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Techniques are developed which permit general purpose structural

analysis computer programs to be used to generate the equations of motion

necessary for limiting performance studies. The limiting performance

characteristics of a system are useful in analyzing the optimal behavior

of a dynamic system. In particular, the limiting performance charac-

teristics are the essential ingredients in an efficient optimal design

method for isolation systems.
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INTRODUCTION

The use of conventional methods of optimal design has so far been

limited to simple systems with few design parameters. This is primarily

due to the overwhelming computational burdens of the methods which

invariably require solving the system dynamics repeatedly. Recently a

new approach that differs from the conventional methods in design

methodology has been proposed and extensively explored (Reference 1, 2).

The new approach, called the indirect synthesis method, selects the design

parameters on the basis of a limiting performance study of the dynamic

system being designed. In the process the system dynamics need be solved

only once and thus the computational effort is greatly reducer. The

method has been successfully applied to problems ranging from an infinite

degree of freedom system with two design parameters (a beam) to a five

degree of freedom system with six design parameters (an automobile model)

(Reference 2). Frequently, only the limiting performance calculations are

made for an isolation system as this provides useful information concern-

ing the optimal system response. In particular, the limiting performance

characteristics can be used as a yardstick for gauging the desirability

of candidate system designs.

Several computer programs are now available for limiting performance
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studies. These are reviewed in Reference 3. Some of these programs, e.g

PERFORM (Ref(rence 4) for transient systems and SYSLIPEC (Reference ^) fc

steady Rate systems, are virtually unlimited in terms of size and complc

of acceptable dynamic systems. PERFORM and SYSLIPEC are available throtil

COSMIC as programs LAR-11930 and LAR-11931, respectively. The limiting

performance computer programs usually require mass, stiffnesF, damping,

other characteristic matrices as in put. The program then computes the

limiting performance characteristics or. the basis of this system informat



in view of the success as well as the extensive use of the finite

element (' - I') method in analyzing; complex structures, it is

important to develop the methodology necessary to couple available

general purpose finite element structural programs to a limiting per-

formance capability. This is the purpose of the work reported here.

Once these general purpose programs can be used to develop input for a

limiting performance compater program, then the limiting performance

and indirect synthesis can be applied to any system for which the general

purpose program FE is appropriate.

Approaches for coupling general purpose programs to limiting per-

formance capabilities will be considered. p rimary emphasis is given to

the use of the general purpose program to develop equations of motion in

a form that car. be used by the limiting performance program.

BACKGROUND

Consider a linear dynamic system whose equations of motion can be

written in matrix form as

[Mj {X) + [ C] {X} + [ K] {x} s [FI { f }	 (1)

where

(x) - displacement vector

[M] = N x N	 Mass matrix, N being the number of degrees of freedom (DOF)

[C] = N x N	 damping matrix

[K] - N x N	 stiffness matrix

[F] = N x L	 coefficient matrix associated with the forcing function

vector {f), L being the number of forcing functions.

The optimal design problem is to choose portions of the system so that

some index of performance is minimzed (or maximized) and certain constraints
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are sat istted. It is assumed that both the performance index G) and the

constraint functions C k (x,t) on the response variables involve

peak response vartabies, e. K., maximum stresses, displacements. ac-

celerations. The performance index and the constraint functions can

he written in the forms

W	 max max Ih 1 1 	 r - 1,2, ...R
r	 t	 r

(2)

Ck< 	 C  r Ck.	 k Q 1,2, ...K

where h r 's are the R response functions, and Ck, Ck are the prescribed

upper and lower hounds of the kth constraint. isle will restrict our con-

videration to cases wherein h r and C  are linear functions of the response

(oi state) variables.

The first step in using the indirect synthesis method is to calculate

the limiting performance. Those portions of the syste-, to be designed

are replaced by generic (or control) forces fu(t)), so that the equations

of motion now become

[t,] {x} + [c) (x) + (K) {x} + [V] (u) _ [ r) f f }	 (3)

where [K[ is the new stiffness matrix, which omits any stiffness c • on-

trihutions from the design elements, and [V[ is the N x J coefficient

matrix associated with the generic forces iul, J being the number of

controllers. Such a general dynamical system is shown schematically

in Fig. 1. Two types of elements are considered; structural elements and

isolator elements. 'There ma y be any number of each; in particular M

structural elements and .J isolator Qlements could be interconnected in

an arhitrary fashion. A structural clement may represent a discrete

mass print, a rigid body of distributed mess, or a flexible structure

such aF, a framework or a shell. The isolator elements. f.imilarly, can

represent e'_ther simple mechanisms without mass or models of more complicated
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devices. In general, the structural elements constitute the prescribed

portions of the system (i.e., the base Rtructure and the elements to be

isolated) and the isolator elements are to be chosen in accordance

with the design objectives. Note also that the control forces iu t)t,

being considered as explicit functions of time, do not contribute to the

not linearity of the equations of motion even though they may have replaced

nonlinear portions of the system, e.g. a nonlinear sprcng connection.

