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APPLICATION OF SATELLITE DATA AND LARS' DATA PROCESSING TECHNIQUES TO
MAPPING VEGETATION OF THE DISMAL SWAMP.

Jeffrey A. Messmore. Dept. of Biology, 0ld Dominion University, Norfolk,
Va. 23508.

This study concerned the feasibility of using digital satellite
imagery and automatic data prorigssing (ADP) techniques as a means of
mapping swamp forest vegetation. Multispectral scanner data acquired by
the Earth Resources Technology Satellite (ERTS-1; renamed LANDSAT-1l) was
analyzed using ADP techniques developed by Purdue University's Laboratory
for Applications of Remote Sensing (LARS). The site for this investi-
gation was the Dismal Swamp, a 210,000 acre swamp forest located south
of suffolk, Va. on the Virginia-North Carolina boxder.

Two basic classification strategies were employed in determining the
vegetation mapping capability of ERTS-1 data. The initial classification
utilized unsupervised techniques which produced a map of the swamp indi-

cating the distribution of thirteen forest spectral classes. These classes

were later combined into three informational categories: BAtlantic white
cedar (Chamaecyparis thyoides), Loblolly pine (Pinus taeda), and deciduous
forest. The subsequent classification employed supervised techniques
which mapped Atlantic¢ white cedar, Loblolly pine, deciduous forest, water
and agriculture within the study site. A classification accuracy of
82.5% was produced by unsupervis:d techniques compared with 89% accuracy
using supervised techniques. Results attained suggest ERTS-1 data and
ADP techniques can be successfully applied to mapping some types of swamp
vegetation.
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INTRODUCTION

1

The cui;ent trend toward urbanization and continued population growth
have increased demanCs on our forest resources. In order to ensure effective
management of this valuable natural asset, a large data base obtained in
a timely manner is required. A tool which may prove to be very useful in
this area is the Earth Resources Technology Satellite (ERTS-1; row designated
LANDSAT-1) launched in July, 1972. Large quantities of digital imagery
have been generated, however, the applicability of this data to specific
problems remains to be fglly investigated: Application of digital satellite
daté to forest management problems involves the processing of extremely
large quantities of data; a task for which computer technology is well
adapted.

This study examined the feasibility of applying ERTS-1 multispectral
scanner (MSS) data and automatic data processing (ADP) techniques to
mapping swamp vegetation. QOmputer—aided analysis of ERTS~-1 data;ras
applied to forest vegetation mapping, has not been extensively investigated
and comparatively little has been published on this phase of satellite data
application. Erb (1973) utilized ERTS~1 data to detect, identify, and
measure forest and agriculture features of interest. Additionally, auto-
matic classification techniques were applied to a forested area near Cloguet,
Minn. by Kirvida and Johnson (1973). Heath and Parker (1973) also used
automatic computer processing techniques to map timber stands and range
plants in the Houston, Texas area.

The site of thisrinvestigaﬁion wag the Dismal Swamp, a 210,000 acre
swamp forest, located within the Virginia cities of Suffolk and Chesapeake,
aﬁé the Noxth Carolina counties of Currituck, Camden, Perquimans, Gates

and Pasqudtank (Figure 1). This swamp is one of the largest wilderness
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Figure 1. Location of the Dismal Swamp study site.
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areas remaining within the Middle Atlantic coastal plain. Most of the
swamp is privately owned, except for 49,000 acres which constitute the
Dismal Swamp National Wildlife Refuge. Lumbering companies continue to
log sizable areas, especially in the North <arolina portion. In addition,
forest land is being reclaimed for agricultural purposes in the northeast
and southern boundary areas.

Vegetation of the Dismal s&éﬁp-was characterized by Meﬁnly (1973), as
including five major plant communities: 1) Semihydric oxr deep water forest,
2) Semihydric or mixed swamp forest, 3) Mesic forest, 4) Atlantic white
cedar forest, and 5) Evergreen shrub bog‘community or pocosin. In‘1972,

Walker r&yﬁxted the results of extensive quantitative sampling of Dismal

Swamp plant communities. She concluded that the swamp's communities

’ exhibit intergradation and species overlap due to the broad tolerances of

individual populations. These factors have combined with disturbancerio
create a complex mosaic of interxsrading community types.

Research Objectives

The following objectives were established in oxrdex tq evaluate the
overall utility of ERTS-1 MSS data and automatic data préeessing techniques
as a means of mapping vegetation within the Dismal Swamp.

(1) Evaluate the ability of automatiec data processing

techniques and ERTS-1 data to accurately differentiate
between fbrestedi=dé nonforested areas.

(2) Determine the relative value of the visible (0.5-0.7 um)

and near infrared channels (0.7~1.1 um) for mapping
forest vegetation.
(3) Evaluate the ability of automatic data processing techniques

and ERTS-1 data to accurately classify deciduous and coniferous



forest cover.

(4) Determine the extent to which specific tree species oxr
phytocommunities can be accurately mapped using ERTS~1 data
and ADP techniques,

Remote Sensiny Development

Lindenlaub (1972) defined remote sensing as '"the science and art of
acquiring information about material objects #%rom measurements made at a
distance without coming into contact with the objects'". A remote sensing
device that is well established as an effective means by which scientists
may map plant communities, study successignal changes, and identify plant
species is aerial photography. Though both black and white and color
aerial photography have been used for some time, application of color
infrared photography to scientific inquiry is a relatively recent develop-
ment, growing out of the military's use of infrared film for camouflage
detection. The infrared photographic process enables one to visibly
record the high reflectivity of vegetation in the near infrared wavelengths.
The spectral range of infrared photography is rather limited, having a
practical wavelength limit of 1.35 um. Photographic sensing of longexr
wavelengths would require cooling the camera and f£ilm to the temperature
of liquid nitrogen to prevent film fogging (Kodak, 1972). In addition,
photographic daéa is more qualitative than quantitative in nature and

; .
thg;éfore\is notfieadily adaptable to automatic data processing. Relatively
recent developments in remote sensing hardware have allowed energy recording
in the electromagnetgc spectrum far beyond the region to which photographic
processes are effective. Holter (1970) outlined four principal character-

istics of electromagnetic radiation that can be employed in remote discerimi-~

nation of unknown materials:

ey
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(1) spectral variation

(2) polarization variation

(3) spatial variation

(4) temporal variation

A variety of instruments capable of multispectral sensing are available
which may be mounted in aircraft or satellites. One type of a sensor that
is often utilized in remote sensing systems is the multispectral scannex.
This instrument records the radiation reflected and/or emitted from a
small area on the earth's surface simultaneously in several discrete regions
of the electromagnetic spectrum. Discriﬁgnation between target materials
is achieved by the differential reflectance or emittance of materials in
these regions, or channels, within the energy spectrum, This differential
response to radiation in various wavelengths iz the foundation upon which
remote sensing is built.

