General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

aya o
he]

¥

™

W

=

hieZ0h L9/€9 450 123D gL°6% OB d ILE (*ATUp W3Y Sexal)

Teutd ALITIE{I1d2 TIIVMLIOS LDITdHd
108 *IA093INT ‘H91S7EW OL IV§ SI7I0dWOD
yS1350LOYINNYN~-TILINW OL NOISNZLXT WILSAS
NOTLYINEWNT2T OILYRILAV (BtLhhLl-dD-¥STN)

seTouq 310d>3y

LRBEZ-9LN

-
< -

!@g - e - - - -

]

AUTOMATIC DOCUMENTATION SYSTEM EXTENSION TO MULTI-MANUFACTURERS' COMPUTERS
AND TO MESSURE, IMPROVE, AND PREDICT SOFTWARE RELIABILITY

Final Report
NASA Contract No. NAS5-207156

October, 1975

Submitted to

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

Submitted by
Dick B. Simmons
of the

Data Processing Center
Texas Engineering Experiment Station
College of Engineering
Texas A&M University
College Station, Texas 77843

FOREWORD

This report presents the results of the project to extend the DOMONIC
system to multi-manufacturers' computers and to measure, improve and pre-
dict software reliability. This work was performed by the Data Processing
Center of the Texas Engineering Experiment Station of Texas A&M University,
College Station, Texas. This work was performed under Contract NAS5-20715
of the National Aeronautics and Space Administration, Goddard Space Flight
Center, Greenbelt, Maryland. The Project Monitor was Mr. E.P. Damon.

The Principal Investigator of the Project was Dr. Dick B. Simmons.

The Manager over the development and axtension of the DOMONIC system has been
Mr. Pete Marchbanks. Major contributors to the development and extension

of the DOMONIC system were: Louis Devito, Mike Quick, and Glen Hascall.
Students working on this phase of the project have been Chap Chi Wong,

Eliseo Pena, and 01lie Polk.

Major contributors to the extension of the system to measure, improve
and predict software reliability, have been Dr. Roger Elliott, Dr. Larry
Ringer, Dr. William Lively, Dr. Richard Fairley, and Mrs. Jean Zolrowski,
who has acted as coordinator for this phase of the project. Dr. Dicx B.
Simmons has directed both phases of the project.

Phase I of the project is described in Chapters I and II of the final

‘report. The DOMONIC Users Manual which was updated during this phase is

included as Appendix A. The DOMONIC Command Reference Manual is included

as Appendix B.

Phase II of the project is described in Chapter I and Chapters III
through VII. Chapter III was written by Drs. E1liott and Ringer, Chapter IV
by Mrs. Jean Zolnowski, Chapters V and VII by Dr. Fairley, and Chapter VI by
Dr. Lively.

L

S

ABSTRACT

This report describes the work done on the project to extend the
DOMONIC system to Multi-Manufacturers' Computers and to Measure, Improve,
and Predict Software Reliability. The DOMONIC system has been modified
to run on the Univac 1108 and the CDC 6600 as well as the IBM 370 computer
system. The DOMONIC monitor system has been impiemented to gather data
which can be used to optimize the DOMONIC system and to predict the
reliability of sofiware developed using DOMONIC. The areas of quality
metrics, error characterization, program complexity, program testing,
validation and verification are analyzed. A software reliability model
for estimating program completion Tevels and one on which to base system
acceptance have been developed. The DAVE system which performs fiow analysis
and error detection has been converied from the University of Colorado
CDC 6400/6600 computer to the IBM 360/370 computer system for use with the
DOMONIC system.

Byt T

TABLE OF CONTENTS

Page
1.0 INTRODUCTION =-=mmmm oo e e e e e e e e e e e - 1
2.0 DOMONIC SYSTEM STATUS wmemmmmcm e e e et e e 3
Phase I =--memmmmecmnm e e e e 3
Phase I] —--=rmmmmocmc e e e e 7
3.0 QUALITY METRICS/RELIABILITY MODELS/ERROR CATEGORIZATION ------=an~ g
3.T Errors ==-ee-rese s e e e e e e e 10
3.1.1 Survey of Error Classification Techniques---===v---- 11

3.1.2 A Prototype Development Error Data
Collection System=---w-mmmecomm e e e 18

3.1.3 Errors in Software Development -

An Empirical Study =-swm--=mcmmmm e e 28
3.2 Software Quaiity Attributes -w----cemmmm e 31
3.2.1 Overview of Software Quality Metrics --------meeeuo- 32
3.2.2 Modifiability ==c-mm—memommm e e 39
3.2.2.1 1Internal Documentation-s-----mmeemccmecna—" 40
3.2.2.2 External Documentation------ceemmommmoccenxn 40
3.2.2.3 Modularity-~---—~reemmmmmmmmm e 42
3.2.2.4 Portability-~--===-~m—mmmemme e a4
3.2.2.5 Extensibility--r-=--mccmmmmcmmri e 47
3.2.3 Efficiency--=-=——-cummmmm e e - 47
3.2.3.1 Execution Speed--re-=cmmemmmm e 49
3.2.3.2 Core Utilization--—--wmmocomcamm e 51
3.2.3.3 File Utilization === —mmmmmmmmcame e 53
3.2.3.4 OQver-all Processing Organization----=-mn-== 6
3.2.4. UseabiTity~-=—--rommmmemm e e e e 56
3.2.4.7 Device Useability--w-mmevememmacaa- mm————— 58
3.2.4.2 Output Utility--ermemmmm e 59
3.2.4.3 Process Simplicity----=rem—mmcmmrmccc e 61
3.2.5 Software Reliability-=~--=m=r-cmcmemm e 64

i~

TABLE OF CONTENTS (Continued)

3.2.5.1 Definitions of Software Reliability-------
3.2.5.72 Overview of Reliability Models--~===-aun--
3.2.5.2.1 General Reliability Models~----
3.2.5.2.2 Software Reliability Models----

3.2.5.2.3 Summary-----c---ssemmmm— e
3.2.5.3 A Model for Estimating Program
Completion Level---remmcmmmm e e
3.2.5.4 A Reliability Model on which to Base
Acceptance Testing--------—ccumeacannn-
3.2.6 Functional Correctness--—==-—--meccmmmmm e e
3.2.7 Productivity---~=-cmmemmmm e e
3.3 SUMMArY===r-—- s m e ——_—— LS P TP
3.4 Bibliography-=-=-cccecmmm o e e
3.5 References------r-memme e e -
4.0 PROBLEM OF PROGRAM COMPLEXITY-----emmrmmmm s c e oo
4.1 Overview of the Problem--e-ecrmemm e e
4.2 Survey of Background Information---------se--emoomnmomamu-
4.3 Data Collection System--------emmercmmmmm e e
4.3.1 Data Collection-r-memm-eemmom e e
4.3.7.1 Manual Data Collection - Questionnaire----
4.3.1.2 Automated Data Collection -
Source Program Scanney-------===-=~a----
4.3.2 Program SampleS--=--rmemmmmmor e e oo
4.3.3 Data Analysis-==--=-mememmm o e m e
4.4 Complexity Characteristicg-=--===-mrecmmemcccomcccma e
4.,4.17 Program Interaction Characteristics--e-m-cmmeanomn-
4.4.2 Characteristics of the Program as an
Independent Entity-=--==-=mmmommmcmca e cmnaen -
2.7 Instruction Mix Characteristics-----------

.2 Data Reference Characteristics--e~-mum—mun-

4.4,
4.4,2
4.4.2.3 Structure and Control Flow Characteristics

75
85

101
102

104
107
109

113
115
118
133
134
135
137

140
143

146
147

150

152
154
157

L T

TABLE OF CONTENTS (Continued)

Page

4.5 Preliminary Results/Future Analysis/Summary-------—--w-—-- 175
4.5.1 Preliminary Results-=-mmmomom oo emem 175
4.56.2 Future Analysis--===m=memmmm e e - 189
8.5.3 SUMMATY==r === == mm et ettt e e 193

4.6 Bibli0graphy=-=m=mm=mmmm e oo 194
4.7 ReTerenCeS=-=mwmmmmmm oo e e e 197

5.0 INSTALLATION AND USE Of THE DAVE SYSTEM AT TEXAS A&M UNIVERSITY- 205

6.0 TESTING, VALIDATION, AND VERIFICATION-------commmmc e 214
6.1 Terminology------—=—-=mmmm e 214
.2 Goals of Testingeer e m i e - 215
6.3 Types of Testing-----meccem e e - 216

6.3.1 Informal vs: Formal---v—-mememm o e o 216
6.3.2 Testing Stages----wmmcmmmm o m 217
6.3.3 Manual vs: Automated-----—--—ccmmmmmmcmcee e 217

6.4 Integrated Top-Down Testing----=-====-=moemmmmmemmmmme e 218
6.4.1 Top-Down Development=—— s oo e mem 218
6.4.2 Testing and Integration-----c-me-memmccmem e 219

6.5 Automated Testing TOOTS-cmm—mmm e e 220
6.5.1 Automatic Test GeneratiofN-----meemcmmamcnmacnmenan 220
6.5.7.1 Utilities-~--=mmmmmmmmmm e 220

6.5.1.2 Variable Range Schemes--w-m-cemmmmcmaaaa. 221

6.5.1.3 Branch Path Schemes---=ce-cmcmmmmomce - 221

6.5.2 Automated Monitoring Systems-------commosmmmacnnno 223
6.5.2.1T PET-rmmrmecm e s e e e m e 223

6.5.2.2 PACE-=cmmmmm e - 226

TABLE OF CONTENTS (Continued)

6.6
6.7

6.8
6.9
6.170

7.0 Modern
7.1
7.2

7.3
7.4

Page

6.5.2.3 ACES —=-=-=mmmmmmmmmmmmmmmmmmmmmomme o 231
6.5.2.8 ISM ~m-mmmcrmcmessmmem o m o mmmmmmmmmme o 239
6.5.2.5 DAVE mmmemmm oo memmmmm oo m o oo mmem e 246
6.5.2,6 Discussion =--m=-tmcmmmm e 255

6.5.3 Debugging Techniques ~==mmmermemeemcccc e 256
6.5.3.1 Batch Debugging ==-wemmememcmmc e e 257
6.5.3.2 Interactive Debugging ----=----ce-ceceeenm- 258
Certification =----mmmmmmmmm e e - 258
Proof of Correctness =--=r-em—mmemm o e oo 259
6.7.1 Nature of Correctness Proofs -------=------mmeonon—o 259
6.7.2 Manual Proofs ~---—mmosmemeomo oo e oo 261
6.7.3 Automated Proofs of Correctness -------c-ecoccmmoo-- 261
6.7.4 Integrating Proofs with Program Design =-----ecen-u- 262
6.7.5 DiSCUSSTON =m==mmmmmmmmmm oo oo e 262
SUMMATY == == == m = o e o o o o e 263
Bibliography =---====-cmmemm oo oo 264
RETEIaNCes =-=omemmm oo oo o 266
Software Design Techniques =w=-=--mm-=smcmmmommmes oo een o 267
Basic Design Strategies -=-=m-msmmmmmmmmmmmm e oo 271
Interface Design -—-=s==-memmmmmo e e 272
7.2.1 Control Interface Design ==-rm=----=m-memommmomnonenoe 273
7.2.2 Data Interface Design ===--rmm-o—ommmemmcmcme oo 276
7.2.3 Services Interfaces --=----m---mcmmmmmmremmnaanon 277
Structured Design ---=-~----mommem e oo e e 280
Software Design Notation ------------ ittt 286
7.4.17 Structure Char: . =mmmmemmemcommooom oo 287
7.4.2 HIPOS memmmmmmmmmmm s oo oo oo 287
7.4.3 Pseudocode =---wmmsmmmmmm oo o e e 290
7.4.4 Structured Flowcharts ~==-=-=e--mcoomomacr o e 294
7.4.5 Decision Tables ---m=m-mcmmcmrocmmmm oo oo e 298

W o0 T

TABLE OF CONTENTS (Continued)

Pag
7.5 Influence of the Implementation Language ------veememeaean 299
7.6 SUMMANY m===mmm e e oo e st e 303
7.7 Bibliography -—=ssmmmecmm oo e e e e e 304
8.0 Future EXLENSTONS =w-emommmm e oo o e e e e e e 306

APPENDIX A DOMONIC Users Manual
APPENDIX B Command Reference Manual

Lomry o s

v b

&

1.0 INTRODUCTION

The Data Processing Center at Texas A2M University is pleased to submit
this final report for Contract NAS5-20715 to the National Aeronautics and
Space Administration, Goddard Space Flight Center, Greenbelt, Maryland. The
purpose of the project was to extend the capabilities of the automatic system
for computer program documentation which was developed by Texas AM University
for NASA. The system has been designed to p-oduce timely up-to-date docu-
mentation at relatively low cost. The system has been designed to document
any computer language and to run on any haraw.re while taking advantage of
the existing documentation aids. The system is easy to use and places no
restrictions on the programmer.

During the initial phase of the development, the system was impTlemented
to run on the IBM 360/370 series computers. Major emphasis during the first
phase has been to document programs written in FORTRAN. The extensions
covered by this final report were broken into two phases:

Phase 1 - Extend the system to operate on CDC and Univac computers

and integrate appropriate additional documentation aids into
the system.

Phase 2 - Extend the system to measure, improve, and predict software

reliability.

The automatic documentation system developed during previous stages
has been extended to monitor and control the development process. The
extended system is called the DOMONIC (Documentation, Monitor and Control)

system. Accomplishments during Phase 1 and Phase 2 of the current contract

are described in Chapter II. Research reports resulting from Phase 2 are
{2 contained in Chapters III through VII. Appendices A and B contain the

DOMONIC Users Manual and the Command Reference Manual.

€
i
i:

o .‘:".!

P - e L e
BTy zz,ﬁmu ~.ri S

o

ek

i
L7

{.

2.0 DOMONIC SYSTEM STATUS

Phase 1 of the current contract was to extend the DOMONIC system to
multi-manufacturers' computers and to expand the system capabilities. In-
cluded in this Phase was training of NASA personnel in the maintenance of
the DOMONIC system, assist NASA in using the DOMONIC system to document
the programs at NASA, use the DOMONIC system to document software developed
at Texas A&M fTor NASA, implement the system on the Univac 1108 and the
CDC 6600 and add additional documentation aids to the system. During
Phase 2 the DOMONIC system was expanded to monitor the development process
giving data which could be used on reliability models to predict software
reliability. The tasks of this phase were to define categories of errors,
design and impiement a monjtor within DOMONIC, evaluate existing sofiware
reliability techniques, and develop a software reliability model.

Phase 1 - Training sessions of NASA personnel were held at both Texas
A&M University and Goddard Space Flight Center. Mr. Jack Kohout of NASA/
Goddard Space Flight Center made an on-site visit to Texas A&M University
during early March, 1975. Training techniques and DOMONIC system operations
were discussed with him. He rade numerous suggestions to the next up-date
of the DOMONIC Users Guide and Command Reference Manual. During this trip,
an updated version of the DOMONIC system which incorporated some suggestions
from Mr. Kohout was planned for later installation at Goddard.

An updated version of the DOMONIC system was installed at Goddard

during the period of June 6-11, 1975. During that time, additional training

Fara™™ oo
b S

Y

el 3
]

Fonsteel
TR

was conducted and suggestions were made by NASA on ways to improve the
DOMONIC system.

Once the DOMONIC system became operational, modules from the system
were loaded into DOMONIC and the CIMONIC system was used to maintain itself.

The security and monitor modules were complietely developed using DOMONIC.

The Texas A&M Data Processing Center Billing team has used DOMONIC to assist
them in developing and maintaining the billing applications at the Texas A&M
Data Processing Center. The Data Processing Center is in the process of

eipanding the use of DOMONIC.
A major effort has been expended in converting the DOMONIC system

Trom the IBM 260/370 computer to the CDC 6600 and Univac 1108. The initial
conversion effort was to convert the system to the CDC 6600 at The University
of Texas (UT) at Austin. This presented the most convenient site Tocation
due to the time-sharing agreement between UT and Texas A&M University. UT
uses the CDC Version 3 COBOL system which was the Tatest version when the
initial language study for DOMONIC was made. The first attempt to convert
six routines was very discouraging due to the differences in IBM's standard
COBOL and the CDC Version 3 COBOL. However, after considerable thought was
given to system conversion, a program was developed which would convert

zbout 90% of the statements that had to be converted. The only remaining
effort before a full-fiedged conversion effort could be started was the use
of the copy facilities tqfiqtrndu¢e common program segments into the programs
from the‘CEntraTized'Tibrary;',fhea¢apabi1ity.was originally present at UT
and, after‘exténéivé ¢heckih§¥ﬁfth5tﬁé5UT Systems-Group and the CDC repre-

sentatives in AuStin aﬁd chsth, itfwéS'found that changes in the UT

T

operating system prevented use of the copy facilities without revision to
E; the UT software. The absence of a copy facility was deemed unacceptable
- since DOMONIC has over 60,000 COBOL source statements and this figure
i would more %han double without the use of the common descriptions which
T were to be copied. Maintenance of the system would be more complex if

copy facilities were not used because the single modification to a common

‘entry would become & repeated task in all modules using the common item.

- A decision was made to look for another CDC system which provided
s better support to COBOL development. Region IV of the Texas Education

g Agency in Houston was selected as the more preferable conversion site. They

were equipped with Version 4 of the CDC COBOL compiler which was a much

£ closer approximation to ANS COBOL. In addition, COBOL was the primary

E Tanguage on their machine which was evidenced by their proficiency in its
use. This was demonstrated when the six programs, which did not run at UT,
were successfully converted after a single morning's work. After the visits
to Region IV, the conversion program was modified to correct approximately

EN 95% of the items that needed to be corrected.

%z Even though COBOL was designed to be a machine independent Tanguage,

u there are a number of characteristics which are machine-oriented. One of

1 the major problems in the program conversion was that techniques and pro-

- cedures used on the IBM machine at Texas A&M University for efficiency caused
inefficiencies on the COC and Univac machines. More specifically, a compu-

f? tational item used on the IBM 360 to conserve space and reduce data conversions
- was very wasteful of space on the other machines which have different word

lengths and use different size characters. Also, routine communications

WETR

et TR

facilities provided by the IBM return code are not available on the Univac

or the CDC machines. These items were converted with about 60% efficiency

by the conversion program developed by Texas A2M University. The return code
was a simple matter compared to the computational items. To soive the
probiems of computational items, variable lengths were redefined and move-
ment lengths were changed in going to character variables. The efficiency
problems were soived by recompiling everything on the IBM system to be exactly
compatibie with the other manufacturers' systems.

A number of subroutines on the IBM version of DOMONIC were written in
ascembly Tanguage to improve the efficiency of the system. A1l of these
programs were rewritten in COBOL for transportability with the exception
of terminal I/0 programs which are machine-dependent.

Initial conversion to the Univac computer was begun by using the
University of Houston's Univac 1108. Fortunately, that system had upgraded
their standard COBOL considerably since the initial language study was made
for DOMONIC. Many problems with the Univac version of COBOL were identitied
during trips to the Univeréity of Houston. After analyzing the problems, the
programs which had been converted to CDC were able to run on the University
of Houston system. A small sample has also been compiled at the Jdohnson
Space Flight Center in Houston with complete success. The COBOL converter
developed as part of this contract can be used to move other COBOL programs
from IBM to Univac and CDC computers.

Additional documentation aids were added to the DOMONIC system during
this contract period. Programs to provide general cross-references were

added for COBOL and assembly Tanguage programs. Aids that helped to clean

up and reformat programs were added for FORTRAN, COBOL and PL/1. The DAVE
system was installed at Texas A&M University to be used in conjunction with
the DOMONIC system. BDAVE is a large FORTRAN program designed to perform
data flow analysis on FORTRAN programs.

