
JSC 09393

CROP IDENTIFICATION TECHNOLOGY ASSESSMENT

FOR REMOTE SENSING (CITARS)

VOLUME X

INTERPRETATION OF RESULTS

National Aeronautics and Space Administration

LYNDON B. JOHNSON SPACE CENTER
Houston, Texas

December 1975



Ill

T E C H N I C A L REPORT INDEX/ABSTRACT

1. T I T L E AND SUBTITLE OP DOCUMENT

CROP IDENTIFICATION TECHNOLOGY ASSESSMENT FOR

(CITARS) , VOLUME X, INTERPRETATION OF RESULTS

3. CONTRACTOR/ORGANIZATION NAME

Lockheed Electronics Company, Inc.

5. CONTHACTOR/ORIGI NATOR DOCUMENT NO.

LEC-4326H

7. SCCIIHITV CLASSIFICATION

Unclassified

'. L I M I T A T I O N S ^_^
GOVERNMENT HAS U N L I M I T E D BIGHTS | |vES [x | NO '

If NO, STATE L I M I T A T I O N S AND AUTHORITY

1 1 . DOCUMENT C O N T R A C T R t F l R E N C C S

• ORK B U r A K P O H N STRUCTURE NO. • .

Job Order 71-645
C O N T R A C T E X H I B I T NO.

PRL NO. AND R E V I S I O N

0»L L I N E ITEM NO.

12. JSC NO.

JSC- 09393

4. CONTRACT OR GRANT NO.

NAS 9-12200

6. PU B L I C A T I O N DATE (THIS ISSUEI

December 1975

6. OPS (OFFICE OF PBIMARV « t SCON S 1 B 1 L 1 TV 1

R. M. Bizzell, A. H. Feiveson, and
F. G. Hall, NASA TF7
10. AUTHOR. si R M Bizzellj A. H. Feiveson,
and F. G. Hall, NASA; M. E. Bauer and B. J.
Davis, Laboratory for Applications of
Remote Sensing, Purdue University; and
W. A. Mali la and D. P. Rice, Environmental
Research Institute of Michiaan
12. HAROfIRi C O N F I G U R A T I O N

SYSTEM

ERIPS, LARSYS
SUBSYSTEM

MAJOO 'EQUIPMENT GROUP

Univac 1108/1110

11. ATTRACT . .

The CITARS was an experiment designed to quantitatively evaluate crop identification
performance for corn and soybeans in various environments using a well-defined set of
automatic data processing (ADP) techniques. These techniques differed mainly by the pro-
cedure used to obtain signatures from training data (e.g., clustering) and by the method
of classification employed (e.g., linear or quadratic decision boundaries and equal or
unequal class weights). •

Each technique was applied to data acquired by the first Earth Resources Technology
Satellite over six Indiana and Illinois test sites throughout the growing season in an
attempt to recognize and estimate proportions of corn and soybeans. Both local and non-
local (i.e., extended) recognition training statistics were used.

These analyses evaluated the significance of the various factors which contributed
to the classification performance. This final volume of CITARS documentation summarizes,
interprets, and discusses the crop identification performances obtained using (1) differ-
ent ADP procedures; (2) a linear versus a quadratic classifier; (3) prior probability
information derived from historic data; (4) local versus nonlocal recognition training
statistics and the associated use of preprocessing; (5) multitemporal data; (6) classifi-
cation bias and mixed pixels in proportion estimation; and (7) data with different site
characteristics, including crop, soil, atmospheric effects, and stages of crop maturity.

14. l U B I E C T t TCRMS

Classification algorithm Multitemporal data Statistical evaluation
Crop identification
performance Quantification

Multispectral data Radiometric preprocessing

JSC Form 833 (Rev Sap 74) NASA-JSC



GLOSSARY

ADP — automatic data processing

ASCS — Agricultural Stabilization and Conservation Service

of the U.S. Department of Agriculture

CCT — computer-compatible tape

CIP — crop identification performance, the quantitative

assessment of crop inventories in specified areas using

remote sensing, photointerpretation, and ADP techniques

CITARS — Crop Identification Technology Assessment for Remote

Sensing

EOD — Earth Observations Division of the Lyndon B. Johnson

Space Center, NASA

ERIM — Environmental Research Institute of Michigan

ERIPS — Earth Resources Interactive Processing System

ERTS-1 — the first Earth Resources Technology Satellite, which

was launched in June 1972, orbits the Earth 14 times a day

from an altitude of 915 kilometers and scans the same

scene every 18 days (renamed Landsat-1 in January 1975)

IR — infrared

ISOCLS — Iterative Self-Organizing Clustering System, a com-

puter program developed by the EOD, which uses a cluster-

ing algorithm to group homogeneous spectral data
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JSC — Lyndon B. Johnson Space Center, NASA

Landsat-1 — the first Land Satellite launched in June 1972

(formerly called ERTS-1 and renamed in January 1975)

LARS — Laboratory for Applications of Remote Sensing of

Purdue University

LARSYS — a system of classification programs developed at

the LARS

MLA — mean level adjustment

MSS — multispectral scanner

MSP — multitemporal processing

NASA — National Aeronautics and Space Administration

Pixel — a picture element which refers to one instantaneous

field of view as recorded by the ERTS-1 MSS and covers

the equivalent of 0.44 hectare (1.09 acres)

PSP — preprocessing and standard processing

rms — root mean square

SP — standard processing

USDA — U.S. Department of Agriculture
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1.0 INTRODUCTION

In 1973, the Crop Identification Technology Assessment

for Remote Sensing (CITARS) was undertaken by the Earth

Observations Division (EOD) of the Lyndon B. Johnson Space

Center (JSC) of the National Aeronautics and Space Admini-

stration (NASA), the Environmental Research Institute of

Michigan (ERIM), the Laboratory for Applications of Remote

Sensing of Purdue University (LARS), and the Agricultural

Stabilization and Conservation Service (ASCS) of the U.S.

Department of Agriculture (USDA). The primary goal of this

joint task was to quantify crop identification performances

(CIP's) resulting from the identification of corn, soybeans,

and wheat by remote sensing, using automatic data processing

(ADP) techniques developed at ERIM, LARS, and EOD. The ADP

techniques were automatic in the sense that subjective human

interactions with the classification algorithms were mini-

mized by specifying the steps required for an analyst to

convert a multispectral data tape to a classification result.

The remotely sensed data were acquired by multispectral

scanner (MSS) onboard NASA's Earth Resources Technology Satel-

lite (ERTS-1) and high-altitude aircraft. Six 8- by

32-kilometer segments in Illinois and Indiana were selected

for data gathering during six periods from early June

through early September 1973. Concomitantly with the space-

craft and aircraft data, ground truth was acquired by a

combination of ASCS field visits and interpretation of

large-scale aerial photographs. The major crops of corn,

"""The ERTS-1 was redesignated the first Land Satellite
(Landsat-1) in January 1975 and now bears the name Landsat-1.



soybeans, and wheat were classified for the six periods

during the growing season for both of the following

conditions:

1. Local recognition: Crop signatures for classifier

training were obtained from the geographic region in

which the crops were identified.

2. Nonlocal recognition: Crop signatures for classifier

training were obtained from a geographic region other

than the one in which the crops were identified.

An additional category "other" was established for the

classification of ground features other than the three major

crops.

The classification results from the MSS data and ADP

techniques were compared to the ground-truth data to estab-

lish the CIP. The CIP's resulting from several basic types

of ADP techniques were then compared and examined for sig-

nificant differences. Once the CIP was established for

each of the ADP techniques for local and nonlocal recogni-

tion, differences in the performances of these techniques were

examined as functions of geographic location, time of the year,

and other pertinent factors.

This concluding volume of the final report presents the

major results of CITARS and discusses their significance. The

first results from the experiment were described in an earlier

paper (ref. 1); and the final report, which includes all vol-

umes of the CITARS (ref. 2), contains complete descriptions of

the various aspects of the experiment and their results.



2.0 OBJECTIVES

The overall objective of CITARS was to quantify the

CIP resulting from the remote identification of corn, soy-

beans, and wheat using ADP techniques developed at EOD,

ERIM, and LARS. The ADP techniques were evaluated on this

data set for local and nonlocal recognition. Specific

objectives included performance comparisons to answer the

following questions.

1. How do corn, soybeans, and wheat CIP's vary with time

during the growing season?

2. How does the CIP vary among different geographic loca-

tions having different soils, weather, management prac-

tices, crop distributions, and field sizes?

3. Can statistics acquired from one time or location be

used to identify crops at other locations and/or times?

4. How much variation in CIP is observed among different

data analysis techniques? *
V.

5. Does use of radiometric preprocessing extend the use of

training statistics and/or increase the CIP?

6. Does use of multitemporal data increase the CIP?



3.0 EXPERIMENTAL PROCEDURES

3.1 TEST SITE SELECTION

The test sites were chosen over a large geographic area

in order to include a wide variety of conditions. It was

recognized that much variation in soils, weather, agricul-

tural practices, and crop distribution occurs in the Corn

Belt and that all of these factors are related to its geo-

graphic location. The goal, then, was to obtain the best

measure of the effects of these factors by including as many

test sites as possible over as large an area as possible.

To increase the probability of obtaining cloud-free

data for each ERTS-1 cycle, six test sites were selected

within the four overlap zones of five passes over Indiana

and Illinois. The areas shown in figure 1 included many of

the different conditions which could be expected to be

encountered in the Corn Belt. (See section 4.3.1.)

3.2 SELECTION OF SEGMENTS AND SECTIONS

The segments, 8 by 32 kilometers in size, were chosen

at random within each of the six selected counties. This

segment size provided a limited area for field visits and

yet an adequately large area for a representative sample of

agriculture within a county. Within each segment, 20 sec-

tions and 20 quarter sections were chosen at random in a

manner such that the selected quarter sections were spatially

separated from the selected sections (,ref. 2, vol. I, pp. 11-13)



3.3 FIELD OBSERVATIONS FOR CROP IDENTIFICATION

From May to September 1973, every 18 days and coincident

with ERTS-1 passes (table I), ASCS personnel visited the

20 quarter sections in each segment and recorded the crop

type and other descriptive information for each field.

Atmospheric optical depth measurements and subjective assess-

ments of cloud cover and weather were also recorded during

the ERTS-1 overpasses.

3.4 PHOTOINTERPRETATION FOR CROP IDENTIFICATION

To obtain a more accurate estimate of the CIP, the

field observation data from the 20 quarter sections were sup-

plemented by photointerpretation of the 20 sections chosen

in each segment.

The photointerpretation effort used large-scale color

infrared (IR) aerial photography acquired three to five

times and large-scale metric photography acquired two times

during the growing season. In this manner, proportions of

ground-cover classes and other agricultural parameters were

established within each of the 20 sections in each segment

(ref. 2, vol. IV). The crop type and other information col-

lected by the ASCS from 16 of the 20 quarter sections were

used by the three interpreters for training. The informa-

tion from the other 4 quarter sections was concealed from

the interpreters while they interpreted the 20 sections and

the 4 sections which contained the concealed quarter sections.

At the conclusion of the photointerpretation subtask, the crop

identifications and area measurements for the four concealed

quarter sections were compared to the data collected by the

ASCS. A summary of these results is shown in table II.



While the photointerpretation accuracy was not

100 percent, it was considered sufficiently high to allow

evaluation of ADP classifications. The accuracy for acres

was higher than for individual fields, indicating that

interpretation accuracy was lower for small fields. Since

pixels from small fields were not included, this was not a

problem in evaluating field-center classification results.

The effect of evaluating small fields, however, would have

been included in the proportion estimates for entire sec-

tions. Yet, errors in the crop types used to evaluate the

classification results probably accounted for 5 percent or

less of any misclassification.

3.5 ERTS-1 DATA PREPARATION

The ERTS-1 data preparation for CITARS consisted of

(1) data quality evaluation, (2) geometric correction and

registration, and (3) section and field coordinate location.

3.5.1 Data Quality Evaluation

The ERTS-1 data quality evaluation included examination\
for cloud cover and electronic data quality checks (ref. 2,

vol. III). The satellite passed over each of the six test

segments twice (on successive days) during each 18-day

period. Since seven periods were of interest, from early

June to late September 1973, a total of 84 data sets were

available for potential processing and analysis. Cloud

cover problems were identified by reference to the ERTS-1

data catalog and by visual inspection of available imagery.

Of the 84 possibilities: cloud cover on 53 sets was severe

enough to cause their outright rejection; no data were col-

lected for two sets; and several others were eliminated for



other reasons. A total of 26 sets were selected for anal-

ysis, and, upon detailed examination, several of these were

found to have cloud-cover problems. Thus, roughly 70 percent

of the data sets were eliminated because of excessive cloud ~

cover. (See table III.)

A majority of the selected data were of good quality.

A few problems which affected data analysis procedures

and/or results were observed.

1. Occasional erratic data were present throughout individual

scan lines or portions of lines.

2. Differences existed among the mean values obtained from

the six detector channels that comprised each spectral

band as averaged over a large sample of the data.

3. Differences were observed in the variances from the

detector channels over the same data sample.

3.5.2 Geometric Correction and Registration

The digital form of the ERTS-1 data [computer-compatible

tape (CCT)] contains several geometric distortions, including

scale differential, altitude and attitude variations, Earth

rotation skew, orbit velocity change, scan-time skew, non-

linear scan sweep, scan-angle error, and frame rotation.

The scale and skew errors were the most significant, with

rotation to north-orientation highly desirable. A two-step

process was developed by LARS to geometrically correct ERTS-1

data over small areas. It was applied to all data for CITARS

(ref. 3). The output form used for CITARS is such that when

the data are printed on an 8-line-per-inch, 10-column-per-inch

computer line printer the resulting scale is approximately



1:24,000 and the image is north-oriented (ref. 2, vol. V).

Comparisons made using topographic maps indicated a scale

error of approximately 1 to 2 percent. Having geometrically

correct and scaled data greatly facilitated the task of

locating section and field coordinates.