Although the electromagnetic spectrum consists of wavelengths which
extend from radio waves (107m) to cosmic rays (10718m), the region of most

interest to those engaged in remote sensing is from 0.3~15 um. Hoffer and

Johannsen (1969) subdivided this portion of the spectrum into the following

regions:
(1) 0.3-0.7 um optical wavelength region
(2) 0.7-3.0 um reflective infrared region
(3) 3.0-15 um emissive or thermal infrared region

The reflective wavelength range has been furthexr subdivided (LARS, 1970)
on the basis of plant spectral response as follows:

(1) 0.3-0.72 um region whexe lecaf pigment (primarily
chlorophyll) predominates

(2) 0.72~1.3 um very little absorption takes place in
this region, and most incident energy
is either transmitted or reflected

ey
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(3) 1.3~2.6 um water absoxption dominates the
spectral response of this region

Atmospheric Considerations

Lozal weather conditions, as well as variation in illumination, can
affect é%e nature and quality of remotely sensed data. Atmospheric
phenomena causz attenuation logses that are the result of scattering,
absorxption, and reflection of radiation. As shown in Figure 2, ozone
found in the upper aémosphere strongly absorbs the ultraviolet portion of
the spectrum while electromagnetic enexrgy at the infrared end is gradually
reduced by water vapor and CO, absorption. In order to ;VQid the strongly
attenuated wavelengths, sensor data is acquited through'atmospheric
windows, or regions within the energy spectrum where a large percentage
of the total emitted or reflected radiation is transmitted.

Plant Reflectance

Radiant energy is reflected and transmitted by a plant leaf in a
manner that is characteristic of pigmented cells containing water solu-
tions. Other factoxs which affect the spectral quality and intensity of
plant reflectance and emittance are leaf geometry, morphology, physiology,
chemistry, soil site, and climate (Qatcs, 1970). The reflectance spectrum
of a typical mature green leaf is shown in Figure 3. It shows high leaf
absorption in the ultraviolet and blue portions of the electromagnetic
spectrum, comparatively low absorption in the green and high absorptidh
again in the red wavelengths. In the near infrared (0.7-1.3 um) the?e is
very low absorption, aand thus high‘reflectance and transmittance followed
by vgry‘high absorption in the infrared at 1.45 um and 1.95 um.

Energy absorption within leaf pigment molecule; takes place as a
result of electron transitions which require high energy photons. Pigment

molecules do not absorb the near infrared wavelengths which are of lower
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energy content. At longer infrared wavelengths, water and other molecules
within the leaf dominate the leaf spectral response as they undergo low
energy vibrational and rotational quantum transitions (Ga;gs, 1967) . Enexgy
absorbed by the leaf in the visible wavelenéths is utilized within the leaf
for photosynthesis and the production of plant nutrients. Energy absorbed
between 0.7-1.3 um, however, is converted into heat within the leaf. For-
tunately, a leaf reflects and transmits the near infrared well and absorbs
relatively little. In this way a sunlit leaf is able to remain substantially
‘cooler than it would if it maintained high absorption in the near infrared;
a high energy region where over 50% of incident sunlight enexgy is concen-
trated (Gat?s, et al. 1965).

According to Myers (1970), leaf reflectance in thy near infrared to
1.3 um is due primarily to the physiological ééructure of the plant leaf.
Gates et al. (1965) felt that near infrared leaf reflectance was probably
a function of cell shape and size as well as the amount of intercellular
.space. Gates' hypothesis is largely supported by Woolley (1971) who
reported that diffuée cellulose reflectance is primarily responsible for
the infrared reflectance character of a dried leaf, while the infrared
reflectance curve of a fresh leaf is dependent on a combination of diffuse
cellulose reflectance and H,0 absorption bands. While working with salinity
stressed cotton, Gausman et al. (1969) found that changes in internal leaf
structure were the primary causes. for differential reflection response in
the 0.75~1.3 um range. They associated increased;reflectance with thicker
leaves, having more pronounced palisade develogééht, loosely arranged spongy
mesophyll, and consequently more cellular interfgces where reflectance
might occur.

Leaf orientation to incident sunlight can significantly alter the
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intensity of reflected spectral radiation in some regions of the electro-
magnetic spectrum. Cotton leaf stacking experiments by Myers et al. (1966)
have shown that in the visible wavelengths, using any combination of
stacked leaves, there is no change in xeflectance. Th@s evidence indicates

O
-f

that the topmost exposed leaves are %ﬁe only ones responsible for reflectance
intensity iglthe visible wavelengthsj However, in the near infrared, reflec-
tance of two leaf layers increased approximately 17% over that of one layer.

As the number of leaf layers increased up to six layers, reflectance increased.
Myers felt the probable explanation for this phenomena is that light trans-
mitted through the top leaves is paftly reflected from and partly transmitted
through the lower leaves. Infrared radiation reflected upward from the

lower leaves augments the reflected light from the surface of the leaves.

One must be cautious, however, when applying laboratory derived data to
natural scenes. This was demonstrated by Stoner and Baumgardnexr (1972)

when they reported that for agricultqral crops, canopy reflectance is much A
less than for a single leaf because o;her scene parameters such as illumi-
nation angle, leaf orientation, shadows, and non-foliage background (primarily
soil) cause reflectance attenuation. Knipling (1969) estimated that visible
reflectance from a crop cancopy may be 3—5% while that ‘for a single leaf is
10%. He also noted a 30% reduction in the near infrared reflectance of a
complete canopy as compared to the reflectance of a single leaf. This
observed reduction in the visible and near infrared reflectance can be

accounted for when the previously mentioned attenuating phenomena are

considered,



METHODS and MATERIALS

In July of 1972 the National Aeronauti¢s and Space Administration
(NASA) launched ERTS-1 as part of a program to demonstrate the applica-
bility of remote sensing to the management of earth's resources. The

satellite was launched in a circular, sun synchronous, near~polar orbit

gt”én altitude of 494 nautical miles. Evexry 18 days at the game local

\.time the satellite's ground trace repeats its coverage. Optical energy

is sensed by a four channel multispectral scanner which uses an oscillating
mirror to continuously scan perpendicula; to the spacecraft velocity in
swaths of 100 nautical miles (NASA, 1972). A single resolution element
(pixel) within that swath is rectangular and measures épproximately 60 x

80 m (Todd et al. 1973). Ilectromagnetic ensrgy is sensed simultaneously
by an array of detectors in four wavelength regions (Table 1).