Once Eqs. (3) are established, and the performance index ►y and the

constraints are placed in the form of F.qs. (2), then existing limiting

performance capabilities can be used to obtain the limiting performance

characteristics which are subsequently employed in selecting the design

parameters.

As mentioned in Keference 1, the problem of establisioing the

coefficient matrices (MI, [C], (ril, 1^1, and (F] in Eq. (3)

for a particular dynamic system can be avoided by employing a general pur-

pose dynamic program to generate impulse responses at isolator attach-

ment points and then constructing h r , C  with Duhamel (convolution) in-

tegrals. That is, since the system under consideration is linear, the

response of the system excited by arbitrary forces u  can be obtained

by superimposing responses to unit impulses placed sequentially at each

of the isolator attachment points, i.e.

J
h r (t) - h r0 (t) + z f t g r^(t - T)uj (0 dt

jsl ^)

(4)

.I

Ck (t) - CkC (t) + I ftgk (t - T)uj( - ) d -t

J.1 p

where g
rJ	 kJ

and g	 are tl.e appropriate system responses to a unit impulse

5
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at the attarliment I1oint c a t the JLh 1801iltOr, and h ro (t), CkO (t) are

t lie responses to t I v I. fnput s f (t). 	 rite 
F r 

J and 
gk 

l must be generated

by the structural dynamics program. 7-he advantage of this approach lies

fit 	 fact that an existing general -purpose structural dynamics, ,(.d..

will he used i ^. p%-rf4)rm ai! l of thy- s y stem dvriamics required fur

the 1 imit ins; performance problem. However, in this work we are con-

cerned with the situation whereby the system dynamics are to he salved by

:t 110t ing pertormance capability and r.)t by the general purpose program.

The general pnrpuse program will he used to generate the coefficient

matrices ut h.qs. (3).

To illustrate thc problems involved in preparing the equations for

it 	 pi , rfurmancc solution, consider the simple example of a three

degrees of freedom Sprint;-mass systen!its shown in Fig. 2a. Let it be

desired to select the ;pring constant k 2 such that the maximum accelera-

tion transmitted to an y.' mass Is mfnfmzed while the three rattlespaces

,tt1s1'v pry sci ihed t,itv:t mint z. 	 The k  . k 2 spring rates remain at

thoir prc v, rih, , d v:i1iw-..	 I- or •.III-, i^x;imple, the response functfilns

that make up the performance Index mt-

h 1 = z l , h2 = z 2 ,
 

11 3 = z3

and t}te , t onst raint f tivk t tuns are

C I	 z l - z 2 , c' 2 = z2 - z 3 , t'.3 = z.3 - f

fheretore, I-:qs. ( 7 ) become

4 = max maxIz^^,	 r = 1,1,3



C 2 _ Z' ` - z3^ - C2

i
C3 < I Z j - f I , C3

r
where Ci, C^,	 ,C3 are prescribed constant:	 ' ^	 .:	 u;, i.e. ^rerribed rontraint honds.

the equations of motion for this system are easily found to he

m l	 0	 0	 xI	 kl	 -kI	 0
	

m

0	 m^ 0	 x"	 +	 -k I k l +k 2 -k2	 x2	 _ - m2 f	 (5)

0	 0	 m I	 x.i	 0	 -k2 k 2+k.i 	x i	 m3

where x i = z  - f, i - 1,2,3. Now replace the middle spring by a generic

force u2 (Fig. 21)). This results in a new set of equations

m l	 0	 0	 xl	 kl	 -kl	 0	 xI	 0	 ml

0	 m2 0	 x 	 +	 -k l	 kl	 0	 x,	 +	 1 u, _ - m, f	 (6)

I	

L	 L

0	 0 'n J	 x3	 0	 0	 k3	 x 3 	-1	 m3 L	 -J(L-	 3 J
Equations (6) can be obtained either by applying the conditions; of equilibrium

to a configu.ation taken from Fig, 2b or by directly making the substi-

tution u2 -
 
k
2 
(z

2
- z 3 )
	

k2 (X,- x 3 ) in each row of 1-1(j. (5), which amounts

to setting k 2 - 0 and taking the coefficients of k 2 in row 2 of the (K]

matrix as the column of the (V] matrix, Obviously, the first approach

becomes impractical when the system is complicated or when the system is

being analyzed by FE Codes since it contains unknown elements. In the

following section, the second approach will be generalized and discussed

further.