Phase I1

In this part of Phase 2, a monitor was developed which can gather
information that is useful in system improvement., software reliability studies
and resource billing. The monitor sub-system was developed using DOMONIC
which was possible because the monitor sub-system could be developed after
the initial version of DOMONIC was finished.

The monitor collects data using two record types. Information concern-
ing data is collected with the data record and includes user-supplied and
automatically-recorded information. User-supplied information consists of
flags to turn “on" and "off" the monitoring of commands and the estimated,
revised and actual completion dates of data modules. Automatically recorded
information consists of command counts, user thot entered the moduie, Tast
user to update, size of module, number of times a module has been edited as
well as the date of entry and date last updated. User information collected
automatically consists of logging the User ID, total log on time, CPU time

used, number of times the user has lTogged on and the date of the last log-on.

During Phase 2 an extensive effort was made to develop techniques to
categorize errors, and establish appropriate quality metrics which would
be useful in software reliability models. Chapter III of this report,

which was written by Drs. E1Tiott and Ringer, describes quality metrics,

-
=
{
4
di
s

4
3
oy

reliability models, and error categorization. In that chapter, two relia-
bility models which were developed as part of this contract are described.

One is a model on which to base acceptance of a system.

Types of errors made in program development in many cases depend upon
program complexity. dJean Zolnowski, in Chapter IV, analyzes program complex-
ity and describes vectors which should be considered in measuring complexity.
She wrote a number of SNOBOL programs to automatically analyze existing pro-
grams to determine their complexity as described in Chapter IV. This work
was done in conjunction with her dissertation.

A brief description of the installation of the DAVE system is included
in Chapter V which was written by Dr. Fairley.

Very closely related to the reliability of software are the techniques
used for testing, validation and verification of software as described in
Chapter VI which was written by Dr. Lively. Chapter VI is concerned mainly
with the testing aspect of reliability with.emphasis on the etimination of
errors or bugs in software. The chapter deals primarily with discussions
about *msting batch programs. Some of these techniques are applicable to
time sharing and real time programs, but additional complexities of non-batch

programs create a number of other problems.

Chapter VII, written by Dv. Fairley, is included as a summary of

modern software design techniques. Chapter VIII suggests future extensions.

R EET

s
&

i

re

R

3.0 QUALITY METRICS/RELIABILITY MODELS/ERROR CATEGORIZATION

ppie |

1F
o

Other chapters will deal with a number of different software techniques

T _j

designed to improve the quality of a computer software product. This chapter

ST
f

will provide a comprehensive overview of techniques for measuring that

=1

i quality.

:j The principal problem with evaluating software quality is that of eval-
{ uating any human activity -- namely, that it consists of many varied charac-
m teristics that are difficult to quantify. Although it is difficult to

L describe software quality in general terms, a software quality problem is

?% easily recognized even though it may come in a variety of forms.

- Example: A program for computing bi-weekly paychecks is used every two
weeks for nearly three years and performs flawlessly. Perversely, on New

i Year's Eve in 1972 the program generates paychecks nearly every one of which
is incorrect. Further investigation shows that the program had been written
in such a way as to handle years with no more than 365 days. Since 1972 is
3 a Teap year, the program malfunctions. This was a case of a software quality

problem due to a lack of functional capability.

5% Example: An accounting system has been developed and operates flawlessly
) over an extended period of time. Eventually, however, due to some organiza-
%E tional and product changes it becomes necessary to modify the manner in which
g; some entries are made and to change approximately 15% of the reports that are
L generated. After spending several weeks in an attempt to understand the Togic
gg and structure of the existing programs, the programmer assigned to the task

2l L

L sk ol)

ey

of making the modifications gives up %n disgust and re-writes the system from
scratch. This is an example of a software quality problem due to a Tack of
modifiability.

Example: A set of programs is written to code and decode data prior
to and subsequent to transmission over a tape-to-tape transmission device.

A subsequent analysis shows that over 70% of the data being transmitted

consists of blanks and that if rudimentary data compression schemes were
employed the cost of operators and communication Tines could be reduced by
nearly 60%, far overshadowing the cost of implementing and utilizing the

data compression scheme. This is an example of a software quality probiem due
to a Tack of efficiency.

Clearly, these are only a few of the more obvious kinds of quality probh-
lems but there are a host of others. In this chapter an attempt will be made
to do two things. First, since software quality problems are related to
errors, schemes for classifying software errors will be reviewed and a com-
prehensive program for collecting error data will be described. In addition,
some of the existing error data will be summarized. Next, the characteristics
of good quality computer software will be described and a number of metrics
for measuring software quality will be proposed and evaluated. The quality
characteristic which has received the most attention in the literature is that
of software reliability, primarily because it is most amenable to mathematical

treatment. Reliability measures and models will be discussed extensively.

3.1 Errors

In the past 20 years, millions of computer programs have been written

10

zi in this country. In view of this and the fact that each of these programs

[: went through a development phase in which errors were detected and elimi-
nated, it is remarkable to note how Tittle is known about errors as they

{g exist in software products. For example, there are no definitive statistics
on the types of errors which occur, there are no reliable statistics on the

il distribution of errors over time, and there is Tittle known about the basic

sources of errors.

This is due to two Tactors. First, there has not existed any uniformly

accepted classification system for software ervors. The little data that

has been collected is in many heterogeneous forms and does not yield to com-
parison. Secondly, there has been 1little effort to collect error data. Soft-
%é ware development personnel have concentrated on the operational problems in-
volved in their work and have spent relatively little time analyzing what

they have been doing.

[This section consists of three parts. First, several of the attempts
which have been made to develop error classification systems will be reviewed.
Then a data collection program for error data will be outlined. Finally, some

preliminary error data which has been collected wiil be presented.

3.1.1 A Survey of Error Classification Technigues

Rubey, Wick, and Beathley [1968] have prepared a comparison of PL/I with
ig several alternative languages. Preparatory to doing this they developed a

{ categorization scheme which included the following error categories:
{E 1. Computation and assignment statements

2. Characier handling statements

11

IR ol R tied. B

3. Sequence control and decision statements

4, System interaction statements

5. Data file and format description statements
6. Procedure, function and subroutine statements
7. Comments

8. Delimiters

9. Labels
10. Punctuation

This categorization scheme is useful for a broad variety of problem
oriented Tanguages but it has two deficiencies. First, it assumes a pro-
gramming language of the general nature of PL/I and would not be useful
for other languages such as assembly Tanguage or APL. More importantiy,
however, the categorization is deficient in that it provides for a rela-
tively 1imited number of types of errors. It, for example, does not in-
clude provisions for indicating data preparation errors, keypunéh errors,
system failures, etc.

A more recent work in the area has been attempted by Ramamoorthy,
Cheung, and Kim [19741. They addressed the area of reliabilit; of Targe
computer programs and in so doing developed a classification scheme by

first attempting to develop a comprehensive Tist of sources of errors and

then combined these into classes wherein most common errors can be described.

Their sources of error inciude the following:
1. Program specification

2. Faulty algorithm design

12

3. Overlooking special cases for input data

4, Coding errors (including incorrect schematics, language
constructs, logic errors, a.ray/overarrayed and so forth)

5. Structural errors (including incorvect flow of control,
unreachable program segments, ne exit path from segment

and so forth)
6. Loop termination

7. Interface errors

Given these sources of errors, the authors then combined these into
Tfive general classes consisting of the following:
1. In*terface data
2. Seguencing
3. Data Integrity
4. Semantics and Tanguage construct
5

Structure and formation

E.A. Young [1970] did a study on the error-proneness in programming as
it was manifested in the use of five programming languages, namely ALGOL,
BASIC, COBOL, FORTRAN, and PL/I.

He defined errors in terms of the Tanguage employed by the user and in
terms of his satisfaction with the results. Young supplied instructions,
confidential questionnaires, debugging run Tog blanks and a firal question-
naire for each probiem. Errors were classified by making use of the informa-

tion avaiiable from the questionnaires at the end of each programmer's

debugging process. The errors were coded in terms of the best deseription

13

of their primary cause and not in terms of intermediate or final results.
The error coding card for the experiment specifically asked for items
such as: general cause of the error, specific cause of the error, the
number of possible errors which could be classified Tike this one, system
diagnosis of the error, system action, and the number of diagnostics for
this error.

For the purposes of Young's study an "error" was defined as "each

omission or commission, usually on the part of & programmer, which results
in potential or actual computer actions not desirable and/or not accept-
able within the programmer's interpretation of the program specifications."
Based on this definition and the results of the experiment, the foliowing
are the error classes Young came up with (those categories with a higher
proportion of errors occurring are noted and an explanation is given):

- Job identification

- Execution request

- External I/0 assignment

~ Qther command 1anguage

- Procedure identification

*. Allocation (those parts of the program which explicitly guide the
definition of symbols within a program)

- Label, location marker

*. Assignment, Computation (encompasses most direct data manipulation)
- Comment, pseudo-op, no-op

*~ Tteration mechanism (repeated use of a small number of instructions)

-~ Unconditional branch

14

et
LRI .

ST

J:—v-"--.

e Sany

| ——

*- Conditional branch, executing (change course of execution - though
there were relatively few occurrences of errors in these, they
tended to occur not only out of proportion to the number of
conditional statements but these errors also lasted extraordinarily
Tong)

*~ 1/0 formatting (more syntactic problems with this than anything else)

*. Other I/0 (what is to be written or read)

- System subprogram invocation
- Other subprogram invocation

*- Parameter/subscript Tist (mainly miscorrespondence between real and
actual parameters)

- Subprogram termination
- Data

*- Yertical delimiter {serve only to indicate statement groupings such
as iteration loop or block termination)

- None

The most extensive error categorization scheme that has been developed
is that of Amory and Clapp [1973].

The goal of this project was to "provide as extensive a categorization
method as possible and then encourage experimenters to use it as a guideline,
subsetting and extending it as appripriate to the gozls of the experiment.”
For the purposes of this study, an error is defined as "a conflict between
two or more viewpoints which must be resolved” and a bug is in turn defined
“as an error which involves software as one of the conflicting viewpoints."

It is most important that an error classification scheme handle errors
which cannot be neatly assigned to a single category. So this method uses

a set of concurrent dimensions and an hierarchical organization of classes so

15

o

[| S Lo e

ey
S

PT——prte
i A

i

)

=

il

A parsrm,

L

that aspects of an error which occur simultaneously can be organized to

reflect this fact. Accordingly, error data is organized in five dimensions:

WHERE - covers context in which error appeared

WHAT - describes manifestations of the ervor

HOW -~ dqdentify specific code or data which was incorrect
WHEN - gives development stage at which error occurred

WHY - presents reason(s) for making the error.

Each df these dimensions is presented as a set of categories, sub-
categories, and subdivisions, as appropriate to the dimension's orientation
and prospective use.

An analysis and investigation of error distributions in system programs
was recently reported on by A. Endres [1975]. The fact that he actually
collected data and analyzed it is qimportant in itself, although the class
of programs he anaiyzed is not 1ike most application programs and therefore
his classification schemes are not useable on a general basis.

Errors analyzed were those discovered during internal tests of components
of the operating system DOS/VS. A typical project activity consisted of

changing or adding about 50 instructions in an existing module of about 200

instructions. Errors are detected in code which is a mixiure of “"old"

and "new" programming siyles. Also, a record of errors was kept only for the

formal test period of 5 months which is only a part of the complete test cycle.
So a nicely detailed error/change history is not available for the modules.
Also, irregularities or errors in the system were documented via their

external manifestation by the testing group. This, in turn, was passed on

16

P
: |
[S———

sk

to the original development group which analyzed the probiem, classified it,
and filled in additional background information. So the classification system
was developed after the errors had been found and therefore relied heavily

on interpretation of errors by those not "committing" them.

Errors found were eventually classified into the following groups:
program errors, machine errors, user or operator error, suggescions for
improvément, duplicate (of a previously identified program error), and docu-
mentation error. These classifications are the result of a specific group of
questions asked at a specific time based on a specific type of program.
Unfortunately, this program type is a systems program composed of both old and
new code and the time span does not encompass total program development.
Therefore, while the author's discussions are useful and perhaps some of his
techniques are worthwhile, his data is still not that which is needed.

An experiment to collect data on types and frequencies of errors was
conducted at Bell Laboratories by Shooman and Bolsky [1975]. This also was
an initial attempt such as Endres' [1975] to examine the feasibility of collect-
ing error data and to set up an error collection system which would he tolerable
to programmers involved and yet collect useable and worthwhile data. The
authors chose a program of about 4000 machine words on which to investigate
the number and types of errors occurring in its test and integration phase.

So they, too, restricted data collection to a certain time period in program
development and do not attempt to get a full error/change history of the
program.

The objectives of this study were: to design a useable and useful data

17

collection form; to get information on how this form affected those who had
to make use of it; to compare overall error count results with other work
done; and to obtain whatever information possible on resource expenditure
during the testing and integration phase.

The article then was a discussion of these above topics and pnints out
the deficiencies in data collection forms and how very flexible these indeed
must be. The study itself was a reascnable beginning in an area that has
had much discussien but has had minimal studies such as this to provide worth-
while information. Its two obvious deficiencies were a concentration on one
specific program type which had no major changes in functional specifications
and a resulting lack of a spectrum of error types, and its concentration on

a particular phase of the programming effort.

3.1.2 A Prototype Sofiware Development Error Data Collection System

This section describes a prototype system for the collection and use
of software error data. Its operation is symbolically described in Figure 1.
Essentially it consists of Tive components.
1. Error data collection forms.
2. Data bank containing error data accumulated from these forms. .
3. A computer program for updating the data bank and performing
analyses of the error data.
4. A set of reports generated from the error analyses procedure.
5. An inquiry program whereby a manager can inquire into the

error data bank and extract facts on an ad hoc basis.

18

PROGRAMMER

ERROR REPTS

P DaTA

—

(

ERROR DATA

.BANK

BANK
&
ERROR

PROGRAMMER
FEEDBACK

Figure 1.

ANALYSIS \\\\\\\\\\\\\}‘

P

INQUIRY
PROGRAM

PROTOTYPE ERROR REPORTING SYSTEM

MANAGEMENT

REPORTS

MANAGER

OVERALL ERROR DATA
PROFICIENCY RATINGS
PROBLEM ID

PROGRESS

The data collection forms are shown in Figures 2 and 3. The "background
sheet" identifies the programming task to be performed and the environment in
which it is performed. It contains information describing the type of pro-
gram, language size, and hardware and very briefly describes the programmer's
experience both as a programmer and in the application area. This form is
to be used in conjunction with the form shown in Figure 3 entitled Error
Reports. This report contains a 1ine on which the result of each run_from
the start of debugging until program deljvery is recorded. The programmer
specifies a good deal of information concerning the run including the mani-
festation of the error, when it occurred, why it occurred, the programming
cause of the error and so forth. 1In addition, some general information con-
sisting of the severity of the errors and how much of the program has been
changed since the previous run is also indicated on this form.

The error data bank essentially consists of an indexed file containing
all of the run data that is on all of the background sheets and each run from
the error report. The data bank is indexed in such a way that it can be
conveniently accessed from a terminal to produce a variety of statistical
information.

When new data are added to the data bank, a number of repuris are
automatically produced. One is & program feedback report which is produced
for the programmer. This report is essentially a summary of all of the runs
made for a particular task and provides him with a convenient record of
activities.

The other reports are intended for the programming manager. One of the

reports, "Overall Error Data" summarizes the error data recorded for the

20

BACKGROUND SHEET

1. LANGUAGE
[7 Assembler /7 PL/I [/ List Processor
/7 FORTRAN 7 APL [/ Data Management
/7 COBOL 7 Simulation Language L7 Qther

2. TYPE OF PROGRAM

[J System [7 Financial/Accounting [/ Other
[7 Scientific [/ Data Manipulation

3. PURPQSE OF PROGRAM

4. TOTAL MODULE SIZE (lines of code)

/7 less than 100 /7 500-1000 /7] over 2000
/7100-500 /7 1000-2000
5. HARDWARE NECESSARY

[7 Tape Files /7 Card Files [7 Other
[J Disk Files /7 Plotter
[7 Print Files /7 Terminal

6. PROGRAMMER EXPERIENCE

. in Application Area ... as Programmer
/7 less than 6 months [/ less than 6 months
[7 6 to 18 months /] 6 - 18 months
/7 over 18 months /7 over 18 months
7. COMMENTS

Figure 2. BACKGROUND SHEET

e
[SP—

1T B TR e Tt e ot

2 b T et (A T A AT AN O W ST e e e T T

Figure 3.

(Continued next Page)

RUN #

TIME OF RUN

NO ERROR/CHANGE

JdCL

OPERATING SYSTEM

| COMPILER

LINK/LOAD

UTILITY

APPLICATION(out-
side your contro

1)

LANGUAGE non-
| compiler message

TIME EXCEEDED

LINES EXCEEDED

RESOURCE NOT
THERE

RESQURCE
MISUSED

L1I0S3Y / ¥0¥Yd 40 NOTLVLSIAINWM

PROBLEM ANALYSIS
CHANGE

HARDWARE
FAILURE

OTHER

DESIGN

CODING

DEBUGGING

UNIT TESTING

SYSTEM TESTING

DOCUMENTATION

OPERATION

NIHM

HIGH

'MEDIUM

LOW

ALTY3IAIS

COMMUNICATION

PROBLEM
ANALYSIS

OMISSION

W/IN
PROGRAM

W/IN

AHM

+ TYIINYHIIW

A A Ao P I

PRGEVI

PSS IV

drpemt AR TN TGN D i Lo BRSNS R s in e Tt)

Traas

A e

R e

b v ot

Figure 3. (continued)

INVALID JCL

ALLOCATION

LABEL (Tocation
marked)

ASSTGNMENT
COMPUTATION

COMMENT PSEUDO-
0P NO-OP

TTERATION-
IME CHANTSM

UNCONDITIONAL
BRANCH

CONDITIONAL
BRANCH

1/0
FORMATTING

0THER 1/0

SYSTEM outside
lyour control
SUBPROGRAM
INVOCATION

SUBPROGRAM
INVOCATION

PARAMETER/
SUBSCRIPT/
LINKAGE LIST

SUBPROGRAM
TERMINATION

DATA
VALIDITY

OTHER

NONE

SNV ONTWWWIDO0Yd

+

(ERWEEEL
S3NIT

ANV MCH
A3V IX0dddY

NEW SET

MAJORITY CHANGED
DUE TO VALIDITY

FEW CHANGED-
INVAL-DATA

INCREASE TO
INPUT SET

DECREASE
THE SET

OTHER

4=t
=
=
=
=
= w
=
wno
—
=
a=
(=g oy]
=217
- O
jaa}
=
2
=

J0
abey

R

i
i
;
:
;

i

[ACTEESR |

e}

[FEN |

st

reporting period and compares it with the data that are currently in the
data bank. The format of this report is described in Figure 4. It shows
the number of tasks that are active, the number of runs that have been made
in each category from design through operation, and, for each error type,

it shows the fregquency of occurrence of that error, the percentage of a total
number of runs made for that period which exhibited that error, and a com-
parison of the percentage of all runs which exhibited the error with those
recorded in the data base. This report is intended to give the manager a
feel for the overall activity that is tak%ng place in his shop and any indi-
cation of any changes which may be taking place in the types of errors which
are being recorded.

The next report is entitled "Problem Area Identification" and is shown
in Figure 5. This report js an exception report which identifies any signi-
ficant deviations From normal expected conditions. For exampie, errors due
to invalid JCL during system testing would normally have very few occurrences
in the data bank. Should a Targe number of JCL errors be reported for a
progran which is in system testing, this deviation from the normal would be
detected and reported by this program. Similarly, excessive hardware failures,
data preparation, or design errors could be brought to the manager's atten-
tion in a similar fashion.

