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APPLICATION OF SATELLITE DATA AND LARS' DATA PROCESSING TECHNIQUES TO
MAPPING VEGETATION OF THE DISMAL SWAMP.
Jeffrey A. Messmore.	 Dept. of Biology, Old Dominion University, Norfolk, j
Va. 23508.

This study concerned the feasibility of using digital satellite
imagery and automatic data processing (ADP) techniques as a means of
mapping swamp forest vegetation.	 Multispectral scanner data acquired by
the Earth Resources Technology Satellite (ERTS-1 	 renamed LANDSAT-1) was
analyzed using ADP techniques developed by Purdue University's Laboratory

1 for Applications of Remote Sensing (LARS). 	 The site for this investi-
gation was the Dismal Swamp, a 210,000 acre swamp forest located south
of Suffolk, Va. on the Virginia-North Carolina border.

Tsvo basic classification strategies *were employed in determining the
g

vegetation mapping capability of ERTS-1 data.	 The initial classification
utilized unsupervised techniques which produced a map of the swamp indi-
cating the distribution of thirteen forest spectral classes.	 These classes
were later combined into three informational categories: 	 Atlantic white
cedar (Chamaecyparis thyoides), Loblolly pine ( Pinus taeda), and deciduous

A forest.	 The subsequent classification employed supervised techniques
which mapped Atlantic white cedar, Loblolly pine, deciduous forest, watex
and agriculture within the study site. 	 A classification accuracy of
82.5% was produced by unsupervised techniques compared with 89% accuracy,
using supervised techniques. 	 Results attained suggest ERTS-1 data and
ADP techniques can be successfully applied to mapping some types of swamp 3
vegetation.
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INTRODUCTION
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The current trend toward urbanization and continued population growth

have increased demands on our forest resources. In order to ensure effective

management of this valuable natural asset, a large data base obtained in

a timely manner is required. A tool which may prove to be very useful in

this area is the Earth Resources Technology Satellite (ERTS-1; row designated

LANDSAT-1) launched in July, 1972. Large quantities of digital imagery

have been generated, however, the applicability of this data to specific

problems remains to be fully investigated. Application of digital satellite

data to forest management problems involves the processing of extremely

large quantities of data; a task for which computer technology is well

adapted.

This study examined the feasibility of applying ERTS-1 multi spectral

scanner (MSS) data and automatic data processing (ADP) techniques to
i

mapping swamp vegetation. Computer-aided analysis of ERTS-1 data, as

applied to forest vegetation mapping, has not been extensively investigated

and comparatively little has been published on this phase of satellite data

application. Erb (1973) utilized ERTS-1 data to detect, identify, and

measure forest and agriculture features of interest. Additionally, auto-

matic classification techniques were applied to a forested area near Cloquet,

Minn. by Kirvida and Johnson (1973). Heath and Parker (1973) also used

automatic computer processing techniques to map timber stands and range

plants in the Houston, Texas area.

g	
p

The site of this investigation was the Dismal Swam a 210,000 acre
I

swamp forest, located within the Virginia cities of Suffolk and Chesapeake,

and the North Carolina counties of Currituck, Camden, Perquimans, Cates

and Pasquotank_(Figure 1). This swamp is one of the largest wilderness
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Figure 1. Location of the Dismal Swamp study site,.
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areas remaining within the Middle Atlant i c coastal plain. Most of the

swamp is privately owned, except for 49,000 acres which constitute the

Dismal Swamp National Wildlife Refuge. Lumbering companies continue to

log sizable areas, especially in the North , -,--arolina portion. In addition,

forest land is being reclaimed for agricultural purposes in the northeast

and southern boundary areas.

vegetation of the Dismal Swamp was characterized by Meanly (1973), as

including five major plant communities: 1) Semihydric or deep water forest,

2) Semihydric or mixed swamp forest, 3) Mesic forest, 4) Atlantic white

fi

	 cedar forest, and 5) Evergreen shrub bog community or pocosin. In 1972,

Walker relio"pted the results of extensive quantitative sampling of Dismal

Swamp plant communities. She concluded that the swamp 's communities

exhibit intergradation and species overlap due to the broad tolerances of

individual populations. These factors have combined with disturbance to

create a complex mosaic of intex^rading community types.

Research objectives

The following objectives were established in order to evaluate the

overall utility of ERTS-1 MSS data and automatic data processing techniques

as a means of mapping vegetation within the Dismal Swamp.

(1) Evaluate the ability of automatic data processing

techniques and EATS-1 data to accurately differentiate

between forested % _id nonforested areas.

(2) Determine the relative value of the visible (0.5-0.7 Pm)

i 7
	

and near infrared channels (0.7-1.1 pm) for mapping

forest vegetation.

(3) Evaluate the ability of automatic data processing techniques

and'P,RTS-1 data to accurately classify deciduous and coniferous
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forest cover.

(4) Determine the extent to which specific tree species or

phytocommunities can be accurately mapped using ERTS-1 data

and ADP techniques,

Remote Sensin4 Development

Lindenlaub (1972) defined remote sensing as "the science and art of

acquiring information about material objects p rom measurements made at a

distance without coming into contact with the objects". A remote, sensing

device that is well established as an effective means by which scientists

may map plant communities, study successional changes, and identify plant

species is aerial photography. Though both black and white and color

aerial photography have been used for some time, application of color

y	 infrared photography to scientific inquiry is a relatively recent develop-

ment, growing out of the military's use of infrared film for camouflage

detection. The infrared photographic process enables one to visibly

record the high reflectivity of vegetation in the near infrared wavelengths.

