate, respectively. (After
Kaiser and Alexander, 1975).
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Fig. 38. Distribution of radial distances to TKR sources
determined by RAE-2 occultations (after Kaiser and Alexan-
der, 1975).

orders of magnitude (c.f., Taylor and Shawhan, 1974). The conclusion aris-

ing from this finding was that a coherent process Is required to organize

the electrons to increase the radiated power from them.

The discovery of VLF electrostatic noise occurring on frequencies

related to the local gyrofrequency (Kennel, et al, 1970) led Fredericks
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(1971), and Fredericks and Scarf (1973) to propose a nonresonant insta-

bility theory wherein modes at frequencies f = (n + z)f H are excited.

The concept was applicable to radiation on 1 to 22 kHz observed in local

times from at least 19 LT through midnight to 07 LT and possibly to 12

LT. Emissions were recorded on L shells out to at least 13 in the south-

ern hemisphere at 500 INL, in the northern hemisphere out to L = 10 at

400 INL, and over the equator (00 INL) out to L = 6.

Scarf (1973) suggested that such a purely electrostatic plasma

instability occurring at 3 fH/2 may organize the phase of energetic elec-

trons in the Jovian magnetosphere, and Gurnett (1974) applied it to the

terrestrial case for TKR.

Swift and Ka: (1975) consider the stimulation of VLF emission to

be near the plasma frequency (fN ), while Benson (1975) suggests emission

in regions where the upper hybrid resonance frequency is less than twice

the gyrofrequency. That is, f T < 2 fH , where fT2 = f N 2 + fH2 . James,

et al (1973) have found intense 2-4 MHz radiation at low altitudes (^-'1400

km) where f  = 2 fH . Common to all thc,Se theories is the necessity for

a warm electron beam to be streaming through a cold plasma. Only the

Gurnett (1974) and Benson (1975) theories apply directly to the TKR case.

Assuming the 3 f 
1
/2 mechanism to be operative, Gurnett (1974)

uses propagation cutoff arguments to establish a bandwidth of approxi-

mately 50 kHz to 1.2 MHz for TKR. Based on the same argument, the radia-

tion can only be generated (and escape) in the nightside auroral region

at radial distances of about 1.5 to 3.0 Re. Although this mechanism may

explain the quasi-continuous background radiation on frequencies within

this bandwidth, it is inadequate for the intense TKR in two respects.

As we have seen in sections 2 and 3, the intense radiation peaking at

about_ 230 kHz has a bandpass with a lower bound of approximately 100 kHz

(not 50) and an upper bound of about 380 kHz (not 1200). The second

deficiency is that Gurnett's gechanism precludes generation of TKR be-

yond about 3 Re, and as shown by Kaiser and Alexander (1975), TKR sources

have been detected in the tail region out to at least 17 Re.

Benson's (1975) theory is somewhat more elegant in that it allows

for generation of electrostatic noise with subsequent conversion to elec-
P
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tromagnetic noise upon reflection at the surface where f f%0 2 fH .	 His
i

electron density model is essentially the same as Gurnett's (1374), and

the region where the requirement f  < 2 f 	 holds is between radial dis-

tances of about 1.2 Re to 5 Re. 	 This theory suffers the same two defi-

ciencies as Gurnett's.	 For either thecry to apply, the source mechanism

at any given time would have to be restricted to an extremely narrow

radial distance range near 2 Re in order to explain the sharply banded

TKR peak.	 In Gurnett's case, it is difficult to envision an electron

density distribution which would establish the sharp upper and lower cut-

offs that are actually observed.	 Also, application of the f = (n	 2)fH

criterion to the multiple peaks i'i Figs. 14 and 15 of this report reveals

no obvious pattern.

What is required is a mechanism which will allow generation of

noise at frequencies greater than f 	 or f 	 at distances beyond 5 Re and

also allow for the observed spectral shape of the TKR noise.

4.3	 Magnetosph.aric Lightning

An explanation for the noise generation might be found in an ana-

logy to a terrestrial lightning flash.	 One may liken a lightning channel

carrying a transient current to a radio antenna which emits an electro-

magnetic signal.	 The characteristics of this signal are determined mainly

by the time variations of the current strength, channel length, and velo-

city of the current in the channel. 	 In the resulting noise spectrum from

a lightnin; discharge, the frequency of the peak amplitude is proportional

to the channel 'l ength; the longer the channel the lower the peak frequency.