The final report is a "Progress Report" which is depicted in Figure 6.
This report develops, for each task, a progress report which shows the num-
ber of runs and the status of the task as indicated by a summary of the

errors of different types. Given an appropriate model for determining

24

SAMPLE MANAGEMENT REPORT
QOVER-ALL ERROR DATA

DATE 12/11/75
TOTAL TASKS REPORTING 16

RUN STATUS REPORT

PHASE NUMBER PERCENTAGE
DESIGN 10 2
CODING 32 7
DEBUG 107 24
UNIT TEST 84 19
SYSTEM TEST 16 4
DOCUMENTATION 2 0
OPERATIONS 198 45

TOTAL 439

RUN:TASK RATIO 27.4

ERROR SUMMARY

ERROR CLASS NUMBER % OBSERVED % EXPECTED
A 63 24 28
B 42 16 14
C 11 4 8
D 107 41 28
E 21 8 12
F 18 7 10
262

TASK SUMMARY

TASK STATUS RUNS
FDFRACCT UNIT TEST 34
SYSTEM TEST 11
FDFRBUDG DEBUG 11
PHYSINVT CODING 7
etc.

Figure 4,

SAMPLE MANAGEMENT REPORT

PROBLEM AREA IDENTIFICATION

DATE 12/11/75
TOTAL TASKS 16
i TOTAL RUNS REPORTING 439

EXCEPTIONAL ERROR FREQUENCIES - ALL TASKS
ERROR CLASS MEANING OBSERVED EXPECTED

D JCL 41 28

EXCEPTIONAL ERROR FREQUENCIES ~ BY TASK

TASK ERROR CLASS MEANING OBSERVED EXPECTED
, FDFRACCT D JcL 16 5
A F DATA PREP b 1
FDFRBDGT B SYNTAX 12 3
! D JCL & 2
PHYSINVT D JCL 13 3
|
A
Figure 5.

= Problem Area Identification Report

TASK

FDFRACCT

FDFRBDGT

KEY

> O

WEEK

04/16
04/23
04/30

05/07

05/14
05/21
05/28

05/07
05/14
05/21
05/28

DESIGN, #

SAMPLE MANAGEMENT REPORT
RUNS

DD
bDDD
i i z EEEEEEEEEEEE.
ﬁ i i ﬁ i z i i EEEEEEE
#gdgF40U0UUUYL
vsuvuvuouvuouuuouuu
UUUUUUSSSSSSSSSsS
SSS
DDD###+#
tedrddtEESEAES
#UUU
uuuuy

DOCUMENTATION, O - OPERATION

Figure 6.

Progress Report

DEBUG, U = UNIT TEST, S = SYSTEM TEST,

programming proficiency, this report could also contain a proficiency index

for each programmer who is associated with that particular task.

3.1.3 Errors in Software Development - An Empirical Study

Figures 2 and 3 of Section 3.1.2 present an error categorization form
which was designed for future use with an automated system (DOMONIC) and
more immediate usage in the prototype error data collection system of the
previous section. An empirical study (a manual data collection scheme) was
therefore undertaken to test the feasibility of using this form. Not only
were the programmers' reactions to fiiling out the form studied but also ex-
amined was the effectiveness of this form in providing reasonable categoriza-
tions for a programmers' errors or changes in coding. Essentially, then,
this initial study was not so much oriented toward collecting a large amount
of data as it was concerned with testing and reinforcing an error categori-
zation scheme for the future collection of large amounts of data.

Accordingly, forms were given to a small test group of data processing
programmers for use from the start of their program design through the pro-
gram production phase. The form was found to be relatively easy to use.
However, this did not insure that it was well filled out. The programmer
was asked to use the form after each run of a program, regardless of whether
there were errors/changes or not. If the group studied is any indication, the
majority did not follow this rule and exact data was collected only from
those who would be conscientious under any circumstances. The major problem
is that most people need pressure brought to bear on them and need an incen-

tive to cooperate -- they have to realize resuits from this extra work of

28

using a form or cooperation is minimal.

This emphasizes the fact that

results in the form of reports which would be realized from the scheme of

Section 3.71.2 and the DOMONIC system would provide sufficient feedback to

ensure programmers' cooperation.

The form itself was quite useable for the programmers and relatively

easy for them to maintain. Examples of summaries of results from two COBOL

arograms developed during the project each in the same size group (100-500

lines) foliow:

Number of Runs
Number of Errors/Changes
Average Number of Runs Per Day
Average Number of Errors Per Run
Manifestation of the Error

1. Compiler

2. Link/Load

3. Problem Analysis

4. No Error/Change

When Error Occurred

S—
.

Coding

2. Debugging

3. Unit Testing
4, System Test

29

Example A

24

38
1.9
1.6

31

Example B
11

16
1.1
1.5

16

Fhaeme.
[J——

Severity of Error

.['
2.
3.

Average

High

Medium

Low

Evrar/Change Occur
ProbTlem in Functional Analysis
Omission

Mechanical within Program
Cause of Error

Label
Assignment/Computation
Conditional Branching

I/0 Formatting

Subprogram Invocation
Data Validity

Iteration Mechanism
Other

Number of Lines Affected

by an Error/Change

Example A

14
15

32

11

wW’oowWw N

8.5

Example B

10

14

N W o,

3.5

Several of the categories were seen to be insufficient for categorizing

a specific area.

30

festation of most errors was seen through problem analysis.

For instance, both examples above indicate that the mani-

The programmers'

involved felt that this general category, problem analysis, was not at all

specific enough to pinpoint where the error appeared, i.e. it did not suf-
ficiently refiect the anvironment of the error. However, the format of the
form, since it is a checklist, has proved amenabie to expansions and revisions
derived from information given by participating programmers.

Problems such as these - feedback from the actual use of the data
collection form - have provided the information necessary for an evaiuation
of the run categorization scheme and for confidence in its merits for future

full-scale usage.

3.2 Software Quality Attributes

There exists no widely accepted definition for software quality. The
emphasis which an individual pléces on software quality varies & good deal
depending upon the situation.

A person using a statistical program for a particular problem may be
particularly interested in accuracy.

Someone given the task of modifying an existing program may place
primary emphasis on the characteristics of the documentation.

For a real-time control system. quality may be equated with speed.

A software salesman might equate quality with generality.

Depending upon one's point of view, any number of quality attributes
might be of primary importance. The 1ist below includes some that have

been suggested in the Titerature.

Logical correctness Ease of use
Fase of modification Conciseness
Compileteness Augmentability

g 31

LR

]

Accuracy Reliability

Structuredness Human engineering
Modularity Testability
Device Efficiency Speed of execution
LegibiTity PDocumentation

3.2.7 Overview of Software Quality Metrics

It is abundantly clear from the foregoing discussion that there exists
no agreed-upon definition of sortware quality. This is, of course, not sur-
prising because qualitative judgments are never straightforward. They are
inextricabiy interwoven with the objective point of view and perspective of
the person making the judgment. In those cases where quality indicators are
selected and used, there is invariably a good deal of discussion regarding
the appropriateness of those indicators.

On the other hand, people do exhibit a remarkable uniformity in making
quality assessments in a wide variety of areas.

In the arts, there is a broad base of agreement as to which books are
good, which movies are entertaining, which paintings are striking., even
though personal preferences vary widely.

A similar situation exists in the evaluation of personal performances.
Managers, teachers, housewives, or persons in any field of endeavor exhibit
different personal styles in the performance of their tasks. Even giving
allowance for personal preferences, there will normally be a broad consensus
as to who is a good manager and who is not, who is a good teacher and who

ié not, and so forth.

32

pe— 4

a2

ot

Er*-.'. R K]

Similar situations exist in almost any area. People evaluate shares
of common stock, used cars, pieces of property. tools, and so forth in a
most informal manner, but they exhibit a great deal of uniformity in making
their assessments.

Selection differences arise more “rom the fact that quality normaliy
has many dimensions, and there are personal preferences for one dimension
or another rather than from the lack of uniformity in the quality assessments.
For example, an investment has dimensions which include risk, potential return
and capital requirements. Knowledgeable investors make different investments
because of individual preferences for dit7erent combinations of risk, poten-
tial return, and capital expenditure rather than because of differences in
evaluation of these factors.

In spite of the fact that humans exhibit a remarkable uniformity in
quality assessments, the development of a definition of software quality
(or of any other kind of quality) is a hopeless task, and the development
of the theoretically sound metric to measure software quality is a similarly
hopeless task. Both involve a level of model building which is beyond the
scope of today's technology.

On the other hand, the real question is not whether one can build a

theoretically sound model, but whether one can build a useful model for

measuring software quality. There is good reason to believe that a useful
model of software quality can indeed be constructed because useful quality

models have been developed in many areas.

33

gl

Most quality models make use of some sort of scoring approach. A
1ist of representative quality factors is assembled, and the object being
assessed is evaluated as to the presence or absence of these quality factors.
Points or weights may be attached to each factor or a simple summation may
be used. This type of procedure is common in personnel assessments, real
estate appraisal, used car evaluation, and many other similar quality
evaluation problems.

Two assumptions are implicit in the approach. The Tirst 1is that the
factors sampled constitute a representative sample. There are many, many
factors which make up quality. Only a few of these factors are selected,
but if they are in fact quality factors and i they are selected in an un-
biased fashion, one can estimate with reasonable accuracy the proportion
of all of the quality factors which exist in the object under consideration.

There exists a substantial body of statistical 1iterature on sampling
theory, e.g. Freund [1971].

The second assumption implicit in the use of this approach is that it
is going to be a little wrong most of the time (and probably mostly wrong
part of the time). Although the use of imperfect measuring devices seems
abhorrent to most people, they are used all of the time. Carpenters do not
use micrometers because folding rulers are easier to use and sufficiently
accurate. Employers of laborers seldom use psychometric testing because
they do not need that much information about potential employees.

Also, one has to consider the alternative to imperfect measuring

devices - in many cases it is not having any measuring devices at all.

34

——e

In many situations. one can make a case for using only factors which
can be determined precisely in any evaluation. A promotion system in which
the only consideration is time and grade is popular among some people for
this reason.

Because software quality cannot be precisely measured, it has almost
jnvariably been ignored as an evaluation parameter. Ignoring software
quality is a Tuxury that we can no longer afford. A technique for measuring
software quality is badly needed for many reasons. It is needed in order
to properly assess programmer productivity. When given a choice between
alternate pieces of software one needs a technique to assist in choosing
among them. A measure of software quality is needed to provide a level of
quality control in an industry in which quality is fast becoming a scandal.

Given that the development of quality measures is a useful undertaking,
even though any such measure must of necessity be somewhat imperfect, it
1s useful to consider the characte istics of a good quality metric.

First, any metric should be consistent with what constitutes a consensus
judgment of persons knowledgeable in the field. That is, it should not be
counter-intuitive to informal measures.

Second, the measures should be user-independent. The application of
the metric should be essentially independent of the person who is applying it.
It would be preferable to have all software quality metrics machine-derivable
but that does not appear to be practical at this stage in their development.

Third, the measure should be easy to evaluate. It should not, for

example, take as long to evaluate a piece of code as it does to write jt.

35

g

One thousand Tines per man-hour would appear to be a reasonable goal for
a8 level of effort.

Fourth, any quality metric should be dimensional, and the various
dimensions of the metric should be discernible. Depending upon one's
objective, one has a different perspective on quality. Someone purchasing
a car may be primarily interested in economy, or in comfort, or in maintain-
ability. Similary, someone procuring a piece of sofiware may be interested
in portability, or in modifiability, or in efficiency, or in some other
factor. The extent to which each of these factors is present should be
discernable.

Finally, the dimensions must be meaningful. One approach to devising
dimensional metrics might be to assemble a large number of factors, observe
the present or absence of these factors in a large number of programs, and
statistically cluster the factors into subsets. While the subsets so derived
will be statistically cohesive, they will not normally be meaningful in the
usual sense, and their useability is therefore impaired.

A metric should have a meaningful and useful range. Ranges form 0 - 1

or from -1 to +1 or from 0 to 100 are normally used.

The literature contains numerous references to characteristics which
will be found in auality software. These characteristics have been Tumped
into the following six software quality attributes as shown in Figure 7.

Efficiency - measures the effectiveness with which resources incliuding

time and storage are used.

36

FUNCTIONAL
CORRECTNESS

= COMPLETENESS
~ ACCURACY
(NUMERICAL)

“ CONFORMATION
TO SPECS.

EFFICIENCY

~ DEVICE
UTILIZATION

— DESTIGN
EFFICIENCY

Timing

ized

— CODE EFFICIENCY

Resources Util-

QUALITY

RELIABILITY

— SUPPORT SYSTEM
RELIABILITY

— TESTING PROCESS

— ERROR HISTORY

Figure 7.

MAINTAIN-
ABILITY

— MODULARITY

— PORTABILITY

~ EXTENSIBILITY
-~ DOCUMENTATION

Quality Attributes and Subattributes

USEABILITY

— HUMAN ENGR.
DEVICES

— HUMAN ENGR.
PROCESSES

— DATA PREP.
COMPLEXITY

~ HUMAN ENGR.
OUTPUTS

PRODUCTIVITY

— DEVELOPMENT
COsT

~ OPERATION
COST

— MARKET
OPPORTUNITY

1.-‘
<

Gomni i3
[

Reliability - measures the 1ikeiijhood of error-free performance over
a given time period.

Modifiability - measures the Tevel of difficulty involved in keeping

a program operational over its expected Tife. It involves documentation
portab? .ity, extensibility, etc.

Useability - measures the degree to which a user can easily and accurately
use the system. It is related to the human engineering of the devices and

processes with which a user interacts with the system.

Functional Correctness - measures the degree to which a program's
capabilities coincide with the program designer's concept of what those
capabilities should be.

Productivity - measures the benefits that the user of the software

product can reasonably expect to accrue in relation to the cost of the
product and other market opportunities.

The following sections contain discussions of these quality attributes
and describe metrics which have been devised for evaluating some of them.
These metrics may be used individually or can be combined into a single
figure of merit, In developing these metrics, we have drawn heavily on the
ideas of Rubey, Hartwick and Dean [1968] and on Boehm et.al. [1973].

Tt must be emphasized that these metrics are based on weighted samples
of factors indicative of each attribute and, as such, are subject to error.
Some evidence has been developed, however, tiat thr:y are rossistent with
knowledgeable judgments and are reasonably user independent. For these
reasons, it is felt that they have some promise of being useful, if not e:

absolute indicators, as indicators of possible strengths or weaknesses in ¢

38

i3

i
2

program which bear further examination.

3.2.2 Modifiability

Based only on an examination of a program and its documentation, the
quality attribute to which a manager is most Tikely to give the heaviest
weight is modifiability. This term has been chosen rather than the more
usual term, maintainability, because maintainability as it is usually
defined, relates to the time required fo return a system to an operational
state (in an unchanged environment) once it has malfunctioned. In a soft-
ware system, however, the system does not malfunction, rather the environ-
ment chances - by changing the functional requirements of the system or by
altering the computer components - and it is necessary to modify the system
to operate in the new environment, hence, modifiability instead of main-
tainability. Modifiability has five sub-attributes.

Internal Documentation - is a measure of the readability of the code.

External Documentation - is a measure of the value of the program

documentation (external to the code).

Modularity - is a measure of how well the program has been broken into
small functionally independent modules. ‘

Portability - is a measure of how easy the program would be to move to
another environment.

Extensibility - 1is a measure of how easy it would be to extend the

functional capability of the system.

39

3.2.2.1 Interpal Documentation - is synonymous with good programming

practice, but it is often missing. McCracken and Weinberg [1972] have written
an excellent guide to writing "readable" FORTRAN programs. Their suggestions

are applicable, with some modification, to all procedure-oriented Tanguades.

Comments contribute greatly to the readability of any program. A number
of comments approximately equal to the number of operational statements is
not excessive. The comments should describe, in some detail, the functions
of each module and its relationship to other parts of the program. Comments
should also findicate the authorship of each module.

Descriptive variable names and identifiers contribute greatly to
the readability of a program.

A number of editing practices can be used to enhance readability. In-
dentation to define the ranges of loops helps. Sequence numbering the state-
ments and the statement labels helps.

Finally, a programmer can do a great deal to enhance the readability
of his code by using simple coding structures. From the point of view of
internal documentation, an effort should be made to utilize straightforward
code even at the expense of efficiency. Experiments with structured pro-
gramming indicate that restricting coding structures to a few relatively
simple structures and minimizing the use of go-to statements greatly enhances

the code readability.

3.2.2.2 External Documentation - {documentation other than the source

listing) is also an important constituent of modifiability. Many installa-
tions have documentation standards and, where these exist, documentation

should conform to this standard.

40

Program Subject#

Attribute Modifiability Sub-Attribute Documentation (Internal)

0

1

2 3 4

Are comments used extensively?

Virtually none-0; 25% of source-2; 50% of source-4

Are descriptive variable names used?

Almost never-0; Almost always-4; Not applicable-4

Is the function of each module described?

No-0; Sometimes-1; Always-2; Not applicable-2

Are inter-relationships among modules ciearly specified?

No-0; Sometimes-1; Always-2; Not applicable-2

Are simple coding structures employed?

No-0; With few exceptions-1: Generally-2

Is the source code sequence-numbered?

No-0; Yes-1

Are statement labels sequentially numbered?

No-0; Yes-1; Not apglicable-1

Have indentations been used to improve readability?

Usually not-0; Usually-1; Not applicable-~]

Does the source code contain the author's name and date of last
revision?

No-0; Yes-2

How extensively are GO-TO's used?

Dver 10% of statements~0; Fewer than 10% but more than 5% of
statements-2; Less than 5% of statements-4

LA

[
PR

This documentation should contain both a system flowchart and a logic
flowchart or some equivalent device (e.g. HIPO's). Logic flowcharts, to be of
any utility, must be "higher level" flowcharts which describe the logic of
the flow without singlie statement detail.

Simitarly, the documentation should contain a "glossary" of all variables
used in the program and a good statement describing the program's capabilities
and 1imitations.

Instructions for preparing input to the program and interpreting output
should also be included when appropriate. Sample input and output together
with run instructions are a necessary part of the documentation.

Finally, detailed descriptions of all the data sets and instructions

for their management should be included in the documentation.

3.2.2.3 Modularity - contributes to modifiability by making it easy
to isolate specific functions for maintenance purposes. A program written
with a high degree of modularity will have some distinct characteristics.

It will, of course, be segmented into a number of small functionally-
defined "chunks." The proper size for these chunks has been the subject of
some discussion, but most programmers agree that they should have an upper
Timit of about 60 statements including comments (one page of computer out-
put}.

The types of statements employed in a program are changed significantly
as the result of this modularity. Except at the bottom level, most modules
consist of a large percentage of module calis rather than other operational
statements. The Tevel of nesting of individual statements is significantly

increased.

42

Program Subject#

Attribute Modifiability Sub-Attribute Documentation (External)

0

1 2 3 4

Does a 1ogic flow-chart exist? No flow-chart-0; Autoflow (1}1)-1;
Good quality hand-drawn-3; Autoflow chart or equivalent-4; deduct 1

for non-std symbols; deduct 2 for not current

Does a system flow-chart exist?

No-0; Yes-2; Not applicable-2

Do instructions for data preparation exist?

None-0; Minimal-2; Good-4; Not applicable-4

Does a "Glossary" exist?

No-0; Yes-1

Do run instructions exist?

No-0; Minimal-1; Good-2; Not applicable-2

Does the documentation include a statement describing the program's
capabilities and Timitations?

No-0; Minimal-1; Good-2; Not applicable-2

Do descriptions of all the program's files exist?

No-03; Some-T; Al1-23 Not applicable-2

Are sample inputs and outputs available?

No-0; Yes-1; Not appiicable-2

If documentation standard exists, does this documentation confirm
to the standard?