Registration of multiple images of the same scene was

accomplished through use 6f the LARS image registration

system (ref. 4). A measure of registration error was

obtained from the checkpoint residuals of the least squares

polynomials used in the image correlation. This statistic

averaged less than 0.5 of an image sample (pixel), and in

practice additional checkpoints were located whenever the

root-mean-square (rms) error for either lines or columns

exceeded 0.5.

3.5.3 Determination of Section and Field Coordinates

Determining section and field coordinates was a major

preparatory task to classifying the ERTS-1 data. First, a

manual method for locating fields displayed the ERTS-1 data

as single-band, gray-scale, line printer maps (ref. 2,

vol. V). After manually locating all fields and sections

in the ERTS-1 data, the precision was determined to be

inadequate to meet the maximum error requirement of one

pixel. Therefore, a previously developed, computer-assisted

method of transforming map coordinates to ERTS-1 data was

employed by ERIM to locate section corners and define coor-

dinates for sections (ref. 5). Final standard errors of

estimate for control points were less than 0.5 and typically

between 0.2 and 0.4 of an ERTS-1 pixel; that is, 15 to

30 meters (49.5 to 99.0 feet) on the ground..
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3.6 ADP TECHNIQUES FOR MSS DATA PROCESSING

, The basic ADP techniques were grouped into three

divisions: (1) standard processing (SP) techniques, (2) pre-

processing (PSP) techniques, and (3) multitemporal processing

(MSP) techniques. The term "standard" refers to an ADP tech-

nique for classifying single-pass data which have not been

radiometrically preprocessed.

Each of these ADP techniques consists of a computer-

implemented software system and a method or procedure by

which an analyst can convert multispectral data into ground-

cover, class-identification information on a pixel-by-pixel

basis.

The CIP of ADP techniques is sensitive to the manner

in which the classifier is trained, the types of MSS data

input (such as preprocessed and multitemporal), and the

spectral bands used for recognition. At the beginning of

CITARS, most of the procedures used generalized analysis

algorithms and required decisions on the part of the analyst

which could significantly affect the CIP. To permit quanti-

tative evaluation and meaningful comparison of techniques,

subjective processes had to be held to a minimum; therefore,

only well-defined and repeatable procedures were followed

for CITARS. Each of the ADP techniques was documented in

detail, and the documented procedures were followed rigidly

(ref. 2, vol. I, pp. 33-39).
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3.6.1 LARS ADP Techniques

The analysis techniques used by LARS utilized the

LARSYS 3 multispectral data analysis system. Its theo-

retical basis and details of the algorithm implementation

are described by Swain (ref. 6) and Phillips (ref. 7).

The analysis procedure was described in detail by Davis

and Swain (ref. 8) and NASA/JSC (ref. 2, vols. I and VI).

The procedures were designed to provide repeatable results,

inasmuch as variation caused by analysts is minimized. The

analysis procedures are described briefly in the following

subsections.

3.6.,1.1. Class definition and refinement.- Four major

classes — corn, soybeans, wheat (for selected missions), and

all other ground covers — were defined. These major classes

were divided into subclasses where spectral variability

within a class was so great as to result in multimodal proba-

bility distributions for that class. Subclasses were isolated

by clustering quarter-section field centers. All four ERTS-1

bands were used for clustering. A systematic method which

minimized the total number of subclasses and avoided multi-

modal subclass distributions was used for interpreting

information on the separability of subclasses (ref. 8).

3.6.1.2 Classification.- Each data set was analyzed

using two versions of the maximum likelihood classification

algorithm. Gaussian probability density functions were

assumed for both procedures. The first classification

method, LARS/SP1, was the maximum likelihood classification

rule assuming equal prior probabilities for all classes

and subclasses. This rule has been in common usage for

remote-sensing data analysis for some time.
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The second method, LARS/SP2, used class weights pro-

portional to the class prior probabilities. This approach

is more nearly optimal in that the Bayesian error criterion

(minimum expected error) is preferred. Class weights may

be based on any reasonably reliable source of information.

In CITARS the class weights were computed from county acreage

estimates made by the USDA the previous year. Class weights

were divided among the subclasses in proportion to the number

of points in each subclass as determined by the clustering

procedure.

3.6.1.3 Display and tabulation of results.- The results

of the classification were displayed using a discriminant

threshold of 0.1 percent. This low threshold eliminated

only the data points which were very much different from

the major class characterizations. Thresholded points were

counted in the category "other." A computer program gen-

erated results tabulations for training fields, test fields,

and test sections in both printed form and on punched cards.

3.6.2 ERIM ADP Techniques

The digital data processing and analysis procedures

defined by ERIM for use in the CITARS study reflected con-

cern for the calculational efficiency of recognition proc-

essors, the need for extending recognition signatures from

training areas to other geographic locations and/or obser-

vation conditions, and the CITARS requirement for minimizing

the need for analyst judgment (ref. 2, vol. VII). The fol-

lowing subsections give a brief summary of the procedures.
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3.6.2.1 Training.- The training of the processor

(that is, the establishment of class signatures for recog-

nition) was a crucial step in MSS data processing. Although

multimodal signatures frequently have been employed, the use of

one signature per major class was selected for CITARS proc-

essing because of simplicity, processing efficiency, and

the fact that a combination of individual field signatures

could result in a single signature that encompasses more of

the variability of the class than is represented by a multi-

modal signature. An objective, reproducible procedure

based on a chi-squared test was devised to reject anomalous

"outlier" fields before the formation of a combined signa-

ture, in order to develop signatures representative of healthy

crops at a reasonable stage of maturity for the time of

season. Signatures for classes other than the major ones

were included only if they were found to be confused with

the major crops on preliminary recognition runs over training

data.

3.6.2.2 Recognition without preprocessing.- Two types

of decision algorithms were used: a linear rule, ERIM/SP1;

and a more conventional quadratic (Gaussian maximum likeli-

hood) rule, ERIM/SP2. The linear decision rule was chosen

because: it requires substantially less computer time for

recognition calculations; it has been used successfully in

many applications at ERIM; and it has been found to provide

comparable recognition accuracy in previous tests (ref. 9).

Use of the quadratic rule permitted another comprehensive

comparison of the two rules. Both rules apply a threshold

test (0.001 probability of rejection) based on a quadratic

calculation for the signature of the prevailing class;

points failing the test would be classified as being other

than the major crops considered.
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3.6.2.3 Recognition with signature extension pre-

processing.- It was recognized that changes in atmospheric

and other local conditions could cause changes in the signal

levels received by the MSS for different areas and at dif-

ferent times. The region of signature applicability could

be extended beyond the region used for training by employing

signature-extension preprocessing techniques (ref. 10). Non-

local recognition denotes recognition performed on segments

other than those from which signatures were extracted. Non-

local recognition was carried out once before and once after

preprocessing corrections for signature extension had been

applied for both linear (ERIM/PSP1) and quadratic decision

(ERIM/PSP2) rules. The preprocessing method used on the

CITARS project was a mean-level-adjustment (MLA) procedure

derived from an average over diverse ground covers within

the local segment for signature extraction and a comparable

average within the nonlocal segment to be classified.

3.6.2.4 Summarizing results.- The results obtained

with each procedure were summarized in a standardized form

for subsequent analyses of variance. Separate summaries

were.made for field-center pixels and for entire sections.

3.6.3 EOD ADP Techniques

The EOD evaluated two techniques: one for single-pass

data, EOD/SPl (ref. 2, vol. VIII, parts 1-6), and another

for multitemporal MSS data, EOD/MSP1 (ref. 2, vol. VIII,

part 7) .

For single-pass data the EOD utilized the Iterative

Self-Organizing Clustering System (ISOCLS, ref. 11) imple-

mented at JSC and a Gaussian maximum likelihood classifier
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to generate the class and subclass statistics. The training

fields for corn, soybeans, and wheat were submitted to inde-

pendent runs using the ISOCLS routine to generate class and,

if necessary, subclass statistics (for example, corn 1,

corn 2, corn 3). The training fields for class "other" were

then submitted to the same clustering scheme to generate .

class and subclass statistics for all other ground cover.

The training fields, test fields, and test sections were

classified with the Gaussian maximum likelihood classifi-

cation algorithm using the statistics previously generated

from the clustering process.

Multitemporal data were constructed by combining the

data from two or more ERTS-1 passes over a site to form

additional features; for example, with ERTS-1 passes in

periods I and II, the four features from pass 1 were com-

bined with the four from pass 2 to produce an eight-channel

observation vector. Once the multitemporal observations

were formed, 11 fields were deleted because of clouds, and

processing was performed using the standard EOD procedure

(EOD/SP1).

3.7 STATISTICAL ANALYSIS OF CROP IDENTIFICATION PERFORMANCE

The basic questions proposed in the objectives were

answered by a series of analyses of variance and blocked-

rank tests. The CIP of the ADP techniques was characterized

in two different ways: field centers (commonly called test

fields) and whole areas (entire sections). The .analyses

for field centers considered the elements of the performance

matrix, e.. , the estimated probability of classifying a
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nonboundary (field-center) pixel from class j as class i.

For whole areas, the analyses examined the differences

between the estimated proportion of class i and its true

proportion. The analyses were performed for both local

and nonlocal recognition data sets. In this section the

analyses of variance are discussed in detail, followed by

a brief discussion of the nonparametric or blocked-rank test.

3.7.1 Analyses of Variance

The analyses of variance fall into two main categories:

overall analyses and specific, or section-by-section, anal-

yses. The analyses are further divided into analyses con-

cerning: local recognition of corn, soybeans, and "other";

nonlocal recognition of corn, soybeans, and "other"; and

multitemporal recognition.

Overall analyses of variance were run for the purpose

of comparing procedures over all the data sets for local

and nonlocal field centers and whole areas. The experimental

unit was a combination of each data set and procedure; that

is, results were aggregated over all sections within a data

set (ref. 2, vol. IX, appendix A).

In order to compare procedures for specific counties

or times, or to compare counties, times, types of nonlocal

recognition, and so forth, the size of the experimental unit

had to be reduced; thus, a section was chosen as the basic

unit. Appropriate interactions between sections and other

factors were then used as estimates of error in the analysis-

of-variance F-tests (ref. 2, vol. I, p. 42).



17

In each analysis of variance, as many sections as

possible were used. Sometimes sections were removed for

one or more of the . following reasons.

1. Cloud cover or bad data lines prevented accurate pro-

portion estimation.

2. The ADP processing results were not available.

3. Photointerpreted proportions were not reliable.

4. Maintenance of a balanced design was desirable.

The sections used, for a given segment were consistent

within an analysis but were not necessarily the same for

all analyses.

To evaluate the classification accuracy on the field-

center data, the estimated performance matrix was computed

for each section in a segment (specific analyses) and for

all sections of a segment together (overall analyses). The

average of the diagonal elements of the matrix is the

average conditional class accuracy.

To apply the analysis of variance in comparing classi-

fication accuracy, a single measure of classification per-

formance is needed. One measure of error is the sum of the

off-diagonal elements of the performance matrix; that is,

the total errors of both commission and omission. One of

the major assumptions of analysis of variance is that the

variance of the dependent variable in a particular treatment

combination is independent of the mean of that combination.

Since the elements of the estimated performance matrix can be
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considered to be binomially distributed, it can be shown

(ref. 12) that the transformation matrix,

2
h. . = — arc sin */"e . . (1)
ID TT . . \ 13 .

stabilizes the variance of, the h. . ; hence, the sum of the

off-diagonal elements of the transformed performance matrix

is more suitable for analysis of variance than the corre-

sponding sum of the e.. . The transformation is monotonic

so that low/high values of h.. correspond to low/high

values of -e.. . Furthermore, the use of h.. tends to
ID ID

prevent extreme results on a few sections from dominating

a treatment mean. The dependent variable used in the
/-

analyses of variance which compare classification accuracy

was the sum of the off-diagonal elements of the transformed

performance matrix. An average interclass error of 10 per-

cent in the three-class case is an average conditional class

accuracy of 80 percent.

In the case of whole areas, the proportion estimation

accuracy q was measured by examining differences between

the photointerpreted (true) and computer-estimated propor-

tions. This simple difference or bias describes performance

for individual crops, whereas the rms error is indicative of

overall performance.

2 AIP, - p,
q = K
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For the measure of area estimation accuracy given in equa-

tion (2), K is the number of classes, P; is the estimated

proportion of crop i, and P. is the photointerpreted pro-

portion of crop i. These measures were calculated for all

analyzed sections, of a segment and also for their aggregate.

Along with the true proportions, the bias of the pro-

portion estimate obtained by counting pixels classified as

a particular crop must be considered, where the bias depends

on the matrix of conditional probabilities of classifying

a pixel as one crop when it is of another crop (or mixture

of crops) and, as well, on the true proportions present. For

this reason, the rms error might be questioned as a reliable

measure of accuracy for a procedure, inasmuch as the true pro-

portions and the matrix of conditional probabilities for a

particular procedure could be such that the bias is very large

or, conversely, almost zero, thus making the procedure appear

very inaccurate or very accurate.

It is true, however, that the bias tends to decrease

as the accuracy of the classifier increases. Also, on a

section-by-section basis, the true proportions vary con-

siderably; if a procedure does well on most or all sections

in a segment, one cannot attribute the result to classifica-

tion errors canceling one another. Instead, it must be

concluded that the procedure is in fact accurate.

For this reason, computing the mean square errors on a

section-by-section basis and averaging them over a data set

should be a reliable indicator of performance.
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In the actual specific analyses of variance, it became

necessary to transform the mean square error in each section
o

because the variance of the q values were approximately

proportionate to their mean. To reduce the effect of this

relationship, the following transformation was chosen

(ref. 13).

y = logdOOKq2 + 0.2) (3)

The lowest possible value of y is -1.609, representing

complete agreement between the computer-estimated and the

photointerpreted proportions.

Within three classes, a y-value of 1.0 corresponded to

an absolute error of about 0.09 in each class; a y-value of

3.0 represented very poor estimation — an error of about

0.25 in each class.