DEVELOPMENT OF THE EQUATIONS OF MOTION

As mentioned, in order to use most existing limiting performance

computes capabilities, we must express the FE system equations of motion

7



by taking as its column the coefficients of k  in a ro

[K], the row (or column) number being that of a deetree

which is enacted by the isolator.

8

in the form of Eq. (3) rather than in the usual FE form of

Eq. (1). Standard FE codes will always generate the mass

matrix [M], the damping; matrix [C), and the coefficient matrix [F) which

can he fed into the limiting; performance codes with little or no modification.

Thus it remains to create the new stiffness matrix (K) and the cont-rller

matrix [V]. Here we describe two technir-i;s.

Technique 1

The replacement of an isolator to element k  by a control force u 

amounts to substituting in the equations .,i motion the relations

u i - k i la j x ]	(7)

where the summation :s over the degrees of freedom that are connected

with isolator k  and the a j 's are the kinematical factors that are

associated with each degree of freedom. This imrlies that isolator k 

no longer contributes to the assembly stiffness matrix and instead is re-

placed by an additional matrix [V], whose individual columns consist of the

coefficients of the term k  ,i
i
xj in the equations of motion. With the

aid of the element stiffness r^atrix written in assembly (global)

coordinates, we can easily obtain the new stiffness matrix [K) and the

controller matrix (V) from [K]. From the node numbering scheme of a

FE code, we know which elements of [K] are contributed by isolator ki

so that the new stiffness matrix [K] is obtained by simply removing

those contributions, In the FE program, set the spring elements to

be optimized temporarily equal to zero and the desired [K] is produced

by printing the stiffness matrix. The controller matrix [V] is formed



lechniqur .

Novi 1te Lq. (3) as

IMI+x , + ICI lx' + 1~11X1 - ItIir} - 1V11ur

=	 I I I i t I -

-	 IIItf1 -

ThP ( h l is found as In to • hnique 1

	

X11	 X12	
...	

^i.!	
,1

	

V 21	 V22 ...
	 i	 u2

	

N I	 VN2 ...
	

I	 u.I

i

	

1.	 V12	 V  t

	

V 21	 ul -	 V 22	 u 2 - ..	 2.1	 u

	

L^N1	 VN2	 VNJ,

the col"mns of IVI are obtained by

(H)

noting that the element s of I%{ are simply the influence coefficients

of the "loads" Iur. Thin to obtain the influence coefficients of a

control	 force u 	 (i•e. to obtain	 the	 ith	 column of [ V I),	 set all	 u's

equal	 to zero.save u which	 is	 set	 equal	 to	 1	 (Fig. 3).	 The resulting

load	 vector	 r:e' r ierat e• rt b y	 FF nrohram	 is	 the desired column. In	 practice,

ones must he can , ful to properiv account for the constraints when gen-

erating the An : V I m.etricer; tram ,, Fh code, i.e. it is necessary to

ascertain whether the mat rices are printed before or ai ter the dis-

placement constraints have been applied to the prohic•m.

Three Degree of Freedom System Example

studied above. To

m 3 = 2.5, ki . 10, k 2 - 20,

l5) gives

	

-10	 0

	

30	 -20	 (9)

	

-20	 50

Consider the problem of Fig. 2 which was

treat a particular case, let m l = 0.5, m 2 = 1

k3 '' 30. Substitution of these values in Eq.

0.5	 0	 0	 10

iMl =	 0	 1.5	 0	 IK) =	 -10

0	 0	 2.5^	 0

9



In terms of glohal coordinates the tifiness IKJ of thi , middle springy;

c,in he written as

(i	 0	 0

[K
2

1 	 tl	 20	 -20	 (10!

0	 -20	 ?r'

It follows from Eq. (10) that the stiffness of the middle spring contributes

to K`20 K
23 9

 K ;` , and K 33 , Removing these contributions from [K] of Eq. (9)

ievults in

10	 -10	 0

[KJ =	 -10	 10	 0
	

(11)

0	 0	 30

and from the coefficients of elements in row 2 of [K2 ] we find

r it

-1

which implies that u 2 a k 2 (z 2 - z 3 ) a k 2 (x 2 - x3).