No-03 In some respects-2; Yes-4; Not applicabie-4

Do instructions for interpreting output exist?
None-03; Minimal-1; Good-2; Not applicable-2

If modular programming is to be effective, the interfaces betwesen
the module must be simpie. If one merely breaks the code into pieces and
passes all the data from one pjece to the next, nothing is really achieved.
In general, the fewer data elements passed from one module to another., the

better.

3.2.2.4 Portability - is an important subattribute of modifiability
only if the program must be moved to a different machine or machine configuration.

The programming language selected is the major factor in portability.
Assembler code greatly restricts portability as does the use of any language
not generally available on a variety of machines. When higher level languages
are used, it is important to indicate non-standard 1anguage features, machine
dependent features, etc.

The utilization of local subroutines significantly impacts program port-
ability. Similarly, the use of devices such as A-D converters, special
terminals, etc. which are not generaliy available may impact portability.

Although many languages are externally independent of the word size
of the machine on which they are implemented, computations that occur in the
program may be affected by word size and this aspect must be carefully con-
sidered.

Finally, portability often implies changing the core available in which
to execute the program. IF the program is not overlayed already, or if it
is very tightly overlaved a reduction in available core may make movement

to a smaller machine virtually impossible.

44

s |

Py
5 -

e
[PPENIN

[TSPt

Program Subject#

pttribute odifiability Sub-Attribute Modularity

Whet is the average number of statements (excluding comments) per
module?

0 to 40 - 4 pts; 4 to 80 - 2 pts; over 80-0 pts

Randomly sample 10 statements. What is the average "level of nesting'

Otol-1Tpt:y 1to2-2pts; 2 to3 -3 pts: 3 to 4 - 4 pts

Randomly sample 10 moduies. What is the average number of data
elements passed to and from the module? (An array is a single element)

0 tob -4 pts; 5 to 10 - 2 pts; over 10 - 0 pts.

Randomly sample 10 moduies. What is the average of the ratios of
module calls: total statements?

& .05 - 0 pts; between .05 and .20 -~ 2 pts; over .20 - 4 pts.

Program Subject#

nttribyte Modifiability Sub_Attribute Portability

e

Does the program make use of dev.ces which are not available on a
number of machines (e.g. data cell)}?

Yes-0; No-2; Not applicable-2

Does the program include assembler code?

all or most - 03 some - 2; none - 4; Not applicable -~ 4

Is the programming language generally available?

Most manufacturars - 43 More than one manufacturer - 2; One manufactur
er - 03 Not applicable ~ 4

Is the program designed in such a way that the core requirements
could be reduced?

Yes, with great difficulty-0; With some difficulty-2; Yes-easily-4;
Not applicable-4

Are computations independent of word size?

No-0; Most-2; Yes-4; Not applicable-4

Does the program make use of subroutines which are "“local"?

Extensively-0; Some-1; No-2; Not applicable-2

Are special machine-dependent features and non~standard language
constructs indicated by comments?

Never-0; Sometimes-1; Always-2; Not applicablie-2

JREN—

Pyl

4

¥ e

B e

—><><]

s Hel
s W{

(i

3.2.2.5 Extensibility - is an important aspect of modifiability.

The most common modification to a program is the addition of some new

capability. This may invulve adding a capability for handling additional

data (for example: processing additional inventory codes in an inventory

system) or it may involve adding functions (for example: adding a tax withholding
module to a payroll system).

Some extensicns can be handled in an almost trivial fashion when room for
expansion has been provided in appropriate arrays, tables and data sets.
Limiting constants for these items should be in symbolic form, rather than in
absolute form.

The primary limitation to extensibility is the total utilization of
some resource by the existing program. When any device is used to its absolute
capacity, for example a disk, it is impossible to expand the capability of
the program without a substantial effort.

Other dangerous situations involve programs which Teave insufficient
unused memory to allow extension without reorganization or which have response
times at or very near the maximum allowabie, thereby leaving no room or time

for the addition of added Tunctions.

3.2.3 Efficiency

As an attribute, efficiency is difficult to evaluate because it has
several subattributes which are to some extent conflicting. For example,
one might Took for efficiency in core utilization or efficiency in operation
speed. But, there is usually a trade-off in which one can increase cperation

speed by using additional storage.

a7

Lapdan s A0

Program Subject#

Attribute Modifiability Sub-Attribute Extensibility

0

1

2 3 4

Does there exist sufficient unused memory so that additional fTunctions
could be added without reorganizing the entire program?

No~-0; No-but reorganization would be simple-1; Yes-2

Would additional functional capability degrade processing times for
existing functions to an unacceptable levei?

Yes-0; Perhaps~-1; No-2; Not applicable-2

Are any system components currently operating at their absolute
capacity? e.g. is a DASD file currently limited by the capacity of
the disk?

Yes-0; One-1; More than one~2; Not applicable-2

Have constants containing system parameters been indicated symbol-
ically rather than explicitly?

Seldom-0; Usually-1; Always-2; Not appiicable-2

Has room for expansion been provided in arrays, tables, and
data sets?

Seldom-0; Usually-1; Always-2; Not applicable-2

Proa

[ESTUET

e
§omemen el

[
o

id

P

Similarly, efficiency conflicts with several of the other quality
attributes. For examnle, modularity contributes to modifiability but it
comes at some cost both in terms of space and time.

For purposes of this discussion, efficiency has four sub-attributes.

Execution Speed relates to the utilization of coding practices which

result in fast running codes.

Core Utilization relates to the utilization of coding practices which

result in very compact code.

File Utilization relates to the organization and utilization of files

and their effect on processing time and trial space.

Overall Processing Organization relates to major design decisions

usually made early in the system design effort which impacts program

efficiency.

3.2.3.1 Execution speed enhancements which can be affected by coding

practices are, for the most part, language dependent. In this discussion,

emphasis will be on FORTRAN coding conventions which enhance execution speed,

although many of them are equally applicable to other languages.

The most critical statements relative to execution speed are input-output

statements. Execution can be greatly speeded up by minimizing the number

of READs or WRITEs in a program, minimizing the number of items in I/0 1ists,

or using unformatted files for temporary files.
The next critical aspect is probably subroutine calls. Execution speed
can be facilitated by minimizing the number of calls and by minimizing the

number of common blocks that are used in the program.

49

H
N

In addition, a number of very simpie practices can be followed with
good results. A conscious effort should be made to minimize the type con-
versions required in computation. For example, the execution time of the
loop:

DO 1 I=1,1000
1 X(1)=I

can be greatly reduced by re-writing it as:

Y=1.0

DO 1=1,1000

X(1)=Y

1 Y=Y+1.0

Similarly, a conscious effort should be made to utilize the data types with
the fastest execution speeds (e.g., INTEGER instead of REAL) and to utilize
the operatives which will execute faster when a chaice is available (e.qg.,
use X+X instead of 2*X). Some reductions in speed can be effected by judicious

nesting. For example, the Toop (a) below:

DO 1 I=1,100 D01 K=1,3

DO 2 J=1,30 D0 2 J=1,30

DO 3 K=1,3 DO 3 1=1,100
(a) . (b)

3 CONTINUE 3 CONTINUE

2 CONTINUE 2 CONTINUE

1 CONTINUE 1 CONTINUE

50

will incur more than 50% more overhead in the looping mechanism than Toop
(b) which is equivalent for most purposes.

In some compilers, significant reductions in execution speed can be
achieved by paying attention to the way expressions are written or the
number of times they require evaluation. Subscripits can be evaluated much
more quickly if written in one of the "preferred" forms. The loop (a) is

much less efficient in terms of execution time than (b).

DOT I=1,123 Y=(Z+T}/F
(a) T X={Z+T)/F+1 (b} B0 1 1I=1,123
1 X=Y+I

There are numerous similar things that can be done. As indicated
previously, there are some trade-offs between speed and space and between
speed and some of the other quality attributes. Although a programmer may
not desire to optimize all of a program, he should seriously consider

optimizing those portions of his program that are used repeatedly.

3.2.3.2 Core utilization may or may not be an important quality factor,

depending upon the facilities avajlable and the charging algorithm. Unless
there is some cost differential based on core used or unless the amount of
main storage is a limiting factor, there is 1ittle incentive for minimizing its
utitization. Indicators of the attention which has been given to minimizing
core use include the following.

Dramatic decreases in storage requirements can be achieved by properly

segmenting the program so that all of it does not need to reside in core

51

Program Subject#

Attribute Efficiency Sub-Attribute Execution Speed

Are the number of 1/0 statements minimized? e.g. where possible,
have multiple READ's been combined?

Always-2; Sometimes-1; No-0; Not applicable-2

Has an attempt been made to minimize the number of items on I/0
Tists?

Always-2; Sometimes-1; Wo-0; Not applicabie-2

Have frequently executed routines been optimized?

Always-4; Sometimes~Z; No~O; Not applicable-4

Are expressions written in such a way as to minimize the number of
data-type conversijons?

Always-4; Sometimes-2; No-0; Not applicable-4

Are the data types with the "fastest" execution speads used? {(e.g.
integer instead of real)

Always~2; Sometimes-1; No-0; Not applicable-2

When possible, are Toops nested in such a way as to minimize the
execution frequencies?

Always-4; Sometimes-2; No-0; Not applicabie-4

Has the number of COMMON Blocks used been minimized?

Yes-13; No-0; Not applicable-]

Have the number of execution-time evaluations of expressions been
minimized?

Alvays-4; Sometimes~2; No-0; Not applicabie-4

Are “"preferred" subscripts used?

Always-2; Sometimes-T; Rarely-0; Not applicable-2

Has an attempt been made to minimize the number of subroutine
CALL's?

Yes-4; Some-2; No-0; Not applicable-4

[P
o

simultaneously. In addition, when possible, EQUIVALENCE statements should
be used to overlay arrays.
Because format processing is expensive in both time and space, the
same format statement should be used for two or more I/0 operations when-
ever possible. Similarly, data type conversions should be consistent with
the accuracy of the variables being used.
Finally, external subroutine calls are expensive and should be
minimized. On the other hand, many compilers will expand intrinsic functions
(e.g. SORT) for execution speed efficiency. As a result, there may be many
copies of these subroutines in the object code. The expansion can be inhibited

by declaring these functions as EXTERNAL.

3.2.3.3 File Utilization is an area in which one can do a great deal

to increase the efficiency of a program.

The organization of files is critical, and care must be used to make
the organization appropriate to the utilization. Sequential files that are
subsequently sorted should be ordered in such a way as to minimize the number
of sorts required.

Data elements on files should be formatted as to make their subsequent
use and storage most efficient. Temporary FORTRAN files should be unformatted.
Numeric data items should usualiy be in binary or punched decimal form.

The extent of buffering should be consistent with the utilization of

files and criticality of time or space.

53

s

Lt

[

Program Subject# L

Pty
[P

Attribute Efficiency Sub-Attribute Core Utilization
0 1 2 3 4

Have EQUIVALENCE statements been used to overlay arrays when
possible?

Always-4; Sometimes-2; No-0; Not applicable-4

Has the program been segmented in such a way as to minimize core
requirements?

Yes-2; No-0; Not applicabie-2

Are intrinsic functions ard subroutines declared as EXTERNAL?

Yes-1; No-0; Not applicable-1

Has the number of conversions required among data types been
i minimized?

Always-4; Sometimes-2; Seidom-0; Not applicable-4

Has an effort been made to minimize the number of different formats
used? (Use the same format for two or more I/0 operations where
possible?)

Are the data types and lengths consistent with the accuracy of the
variables being operated 0.?

Usually not-0; Usually-1; Plways-2; Not applicable-2

PR

Program Subject#

Attribute Efficiency Sub-Attribute _ Utitlization of Files

0 1

2 3 4

Are data sets physically located on separate devices so as to
minimize head positioning?

Always-4; Sometimes-2; No-0; Not applicable-4

Are sequential files ordered in such a way as to minimize the sorts
necessary for their utilization?

Always-4; Sometimes-2; No-0; Not applicable-4

Are files created by FORTRAN programs as temporary files unformatted?

Always-4; Sometimes-2; No-0; Not applicable-4

Are data items stored in an appropriately compressed format?

Always-2; Sometimes-1; No-0; Not applicable~2

Are hea'ily-used randomly-accessed files stored in direct or relative
files?
Always-2; Sometimes-1; No-0

Are large buffers provided for heavily used files?

Always-2; Sometimes~1; No-0; Not applicable-2

Are these files which are used sequentially organized sequentially
instead of randomly?

No-0; Usually-1; Always-2; Not applicabie-2

3.2.3.4 Over-All Processing Organization includes the major design

decisions made early in the system development process. Some indicators
oT efficiency in the over-all processing inciude the following.

The Tanguage chosen should be appropriate to the application, and an
optimizing compiler should be used if at all possible.

The program itself should be organized in such a way as to minimize
processing, for exampie by preparing similar reports simultaneously where
possible. Where programs have multiple functions, the program should
include adequate parameterization so that all aspects of a program not be
used if they are not needed.

The over-all organization should include provision for unsuccessful
runs., Where appropriate, checkpoint/restart facilities should be used.
Long-running programs should be organized in such a way that if a run is

to be unsuccessful, this fact will be determined eariy.

3.2.4 Useability

Useability, as a quality attribute, is a measure of the facility with
which the system can be used. The importance of this attribute is highly
dependent upon the use to which the software system is to be put and the
composition of the user community.

Programs that are used only a single time may be designed in such a
way that inputs and outpuis are convenient for programming purposes rather
than for the user. Input devices are not critical nor are data collection

and output distribution procedures.

56

Program Subjecti#

Attribute Efficiency Sub-Attribute _Qver-all Processing Organization
- N 01 2 3 4
. Has an optimizing compiler been used?

s Yes-4; No-0; Not applicable-4

* Is the program organized in such a way that if a run is to be

e unsuccessful, this fact will be determined "eariy“?

dar No-0; Usually-1; Always-2; Not applicable-2

Does the system provide for parameterization so that only processing
i, required for desired output is required, and all aspects of program
need not be used every time?

o No-0: In some cases-13; Yes-2; Not applicable-2

Where possible, have similar reports been produced simultaneously
rather than in separate steps?

; No-0; Usually-1; Always-2; Not applicable-2

. Is the language appropriate to the application?

=N No-0; Appropriate but not optimal-2; Yes-4; Not appiicabie-4

/\

On the other hand, the design of a program that is to be used over an
extended period of time by a lTarge user community must devote a great deal of
care to making input procedures straightforward and the output easily inter-
pretable.

For ~ .ms that are heavily used by a relatively small user community,
(e.g. a bank teller system) the emphasis is more on convenience and ease of
use than on the formatting of the input or output.

Useability has three sub-attributes. The Tirst is device useability

which relates to the physical ease with which users can interface with the

system. The second is output utility which is essentially a measure of the

convenience and usefulness of the system's output. The third sub-atitribute

is process simplicity. Process simplicity is a measure of the compiexity,

and thus the likelihood of error involved in utilizing the system.

3.2.4.1 Device Useability. Software systems may use a single device

(e.g.., a terminal which serves as both an input and output device} or a
broad range of devices (e.g., card punches, readers, microfilm, copiers, etc.).
The useability of these devices 1is largely a function of the user's familiar-
ity with the device, the reliability of the device, and the appropriateness of
the device to the application.

Devices that are generally available and used for a broad variety of
applications are usuaily more familiar and less likely to Le incorrectly used.
In addition, common, generally-used devices are more likely to be available.

Reliability affects useability in many ways, including the restriction of

availability.

58

e e

Posn g B
" it

—,
'

The complexity invoived in using various system devices varies widely.
in many cases, very general purpose devices ure used which are extremely
flexible but which involve, at the same time, a rather complicated user
interface. On the other hand, Tess general devices are usually more appro-
priate for a specific application.

One measure of the complexity of a device is the training time required
to effectively use it. It is important to separate the training time
associated with the program. Training time can be affected by two factors.
One is the documentation that is available for providing instructions. The
second is the other use to which a particular device is put. For example,

a keypunch might be a rather complicated device, but since it is so generally
used, it is well understnod and poses no complexity problems.

In some cases, devices lack the physical capabilities necessary to
properly suppori the system. This usually occurs in two areas, both of which
result from faulty systems analysis. The first area is one in which the
device simply tacks the capability to support the system -- usuaily because
it cannot operate fast enough.

The second area is one in which a device has the nominal charucteristics

desired but Tacks sufficient reliability to adequately support the system.

3.2.4.2 Qutput Utitity. Output utility is primarily a result of the

systems analysis effort rather than the programming effort, but it greatly

affacts—yuseability of the program.
One-time programs and programs used by a small number of persons do

not have a heavy requirement for output formatting, but most others do.

59

Program Subject#

Attribute Useability sub-Attribute _ Device Useability

0

1

2 3 4

Are the devices used by the system generally available or are they
usaed only for this system?

Only this system-0; Generally available-2; Not applicable-2

Are the data rate capacities of the devices consistent with the data
rates going through them?

No-0; Usually-1; Yes-2; Not applicable-2

Do the users use these devicas tor other applications, or is this
the only one?

Only one-0; Other applications~1; Not applicable-1

Are instructions for using system devices included in the documen-
tation? or otherwise available?

No-0; Minimal-1; Yes-2; Not applicable-2

Indeed, under certain circumstances, output formatting may require as much
programming as the remainder of processing. Output shouid be generated in
a form in which it can be used directly without further typing, graphing,
extracting, etc. It should be properly Tabeled (with units) in such a way
that the output is interpretable without referring to the documentation.
Data elements on specific reports should be ordered in such a way as to
make the reports easily useable. In general, exception reporting should
be done. This is far better than using the machine to generate all possible
information and then manually extracting that which is of interest.
The physical conditions under which reports are produced are important.
Output must be timely to be useful. They must be produced in sufficient
numbers so as to make them available to all people who need them. Output
should be produced on an appropriate medium. Teletype, CRT's, graphics
terminals, and COM devices are all appropriate devices under the proper

conditions.

3.2.4.3 Process Simplicity. Process simplicity refers to the

simplicity of the process through which a user must go in order to utilize
a software product. It may be very simple (e.g., select from one of
three prepared data cards, run program, read output} or very complicated
(e.g., prepare input using a number of complex coding rules, punch cards,
translate to paper tape, validate tape, set up nlotter, etc.).

One measure of the complexity of the using process is the number of
persons involved in producing the output. In general, the more persons

involved, the less likely it is that the task can be done correctiy.

61

Program Subject#

Attribute Useability Sub-Attribute Qutput Utility

0 1 2 3

Has the output been produced in a manner so as to make it interpret-
able witnout a great deal of training? e.g. have columns been labeled
units indicated, headings provided, pages numbered, etc.

Seldon-0; Sometimes-1; Always-2; Not applicable-2

Is the output in final form, or must it be subjectes to additional
processing before it can be used? e.g. graphed, re-typed, etc.

Seldom-0; Sometimes-1; Always-2; Not Applicable-2

Is the output produced on a sufficiently timely basis to be useable?

No-0; Somewhat-1; Yes-2; Not applicable-2

Is the output medium appropriate for its utiiization?

No~0; Yes-1; Not Applicable-]

Are the outputs produced in sufficient numbers to be distributed to
all persons who need them?

No-0; Yes-1; Not Appliicable-]

Are the elements in the output repcrts ordered in the manner which
makes the reports most easily used?

No-0; Yes-1; Not applicable-1

Are "exceptional conditions" indicated or are only exceptional
conditions reported (is exception reporting used?)

No-0; Sometimes-T; Always-2; Not applicable-2

30

‘.‘-:m}

Program Subject#

Attribute Useability Sub-Attribute Process Simplicity

0

1

2 3 4

How many different peopie are involved in preparing the input?

One-4; Two to Four-2; Over four-0; Not applicable-4

What percentage of the input is prepared from “scratch" as opposed
to being machine generated?

100%-0; 50-89%-1; Less than 50%-2; Not applicable-2

Characterize the data coding required.

Minimal-4; Slightly difficult-2; Extremely difficult-0; N/A-4

I
I

Does the input process include checks to irsure the validity of the
input?