.3.7.2 Nonparametric Tests

The relative ranks of the procedures for each data set

were used to test for an overall significant difference

between procedures. To do this, a form of blocked-rank test

(ref. 14) was utilized.

In this test, the null hypothesis H is that for each

data set the ranks are randomly assigned. The test is
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performed by computing the (m - l)-by-l vector R which

contains the

calculating

contains the average rank for each procedure and then

q = (R - RQ)'K~
1(R - RQ) (4)

where m is the number of procedures, and R and K are

the mean vector and covariance matrix, respectively, for R

under H . (It can be shown that R and K are simple

known functions of m and the number of data sets.) If H

is true, then q should have approximately a chi-square

distribution with m - 1 degrees of freedom.

One procedure must be left out so that K is non-
singular; however, the value of q does not depend on which
procedure is left out.
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TABLE I.- ERTS-1 COVERAGE SCHEDULE FOR TEST SEGMENTS

ERTS-1
cycle

18

19

20

21

22

23

24

25

Month

June

June

July

August

August

September

September

October

Period

I

II

III

IV

V

VI

VII

VIII

Date of overflight along track

L

8

26

14

1

19

6

24

12

M

9

27

15

2

20

7

25

13

N

10

28

16

3

21

8

« 26

14

0

11

29

17

4

22

9

27

15

P

12

30

18

5

23

10

28

16

Counties covered:
L/M M/N N/0 0/P

Huntington
and Shelby
Counties,
Indiana

White Livingston Lee County,
County, and Fayette Illinois
Indiana Counties,

Illinois



23

H

W

c
0

W ^
w o

*^H y i

§ ^
*d o
Q) 0
.p
flj
JH

^ 1 *
0) O
-P 0>
C rH

•H rl

O O
-P 0
o

-
rt
-P
0

EH

rH
CO (0
U -P
CO O
rtj -p

o
+J
CO
•H
•p
(0
-P
W

0)
O4

•P
SH
o;

o
U

o r~
. •

in o CN (N
rH CO

O VD
• .

VD <N in 00
^* en vo en

rH
*!.

rH

o n

rH CM r- rH
in o en o

rH rH rH

rH

0 O

O O rH O
in o oo o

rH rH rH
•fc

rH

•d CQ
rH Q)
Q) |̂

•H O
H-i nj

0) 0)
UH CT> **H &>
O (0 O nJ

-P -P
H fi M C
0) 0) 0) 0)
^ 0 3 O
C rH C rH

3d) 3 <U

a ft a ft

c
0
U

t^
•

in t̂

00
•

rH CO
VD en

in

VO rH
vo o

rH

O

in o
VD O

rH

CO
•d
rH
D

•H
m

0)
MH tn
O fO

-P
}-i C
0) (U

"i °
3 <u
(3 r̂ l

CO
c;
nJ
(U
•Q
0
C/5

rH
'• •

VD rH
rH

n
•

ro oo
CN en
m
..

rH

fO

o en
'sf en
in
rH

o

o o
in o
in rH

rH

CO
Q)
r(

U

a)
O <tf

.p
rH C

(U 0)

"i °
3 a)
a ft

in rH
• •

r- VD VD ^r
ro

r- ro
• •

en rH oo in
en en n en

00

rH ^T

VD oo ^^* en
o en r^ en
rH 00

O O

co o en o
o o r^ o
rH rH 00 rH

CO
"d w
rH Q)
Q) r-l

•rH O

m m
Q) 0)

>w Cn MH tn
O <0 O nJ

+J 4J
M C M C
0) (1) Q) QJ
,Q 0 .Q 0
g >-| ^ >H
3 <u 3d)
a ft a ft

>_(
0)

-P
o



24

rrj

O
•H
M
0)
a,

00
p*.
*ss

H CO
tH CN
> 1

<N
"S.

OO

^^
H O
^ rH

i
VO

cn

ro
r-
"X.
ro

^ CN
1

cn
rH
>^
CO

00

r-

> uo
H 1

rH
*x.
CO

00
r~*
V.

H CO
H rH
M 1

^*
rH

X.

t-
x^

O
M 00
M 1

CN
*X.
VO

00
r-
x .̂
CN

1
00
'X
VO

03
Ul
to

CL, '

C
<u
E
Ql

o>
CO

o
CN
in .
in
•H CO
i

CO
CN

rH

CO CO

fa CO

fa fa

0
CM
in
in
rH

CO 1
r^
in
ro
rH

fl

fa fa

•* 00
00 CM
m in
in in

i i
O rH
CN CN
oo ro
rH '. |

rH CN

C

o
cn
C

•H
4J

c
3
3C .

00
CN .
in 1
in
rH CO W W fa

1
CO
CN

rH

rH rH
CO CO
in in
m in
rH rH

fa 1 1 fa fa
rH rH
rH r-H

rH rH

CN

*f

O
^o

fa O. CO rH W

1
^*
CM
OO
iH

00

o
VO

fa fa CO fa 7*
CO

•H

in
i"
o
VO

fa CL, CO CO 1
CO
in
00
rH

fa fa fa fa fa'

rH 00 rH rH
*r CM in in
m in o o
in in vo vo
I i l l

O rH CN CN
CN IN CN 01
ro ro ,ro ro
rH rH rH rH

rH (N rH CN rH

C

O
±J

Ul

A Ol C
rH 4-1 -H
0) -H >
JZ . £ -H
CO S J

a.

fa

fa

a

ft

o
rH
VO
rH
1

rH

n
rH

CM

CN

fa

fa

T

^1
0
vo
rH

1

"*CM
00
rH

W

rH
in
0
vo
rH

1
CO
in
00
rH

CO

•«»•
in
o
vo
rH
i

CN
CN
00

a

rH

01

4->
0)

rO-
fa

fa

fa

CO

CO

in
0
•H
VO
iH

1 •
CM
in
ro
iH

•H
rH
iH
VO
rH

1

^T
00
rH

CN
•H
rH

VO

1
ro
CN
00

•a"1

CN

CO

fa

fa

CO

o
0
rH
VO
rH

1
CM
in
ro
rH

CO

fa

rH

0)
Ol

fa

CO

fa-

00
in
rH
VO
rH

1
CO
r-
ro
rH

in
in
rH

vo
rH

• 1

0
vo
00
rH

O

CO

r-
M4

(N

a
ooc
•H

u
d
s
 

o
n

 
a

 
s
e

g
m

e
n

t 
h
a
s

o
rH

O

JJ
c
01
U

0)
cu
o
CO
A

II
CO

Ul
•H
in
t«
XI

0)

*3
VH

VM

rrj

C
O

in
TJ
3
O
rH

0

+J
C
01
O

01
a
o
CO
A

II

fa

• •

o> •
TJ 01
O Cn
U <0

Ol

O
o

'

in
0)
c

•H
rH

10
4-1
ro
•a
T3
rrj
XI

Ol
£
O
in

in
c
•H
to
4J

C
o
0

4->

0)
in

to
4-1
10

TJ

Ol
r™

E-
18

4J
01
U)

Ul
•rl

x:
4->.

C.
•rH

0>
rH

X)
10

01
3

4J

o
c
0)1-1
10

10
4J

rO
•0

^

T)
c
rO
XI

rH

1

CO

a;
u
01

£-t

•Q

•
in

•O
rH

01
•H
IW

,_|

10
3
-a
•H
>
•H

•a
c
'H
M
0)

o
Ul
•a
3
O
rH

U

*o
Ol
4J
ro
rH

O
U!
•H

0)
E
0
en
in
c
•H
to
4-1
C
0o
4J

01
Ul

10
4-1

10
•a
in
•H
fj
H

o



25

ERTS-1
p a s s e s : 0 /P

^NLi

One segment:
8 x 32 km
=25,800 hectares
(=64,5.00 acres)

»

One section:-
256 hectares
(640 acres)

I

M

— D

IS

E R T S - 1
o v e r l a p

Study Area C o u n t i e s :

Indiana

Huntington

Shelby

W h i t e

111i noi s

Li vi ngston

Fayette

Lee

Data Acqu is i t i on Per iods :

I - 6 /08-12/73 V - 8 /19-23/73
II - 6/26-30/73

III - 7 /14-18/73
IV - 8/01-05/73

VI - 9/06-10/73
VII - 9 /24-28 /73

Ground Truth:

ASCS - 20 quarter sec t ions (wh i te ) each ERTS-1 pass

Photo in terpre ta t ion - 20 sec t ions ( b l a c k ) each ERTS-1 pass

Figure 1.— Technology assessment data set,
June through September 1973.
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4.0 RESULTS AND DISCUSSION

Performance data obtained with the several recognition

processing procedures were studied to determine their

respective abilities to recognize the major crops of the

CITARS sites. Analysis of variance was used to investigate

the effects of several experimental factors on recognition

performance. Comparisons were made, both for local and

nonlocal recognition. (See ref. 2, vol. IX, appendixes A and

B, for tabulations of data performance and summaries of the

analyses of variance.)

Many of the performance measures developed for the

analyses of variance used in these comparisons have lower

values than are potentially attainable from the CITARS

data. For example, times of year and situations when

recognition was poor were sometimes averaged with the best

performances in establishing overall performance measures

for an ADP procedure. Also, as discussed earlier, repeat-

ability and removal of analyst judgment from the ADP pro-

cedures were emphasized, which may have reduced some

performance levels.

The experimental factors of interest included effects

of segment characteristics, observation conditions, effects

of crop maturity or time of year, and comparison of perform-

ances for field centers and entire sections. The majority

of the analyses were made with corn and soybeans as the

major crops. Wheat was present in early June but in such

small amounts that results with it as the major crop are

not considered reliable and are not presented here.
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4.1 COMPARISON OF ADP PROCEDURES FOR LOCAL RECOGNITION

The majority of analyses compared one standard procedure

from each organization. Additional analyses were made to

compare alternative procedures:" use of prior probability
*

information by LARS, linear-versus-quadratic decision rules

by ERIM, and the use of multitemporal data by EOD.

4.1.1 Comparison of Standard Procedures

One of the major CITARS objectives was to determine if

significant differences existed in local recognition per-

formance among the three standard procedures: LARS/SP1,

ERIM/SP1, and EOD/SP1. The results are summarized in

tables IV, V, VI, and VII.

The overall analysis of variance on segment aggregates

of data for all time periods showed significant differences

(alpha level 0.05 unless otherwise specified) between the pro-

cedures, as well as different performance rankings for field-

center and whole-area recognition (ref. 2, vol. IX, pp. 19-34).

The ERIM/SP1 performed significantly better than either

LARS/SP1 or EOD/SP1 on the field-center data. On the other

hand, LARS/SP1 performed significantly better than ERIM/SP1

on proportion estimation for whole areas. Differences between

EOD/SP1 and the other two procedures were not significant for

proportion estimation.

Significant differences between the procedures were

found also in the specific analyses of variance that were

conducted. In seven of ten specific analyses, differences in

field-center classification accuracy were significant, with
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ERIM/SPl ranking first in six of these seven and EOD/SP1

ranking third in five. For proportion estimation in whole

areas, eight of ten specific analyses indicated significant

differences between procedures; LARS/SP1 was most consist-

ent, ranking first in one analysis and second in all others,
i

while EOD/SP1 and ERIM/SPl alternated between first and

third with EOD/SP1 ranking first four times.

One overall measure of proportion estimation perform-

ance is the rms error of proportions in the aggregation of

pixels in each data set. The LARS/SP1 had the smallest

average rms error (0.095) over the 15 data sets, followed

by EOD/SP1 with 0.108 and ERIM/SPl with the largest at 0.150,

as shown in table VI. These tabulations indicate the best

performance on proportion estimates when averaged over all

data sets was by LARS/SP1, and the worst was by ERIM/SPl.

As can be seen from tables V and VII, all procedures

overestimated corn and soybeans proportions and under-

estimated the proportion of "other." This overestimation

of major crops was consistent, even on a section-by-section

basis within each segment. Certain parameters might be

adjusted within these procedures to reduce that bias (see

section 4.5), or a bias correction scheme could be applied

to the classification result. Thus, since the performance

numbers include both bias and variance, the procedures

should not be judged too harshly against the whole-area

comparisons.

Table IV suggests a possible source for these consistent

overestimates of corn and soybeans proportions. In this
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instance, field-center pixels for "other" have the lowest

average rates of correct classification. This suggests that

other ground covers were more frequently misclassified as

corn or soybeans than corn or soybeans were misclassified as

"other," thus leading to consistent overestimates of corn
»

and soybeans proportions. The poorer recognition results

for the class "other" may have resulted from the fact that
:

the proportion of training samples available for "other"

was low in relation to corn and soybeans; hence, a poorer

representation of variability for the class "other" by

the training statistics resulted (table VIII). In addition,

proportion estimates obtained by classified pixel counts

were biased and the magnitude of the bias is dependent upon

both the actual proportion of the crop and the matrix of

conditional probabilities of classification.

The procedure which obtained the highest average rate

of correct classification of field-center pixels — in this

instance ERIM/SP1 — did not, on the average, achieve the

best proportion estimation as determined from counts of

classified pixels. The ERIM/SP1 did rank first in the spe-

cific analysis which compared proportion estimation perform-

ances at the best time of year for field-center recognition

(late August; see section 4.4).

The ERIM/SP1 procedure differed from the other two

procedures in two major ways: It used a different decision

rule, and it used a different training procedure to estab-

lish recognition signatures. Since ERIM/SP2 used a quad-

ratic decision rule (like EOD/SP1 and LARS/SP1) but still

performed more like ERIM/SP1 (see section 4.3), the training
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procedures were examined and compared for possible explana-

tions of the opposite performance rankings of the procedures

on field-center and whole-area data. Proportion-dependent

bias and other considerations are.discussed in section 4.6.

During training, EOD and LARS employed clustering to

establish multimodal major crop signatures, whereas ERIM

established a single-recognition signature for each major

crop and additional signatures only for selected subclasses

"other." The selection of these other subclasses was based

on field-center statistics and recognition of training data.