From a rypica`	 ightning flash having a channel length of about 3 km, the

spectrum peaks at 7 or 8 kliz. 1
,a

A total lightning discharge consists not of one huge current

surge, or spark lasting a few microseconds, but rather of several (gen:!r-

ally 3 or more) strokes from the charged thundercloud either to the ground

or another cloud and back again. 	 In addition to the main and subsidiary

strokes, small streamers with much shorter channel lengths can branch out

from the main channel, and the whole discharge persists typically for

about 500 nsec.	 Different parts of the discharge are responsible for the
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noise emission in different parts of the radio spectrum. The VLF peak

at 7-8 kHz is generally generated by the return strokes along the main

channel, and the semi-continuous noise in the high frequency (HF) band

is suspected to stem from the streamers and short coronal discharges.

The existence of field-aligned currents in the upper ionosphere

and mafnetosphere (Armstrong and ZmL.'-, - 1970; Choy, et al, 1971; Zmuda

and Armstrong, 1974) and field-aligned electron bursts (Hoffman and Evans,

1968) suggests that a process qualitatively similar to terrestrial light-

ning discharges may be operative in the magnetosphere. The field-aligned3

burst may be analagous to the main lightning channel, which generates

noise in the VLF and ELF bands.

Small streamers generating higher frequency noise may develop in

the following way: When the precipitating column making up the main

channel reaches a certain intensity it becomes unstable and splits into

an electrostatic double layer (c.f., Thorne, 1975). Between the two

layers there is a thin dark zone approximately 100 debye lengths (..\ D)

wide, over which the potential drops by an amount equi%mlent to A010

kTe /e, where k is Boltzmann's constant, T  is the electron temperature

and a is its charge.

Using electron temperatures of 4,000 0  for 2 Re and 50,000 0 

for 6 Re (Evans, 1966), the potential drop across the dark zone is 3.45 V

snd 43.1 V, respectively. Further, one may compute the appropriate debye

length from (Oberman, 1974):

^D = [4Tr ne 2 (1 + 6^	 C1)

where n is the average number density of particles, Z is the atomic num-

ber (= 1 assuming H to be the dominate species at the heights under con-

sideration), and 9 = kT (k = 1.38 x 10
-16 

erg/deg for Boltzmann's constant;

T = temperature of the gas in 0K). For 2 Re, T = 4000 0  (Evans, 1966)]

and n = 3(102 ) electrons cm-3 (Benson, 1975), and for 6 Re, T = 50,000 0 

(Evans, 1966), and n is estimated to be 100 electrons cm - 3 . With these

values, the width if the dark zone is approximately 25 m at 2 Re and 155 m

at 6 Re. Combining these widths wit'0 the above-computed potential drops
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the electrostatic field at 2 Re would be 0.14 V/m and at 6 Re it would be

0.28 V/m. Compared to the high-latitude dayside measurements of Maynard

and Johnstone (1974) these field strengths are not unduly high.

Thus, in the high-latitude radial distance range of 2-6 Re,

small streamers with lengths of the order 25-150 ,, could develop along

the main "magnetospheric lightning" channel, and generate noise at fre-

quencies in the TKR range. It appears that at high laLitudes where the

magnetic field direction (and main magnetospheric lightning channel) is

essentially vertical, the side streamers would be oriented more or less

3
horizontally, and the consequent TKR noise would propagate perpendicular

to the streamer current or nearly along the magnetic field direction.

Since field-aligned splash precipitation - that is, the develop-

ment of main magnetospheric lightning channels - maximizes in the late

evening (Fig. 34) one could expect the occurrence of side streamers pre-

sumed to be responsible for the TKR component would also be maximum at

t	 that time. As can be seen in Fig. 26, this is the time of maximum

occurrence of TKR, which tends to support the magnetospheric lightning

concept.

Assuming that the time-dependent form of the side-streamer current

can be described with a gaussian function

I(t) = A expl- 2(t/t 1 )1 	(2)
where A is peak current and t  is where it has decayed to its 11C, value,

its Fourier transform into the frequency domain is also a gaussian;

NO)) = B exp[-2(f/f1 ) ` t	 (3)

Here, W = 2'f'f

A = B/t1 
7T'
	 (4)

and ti = 1/Z'f1	(5)
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It can be shown (Jones, 1970) that the relationship between the

current pulse in the frequency domain and its associated radiated noise 	
f.'.

6	 spectrum, R(0)), is	 ?

Thus,

R(6)) = W I(w)

R(f) = 21Tf B exp 2( fo - f ) 11
f1

where f  is the peak frequency of the noise spectrum.