None-0; Some-13; Always-2; Not applicable-2

In the event of input errors, does the program print appropriate
diagnostic messages?

No-0; Some-T13; Always-2; Not appli~able-2

i In many cases, the input process can be significantly simplified by
computer-prepared input with manually generated input for exceptional
cases.
Ev Efforts should be made to simplify data coding requirements as much

as possible and to include validation checks to insure the validity of input.
i Crossfooting, checkruns, and hash totals are some common checks.
The useability of a software system can also be enhanced by including

diagnostic messages with suggested fixes when erroneous data are encountered.

3.2.5 Sofiware Reliabjlity. While mathematical models for reliability

have been in use for some time the application of mathematical models to
software reliability appears to be a recent development. The models presented
in the literature are generally adaptations of familiar reliability models
with the parameters functions of such things as debug time, number of
instructicns, etc,

The study of software reliability models may serve two purposes., One
purpose is to determine which characteristics of the software package,
programming practices, etc. have an effect on software reliability. The

results of this study would be useful to the project manager in planning

software development. A second purpose of software reliability models
would be for the prediction of the reljability of a software package. This

prediction could serve as a criteria for acceptance of a software package.

3.2.5.1 Definitions of Software Reliability. A generally accepted

i definition of reliability is the "probability of performing without failure

‘i 64

-
}
A

a specified function under given conditions for a specified period of time"
(Gryna, et al. [1960]). Note that this definition is in terms of a probability
and requires a definition of successful performance, operating environment
and required operating time. In order to extend this definition to software
reliability, we must define what we mean by the successful performance of
a software package and the conditions under which it is to operate. The
concept of a time period for which it is to operate can be thought of in
terms of such things as operating time or number of unique input sets.
Dickson, et al. [1972] define software reliability as "the probability
that a given software program operates for some time period, without a soft-
ware error, on the machine for which it was designed given that it is used

within design limits." They consider a model which expresses software

reliability as a function of debugging time and the error detection rate.

MuTock [1971] defines software reliability as "the probability that
we have no system failures attributable to software." Schneidewind [1972]
defines software errors or troubles as "any logical or clerical error made
by the programmer in creating or coding an algorithm which causes the
algorithm to produce an incorrect result when the algorithm is presented
with a correct input." With this definition, compilation errors and errors
caused by the operating system are excluded. He then defines software
reliability to be "the probability that a program will operate without a
single occurrence of a specified severity of trouble, or worse, for a

specified length of time t, and with a specified input load.” Note that

this definition is in terms of the severity of the trouble and there may be

different reliability models, depending on the severity specified.

65

W.H., MacWilliams [1973] talks about three levels of definitions for
software reliability. His top level definition is very similar to the
classic definition of reliability and is not specific to software reliability.
He states that, unlike hardware, "the continuing fidelity to an accepted
design does not exist as a significant software problem" This is because,
in general, software does change with time. He says that software failures
are usually a result of changing input sets so that his intermediate-Tlevel
definition is “the probability that the requirements capability continues
to be met during a stated interval and under stated conditions representative
of operational use."

One theme runs throughout these definitions. The reliability is restricted
to use of the software under specified conditions. This would seem to imply
that any statement about the reliability of a particular software package
must contain a statement as to the conditions under which it is to operate

and the use for which il is intended.

3.2.5.2 OQverview of Reliabjlity Models.

3.2.5.2.1 General Reliability Models - Before discussing the models

for software reliability presented in the literature a brief discussion of
general reliability theory will be helpful. Further discussion may be

found in several texts (e.g. Bazovsky [1963], Lloyd and Lipow [1964],
Shooman [1968]).

The most common definition of reliability of a device is that it is

the probability that the device will operate without failure for time t,

66

denoted by R(t). If we Tet F(t) denote the probability that the failure

occurs at a time Tess than or equal to t then

R{t) = T - F(t) . (1)

The function F(t) is known as the cumulative density function and in most
cases is a continuous function of t. Thus the reliability can be found
by specifying the probability density function, f(t) = F'(t), or the
cumuiative density function for the time to failure.

Rather than specifying either f(t) or F(T) one can specify the
hazard function, or instantaneous failure rate, h(t), which is defined as
the Timit as at -+ 0 of the probability that the device will fail in the
interval {t, t + At) given that it has survived to t, divided by at.

Thus, if the random failure time is denoted by T

h{t) = 1im Pr{t<Tst+at}
at-0 At Pr{T>t}

= Tim R{t+tat)-R({t)
A0 At R(t)

= 1 j-dR{E} - f(t . 2
ﬁ(ff{ d€ i} thg @

67

i

Suppose that a failure cannot occur before time y(usually v= 0).

Then, integrating both sides of equation (2) from y to t we have

I: h{x)dx = it i&%‘%&= in R{y)} - In R(t)
or
R(t) = R(y) exp{-f$ h{x)dx} . (3)

Since R(y) = 1, we obtain the general reliability equation

R(t)= exp{-f: h(x)dx} (4)

which vrelates the reliability and the hazard function. Hence, one may
either use a model for F(t) and consequently R(t) or a model for h{t).
There are three broad classes of hazard functions commonly used in
reliability work. For a decreasing failure rate, h{t) is a decreasing
function of t. This is the model for what is fregquently referred to as
the “infant mortality" stage. During this period the preubability of a

device failing in the next at time units decreases as the item survives

longer. For hardware reliability this is the period where pcor workmanship
and sloppy issembly are causing failures. As time increases without
failure there is less chance of one of these causes still being present.
For software this type of hazard function might be appropriate at the
initial stages of development where, as errors are found and corrected,

fewer errors remain and so the chance of failure is reduced.

68

-

A constant failure rate results when the hazard function is a constant
and doesn't depend un the age t. The model leads to the negative exponential
distribution for failure time. The constant failure rate model is commonly
used with electronic hardware.

When h{t) is an increasing function of t, that is, we have an increasing
failure rate, we are concerned with what is frequently called the "wear out"
stage. For this hazard function, the longer the device survives the higher
the conditional probability that it will fail in the next At time units,

The increasing failure rate is used for hardware reliability for failures
caused by wear of equipment, etc. For software models it might be appropriate
if so few errors remain that the correction of one adds several new ones. It
might also be appropriate if the reliability is a function of number of unique
data sets (t = number of data sets) and as more data sets are successfully
processed the probability of encountering one which will cause failure is
increased. Also, reliability may not be a function of time but merely the
probability of successful performance for a go, no-go system.

From the above it can be seen that we may build a model for software
reliability by considering the probability of failure prior to t or by
considering the hazard function. While t is usually a continuous variable
called time, it may also be the number of times an algorithm is called, the
number of data sets processed, or any of a number of measures,

In addition to a model for reliability one is usually interested in such
things as the mean time to failure and variance of the failure time. For
discussion of these and how they may be found from F(t) reference is made
to any beginning or intermediate mathematical statistics text (e.g. Freund

[19711, Hoel [1965], Larsen [1969]).

69

3.2.5.2.2 Software Reliabjlity Modeis. One approach to determining

a model for software reliability would be to adapt a well-known probabiiity
density function to software failures. The assumption that times between
recurrence of one particular uncorrected software fajlure is a random
variable with constant mean leads to the exponential distribution for the
time to failure and the Poisson distribution for number of failures in a
given time period. Mulock [1971] suggests the Gamma distiibution to
describe the means which characterize the different failures. He also
states that if the failures are independent the negative binomial distribu-
tion may be used to describe the effect of the failures on the software
system.

Mac Williams [1973] presents two models for software reliability,
one a function of the input space and the other a function of test results.
The input model assumes that an error occurrence depends on the input. Let
N be the number of unique points in the input space and P; be the probability
that the i-th input point occurs. If e; = 1 when the i-th input point
results in error-free performance and e; = 0 when the i-th input point results

in an error, the software system reliability is given by

R'I =£j‘§ Pigs . (5)
Since most sample spaces are extremely large it is impossibie to
describe the performance for each. However, estimates of software reljability
couid be found by sampling the input space. It would seem that the divisor
N is incorrect since I p_i = 1 by definition and if all points resuit in error

! 1

free performance equation (5) gives R1 = N~-wh1'1e the correct value should be

R'I = 1,

70

The second model given by MacWilliams [1973] uses the results of M
unique test cases to estimate sofiware reliability. For test i let n, be
the number of errors found, wi(ni) be a weighting factor for the seriousness
of the errors observed, and Ei(ni) be a decreasing non-negative function such

that Ei(O) = 1. Then, software reliability is given by

Ry = w3 Ex(nidwy(n) . (6)

3

If we consider a test involving every point of the input space (M = N) and

Tet

1,n, =0,
Ei(n.) = !
T 0 L] n.i > 0 3

then, when all peints giving error free performance,

1
R2 =W Ewi(O)

and, using the corrected form of R1,

Since the two should agree it would seem that R, should be divided by

2
5 wi(ni) rather than M. This would be in keeping with the usual practice

with weighted averages. Here Ei(“i) is an estimate of the relijability for
a given test case and errors and wi(ni) is a weight given this reliability.

Hence, the modified reliability models become

71

=~
1l
™~
=
-
[4+]
s
w
—
(43}
—

Expressions for software reliability obtained by modeling the hazard
function have been given by Dickson, et al. [1972], Shooman [1972], [1973],
and Jelinski and Moranda [1972]. The first three papers essentially
descibe the same model. The model presented by Dickson, et al. [1972],
[1973] and Shooman [1972], [1973] assumes that the number of errors in the
program at the start, E, is a constant and decreases directly as the errors
are corrected., Also, the number of machine language instructions, I, is
assumed constant. Let 1 denote the debugging time since the start of system
integration and o(t) be the error detection rate per instruction as a function

of time. The cumulative error funciion, as a ratio of the number of instruc-

tions is given by
T
e{r) = 75 elx) dx (7)

and tne residual errors, as a proportion of number of instructions is

e (2) = (/1) = e(0) . (8)

From this model for the number of errors in the system the hazard
function is developed. It is hypothesized that the failure rate for system

operating time, t, is proportional to the number of residual errors, i.e.

h(t) = C EY.(T) (9)

72

which is a constart wicn respect to t. This leads to the familiar exponential

reliability function

n

R(t) = exp{-C er(t)t}

exp{-CL(E/I) - e(x)]t}

A i
*
1

with the hazard function a function of = but not t. In order to use the
model we need to specify e(t) {or p{t)) and C.

Dickson, et al. [1972] give two possible models for o(t). One uses a
constant error correction rate up to time TO and zero error correction rate

thereafter,

P s O 1 21 s

- o(r) =} O 0 (10)
0 » T > TO

N

- This gives the reliability function

|

. E

¥ R(t) = exp{ -[% - ooré] ctr ,t>0 . (11)

|

& Since the exponent must be negative and not equal to zero we have the

’L restraint

E-1

; 0 < < E

‘ 00" T (12)

L)

p 73

Ww

Another model is a triangular model with p{t)} an increasing function

in the interval [0, r1] and decreasing in the interval [11, TZ]- The error

correction rate is expressed by

T
P 0 <t ST
o) = | | (13)
pt_-1)
s TS T < T
_ - — 2
T2

Shooman [1972] suggests that the constant C in the model given above

can be broken into the produst of K and rp where

K = number of catastrophic errors detected
- total number of errors detected

and

r = number of unique instructions processed per unit
P time period (processing rate)

Other models given by Shooman [1972] include one which postulates that the
number of errors corrected per time period is proportional to the number
of errors present, leading to an exponential model for the error detection

rate

o(x) = A S exp [-A] (1)

where A is a constant. He also presents a model in which the error
detection rate is modified for varying manpower.

A model with a non-constant hazard function is given by Jelinski
amd Moranda [1972]. They argue that the hazard rate is proportional to

the number of remaining errors so that

74

Ve ¥

h(t) = ¢[N - (i - 1)] , t‘i-'l <t« t‘i s (15)

where N is the total number of errors originally, ¢ is a properly chosen
constant and ti is the time of the i-th error detection,
Schick and Wolverton {1972] modify the model given by Jelinski and

Moranda s0 that the hazard rate increases as a function of time

h{t) = ¢[N - (i - D)}t, ¢, , <t<t, . (16)

-1 i

They argue that operation is a succession of different trials which
gradually closes in on the remaining errors ana corresponds to sampling

without replacement,

3.2.5.2.3 Summary.

A number of different models for software reiliability have been
presented. Some models have the simplicity of a constant hazard function
which lends them to many statistics: procedures.' The parameters of the
models need to be evaluated in terms of their sensitivity to such things

as software size, type, and other variables of software deveicpment.

3.2.5.3 A Model for Estimating Program Completion Level

Shooman's model and its subsequent variants are based upon historical
data, principaily the rate at which errors are discovered, and basically
models of how "checked out" a program is. These models make no attempt to
di fferentiate among various types of errors which occur, and they are
designed to function at the end of the program development cycle.

On the other hand, the types of errors which occur as a sofiware

development project proceeds vary over time. For example, in early checkout

75

runs, syntax errors abound. When the program is 90% complete, however,
they should be rare. In early checkout runs the programmer discovers very
few errors resulting from incorrect understanding of the problem, because
he is still working on syntax errors. Late in the development cycle there
should also be few errors found which result from misunderstanding of the
probiem, but these errors will and should be found during the midpoint of
the program development cycle.

The model discussed in this section is designed to predict completion
level during the whole project development cycle, and it does this by making
use of the different types of errors which occur,

Basically, the model proposed consists of activities in two phases as shown
in Figure 8. In phase 1, empirical data are collected in which the distribution
of errors in various categories is documented. The output of this phase is
an error characteristic matrix which shows, for some pre-selected set of
completion levels, the distribution of errors in various categories.

Completion level is based on runs completed and is not necessarily related
to time. IF it requires 300 runs to produce an operational program, the com-
pletion Tevel is 50% when 150 runs have been made; 67% after 200 runs, and

so forth.

In phase 2 empirical data collected in phase 1 are used to make com-
pietion level estimates of software development projects which are under
development. Basically, this is done by observing the characteristics of
errors which have occurred, selecting the completion level which exhibited
error characteristics which followed a pattern most similar to that which was

observed, and using that completion level as an estimator of the completion

76

ERRCR RECORDS
FROM MANY
PROGRAMS

PHASE T PROCESSING

ERROR CHARACTERISTIC
MATRIX

ERROR RECORD
FROM RUN

—P| PROCESSING |——tp

liser observes
as desired

PHASE II

COMPLETION
LEVEL
ESTIMATE

s

Figure 8.

Block Diagram of Historical Model

Tevel of the program. In practice, this algorithm resulis in a curve
: which has the proper general characteristics but which is unduly erratic.
The performance of the model can be improved substantially by smoothing
these estimates. This has been done in two ways: first, instead of basing
the estimate on a single observation {run) a composite error vector based
on several (five in our tests) runs is developed. This error vector
presents a better representation of the error characteristics of a particular
point in the development cycle. Second, instead of making each estimate
of completion level independent, sticcessive estimates are used to modify
a running estimate of the compietion level. A more formal description

of the algorithm and an example are presented below.

Phase 1 - Data Collection

The first step in the data collection phase is to decide upon a set
of error categories which are to be used. These categories are somewhat
dependent upon the environment in which the model is to be used. For
example, some types of errors which might be good indicators in a data
management context might never appear in a scientific computing environment.
The error categories need not be independent, although the more
independence exhibited by the error categories the better. The error
categories should be easily identifiable (that is, an error should be
easily classified into one or more categories) and, to the maximum extent
possible, they should exhibit approximately equal frequencies of occurrence

aover all compietion Tevels.

78

The next step is the collection of the set of error matrices E?. Each
row of this matrix corresponds to the record of a single test run -- the
first row being the record of the first test run, the second row being the
record of the second test run, etc. The k-th element of each row i5 1 or 0
depending upon whether or not an error of category k was observed in that
run, The Ei th matrix has mi rows (test runs) and n columns {error cate-
gories). A typical error matrix is shown in Figure 9.

Next, define a completion level vector, comp, consisting of p+1 com-

pietion levels such that
0 = comp, < comp, < comp, <...< compp = 1.0

The output of the data collection phase is an error characteristic
matrix, EC. It has dimensions p rows (completion levels) by n columns
{error categories). If e; is the jth row of the ith‘error matrix and ecj
is the jth row of the error characteristic matrix, then each row of the

error characteristic matrix, EC, is computed as foliows:

where the sum in the numerator is over all values of i, j such that
-
comp, _q < i < compk
Figure 9 is an example of a typical error matrix, and Figure 10 is an

example of an error characteristic matrix.

79

ERROR CATEGORY

12

11

10

10
11
12
13
14
15

Figure 9

Typical Error Matrix

P

o A
R |

LEVEL

COMPLETION

[=2 TN & 1 B - S 7% HE A

O 0 0~

ERROR CATEGORY

1 2 3 4 5 6
.83 .84 .14 .02 .02 .02
72 .84 .16 .04 .02 .02
.61 71 .13 .04 .02 17
.40 .69 .22 .39 02 .36
13 .63 .15 .57 .02 A7
.06 .42 .18 .63 .02 .05
.02 LA .10 41 .02 .04
02 .13 .02 22 .02 .03
.02 .02 01 .05 .3 .02
.02 .02 .01 .01 .46 .02

Figure 10

Typical Error Characteristic Matrix

Phase 2 Completion Status Estimates

The inputs to phase 2 are the result of error categorizations from a
sequence of test runs and the error characteristic matrix developed in
phase 1. The output is a sequence of status estimates, Mj, where Mj is
the status estimate after the j-th test run. The algorithm consists of
the following seven staps:

1) Set j to 1 and M0 to 0.
2) Collect data from the j-th test run. Classify the errors,
generating an error vector vj. If 3 is less than 5, add 1

to j and go to step 2; otherwise go to step 3.

3) cCalculate a vector

Vq
S =

q:j'dsj
4) Calculate a response vector, r with elements T1s Tooeuty by

calculating

r = S*EC
where "*" indicates that the elements of r are to be calculated
by correlating the vector s with the corresponding columns of
EC.

5) Determine the i for which ry is a maximum.

6) Calculate Mj =M., +a (compi - M where o is a pre-selected

3-1 3-1
damping factor (alpha equals .5 was used in our test) and
compi is completion level i.

7} Add 1 to j, return to step 2.

82

ESNRAAY

Experiments with the Model - In an effort to validate the model, a

simulation experiment was conducted. This experiment was not sufficiently
extensive to do much more than indicate that the model may have some
validity and merits further investigation. The model requires a good deal
of error data that simply is not available. However, there is no theoretical
reason why it could not be collected and made available.

The first experiment that was conducted was simply an effort to
validate the mathematics of the model. The question to be tested was,
given an error characteristic matrix of sufficient diversity and an error
history in which errors occur as indicated in that error characteristic
matrix, would the model predict compietion levels consistent with the
actual completion levels?

An error characteristic matrix was postulated, This error characteris-
tic matrix is shown in Figure 11. Then, random error occurrences were
generated from that error characteristic matrix for development projects
of different Tengths. For example, a development project of length 300
runs was used.

For runs 1 through 30 the first row of the error characteristic
matrix was used to generate the error record; Tor runs 31 through 60 the
second row was used, etc, For runs 1 through 31 & category 1 error
(1anguage error) was generated with probability .78; a category 2 error
(problem analysis) with probability .05; etc.