The spectral range of infrared photography is rather limited, having a

practical wavelength limit of 1.35 um. Photographic sensing of ,longer

wavelengths would require cooling the camera and film to the temperature

of liquid nitrogen to prevent film fogging (Kodak, 1972). In addition,

photographic dat°,a is more qualitative than quantitative in nature.and

the, fore is not 'readily adaptable to automatic data processing. Relatively

recent developments in remote sensing hardware have allowed energy recording

in the electromagnetic spectrum far beyond the region to which photographic

processes are effective. Holter (1970) outlined four principal character-

istics of electromagnetic radiation that can be employed in remote discrimi-

nation of unknown materials:
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(1) spectral variation

(2) polarization variation

(3) spatial variation

(4) temporal variation

A variety of instruments capable of multispectral sensing are available

which may be mounted in aircraft or satellites.	 One type of a sensor that

is often utilized in remote sensing systems is the multispectral scanner.

This instrument records the radiation reflected and/or emitted from a

small area on the earth's surface simultaneously in several discrete regions

of the electromagnetic spectrum.	 Discrimination between target materials

is achieved by the differential reflectance or erilittance of materials in

these regions, or channels, -,Tithin the energy spectrum. 	 This differential

response to radiation in various wavelengths is the foundation upon which

remote sensing Zs built.

Although the electromagnetic spectrum consists of wavelengths which

extend from radio waves (107m) to cosmic rays (10 -18m), the region of most

interest to those engaged in remote sensing is from 0.3-15 jam. 	 Hoffer and

Johannsen (1969) subdivided this portion of the spectrum into the following

regions,-

(1) 0.3-0.7 jim	 optical wavelength region

(2) 0.7-3.0 ism	 reflective infrared region

(3) 3.0-15 um	 emissive or thermal infrared region

The reflective wavelength range has been further subdivided (LARS, 1970)

on the basis of plant spectral response as follows:

(1) 0.3-0.72 um	 region where leaf pigment (primarily
chlorophyll) predominates

(2) 0.72-1.3 Pm,	 very little absorption takes place in
this region, and most incident energy

•	 is either transmitted or reflected
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(3) 1.3-2.0 'Pin	 water absorption dominates the
spectral response of this region

Atmospheric Considerations

Lo,-,al weather conditions, as well as variation in illumination, can

affect the nature and quality of remotely sensed data. Atmospheric

phenomena caupe attenuation losses that are the result of scattering,

absorption, and reflection of radiation. As shown in figure 2, ozone

found in the upper atmosphere strongly absorbs the ultraviolet portion of

the spectrum while electromagnetic energy at the nfrare;-j end is gradually

reduced by water vapor and C<0 2 absorption. In order to avoid the strongly

'

	

	 attenuated wavelengths, sensor data is acquired through atmospheric

windows, or regions within the energy spectrum where a large percentage

of the total emitted or reflected radiation is transmitted.

Plant Reflectance

Radiant energy is reflected and transmitted by a plant leaf in a

manner that is characteristic of pigmented cells containing water solu-

tiens. other factors which affect the spectral quality and intensity of

plant reflectance and emttanGe are leaf geometry, morphology, physiology,

chemistry, soil site, and climate ((^jates, 1970). The reflectance spectrum

of a typical mature green leaf is shown in Figure 3. It shows high leaf

absorption in the ultraviolet and blue portions of the electromagnetic

spectrum, comparatively low absorption in the green and high absorption

again in the red wavelengths. In the near infrared (0.7-1.3 Vm) there is

very low absorption, and thus high reflectance and transmittance followed

by very high absorption in the infrared at 1.45 um and 1.95 Jinn.

Energy absorption within leaf pigment molecules takes place as a

result of electron transitions which require high energy photons .. Pigment

f	 molecules do not absorb the near infrared wavelengths which are of lower

t
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energy content. At longer infrared wavelengths, water and other molecules

within the leaf dominate the leaf spectral response as they undergo low

energy vibrational and rotational quantum transitions (Gates, 1967). Energy

absorbed by the leaf in the visible wavelengths is utilized within the leaf

for photosynthesis and the production of plant nutrients,. Energy absorbed

between 0.7-1.3 um, however, is converted into heat within the leaf. For-

tunately, a leaf reflects and transmits the near infrared well and absorbs

relatively little. In this way a sunlit leaf is able to remain substantially

cooler than it would if it maintained high absorption in the near infrared,;

a high energy region where over 50% of incident sunlight energy is concen -

trated (Gates, et al. 1965).

According to Myers (1970) , leaf reflectance in thf3 near infrared to

1.3 um is due primarily to the physiological structure of the plant leaf.

Gates et al. (1965) felt that near infrared leaf reflectance was probably

a function of cell shape and size as well as the amount of intercellular

space. Gates" hypothesis is largely supported by Woolley (1971) who

reported that diffuse cellulose reflectance is primarily responsible for

the infrared reflectance character of a dried leaf, while the infrared

reflectance curve of a fresh leaf is dependent on a combination of diffuse

cellulose, reflectance and H2O absorption bands. While working with salinity

stressed cotton, Gausman et al. (1969) found that changes in internal leaf

structure were the primary causes for differential reflection response in

the 0.75-1.3 um range. They associated increased';reflectance with thicker

leaves, having more pronounced palisade development, loosely arranged spongy

mesophyll, and consequently more cellular interfaces where reflectance

might occur.

Leaf orientation to incident sunlight can significantly alter the

I'

1

z^w^
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intensity of reflected'^
'
 spectral radiation in some regions of the electro-

magnetic spectrum.	 Cotton leaf stacking experiments by Myers et al. (1966)

have shown that in the visible wavelengths, using any combination of

stacked leaves, there is no change in reflectance. 	 This evidence indicates

that the topmost exposed leaves are Oe only ones responsible for reflectance

intensity in the visible wavelengths.	 However, in the near infrared, reflec- J

tance of two leaf layers increased approximately 17% over that of one layer.

As the number of leaf layers increased up to six layers, reflectance increased.

Myers felt the probable explanation for this phenomena is that light trans-

mitted through the top leaves is partly reflected from and partly transmitted

through the lower leaves. 	 infrared radiation reflected upward from the A

lower leaves augments the reflected light from the surface of the leaves.