On August 30, 1973, ERTS-1 imaged an area 100 x 100 nautical miles in
the middle Atlantic Coast region of the United States. Contained within
this image wos the Dismal Swamp. Data collected over the swamp was analyzed
with automatic data processing technigues developed by Purdue University's
Laboratory for Applications of Remote Sensing (LARS). Analysis involved
the use of a remote computer terminal located at the NASA Langley Research
Center, Hampton, Va. This terminal was tied into an IBM system/360 model
67 computer at Purdue University. Data processing required the utilization
of six LARS computer programs, normally performed in the following sequence:
1) Pictureprint 2) Cluster 3) Statistics 4) Feature selection 5) Clas-
sifypoints and 6) Printresults (Figure 4).

Classification Strategies

Both supervised and unsupervised classification strategies were employed

in mapping vegetation within the swamp. The basic difference between these

11
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Table 1. Spectral range of ERTS~1l bands and corresponding LARS channels.

ERTS~-1 Band LARS Channel Spectral Range (um)
4 1 ' 0.5 - 0.6
>5 2 0.6 = 0.7
6 3 0.7 - 0.8
7 4 0.8 - 1.1

ek e e e ok b
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iy Figure 4. LARS data processing sequence (revised from Coggeshall and
Hoffer, 1973).
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two methods lies in computer training (See Figure 4). When using super-
vised classification techniques, ground trxuth is available and the computer
is trained to recognize known materials by their spevftral response. In
contrast, unsupervised classification techniques are employed when ground
truth is not available or is insufficient to develop a supervised classi-~
fication. When using this method, the computer is trained wholly on the
data's spectral composition. .

The supervised classification of data acquired over the swamp involved
first identifying areas of interest where ground truth information was
available at the time of data acquisitioﬁ, then defining these areas to the
computer. After training samples were selected, statistical parameters which
characterized the spectral response of known grouné features were computed,
These were subsequently utilized by the pattern recognition algorithm to
classify each data point within the swamp into one of the designated material
classes.

Unsupervised classification began by defining as training fields those
areas within the study site that contained representative ground features.
This information was divided into a number of clusters, i.e. spectral
classes, based on the distribution of spectral ihformation within the
training field data. The reflectivity of each cluster was then dgfined iy
statistically. Data points representing unknown ground features within
the swamp were subsequently classified into one of the statistically defined
spectral classes by a pattexn recognition algorithm. - Final analysis centered
upon determination of the relationship between the mapped spectral classes
and known surface data, i.e. ground truth comparison.

Pictureprint

The first program run in the analysis sequence was the pictureprint

-
il
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function. This program produces a gray scale printout resembling a low
resolution photograph (Figure 5). Each pixel within the printout is é

located by a specific column and line number. The pictoral character of

R

the printouts is attained by assigning alphanumeric¢ symbols to radiance

levels within each channel. Highly reflective areas were assigned

symbols which covered a low percentage of the printout, e.g. =--- and

absorbent areas dense appearing symbols, such as MMM. Be.ause the data

are not evenly distributed between the highest and lowest radiance values,
. f symbols cannot be assigned so that each represents an equal range of
radiance. Instead, to achieve maximum contrast within the pictureprint, °
the data are histogrammed and symbols are assigned bins of radiance values
so that each will occur with approximately the same frequency (Figure 6).

The gray scale printouts were often very useful for identifying

areas of known composition within the data. Thase areas could then be
designated as ground truth sites and used to train the computer to
recognize similar materials. For example, training fields in agricultural
investigations may correspond to specific crop species, such as oats or
corn; while in forestry studies, coniferous and deciduous forest, or pure

stands of a tree species may be designated. Usually only some of the

i

ground truth areas were used to train the computer; remaining areas were
employed later for testing the accuracy of the completed computer classi-
fication. Training fields werxe located through the designation of column
and line numbers corresponding to natural boundary lines. ’If these bound-

. aries were not rectangular in shape, a number of small reccangular fields
were used to define the desired training area. |
Cluster

The next program employed in this analysie was the cluster function.
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Pictureprint of a portion of the Dismal Swamp (channel 4 data).
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This program was necessary because the pattern recognition algorithm
assumes that each class can be characterized by a multidimensional
probability function. The researcher must determine if this assumption
is a valid one for each of the chosen training classes. Clustering the
training samples for each class, e.dg. Loblolly pine, Atlantic white
cedar, etc. determines whether or not the multispectral data is Gaussian
(unimodal) in nature and provides a means for dividing the training
classes into approximate Gaussian sub-classes if the original data is
non-Gaussian (Lindenlaub, 1973). CIusteg function options allow the
researcher to choose any combination of available spectral bands, as

well as the number of cluster groups to be separated within the data.
Linder"aub (1973) suggests, however, that the analyst designate a

number of spectral groups which is twice the expected number of separable
clusters. If one specifies a larger number of spectral clusters than

is actually present, the computer will reduce this number sequentially
until the maxinum number actually present in the data has been found.
iaring the clustering operation, training class data were examined, and
the entire set of data were statistically divided into a number of groups;
each containing data points having similar spectral characteristics 7
(Hoffer et al. 1972). Preprogrammed alphanumeric symbols were used to
map the cluster groups within the training data. In addition to the
printing of cluster maps, tables conted aing the meaans and variances of
each class, as well as the pairwise separability values between all
class pairs were listed. These data were useful in determining the

number of spectral clusters that could reasonably be separated within

VL S

the training data. Lindenlaub (1973) suggested using the pairwise gquo-

tient value of 0.8 as a rule of thumb breakpoint for separability. He
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emphasized, however, that this breakpoint, although pretty well established
through extensive experience with agricultural data, is problem and data
dependent. If the separahility data indicated that some clusters were not
sufficiently separable, these spectrally similar groups were combined.

It was often found that a training field composed of an agparently homo-
genous ground cover could be bettexr represented by three or four classes

in order to more accurately approximate a Gaussian data distribution.
Statistics

The pattern recognition algorithm classifies data on the assumption
that spectral information derived from th; various training classes can
be characterized by a Gaussian probability density function. Each density
function can therefore he defined by its mean vector and covariance matrix.
All rour channels were employed in estimating each training classes' mean
vector and covariance matrix.

In addition to computing mean vectors and covariance matrices, the
statistics function produced training class histograms in all ERTS~1
channels. These histograms served as a partial check as to whether the
training class mult®jpectral data was Gaussian in nature. Lindenlaub
(1973) reported that the histograms are only a partial check on the data
distribution because they depict only the marginal density functions and
do not necessarily represent the multidimensional density function as a
whole. If a class histogram shows a multimodal pattern, the data is
probably non-Gaussian and indicates that further refinement of the training
class is necesséxy.