In one instance, as many as eight signatures for "other"

; were used, while in two instances only one was used.- An
I
i analysis of results showed a relatively high negative corre-

lation between the number of other signatures used and over-

all rms error in proportion estimation (fig. 2). That is,

the fewer the signatures used, the greater the rms error

tended to be. Correspondingly, the overall proportion of

"other" tended to be more underestimated with fewer signatures,

Another useful test would be to use LARS/SP1 and/or EOD/SP1

signatures with the ERIM/SP2 linear rule to permit a direct

comparison of results for different training procedures with

the linear decision boundaries.

4.1.2 Use of Prior Probability Information

The LARS/SP1 procedure used a maximum likelihood Gaussian

classifier which assumed that the frequency of occurrence of

each class was the same for all classes. The Lars/SP2 pro-

cedure used prior probability information in the form of

,class weights and was designed to maximize overall correct

classification. Theoretically, the use of the correct values
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for the frequency of occurrence of each class would maximize

overall performance for field-center pixels.

The overall results of the equal and unequal prior

probability procedures were compared statistically. The

result indicated that the use of historical data as a basis

for prior probabilities did not affect whole-area or field-

center performance significantly for either local or non-

local recognition. However, in interpreting this result,

it must be remembered that LARS/SP2 was an attempt to maxi-

mize overall performance, and the results for field centers

have been measured by average classification accuracy. In

addition, the quality of the prior probabilities used must

be examined.

i The unequal prior probabilities were based on the 1972

crop acreage estimates made by the Statistical Reporting

:Service, USDA, for each county. While it was anticipated

that the probabilities derived from these figures would not

be the true probabilities for 1973, no major change was

expected.

The USDA figures were available only on a county basis,

whereas CITARS examined only an 8- by 32-kilometer segment

of each county. Furthermore, performance was examined on

only 20 of the 100 sections in the segment. The crop pro-

portions varied significantly from section to section;

!therefore, crop proportions based on county estimates may

inot apply.

ii
j It was concluded that while prior probability informa-

tion in the form of class weights should be used when available
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(because such usage has a sound theoretical basis) it may not

in practice provide much, if any, improvement in performance.

Further tests are recommended to determine the sensitivity of

the classifier to class weights.

4.1.3 Linear-Versus-Quadratic Decision Rule

The ERIM employed both the linear and quadratic decision

rules on the CITARS test data. No evidence was found in the

results to indicate that the quadratic procedure was better

than the linear one; if anything, the linear classification

procedure gave slightly better results at approximately one-

third the computational cost for the implementations used.

These results agree with previous comparisons by Crane and

Richardson (ref. 9).

More specifically, for local recognition of crop pro-

portions in whole areas, the linear procedure (ERIM/SPl)

had an average rms error of 0.150 over 15 local data sets,

compared with 0.187 for the quadratic procedure (ERIM/SP2).

Furthermore, the linear procedure had the lower rms error

in 11 of the 15 data sets.

Average classification accuracy in field centers for

local recognition was 0.639 for the linear procedure, com-

pared with 0.606 for the quadratic procedure. Again, the

linear procedure had the better performance in 11 of the

15 sets.

A quadratic decision rule is theoretically optimal

for minimizing the overall probability of misclassification

for Gaussian (normal) distributions with known parameters
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and the assumption of equal prior probabilities. Therefore,

it might be expected that the quadratic rule would outperform

a linear decision rule. Possible reasons for the equal or

better performance of the linear procedure are set out in the

following discussion.

Since identical signatures were used throughout for the

two decision procedures, there was no confounding effect

because of different training procedures. Thus, the only

reasons for performance differences are the different shapes

of decision surfaces defined by the two rules and their rela-

tionships to the test data. For equal covariance matrices,

the two rules would form identical decision surfaces. For

situations with different covariance matrices, the linear

decision rule that was utilized (ERIM/SP1) adjusted its deci-

sion surfaces to minimize the average probability of misclas-

sification between each pair of classes, utilizing all

covariance information. However, the disparity between

linear and quadratic decision surfaces increases as the

dispersion patterns defined by the covariance matrices

become increasingly different in shape, orientation, and/or

size. For example, figure 3 is a hypothetical example which

illustrates a difference in space assigned to the less dis-

persed class A by the two decision lines based on the indi-

cated training data.

Both the procedure used to establish signatures and

the relative amounts of major crop and other training data

tended to give more dispersed signatures for the major

crops, especially during the early and middle parts of the

growing season. The effect of such a tendency would be to

have less of the decision space assigned to class "other"
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by quadratic decision surfaces; for example, consider class B

to be major and class A to be "other" in figure 3. In test

data (both field centers and whole areas), the quadratic rule

always, with but one exception, estimated less "other" and

more major classes than did the linear rule for the same sig-

natures, with the linear rule having a smaller magnitude of

bias for "other."

In field-center training data, the quadratic rule

slightly outperformed the linear rule in 12 of 15 cases

(ref. 2, vol. VII), the opposite of what occurred with test

data and what would be expected for normal distributions

with known parameters. The fact that quadratic performance

on training data was the better of the two reduces the

likelihood that several other possible explanations were

responsible for the equal or better linear performance on

test data. The first of these other possible explanations

is that the selection of other signatures was based on

linear calculations with training data. Second, the training

data may not have been normal. Finally, there can be a por-

tion of the signal space in which the decision of the linear

rule depends on the order in which signatures are considered

(in any such overlap region, those considered last, which

happened to be signatures for class "other" in CITARS, are

favored); yet, in one test where the order of signatures

was reversed, the results changed only slightly, and the

new linear results still were better than the quadratic.

The next consideration is that of how well the training

data represented the test data and the consequences of any

differences between them on recognition using the two rules.

The single signature for each major crop usually was based
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on pixels from 10 or more individual fields so that they

tended to represent much or most of the variability present

in major crop signals. In contrast, only a few samples

usually were available for each other class present; and,

frequently, other classes in the test data were not repre-

sented in the training data. Because the quadratic decision

surfaces in these cases tended to be closer bound to the

other signatures, they consequently were more sensitive to

differences between the statistics of other training and

test data and to the presence of data not represented by

the signatures used, including mixture pixels. The hypo-

thetical example of figure 3 illustrates these effects also.

In addition to recognition performance, the relative

costs of implementation and processing are operational

performance considerations. Consideration of these latter

items was not an objective of CITARS; however, computational

efficiency was a major factor in ERIM's choice of the linear

rule (a factor of three faster than the quadratic rule) for

its principal procedure. The relative speeds of any two

computational procedures are implementation dependent; that

is, speed depends on both the machine used and the way the

calculations are carried out. The two ERIM procedures are

reasonably well balanced in their programming sophistica-

tion and flexibility. Other procedures have been defined,

such as table look-up procedures (ref. 15), which are more

efficient for performing quadratic calculations and may be

only slightly less expensive than the comparable implemen-

tation of a linear rule. However, such procedures have

storage limitations which restrict the number of channels

that can be used practically. For instance, it might be

difficult to utilize them for processing multitemporal data

with more than four channels being used for recognition.
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Another type of implementation is with special-purpose proc-

essors such as the Multivariate Interactive Digital Analysis

System (MIDAS, ref. 12), to perform calculations at much

higher rates than are possible on general-purpose digital

computers.

To summarize, the linear decision rule performed as

well as, or better than, the quadratic decision rule for

the signature sets utilized. The relative dispersion

volumes of major and other signatures tended to cause

greater underestimation of the class "other" by the quad-

ratic rule. Comparison of the two types of rules on

CITARS signature sets obtained by another procedure, which

might yield more equal dispersion volumes and hence more

similar decision boundaries, would be a useful addition to

these results.

4.1.4 Multitemporal Analysis

The physical phenomena associated with MSS data acquired

on more than one date (multitemporal data) indicate that tem-

poral differences in the spectral signatures from one ground-

cover class to another should be many times larger than

spectral differences on any single date. In the development

of the CITARS task a key question was: Can multitemporal

data be used to improve classification performance? Actually,

the question has two parts:

1. Does the temporal dimension of multitemporal data provide

additional information useful for discriminating crops?

2. Can an ADP procedure be developed to extract the additional

information expected from the multitemporal data?
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To determine if multitemporal data processing improved

the CIP, the CIP for each of several combinations of times

for the Fayette County segment was compared to the CIP

obtained at any single time (ref. 2, vol. VIII, part 7).

Only the Fayette County segment contained sufficient cloud-

free data for multitemporal processing. This segment had

cloud-free data during periods I, II, III, and V.

Table IX compares the CIP's achieved for the several

combinations of multitemporal data with the best single-

pass results. Analysis-of-variance tests for significant

differences between multitemporal recognition and the three

standard procedures (LARS/SPl, ERIM/SP1, and EOD/SPl) showed

multitemporal classifications to be significantly better

than classifications using the three main procedures. (This

included both field-center recognition and crop proportion

estimation.) The results for the combination of time

periods I and II were significantly better than for period II

data alone. When periods II and III were combined, the

results were significantly better than for period III data

alone; and when data for periods I, II, III, and V were com-

bined, the results were significantly better than for period V

alone.

In summary, the CITARS task has shown that:

1. A procedure can be implemented to utilize multitemporal
I

data (in this case a simple modification of the standard

single-pass procedure EOD/SPl).

2. The overall CIP achieved by the use of multitemporal data

was superior to the single-pass results for the cases

considered.
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Additional classifications of different areas, crops,

and times will be required to test the adequacy of the ADP

procedure and to determine how much CIP can be improved using

multitemporal data. Finally, the benefits of improved CIP'

should be weighed against the cost of registering multitemporal

sets of ERTS-1 data and the increased classification costs when

using additional features.

4.2 NONLOCAL RECOGNITION

In nonlocal recognition, the signatures used to classify

pixels in a segment were generated either from a different

segment or from a different satellite pass than the data being

classified. Nonlocal recognition performance proved to be

substantially poorer than local performance for both field

centers and proportion estimates of whole areas. Preprocess-

ing with an MLA procedure was found to improve average nonlocal

recognition performance.

4.2.1 Comparison of Local and Nonlocal Results

Using Nonpreprocessing ADP Procedures

Twenty nonlocal recognition cases were analyzed for the

three main ADP procedures. The average field-center CIP

obtained with nonlocal signatures was only 78 percent of that

obtained with local signatures, as shown in table X and

figure 4. A degradation also was observed for whole areas,

where the nonlocal average rms error of crop proportion esti-

mates was 23 percent greater than that obtained locally.
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A blocked-rank test did not indicate any significant

difference between the main procedures for either nonlocal

whole areas or nonlocal field centers. However, differences

between-procedures were considerable for some particular

analyses of variance. Although not consistently, EOD/SP1

tended to perform the best for whole areas with ERIM/SP1

tending to be the worst. On the other hand, ERIM/SP1 usually

was best for field-center analyses. The averages reflected
in table X show these tendencies.

Table X also shows comparisons of alternative ADP

procedures employed by ERIM and LARS. No significant

differences were evident for nonlocal performances. Using

identical signatures, the linear decision rule (ERIM/SP1)

had slightly better average nonlocal performances for field

centers and whole areas than did the quadratic decision rule

(ERIM/SP2). It ranked ahead of the quadratic in 12 of

20 whole-area cases and 13 of 20 field-center cases.

Average nonlocal performance, with a priori, crop

proportion information based on the previous year's harvest

in each county (LARS/SP2), was slightly worse than that

based on equal prior probabilities (LARS/SP1). The latter

ranked higher in 11 of 20 whole-area cases and 8 of

20 field-center cases. (Also, see sections 4.2.2 and 4.2.3.)

4.2.2 Comparison of Results Obtained With and

Without Preprocessing

Signatures from one segment and time may not accurately
!! i '

recognize data from another segment or time because of the

following factors.
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1. Differences in crop characteristics between the segments

or between the sample used for training and the test seg-

ment data

2. Differences in observation (scan-angle and/or atmospheric

haze content)

3. Differences in sensor characteristics

Discussions of crop and atmospheric factors in the CITARS

data sets are presented in section 4.3. Their implications

for interpretation of nonlocal results are discussed in

section 4.2.3.

One straightforward preprocessing procedure, MLA, was

used in two CITARS procedures, ERIM/PSP1 and ERIM/PSP2.

Preprocessing increased average, nonlocal, field-center clas-

sification by 11 percent (table X) of the accuracy without it.

It also decreased the average rms error of proportion esti-

mates by 5 percent. Based on overall results for the 20 cases,

the average nonlocal performance ranking of the preprocessing

procedure ERIM/PSPl was higher than any of the three main

procedures.

The overall analysis of variance for whole areas did

not indicate a significant difference between ERIM/SPl and

ERIM/PSPl; however, ERIM/PSPl (the preprocessing technique)

exhibited better performance in 13 of 20 cases. In specific

analyses, MLA exhibited a significant but not consistent

effect; in four analyses, preprocessing was significantly

better, in two significantly worse, and in most not signi-

ficantly different. In five of the latter analyses, it was

observed that for those cases in which MLA preprocessing

performed better the other procedures performed worse, and

vice versa.
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The preprocessing method (ERIM/PSP1) produced better

overall results for field centers in 17 of 20 nonlocal cases,

a significant result at the 0.001 alpha level. In three

specific analyses, the addition of preprocessing made a

significant improvement, and it never significantly degraded

field-center performance in other analyses.

Nonlocal performances of linear and quadratic decision

rules with preprocessing were compared with the same situ-

ation for local recognition, and the results were the same.

The average performance of the linear procedure was slightly

better for both field centers and whole areas (see table X).

Also, the linear procedure with MLA outranked the corre-

sponding quadratic procedure in 16 of 20 cases for whole

areas (a significant result at the 0.01 alpha level) and in

13 of 20 field-center cases. No specific analyses of vari-

ance were made comparing these two procedures.

4.2.3 Interpretation of Nonlocal Recognition Results

The nonlocal recognition results were analyzed for

trends or patterns relating to the combinations of training

and recognition segments and other factors which could have

caused differences in signals and signatures and led to the

unsatisfactory results obtained.

