General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.
STANDARDIZED PERFORMANCE TESTS OF COLLECTORS OF SOLAR THERMAL ENERGY - A FLAT-PLATE COLLECTOR WITH A SINGLE-TUBE SERPENTINE FLOW DISTRIBUTION

by Susan Johnson
Lewis Research Center
Cleveland, Ohio 44135
April 1976
This information is being published in preliminary form in order to expedite its early release.

This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.
STANDARDIZED PERFORMANCE TESTS OF COLLECTORS OF
SOLAR THERMAL ENERGY - A FLAT-PLATE COLLECTOR WITH A
SINGLE-TUBE SERPENTINE FLOW DISTRIBUTION

Susan Johnson
Lewis Research Center

INTRODUCTION

An area presently being investigated by the NASA Lewis Research Center in its efforts to aid in utilization of alternate energy sources is the use of solar energy for the heating and cooling of buildings. An important part of this effort is evaluation of solar collectors which have the potential to be efficient, economical, and reliable.

This preliminary data report gives basic test results of a collector whose performance was determined in the NASA-Lewis solar simulator. In the interest of providing performance data on this collector to the technical community as quickly as possible, the basic test results reported herein are presented without evaluation. Detailed analyses and interpretation of these results may be presented in subsequent papers or reports by this Center. Some of the results contained in this report may be changed as warranted by reviews and evaluations, or by obtaining additional data on this collector.

Reference 1 describes the solar-simulator test facility, as well as the basic test procedure.

COLLECTOR DESCRIPTION

The B. Bar-on collector was manufactured in Israel. The particular collector tested was obtained through Mechanical Technology Incorporated, Latham, New York. It is contained in an aluminum box (overall box dimension 48" x 48" x 4-1/4"). The collector has a single-tube serpentine flow distribution and a single glazing of glass (area of glass 14.45 ft²). Styrofoam blocks are placed around the edges of the collector to minimize heat loss. A photograph of the collector on the test stand is shown in Figure 1.
COLLECTOR TEST RESULTS

Basic test results are given in Table 1. The results are given for one flow rate in Table 1, and these results were used for a determination of the performance correlation given in Figure 2.
TABLE I - BASIC EXPERIMENTAL DATA

50/50 Water and Ethylene Glycol
Incident Angle = 0°
Tilt Angle = 57° Above Horizontal

<table>
<thead>
<tr>
<th>Flow Per Radiated Surface Area lb/hr ft²</th>
<th>Flow Gal/Min</th>
<th>Incident Radiation Flux Btu/hr ft²</th>
<th>Fluid Outlet Temp., °F</th>
<th>Fluid Inlet Temp., °F</th>
<th>Ambient Temp.</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.71</td>
<td>0.224</td>
<td>289.9</td>
<td>111.6</td>
<td>80.4</td>
<td>80.6</td>
<td>0.764</td>
</tr>
<tr>
<td>10.69</td>
<td>0.223</td>
<td>290.8</td>
<td>111.7</td>
<td>80.4</td>
<td>80.6</td>
<td>0.763</td>
</tr>
<tr>
<td>10.81</td>
<td>0.226</td>
<td>182.7</td>
<td>134.4</td>
<td>122.6</td>
<td>77.3</td>
<td>0.473</td>
</tr>
<tr>
<td>10.70</td>
<td>0.223</td>
<td>281.9</td>
<td>145.7</td>
<td>122.4</td>
<td>78.4</td>
<td>0.601</td>
</tr>
<tr>
<td>10.91</td>
<td>0.228</td>
<td>180.1</td>
<td>170.8</td>
<td>164.8</td>
<td>78.2</td>
<td>0.250</td>
</tr>
<tr>
<td>10.79</td>
<td>0.225</td>
<td>276.2</td>
<td>181.8</td>
<td>166.0</td>
<td>79.1</td>
<td>0.432</td>
</tr>
<tr>
<td>10.81</td>
<td>0.226</td>
<td>277.0</td>
<td>181.9</td>
<td>166.3</td>
<td>79.1</td>
<td>0.425</td>
</tr>
</tbody>
</table>
COLLECTOR EFFICIENCY (η) AS A FUNCTION
OF AVERAGE FLUID TEMPERATURE (T_i) AND INCIDENT FLUX (q_i)

$G = 10 \text{ lb/hr-sq ft}$

Figure 2 - Collector Performance Correlation

$$\frac{T_i - T_{\text{ambient}}}{q_i} \left(\frac{\text{BTU}}{\text{HR FT}^2 \degree F} \right)^{-1}$$