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Techniques are developed which permit general purpose structural
analysis computer programs to be used to generate the equations of motion
necessary for limiting performance studies. The limiting performance
characteristics of a system are useful in analyzing the optimal behavior
of a dynamic system. In particular, the limiting performance charac-
teristics are the cssential ingredients in an efficient optimal design

method for isolation systems.



INTRODUCTION

The use of conventional methods of optimal design has so far been
limited to simple systems with few design parameters. This is primarily
due to the overwhelming computational burdens of the methods which
invariably require solving the system dynamics repeatedly. Recently a
new approach that differs from the conventional methods in design
methodology has been proposed and exteasively explored (Reference 1, 2).
The new approach, called the indirect synthesis method, selects the design
parameters on the basis of a limiting performance study of the dynamic
system being designed. In the process the system dynamics need be solved
only once and thus the computational effort is greatly reduced. The
method has been successfully applied to problems ranging from an infinite
degree of freedom system with two design parameters (a beam) to a five
degree of freedom system with six design parameters (an automobile model)
(Reference 2). Frequently, only the limiting performance calculations are
made for an isolation system as this provides useful information concern-
ing the optimal system response. In particular, the limiting performance
characteristics can be used as a yardstick for gauging the desirability
of candidate system designs.

Several computer programs are now available for limiting performance
studies. These are reviewed in Reference 3. Some of these programs, e.g.,
PERFORM (Reference 4) for transient systems and SYSLIPEC (Reference 5) for
steady etate systems, are virtually unlimited in terms of size and complexity
of acceptable dynamic systems. PERFORM and SYSLIPEC are available through
COSMIC as programs LAR-11230 and LAR-11931, respectively. The limiting
performance computer programs usually require mass, stiffness, damping, and
other characteristic matrices as input. The program then computes the

limiting performance characteristics on the basis of this system information.



In view of the success as well as the extensive use of the finite
element ('E) method in analyzing complex structures, it is
important to develop the methodology necessary to couple available
general purpose finite element structural programs to a limiting per-
formance capability. This is the purpose of the work reported here.
Once these general purpose programs can be used to develop input for a
limiting performance computer program, then the limiting performance
and indirect synthesis can be applied to any system for which the general
purpose program FE is appropriate.

Approaches for coupling general purpose programs to limiting per-
formance capabilities wiil be considered. Primary emphasis is given to
the use of the general purpose program to develop equations of motion in
a form that can be used by the limiting performance program.

BACKGROUND

Consider a linear dynamic system whose equations of motion can be

written in matrix form as
(M1 {x} + [Cl{x} + [K){x} = [F){f} (1)
where

{x} = displacement vector

[M] = NxN Mass matrix, N being the number of degrees of freedom (DOF)

[C] = NxN damping matrix

[K] = NxN stiffness matiix

[F] = NxL coefficient matrix associated with the forcing function
vector {f}, L being the number of forcing functions.

The optimal design problem is to choose portions of the system so that

some index of performance is minimzed (or maximized) and certain constraints



are satisfied. It is assumed that both the performance index (y¥) and the
constraint functions Ck(x.t) on the response variables involve
peak response variables, e.g., maximum stresses, displacements, ac-
celerations. ‘The performance index and the constraint functions can
be written in the forms

v = max max lhrl' BN 325 sl

(2)
ct <G CLJ- ke 1,2, «.K

where hr" are the R response functions, and C:, C: are the prescribed
upper and lower bounds of the kth constraint, We will restrict our con-
sideration to cases wherein hr and Ck are linear functions of the response
(o1 state) variables.