These runs were then fed back into phase II of the model and used
to estimate completion levels. A perfect model would exhibit a straight

line passing through the origin with slope=1 when completion level is

83

[=9] 28]
_ deag meggeyy| N Y ¥ ¥ 8 8 0§ 8 & &
doy1p fosquop-deum) = o T Y % T T T T
[o od — Lt o
00 loaguop-eyy| & 02 20 o 2w T
ummc m#mm Boud-3eyp n...w Q o w0 o o e w0 ¥e) —
SRS = SO R
uBi/du) Bo4d-3eut & 8 & .8 &8 & & = "
L Fuoodeyxbodddeum] o 08 2 g 8 &4 & 2 0 2
“ 0/1 Em‘.mo,&-pm_._z o o o o o Loy = o ™ o~
e B = o . i -
| wwxm_‘l o3sL” <=UBY By o o ~ o o ® @ 2 g g
—_ S
PAYISLAMN s e g g 3§ F
: peol/juL-udym | ~ o) ™ o o < o~ o~ —
! altdwo)-u3y | © w © w © o v o o -
. ——e 3 S ;N - =
; 8] —
| 2| Ldwogy adolag-usym i 3 !m....] ! ¥ ® e hl o ™
_ sc..r.u :mE:I..\Ez o 0 =t < 0 co oo} 0 ™ ©
— f:ho:. NN e e N w o
Emumzm .98 30: AYM | wo o o o o <t 0 © o o
 Siflewywldoig i 2 o 8 8 8 F 5 3 = @
A044] abenbue-Ayp | o <t o 0 e} =) =) w o —
™~ ™ o < o) — -
o o o (o] o an] o [aw)} () o
— o o 3 [Fo] Vo] M~ [oe] [=)] o
7]
[KN}
—t —
— —
— i
- J |
— 7y —
m - = [aa] w)
o =T = o <t |
(] o =t] Lid
o] [= 4 — =
o [el L] 1.1
Lt [= = o —

Figure 11

Postulated Error Characteristic Matrix

plotted against run number/total runs in project. As indicated in Figure 12,
the model performed very much as expected.

As indicated previously, this exercise merely checks the mathematics
of the model and does 1ittle to answer the primary question on which the
model is based, namely, "do programs from a given environment exhibit a
uniformity in the distribution of errors and is this uniformity sufficient

to enable one to predict completion levels based on these errors?”

3.2.5.4 A Reliability Model on Which to Base Acceptance Testing

NASA, Tike other State and Federal Government Agencies and many large
corporations, acquires most of its computer software from contractors
outside their sphere of direct controi. Although the contracting agency
develops the specifications for a software product, it cannot, because of
legal and practical considerations, monitor the development process, so
it is facad with the task of making an assessment of the product after its
completion.

A statistical tool is needed which will enable a manager to make, on
the basis of a relatively small number of tests, a judgment as to the over-
all reliability of the system and provide some confidence Timits along
with that assessment. It is clear that in all but the most trivial cases,
exhaustive testing is not possible. In addition, because of the cost in
time and other resources involved in testing, it is absolutely imperative
that statistical mocels be developed so that management can determine the
reliability they can guarartee with a given amount of testing,

Consider the following characterization of the problem. A computer

program can be thought of as a processor with a single multi-dimensional

85

"Z1 MnbLy

HISTORICAL MODEL
{ =5 300 Runs

10-run Sample
1-10-75

CALCULATED
COMPLETION
LEVEL

lo

al

o 4 .2 .3 .4 .5 b .17

ACTUAL COMPLETION LEVEL
(Run#/Total Runs in Project)

Lo

input and a single multi-dimensional output.

Inputs Computer Qutputs
s Program -

As an example, an inventory proaram might have the following inputs:

Parameter Allowable Values
Transaction Type: RECeipt, DISbursement, MODification
Part Number: A 5-digit number
Source: One of 200 different suppliers
Number: A 3-digit number

Fach input then consists of a four-dimensional vector, e.g. {REC, 63921,

JONES SUPPLY, 003).

Although there may be a very large number of these different inputs,
the number of paths through the program is usually relatively small. This
is due to two reasons. First, some parameter-value combinations may not
occdr so it is not necessary to have as many different paths as there are
possible inputs. Secondly, many of the possihle inputs normally utilize
the same program path. In the above example, all inputs of type REC may
utilize one path through the program, while all _hose of type DIS may use
another, etc.

The classical definition of system reliability is the probability that
a system will operate successfully under stated conditions over a specified
time interval. Let us consider an analogous definition for software

reliability. We will define the reliability of a program as the probability

87

that the program will process K consecutive representative inputs correctly.
Using this definition, we will proceed to define a reliability assessment
procedure.

This procedure is based on the following assumptions:

——
(RPN

g —
Fo—

L ——y
[IRPREIY

e gt Sy

{1} It is assumed that an analyst can determine if a program has
correctly processed a given input. This may not always be the
case. For example, in situations involving Tong, complex
mathematical calculations, parali=l manual calcuiations may not
be practically possible. Similarly, in situations involving
real-time processing, it may not be possible to "stop" the action

sufficiently to determine what the inputs were to a given program.

(2) It is assumed that an ana]yst‘can partition the program
inputs in such a way that each partition defines a path or group
of paths through the program. In the preceding example, the
inputs might be effectively partitioned on the basis of

"Transaction Type."

(3) It is assumed that an analyst can determine the probability
of a random input being selected from any given partition. In
the preceding example, it would be necessary to determine the

relative numbers of receipts, disbursements, and modifications.

(4} 1t is assumed that it is possible to randomly select represen-

tative inputs from each partition.

88

e————
Nre

PR

\ ——

[

g

Suppose that the input space is partitioned into Q disjoint partitions.
Denote by Pis i=1,2, ..., Q, the probability that an input selected at
random will come from partition i, where the p; are known. Let Ri be the
probability that an input randomly selected from input partition 1 will be
successfully processed, that is, Ri is the reliabiliity for partition i.

The piobability that an input selected at random from the entire input

space will be processed successfully is

R(1)

]
™

Pr{input from partition 7}Pr{success given i},

= I P.R, (1)

which may be estimated by using estimates of the R;-

In order to estimate the Ri’ select ri random inputs from partition i,
i=1,2, ..., Q. The number of inputs from each partition should be as
large as possible consistent with the time and resource constraints on the
testing process. Although it will not usually provide an optimum allocation,
selecting test inputs from various partitions in proportions to the Ps
will provide an acceptable test pattern. Each input is processed and the
number of correctly processed inputs, fi, for partition i recorded. The

Ri are then estimated by

R =+,
LT (2)
and the system reliability, R(1), is estimated by
ﬁ(?) = ¥ p,R; = T op.f./r. . (3)
i=1,0 ' ' 4=1,0 0 T 1
89

Because the test inpuis are selected at random, if the tests were
repeated the estimates of Ri would vary. As a consequence, the estimate
ﬁ(T) is no more than an estimate and the probability that it is exactiy
equal to the true value of R(1) is zero. However, to give a better answer
we may appeal to the estimation procedure known as confidence intervals.

Basically, the confidence interval, at say the 90% confidence level,
is based on an interval determined using specific procedures such that the
probability of obtaining an interval which contains the true value of the
gquantity of interest is 90%. Procedures for confidence intervals, and
specifically for the parameter of a binomial distribution (which the Ri
discussed above is)} are contained in most books on statistical methods.

=

One which will be iTlustrated zter uses the nor..al approximation to the
binomial distribution. The lower confidence limit for Ri’ with level of
confidence Ci>s is found by use of the binomial distribution and a probability

statement of the form

PriRy > R .3 = C, (4)

where RLi is a function of ri, fi’ and Ci’ and is a random variable. If

repeated sanples of size r. were taken and R, . calculated, using {4),

Li

for each sample, a porportion €, of the RL‘ would be Tess than tie unknown
i i

reliability, Ri .

A conservative Jower limit for R(1) with confidence level y
(conservative in that the probability of a correct interval is most Iikely
greater_than v} can be found by using confidence Timits for the individual

Ri‘ The argument is as follows:

90

A o
FRS—

pri—— ot —y
Lo erntrrm et Ve gt

e
b i 8

Yoo

1. Pr{Ri >R .} = Ci implies Pr{piRi > piR }=¢C

Li Li i
2. piR; > piRLi’ all i, implies zPiRi > ZpiRLi

(but converse not necessarily so).

3. From 2, the event A, piRi > p1.RLI all i, is a subset of the

event B, zpiRi > zpiRLi

4. From 3, the probability of B is greater than or equal to the
probability of A, or

Pr{zp.R. . . i
r{ p1R1 > ZpiRL1} z_Pr{piRi > piRLi all i}

or

Pr{R(1) > ZpiR b> ow Ci=vy o

L'l - -|=] ’Q
since the results for the different partitions are independent.

Hence, a conservative lTower confidence limit for R(1) is

R(1)= = pR.
L) j=1.q 1 L

found by using the lower confidence 1imits for the individual R;
One choice for the Ci =(C = Y]/Q
This procedure gives the following algorithm for estimating the
suftware reliability.
Step 1: Partition the input space into Q disjoint partitions.
Determine the probability of occurrence of an input from each
partition.
Step 2: Select r, representative random inputs from the first

partition, r, from the second and so forth down through r. from

Q

91

(5)

the Q-th partition.

L Stgg 3: Process each input, noticing the number of inputs which

- are processed correctly and which are processed incorrectly in each
partition. Compute fi’ the number of successful tests observed when

testing inputs selected from the i-th partition, for each partition

i=1,2, ...,0Q.
g; Step 4: Select a confidence level, €. Then, for each partition,
- compute a lower bound on the probability of successfully completing
> a test of a random representative input selected from the population

defined by that partition. The Tower bound for the i-th partition

can be computed by the following formula.

NGO Zc\/ F{}—rg]-ﬁ) + Zcz/@riz)

N R .«
L Li Z
1+ 2 r,
had Cc]
1T 2 B 2
i = p. .+ - - + YA
i r; (”1 Z) zc\/r_i 4, (r, fi) r. c:l
i 2v, (r. +7 2)
- where ri is the number of tests performed on inputs from the i-th partition
g
d and ZC is a standard normal deviate determined from the confidence level
i selected.

Step 5: Compute the lower bound, RL(1), on the probabitity that a single
random input from the whole input space will be processed correctly.

This quantity can be calculated by

92

i R (1) = Z_: P R .
L i=1,0 "1 "Li

i; Step 6: Compute the expected probability that a randem input fro: the
. whole input space will be processed correctly. This quantity can be
Z; calculated by
] R(1) =Ep1 R;
= i=1,Q
. Step 7: Compute the lower bound on the probability that K consecutive
o random inputs from the whole input space will be processed correctly.
;7 This gquantity, RL(k), is simply
&

Rk = [R MK
: L L
- Step 8: Compute the expected reliability, R(K) by
R(K) = [Rm} X
- With these calculations completed, we are now in a position to make two
§i statements concerning the reliability of the program. First, the expected
- reliability of the program is R(K). Second, we can, at a confidence level
“ CQ guarantee that the reliability of the program is greater than RL(K).
g; Example:

The following examplie demonstrates the method. It is based on the

example presented previously in this section.

Step 1: Partition the input space into three subsets by transaction

7
:m B
X

type. A11 REC transactions will be in one subset, all DIS transactions

in a second, etc. It is determined that random transactions

(i

93

_ e

will occur with the following relative frequencies

TYPE PROBABILITY, P,
REC .25
DIS 44
MoD .31

Step 2: It is determined that fewer than 300 test cases will be run.

Random inputs are setected in the following numbers.

TYPE NUMBER OF PARTS
REC 72
DIS 120
MOD 80
Total 272

Step 3: These inputs are then tested with the follo-ing results:

A

TRANSACTION TYPE SUCCESSES,fi FAILURES R.

1

l.-.l.

REC 1 70 2 9722
DIS 2 120 0 1.0
MOD 3 79 1 .9875

Step 4: The confidence level attached to the reliability estimate
is determined to be y = .90. The lower bounds for the probahility

for successfully processing an input from each partition is then

3
determined. For C = .90 / = 9655, z, = 1.82.
7
Then R, = 72(140+1.82%) - 1.82 \//;Et(YO)(2)+1.82 (72)]
2(72) (72+1.82%)
= 911
R, = .973
RL3 = .929

94

Step 5: Compute the lower bound on the probability that a single

input from the whole input space will be processed correctly

RL(1) .25(.911) + ,44(.973) + .31(.929)

944

L]

Step 6: Compute the expected probability that a random input from the

whole input space will be processed correctiy.

R(1)

.25(.9722) + .44(1.0) + .31(.9875)
= ,243 + ,440 + ,3061
= .989

Step 7: Assume that we are interested in a reliability period of
10 transactions. Compute the ‘fower bound on the probability of success-

fully processing 10 consecutive transactions.
0
R (10) = (.9a9)'" = 561

Step 8: Compute the expected probability of successfully processing

10 consecutive transactions,

10
R(10) = (.989) = 890

Hence, we are in a position to state that the expected reliability of the
program is .895 and we can assure, with a confidence level of .90, that the

reliability of the program is over .561.

,.___.,.—..

95

L

T
2,
2t

An alternative approach to finding the lower confidence bound for

R(1) would be to consider the distribution of

R(1) = zpiﬁi (6)

i=1,Q

Since the Ri are in fact independent bionomial random variables the

random variable ﬁ(1) has mean P;R; and variance
i=1,Q
R 2 R.{1-R.)
V(R(1)) = Zpi L (7)
r.
i
i=1,Q

I¥, at the same time the individual ri are large enough so that the Ri's
are approximately normally distributed the R(1} is a linear function of
normal variables and is also approximately normally distributed. As a

consequence, the lower bound with confidence y is given by

§:: 2
- _ L] (8)
R (1) = R(1) Zy\/-;ﬂ,Q____r-

1

One difficulty with (8) is the Ri's under the radical since they are
unknowa. There are two remedies available. One is to replace them by

the corresponding estimates R] ’

96

(g (o

Dodnd] L)

\/Z J R(TR)
R (1) = R(1) - Zy

i=1,Q rs ’ (9)

But this may give difficulty if the Rils are very near or equal to 1.
The other remedy is to note that since 0 2 R; =1, the product Ri(]'Ri)
has a maximum value .25 and the largest value of V(ﬁ(l)) would occur if

R. = .05, all i. Hence

1
Y(R(1)) < \/Z (10)

i=1,Q r

so that a conservative Tower bound would be

2
. > P, (11)
RL(U = R(1) - .5zY _ o .

97

faig) L

s

(5

1

L

v

R
[

g et

ity

[]
S

Consider the use of this procedure for finding lower confidence

bounds for the example presented previously, with y = .90 .
Using (9), we obtain

R (1) = .989 - 1.28 VR(1))

where
2 . 2
. .25°(.9722) (.0272) .44 (1.0){(0.0)
V(R(1)) = 72 + 120
. .31%(,9875)(.0125)
80

RL(l) = 978

and

10
RL(10) = {(.978) = .798

Using (11), the corresponding limits are given by

2 2 2
; \// 255+ a0% + 31
S s ST &

R, (1)

.954

and
10
RL(10) = {,954) = .622

98

e,
[

0f the procedures for determining a Tower confidence bound the first,
involving the sum of individual confidence bounds is ultra-conservative
and is the least preferred of the three. Since., in general, all the
individual ﬁi's will be near 1.0 the use of (11) may be too conservative,
however it does have simplicity of calculation and recognizes that even
if ﬁi = 1.0, the true value of Ri(1-R1) may not be zero. A compromise

between using (9) and (17) may be to assume that R1 > R* , say, for all i,

and replace the .5 in (11) by \/ R¥(1-R¥) .

99

Y

R 5

R (1)

R(1)

RL (k)
R(K)

of input parameters

of possible values for the i-th input parameter
of disjoint partitions of input space

of random inputs selected from the i-th partition

probability that an input to the system will come from
the i-th partition of the input space

confidence level attached to reliability estimates,
individual partition

confidence level attached to reliability estimate,
entire input

lower bound on probability of successfully processing a
single input from the i-th partition

Tower bound on the probability of successfully processing
a single input from the input space

expected probability of successfully processing a single
input fron the input space

tower bound and expected probability, respectively, of
processing K consecutive random inputs from the input
space.

100

I

3.2.6 Functional Correctness

Functional correctness is the degree to which a program's capabilities

coincide with the designer's expectation of what those capabilities should
be.

The degree to whick a program is functionally correct depends, in
large measure, on the diligence and skill of the program designers. In
theory, the program designer specifies the algorithm te be employed, the
data checks to be made, and specifies the capability of a proposed soft-
ware product in some detail. The programming task is then one of trans-
lating these specifications into code.

In practice, a separation between designer and programmer may not
exist. And, when if does exist, designers typically give programmers a
great deal of latitude in the actual implementation of a program. As a
result, many programs suffer from 1ack of compieteness. Some program
features typically expected to be included by designers but not specified
include the following:

(1) Error messages

(2) Checkpoint/Restart capabiiities

(3) Positioning of 1/0 devices

(4) Validity checks on input variables

(5) Range-testing subscripts before they are used.

Clearly, these are but a few in a Tong 1ist of features which a designer

may expect but may not specify, thereby contributing to a Tack of functional

correctness. Qther similar problems arise due to lack of compieteness in

describing possible inputs, procedures for handling erroneous data, etc,

101

The functional correctness problem of accuracy in computation may

be due to improper algorithm selection or to programming errors in imple-

mentation. Algorithm selection, in most cases, is less 1ikely to be the

L

culprit than are programming errors., Some insidious programming errors which
are 1ikely to cause erroneous results and which are difficult to trace

might include the following:

0 (1) Overfiows that occur in special situations

(2) Loss of pracision due to type conversions

“

s stz o3
B

{3} Truncation in intermediate results

(4) Lack of precision in number representation,

st st
P

Again, these are but a few in a long 1ist of problems which can contribute

to a lack of accuracy and a subsequent Tack of functional correctness in

[
-

a software product. Lack of accuracy is a major problem because many

[ERIS—']
£ .1

algorithms used on modern computers cannot be effectively tested by hand
i computation.

Functional correctness is measured indirectly in other ways. Proof
of correctness techniques basically test functional correctness although
they normally do not adequately test for accuracy nor do they test for

completeness.

= 3.2.7 Productivity

1t A piece of software may be functionally correct, efficiently written,
etc. but still not represent a worthwhile effort if it is not productive.

A program is non-productive if it is not necessary, is less efficient

than some alternate approach to the problem, or represents an investment

7
§a with less return than some alternate investment.

102

s DN

As examples, a payroil program may be considered to be non-productive

=)

i

i

even though it possesses other quality attributes if it costs more to use

than a manual oneration that performs the same function. Or, a digital

control system which would speed assembly 1ine operations might be con-

g% sidered non-productive if an equivalent expenditure in marketing would

- produce a greater profit for the company.

g% There are three factors which determine whether or not a piece of

~ software is considered productive, They are the cost of the piece of

3é software, its value to the firm, and the availability of alternate market
?j opportunities.

- No attempts have been made to develop a productivity metric because
g; the productivity determination should be an accounting decision which can
- be measured in dollars. In firms with reasonably enlightened managements
i this is always the case. In other cases, however, justification is on an
gg emotional basis and discussion of metrics is not relevant.

- Costs may be broken down into production costs and operation costs.
ié When software is purchased, production costs are easily identified, although
- costs incurred in conversion and interruption of services must still be
S; calculated. 4hen sofiware is developed in-house, costs are much more

difficult to assess. Most programmer teams work on multiple projects and

it is difficult to properly allocate time spent. Support facilities that
i are used are difficult to allocate. In general, a whole range of indirect

costs must be attributed to the cost of a software development project.

Operation costs are even more difficult to assess because they

typically involve users outside the computer operation. While it may be

103

. e

e

E¥53

Eomns)

3

59

e

sy

i
£

Fec

e |

e

i

A
A
=3

[543

=
i1
i

£

relatively easy to cost out machine time, operators, and so forth, the costs
of people preparing data and using information are virtually impossible

to quantify. In addition, the cost of maintenance may easily exceed
development costs and these costs are very difficult to predict.