A fairly strong dependence on the segment used for

training was found for whole areas. In specific analyses

for the July 14 through 18 time period, often it was found

that significantly better performance was achieved when

the signatures applied were from the same segment on another

day rather than from a different segment. This indicates
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that the variability in the test fields was better repre-

sented by training fields in the same segment than by those

in other segments. Signatures from two or more other seg-

ments produced inconsistent results on test data for a given

segment. Also, it was found that reversing the direction

(that is, exchanging the roles of training and test segments)

could make a significant difference in nonlocal recognition

performance. This further indicates variability in the

characteristics of training data and points to the importance

of having both an adequate sample for training and appropriate

training procedures.

Another source of differences between data sets was in

the atmospheric conditions which existed at the times of data

collection. Substantial differences in haze level (measured

by optical depth) and in the path radiance and atmospheric

transmittance, which are dependent on haze level and on other

parameters, were noted for nonlocal recognition. Sensor scan

angle is another parameter which should not be discounted

(refs. 16 and 17). As discussed further in section 4.3.2, a

negative correlation existed between nonlocal field-center

recognition performance with the three main ADP procedures

and the difference in haze level between training and recog-

nition segments. In other words-, an increase in the dif-

ference resulted in a decrease in performance.

The MLA preprocessing procedure counteracted the

atmosphere-dependent signal changes to a degree and reduced

the amount of correlation between differences in haze level

and recognition performance. The MLA procedure also took

into account other conditions which could cause the average

signals from each pair of segments to differ. To the extent
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that the averaged areas had the same types and proportions

of ground covers present, the procedure should have performed

at its best. Some of the interactions observed between pre-

processing and nonpreprocessing procedures were caused by

signature adjustments which were greater than differences

between local signatures. Although both additive and multi-

plicative changes are present in signals, MLA can affect

only the additive correction.

The ERIM carried out an analysis supplementary to

CITARS by applying a preprocessing signature-extension pro-

cedure (ref. 2, vol. VII) for Multiplicative and Additive

Signature Correction (MASC, ref. 1.8). The MASC procedure

employs an analysis of unsupervised clusters in each pair,

of segments to develop a signature transformation. This

analysis is not exactly comparable to other CITARS results

(ref. 2, vol. IX, pp. 31-34), as a different form of the

data was utilized. (For instance, results for ASCS-visited

and photointerpreted fields in the nonlocal areas were

combined.) The results are presented here to illustrate

a potential technique for solving the signature extension

problem. The time period chosen was August 21, when maximum

field-center classification accuracy was obtained. Average

field-center accuracy was about 80 percent using ERIM/SPl for

local recognition in the Fayette and White County segments.

Without preprocessing, nonlocal recognition accuracy between

the two decreased to about 40 percent in each direction. The

use of MLA preprocessing (ERIM/PSP1) increased average accu-

racy to 74 percent using Fayette signatures in the White seg-

ment but only to 46 percent using White signatures in the

Fayette segment. When the MASC preprocessing transformation
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was applied to the White signatures, field-center accuracy

increased to 80 percent, the accuracy achieved with local

signatures.

The results of the CITARS effort have manifested some

of the problems associated with nonlocal recognition; that

is, differences in scene condition, atmospheric state, and

sensor configuration can produce signal changes and seriously

degrade recognition performance in nonlocal areas. These

problems must be overcome for truly operational, remote-

survey operations. It is possible that a simple preprocess-

ing procedure potentially could improve nonlocal recognition

performance and that use of more sophisticated signature

extension techniques may produce further improvements. It

is noteworthy that this procedure is potentially capable of

compensating for effects such as haze but not necessarily

for on-the-ground differences such as the effects of various

stages of crop maturity.

>4.3 SEGMENT EFFECTS ON CROP IDENTIFICATION PERFORMANCE

One of the CITARS objectives was to quantify and evalu-

ate segment or location effects on CIP. Segment effects

include both site characteristics and atmospheric effects.

Significant differences existed among the segments in the

CIP as measured by both classification accuracy of field-

center pixels and crop proportion estimates for whole areas.

These results are summarized by time period in tables XI

and XII. The segment effects, however, are difficult to

isolate since they are confounded with time period and crop

maturity; that is, data were not available for every seg-

ment for each time period. It is not possible with avail-

able data to describe quantitatively the effects of location
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on CIP without making further assumptions about these effects.

For example, simple averaging over time periods could not give

a meaningful figure for comparing segments since the segments

are not observed at the same time periods. It is possible,

however, to obtain estimates of expected segment and time

responses if one is willing to assume a noninteractive model

for the expected response; that is,

= ai

where E(y. .) is the expected response (for example, CIP),

a. is the ith segment effect, and $. is the jt/z time

effect. Under this model the expected response for the ith

segment (averaged over time) and the jth time (averaged over

segments) can be estimated from the segment/ time data in

tables XI and XII. (See ref. 2, vol. IX, appendix C, for

further details.) The results are shown in the margins

designated "expected segment response" and "expected time

response." Although little more can be done to separate

the effects of location from those of time period quantita-

tively, some of the major characteristics of the sites can

be described qualitatively and associated with the CIP.

4.3.1 Site Characteristics

Site characteristics which might affect CIP include

soil type, field size, cropping practices, crop calendar,

and weather.

Soil type per se probably does not materially affect

CIP. (Note: Soil color could affect crop signatures and

subsequent CIP, especially early in the growing season.)
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However, it does affect several other factors which in turn

can influence CIP. For instance, soil type has a major

influence on the uniformity of an area. Similar soils

occurring over large areas are generally associated with

large fields, fewer crops, and uniform crop growth. In the

Corn Belt, corn and soybeans are the predominant cover types

in areas having uniform, productive soils. Of the CITARS

test sites, Livingston County had the fewest different soil

types, the largest field sizes, and most uniform fields.

Classifications of Livingston County were among the best in

CITARS.

At the other extreme are areas having very heterogeneous

and diverse soils. These areas are characterized by small

fields, a diverse set of cover types (such as small grains,

forages, and woods; in addition to corn and soybeans), and

less uniform growing conditions. (For example, a difference

in soil-moisture-holding capacity can significantly affect

crop growth.) These characteristics describe the Huntington

County segment. The other four segments fall somewhere

between Livingston and Huntington in most of these site

characteristics.

The correlation of field size to CIP is shown in figure 5

and below.

Overall

Average

Average

rms error

rms error over sections

conditional accuracy

Quarter
sections

-0.6753

-.519b

.112

Full
sections

-0.633b

-.536

.089

aDenotes significance at 0.05 alpha level.

Denotes significance at 0.001 alpha level.
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Field size did not significantly affect the recognition of

field-center pixels (r = 0.089), but it was negatively cor-

related with proportion estimates for whole areas (-0.633

and -0.536 for overall and average over sections, respec-

tively). This indicates that the proportions of corn, soy-

beans, and "other" were estimated more accurately in segments

with larger fields than those with smaller fields. This

effect is attributed to:

1. The percentage of mixture pixels (that is, pixels

falling on field boundaries and containing two or more

cover types) is smaller in areas having large fields.

2. Large fields generally are associated with uniform soils

and crop growth.

3. The proportion of class "other" was higher in areas with

small fields, and indications were that proportion esti-

mation accuracy is negatively correlated with the amount

of class "other" present (see section 4.6.1).

The problem of mixture pixels would be reduced by

increasing the spatial resolution of the scanner system,

since there is no real assurance that mixture pixels are

classified in the same proportions as pure pixels or as the

cover types that occur in the area. This is one possible

source of bias in the proportion estimates.

The decreased performance associated with more hetero-

geneous areas with smaller fields is to be expected, and

there is. no easy solution for this problem. It is clear,

however, that additional information is required to train

the classifiers so that the existing classes will be repre-

sented accurately.
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4.3.2 Atmospheric Effects .

A study was conducted to investigate the effect of

atmospheric haze level on CITARS classification accuracy.

The effect on local classification was investigated by plot-

ting the classification accuracy obtained at the various

sites as a function of the optical depth for the 0.5-micrometer

band. The effect on nonlocal classification was investigated

by plotting the classification accuracy as a function of the

difference between the haze levels at training and at test

sites. The values obtained for the optical depth at

0.5 micrometer for the various CITARS passes are shown in

table XIII.

Figure 6 shows plots of the accuracy of local classi-

fication as a function of optical depth. The correlation of

the data in figure 6 is -0.602. Since this figure contains

points corresponding to a number of sites and a number of

different passes/ considerable scatter was expected to be

in the data. Up to an optical depth of 0.4 micrometer there

is little indication of dependence on haze level. If the

points for larger haze levels are included, a weak negative

correlation seems to exist between optical depth and local

classification accuracy. (The correlation coefficient = -0.60

with significance at an alpha level of .0.05.) Previous theo-

retical calculations (ref. 13) and simulations (ref. 14) have

shown that uniform haze level would have little or no effect

on local classification. However, real haze is never per-

fectly uniform; therefore, some deteriorating effect on clas-

sification accuracy would be expected. The results shown in

figure 6 must be interpreted with caution, as other possible

contributing factors (such as site effects and Sun angle)

have not been considered here.



50

Figure 7 shows the classification accuracies obtained

for nonlocal classification as a function of the difference

in haze level between the training and the test sites, with

and without MLA preprocessing (table XIII). The correlation

coefficient for ERIM/SP1 and ERIM/SP2 (without preprocessing) i

was -OT. 769 (significant at an alpha level of 0.001) compared

to -0.280 (not significant) for ERIM/PSP1 and ERIM/PSP2 (with

preprocessing). These results indicate that differences in

haze levels between training and classification sites can

adversely affect CIP but that some of these effects can be

removed or adjusted by a preprocessing procedure such as MLA.

4.4 EFFECT OF CROP MATURITY ON CROP

IDENTIFICATION PERFORMANCE

It is well known that crop maturity stage affects the '

remote identification of crops. Most previous studies have

been limited to one or two dates near the optimum time for

discriminating the crops of interest. One of the CITARS

objectives was to determine the effect of crop maturity on

CIP. The available results assessing the effect of time

period are summarized in tables XI and XII for recognition

of field-center pixels and proportion estimates for whole

areas, respectively. Again, the analysis is severely limited

by missing segments. Certain trends may be observed, how-

ever, in these expected values when computed using a non-

interactive prediction model (see section 4.3 for a discussion

of the model). The field-center CIP's increased from periods II

to V and then decreased significantly in periods VI and VII.

Proportion estimation errors, on the other hand, were approxi-

mately the same for all time periods (except for period III,

when they were greater).
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The peak CIP associated with the late August period is

attributed to two factors.

1. Prior to this time soybeans had not reached their

fullest vegetative growth and ground cover, thereby

increasing the probability of confusion with other
i
i cover types having less ground cover and leaf area.

2. By late August all cornfields have tasseled.

Prior to late August, then, corn and soybeans are still

growing and developing, and there is more variability among

fields of both corn and soybeans. For example, in early

August some soybean fields may have almost complete ground

cover while others have only partial cover. Similarly, not

all fields of corn tassel at the same time; however, by late

August differences in growth and development equalize. The

rapid decrease in CIP in September is attributed to the onset

of senescence. Again, the variability among fields increases

during this time; and the amount of ground cover, particularly

for soybeans, decreases. By late September most soybean

fields will have lost all their leaves, causing soil to have

a major influence on the spectral response.

The peak of expected proportion estimation error in mid-

July corresponded with the greater variability among corn and

soybean fields at that time. It was noted, however, that

variability in performance among procedures at any given time

was much greater for proportion estimation than for field-

center classification.

One further note on the effect of crop maturity should

be made with regard to nonlocal training and recognition:

Crop maturity differences must be taken into account when
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an attempt is made to transfer training statistics from one

area to another some distance away. If the crops in the

two areas are not in nearly the same stage of maturity, !

poor results can be expected. In particular, maturity dif-

ferences are most likely to exist in_ the north-south direc- 'r
tion, since planting and growth of crops are highly correlated!

with latitude. !

4.5 EFFECT OF DATA PREPARATION ON CROP

IDENTIFICATION PERFORMANCE

4.5.1 Effects of Multitemporal Registration
i

To facilitate the classification of multitemporal ERTS-1

data without having to locate section and field coordinates

in each segment/date combination of data, the satellite passes

! over each segment were registered as part of the data prepa-

| ration phase (ref. 2, vol. V). An experiment was performed

to determine if registration had any effect on CIP and, if

so, the magnitude of the effect.

In the experiment, CIP's obtained with registered and

nonregistered forms of ERTS-1 data were compared. Both forms

of data were geometrically corrected. The coordinates of

sections and fields used for the registered data were the

same as those used in the CITARS classifications. The

coordinates from approximately the same fields were located

in the nonregistered data by manually placing the photo-

overlays over the ERTS-1 imagery. A one-to-one correspond-

|ence of fields in both data sets was not used because doing

so would have eliminated fields which were required for

training. About 80 percent of the fields were common to

both data sets. The same procedure was used to select
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pixels from fields; that is, one "guard" pixel was selected

between a field boundary and any selected pixel. The same

classification procedures (that is, LARS/SP1 and LARS/SP2)

were applied to both the registered and nonregistered data

sets for all five segment/date combinations. Recognition

performances for fields and proportion estimates for sec-

tions were tabulated, and an analysis of variance was per-

formed to determine if any significant differences existed :

between the registered and nonregistered data.

The results of the comparison of overall classification

accuracy for field-center pixels for the two forms of multi-

temporal data are summarized as follows.

Segment

Fayette
Fayette
Hun ting ton
Livingston
White

Period

II
III-l
III
IV
V

Correct field-center
classification, percent

Nonregistered

(a)

42.1
72.5
64.7
71.6
77.2

Registered

(a)

51.7
52.8
45.3
66.8
75.7

•aThe figures depict the mean of the LARS/SPl and
LARS/SP2 procedures.