Feature Selection

This processing function was used to determine which features, or

channels, within the scanner data were best to it in the final c¢lessification.

s
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This was not an acute problem with four channel ER:3-1 data because of
the small number of channels available. However, with twelve channel
aircraft data, studies have shown that as few as four or f£ive channels
may be utilized without seriously compromising classification accuracy
(Lindenlaub, 1973). Use of additional features in the classification
step substantially increases the amount of computer time necessary.

This program calculated the statistical distance in N-dimensional space

(N = number of channels) between the training classes that had been
provided it. The requested chénnel combinations were then »ranked in
terms of the averzje or minimum pairwise éistance between all class pairs.
Flexibility is added to the program through the capability of differentially
weighing designated class pairs in computing the average or minimum distance
between classes. This could be used, for example, if the analyst had
found four spectral classes within forest, though the classification
objective was to map forest as a single entity. Since a classification
mistake between the four forest classes would be immaterial to classifi-
cation accuracy, the distance between these classes would be given a
lower weight. As can be observed in the sample “eature selection output,
(Figure 7)‘interclas§21ivergence (a measure of class dissimilarity)
saturates at a wvalue of 2000. However, Lindenlaub (1973) reported that
statistical distances on the order of 1700 di larger will generally yield
satisfactory classification accuracies. If it was found that the statis-
tical distance between significant materials was low, it was sometimes
necessary to repeat one or more of the previous analyses in an attempt

to increase the critical divergence values.

Classification

Study site classification, the last step in the analysis sequence,
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was the culmination of all previous analyses. Inputs to the program
included a statistics deck, the selected combination of channels, and
coordinstes of the area to be classified. The pattern recognition
algorithm was used to individually classify each pixel into one of the
statistically defined training classes on a maximum likelihood basis.
Test fields were designated to estimate classifier performance. These
fields were examined and each data point was individually classified
into its most likely training class. Results of this process were
employed to determine classification accuracy.

Output of the classification function, combined with a printresults
grogram, produced a classification map with alphanumeric symbols repre~
senting deSignated material classes. The computer also calculated howr
accurately it classified ;gaining data by comparing the classification of
each point in the training fields with the initial ground truth desig-
nation. A high level of agreement indicated there was little confusion
within the training statistics for the various designated materials,
and the classes were being accurately separated. When agreement in
test and training fiéld performaiice was low, redefinition of the classes
was necessary.

Thresholding was utilized during the generation of classification
maps. If this option had not been applied, the classification algorithm
would have included every data point into the class it most nearly
resembled, even thouéh resemblance was remote. Thresholding allows the
researéher to arbitrariiy screen out those picture elements nét demon-
strating a high degree of correlation with user-designated spectral
classes. Thresholded points appear as blank spaces on the final clas-

sification map.

S e mmeess . T C TR AT R R Sl SR B e i PR VI e
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: RESULTS and DISCUSSION

Unsupervised Classification

. The initial analysis step produced;gray scale printouts of the:
study area_in all four ERTS-1 channels. These printouts were compared
with black and white, color and color IR aerial imagery of the swamp.
Pictureprints of the data ih channels 1 and 2, 0.5~0.6 ym and 0.6-0.7 um

respectively, produced the best delinpation of swamp boundaries with the

7
]

ng clearly defined. 1In

W

Suffolk scarp on the swamp's western'éqyw
addition, U.S. route 460 and the Norfql?ﬁéndJWestern railway were
P

discernable cutting east to west agfbss the northern region of the swamp.

Pictureprints produced of changéié 3 and 4, 0.7-0.8 uym and 0.8-1.1 um

; ‘ respectively, were especial%fuuseful in the delineation of water, due to
its high absorbancy in thege:wavelengths. Lake Drummond, located in the
swamp's center was clearly difﬁerentiated from the surrounding forest,
however, none of the numerous dréinage ditches located in the swamp
could be identified. This is believed to be due to tree overhang and
the characteristic low water levels of the swamp in August.

’ In order to determine the distribution of spectral informa;ion

collected from the swamp, the clustering algorithm was run on eleven

training fields (15,894 data points). Cluster results maps were then
printed which contained alphanumeric symbols indicating thé geographic
location of spectrally similar materials (Figure 8). Clusﬁ;ring performed
with all four wavelength channels was not found to be opti;al for obtaining
spectral separability within the forested training area. Comparison of

the cluster means and standard deviation walues in all four channels showed

the cluster radiance means in channels 1 and 2 to be nearly identical,

thereby causing a large amount of data overlap in two of the four clustering

. 23
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Figure 8. Forest training field cluster map. Symbols indicate the
location of spectrally similar materials.
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space dimensions. This f;sulted in the less than optimal separability.

Elimination of channels 1 and 2 in the clustering process increased
the number of separable clusters. A comparison of the separability
quotient values for a four channel, 12 cluster run and one usiﬁg the two
IR channels alone, yielded fifteen separability quotient values of less
than 0.75 for the formerland only one value of less than 0.75 for the
latter. A value of 0.75 is usually used as the "breakthrough" point.
Results obtained from other clusterkruns are illustrated in Figuie 9.

Further clustering analysis of the two IR channelﬂféﬁggested the
N

I\
W

;

presence of thirteen spectral groups. Thése were submitteq%to the statis-
tics”proéé&gor which calculateélthe mean vector and covariance matrix
for each of%the proposed forest classes. The mean reflectance vector
for each forest c;ass is presented in Table 2. In order to examine the
diétribution of data within each class, this processor was also rqguested
to graph spectral histograms in all four channels. Examples of these
class histograms are shgy? in Figure 10. In every case an approximate
Gaussian distribution &ééxexhibited. A doincident spectral plot of all
four ERTS-1 channels was also produced w@%ch illustrates the relative
amplitude of each classes' spectral response (Figure 11). Each bar on’
this grgph is proportional to the mean class spectralﬁresponse, + and -
one st :dard deviatiog. As expected/ chahnels 1 and 2 were incapable
of differentiating the forest classes due to radiance value overlap.
Channels 3 and 4, hoﬁever, contained a wider range of mean spectralﬁ
values and, therefoie, the ability to‘distinguish the thirteen classeg:
Feature selecticn was subsequently utilized to determine thé com-
Einatibn of available channels that would yield the most accurate clas~

sification results with a minimum amount of computer time. This function
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Table 2. Mean reflectance values for thirteen forest spectral classes.