Value determinations are equally difficult to make. In some cases,
depreciated development cost is used as the value of a software system.
This is a useful accounting device and may accurately reflect the value
of a system. In other cases, however, the cost may grossly underestimate
the value of a software system to the firm. Many modern industries are
heavily dependent upon information, and to these industries a software
system's value is only indirectly related to its costs. Examples of
industries of this type include the airlines and the banks, neither of
which could exist as we know them today without computer support.

A growing trend toward the marketing of application packages has
an impact on value determination. If a piece of software is to be
marketed, its potential sales Tess marketing costs must be considered in
the value determination.

Finally, in most firms, the development of a piece of software is
a business decision, not unlike the development of a new product or the
decision to purchase a piece of property. The decision to embark on a
venture of this type must be based on return on investment, and in that

sense, software must compete with other market opportunities for priority.

3.3 Summary

This chapter has contained a discussion of software quality

attributes and their measurement. Because software quality is directly

104

. ".5\5.:-,/.-.1._,_. e,

B . B 1..‘_.:“._:..‘@&-.:-

PV,

Pheeray RETATEY an T

related to errors in the development process, this area has also been
discussed.

Remarkably 1ittle js known about the types of errors and distribution
of these errors in the software development process. This is especiaily
unfortunate because this error data are needed to support research in the
area of software reliability and other quality attributes, and error data
are potentially useful as a measurement tool.

A prototype error data collection/management system has been proposed.
This system adds error data to a data base and generates a number of reports
of interest to programming personnel and management.

In general, there have been very few attempts to measure software
quality, simply because no adequate models of software quality exist. This
is also unfortunate because software quality metrics are needed to evaluate
productivity, to evaluate alternate software products, and for a variety
of other reasons.

Software quality is a multi-dimensional entity. Any one of these
dimensions can be critical, depending upon the situation. For purposes of
this discussion, software quality has six attributes:

Efficiency, Useabitlity, ‘ Reliability,
Modifiability, Functional Correctness, Productivity.

Of these attributes, only one, reliability, has been extensively
researched. There exist a number of statistical models for reliability.
most of which are variations of an idea presented by Shooman in which he
calculates reliability based on the rate at which errors occur in an
operating program. Shooman's model operates at the end of the program

development cycle, and makes no use of information regarding the different

105

types of errors which occur. Two new models, one designed to operate at

ts

.

(7

an earlier part of the program development cycle and one model which is

applicable for acceptance testing purposes were described.

FEed

Finally, metrics for efficiency, modifiability, and useability

T based on subjective judgments were presented.

[SR

Cisiet!

-t

106

i
B

i 3.4 Bibliography
: Bazovsky, Igor. [1963]. Reliability: Theory and Practice. Prentice-Hall,

Inc. Englewood Cliffs, New Jersey.

F Dickson, J.C , J.L. Hesse, A.C. Kientz, and M.L. Shooman [1972].
E "Quantitative Analysis of Software Reliability." Proceedings of 1972
Annual Reliability and Maintainabiiity Symposium. pp. 148-157.

#

H Freund, John E. [1971]. Mathematical Statistics. 2nd Ed. Préntice-Hall,
Inc., Englewood Ciiffs, New dJdersey.

;z Gryna, Frank M., Jr., Naomi J. McAfee, C.M. Ryerson, and Stanley Zwerling,

e Editors [1960]. Reliability Training Text, 2nd Ed. The Institute of Radio

i Engineers, Inc. New York.

is Hoel, Paul G. [[1965]. Introduction to Mathematical Statistics, 3rd Ed.,
John Wiley and Sons, Inc., New York.

?; Jelinski, Z. and P. Moranda [1972]. "Software Reliability Research" in
Statistical Computer Performance Evaluation, Walter Freiberger, Ed. Academic

- Press. New York. pp. 465-484.

§ Larsen, Harold J. [1969]. Introduction to Probability Theory and Statistical

. Inference. John Wiley and Sons, Inc., New York.

i Lioyd, David K. and Myron Lipow [1964]. Reliability: Management, Methods,
and Mathematics. Prentice-Hall, Inc. Englewood Cliffs, New Jersey.

éé MacWilliams, W.H. [1973]. "“Reliability of Large Real-Time Control Software

i Systems." 1973 IEEE Sympusium on Software Reliability. pp. 1-6.

§} Mulock, R.B. [1971]. "Program Correctness, Software Reliabidity, Today's

it Capabilities. Summary." International Symposium on Fault Tolerant Computing.

.- pp. 137-139.

f; Schick, G.J. and R.W. Wolverton [1972]. “Assessment of Software Reliability.'
11th Annual Meeting, German Operations Research Society. Hamburg, Germany.

e

1 Schneidewind, Novman- F. [1972]. "An Approach to Software Reliability

Prediction and Quality Control." Proceedings Fall Joint Computer Conference.
' ppo 837"846.

ia Shooman, Martin L. [1968]. Probabilistic Reliability: An Engineering
Approach. McGraw-Hi11 Book Company. New York

107

[1972]. "Probabilistic Models for Software Reliabiiity Prediction
in Statistical Computer Performance Evaluation, Walter Freiberger, Ed.
Academic Press. New York. pp. 485-502.

__[1973]. "operational Testing and Software Reliability
Estimation During Program Development." 1973 IEEE Symposium on Software

Reliability. pp. 51-57.

Amory, W., Clapp, J.A. A Softwore Error Classification Methodology,
MITRE Corporation, MTR-2648, Vol. VII, June, 1973.

Young, E.A. Error-Proneness in Programming, Ph.D. Thesis, University of
North Carolina: Chapel Hil1l, North Carolina, 1970.

Rubey, R.d., Wick, R.C. and Beathley, L. Comparative Evaluation of
PL/1. U.S. AirForce Report AD-669 096, July, 1968.

Ramamoorthy, C.V., Cheung, R.C., and Kim, K.H. Reiiability and Integrity
of Large Computer Programs, U.S. Government Report AD-779 339, March, 1974.

Endres, A. An Analysis of Errors and Their Causes in System Programs,

Proceedings of the International Conference on Reliable Software.
April, 1975.

Shooman, M.L., Bolsky, M.I. Types, Distribution, and Test and Correction
Times for Programming Errors, Proceedings of the International Conference
on Reliable Software, April, 1975.

Boehm, B.W. et al. Characteristics of Software Quality. TRW Software Systems
Report TRW-SS-73-09, 1973.

McCracken, Daniel D. and Weinberg, Gerald M. How to Write a Readable FORTRAN
Program. DATAMATION, Vol. 18, No. 10, Oct., 1972. pp. 73-77.

Rubey, R. and Hartwick, R.D. Quantitative Measurement of Program Quality,
Proc. 23rd Netional Conference, ACM, 1968. pp. 671-577.

108

3.5 References

Baker, F.T. Chief Programmer Team Management ¢f Production Programming,
IBM System Journal Vel. II. No. 1. (1972), pp. 56-73.

Benson, Jeoffry P. Structured Programming Techniques, Proc. of 1973
TEEE Symposium on Computer Sofiware Reliability, pp. 143-147.

Bequaert, F.C. A System for Automatic Program Generation, Proc. FJCC,
1968, pp. 611-616.

Borgerson, Barry R. Dynamic Confirmation of System Integrity, Proc.
of the 1972 Fall Joint Computer Conference, pp. 89-96.

Brown, J.R. and Hoffman, R.H. Evaluating the Effectiveness of Software
Verification - Practical cxperience with an Automated Tool, AFIPS Fall
Joint Computer Conference, Anaheim, California, December 1972.

Dijkstra, E.W. A Constructive Approach to the Problem of Program
Correctness, BIT. Vol. 8, No. 3, (1968), pp. 174-186.

Freeman, P. Functional Programming, Testing and Machine Aids, Program
Test Methods, (Ed.) W.C. Hetzel, Englewood C1iffs, Prentice-Hall, Inc.,
1973, pp. 45-46.

Floyd, R.W. Assigning Meanings to Programs, Mathematical Aspects of
Computer Science, (Proceedings of Symposium in Applied Mathematics, 19)
{Ed.) J.T. Schwarts, Providence, American Mathematical Society, 1967,
pp. 19-32.

Foley, M. and Hoare, C.A.R. Proof of a Recursive Program--Quicksort,
Computer Journal, VYol. 14, November 1971, pp. 391-395.

Good, D.I. and Ragland, L.C. Nucleus - A Language of Provable Programs,
Program Test Methods, (Ed.) W.C. Hetzel, Englewood C1iffs, Prentice-Hall,

Inc., 1973, pp. 93-117.

Graham, R.M., Clancy, G.J., Jr. and DeVaney, D.B. A Software Design and
Evaiuation System, CACM, 16,2 (Feb. 73), pp. 110-T16.

Gruenberger, F. Program Testing and Validation, Datamation, Voi. 14,7
July 1968, pp. 39-47.

Hart, L.D. The User's Guide to Evaluation Products., Datamation,
December 15, 1970, pp. 32-35.

109

Hoare, C.A.R. An Axiomatic Basis for Computer Programming, CACM, Vol. 12,
i No. 10, (Oct. 1969), pp. 576-583.

Hoare, C.A.R. Proof of a Program, CACM, Vol. 14, No. i, (Jan. 1971),
pp. 39-45.

- Hunt, B.R. A Comment on Axiomatic Approaches to Programming, CACM,
Vol. 13, No. 7, {Jduly 1970), p. 452.

Kolence, K.W. A Software View of Measurement Tools, Datamation,
January 1, 1971, pp. 32-38.

Ireson, W. and Grant, E. (Eds.) Handbook of Industrial Engineering and
Management, Prentice-Hall, Englewood Cliffs, N.d., 1955.

;E Kang, A.N.C. On the Complexity of Proving Functions, Proc. of the 1372
B Spring Joint Computer Conference, pp. 493-501.

Karush, A. Quality Assurance, Datamation, Octobar 1968, pp. 61-66.

King, J. A Verifying Compiler, Depugging Techniques in Large Systems,
i; {ed.) Randall Rustin, Prentice-Hz11, 1971, pp. 17-39.

King, James C. Proving Programs to be Correct, IEEE Transattions on
Computers, Yol. C-20, No. 11 (Nov. 1971), pp. 1331-1336.

}3 Kral, J. One Way of Estimating Frequencies of Jumps in a Program,
Communicatons of the ACM, Vol. 11, No. 7, July 1968, pp. 475-480.

¥ Levitt, Kart N. The Application of Program-Fiowing Techniques to the
Verification of Synchronization Processes, Proc. of the 1972 Fall Joint
Computer Conference, pp. 33-47.

Linden, T.A. A Summary of Progress Toward Proving Program Correctness,
Proc. of the 1972 Fall Joint Computer Conference, pp. 201-2171.

Liguori, F. The Test Language Dilemma, Proc. ACM Nat. Conf. 1971,
pp. 388-396.

London, R.L. The Current State of Proving Programs Correct, Proc. 1972
Assoc. Comput. Mach. National Conference.

]ﬁ Manna F. and Waldinger, R.J. Toward Automatic Program Synthesis, CACH
o vol. 14, No. 3, 1971, pp. 151-165.

% Miller and Maloney. Automatic Mistake Analysis of Digital Computer Programs,
e CACM, February 1963, pp. 58-63.

i Mills. Harlan.Syntax Directed Documentation, Communications of the ACM,
i Vol, 13, No. 4, p. 216.

110

fracans} (e

Mills, H. Top Down Programming in Large Systems, Debugging Techniques in

i Large Systems, (Ed.) R. Rustin, Prentice-Hall, 1971, pp. 43-55.

- MiTls, H.D. Mathematical Foundations for Structured Programming, Federal
- Systems Division, IBM, Gaithersburg, Md., FSC 72-6012, February 1972.

& Nauer, Peter. Proof of Algerithms by General Snapshots, BIT. Vol. 6,

No. 4, 1966, pp. 310-316.

b Nunamaker, J.F., Jr. A Methodology for the Designh and Optimization of
Information Processing Systems, Proc. SJCC, AFIPS Press, Montvale, N.J.,
e 1971, pp. 283-294.

Paige, M.R, and Miller E.F. Methodology for Software Validation--A Survey
of the Literature, General Research Co. Em. 1549, March 1972.

i Ramamoorthy, C.V. Meeker, R.E. and Turner, J. Design and Construction of
an Automated Software Evaluation System, Proc. of the 1873 IEEE Symposium
on Computer Software Reliability, pp. 28-37.

3y
L]

SR

e,

Rhodes, J. A Step Beyond Programming, Systems Analysis Techniques,
(Eds.) Couger J.D. and Knapps, R.W., John Wiley and Sons, N.Y., 1973,
p. 14.

Ay

. Russell, E.C. and Estrin, G. Measurement Based Automatic Analysis of
%; FORTRAN Programs, AFIPS Spring Joint Computer Conference, 1969.

Rustin, Randall, (Ed.) Debugging Techniques in Large Systems, Prentice-
e Hall, Englewood C1iffs, N.J.., 1971.

Sauder, R.L. General Test Data Generator for COBOL, AFIPS Conference
™ Proceedings SJCC, 1962, pp. 317-323.

e Scheff, B. Decision Table Structure as Input Format for Programming
Automatic Test Equipment Systems, IEEE Transactions ED-14 April 1965.

de Schwarts, J.T. An Overview of Bugs. Debugging Technigues in Large Systems,
Rustin, R. (Ed.)., Prentice-Hall, 1972.

a2 Stucki, C.G, Automatic Generation of Self-Metric Software, Proc. of the
1973 IEEE Symposium on Software Reliability.

& Tucker, A.E. Correlation of Computer Programming Quality with Testing
> Effort, TM 2219 Systems Development Corporation, Santa Monica, California,
January 28, 1965.

v Weinberg, Gerald M. The Psychology of Computer Programming, N.Y.,
Van Nostrand-Reinhold Co., 1971.

111

e

L)

Budd, A.E., "A Method for the Evaluation of Software: Executive, Operating
or Monitor Systems.," Mitre Corporation Report No. MTR-197, Vol. 3. September
1967 (Also issued as EDS-TR-66-113).

Carey, Levi J., "Software Quality Assurance - A State-of-the-Art Report,”
WESCON, September, 1972.

Brinch, Hansen, P., "Structured Muitiprogramming," Comm. of the ACM,
July 1972, Vol. 15, #7, pp. 574-578.

Brown, J.R., et al, "Automated Software Quality Assurance," Program Test
Methods, Prentice-Hall, 1973, Chapter 15.

Brown, J.R., "Practical Applications of Automated Software Tools, Product
Assurance, TRW Systems Group. (WESCON 1972, Session 21, Automating Software
Verification).

Gibson, C.G. and Railing, R.L., "Verification Guidelines," TRW Note
No, 71-FMT-884, Project Apollo, Task MSC/TRW A-527, 27 August 1971.

Holland, J.R., "Acceptance Testing for Applications Programs," Program
Test Methods, Prentice-Hall, 1973, Chapter 20.

Knuth, D.E., "An Empirical Study of FORTRAN Programs," Software Practice
and Experience. Vol. 1, pp. 105-133 (1971)}.

Kosy, D.W.. "Annotated Bibliography of Debugging, Testing and Validation
Techniques for Computer Programs," RAND Corp., WN-7271-PR, danuary 1971.

Mangold, E.R.., "“Software Tools," TRW Systems Group, Redondo Beach, Calif.,
March T, 1973.

Mills, H.D., "Mathematical Foundations for Structured Programming," IBM
Report, FSC72-6012, February 1972. -

Navigation, Institute of, "Software Tools for Certifying Operational Flight
Programs," Proc., Nat'l. Space Navigation Meeting, Inst. of Nav., Washington,
D.C., March 1967, pp. 164-1%..

Royce, W.W., "Managing the Development of Large Software Systems: Concepts
and Techniques," WESCON Tech. Paper, August 1970, Vol. 14.

"The Quantitative Measurement of Software Safety and Reliability," TRW
Systems Group, One Space Park, Redondo Beach, California, August 24, 1973.

112

s}

T

Lttt §

Qen -

4. PROBLEM OF PROGRAM COMPLEXITY

The goal of this research is the development of a measure, i.e. a
yardstick - with which to evaluate a program's complexity. At this stage
in software research, there exist few validated tools for program evaluation
or for comparisons between software products, except on a gross scale.

As Weinwurm (3) points out, there are no generzily applicable or empirically
validated categorizations for computer programming and further there are

no generally accepted, comprehensive, and validated measures of computer
program complexity or difficulty. The motivation then for an exploration

of complexity lies in the above - to buiid a valid measuring tool or at the
very least, to discover what program characteristics are relevant to the
probiem of complexity.

The task at hand then becomes essentially a question of where to start.
Section 4.1 presents an overview and justification. Here the fact is
emphasized that any measurement of an abstract quality, whether it be pro-
gram complexity or program maintainability, etc. is totally dependent on
what is known about the program and its characteristics. Unfortunately,
there is a great void of data relevant to software, whether it be with
regard to programs' error/change histories, their useability, complexity,
or any other program quality. Further, in order to measure an abstract
quality, that quality must have a definition in terms of software. This
jmplies that program characteristics on which the abstract quality depends
are known. With program maintainability or complexity or similar entities,

this is not the case. Therefore, before any measure of this quality,

113

i

compiexity, can be put to a program, some technique must be developed to
ascertain which program characteristics affect complexity, i.e. what program
variables are relevant in a measure for complexity.

As Section 4.2 outlines in detail, there are a great number of
opinions which have been put forth on the topic of program complexity.

None of these have any objective validation to reinforce them but they

are the opinions of experts. This is the only infornation at hand with

which to work and any characteristics to be tested as complexity factors

must necessarily come from these opinions. When these subjective judgments
are used in objective data collection and analyses, they provide a reasonable
starting point from which to investigate complexity.

Development of a complexity measure then has been organized into two
phases. The implementation phase involved setting up a data collection
scheme for analyzing program characteristics deemed relevant to program
complexity. The second phase utilizes data collected via this static

analysis system from sample COBOL and FORTRAN programs. The data serves

as input to statistical analysis techniques such as multivariate analysis.
cluster analysis. and factor analysis in order to reduce the data to a set
of independent characteristics which effectively measure complexity.

To date, a set of SPITBOL programs have been developed to serve as
a vehicle for data collection. Data collection and analysis on FORTRAN
and COBOL sample programs is on-going. Section 4.3 outlines this data
collection process. Section 4.4 provides detailed descriptions of the
types of data being collected. In addition, some preliminary data analyses

have begun. The initial analyses on data have been concentrated on statistics

114

such as means, minimums, maximums, medians, percentages, etc. - attempts to
refine the data collected into a set of relevant data points. These pre-
liminary analyses point out various directions in which data analysis could
proceed. Section 4.5 contains tables on data that have been analyzed for
a set of FORTRAN samples and provides a detailed description of the data
categories chosen for a preliminary analysis as well as a detailed dis-
cussion of trends seen in this data.

Results so far indicate that the data reflect two ways of viewing a
measure - as a set of standard norms against which a program can be evaluated

or as a set of factors which can contiibute to a complexity score. Prelimi-

nary results serve to emphasize that there are a large number of possible
complexity factors. Techniques must therefore be developed for investigating
the varied combinations of these variables and for structuring these

variables into relevant frames of reference so that complexity can be measured
via a multi-faceted measure. Section 4.5.2 provides a detailed description

of experimental procedures which use statistical techniques and varied frames
of reference to develop a measure. In approaching future analyses in this
open-ended way, our selection of a measure will not be pre-determined and

will be an attempt at objectivity just as our selection of program characteris-

tics for analysis was.

4.1 OQverview

The determination of a program's reliability has been approached in a
varied number of ways. A number of statistical models, testing methods,
programming techniques, and management tuols have been developed for the

purposes of predicting and improving reliability. Each attempts to attach

1ib

[P
[P

g
ros

a figure of merit to a particular programming effort. Yet, these above
techniques are themselves based on subjective hypotheses about software
and need a framework of objective data about a particular program in
order to function correctly. Therefore, the most important factor in

predicting the reliability of a particular programming effort is an

understanding of the source of the problem, the program itself. There are
a number of program aspects about which various types of data collection can

provide information.
An ervor/change history is a technique for gathering objective data

about a program's development. This data can be recorded and utilized by
various reliability models to predict the reliabiiity of a program.
However, a complete error/change history for a software effort is difficult
to obtain with a reasonable amount of accuracy. Few automated tools exist
for the recording of such data and manual data collection schemes are on
the whole unsatisfactory.