The analysis of variance indicated that no significant

difference in classification accuracy existed between the

registered and nonregistered data. However, in two cases,

Fayette, period III-l, and Huntington, period III, higher

performance was obtained with the nonregistered data. This

may be attributed to having different samples of training

and test fields for the two data sets. Other CITARS results
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show that there were significant differences in recognition

for different selections of fields from the same segment

(see section 4.5.2). Problems with registration, if any,

would be expected to appear first in segments with small

field sizes, such as those in Fayette and Huntington Counties.

The size of the sample of fields is considered the most likely

cause of differences, although in one case (Fayette, period II)

higher performance was obtained with the registered data.

4.5.2 Effects of Training Set Selection

One of the objectives of CITARS was to examine the

effect on CIP when the training set selection was varied.

Originally two training sets, each containing 10 quarter

sections, were to have been available for comparison. How-

ever, as training fields were selected, it became obvious

that 10 quarter sections would not provide an adequate train-

ing sample; thus, two sets were combined to provide a 20-

quarter-section training set.

To vary the training set for this experiment, 10 pilot

sections and 10 test sections were used to train the classi-

fier. The CIP for each of these training sets was compared

to the CIP for the 20-quarter-section training set. Since

the 10-section samples were twice as large as the 20-quarter-

section sets, it was possible to estimate the effect of

training set size as well as sample selection.

Ten data sets were classified using the 10 pilot sec-

tions as the basis for training the classifier (pilot as

train) and then classified again using the 10 test sections

as the basis for training (test as train). The analysis
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procedures were the same as for other classifications of ••

ERTS-1 data performed by LARS (that is, LARS/SP1 and LARS/

SP2) .

The pilot-as-train classifications were compared to

the regular CITARS classifications (train as train) by

examining the overall CIP of field-center pixels from the

10 pilot sections (pilot as test). This method of comparison

was used to avoid biasing the CIP by testing samples which

were used to train the classifier. Analysis of variance was

performed on both overall classification accuracy and pro-

portion estimates.

The results of the various combinations of training and

test samples are summarized in table XIV. Using proportion

estimates as the dependent variable in the analysis of vari-

ance, training and test fields yielded significantly different

results. Since different sampling procedures were followed

in their selection, training and test sections could be from

two different populations. Analysis of the classification

accuracies showed that the test and pilot results were sig-

nificantly different. This result is attributed to variations

in sampling, either the size of the sample or bias in selec-

tion. Since random sampling was used to divide the sections

into test and pilot sections, the differences are attributed

to normal variations in sampling a population.

Table XIV shows the number of pixels in each training

set. In only four cases the number of pixels in the test or

pilot fields was approximately twice as great as in the

training fields; thus, the effect of training set size could



56

not be fully evaluated. However, in those four cases the

presence of more training pixels did not cause significant

improvement in CIP.

The results of this experiment indicate:

1. Significant differences in CIP can be obtained with dif-

ferent samples of training fields.

2. Training set size alone probably was not the primary factor

that limited the accuracy of the CITARS classifications.

4.6 CLASSIFICATION ACCURACY AND PROPORTION

ESTIMATION

4.6.1 Comparison of Field Center Versus Whole Area

When the relative performances of the main procedures

on both field-center and whole-area data used for the

analyses of variance are surveyed, it becomes noticeable

that ERIM/SP1 tends to be the best procedure with respect

to field-center classification accuracy but the worst on pro-

portion estimation of whole sections.

I
In order to seek explanations of this apparent anomaly,

further studies were made on four data sets [LE(6), LI(5),

WH(ll), and HU(13)] exhibiting the property that ERIM/SP1

was the best procedure on field-center accuracy but the

worst on whole-section proportion estimation [see table XV(a)

and (b)].
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Four possible explanations for this behavior are:

1. Only the test sections were used in field-center anal-"

yses, whereas all cloud-free test and pilot sections

were included in the whole-area comparisons.

2. The proportion estimation procedure based on counting

classified pixels is biased; hence, the bias may cause

ERIM/SP1 to have a larger mean-square error on propor-

tion estimation even though it has a smaller average

probability of misclassification.

3. A procedure which classifies pure pixels^ accurately may

not necessarily give good proportion estimates when

mixture or boundary pixels are classified.

4. The proportions of class "other" in the whole areas were

usually larger than for field centers, which made ERIM/SP1

appear to be worse for whole areas.

It is unlikely that factor 1 is the answer since, first,

the test pilot sections were selected at random; second, the

loss of a section because of clouds should be independent of

the theoretical performance of a procedure on that section;

and, third, analyses of variance involving the four data

sets showed the means for procedures to be significantly

different. (That is, even taking the random variation from

section to section into account under the hypothesis that

the procedures were equivalent on the average, it was unlikely

that the observed procedure means could have been diverse as

they were.) Furthermore, the blocking efficiency on the

White and Huntington data sets was so poor that at least as

effective a test could have been made by choosing sections

at random for each procedure instead of comparing procedures

for the same sections.
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If factor 2 were true, then ERIM/SP1 should have been

worst on proportion estimation using field-center pixels.

This was not the case, however. Table XV(c) shows the per-

formance of the three procedures on field-center proportion

estimation using the same dependent variable as for whole

areas.

A comparison of tables XV(a) and XV(c) shows that except

for the case of HU(13), those procedures that were best for

field-center average probability of misclassification were

also best on field-center proportion estimation, and vice

versa. For this reason, it is suggested that factor 3 (mix-

ture pixels) and not bias is largely responsible for dis-

crepancies between proportion estimation and classification

accuracy results. Also, studies disclosed that factor 4

(actual proportion of class "other") was a probable con-

tributing cause of the observed performances.

4.6.2 Bias in Proportion Estimation

It is well known that if pure pixels are being classi-

fied and classified pixels are being counted to obtain an

estimate of crop proportions, the resulting estimate e is

biased; that is,

E(e) ? a (5)

where
s*

e = the estimated proportion vector

a = the true proportion vector

E( ) = the expectation operator
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In fact, it is easily shown that E(e) = Pa where P = (p^^.)

is the matrix of conditional probabilities of classifying

a pixel from class j as class i.

Attempts were made to reduce biases in CITARS propor-

tion estimates by computing a corrected or inverted propor-

tion estimator a , which was the solution to the problem:

Minimize (e - Pa) (e - Pa) with respect to a

subject to the constraints Za. = 1 and a. > 0 .i i —

The matrix P was obtained from results of field-center clas-

sification of the test sections.

The whole-area proportion estimates from four data sets

were corrected for bias on a section-by-section basis , and

new values of the analysis-of-variance dependent variable V

were computed. Table XVI shows mean values of V to be con-

sistently higher (less accuracy) than they were in table XV-B;

that is, the known- to-be-biased method of pixel counting gave

much better results than the corrected estimator.

Two possible explanations are presented immediately:

1. A confusion matrix for whole-area (that is, mixture)

pixels is vastly different from one for pure pixels.

2. The section-to-section variation in crop signatures is

.so great that one confusion matrix cannot be applied to

all sections.

To test assumption 2 independent of 1, the field-center

proportion estimates as obtained from pilot sections were

corrected using the aggregated P-matrix obtained from test

sections. The result should be valid if the conditional
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probabilities of misclassification are assumed to be about

the same for all sections. An examination of table XVII

shows the assumption is probably false; that is, assumption 2

is a likely explanation for the poor results obtained with a

corrected proportion estimator (compare with table XV-C).

No data are available for EOD, since field-center pilot sec-

tions were not processed.

In order to reduce the section-to-section variation,

the correction procedure was applied to the whole-area esti-

mates aggregated over all sections in each data set. Poor

results indicated that assumption 1 is also true — that a

confusion matrix estimated from classifying pure pixels

cannot be effectively used to unbias a whole-area estimate.

Table XVIII shows the rms error before and after cor-

rection where one aggregated estimate is made for each data

set. Note that in almost every case, the uncorrected pro-

portion estimate was more accurate.
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TABLE IV.- MEAN FIELD-CENTER CLASSIFICATION

ACCURACY FOR THREE STANDARD PROCEDURES

AVERAGED OVER 15 DATA SETS

Class

Corn

Soybeans

Other

Rms error

Procedure

LARS/SP1

0.66

.59

.50

.58

ERIM/SP1

0.70

.68

.53

.64

EOD/SP1

0.62

.61

.46

.57

TABLE V.- OVERALL BIAS AND RMS ERROR IN

PROPORTION ESTIMATION FOR THREE

STANDARD PROCEDURES AVERAGED

OVER 15 DATA SETS

Class

Corn

Soybeans

Other

Rms error

Procedure

LARS/SP1

0.063

.033

-.096

.095

ERIM/SP1

0.064

.059

-.124

.150

EOD/SP1

0.025

.081

-.106

.108
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TABLE VI.- AVERAGE CONDITIONAL CLASSIFICATION ACCURACY

AND RANKINGS OF THREE STANDARD PROCEDURES

Data set

(a)

HU(6)

HU(13)

SH(12)

SH(13)

WH(10)

WH(ll)

LI(5)

LI(7)

FA ( 4 )

FA(5)

FA(6)

FA (9)

LE(5)

LE(6)

LE(8)

Mean over
all data
sets

Procedure

LARS /S PI

Accuracy

0.607

.484

.502

.384

.742

.609

.588

.700

.544

.538

.620

.797

.539

.559

.551

0.584

Rank

3

2

3

3

2

1

2

1

3

2

2

2

3

1

2

2.1

ERIM/SP1

Accuracy

0.670

.555

.536

.551

.797

.581

.695

.694

.668

.654

.670

.809

.566

.547

.597

0.639

Rank

2

1

2

1

1

3

1

2

1

1

1

1

1

3

1

1.5

EOD/SP1

Accuracy

0.688

.425

.546

.492

.607

.590

.579

.611

.572

.500

.605

.747

.545

.556

.440

0.567

Rank

1

3

1

2

3

2

3

3

2

3

3

3

2

2

3

2.4

Data sets: HU is Huntington, SH is Shelby, WH is
White, LI is Livingston, FA is Fayette, and LE is Lee
County. Number in parentheses = [(period number - 1) x 2]
+ pass number . Example: HU(6) is the Huntington County,
Indiana, segment for period III, pass 2; [(3 - 1) x 2] + 2
= 6 .
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TABLE VII.- RMS ERRORS IN PROPORTION ESTIMATION AND

RANKINGS OF THREE STANDARD PROCEDURES

Data set

HU(6)

HU(13)

SH(12)

SH(13)

WH(10)

WH(ll)

LI(5)

LI(7)

FA (4)

FA(5)

FA(6)

FA (9)

LE(5)

LE(6)

LE(8)

Mean over
all data
sets

Procedure

LARS/SP1

Error

0.330

.131

.027

.151

.065

.057

.004

.013

.115

.144

.154

.158

.020

.025

.034

0.095

Rank

3

1

2

3

1,

1

1

1

2

1

1

2

1

1

1

1.5

ERIM/SP1

Error

0.202

.252

.040

.116

.100

.178

.091

.080

.106

.161

.188

.141

.232

.239

.118

0.150

Rank

2

3

3

2

3

3

3

3

1

2

2

1

3

3

3

2.5

EOD/SPl

Error

0.192

.134

.027

.096

.083

.070

.022

.028

.133

.178

.191

.204

.066

.142

.051

0.108

Rank

1

2

1

1

2

2

2

2

3

3

3

3
t

2

2

2

2.1

Overall data set estimates.



TABLE VIII.- SUMMARY OF PLOT AND PIXEL COUNTS

[Ref. 2, vol. VII, table l]

64

TEST
NUMBERS OF PLOTS AND PIXELS

DATE: 6/10 6/11

CROP

CORN

SOY

WHEAT*

TREE

PASTURE

GRAIN

CITY

HAY

WDS/PAST

HATER

WEED

OTHER

OATS

QUARRY

TR PARK

34

46

8

12

6

12

4

2

—

28634

35846

65 8

11311

23 6

49 12

103 2

12 2

i— r
286

FAYETTE

6/29 7/16 7/17 8/21

» i
1 —

31 27134 28634

35844 34046 35846

65 8 65 8 65 8

11 12 12
105 110 104

23

49

8

12

4 17 623 6

9 39 12 49 12

4 103 4 103 4

2 12 212 2

I— n i
28634 286

35846 358

65 8 65

23 6 23

49 12 49

103 4 103

9 X 9

12 2 12

SHELBY

6/8 9/7 9/24
I i i I
1 1 1 |

56 63856 63856 638
39 23739 23739 233

4 IL L
36 36 36

10 2 10 2 10
3 6 3 6 3 6
3 15 3 15 3 15
1 1 1

53 J 53 53

1 25 1 25 * 25

15 55 15 55 15 „

HUNTINGTON

7/15 9/24
1 1 11 1 1

28 157 28 157
35 18935 189

5 57 5 57
5 16 516
1 4 X 4

4 52 4 52
4 79 4 79

13 61213 612
1 4 1 4

WHITE LIVINGSTON

8/21 9/7 7/16 8/3
1
1

74

61

4

1

9

3

1

4

1

1
I

62874

52561

26 4

4 i

103 9

1113

•J

73 7

1

48 4

25 1

1 11 1 1

628 49 49848 466

525 64 81959 772

26

4

103 4 10 4 10
3 13 313

111 3 388 3 164

73
1 19 i 19

,

if

48 1 4 X 4

25
1 5 1 5

LEE

7/17 7/18 8/5
1 I I 1I l l l

47 49 49
448 454 454

48 57347 56947 569

4 25 4 25 4 25
10 61 10 61 10 61

6 16 5 14 5 14
4 33 4 33 4 33

7 49 7 49 7 49

TRAINING
CORN

SOY

WHEAT

TREE

BARE

BRUSH

CLOVER

STUBBLE

WATER

PASTURE

FESCUE

GRASS

OATS

WEED

OTHER

QUARRY

HAY

9

7

9
2

3
1

1

3
13

70

56

48
104

45
3

4

58

95

9

7

9

2

3

1

1

3

12

64
56

48

104

45
3

4

58

89

9

15

3
2

2

1

2

3

3

68

115

24

90

12

3

5

5.8

45

9
17

2
2

3
1

2
1

3

70

13:

18

io<
45
3

5

6

58

70 70 24 16024 16024 160 62 62
18 13921 192
2 18

i 2 104 2 104
3 45

3 58

12

58

7 35 U 55
4 26 X2
7 20 4 33
4 20

31

55

20

31

15 15915 159

24 47424 474
19 21819 218

11 17311 173
20 24820 248

59 59 64 65 22 22

36 36
30 2 30

10

42

47

42

47

14 12815 13115 131
11 11011 11011 110

2 225 2 225 2 225

21

20 ' 20

2 21 221

125 -1 125 x 125

**
We have serious doubts about the validity of 27 of the 65 test wheat pixels in Fayette; See Sec. 5.2.

Upper number of each pair denotes number of plots; lower number is pixel count.