SPECTRAL CLASS

MEAN REFLECTANCE VALUES

10

11

12

13

26.08
25.72
25.09
26.38
25.01
24.89
24.77
25.34
25.45
24.73
24.8;
25.08

24.96

2

15.44

15.02

14.70

15.92

14.80

14.58

14.80

15.34

15.11

14.63

14.84

15.20

15.29

3

45.42

42.44

40.96

41.11 .

40.01

38.50

38.50

38.65

37.50

36.60

35.48

33.22

29.38

26.29
24.93
24,60
22.25
23.59
24.18
22.98
21.65
20,24
22.33
20.57

18.88

16.07

27



RFPRODUCIRILITY OF THE

: WIGINAL PAGE IS POOR 28

e FLAN  Gopat's= 11/ Y 2 : St S e
POTAL Rl (e SAMPYI G gqy  AVT ST
. HIS IO amis )
= i e dri e W——
= By s R S e St & o » St S et s ot
PACH @ ABFPRESENTIS 12 PUINTIS),
-
37 JYan ) i e e R et i R i ciienre
O i o il - Gt e T AR o R T ST D R e - 3 S
-
2 %‘.«’--.o..‘.'.o-..:o._-.-.0»-“-:.-o..?::o.7.--0---;:;._'.?...f-.-.-.,.:.';:‘:}'?_.9-;;_5:.::'230---70
ST a0 40050 — W)y H0 120,% 160, 4
N T R R N e e ———
T EACH 8 WEPRESEMIS 16 WNINTISY, SRR e e R T P e
2 S S SR S S [ e S R S S SR B A Sl S i e S R
e : ; TeaStEsSeTER s s st Rt LS SRS S SR S I
SRR R T R P s SN T —— e
‘ . —— - —— - —— - —— . ———
= .
PR | ] e UEEL ISt i R S e e e )
BRI | e i e P TR R S
2 L5 RS =
9% -ty Rime= - - s =
ST | S 4 SR e N R A s e A e R e RN =
i .
EELaTeaE | B R SEE | E e e S e S S S TS A SR SR I SR S
. 37 a8 AR = S
16 84| G it

>
‘.
-1
3
>
=
-
o
>
=
>l
lo ']
>
>
|

|

|

3

4

|

]

i

]
M
>
2
o
-,

|
%i

= THANNFL 3 070 = Dern MICKONFIFRS
TOFACK S REPRESENTS 19 POINTIS),

1
} f
|

SIS T 8 RS

. T —— —— —— - — - - ® = — PRSP S ————
“ — s — e —— — — - ——
27k -
209 | *
ER oA, . B e e SR B, o e s e b S e e = R N R
e S e . e S S R S e i b i e
B I e e e e e
BRE - o e e s S S e SR e
353 114 1

5T 3

SRR | B e e Tt | S e

gy P e g e e e e e

ST L G050 - "'Tn"sﬁ— T 5 T?GT_, == : L T

TraN ¥ ey n.n'ﬁ‘-"i-ro hll‘i’ﬂ"l'ﬁ'ﬁ BRI E  EE E REE =t ="
e R O R e e i it 2 e —

|---.o----o..---.----0----0-_--0----._--.o...---0..—-...--.---. . -'..-'-,----.-_-..._..-‘---. +

s L, 4000 : anusn LIS T L - = 1hfleh

Figure 10. Histograms of the spectral data in forest class 11.




REPRODUCIBILILY OF THE
ORIGINAL PAGE I3 POOR

COINCINERY “RiCICAL PLOT IVEAN PLIS AND MINGS Gk ST, 0V, ) Fim CLASS(ES)

(T LT LT 74 |

TE.

e " W oo CHANS 2 NEw 2714
I e SR S St ST e S RS S o, A L ) B S
R S A B P S M - 8 s S e S WA e a6 B S LRANS. & NSe 4708 -
. - s i ialins - B s S S -5 b - s B ALE 4L BRSO T L »
b AT N TR
- - - _—————— R ——— - -  — - »r-b- - '.‘\‘ l "~- ,""i . -
L e ‘M_. fll\_\ " \- -‘.__“___
- b CIASS v 3\- 'ﬂt
J = CLASS 10 NS=In/1A
B+ S e s S e eh s s i s suiaer e s wi e T ELANE S WMl iity—
5= S LoEE SRR R SR e M e e _; ® CALASS 12 NS=12/) 0

S S S s e o . TR L e R e R Tl T T )L““Jll' R iin

3’?“'& (P BESteas v Sidiat | 1 WISRIES | 1 ek v T welmemn

'-“....-..“ofov....-”.’"..-.“.... -“"Qoo---on—-».oo-.--.--...0 -

..ICU""."'QI.. = i i =53 P Sl 3
s “.L e e e Rl S i S e i g ook
= = e R S S e N R s R e
= .......&! R e ot e B A R A S P e e Sy i s
2 SRS RS e _.!!
SO s R |
_ 0,80~ 6,601 6
1
- - + —
A A ks
.
et | e
T emmemtena.
1 Aw
AR SRR e vl = s S R e = = == =
. e Lt SRR e = = =8 =
R =5 - Rt i R et S~ 5 i
PR e = = el =8 = R
e 5 F
B UL PR S e O e e
g = R N R L e e s
W SE s T e T e
= e R SRS e e A e e S R LR ST e =
i e o A - o i A s i iadaditb Cog FUTAET o
1 aLe ST S
e R = S —— 2 o e
“_ln-;..o----.-----Q-----0-..-—0---:_._0-----Qo----.---o-.-----'-o--o. ----q----—‘-----o-----0---—-
1 As e e e L R I S
1 £ [ S == e ==
= L S = = S, =
: i B : . i
1 3 = = 1
s S !
O M= 0,80T 6 == St e ey e e e S EE
A R e e e e e S R eSO R
S PR SRR | R e R e e L S e S A R A A A
3 > - —— ==
SRR ST I e S e S R S ST e e o s
R e e S e e I e e e e e e e e e EEpaeitET SrEnad =
L S = Exmeaatnr apives st T e i e gy
-----0-----0-~---0-:---¢-----0-----o-----o-----'-----o---»-o-----o-----o--:.:-'o.—-:-.:_:o-—.-—-"-3:——-']:
A
SEEStRRGET S | o s e
1 C = = e e e
Sy R g | I e e T, - B
. ——— —— - " - — ;_ P— - ———————————— —-— —
e = e e e
= CER L SEeTr SesnmescTas sdle s etk
s b it d ] S e i
SiFE S AR S i e T e e Py e
1 e
e =
. e el R e i i e e T
e e e
SEERIIATE Svms e e i e S g e
e Rk . Do i e T St
l---‘o-----o-—---. YT e S———" Y mman + et e et ey S

(I LT I S ) ToAOR VAR IROL 0 Tl h ELY U

Figure 11. Coincident spectral plot of thirteen forest classes.