One must be cautious, however, when applying laboratory derived data to

natural scenes.	 This was demonstrated by Stoner and Baumgardner (1972)

when they reported that for agricultural crops, canopy reflectance is much j

less than for a single leaf because other scene parameters such as illumi-

nation angle, leaf orientation, shadows, and non-foliage background (primarily

soil) cause reflectance attenuation. 	 Knipling (1969) estimated that visible

reflectance from a crop canopy may be 3-5% while that •for a single leaf is

10%.	 He also noted a 30% reduction in the near infrared reflectance of a

complete canopy as compared to the reflectance of a single leaf. 	 This

observed reduction in the visible and near infrared reflectance can be

accounted for when the previously mentioned attenuating phenomena are

considered.

A



METHODS and MATERIALS

in July of 1972 the National Aeronautics and Space Administration

(NASA) launched ERTS-1 as part of a program to demonstrate the applica-

bility of remote sensing to the management of earth's resources. The

satellite was launched in a circular, sun synchronous, near-polar orbit

at."an altitude of 494 nautical miles. Every 18 days at the ; game local

- time the satellite's ground trace repeats its coverage. Optical energy

is sensed by a four channel mul.tispectral scanner which uses an oscillating

mirror to continuously scan perpendicular to the spacecraft velocity in

swaths of 100 nautical mil(;s (NASA, 1972). A single resolution element

(pixel) within that swath is rectangular and measures approximately 60 x

80 m (Todd et al. 1973). jalectromagnetic energy is sensed simultaneously

by an array of detectors in four wavelength regions (Table 1).

On August 30, 19731, ERTS-1 imaged an area 100 x 100 nautical miles in

the middle Atlantic Coast region of the United States. Contained within

this image w.s the Dismal Swamp. Data collected over the swamp was analyzed

with automatic data processing techniques developed by Purdue University's

Laboratory for Applications of Remote Sensing (LARS). Analysis involved

the use of a remote computer terminal located at the NASA Langley Research

Center, Hampton, Va. This terminal was tied into an IBM system/360 model

67 computer_ at Purdue University. Data processing required the utilization

of six LARS computer programs, normally performed in the following sequence:

1) Pictureprint 2) Cluster 3) Statistics 4) Feature selection 5) Clas-

sifypoints and 6) Printresults (Figure 4). 	

i

Classification Strategies

LM
Both supervised and unsupervised classification strategies were employed

in mapping Vegetation within the swamp. The basic difference between these

4
f,,	 11
C	
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Table 1. Spectral range of ERTS-1 hands and corresponding LARS channels.

ERTS-1 Band LARS Channel Spectral Range (um) ;r

4 1 0.5 - 0.6

5 2 0.6 0.7

6 S 0.7 - 0.8

7 4 0.8 - 1.1
3

..

r
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Picfureprint

`	 Training Samplo Selection

x
Samples Selocted	 Samples Selected

Manually Based on Automatically Based

Spectralectral Se arabilitGround "! •Toth	 ^'	 Separability	 4

(Sureryised)	 (Unsupervised)

SfatMic

F©ature
^1eC ion

Clasyiticalion

PdrefresuIis

VassificUtion It1dn

Interp,efc^ticn--j

Figure 4. LABS data processing sequence (revised from Coggeshall and
Hoffer, 1973).
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4
	 two methods lies in computer training (See Figure 4). When using super-

7i	 vised classification techniques, ground truth is available and the computer

is trained to recognize known materials by their spe'^ltral response. In

contrast, unsupervised classification techniques are employed when ground

truth is not available or is insufficient to develop a supervised classi-
r 

fication. When using this method, the computer is trained wholly on the

data's spectral composition.

The supervised classification of data acquired over the swamp involved

first identifying areas of interest where ground truth information was

available at the time of data acquisition, then defining these areas to the

computer. After training samples were selected, statistical parameters which

characterized the spectral response of known ground features were computed.

These were subsequently utilized by the pattern recognition algorithm to

classify each data point within the swamp into one of the designated material

classes.

Unsupervised classification began by defining as training fields those

areas within the study site that contained representative ground features.

This information was divided into a number of clusters, i.e. spectral

classes, based on the distribution of spectral' information within the

training field data. The reflectivity of each cluster was then defined

statistically. Data points representing unknown ground features within

the swamp were subsequently classified into one of the statistically definedi

spectral classes by a pattern recognition algorithm. Finial analysis centered

upon determination of the relationship between the mapped spectral classes

and known surface data, i.e. ground truth comparison.

Pictureprint

The first program run in the analysis sequence was the pi,ctureprint

4W 1
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function. This program produces a gxay scale printout resembling a low

resolution photograph (Figure 5). Each pixel within the printout is

located by a specific column and line number. The pictoral character of

the printouts is attained by assigning alphanumeric symbols to radiance

levels within each channel. Highly reflective areas were assigned

symbols which covered a low percentage of the printout, e.g. ---- and

absorbent areas dense appearing symbols, such as MMM. Be-ause the data

are not evenly distributed between the highest and lowest radiance values,

s	 symbols cannot be assigned so that each represents an equal range of

radiance. Instead, to achieve maximum contrast within the pictureprint,
f,

the data are histogrammed and symbols are assigned bins of radiance values

so that each will occur with approximate 1y the same frequency (Figure 5)

The gray scale printouts were often very useful for identifying

areas of known composition within the data. These areas could then be

designated as ground truth sates and used to train the computer to

recognize similar materials. For example, training fields in agricultural

investigations may correspond to specific crop species, such as oats or

corn; while in forestry studies, coniferous and deciduous forest, or pure

stands of a tree species may be designated. Usually only some of the

ground truth areas were used to train the computer; remaining areas were

employed later for testing the accuracy of the completed computer classi-

fication. Training fields were located through the designation of column

and line numbers corresponding to natural boundary lines. If these bound-

aries were not rectangular in shape, a number of small rectangular fields

were used to define the desired training area.