65

u

(/}
0).p
m

en E
t< B i

O -P
r( CO

JH 0)

OJ

C
W O
£ 'H
C 4-1
0) O
x: a
H O

a
• c
•H

,̂
o
(0
J_l
3
o
o

(0 rH
M tC
Q) C
> 0
rfJ-H

-P
•rH
rrj

C
o
o

rH
1 ftJ

•H (H
-P O
rH CX

s 1
4J

Q)
-P

<U T)
j

r^ ^•^

O**= T3
C -P —

•rH (0
en <u

X)

rH

1 HJ
•H r)

•P 0

rH dt

'
4J

<u
4J
1}

(1) 'O
1— { x^k

O^ • ^3
C -P ^

•H W
10 Q)

XJ

0
-H

dj
a>

^c n "4* o\
in oo at vo
o o o o

• • • •
o

O 'ff .rH rH
I** ^1* "* "V
O rH rH rH

t • • •
O

oo in in ov
VO OO 00 OO

• • • •
o

f̂  1^ rH rH
VO VO 00 00

1 • • t
o

H >
H >

H i 1 r r ^r-i \j
H -a crO C ^ iJ
'd c ro H
C nJ H -
(0 ' H M

H H - H
H H. M H H



66.

to
w

w

25o
H
EH
M23
U
O
U

UoA25o

U
o

Pn
O

a
o
CO
H

I
•

X

w

e
C 0

•H -H
4J

M Id CO
O 6 0)
1 . 1 M»
M *rl CO

rl -P Id
0) to o

01
W r-l
E CrH

H o id
•H

01 4J rl
Cn ri (U
id o >
r-l O, O
0) O
> rl< a

CO
C 01
O CO
•H id
•P O
«
0 rH

•H ^H
M-l <0
>rJ

CO rl ^
co oi id
id > ~
rH O

u
01 U
tn id
id M
0) U
> 0
ft, id

0c
•n

n
n
<U
U
0
}.

0
0

ft

0

5
•O
0)
u
0
rl
ft.

co
CO
•H
M
id
cSo

rH
a
o
rH

Oz

id ^

% ""

rH

id
u
o
rH

O
**

rH
id ^
° £

^

1

ll

4

r* cs in co
in oo M in
rH rH rH i-H

O

CO VO CM CN
on in rH CN

0

CO O i— 1 00
in en vo vo

0

VD •» CM rH
co *r r- o
in vo in vo
o

•P -P 4J

§ g §

5 5 5
•H -H -rl
S S S

rH rH
fti ft, rH 0)
co co o. en
\ x. co id
co SB \ M
« H Q 0)
2 « o >
rl H H <

CO
01
rl

9•o
rl 01
O U

JBas a

oo o on

vo r- r-»
in en r—

o vo oo
On 00 00

^ CM 00
"̂ rH CM

VO VO VO

•P -P
9 9
0 O

•H -H
3 S

*— ̂
U
•H

^ -P
rl Id
id M
oi -a
c m
•rl 9

H CM
a. a, at
ca co en

1 1 5
w w <

01
t-H

2
co u
> -H c

•P O
U Id-rt
id (H co
oi •a-H
c « u
•H 9 01
r] CP-O

in r- vo

oo on ^
on CM 1-1

n in on
in « <«
«* ^- ^

VD T» o
oo on on
in m in

•P 4J

§ §

5 5
•H -H

* S

CO
^ 4J
CO 43
•P en
43 -n
en 0)

•H *
01
> rH

rH |
ID u*
9 Cv

S 3
•H CN
ft. ft, 0>
co co en
\ \ id

U S . !
CO
0)
•H
+J
•H

•«» H
h -rl

<w o a
o-t» id
oi ao
CO U
D a a

M rH 00

vo r» r~
in on r-

vo m o
in v m
in in m

^ CN 00
9 rH CM
VO VO VO

5 5
•H -H

* S

^^
U
•H

^ -P
rl Id
id M
S 1
31
rH CN
ft. ft.
co co oi
fti fti en

H H 01

H H <

tng
•rl

< n
H a
33 0)

o
VM o
O rl

aat at
n m
D a

CM VO ^
ao o on

vo i- r*
in on p>

o vo oo
on co oo

<• CM CO
I1 i-H CM
vo vo vo

•p -p
§ S
5 5
•H -rl

S *

^^u
•rl

^ 4J
H id
Id rl
a) -a
c id

S 1
i-H CM
0. fti 0)
co co en
s> s> 2
H H 0)

N U ri.



67

U

U

o w
M E-tEH <:
< Q
CJ
H Q
fa S3
H r<
co
CO EH

u s
i-3 W

O fa
M O

H 2
Q O

O E-f
O t_>

2
W D
e> fa
S <c

X

w

•V
c
4
C
c
I
>
&

0)
4->
(0
-a
T3
c
<o
•a
o
•H
M
(U

P-l

3 4J 0)
U C W
J 0) C
-> e o —u & a m
li 0) 01 ^
< W 0)
J K

O ro
4J r~

W ""X.

H ^r oo
> CM (N

O^ O"N

O co
4J r-

x^
H VO O
> O rH

O ro
4-> r~

> ovro
rH CN

oo ro

O ro
4-> r-\^

> rH 1/1
M 00

OO CO

O n
4-> r-

H \
M f CO
M rH rH

r~- r-

O n
4J r~
\

H VO O
H CN ro

VO VO

0)
tn

4->
(0
Q

CN
VO

o

0>

.
o

m
VO

•
o

^^
—+ ro
VO rH

D P
X K

t^
in

^
.

rH
in

•
o

*-* ^*
fN ro
rH rH

X ffi
to w

'

rH
VO

CPl
m

•

t-

O ,

-̂x x-̂

O H
rH rH

K ffi
S S

CN
VO

00
VO

•
O

rH
VO

•

in r~

H H

rH
VO

OO

•

OO 'S'
in vo

• •

CJ*
in

•
o

** in vo o\
< < < <
TTI TTI TTi fTi

^*
in

m
in
•

m m
m in

t •

in vo oo

W W W
1-1 *-3 l-p

. 1

oo
.

o

VO
in

t
0

in

o

ro
vo

•
o

0
VO

•

o

r̂ «
in

•
o

(0
TD 0)
<u in
4-> C
U O
(J) (]) Q|
a s m
X -H 0)
W 4J M

o
X

•H
TJ
C
0)fta.ro

o
>

<N

-a
o

o
(0
M
0)
-p
c

•H
c
o
c
Cr>
c



68

cow
EH

M Q
EH O
CO H
W «

w§ *
M Q
EH 3
« <
O
O< EH
O J3
« W
04 S

O
PS w
O W
Cn

Pn
CO O
PS
O S
« O
05 H
W EH

CO
CJ

H CO
H <
X

H
>-l
CQ
<
EH

0)
4J
n)
•O

•O
C
id

T)
0

•H

0)
(•H

13 4J 0)
Q) C in
4J <U C ^N

0 I O (0
o 5> a ^
a a) w
X W Q)
y rH

0 m
4-> t-

rH >v
s.

M -» 00
> <N CM

*^^ "X^

O^ O>

O ro
4-1 f«

\^
H ^£> 0
> O rH

C* C*

O ro
4J r>
\

r-H CM

00 00

O ^)
4-> r-

> rH in
M O O

v^ \^
00 00

O <"">
4-*rrs%

M \
M T 00
M rH rH

O fo
4J r-

X. .

M VO O
H CN CO

x^ v^
\o vo

4-)
a)
CO

4->
10
Q

(N
rH

M.
O

in
OA
H
•

o

.̂ ~

oo
vo
<N

O

^^
^^ CO
VO H

O D

rH
00
o

CM
o
rH

•

n
vo
o

•
o

-— s ^^fN ro
rH rH

DC DC

1̂
a\

r̂ .
rH
rH

•

n
r--
o

o

•̂̂ . *-*•

O rH
rH rH

X DC

* 5

CM

**.

fNJ

O
•

o

Ol
m
o

in r-

H H

VO
in
rH

0

rH

1- rH
r** o\
rH rH

O
ro
rH

•
o

TS< m vo w

rt; < < <
tl fcl [U [u.

oo
o
i-H

VO

o
•

r~ vo
in in
rH rH

in vo oo

W W W

1

00
rH
rH
.

O

t*^
rH
rH

• •

O

H
H
rH

O

in
0
rH

•o

^*m
rH

o

o
o\
o

•
o

10
-a o
U) CO
4-* C
0 O

CX 6 w
X-* <1)
W 4-1 M

•H
T3

Q)a,

o

•oi

U
03

C
•H
C
o

tn

•H



69

TABLE XIII.- OPTICAL DEPTH MEASUREMENTS MADE AT THE TIME OF

ERTS-1 OVERPASSES

Local recognition

Data
set

HU(6)

HU(13)

SH(12)

SH(13)

SH(10)

WH(ll)

LI(5)

LI (7)

FA(4)

FA(5)

FA(6)

FA(9)

LE(5)

LE(6)

LE(8)

Optical
depth (haze)

0.3

1.1

.18

.99

.11

.12

.17

.28

No data

.35

.39

.27

No data

.44

.34

Nonlocal recognition

Recognition

(a)

1 FA(5) -*• FA(6)

2 FA (6) •* FA (5)

3 LE(5) -»• LE(6)

4 LE(6) -> LE(5)

5 HU(6) -> LI (5)

6 HU(6) -»• LE(6)

7 LE(6) •* LI (5)

8 LE(6) -»• HU(6)

9 LI(7) -> LE(8)

10 LE(8) -> LI(7)

11 LI (5) -> FA(5)

12 FA (5) -»• LI (5)

13 WH(ll) -> SH(12)

14 SH(12) •* WH(ll)

15 SH(13) •> HU(13)

16 HU(13) -*• SH(13)

17 FA(6) •* HU(6)

18 HU(6) -»• FA(6)

23 WH(10) •»• FA (9)

24 FA(9) -»• WH(10)

Difference in
optical depth

0.04

-.04

—

—

-.13

-.14

-.27

-.14

.06

.06

.18

.18

.06

-.06

.11

-.11

-.09

.09

.16

-.16

The recognitions as shown are read:
Training segment pass •*• recognition segment pass. v
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TABLE XV.- COMPARISON OF FIELD-CENTER CLASSIFICATION

ACCURACIES AND WHOLE-AREA CROP PROPORTION ESTIMATES

Data set LARS/SP1 ERIM/SP1 EOD/SP1

(a) Mean values of dependent variable for field-center
classification error

LE(6)

LI(5)

WH(ll)

HU(13)

1.341

1.142

1.111

1.139

0.999

1.012

1.035

1.113

1.149

- 1.206

1.238

1.369

(b) Mean values of dependent variable for whole-area
proportion estimation

LE(6)

LI (5)

WH(ll)

HU(13)

1.125

0.596

1.538

1.351

2.212

1.314

2.172

2.823

1.659

.462

1.074

1.644

(c) Mean values of dependent variable for field-center
proportion estimation

LE ( 6 )

LI (5)

WH(ll)

HU(13)

2.281

2.024

1.711

1.154

1.777

1.722

1.493

2.080

2.057

2.123

2.400

2.799
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TABLE XVI.- MEAN VALUES OF V FOR CORRECTED WHOLE-AREA

PROPORTION ESTIMATES

Data set

LE ( 6 )

LI (5)

WH(ll)

HU(13)

LARS

2.201

2.182

2.013

2.421

ERIM

2.680

2.168

2.262

3.052

EOD

2.234

2.152

2.035

3.128

TABLE XVII.- MEAN VALUES OF V FOR CORRECTED

WHOLE-AREA PROPORTION ESTIMATES -

FIELD-CENTER PILOT DATA

Data set

LE(6)

LI (5)

WH(ll)

HU(13)

LARS

3.116

2.152

2.458

3.863

ERIM

3.060

1.097

2.148

2.516
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5.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The overall objective of the CITARS was to quantify the

CIP resulting from the remote identification of corn, soy-

beans, and wheat using ADP techniques developed at EOD,- ERIM,

and LARS. The ADP techniques were evaluated for local and

nonlocal recognition. Specific objectives (section 2.0)

included performance comparisons to determine if and how

CIP's varied (1) with time during the growing season,

(2) among different geographic locations, and (3) among the

different data analysis techniques. Additional objectives

were to determine (4) whether nonlocal signal statistics

could be used successfully for crop identification, (5) if

the use of radiometric preprocessing could extend training

statistics and improve nonlocal performance, and (6) whether

the use of multitemporal data could increase the CIP.

To accomplish the objectives, five major tasks had to

be completed.

1. Acquisition and preparation of ah ERTS-1 data set with

sufficient ancillary data to support the experimental

objectives and design

2. Computer-aided processing of this data set with selected

classification algorithms and procedures

3. Quantification of the CIP's in a manner which would per-

mit quantitative evaluation of the ability of these pro-

cedures to satisfy the requirements of agricultural

applications

4. Statistical analysis to evaluate quantitatively the

impact of major factors known to affect CIP
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5. Interpretation of these results (a) to ascertain the

underlying physical factors responsible for the results,

(b) to draw inferences as to the status of the technology

as it relates to agricultural applications, and (c) to

make recommendations as to where the technology must be

strengthened.