O R R R E R Y S 2 A 1 L R ot i e e

g

calculates the statistic transformed divergence, which is a "measure of
the dissimilarity of two distributions" and "provides an indirect measure
of the ability of the classifier to discriminate successfully between
them'" (Swain 1973). The strategy utilized was to weight all classes
equally and maximize the pairwise transformed divergences. Table 3
presents a summary of tﬁe feature selection output. The combination pf
all four channels performed best,; producing the highest average (1960)
and largest minimum (1204). The infrared channels (3 & 4) also performed
well, yielding an average and minimum divexgence reduced by 0.3% and

2.8% respectively. Poorest performance ;as displayed by the visible
channels (1 & 2), producing an average value of 422 and a minimum of 18.

Even though final classification employed all four ERTS bands,
clearly the IR bands alone would produce essentially the same classifi-
cation. The redundant information content of channels 1 and 2 suggests
that spectral classification schemes based wholly on these bands wounld
be unsuccessful.

In the last step of the analysis sequence, the classification
algorithm, in conjunction with the printresults function, generated a
map-like display (Figure 12). Each spectral c¢lass was depicted by a
user~defined alphanumeric symbol., Overall training field classification
performance was 96.0%;-a figure whicli indicates the pattern recognition
algorithm encountered very little confusion in mapping training field
data. Application of an arbitrary threshold value (2.0) easily differ-~
entiated materials dissimilar to the mapped forest classes. Lake Drummond,
in the swamp's interior, was correctly thresholded, as werxe U.S. route
460 north of the swamp and agricultural fields located along its eastern,

western and southern boundaries.



Table 3. Summary of feature selection output for unsupexvised classifli
cation (Ranked according to minimum divexrgence (DIJ(MIN))).

CHANNELS = _ DIJ (MIN) D (AVE)
1 2 3 4 1204 1960
- 2 3 4 1189 1958
1 - 3 a4 : 1172 1956
- - 3 4 1169 1954
1 2 - 4 178 ' 1661
1 2 3 - 161 1778
1 - - 4 | 129 1625
- 2 3 = k‘ T 112 1756
- 2 - 4 94 1630
1 - 3 - 71 1751

1 2 - - 8 432
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Subsequent classification map analysis centered upon determination )
of the correspondence between spectrally similar ground covexr (the map
symbols) and categories of informational value, e.g. deciduous or coni-
ferous forest, stand dens..y, etc. In an attempt to guantify classification
results, test fields identical to those used in the supervised classifi~
cation were analyzed. = éhese fields represented three categories: 1) Atlan~

tic white cedar (Chamaecyparis thyoides), 2) Loblolly pine (Pinus taeda),

and 3) deciduous forest. Map symbols were counted within the test fields
in order to determine which symbol groupings might best represent each
category of interest. Symbol overlap between categories occurred; however,
an average classification performance of 82.5% was achieved by grouping
spectral classes 12 & 13 as Atlantic white cedar; classes 4, 9, aud 1l
as Loblolly pine, and classez 1-3, 5~8, and 10 as deciduous forest
(Figure 13). Realistically, the performance figure given above is too
high because deciduous and pine forest, which cover a large portion of
the swamp, were classified with only 77.8% and 69.8% accuracy respectively.
In contrast, though cedar's areal extent is small, its classification
accuracy of 100.0% was given equal weight in the calculation of average
performance; thus tending to produce an overestimation of c¢lassifier
accuracy.

0f 89,275 data points classified within the swamp, (each point
corresponds to approximately 1.1 acres) 5218 (5.8%) were classified as
cedar; 17,841 (20.0%) were classified as pine; 63,203 (70.8%) were
classified as deciduous forest; and 3013 (3.4%) were thresholded as not
being sufficiently alike any one of the training classes to allow clas-
sification.

Dense, moriospecific stands of Atlantic white cedar corresponded
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]
closeiy to spectrag class 13, which exhibited the most absorbent qualities
of the mapped spectral classes. Cedar misclassifications occurred, however,
these were mainly QGufined to two areas. Several solitary incorrect map-
pings were noted around the shores of Lake Drummond, a phenomena which can
be attributed to pixel averaging of water reflectance and forested terrain.
Misclassifications also occurred within agricultural fields adjacent to
the swamp. These incorrect mappings may have been due to the presence of
standing water in the fields at the time of satellite data acquisition.
Spectral class 12 most cl@sely corresponded to forest stands dominated by

Atlantic white cedar, but ‘nterspersed with a mixture of hardwoods;

mostly Red maple (Acer rubrum) and Sweet gum (Liquidambar styraciflua).

By mapping the combination of spectral classes 12 and 13, a good repre-
sentation (100% test field accuracy) of the Atlantic white cedar present
:in the gwamp was attained. Classification map inferpretation suggested,
however, that the extent of swamp cedar cover was slightly overestimated,
a phenomena not reflected in the test field accuracy figure.

Test field analysis indicated that three spectral classes of inter-

mediate reflectivity ( 4, 9, & 11 ) yielded the most accurate representation

of Loblolly pine. As shown in Table 4, the classifier encountered con-
fusion in separating pine from deciduous forest. This was because the
three spectral classes chosen to represent pine overlapped with the decid-
uous forest category.

The swamp's deciduous forest was best represented by combining eight
spectral classes of relatively high reflectivity (1-3, 5-8, & 10). This
large number of classes is an indication of the comparatively wide range
of reflectivities which correspond to deciduous cover. None of the swamp's

plant communities associated with deciduous forest were uniguely mapped
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by the classifier. Two deciduous forest classes (1 & 2) corresponded to
the evergreen shrub bog community located in the swamp's southern portion.

Inability of the classifier to discriminate between this shrub bog community

and deciduous forest was due to their similar reflectances in the visible
and near infrared wavelengths.

Supervised Classification

Initial vegetational distribution ground truth was provided by winter
infrared imagery acquired at approximately 60,000 feet (1:120,000); ground
verification was employed to substantiate image interpretation. Study
site training and test fields were desighated using this imagery as well
as gray scale printouts of the swamp. Training and test fields were
established in five categories of interest: 1) Atlantic white cedar
2) Loblolly pine 3) deciduous forest 4) agriculture and 5) water. In
order to determine the number of Gaussian classes within each category,
the cluster algorithm was employed. Using separability data provided by
the cluster function, marginally separable classes were combined. Following
this training class refinement, Atlantic white cedar and ILoblolly pine

were each represented by four classes; deciduous forest and watexr each by

five classes; and agriculture by six classes. The number of data points h
for each refined spectral class is shown in Table 5. Lindenlaub (1973) ﬁ
reported that in theory a lower limit on the number of training data points ?
for any class is n + 1 (n being the number of channels used by the o
classifiexr). He further suggested that 10 n be used as & practical lower ’
limit, with 20 n to 100 n beihg optimal. Using the criteria suggested by

Lindenlaub, all classes, except two within water and two within cedar,

contained sufficient data points for a four channel classification (n = 4). ?