Cluster

The next program employed in this analysis T-/as the cluster function.
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Figure 5. Pictureprint of a portion of the Dismal Swamp (channel 4 data).
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This program was necessary because the pattern recognition algorithm

assumes that each class can be characterized by a multidimensional

probability function. The researcher must determine if this assumption

is a valid one for each of the chosen training classes. Clustering the

training samples for each class, e.g. Loblolly pine, Atlantic white

cedar, etc. determines whether or not the multispectral data is Gaussian

(unimodal) in nature and provides a means for dividing the training

classes into approximate Gaussian sub-classes if the original data is

non-Gaussian (Lindenlaub, 1973). Cluster function options allow the

researcher to choose any combination of available spectral bands, as

well as the number of cluster groups to be separated within the data.

Linder'aub (1973) suggests, however, that the analyst designate a

number of spectral groups which is twice the expected number of separable

clusters. If one specifies a larger number of spectral clusters than

is actually present, the computer will reduce this number sequentially

until the maximum number actually present in the data has been found,

:.-uring the clustering operation, training class data were e-tamined, and

the entire set of data were statistically divided into a number of groups;

each containing data points hav4l .og similar spectral characteristics

(Hoffer et al. 1972). Preprogrammed alphanumeric symbols were used to

map the cluster groups within the training data. In addition to the

printing of cluster maps, tables conte ,.-,*qing the means and variances of

each class, as well as the pairwise separability values between all

class pairs were listed. These data were useful in determining the

number of spectral clusters that could reasonably be separated within

the training data. Lindenlaub (1973) suggested using the pairwise quo-

tient value of 0.8 as a rule of thumb breakpoint for separability. He

,,I



emphasized, however, that this breakpoint, although pretty well establiDlied

through extensive experience with agricultural data, is problem and data

dependent. if the separability data indicated that Dome cluotero were not

sufficiently separable, these spectrally similar groups were corbined.

It was often found that a training field composed of an apparently homo-

genous ground cover could be better represented by three or four classes

in order to more accurately approximate a Gaussian data distribution.

Statistics

The pattern recognition algorithm classifies data on the aosumption

that spectral information derived from the various training classes can

be characterized by a Gaussian probability density function. Each density

function can therefore be defined by its mean vector and covariance matrix.

All sour channels were employed in estimating each training classes' mean

vector and covariance matrix.

In addition to computing mean vectors and covariance matrices, the

statistics function produced training class histograms in all ERTS-1

channels. These histograms served as a partial check as to whether the

training class mult4 apectral data was Gaussian in nature. Linderilaub

(1973) reported that the histograms are only a partial check on the data

distribution because they depiat only the marginal density functions and

do not necessarily represent tbo multidimensional d(,,n,,3ity function as a

whole. if a class histogram shows a multimodal pattern, the 6ata is

probably non-Gaussian and indicates that further refinement of the training

class is necessary.

Feature Selection

This processing function was used to determine which features, or

channels, within the scanner data were best to 	 in the final clLs.sification.

P*
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i This was not an acute problem with four channel El:VS-1 data because of

the small number of channels available. 	 However, with twelve channel

aircraft data, studies have shown that as few as four or five channels

r
i

maybe utilized without seriously compromising classification accuracy

(Lindenlaub, 1973).	 Use of additional features in the classification

step substantially increases the amount of computer time necessary.

This program calculated the statistical distance in N-dimensional space

(N = number of channels) between the training classes that had been

provided it.	 The requested chE .nnel combinations were then ranked in

terms of the average or minimum pairwise distance between all class pairs.

Flexibility is added to the program through the capability of differentially

weighing designated class pairs in computing the average or minimu.ii distance

between classes.	 This could be used, for example, if the analyst had

found four spectral classes within forest, though the classification

objective was to map forest as a single entity.	 Since a classification

mistake between the four forest classes would be immaterial to classifi-

cation accuracy, the distance between these classes would be given a

lower weight.	 As can be observed in the sample'reature selection output,

(Figure 7) interclass ,Divergence (a measure of class dissimilarity)

saturates at a value of 2000.	 However, Lindenlaub (1973) reported that

statistical distances on the order of 1700 or larger will generally yield

satisfactory classification accuracies. 	 If it was found that the statis-

tical distance between significant materials was low, it was sometimes

necessary to repeat one or more of the previous analyses in an attempt

to increase the critical divergence values.

'., Classification

^.
F

Study site classification, the last step in the analysis sequence,
 _

i
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2.2

was the culmination of all previous analyses. Inputs to the program

included a statistics deck, the selected combination of channels, and

coordinates of the area to be classified. The pattern recognition

algorithm was used to individually classify each pixel into one of the

statistically defined training classes on a maximum likelihood basis.

Test fields were designated to estimate classifier performance. These

fields were examined and each data point was individually classified

into its most likely training class. Results of this process we.ro

employed to determine classification accuracy.

Output of the classification function, combined with a printresults

program, produced a classification map with alphanumeric symbols repre-

senting designated material classes. The computer also calculated how

accurately it classified training data by comparing the classification of

each point in the training fields with the initial ground truth desig-

nation. A high level of agreement indicated there was little confusion

within the training statistics for the various designated materials,

and the classes were being accurately separated. When agreement in

test and training field performance was low, redefinition of the classes

was necessary.

Thresholding was utilized during the generation of classification
,r

maps. if this option had not been applied, the classification algorithm

would have included every data point into the class it most nearly

resembled, even though resemblance was remote. Thresholding allows the

researcher to arbitrarily screen out those picture elements not demon-

strating a high degree of correlation with user-designated spectral

classes. Thresholded points appear as blank spaces on the final clas-

sification map.

An i
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Unsupervised Classification

The initial analysis step produced gray scale printouts of the.
j

study area,-,in all four ERT$-1 channels.	 These printouts were compared

with black and white, color and color IR aerial imagery of the swamp.

Pictureprints of the data in channels 1 and 2, 0.5-0.6 } gym and 0.6-0.7 pm

respectively, produced the best deln\' ,̂s.tion of swamp boundaries with thei

Suffolk scarp on the swamp's western 4	 vng clearly defined.	 In

addition, U.S. route 460 and the Norfojk and-:Western railway were

I

discernable cutting east to west across the, northern region of the swamp.