To generate the desired matrices IMJ, IK1, and [V] with .1 general

Purpose pragiam using the second technique, first compute [M] as though

a dy namics problem were to he run. 'Then run a sr.atic case to comluiti , [f:J

and [V] applying unit loads as shown in Fig. 4.

PERFORMANCE INDEX AND CONSTRAINTS

Now that the equations of motion are .'n the proper form for a limit-

ing performance study, we proceed to establish the performance index and

constraints.

10



r

Any Iin y al 	 IIMbin-it itoik of it t'el y rat ions. velocit ies, dispIacemynts.

or cont roI tortes ,an b y a>, yd as a performance index or constraint

function, i.v.

(h) or {C) - Ii']( x , 4	 I I !] (xi	 [Id (x) +	 I';](u) + IT](f)	 (12)

where IPI, I('], IF:], IS] and I"] are prescribed coefficient matrices.

The coef t is ient matrices in f:y. (12) can he easily formed when

tiling a FE code. For example, consider the discretized system shown

in Fig. 5.	 At each notiv, six degrees of t reudom ) I)OF) t3 translational and

3 rotational) are specitled. Suppor.e in Fig. 5 that the accelerations

along; the y coordinate at node i and node' I :Ire to bt constrained

such that

	

ayi + byi! , d
	

(13)

where a, b, d are prescribed constants. To place- the constraint function

ayi + b'y I in	 form of Eq. (12), we need only input the node numbers,

the nodai I 10F, and the coefficients a, h, e.g. (1,2,a) and ( .1,2,b) where the

2 stands for the y degrees of freedom. In most general purpose FF

code-,, there is a printol)]e connect ivit y array that tcicnt it ivti the nodal

Dt'r to be constrained in t y rms of the indepencivnt asst'mb 1 y DOF. StlppoGe

"t.:t ( i,2) and (1,2) t • urIk "Wonti to 1th :Intl .lth assembIv DOF.

Then an appropriate kth row of the [VI Im,Itrix in r.q. (12) will consist

of the elements

13 

k1 a, Pkl - b, k being the row number

(14)

Pkv = 0 
for all P # 1,.J.

For this example the elements of the kth rows of the matrices IQ], [1t],

Is], IT] are all zero since the constraint function of Eq. (13) contains

only accelerations. Similar reasoning permits Eq. (12) to be formed for



any acceptable type of Performance index and constraint funrtion.

Although we have chosen to describe a dynamic :system by serund

order differential equations, Eqs. (3), some limi-ing performance

programs work with first order differential equation;. The second

order equations are converted into a set of 2N first order linear

differential equations

Is}	 W is} + (B11u} + (u]{f) 	 (15)

where

(x}
{g} a	 ---

{x}

is a state vector with 2N components, and the coefficient matrices

[A], [B], (D] are determined as functions of the coefficient matrices

of Eq. (3). Also, instead of Eq. (12), the performance index and

constraints are input to the limiting performance programs in the

form

{h} or (C'	 [F;]{s} +

where [E], [C], and [H] are pre

the formation of Eq. (15) using

is useful to con: , ;or in detail

This is accomplished by solving

reG:.lt in Eq. (12) to give

(C]fur + (ti]{f)	 (16)

scribed coefficient matrices. Alt

Eq. (3) is a familiar q

how Fq. (16) is obtaine

Eq. (3) for {x} and pla

{h} or {C} _ ( [Q](M ^) {X} + ( [R]-M D {x}

+ ( [S] - IN i 
M 
^) {u} + ( [T] + [ r ] [ M-] ) { f



1	 1	 1

1'	 '	 K
^I	 ^^ ► 1	 111^,''I	 (I{^	 fI'^^-tit-^

I'd	 1"I	 -	 I I ]( r 
I

A comp .ivI!;cni of F(I. (15) kif11 l (1. 'I1) f;huws [haL

anti

13
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USE OF SAP IV

To implement the techniques described here the SAI' IV computer pro-

gram was selected. SAP IV (Reterence (-) i,; it ;)ovular }general purooxe nrogram

that can he altered local lv with relrtt ive case. 	 The oropran required only

slight modification in order to mint out the desired ratrices for Eqs. (3).

In the following examples, all springs were input to SAP IV as elastic

beam elements with appropriately chosen moduli and dimensions to secure

the correct spring constants. The program allows for slave degrees of

freedom to treat the rigid beams. It, however, ignores any loads

applied at the slave nodes and thus these loads must be replaced by

their static equivalents at the master node.