The first step in using the indirect synthesis method is to calculate
the limiting performance. Those portions of the syste~ to be designed
are replaced by generic (or control) forces {u(t)}, so that the equations

of motion now hecome

M) {x} + [C){x} + (RI{x} + [VI{u} = [F]{£} (3)

where [K] is the new stiffness matrix, which omits any stiffness con-

tributions from the design elements, and [V] is the N x J coefficient

matrix associated with the generic forces {u}!, J being the number of
controllers. Such a general dynamical system is shown schematically

in Fig. 1. Two types nf elcments are considered; structural elements and
isolator elements. There may be any number of each; in particular M
structural elements and J isolator elements could be interconnected in
an arbitrary fashion. A struccural element may represent a discrete
mass point, a rigid body of distributed mass, or a flexible structure
such as a framework or a shell. The isolator elements, eimilarly, can

represent e'ther simple mechanisms without mass or models of more complicated



devices. In general, the structural elements constitute the prescribed
portions of the system (i.e., the base structure and the elements to be
isolated) and the isolator elements are to be chosen in accordance
with the design objectives. Note also that the control forces {u(t)},
being considered as explicit functions of time, do not contribute to the
nonlinearity of the equations of motion even though they may have replaced
nonlinear portions of the system, e.g. a nonlinear spring connection.
Onice Eqs. (3) are established, and the performance index y and the
constraints are placed in the form of Fgqs. (2), then existing limiting
performance capabilities can be used to obtain the limiting performance
characteristics which are subsequently employed in selecting the design

parameters.,

As mentioned in Reference 1, the problem of establishing the
coefficient matrices [M], [c], [K], [V], and [F] in Eq. (3)
for a particular dynamic system can be avoided by employing a general puvr-
pose dynamic program to generate impulse responses at isolator attach-
ment points and then constructing hr' Ck with Duhamel (convolution) in-
tegrals. That is, since the system under consideration is linear, the
response of the system excited by arbitrary forces uj can be obtained

by superimposing responses to unit impulscs placed sequentially at each

of the isolator attachment points, i.e.

J
t
hr(t) - hro(t) + jzl é grj(t - r)uj(t)dt
(4)

g
t
C, (t) = Colt) + j.);l {)gkj(t - t)uj(.)d'r

where grj and Bkj are the appropriate system responses to a unit impulse



at the attachment point of the juh isolator, and hro(t)' Cko(t) are

the responses to tle L inputs f ()., The grj and ng must be generated

by the structural dynamics program. The advantage of this approach lies
in the fact that an existing general-purpose structural dynamics code

will be used to perform all of the system dynamics required for

the limiting performance problem. However, in this work we are con-
cerned with the situation whereby the system dynamics are to be solved by
a4 limiting pertormance capability and not by the general purpose program.
The general purpose program will be used to generate the coefficient

matrices ot kEqs., (3).

Te illustrate the problems invelved in preparing the equatione for
a limiting performance solution, consider the simple example of a three
degrees of freedom spring-mass system as shown in Fig. 2a. Let it be
desired to select the spring constant k2 such that the maximum accelera-
tion transmitted to anv mass {8 minimzed while the three rattlespaces
satisfy prescribed constraints. The kl. kz spring rates remain at
their prescribed values,  For this example, the response functions
that make up the performance index are

hl = z]. h2 = zz. h.3 =z,

and the constraint functions are

Therefore, Eqs. (2) become

g = m?x mgx|zr|. r=1.,2,3
or

U o= max[mgx[ill. mgxlEzl ; mgxlﬁjll

U
s -5l 6




L u
C; < lzg - 53] < G
L U
Cqy < |z3 - f| <« C,

R U :
vhere Cl' Cy, ...03 are prescribed constants, i.e. grescribed constraint bounds
The equations of motion for this system are easily found to be

0 0 x 0 [, |

m 3 kl -kl X, m

0 m, 0 X, + -k1 k1+k2 -k2 X, g == m X (5)

0 0 m, X4 0 -kz k2+k3 X4 my
where X, =z - f, 1 =1,2,3. Now replace the middle spring by a generic

force u, (Fig. 2b). This results in a new set of equations

m, 0 0 %y kl -kl 0 %) 0 m
0 m, 0 X, + -kl k1 0 X, + % u, =-lm
0 0 My Xy 0 0 k3 Xq --1-J m3

Equations (6) can be obtained either by applying the conditions of equilibrium
to a configu-ation taken from Fig. 2b or by directly making the substi-

tution u, = kz(z2 - z3) = kz(x2 - x3) in each row of Ea. (5), which amounts
to setting k, = 0 and taking the coefficients of k, in row 2 of the (K]
matrix as the column of the [V] matrix. Obviously, the first approach
becomes impractical when the system is complicated or when the system is
being analyzed by FE Codes since it contains unknown elements. In the
following section, the second approach will be generalized and discussed
further.