Pictureprints produced of chanris 3 and 4, 0.7-0.8p	 p	 n	 Um and 0.8-1.1 um,,...

respectively, were especially useful in the delineation of water, due to
r

its high absorbancy inthes°. wavelengths.	 Lake Drummond, located in the

swamp's center was clearly differentiated from the surrounding forest,

however, none of the numerous drainage ditches located in the swamp

could be identified. 	 This is believed to be due to tree overhang and

the characteristic low water levels of the swamp in August.
i

In order to determine the distribution of spectral information

collected from the swamip, the clustering algorithm was run on eleven
y

training fields (15,894 data points). 	 Cluster results maps were then

printed which contained alphanumeric symbols indicating the geographic
a

location of spectrally similar materials (Figure 8).	 ClusteringP	 Y	 g performed

with all four wavelength channels was not found to be optimal for obtaining

' spectral separability within the forested training area. 	 Comparison of

the cluster means and standard deviation values in all four channels showed

the cluster radiance means in channels 1 and 2 to be nearly identical,
i
r 

a
thereby causing a large amount of data overlap in two of the four clustering 1,

i
23
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Figure A. Forest training field cluster map. Symbols indicate the
location of spectrally similar materials.
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space dimensions. This resulted in the less than optimal separability.

Elimination of channels 1 and 2 in the clustering process increased

the number of separable clusters. A comparison of the separability

quotient values for a four channel, 12 cluster run and one using the two

IR channels alone, yielded fifteen separability quotient values of less

than 0.75 for the former and only one value of less than 0.75 for the

latter. A value of 0.75 is usually used as the "breakthrough" point.

Results obtained from other cluster runs are illustrated in Figure 9.

Further clustering analysis of the two IR channel,i` silg5ested the

presence of thirteen spectral groups. These were submitted; /to the statis-

tica,proceaaor which calculated the mean vector and covariance matrix

for each of ` the proposed forest classes.. The mean reflectance vector

for each forest class is presented in Table 2. In order to examine the

distribution of data within each class, this processor was also requested

to graph spectral histograms in all four channels. Examples of these

class histograms are shown in Figure 10. In every case an approximate

Gaussian distribution was exhibited. A coincident spectral plot of all

four ERTS-1 channels was also produced w',Jych illustrates the relative

amplitude of each classes' spectral response (Figure 11). Each bar on,

this graph is proportional to the mean class spectral response, + and -

one atdard deviation. As expected,' channels 1 and 2 were incapable

of differentiating the forest classes due - to radiance value overlap.

Channels 3 and 4, however, contained a wider range of mean spectral

values and, therefore, the ability to distinguish the thirteen classes.
i'

Feature selection was subsequently uti.li.zed to determine the com-

hination of available channels that would yield the most accurate clas-

sification results with a minimum amount of computer time. This function

ir	
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F,

j Table 2. Mean reflectance values for thirteen forest spectral classes.

4 SPECTRAL CLASS MEAN REFLECTANCE VALUES

1 2 3 4

1 26.08 15.44 45..42 26.29

2 25.72 15.02 42.44 24.93

3 25,09 14.70 40.96 24.60 i

4 26.38 15.92 41.11. 22.25

5 25.01 14.80 40.01 23.59 M

6 24.89 14.58 38.50 24.18
a

y

7 24.77 14.80 38.50 22.98 `.

8 25.34 15.34 38.65 21.65

9 25.45 15..1]. 37.50 20.24

j

" 10 24.73 14.63 36.60 22.33

11 24.81 14.84 35.48 20.57 3

12 25.08 15.20 33.22 18.88

j

13 24.96 15 . 29 29.38 16.07

J ^

i

a

i

i
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calculates the statistic transformed divergence, which is a "measure of

•the dissimilarity of two distributions"' and "provides an indirect measure	 ,

of the ability of the. classifier to discriminate successfu7.ly between

them" (Swain 1973).. 'the strategy utilized was to weight all classes

equally and: maximize the parwse transformed divergences. Table 3

presents a summary of the .feature .selection output. The combination of

all four channels performed best, producing the highest average (1960)

anti. largest minimum (1204). The infrared channels (3 & 4) also performed

well, yielding an average and minimum divergence reduced by 0,3^ and.

2.8$ respectively.. Poorest performance was displayed by the visible

channels (1 & 2), producing an average value a£ 422 and a minimum of 18.

Even though final classification employed all four ERTS bands,

clearly the IR bands alone would produce essentially the same classifi-

cation. The redundant information content of channels 1 ana 2 suggests

that spectral classification schemes based wholly on these bands . wo^zld	 ;

be unsuccessful.

In the last step oiE the analysis sequence, the classification.

algorithm, in conjunction with the printresults function, generated a
^`

map-like display (Figure 12). Each spectral class was depicted by a

user-defined alphanumeric symbol. .Overall training field classificatio^i 	 ,

performance was 96.O^k; • a figure which indicates +;he pattern recognition.

algorithm encountered very little confusion in mapping training field.

data. Application of an arbitrary threshold value (2.0) easily differ-

entiated materials dz.ssim]:ar to the mapped forest classes. .Lake Drummond,

in the swamp's interior, was coa.^^ectly thresholded, as were U.S. route

460 north of the swamp andagrcultuxal field: located along its eastern,

western and southern boundaries..

'r

1
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;, ^	 Table: 3. Summary of feature selection output ^Eor unsupervised classii^
cation (Rankedaccordir ►g to minimum divergence (DZ^'(MIN))}.

r

CHANNELS pIJ (NIIN} D (AVE)

1 2	 3 4 ],204 196Q

- 2	 3 4 ].189 1958

1 -	 3 9 1172 5.956

- -	 3 4 1169 1959.