Three Degree of Freedom System Example

SAP IV was used to form the [M], (K], and (V] matrices for the

three degree of freedom example of Fig. 2, with mass and spring values

of the previous example. The results are given in Fig. F. In its

dynamic mode of ope..,tion, SAP IV computed (M]. Then, in it static

mode (K] and (V] were found by applying the unit loads of Fig. 4.

Five Degree of Freedom Syst,2m Example

As a more complicated example consider the automobile model of

Fig. 7, whi(h is considered in Reference 5. The equations of r•otion for

the configuration Shown are

m l z l + k
1
 (zf) - k 2 (z 2 - z l - 3 0) = 0

Rm 2 z 2 + k2 (z 2 - z l - 3 6) - k 3 (z 3 - z 2
) + k4(`'2 - z 4 { 3R g) = 0

1'	
A- k (z	 z	 + k (z	 + 2P ) RI6	 2 2 - l - 3 n ) 3
	

4 2 - z4	
3 tl 3

4



m i z 3 4 k 3 (z 3 - z 2 )	 0

m 4 z 4 - k 4 (z 2 - z4 + 3R b) + k 5 ( z 4 - f) = 0

ors :a matrix form

m l 0 0 0 0 zl

0 m2 0 0 0 z2

0 0 I 0 0 H

0 0 0 m 3 0 z3

0 0 0 0 m 4 z4

kl+k 2 -k2 3 k 2 0 0 zI

-k2 k2+k3+k4	 - 3 k 2 + 3k k 4 -k 3 -k4 z2

+ k3	 2 -	 k+ 2Q k3	 2	 3	 4

2	 2
k+ 4Q k9	 2	 9	 4 0 - 	 k3	 4 b

0 -k3 0 k3 0 z3

L 0 -k4 - 3k k 4 0 k4+k5 j	 z4

k 

0

= 0 f

0

k5

(21)

15



If k 2 is replaced by u ,̀ ho t h-it

u 2 - k 2 ( z 2 - z l - 3 F^)

then we have

k l	 0	 0	 0	 0

0	 k+k	
3	

4	 3
k 

k	 -k	 -k

	

3 4	 4

2
^K) - 0	 3t k4	

49 k 4	 0	 31 k4

0	 -k3	 0	 v	 0

0	 -k	
- 31 

4	 4k	 0	 k+k

	

4	 5

-1

+1

,	 [V1 =	
31

	
,	 (u) - u 2	 (22)

0

0

If in addition, k4 is replaces] by a control force u 4 so that

u4 - k
4 

( z
2

- z4 + 20 8)

then

k 
	 0	 0 0 0 -1 0

0	 k3	 0 -k3 0 1 1
u
2

IK1 = 0	 0	 0 0 0 IV] ZT T-R
{u) _ (23)

0	 -k3	 0 k3 0 0 0
u4

L
0 0	 0 0 k5 0 -1

As a numerical example take in 	 = in 	 = 2,	 in 	 =	 8,	 I - 0.5, m3 - 1, k1 = k5 g 1,

k2 - k4 - 2, k3 = 4,	 Z -	 12, so that

16



F

2 0 0 0 0 3 -2 8 0 0

0 8 0 0 0 -2 8 8 -4 -2

(M) 0 0 .5 0 0 (K)	 a 8 8 160 0 -16 (24)

0 0 0 1 0 0 -4 0 4 0

0 0 0 0 2 0 -2 -16 0 3

If both k 2 and k4 are replaced, then from Eq. (23) we have

1 0 0 0 0 -1 0

0 4 0 -4 0 1 1

(fCJ 0 0 0 0 0 IV) - -4 8

0 -4 0 4 0 0 0

0 0 0 0 1 0 -1

In using SAP IV to generate these matrices, we first ran it in a

dynamic mode to obtain [M] and (K) (displayed in Fig. 8) and then ran

it as a static case by applying unit loads as shown in Fig. 9. This

latter run yields the desired [K] and IV] matrices (Fig. 10).

SUMMARY

The techniques have been established whereby a general purpose

structural analysis program can be used to form the equations required

for available limitin e- performance capabilities (references 3,4,5). These

techniques would permit a limiting performance study to be conducted on an

arbitrary structural or mechanical system, which normally would involve

finite element modeling for an analysis. The SAP IV general purpose

computer program was employed to carry out a number of numerical

examples to verify the formulation presented here.

17
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Fig. S -Configuration for Forming Constraints and
Performance Index
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