""In the subsequent analysis step, the mean vector and covariance matrix
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‘ Table 5. The number of clusters in each category before and after refine-
. ment and the number of data points in each refined cluster.
. Original Refined No. of
Category Cluster No. Cluster No. Data Points
1 I 34
2 II 34
C
edax 3 III 61
4
5
6 v 86
. 1
5 I 95
Pine 3 II 68 ,
" 4 )
5 IIT 85 %
6 Iv 44 !
1 I 206
2 ;
- ) 3 II ‘ 336 ‘;
Deciduous 4 3',
5 III 113
6 v 257
7
8 v 91
1 I 27
2
II 190
Water 3 ;
4 III 83 . ﬁ
5 Iv 78 |
6 v 22
1
5 I 258
3 II : 112
Agri t
) griculture g III 103
6 Iv 50
7 v 76
8 VI 118
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. : of each of the twenty four classes were calculated. In addition to the
statistics information, the ékatistics processor was’requested to graph
histograms of each training class in all four chaﬁnels. In every case

N an approximate Gaussian distribution was displayed. A coincident spectral
plot, also produced by the statistics processor, is shown in Figure 14.

As depicted by this plot, channels 1 and 2 displayed the ability to
distinguish between forest and agriculture, but were unable to differentiate
o categories within forest, e.g. pine, cedar and deciduous forest. In contrast,
channels 3 and 4 demonstrated the ability to distinguish pine, cedar and
deciduous forest, but were unable to dif%erentiate between the general
categories of forest and agriculture.
Feature selection was employed to calculate the transformed divergence

- between all c;ass pairs. Designated class pairs were differentially weighed
in this calculation. For example, a weight of zero was assigngd to all
class pairs within cedar because a classification error within this category
was immaterial to classification accuracy (pine, deciduous forest, water
and agriculture were treated similarly). Table 6 is a summary of the
minimum and average interclass divergences for all channel combinations of
4, 3, and 2. The combination of four channels produced both the highest
average divergence (1981) and largest minimum value (1215). Poorest
discrimination was displayed by channels 1 and 2, which produced average
and minimum divergences reduced by 17.2% and 97.4% respectively. 1In every
channel combination investigated, minimum divexgence occurred when detexr-
mining the statistical distance between forest classes. Seven of the
eleven minimum values occurred when calculating the divergence between
Loblolly pine and deciduous forest; thus indicating the similarity of

théir spectral signatures using August imagery.
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Table 6. Summary of feature selection output for Supervised classification
(Ranked according to minimum diverxgence (DIJ(MIN))).

Channels DIJ (MIN) D (AVE)
1 2 3 1215 1981
- 2 3 995 1974
1 2 3 996 1963
1 - 3 ‘958 1975
1l 2 - 771 ©1952
i - 3 726 1947
= - 3 709 1951
- 2 3 502 1947
1 - - 420 1937
- 2 - 373 1936
1 2 - 32 1640
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Output of the classification function, combined with a printresults
program, produced several classification maps of the Dismal Swamp
(Figures 15-18). Alphanumeric symbols were chosen to depict the geographic
location of various categories of interest, e.g. Atlantic white cedar,
deciduous forest, coniferous forest, etc. These symbols were changed
throughout the analysis in an attempt to bring about easier visual pattexrn
recognition. Hand coloring of the printer output, though very time con-
suming, was also found effective as a means of increasing class pattern
visibility. Of 89,275 data points classified within the swamp, 3746 (4.2%)
were classified as cedar and 18,001 (20.2;) were classified as pine, i.e.
24.4% classed as coniferous forest. Deciduous forest was estimated to
cover 69% of the swamp, almost three times the area of coniferous forest.
This deciduous cover estimation did not differ significantly (P = 0.05)
from an earlier estimation of 65% (Anonymous, 1974). Agricultural clas-

sifications accounted for 3.5% of the swamp's area. These classifications

primarily corresponded to clear cut areas and natural forest openings, as

well as recently burned areas. Only 3.2% of the data points were thresholded

as not being sufficiently alike any one of the training classes to allow
classification.

Five classifications, using selected channel combinations, were per-
formed to determine the rglative value of the visible (0.5-0.7 um) aﬁdxnear
IR wavelengths (0.7-1.1 um) for mapping features of interest. Channel
combinations utilized in this investigation were: 1) all four channels
2) channels 1, 2, 3 (one IR channel deleted) 3) channels 1, 3, 4 (one
visible channel deleted) 4) channels 3, 4 (visible channels deleted) and
5) channels 1, 2 (near IR channels deleted). For each c¢lassification, an

estimate of classifier accuracy was provided by test field performance.
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Figure 16. Supervised classification map of the Dismal Swamp. Atlantic
white cedar's distribution is indicated by the symbol "X",
all other categories appear as ".".
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Tables 7-11 display the test class performance values obtained using each
channel combination. From these data, Figures 19-26 were constructed which
illustrate percent correct classification as a function of channels employed.

As indicated in Figure 19, an average test class accurary of 88%

(all categories considered) was equalled or exceeded by each of the three
and four channel combinations. Deletion of the visible channels reduced
classifier accuracy by approximately 6%, This reduction in accuracy was
primarily due to confusion in the recognition of pine, deciduous forest
and agriculture. The visible channels alone were much less accurate than
the other channel combinations, producing an average accuracy value of
70.3%. This reduced accuracy was due primarily to inability of the clas-
sifier vo distinguish between cedar and deciduous forest.

Evaluation of the ability of ERTS-1 data to accurately map combined
forest (pine, cedar and deciduous forest) was a primary research objective.
Figure 20 illustrates the degree to which the five channel combinations
were able to distinguish combined forest from nonforest (watexr, agriculture).
All channel combinations, except one, produced test accuracies in excess nf
95%, indicating the relative ease with which this category was classifiecd.
Deletion of the visible channels reduced classifier accuracy to 90.5%, an
accuracy loss due to the similar spectral responses of pine, cedar and K
agriculture within the near infrared wavelengths.

Figure 21 illustrates the combined conifer classification accuracies
produced by the five channel combinations. Channels 1, 3 & 4 exhibited
the highest classification accuracy (91.7%); however, channels 1, 2, 3 & 4

and channels 1, 2, & 3 performed within 5% of the best channel combination.