1 2	 - 4 178 1661

1 2	 3 - 16.'^ 17 7F

1 - 4 5.29 5.625

- 2	 3 - 112 1756

- 2	 - 4 99 5.630

1 -	 3 - 71 1751

1 2	 - - 1$ 932.
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Subsequent classification map analysis centered upon determination

of the correspondence between spectrally similar ground cover (the map

symbols) and categories of informational value, e.g. deciduous or coni-

ferous forest, stand dens--y, etc. In an attempt to quantify classification

results, test fields identical to those used in the supervised classifi-

cation were analyzed. ' These fields represented three categories: 1) Atlan-

tic white cedar (Chama cy2aris thyoides), 2) Loblolly pine (Pinus taeda),

and 3) deciduous forest. Map symbols were counted within the test fields

in order to determine which symbol groupings might best represent each

category of interest. Symbol overlap between categories occurred; however,

an average classification performance of 82.5% was achieved by grouping

spectral classes 12 & 13 as Atlantic white cedar; classes 4, 9, and 11

as Loblolly pine, and classes 1-3, 5-8, and 10 as deciduous forest

(Figure 13). Realistically, the performance figure given above is too

high because deciduous and pine forest, which cover a large portion of

the swamp, were classified with only 77.8% and 69.8% accuracy respectively.

In contrast, though cedar's areal extent is small, its classification

accuracy of 100.0% was given equal weight in the calculation 
of 

average

performance; thus tending to produce an overestimation of classifier

accuracy.

Of 89,275 data points classified within the swamp, (each point

corresponds to approximately 1.1 acres) 5218 (5.8%) were classified as

cedar; 17,841 (20.0%) were classified as pine; 63,203 (70.80 were

classified as deciduous forest; and '301.3;(3.4%) were thresholded as not

being sufficiently alike any one of the training classes to allow clas-

sification.

Dense, monospecific stands of Atlantic white cedar corresponded

I

W.-
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closely to spectral class 13, which exhibited the most absorbent qualities

of the mapped spectral classes. Cedar misclassifications occurred, howevp--,

these were mainly ;c.,,fned to two areas. Several solitary incorrect map-

pings were noted around the shores of Lake Drummond, a phenomena which can

be attributed to pixel averaging of water reflectance and forested terrain.

Misclassifications also occurred within agricultural fields adjacent to

the swamp. These incorrect mappings may have been due to the presence of

standing water in the fields at the time_ of satellite data acquisition.

Spectral class 12 most closely corresponded to forest stands dominated by

Atlantic white cedar, but ,41iterspersed with a mixture of hardwoods;

mostly Red maple (Acer rubrum) and Sweet gum ( Liquidambar styraciflua).

By mapping the combination of spectral classes 13 and 13, a good repre-

sentation (100% test field accuracy) of the Atlantic white cedar present

-in the swamp was attained. Classification map interpretation suggested,

however, that the extent of swamp cedar cover was slightly overestimated,

a phenomena not reflected in the test field accuracy figure.

Test field analysis indicated that three spectral classes of inter-

mediate reflectivity ( 4, 9, & 11 ) yielded the most accurate representation

of Loblolly pine. As shown in Table 4, the classifier encountered con-

fusion in separating pine from deciduous forest. This was because the

three spectral classes chosen to represent pine overlapped with the decid-

uous forest category.

The swamp's deciduous forest was best represented by combining eight

spectral classes of relatively high reflectivity (1-3, 5-8, & 10). This

large number of classes is an indication of the comparatively wide range

of reflectivities which correspond to deciduous cover. None of the swamp's

plant communities associated with deciduous forest were uniquely mapped
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by the classifier. Two deciduous forest classes (1 & 2) corresponded to

the evergreen shrub bog community located in the swamp's southern portion.

Inability of the classifier to discriminate between this shrub bog community

and deciduous forest was due to their similar reflectances in the visible

and near infrared wavelengths.

Supervised Classification

Initial vegetational distribution ground truth was provided by winter

infrared imagery acquired at approximately 60,000 feet (1:120.000) ground

verification was employed to substantiate image interpretation. Study

site training and test fields were designated using this imagery as well

as gray scale printouts of the swamp. Training and test fields were

established in five categories of interest: 1) Atlantic white cedar

2) Loblolly pine 3) deciduous forest 4) ag`^icujture and 5) water. In

order to determine the number of Gaussian classes within each category,

the cluster algorithm was employed. Using separability data provided by

the cluster function, marginally separable classes were combined. Following

this training class refinement, Atlantic white cedar and Loblolly pine

were each represented by four classes; deciduous forest and water each by

five classes; and agriculture by six classes. The number of data points

for each refined spectral classis shown in Table 5. Lindenlalib (1973)

reported that in theory a lower limit on the number of training data paints

for any class is n + 1 (n being the number of channels used by the

classifier). He further suggested that 10 n be used as practical lower

limit, with 20 n to 100 n being optimal. Using the criteria suggested by

Lindenlaub, all classes, except two within water and two within cedar,

contained sufficient data points for a four channel classification (n = 4).

In the subsequent analysis step, the mean vector and covariance matrix

34
1
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Table S. The number of clusters in each category before and after refine-
'; ment and the number of data points in each refined cluster.

Original	 Refined No. of
Category Cluster No.	 Cluster No. Data Points

1	 T 34
2	 II 34

Cedar 3
1II 61

4
5 IV
6 86

1
^.

I
2

95 A,

Pine 3	 TI 68

* 4	 III 85:
5

6	 IV 44
y	 y

tV

1	 T 206
2

'
3	 II 336

r

Deciduous 4
5	 III 113
6	 IV 2577

8	 V 91

1	 I 27
2

a

Water 3	
II 190

4	 1II 83
5	 IV 78,
6	 V 22

jr

1
12 258

3	 11 112

Agriculture 4
- 5	

211 103

6	 IV 50
7	 V 76
8	 VI 118

r

l.
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of each of the twenty four classes were calculated. in addition to the

r
statistics information, the statistics processor was requested to graph

histograms of each training class in all four channels. In every case

an approximate Gaussian distribution was displayed. A coincident spectral

plot, also produced by the statistics processor, is shown in Figure 14..