In this form (eq. 7) it is evident that the noise spectral

shape will be skewed to the right due to the inclusion of the monotoni-

cally increasing frequency term multiplying the gaussian function. As

noted in section 3, however, the experimentally observed spectral shape

tends to be skewed to the left. Consideration of the most-often occurring

statistical spectrum which peaks at 280 kHz with upper and lower cutoffs

at 380 kHz and 100 kHz, respectively, leads to the suspicion that a

single gaussian current pulse is insufficient to explain the observations.

Assuming as a first approach, that two current pulses will be

sufficient, one may rewrite eq. 7 as:

2	 2

R(f) = 2?TrfFBle`cp(--,(foj - f) ) + B 2 exp(-z( foz - f ) ] (8)
fl	f2

where B  is the amplitude of the pulse peaking at f on with a 1/4-- value

of f (n = 1, 2).
n

In Figs. 39 and 40, theoretical spectra derived from eq. 8 are

compared with the normalized spectra of Figs. 9 and 3, respectively. FDr

Fig. 39, fo$ = 290 kHz; f2 = 45 kHz; B 2 = 2B1 ; f 
0 

= 185 kHz; fl = 18.33

kHz. From eq. 5 it is evident that the total duration (N Stn) of the

current pulse B 2 is 21 .2 ,,gsec, while that for pulse B1 is 52.1.Aisec.

Although the agreement in Fig. 39 is not perfect, it is quite good, and

suggests that the spectrum i:; adequately produced by two transient gaus-
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Fig. 39. Normalized IMP-6 TKk spec Crum from Fig. 9 compared
to theoretical spectrum generated by magnetospheric lightning
with two streamer channels. The current pulse producing the
noise peak at 300 kHz has a total duration of 21.2 Atsec
travelling over a channel length of approximately 104 m.
Its relative intensity is twice that of the 52.1 ;Asec pulse
producing the lower intensity peak at 190 kHz. Th p channel
length of the longer pulse is 158 m.
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sian current pulses, one is z as intense and 2z times longer in duration
than the other. The reality of the computed valley at 220 kHz cannot be

ascertained because of the lack of an experimental channel near that fre-

quency.

For the theoretical spectrum in Fig. 40, fo2. = 375 kHz; f2 = 50

kHz; B2 = 3B1 ; f01 = 260 kHz; fl = 25 kHz. The total current pulse widths

in this case are -19.2 and 38.2 jtsec for B 2 and B1 , respectively. Again,

the agreement between the observed and computed spectra is quite remark-

able.

It should be noted that the selection of values for the lightning

channel parameters fon and fn was guided by the characteristics of the

experimental spectra. Other parameters, such as current intensity and

channel length, can in principle also be deduced from the spectral charac-

teristics. For example, in a terrestrial lightning flash the peak radia-

tion occurs at about S kHz and the channel length is 3 to 4 km; the length

of the channel is about one-tenth of the peak radiation wavelength. By

analogy, it appears that magnetospheric lightning channel lengths genera-

ting TKR noise would range from about 50 m (for 600 kHz peaks) to 240 m

(125 kHz peaks) with a mode of 107 m (for 280 kHz).

Further work beyond the resources of the present effort is required

to ascertain additional characteristics of magnetospheric lightning, such

as current strength, velocity of current advance along the channel, orien-

tation of the streamer channel, initiation of the stroke, and so on.

To summarize the present results, it appears that the spectral

shape of observed TKR noise can be approximated by assuming that the noise

is generated by lightning-like current surges in the magnetosphere. The

channel lengths are typically the order of 50 to 250 m, most often near

100 m. If the current surge has a gaussian time distribution, the pulse

is typically a few to a few tens of microseconds in duration. For the

particular observing periods analyzed there appear to have been at least

two magnetospheric lightning channels with unequal intensities active at

a given time; the larger one tieing 2--3 times more intense and about half

as long in duration as the associated lower intensity burst. Since time--

averaged noise spectra were used to make these deductions, it is uncertain
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whether the two surges occur simultaneously or sequentially.
`s

The channel lengths computed here are comparable to, perhaps a 	 :'E

bit longer than, the separation distances of electrostatic double layers

at radial distances of 2 to 6 Re, which suggests that the potential dif-

ference between the layers may initiate the magnetospheric lightning

streamer.

To carry the lightning analogy a bit further than warranted by

the present analysis, it is interesting to speculate that aurora may be

the magnetospheric counterpart of the visual component of terrestrial

lightning, while magnetohydrodynamic or pressure waves are the counter-

part to thunder.