W

iy

Deletion of the visible channels in the classification caused a 10% reduction

in test accuracy, brought about primarily by confusion in the classification
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of conifers, deciduous forest and agriculture. The lowest te¢st class
performance was produced by the visible channels (77.2%), where decreased
discrimination between conifers, deciduous forest and water accounted for
the lowering of classification acc racy.

Loblol;y pine was one of the mﬁst difficult of the forest categories
to classify; As Figure 22 indicates, test performance acguracies exhibited
by channels 1, 2, 3, & 4 and channels 1, 2, & 3 were within 5% of the highest
accuracy (83.4%), produced by channels 1, 3 & 4. Classification performed
using the infrared channels alone encountered confusion betwecn the pine
and deciduous forest categories, thereby‘reducing classification accuracy
to 69.8%. Utilization of the visible channels alone produced an unrealistic
test accuracy of 88.5%. This value ig misleading because comparison of the
classification map with color IR photography indicated the extent of pine
within the swamp was grossly overestimated.

Atlantic white cedar test accuracies indicate this conifer was the
most accurately classified of the forest categories. These high accuracies
are the result of cedar stand homogeneity and the distinctive spectral
signature which characterizes these stands. Figure 23 shows that channels
1, 3, & 4 exhibited the highest classification accuracy (93.5%), however,
three other channel combinations, including the IR channel combination,
produced similar test accuracies. Deletion of the IR channels reduced
test accuracy to an extremely low level (38.7%).

Greatest classification difficulty occurred in mapping the swamp's
deciduous forest. TFigure 24 illustrates the influence of channel selection
on classification accuracy. As indicated, four out of five channel com~
binations exhibited test accuracies in excess of 78%, with the highest

accuracy (81l.4%) being produced by all four channels. It is interesting to
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note that deletion of the visible wavelengths did not degrade deciduous
forust classification accuracy as it did with ILoblolly pine. Ioss of the
infrared wavelengths, however, caused a precipitous drop in test accuracy
to 31.8%, thus demonstrating the importance of the IR wavelengths in
deciduous forest classifications.

Each of the five channel combinations classified water within the

swamp (Lake Drummond) with a high degree of accuracy. As Figure 25 indicates,

all channel combinations, except one, exhibited classification accuracies
in excess of 97%. The two visible channels alone.produced a slightly lower
accuracy of 94.8%, brought about by confusion between cedar and water.

As Figure 26 illustrates, agricultural areas adjagent to the swamp
were generally classified with a high degree of accuracy. Channels 1 and 2
attained the highest classification accuracy (97.7%) of the channel com~
binations investigated. Also performing well were the combinations of
four and three channels, producing test accuracies within 5% of the best
channel gombination. The near infrared channels alone were least effective
in classifying agriculture, producing a test accuracy of 77.4%. This
accuracy loss was primarily due to inability of the classifier to dis-—
criminate between coniferous forest and agriculture.

Classification Problems

Problems encountered in mapping vegetation within the Lismal Swamp
were often related to site complexity. The swamp's plant communities
usually grade from one into another without sharply defined boundaries.
This leads to a situation of natural randomness that makes classification
into meaningful categories difficult. The only monospecific community that
exists within the swamp is Atlantic white cedar, a fact clearly reflected

in the high cedar classification accuracy. The other plant communities are

4
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characterized by the presence of unevenly distributed tree and/or shrub
species. This greatly increases classification difficulty by adding to
the problem of designating representative training and test areas.
Another difficulty inhergent in mapping diverse vegetation with low
resolution MSS data includes pixel averaging. Because tree and shrub
species that comprise the swamp's plant communities are, of course, much
smaller than the 80 meter square pixel size, and are distributed unevenly,
spectral characteristics recorded by the scanner will not always be an
accurate indicator of specific species composition. Hypothetically, at
certain times of the year, a pixel containing a mixture of 25% Loblolly
pine and 75% Red maple may have average reflectance characteristics
identical to a pixel averaging the reflectances of 50% Yellow poplar

(Liriodendron tulipifera), and 50% Sweet gum. Scanner data obtained

during subsequent seasons of the year may remove this spectral signature
ambiguity.

Problems were also encountered in attempting to locate, with any degree
of certainty, the position of specific forested areas in ERTS-1 digital
data. This was primarily due to: 1) the northeast-southwest skew con-
tained in ERTS-1 MSS data 2) lack of large, identifiable, land features
within the swamp (excej’t Lake Drummond) and 3) rectangular computer output
format. These problems were solved to a degree, in that locations in the
yround scene can be generated by an affine mapping transformation developed

by Blais (1975).

IR

e s



CONCLUSIONS

Swamp Vegetation Mapping Capability

ERTS-1 MSS data and LARS' automatic data processing techniques were
applied to mapping swamp forest cover. Supervised classification accuracies
in excess of 95% were attained which illustrate the classifier's forest
cover mapping ability. The swamp's coniferous forests were classified well,
producing an average test accuracy of 92%. Deciduous forest within the
swamp was differentiated less successfully, yielding an 81% average test
accuracy. The primary reason for this reduced classifier accuracy was
confusion between deciduous forest and Loblolly pine. Classification
performance could probably be improved by analyzing data acquired during
the winter months, when differences in coniferous and deciduous reflectance
spectra are maximized.

Atlantic white cedar, floristically the least complex plant community
within the swamp, was very accurately mapped by the classification algorithm.
Additionally, the swamp's evergreen shrub bog community was located using
unsupervised classification techniques, though it was not mapped as a
unique feature by the classifier. Discrimination of the swamp's deciduous
plant communities was not possible due to the similarity of their summer
spectral reflectances. Successful discfimination of these phytocommunities
will probably require an indirect classification method, such as determination
of water availability within the 5wamp during the winter months. Using
this technique, the probable location of hydric and mesic deciduous plant
communities could be determined.

Channel Combination Study

Results indicate both the visible ani near infrared wavelengths are

valuable for mapping swamp vegetation. The near IR wavelengths were most

64
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useful in differentiating forest categories, e.g. Loblolly pine, Atlantic
white cedar and deciduous forest, but sometimesiconfused forest cover
classes wiéh other categories. The visible wavelengths alone successfully
differentiated forest from nonforest, but performed very poorly when
classifying pine, cedar and deciduous forest., Addition of one IR channel
to the visible channels or one visible channel to the IR channels, sub-
stantially increased classification accuracy. Utilization of the spectral

information in all four ERTS-1 channels did not appreciably increase

classifier accuracy.
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