As depicted by this plot, channels l and 2 displayed the ability to

distinguish between forest and agriculture, but were unable to differentiate

categories within forest, e.g. pine, cedar and deciduous forest. In contrast,

-channels 3 and 4 demonstrated the ability to distinguish pine, cedar and

deciduous forest, but were unable to differentiate between the general

categories of forest and agriculture.

Feature selection was employed to calculate the transformed divergence

between all class pairs. Designated class pairs were differentially weighed

in this calculation. For example, a weight of zero was assigned to all

class pairs within cedar because a classification error within this category

was immaterial to classification accuracy (pine, deciduous forest, water

and agriculture were treated similarly). Table 6 is a summary of the

minimum and average interclass divergences for all channel combinations of

4, 3, and 2. The combination of four channels produced both the highest

average divergence (1981) and largest minimum value (1215). Poorest

discrimination was displayed by channels l and 2, which produced average

and minimum divergences reduced by 17.2% and 97.4% respectively. In every

channel combination investigated, minimum divergence occurred when deter-_

mining the statistical distance between forest classes. Seven of the

eleven minimum values occurred when calculating the divergence between

Loblolly pine and deciduous forest; thus indicating the similarity of

their spectral signatures using August imagery.
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Table 6. Summary of feature selection output for'supervised classification
(Ranked according to minimum divergence'(DIJ(MIN))).

Channels DIJ(MIN)	 D(AVE)

1 2 3	 4 1215	 1981

- 2 3	 4 995	 1974

1 2 3	 - 996	 1963

{ 1 - 3	 4 958	 1975

1 3 -	 4 +771	 1952

1 - 3	 - 726	 1947

- - 3	 4 709	 1951

- 2 3	 - 502	 1947

1 - -	 4 420	 1937
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Output of the classification function, combined with a prntresults

program, produced several classification maps of the Dismal Swamp

(Figures 15-18).	 Alphanumeric symbols were chosen to depict the geographic

location of various categories of interest, e.g. Atlantic white cedar,

deciduous forest, coniferous forest, etc.	 These symbols were changed

throughout the analysis in an attempt to bring about easier visual pattern
r

recognition.	 Hand coloring of the printer output, though very time con- s

sliming, was also found effective as a means of increasing class pattern

visibility.	 Of 89,275 data points classified within the swamp, 3746 (4.2%)
i

were classified as cedar and 18,001 (20.2%) wore classified as pine, i.e.

24.4% classed as coniferous forest.	 Deciduous forest was estimated to

cover 69% of the swamp, almost three times the area of coniferous forest.

This deciduous cover estimation did not differ significantly (F = 0.05)
1

from an earlier estimation of 65s (Anonymous, 1974). 	 Agricultural clas-

sifications accounted for 3.5% of the swamp's area. 	 These classifications

primarily corresponded to clear cut areas and natural forest openings, as

well as recently burned areas. 	 Only 3.,2% of the data points were thresholded

as not being sufficiently alike any one of the training classes to allow

classification.''

Five classifications, using selected channel combinations, were per-

formed to determine the re-lative value of the visible (0.5-0.7 Um) anc,;near

IR wavelengths (0.7-1.1 pin) for mapping features of ?nterest. 	 Channel *T

combinations utilized in this investigation were: 	 1) all four channels -

2) channels 1, 2, 3 (one IR channel deleted)	 3) channels 1, 3, 4 (one

visible channel deleted) 	 4) channels 3, 4 (visible channels deleted) 	 and

5) channels 1, 2 (near IR channels deleted). 	 For each classification, an

estimate of classifier accuracy was provided by test field performance.

r
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Tables 7-11 display the test class performance values obtained using each

channel combination. From these data, Figures 19-26 were constructed which

illustrate percent correct classification as a function of channels employed.

As indicated in Figure 19, an average test class accurar77 of 88%

(all categories considered) was equalled or exceeded by each of the three

and four channel combinations. Deletion of the visible channels reduced

classifier accuracy by approximately 6%. This reduction in accuracy was

primarily due to confession in the recognition of pine, deciduous forest

and agriculture. The visible channels alone were much Less accurate than

the other channel combinations, producing an average accuracy value of

70.3%. This reduced accuracy was due primarily to inability of the clas-

sifier to distinguish between cedar and deciduous forest.

Evaluation of the ability of ERTS-1, data to accurately map combined

forest (pine, cedar and deciduous forest) was a primary research objective.

Figure 20 illustrates the degree to which the five channel combinations

were able to distinguish combined forest from nonforest (water, agriculture).

All channel combinations, except one, produced test accuracies in excess of

95%, indicating the relative ease with which this category was classifies'.

Deletion of the visible channels reduced classifier accuracy to 90.5%, an

accuracy loss due to the similar spectral responses of pine, cedar and

agriculture within the near infrared wavelengths.

Figure 21 illustrates the combined conifer classification accuracies

produced by the five channel combinations. Channels 1, 3 & 4 exhibited

the highest classification accuracy (91.7%)i however, channels 1, 2, 3 & 4

and channels 1, 2, & 3 performed within 5% of the best channel combination.

Deletion of the visible channels in the classification caused a 10% reduction

in test accuracy, brought about primarily by confusion in the classification

I
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of conifers, deciduous forest and agriculture. The lowest tE °st class

performance was produced by the visible channels (77.20, where decreased

discrimination between conifers, deciduous forest and water accounted fox

the. lowering of classification acc^`racy.

x,ob1o11^ pine was one of the .lost difficult of the forest categories

to classify. As Figure 22 indicates, test perfoxmence accuracies exhibited

by c;^ennels 1, 2, 3, & 4 and channels 1, 2, & 3 were within S^ of the highest

accuracy (83.40, produced by channels 1, 3 & 4. Classification performed

using the infrared channels .alone encountered confusion between the pine

and deciduous forest categoric,;, thereby reducing classification accuracy

to 69.8. Utilization of thF,. visible channels alone produced an ^znrealistic

test accuracy of 88,5= 7.'h.:ls ^ralue is misleading because comparison of the

classification map with cGlor 1R photography indicated the extent of pine

within the swamp was gros.^ly overestimated.