As a final comment, it should be mentioned that the radio fre-

quency of TKR noise depends upon the magnetospheric lightning streamer

length according to the present theory, and therefore should be relatively

insensitive to radial distance of the source location. Thus, noise can

be generated by this mechanism at distances larger than those permitted

by the theories of Benson (1975) and Gurnett (1974) for example.

C^

A

a

j
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Investigation and analysis of radio noise spectra from the IMP-6

ii and RAE-2 satellites has been conducted to determine spectral characteris-

tics and possible noise generation mechanisms.

Gross characteristics of spectra from 30 kHz to 10 MHz can be

categorized by frequency bands of approximately 30 to 1 00 kHz; 100 to t

1000 kHz; and 4 to 10 MHz.

Below about 100 kHz the background noise magnitude has a general

tendency to decrease with increasing frequency, but enhancements (peaks)

are sometimes superimposed on this background which flatten or even re-

verse the slope.	 Above about 4 MHz the noise level nearly always increases

with increaser	 frequency,	 yg	 q	 y, possibl	 due to terrestrial radio noise and

interference propagating through the ionosphere from Earth's surface to

the spacecraft.
4

The middle portion of the spectrum (100-1000 kHz), referred to as

terrestrial kilometric radiation or TKR noise, is marked by peak enhance-

ments rising a factor of 100 or more above the background level. 	 The q

peaks are observed on all sides of the Earth (i.e., at all local times),

and at radial distances from 1.3 Re to 60 Re. 	 They occur at all levels

of magnetic activity, with a slight tendency for increasing peak inten-

sity during strong geomagnetic disturbances.

The TKR peaks tend to have the highest intensity in the evening
Y

and midnight sectors, less in the postmidnight to early morning sector,

and least on the dayside.	 The number of peak occurrences also follows

this diurnal trend.

The radio frequency of the TKR peak is observed most often (18%

of the time) at about 280 kHz, and 80% of the peaks fall between 225 kHz

and 600 kHz.	 The lower cutoff frequency where the TKR peak falls to the

background level is found most often at about 100 kHz, and the upper cut-

off at about 380 kHz.

Previous theories proffered to explain the generation of TKR

noise are inadequate in several respects:

(1)	 the mechanism is operative in the region where f H( f = r¢̀
:'A
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UT < U
HL which means that the source location is confined to radial

distances of about 2 to 5 Re and the emission frequency decreases with

increasing radial distance of the source. Recent direction-finding measure-

ments reported by Kaiser and Alexander (1975) show that the TKR source re-

gion can be located at radial distances greater than 5 Re out to at least

17 Re. The observing frequency (250 kHz) utilized by Kaiser and Alexander

was such that the Gurnett (1974) and Benson (1975) theories would predict

a source location at 2-2.5 Re. Further, the present results show no ob-

vious relationship between peak frequency and radial distance, so the

observed peak frequency does not necessarily follow the predicted decrease

with increasing source distance.

(2) In these theories, propagation effects are invoked to

predict a TKR band extending from about 50 kHz to 1.2 MHz, but the present

results show that at a given time the typical TKR enhancement is limited

to a band extending from about 100 to 400 kHz. Furthermore, no explicit

method to derive the peak frequency of a TKR enhancement is contained in

the theories.

(3) The previous theories are applicable to the nightside

auroral zone, but TKR noise is observed also on the dayside in the vici-

nity of the polar cusp.

(4) Magnetic storms or auroral substorms are an implicit

requirement for the Gurnett theory to work, but it has been shown in this

report that TKR peaks occur even in the absence of geomagnetic distur-

bances.

To meet the above observationally estEblished spectral characteris-

tics, a new theory based on the concept of "magnetospheric lightning" was

developed. This concept, analagous to the generation of atmospheric radio

noise by thunderstorm lightning, satisfactorily reproduces the TKR peak

frequencies as well as the upper and lower cutoff frequencies. It is

suggested that transient magnetospheric current surges of a few to a few

tens of microseconds in duration travelling over distances of the order of

100 m will generate the appropriate noise spectrum. The lightning-like

streamers can take place at radial distances in excess of 5 Re and can

occur on both day and night sides in regions where an appropriate electric
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field can accelerate electrons. The duration of the current in a magnetos-

pheric lightning channel dictates the radiation bandwidth for a given 	 k

observation, and the current channel length establishes the peak

frequency of the radiation.

Additional work is recommended to establish additional characteris-

tics of the magnetospheric lightning, such as its current strength, velo-

city of current advance along the channel, orientation of the channel,

initiation of the stroke and associated streamers, and so on.
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