DEVELOPMENT OF THE EQUATIONS OF MOTION

As mentioned, in order to use most existing limiting performance

computei: capabilities, we must express the FE system equations of motion

(6)



in the form of Eq. (3) rather than in the usual FE form of

Eq. (1). Standard FE codes will always generate the mass

matrix [M], the damping matrix [C], and the coefficient matrix [F] which

can be fed into the limiting performance codes with little or no modification.
Thus it remains to create the new stiffness matrix [K] and the contrcller
matrix [V]. Here we describe two technic. s,

Technique 1

The replacement of an isolator to elemen® k, by a control force u

i i

amounts to substituting in the equations uf motion the relations

= kiiajxj (7)

where the summation is over the degrees of freedom that are connected

by

with isolator k1 and the aj's are the kinematical factors that are
associated with each degree of freedom, This imrlies that isolator k1

no longer contributes to the assembly stiffness matrix and instead is re-
placed by an additional matrix [V], whese individual columns consist of the
coefficients of the term ki?'nix1 in the equations of motion. With the

aid of the element stiffness matrix written in assembly (global)
coordinate:, we can easily obtain the new stiffness matrix [K] and the
controller matrix [V] from [K]. From the node numbering scheme of a

FE code, we know which elements of (K] are contributed by isolator k1

so that the new stiffness matrix (K] is obtained by simply removing

those contributions. 1In the FE program, set the spring elements to

be optimized temporarily equal to zero and the desired [K] is produced

by printing the stiffness matrix. The controller matrix [V] is formed

by taking as its column the coefficients of k, in a row (or column) of

i

[K], the row (or column) number being that of a degree of freedom

which is enacted by the isolator.



lechnique !
Rewrite Eq. (3) as

(Ml {x} + (C]{x' + (E){x)} = (F}{f} - [V){u}

o

Y Yz oYl [
- “‘I{."’ - V?l \’22 \.2] < u, ?
{'m N2 o W b_:‘JJ
rvl.W rVlzW Qle
- {r]{¥} -{ fZl ? u, - < TZZ ? u, - ...1?2J ?uJ
LQN1, LéuzJ éNJ,

The [K) is found as In technique 1. The columns of [V] are obtained by
noting that the elements of [V| are simply the influence coefficients

of the "loads" {u!. Thus to obtain the influence coefficients of a
control force u, (i.e. to obtain the ith column of [V]), set all u's
equal to zero, save Uy which is set equal to 1 (Fig. 3). The resulting
load vector zenerated by FE propram is the desired c¢cclumn. 1In practice,
one must be careful to properiy account for the constraints when gen-
erating the [K!, V| matrices from a FE code, i.e. it is necessary to

ascertain whether the matrices are printed before or after the dis-

placement constraints have been applied to the problem.
Three Degree of Freedom System Example

Consider the problem of Fig. 2 which was studied above. To

treat a particular case, let m o= 0.3, m, = 1y o my = 2.5, kl = 10, kz = 20,

k, = 30. Substitution of these values in Eq. (5) gives
0.5 0 0 ] 10 -10 0

iM =| 0O 1.5 0 S=r iRy -10 30 -20 (9)
0 0 Z.S_J 0 =20 50

(8)



In terms of global coordinates the .tiffness [K2] of the middle spring

can be written as

(0 o o]

Kyl = 0 20 =20 (10)

0 =20 20
- -

It follows from Eq. (10) that the stiffness of the middle spring contributes

to K Ky,» and K Removing these contributions from [K] of Eq. (9)

220 Koy 33°

results in

(K] = -10 10 0 (11)

and from the coefficients of elements in row 2 of [K2] we find
0
[v] = 1

-1

which implies that u, = k2(22 - 23) = kz(x2 - xj).