Atlantic white cedar test accuracies indicate this conifer was the

most accurately classfe3d of the forest categories. These high accuracies

are the result of cedar stand homogeneity and the distinctive spectral

signature wh.'Lch characterizes these stands. Figure 23 shows that channels
^*

1, 3, & 4 exhibited the highest classification accuracy (93.b^), however,
. e

three other channel combinations, including the TR channel, combination, 	 ^.

produced similar test accuracies. Deletion of the ^R channels. reduced

test accuracy. to an extremely low level (38.7}.

Greatest classifica ion difficulty occurred in mapping the swamp's

deciduous forest. Figure 24 illustrates the influence of channel sel^;ction 	
r^^ -^

on.classification accurac	 As indicated, four out of five channel com-

Y
binations exhibited test accuracies in excess of 78^, with the highest	 ^ '''^

^^
^:	 r

accuracy (81.40 being produced by ah four channels.. It is interesting to
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t *^	 Hots that deletion of the visible wavelengths did not degrade deciduous

	

°'	 fo.^^:st classification accuracy as it did with. Loblolly pins, Loss of the

`,'	 infrared wavul^3ngths, however, caused a precipitous drop ^.n tesic accuracy► 	 '
^t

	

.	 to '31.8, thus demonstrating the importance of the IR wavelengths in

deciduous tor-est classifications.

Each of the five channel. combinations classi^'ied water within the

swamp (Lake Drummond) with a highdegree of` accuracy.. As Figure 25 indir:^tes,

all channel combinations, except one, exhibited classification accuracies

in eascess of y7^. The tv!o visible channels alone,.produced aslightly lower

accuracy of 94.8, brought about by confusion betwee,^ cedar and water,

As figure 26 illustrates, agricultural areas adjacent to the swamp

were generally classified with a high degree of accuracy.. Channels 1 and 2

attained the highest classification accuracy (.97.70 of the channel com^

b.nations investigated. Also performing well were the combinations of

four and three channels, producing test accuracies within 5^ of the best

channel rQmbination. The ;near infrared channels alone were least effective

in classifying' agriculture, producing a test accuracy of 77.4%. This

accuracy loss was primarily due to inability of the classifier to die-

criminate between coniferous forest and agriculture.

Glassfication Problems

Problems encountered in mapping vegetation within the ^.^ismal Swamp

were often related to site complexity.. The swamp': plant communities

usually grade from one into another without sharply defined boundaries.

This leads to a situation of natural randomness that males classification

into meaningful catzgories difficult.. The only monaspecific community that

exists within. the swamp is Atlantic white cedar, a fact clearly reflected

in the high cedar classification accuracy... The other plant communities axe
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characterized by the presence of unevenly distributed tree and/or shrub

species. This greatly increases classification difficulty by adding to

the problem of designating representative training and test areas.

Another difficulty inherent in mapping diverse vegetation with low

resolution MSS data includes pixel averaging. Because tree and shrub
r

species that comprise the swamp's plant communities are, of course, much

smaller than the 80 meter square pixel size, and are distributed unevenly,

spectral characteristics recorded by the scanner will not always be an

accurate indicator of specific species composition. Hypothetically, at

certain times of the year, a pixel containing a mixture of 25% Loblolly

pine and 75% Red maple may have average reflectance characteristics

identical to a pixel averaging the reflectances of 50% Yellow poplar

(Liriodendron tulipifera), and 50% Sweet gum. Scanner data obtained

during subsequent seasons of the year may remove this spectral signature

ambiguity.	 J

Problems were also encountered in attempting to locate, with any degree

of certainty, the position of specific forested areas in ERTS-1 digital

data. This was primarily due to: 1) the northeast-southwest skew con-

tained in ERTS-1 MSS data 2) lack of large, identifiable, land features

within the swamp (exce;t Lake Drummond) and 3) rectangular computer output

format. These problems were solved to a degree, in that locations in the

round scene can be generated b an aftine may	 ppzrg transformation developed

by Blais (1975).

h,

4

rye,..
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CONCLUSIONS

Swamp Vegetation Ma_ppinu Capability
4!s

ERTS-1 MSS data and LABS' automatic data processing techniques were

applied to mapping swamp forest cover. Supervised classification accuracies

in excess of 95% were attained which illustrate the classifier's forest 	 r

cover mapping ability. The swamp's coniferous forests were classified well,

producing an average test accuracy of 92%. Deciduous forest within the

swamp was differentiated less successfully, yielding an 81% average test

accuracy. The primary reason for this reduced classifier accuracy was

confusion between deciduous forest and Loblolly pine. Classification

performance could probably be improved by analyzing data acquired during

the winter months, when differences in coniferous and deciduous reflectance

spectra are maximized.

Atlantic white cedar, floristically the least complex plant community

within the swamp, was very accurately mapped by the classification algorithm.

Additionally, the swamp's evergreen shrub bog community was located using

unsupervised classification techniques, though it was not mapped as a

unique feature by the classifier. Discrimination of the swamp's deciduous
vY

plant communities was not possible due to the similarity of their summer	 y

spectral reflectances. Successful discrimination of these phytocommunities

will probably require an indirect classification method, such as determination

of water availability within the swamp during the winter months. Using

this technique, the probable location of hydric and mesic deciduous plant

communities could be determined.

Channel Combination Study

Results indicate both the visible an q near infrared wavelengths are

valuable for mapping swamp vegetation. The near IR wavelengths were most

f	 64
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useful in differentiating forest categories, e.g. Loblolly pine, Atlantic

white cedar and deciduous forest, but sometimes confused forest cover

classes with other categories. The visible wavelengths alone succesfully

differentiated forest from nonforest, but performed very poorly when

classifying pine, cedar and deciduous forest. Addition of one IR channel

to the visible channels or one visible channel to the IR channels, sub-

stantially increased classification accuracy. Utilization of the spectral

information in all four ERTS--1 channels did not appreciably increase

classifier accuracy.
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