This section briefly summarizes the results of the

several key technical tasks which had to be performed to

accomplish the scientific objectives. The results are-sum-

marized for the six major CITARS objectives, and conclusions

and recommendations are presented.

5.1 KEY TECHNICAL ACCOMPLISHMENTS

As discussed in section 3.0, an ERTS-1 data set with

supporting ancillary data was acquired and prepared. Except

for completeness of satellite coverage (two-thirds of the

ERTS-1 scenes were unacceptable because of excessive cloud

cover) and insufficient amounts of wheat in some sites, the

data set met the requirements of the CITARS experimental

design. Assembly of the data set included:

1. Acquisition of crop identification and other agronomic

ground-truth data by the ASCS

2. Acquisition and interpretation of color IR aerial photog-r

raphy to extend the field identification data acquired

by ASCS to additional sections

3. Registration and geometric correction of multitemporal

ERTS-1 MSS data for the. test segments

4. Location of field and section coordinates in the ERTS-1

data.
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In addition, repeatable, analyst-independent ADP procedures

had to be defined and documented, and measures of CIP had to

be determined.

Periodic crop observations of fields used to train the

classifiers were made by the ASCS throughout the growing

season. Photointerpretation of multidate aerial photography

was successfully used to increase the size of the data base.

The photointerpreted data were used to evaluate ERTS-1 data

classification accuracy in field centers. In addition, crop

area proportion measurements were made from the aerial pho-

tography and used to evaluate proportion estimates derived

from the pixel-by-pixel classifications of the ERTS-1 data.

Multiple ERTS-1 passes were registered with an average

error of less than one-half pixel. This made multitemporal

classifications of the data possible and eliminated the need

to locate field and section coordinates in each ERTS-1

scene.

The need to maximize the number of pure pixels selected

from the relatively small fields in several of the segments

made selection of field coordinates more difficult than

expected. Manual methods were found to be inadequate, and

a computer-aided method of transforming digitized photomap

coordinates to ERTS-1 line and column coordinates was used.

The latter method is recommended for use in future projects

requiring precise definition of ERTS-1 data coordinates.

A key task prior to the start of ERTS-1 data classifi-

cations was to define and document data analysis procedures

which were repeatable, easily followed, and yet incorporated
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the judgment and skill of experienced analysts. Although it

was recognized that .restricting analyst decisions might

reduce the CIP, variability caused by analyst judgment had

to be minimized in order to make meaningful comparisons of

results. Limited tests were made using the LARS ADP proce-

dures. These tests indicated that, for the CITARS data set,

results produced by the ADP procedures used were comparable

to those obtainable using procedures with considerably more

analyst interaction.

An important accomplishment of CITARS was the use of

quantitative measures of CIP and statistical evaluation of

results. The statistical evaluation consisted of analyses

of variance and blocked-rank tests for comparisons involving

factors such as ADP procedure, location, acquisition date,

and use of preprocessing. Two variables, average conditional

classification accuracy of pure field-center pixels and the

rms error of proportion estimates for entire sections, were

used as measures of CIP. Sectiori-to-section variability was

used in analyses of variance to determine if differences

among the factors were significant. The analyses of variance

revealed several significant differences; however, the power

of many of the tests was limited because of missing data, the

amount of variability present, and the failure of the depend-

ent variable to adequately describe performance of a section

independently of the composition of that section. Continued

use and development of these tools for remote sensing experi-

ments are recommended.

5.2 RESULTS AND DISCUSSION

The statistical analyses provided a key to the quanti-

tative assessment of remote sensing technology for crop
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identification in field centers and for crop area estimation.

Previous results have been confirmed in some instances,

whereas in others unanticipated results have led to recon-

siderations and new insights into certain aspects of the

technology. The remainder of this section summarizes the

major results and conclusions from the CITARS experiments.

5.2.1 ADP Procedures

Major differences were found in the results for the

three principal ADP procedures. The ERIM/SP1 was consist-

ently better in field-center recognition than the LARS/SP1

and EOD/SP1 procedures. However, for whole-area proportion

estimation, LARS/SP1 was the most consistent and had the

lowest average rms error. Possible reasons for this are

(1) the method of training and (2) the decision rule used,

both of which factors will be discussed below in more detail.

It also was found that all three principal procedures con-

sistently overestimated the proportion of major crops in the

segments. Possible reasons for this occurrence are (1) bias

in the proportion estimation method and (2) the presence of

pixels containing two or more cover classes. These results

indicate that field-center recognition of pure pixels, which

commonly has been used to evaluate CIP, is not a reliable

indicator of proportion estimates for whole areas.

The three main procedures tested differed in two ways.

Both LARS/SP1 and EOD/SPl used a clustering procedure to

define training statistics (usually several classes for

each major crop) and employed a quadratic decision rule.

The ERIM/SP1, on the other hand, formed a single signature
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for each major crop and used a variable number of signatures

for "other" and a linear decision rule which was optimized

on a class-pairwise basis. The differences in performance

among the three procedures were attributed to the method of

training rather than the decision rule used, since similar

results (high ranking for field-center recognition and low

ranking for whole-area proportion estimates) were obtained

for ERIM/SP2, a quadratic decision rule classifier which

used the same signatures as ERIM/SP1. The disparity in

rankings was minimized or nonexistent for late August when

inherent crop variations were the least and greater numbers

of other signatures were selected by ERIM. Thus, it was

concluded the major reason for the differences in rankings

for the two types of performance is the use by ERIM/SP1 and

ERIM/SP2 of single signatures to represent classes having

considerable variation.
(

It can be shown that proportion estimates based on

aggregated pixel classifications, as in CITARS, are inher-

ently biased because the expected performance depends on

the true proportions present, as well as on the performance

matrix of the classifier for individual pixels. It was

observed that the rms error in proportion estimation aver-

aged over all procedures was positively correlated with the

percentage of "other" in the test sections and negatively

correlated with average field size. The latter result is a

strong indication that field boundary pixels containing two

or more cover classes were a major source of the biased

proportion estimates for whole areas. The evidence is that

conventional processing techniques using training based on

pure field-center pixels cannot be relied on to produce

unbiased proportion estimates for whole areas containing

mixture pixels.
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Another unexpected CITARS result is the lack of improve-

ment of LARS/SP2 (nonequal, major-class, prior probabilities)

over LARS/SP1 (equal prior probabilities). Theoretically,

apart from boundary pixels, the Bayesian classifier should

produce its minimum error rate when correct values for the

frequency of occurrence of each spectral class are utilized

as parameters in the classification rule. The LARS/SP1 pro-

cedure assumed the likelihood that each spectral class would

occur equally in the scene. The LARS/SP2 included a proce-

dure for estimating the prior probabilities based on existing

agricultural statistics (see section 4.1.2). For CITARS

classifications, the LARS/SP2 procedure utilizing unequal

prior probabilities did not produce an improvement over

LARS/SP1, which assumed them to be equal. This is attrib-

uted in part to the fact that the agricultural statistics

used were at the county level only (differing by as much

as 20 percent from the true proportions) and the test sec-

tions were subsets of the county and not randomly located

within it. Boundary pixels are another possible cause. The

authors do not believe that use of prior probability infor-

mation in the form of class weights should be discouraged

solely on the basis of the CITARS analysis, since it does

not constitute a definitive test. Instead, further tests

are recommended to determine the sensitivity of the maximum

likelihood classifier to class weights.

In other experiments, LARS showed that significant

differences in CIP can be obtained with different training

sets and that training set size alone does not determine the

adequacy of a training set. These results and those dis-

cussed earlier point out the dependence of CIP on the develop-

ment of training statistics.
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5.2.2 Nonlocal Recognition and Preprocessing

Comparisons of local and nonlocal performance indicated

that average classification accuracy of field-center perform-

ance for nonlocal recognition was reduced by 22 percent of

that obtained locally. For whole-area proportion estimates,

the average rms error of nonlocal classifications was 23 per-

cent greater than for local classifications. Haze level dif-

ferences between the training and recognition segments were

found to be quite well correlated (r = ̂ 0.77) with degradations

in nonlocal classification performance. Other factors, each

of which could affect the representativeness of signatures,

were regional differences in soil type, agricultural practices,

crop maturity, scene composition, training set selection, and

MSS scan angle. The results clearly indicate the problems in

extending training statistics over space and/or time.

Preprocessing with a relatively simple MLA algorithm

(ERIM/PSP1) produced a slight but statistically significant

improvement over the three principal procedures in nonlocal

field-center recognition; however, no significant improvement

in proportion estimates for whole areas was evident. Pre-

processing substantially reduced the correlation between

field-center performances and differences in haze levels.

The inconsistent results with MLA processing are attributed

in part to differences in scene composition, for which the

technique does not account. Additional research is required

to improve on the signature adjustment technique tested and

to account better for spectral variability caused by scene

composition.
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5.2.3 Multitemporal Data Analysis

One segment with several clear ERTS-1 overpasses was

analyzed. The use of this multitemporal data (EOD/MSPl)

resulted in significant increases in CIP compared to single

date classifications. While substantial improvements in

performance were obtained for the segment analyzed using

basically the same data analysis procedures as for single-

date data, new analysis procedures should be researched and

developed, taking into account the increased complexity of

multitemporal scenes. The use of multitemporal data requires

a more complex data processing system (registration, increased

data base size, and more complex data analysis procedures),

but the increased performance may well justify the added

.complexity.

5.2.4 Effect of Site and Crop Characteristics

Significant differences in CIP existed among the six

test segments. Field size was found to be correlated with

proportion estimation performance but not with field-center

recognition. The correlation of field size with the accuracy

of crop proportion estimates is attributed primarily to the

related decrease in the percentage of pixels containing mix-

tures of crops as field size increased. In addition, it was

observed that large fields tended to be more uniform, and

areas having larger fields had relatively fewer fields of

class "other." Both of these factors contributed to improved

performance.

The crop calendar was also an important factor influenc-

ing CIP. Field-center performance increased to a peak in late
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August when maturity differences among fields of a particular

crop (corn or soybeans) were least and the amount of ground

cover the greatest. Performance decreased rapidly in September

as the crops sejiesced. Whole-area proportion estimation

accuracy was about the same for all time periods except mid-

July, when it increased considerably because of greater dif-

ferences in crop maturity and ground cover.

5.2.5 Relation of Crop and Sensor Characteristics

Two key factors influencing CIP with remote sensor data

are (1) the nature of the spectral variation among and within

the classes to be identified and (2) the capability of the

sensor to measure the spectral variation. An understanding

of the relationship of these factors may help explain the

levels of CIP obtained in CITARS. In several instances it

was found ,that accurate identification of corn, soybeans,

and "other" was not possible even when all the fields ana-

lyzed were used to train the classifier. This may have been

caused by a lack of differences in the spectral characteris-

tics of the three classes or by the inability of the ERTS-1

MSS to resolve and precisely measure the differences present.

The latter is suspected to account for at least a part of the

problem. Crop classifications made during the 1971 Corn

Blight Watch Experiment [19] using MSS data with more spec-

tral bands, narrower bands, and greater sensitivity and

dynamic range showed that these same cover types could be

more accurately identified. Additional comparisons of ERTS-1

and aircraft-acquired MSS or other high-spectral-resolution

data, such as those available from the current LACIE field

measurements project, will be needed to verify this point.
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5.3 CONCLUSIONS

The CITARS has provided a quantitative assessment of the

1973-era technology for remote identification of major agri-

cultural crops. The use of quantitative measures of classi-

fication performance and statistical evaluations of the

results have been important parts of the technology assess-

ment. The major conclusions from the CITARS experiments are:

1. The CIP's for corn and soybeans varied throughout the

growing season, with field-center accuracy being maxi-

mized in late August.

2. The probability of correct classification of field-center

pixels was not well correlated with, and thus is not' a

reliable indicator of, proportion estimation performance.

3. Proportion estimation accuracy was strongly correlated

with both field size and the proportions of major crops

in the segment, but field-center classification accuracy

was not. Boundary pixels containing two or more cover

types were recognized as major contributors to the bias

in proportion estimates.

4. The manner in which ground cover classes were selected

and used to train the classifier strongly influenced the

amount of bias in proportion estimates.

5. Both the probability of correct classification and pro-

portion estimation accuracy were decreased when training

statistics for a different location or date were used.

6. An MLA algorithm for first-order adjustments to training

statistics used for nonlocal classifications increased

the probability of correct classification of field-center

pixels but did not improve proportion estimates for whole

areas.
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7. The use of multi-temporal data improved both proportion

estimation accuracy and probability of correct

classification.

In addition, it has been shown that relatively automatic

data analysis procedures can be defined; these procedures can

produce repeatable results, are suited for processing rela-

tively large volumes of data, and incorporate (to a large

degree) the judgment and expertise of experienced analysts.

v. . •

5.4 RECOMMENDATIONS

The CITARS provides valuable direction for future

research and development of remote sensing technology and

guidelines for the design of operational crop production

survey systems utilizing remote sensing technology. Recom-

mendations from CITARS include:

1. Continued use and development of quantitative measures

of CIP and statistical evaluation of classification

results

2. Continued development of improved methods for training

classifiers

3. Research and development of methods to improve the

accuracy of crop proportion estimates for whole areas

4. Further tests to determine the sensitivity of maximum

likelihood classifiers to the use of prior probability

information and of linear classifiers to different

signature sets

5. Additional research, development, and testing of two

complementary approaches to nonlocal recognition: (a) more
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sophisticated preprocessing algorithms and (b) stratifi-

cation of areas based on their similarity with respect

to agricultural factors

Development of data analysis procedures which account for

the increased complexity of multitemporal data and reap

the benefits of the potentially greater information content

afforded by multitemporal data

Additional comparisons of ERTS-1 and other multispectral

data sources to determine the adequacy of the ERTS-1 MSS

in terms of the number, width, and placement of its spec-

tral bands, the signal-to-noise ratio, and its sensitivity,

dynamic range, and spatial resolution.
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