To generate the desired matrices [M], [K], and [V] with a general
purpose program using the second technique, first compute [M] as though
a dynamics problem were to be run. Then run a static case to compute [K]
and [V] applying unit loads as shown in Fig. 4.
PERFORMANCE INDEX AND CONSTRAINTS

Now that the equations of motion are in the proper form for a limit-
ing performance study, we proceed to establish the performance index and

constraints.



Any linear combination of accelerations, velocities, displacements,
or control forces can be used as a performance index or constraint
function, i.e.

(h) or {€) = [P){x} + [Q){x) + [R){x} + [S){u} + [T){(E) Q12)
where (P], [0], [R], (8] and [*] are prescribed coefficient matrices.

The coefficient matrices in Eq. (12) can be easily formed when
using a FE code. For example, consider the discretized system shown
in Fig. 5. At each node, six degrees of freedom (DOF)(3 translational and
3 rotational) are specified. Suppose in Fig. 5 that the accelerations
along the y coordinate at node i and node j are to be constrained
such that
|a§‘ + bvj[ < d (13)

where a, b, d are prescribed constants. To place the constraint function

a}l + b}} in ¢« form of Eq. (12), we need only input the node numbers,

the nodai i")F, and the coefficients a, b, e.g. (i1,2,a) and (j,2,b) where the
2 stands for the y degrees of freedom. In most general purpose FE

codes, there is a printable connectivity array that identifies the nodal
DU!F to be constrained in terms of the independent assembly DOF. Suppose
¢“nat (4£,2) and (§,2) correspond to Ith and Jth assembly DOF.

Then an appropriate kth row of the [P] matrix in kq. (12) will consist

of the elements

PkI = a, PkJ = b, k being the row number

(14)
PkE = 0 for all ¢ # 1,J.
For this example the elements of the kth rows of the matrices [Q], [R],
[S], [T] are all zero since the constraint function of Eq. (13) contains

only accelerations. Similar reasoning permits Eq. (12) to be formed for

11



any acceptable type of performance index and constraint function.
Although we have chosen to describe a dynamic system by second
order differential equations, Eqs. (3), some limi._ing performance
programs work with first order differential equations. The second
order equations are converted into a set of 2N first order linear

differential equations

{8} = [A)l(s} + [B]{u) + [D){F) (15)
where
{x)
(s} » (o=
{x}

is a state vector with 2N components, and the coefficient matrices
[A), [B], [D] are determined as functions of the coefficient matrices
of Eq. (3). Also, instead of Eq. (12), the performance index and
constraints are input to the limiting performance programs in the
form

{h} or {C} = [E]{s} + [G]{u} + [H]{f) (16)
where [E], [G], and [H] are prescribed coefficient matrices. Although
the formation of Eq. (15) using Eq. (3) is a familiar manipulation, it
is useful to cone:dor in detail how Eq. (16) is obtained from Eq. (12).
This is accomplished by solving Eq. (3) for {x) and placing the

result in Eq. (12) to give

(h} or (¢} = ([Q) - (7] (5305} + (R - (P] (-E))ix)

+ (18] = [P] 7)) {u} + (1) + (P) [£]) () 17)



A comparison of Eq. (15) wvith Fq. 717) shows that

(] - [lnl , Il’l[—‘;.:--]i 0 [v[—%-]]

() = 181 - (v 5 s

and

(H] = [7T] + [p][_;_.]

13



USE OF SAP 1V

To implement the techniques described here the SAI' IV computer pro-
gram was selected. SAP IV (Meference 6) is a nopular general purnose nrogram
that can be altered locally with relative ease. The vropran required only
slight modification in order to rrint out the desired matrices for LEqs. (3).
In the following examples, all springs were input to SAP IV as elastic
beam elements with appropriately chosen moduli and dimensions to secure
the correct spring constants. The program allows for slave degrees of
freedom to treat the rigid beams. It, however, ignores any loads
applied at the slave nodes and thus these loads must be replaced by
their static equivalents at the master node.
Three Degree of Freedom System Example

SAP IV was used to form the [M], [K], and [V] matrices for the
three degree of freedom example of Fig. 2, with mass and spring values
of the previous example. The results are given in Fig. 6. In its
dynamic mode of ope..tion, SAP IV computed [M]. Then, in a static
mode [K] and [V] were found by applying the unit loads of Fig. 4. .
Five Degree of Freedom System Example

As a more complicated example consider the automobile model of

Fig. 7, which is considered in Reference 5. The equations of rotion for

the configuration shown are

m z, + kl(zl- f) - kz(z2 g - % 8) = 0
= [}
m,z, + k -2, -=8) - 2k
2%2 2(22 zl 3 a) k3(23 - zz) + k4(z2 -z, E 3 6) =0

¥ = oz 5 ka2 2%
16 kz(z2 z 3 ) 3 + k4(32 -

28
s ¥ 0§ =0



m.z

3%y ¥ Ky(25 = 25) = 0

.. 2!'
mz, - k4(22 -z, + T 68) + ks(z& - f) =0

474

.a matrix form

’
o 0 0 0 | ¥
m, 0 0 0 z,
0o 1 0 0 .95
0 0 m3 0 z3
0 0 0 m | i
[ x4 -k &t 0 gL
1t%, 2 3 K
2 22
-k, kgt -tk R Kk K,
2 2
£ f 22 £ 48 28
3ky 3kt g ktgk, 0 -3k
0 -k, 0 k, 0
24
Lo -k, -%x, 0 kg |
~ —
ky
0
0o |f
0
[ s ]

(21)
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If k2

L
uy = ky(zy -2z, - 3

then we have

-
kl 0
0 k3+kb
B 28
(Kl]=| 0 3 kl‘
0 -k3
0 -k
L L

If in addition, k

u, = kb(zz -
then
-
kl 0
0 k3
[Kl=] 0 0
0 -k3
0 0
-

H)

is replaced by u, so that

- — -
0 0 0 -1
28
3 ka -k. -ka +1
M 0B v = |3 {u) = u, (22)
9 "4 mE Bt . 3 : 2
0 k 0 0
2%
3 ka 0 k4+k5 0
- e -
4 is replaced by a control force u, so that
28
z‘.'i"a—e)
- r -
Q 0 0 -1 0
0 -k3 0 1 1 u,
o o o |,m= |F £, - (23)
Y
0 k3 0 0 0
0 0 k5 0 -1
- — -
As a numerical example take m =m, = L, m, = 8, 1I=0.,5, m, = 1 kl = kS =1,

k2 - k&

=2, k3 = 4, & = 12, so that



§ g O e e & Bl v $ontif o)

8 1.8 T R A
M =0 o .5 0o o , [Kl=]| 8 8 160 0 -16 (24)

8 Osliarhve @ T R TR R

0 0 0 0 2| [0 -2 -6 0 3
If both kz and k& are replaced, then from Eq. (23) we have

~ - P~ -

il A9 -l 0

0 4 0 =4 0 1 1
=0 o o o of, M= -4 8

& mhos Dk B 0 0

€I o 5 R B SO

In using SAP IV to generate these matrices, we first ran it in a
dynamic mode to obtain [M] and [K] (displayed in Fig. 8) and then ran
it as a static case by applying unit loads as shown in Fig. 9. This
latter run yields the desired [K] and [V] matrices (Fig. 10).

SUMMARY
The techniques have been established whereby a general purpose

structural analysis program can be used to form the equations required

for available limiting performance carabilities (references 3,4,5). These

techniques would permit a limiting performance study to be conducted on an

arbitrary structural or mechanical system, vhich normally would involve

finite element modeling for an analysis. The SAP IV general purpose
computer program was employed to carry out a number of numerical

examples to verify the formulation presented here.

17
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Fig. 5 - Configuration for Forming Constraints and
Performance Index
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