Even with an error/change history, questions such as what program
characteristics provide essential information for describing the program -
which characteristics affect reliability - what differentiates a particular
programming effort from another, etc. are unsolved. These questions are
answered by objective data collected on a finished program. While an
error/change history gives a picture of a program's stability as it was
developed, the data collected on a completed program provides information
on the program "as it -cands" - i.e. what its relevant measurable characteris-
tics are. In attempting to gather this type of data, there remain the

problems of knowing what program characteristics accurately define a program

116

[

iy
i N

{rbaama iy
Yovrmra b

S

and what analysis techniques should be used to solve tf's dilemma.

One method for collecting objective program data for analysis is to
measure the finished program in terms of certain of its abstract qualities -
e.qg. structuredness, useability, maintainability, complexity, etc. In so
measuring a program it is possible to get a broad picture of the program
via these different aspects and thereby procure information on a wide
range of relevant program characteristics. In addition, these program
quality measurements can in turn be themselves utilized in a valid figure
of merit for reliability - a measurement of software reliability as a
function uf abstract program qualities.

However, before such program qualities can themselves be utilized in
an effective measure or can even themselves be measured, a reasonable
definition of each as applicable to software must be decided upon. More
importantly, program characteristics which act as independent variables in
determining each abstract quality must be found - i.e. what is a valid set
of characteristics to use in measuring complexity or maintainability or
useability. Indeed, gaining knowledge concerning these characteristics
is essentially developing a metric for the abstract quality.

This paper describes a technique for the investigation of one such
abstract quality - program complexity. Our method is to approach the
probiem utilizing program characteristics that various experienced authors
have deemed important. The technique then is to use these varying
interpretations that have been given to complexity and the various factors
ascribed to it in a static analysis of sample programs. The output of

this collection scheme can be termed a feature vector of complexity factors

117

for a program. This vector can in turn be analyzed and refined into a set
of independent characteristics which effectively measure complexity.

. The following sections provide details on the justification for and

' background of the problem, the data collection system built, results to

date, and plans for future data analysis.

4.2 Survey of Background Inforpation

Muttiple definitions for complexity exist. In relevant papers reviewed
| below, the term "complexity” has been tossed around fregquently with a general
lack of specific definitions put forth. Complexity has been allied with
maintainability, comprehensibility, degree of difficulty, etc. The most
. flexible policy for this section is to equate complexity with how an author

‘ chooses to measure it. This section will pﬁt forth the varying interpreta-
%; tions that have been given to complexity, the various factors ascribed to it,
and the techniques that have been developed to measure it. Included are any
| characteristics authors say are relevant to program complexity. Essentially,
T it is a summary of opinions (most of which have not been validated).
There are three areas where the topic of complexity has been discussed and
1? these will be outlined in this section.

The first area is cost estimation techniques developed for programming
projects with emphasis on how a complexity factor is treated in these techniques.
The second area presents the various program factors and characteristics used
by different authors to define or qualify complexity. The last area for dis-
cussion will be a consideration of complexity measures.

No matter which author is read, the sentiments are the same - for most

118

Paamis] paEAE)

=3
L
B
Ix'-

e

large, complex software systems there is extremely incomplete knowledge of

how to estimate cost, the proper relation of cost to quality, or even what

quality is [1]. However, there have been attempts to examine the problem

and actual techniques have been developed for cost estimation. Yet, according

to Pietrasanta [2], "... the probiem of resource estimating or computer pro-

gram system development is fundamentally qualitative rather than quantitative
M- "... we don't understand what has to be estimated well enough to make

accurate estimates.” Presented below are opinions of several authors as to the

influence of complexity on cost estimation and examples of costing systems

that have attempted to include a factor for complexity.

There exist varying opinions as to what is involved in a compiexity
factor but most fall into Pietrasanta's description above - there is in-
sufficient understanding of the total problem. Weinwurm [3] maintains that
there are no generally applicable or empirically validated categorizations
for computer programming and further that there are no generally accepted,
comprehensive, and validated measures of computer program compiexity or
difficulty. Factors such as the number of instructions or subprograms or
type of application are components of a measure but they do not by themselves
yield consistent and reliable results. He feels that unless experience-data
from different computer programming jobs can be normalized to take complexity
and difficulty into account, economic comparisons will be misleading.

Pietrasanta [4] discusses a functional estimating procedure - in what
is termed a component development phase he wants the following defined:
component specification, program and data specification, size, complexity,

and so on. Yet he fails to mention what this complexity is and how to

119

e B e

f AT
G

measure it. In another paper [2], he does discuss various aspects of the

b

==

problem. Below are some of his thoughts:
"... identify common program sizes of separate componenis of system

i since different components vary in complexity and there seems to be a

high correlation between complexity and productivity.”

“Are Targe systems nothing more than bigger small systems or are
there characteristics of large systems other than size that dis-
tinguish them from small systems?"

L "... the dominant characteristic of the system spectrum may be
system complexity rather than system size."

{é "... some systems of equal size differ greatly in complexity with
a corresponding impact on resource expenditures.”

l; "... returning to the definition of a system as consisting of both
- elements and interfaces, size relates to elements and complexity
relates to interfaces."
Pietrasanta feels that much work still needs to be done in order to quantify
[i system complexity before it can be subjected to an estimating analysis - an

" examination of the influencing variables and their causal relationships is

essential if estimates are to be improved.

IBM [5] has developed some guidelines and a specific technique for
7 cost estimation and they have attempted to include complexity as a factor
in cost estimation. They do caution that any method of estimating is no
fé better than the knowledge, experience, and judgment of the estimator and
h also they state that their proposed technique appears to be more exact
than it is. There are eight steps to their estimating procedure, the

first of which is the primary concern of this paper - to determine program

complexity. The view here is that the complexity of the program depends
f§ upon input and output characteristics and the processing functions which

take place. Thus, their complexity factor estimation is a 2-step process:

e e
[S

120

o
i

pTR——

1) weight program I/0 characteristics; 2) weight major processing functions.
Their weighting points are assigned to such Input/Output characteristics
as the card input (single and multiple formats), each tape per input file,

each disk per input file, each print per output record format, each tape

per output file, card output (single and multiple format) and each disk
per output file. This technique also assumes that by a consideration of
functions rather than number of program steps, the program's complexity

can be more accurately gauged. The functions which are to be applied to

& the estimation process are: restructure data, condition checking, data
retrieval and presentation, calculate, and Tinkage. If these functions
are appiicable to a program being estimated, then the estimator, himself,
makes a value judgment on whether the function is simple, complax, or

- very complex and then applies the appropriate weighting. These weightings
3 giver to zimple, complex, and very complex are not precise and are not
intended to preclude the use of judgment. So essentially what IBM has
done is to present a guideline for the estimator - these estimates might
~e far more useful and accurate if there was greater objectivity in the
factors chosen to measure complexity and the measure which is applied.
Further in IBM's collection of existing material for estimating systems'
;: costs is a 1ist of factors they feel affect programming estimates. Job

Difficulty is one of the factors mentioned - its subcategories are the

PESSEHEY

following: complexity of system, number of subprograms, number of data

- formats, percent c1ér1ca1 instructions, percent transformation/reformatting

PR

instructions, percent generation function.

Aron of IBM [5] proffers some ideas on estimation and how to get at

Frriaiiend

B ttn st
R

121

e |
[

dw

e
LR
-
s
b
ne

e

W
2y

compiexity. He ranks sound experience as the most reliable method of
estimation - the quantitative methods (such as the method described above)
are substantially less reliable and the answers supplied by this type of
technique are only approximate representations of system requirements. He
mentions the SDS Programming Management Project which attempted to analyze

a large amount of historical data to identify factors that affect program-
ming cost the most [6]. The key variables found fall into three groups:
uniqueness, development environment, and job type and difficulty. Difficulty

is categorized herein as dealing with system interactions due to program

and data base elements and the relative variation between different types
of programs. Their estimation of difficulty consists of choosing from
3 categories: easy, medium, and hard -~ this "estimate" should be essentially
based on the number of interactions found in the various program classes.
However, in a paper which is a planning quide for computer program development,
[7] several authors at System Development Corporation do try to be more
objective concerning complexity - "“... the entry for compiexity must be a
local standard, such as a scale of one to five, that refiects not only the
number of interactions among subfunctions and the number of interfaces
with other programs, but also the number and variety of data types input,
manipuiated, and output; or, the standard could actualily be a rough count of
these items."”

Wolverton of the TRW Systems group has expressed some ideas on the cost
of developing large-scale software [8 and 9]. His basic assumption is that
costs vary proportionally with the number of instructions. For each jdenti-

fied routine, his estimating procedure combines an estimate of the number

122

S

of object instructions, category, relative degree of difficulty and

historic data in dollars per instruction from a cost data base to give a
trial estimate of total cost. To account for degree of difficulty of

a given kind of routine, the designer is supposed to estimate a risk or
complexity factor - the most crucial step in the estimating process. The
software parameter estimation for a complexity factor is the key problem

and Wolverton presents two views of how it should be done. Brandon [9]

feels that a single individual should establish a complexity rating

scale (A,B.C,D,E,F) and make a "standard" estimate for each job based on:
compiexity rating of each job, machine used, Tanguage used, and estimated
humber of instructions. Lecht [9], on the other hand, believes that the
estimator should interview the member of the technical staff who will do

the job and negotiate personal agreement on effort. His estimate would

then be based on: similarity with previous modules, person doing the job,

the machine used, the language used, and the estimated number of instructions -
he does not believe that meaningful performance standards can be set for
software. Wolverton's answer then to this complexity factor is simply to ask
if the routine is new or old, and if it is easy, medium, or hard - and based
on this, to apply sort of complexity rating coefficient. He does however
attempt to help the estimator with the above nebulous process for compliexity
rating - a simpified version of how complexity might be handled would be to
estimate the number of executable instructions, categorize as to type and com-
pare it to others seen to rate the degree of difficulty. His final thoughts
in the paper imply, however, that the probliem is far from being solved "...

what are the crucial parameters that define probiem complexity?"

123

b

And this appears to be the problem with the above techniques - parameters
affecting compiexity seem to have been arbitrarily chosen with a minimal
amount of objectivity to back up the choice. Even in describing their esti-
mation techniques, the authors warn repeatedly that they are only presenting
guidelines. Aside from these estimation processes, compiexity has also been
mentioned in various articles as the sofiware reliability research has grown.
Below are some opinions on what parameters are relevant to the probiem of
complexity and varicus techniques espoused by authors to put these in some
sort of measure.

Weissman [10] believes that experimental studies should be performed
to measure those factors which make programs difficult to understand and
maintain. So, his definition of complexity then relates to comprehensibility
and maintainability. The author feels that many ideas have been expounded
on how to reduce complexity: e.g. documentation standards for programmers,
use of high level languages for system implementation, and the idea of
structured programming. Yet he feels that articles which extol the benefits
of the above fail to give any quantitative evidence that these techniques
have in fact improved the quality of programs produced - we "... have passed
the point of platitudes and must establish concrete, quantitative evidence
of those factors which contribute to program complexity before we can hope
to reduce it." A Tist of factors he feels contribute to the complexity

of programs follows below:

I. PROGRAM FLOW

. Presence or absence of well-placed comments
Placement of declarations

Paragraphing of program listing

Choice of variable names

Redeclaration of variable name in inner scope

1B W -

124

Ly

T1. CONTROL FLOW

Complexity of control flow graph of program
Choice of control constructs

Length of program segments

Passing procedures

Recursion

Levels of nesting

ITI. DATA FLOW

(=26 5 R0 SN I o\ R

Scope of variables

Clustering of data references

Deciaration and use of data structures

Locality of operations performed on data structures
Use of pointers

Arithmetic on pointers

S O1 2) DO

V. INTERACTION BETWEEN CONTROL AND DATA FLOW

. Flag testing

Side effects affecting control flow
Changing iteration variable

Method of parameter passing

B o —

Anderson and Crandon [11] state that complexity depends on much more
than size - also, they feel that the undiscipiined use of GO TO statements
does fincrease the complexity of a computer program and consequently decreases
the reliability. So we have here the degree of program complexity related
to a program's reliabiiity. Dicksen et. al. [12] discuss complexity and
its relation to program size - a large program is defined as one which is
very complex and/or interactive with many instructions whereas a small
program is defined as Timited in complexity, particularly in the number of
branch statements. Rubey et.al. [13] suggest that a Tanguage plays a part
in the complexity of a programming effort - he feels that programmers tend
to write either more complex or more wordy statements in PL/1. The more
programmers avail themselves of what PL/1 has to offer, the more complex

the whole problem becomes.

125

At a symposium conducted on the high cost of software [14], several

aspects of complexity were mentioned. One of the technical factors

o
[YC TR

responsible for difficulties in obtaining correct software that meets
2; user objectives'was seen to be the complexity arising from the mismatch of
£ programming languages to the representational needs of the application
domain. Further, the symposium participants felt that the tools for
25 dealing with compiexity are the means for abstraction provided by program-
ming languages - in particular, the means for giving structure to programs.
I: Exampies would be arrays, 1ist structures, finite set types, and functional
data structures. The lack of objective analyses of programs and/or of the
programming process was seen to be a major gap in any further progress.

Structured programming has been proffered as a major contributor in

s ety 4

reducing program compiexity. Mills [15] writes that the purpose of

1 structured programming is to control complexity through theory and discipline -
it is seen to be a systematic way of coping with complexity in program design
and development. The assumption behind Mi1ls' espousal of structured pro-
{5 gramming is that he feels the size and complexity of any programming system
N can be handled by a tree structure of segments where each segment - whether
0 high level or low level in the system hierarchy - is of precisely limited
size and compliexity.

This concept of structured programming as an aid in reducing program
{f complexity is found in the writings of many authors. Dijkstra [16] wants
| orograms so well structured that the intellectual effort (measured in some
Z; Toose sense) needed to understand them is proportional to program length -

he jmplies that the "d..!de and rule" principle will reduce complexity.

126

ki
i
ot
et

Lalainen it 3
€ *

& ottt g s 4
» S

o

e

foun
T

IBM's Management Overview [17] has structured programming segmenting code
into reascnable amounts of Togic that are easily understandable. Donaldson
[18] states that structured programming is a technique which has been
developed to improve both program complexity and program clarity. He claims
that much of a program's complexity arises from the fact that the program
contains many jumps to other parts of the program - jumps both forward and
backward in the code. Therefore his definition of complexity is eventually
equated to flow of control - simplify control paths and reduce complexity.
Ramamoorthy et.al. [19] alsc state that structured programming is a
technique that reduces a program's compiexity, and therefore increases
its clarity - although they do not substantiate this claim with any proof.
Yet, an arbitrary modularization may obscure many interactions (interaction
complexity) so that subtle software bugs may be created. Also, unnecessary
functional complexity can be introduced by putting too many functions in a
module or by failing to abstract a common function shared by different modules.
Their opinion is that the complexity of the system will depend on the number
of interactions of system components; while at the component Tevel, compiexity
depends on the number of branches and external references. Reducing a pro-
gram's cempliexity can be considered a process of removing obstacles from the
program - complicated control paths, obscure structures, uninformative com-
ments, unnecessary jumps, redundant and obsolete code, ambiguous constructs,
etc. On the other side of the problem, improving program clarity can be
thought of as a process of adding things to the program - meaningful names,
informative comments, clear code layout and indentation, more Tlevels of

modularization, good documentation, clean interfaces, etc.

127

-
i
H
i
¥
i .

The modular programming aspect was investigated by Rhodes [20]. He
Tists the following as attempts to 1imit the complexity of a module:

(1) setting a maximum for the number of decision statements

(2) setting a maximum for the possible number of paths through a
module

(3) setting a maximum fey the number of test data cases required
to test modules exhaustively

(4} setting a fixed size of paper to be used to contain the block
diagram

(5) setting a maximum development time for the module.

These are attempts to 1imit complexity rather than explicitly restricting
module size. Here it is portant to note that Rhodes, too, differentiates
between size and complexity - he feels that limiting size does not differen-
tiate between long and simple portions of straight Tine coding and short

and difficult portions of code.

In their discussion of a new concept termed structured design [21],
Constantine et.al. stress simplicity of module connections. For FORTRAN
or COBOL appTications a module can be thought of as a subprogram. They
state that the fewer and simpler the connections betw=con modules the better.
For the complexity of a system is affected not only by the number of connec-
tions but by the degree to which each connection associates two modules,
making them interdebendent rather than independent. When two or more
modules interface with the same area of storage, data region, or device
they share a common environment - and each element in this common environ-

ment adds to the complexity of the total system. In turn, the complexity

128

e

#or

R

[

of an interface is a matter of how much information is needed to state or
to understand the connection.

An attempt toward a measure of complexity is Goodman's paper on compu-

tational complexity [22]. For our present purposes, computational complexity

is not applicable but Goodman does discuss a definition for a complexity

measure as a scheme for measuring a specific type of complexity. A complexity

measure is some function of the amount of a particular resource used by
a program as it processes a specific input value - this resource might be
time, space, CPU usage, channel activity, etc.
Clapp and Sullivan [1] also have views on the complexity issue. Two
of their hypotheses relevant to the topic are the following:
1. Structured programming leads to greater comprehensibility and
reliability.
2. Complexity (the inverse of comprehensibility) and the cost of
debugging are strongly covariant.
Theiyr view of complexity is in terms of the number of independent paths
and Sullivan [23] has written a report on an application of this towards
an actual measure of complexity. He presents several measures of computer
program compiexity, in the sense of comprehensibility or intellectual
manageability. He defines the "C2 complexity" at any node of an elementary
scheme to be one less than the number of paths from the start node to that
node, not counting paths where any node occurs more than x times, where x =
uniess otherwise stipulated. The complexity of the composite scheme is then
defined as the sum of complexities of its elementary subschemes. So,

essentialiy Sullivan counts Titerally every path through any eiementary

129

2

scheme. However, he does feel that a measure should be sensitive to the
distribution of references to a data object over segments of the control
graph, and so he attempts to define a process complexity measure at a node
in terms of just those process operations {data references) relevant fto it
and the paths among those operations. This second measure is at the present
time untenable and does not really sufficiently handle data node complexity.
Another measure of complexity has been proposed by Peterson et.al. [24].
They propose to measure the compliexity ot a flowchart via a pair of integers
(N, M) where N is the number of nodes in a largest muiti-entry component
[a multi-entry component is equivzlent to a loop (any sequence of statements
capable of being executed repeatediy) where there exist paths, whose nodes
are not elements of the loop, from the start node to more than one node in
the loop] and M is the number of multi-entry components with N nodes. In
this article, a flowchart is equivalent to the flow graph of Aho and Ullman
[25], - a 2-dimensional representation of a program that displays the flow
of control between basic blocks of a program. A basic block is defined as
a group of statements such that no transfer occurs into a group except to
the first statement in that group and once the first statement is executed,
all statements in the group are executed sequentially. There is at least
some justification for an investigation of a program's flow graph as
de Balbine [26] and others have stated that the structure of the flow graph
alone is sufficient to perform a good restructuring of a program. However,
the above measure by itself is not sufficient as an indicator of program
complexity as was pointed out in Knuth's study [27]. The majority of

FORTRAN programs he analyzed in his survey had no multiple entry loops.

130

Mills [28] tends to negate these rather simplistic approaches to a
complexity measure -

... measuring the compiexity of programs is no simple task. It is

easy to form simple hypotheses about such measures, but it is just

as easy to demoiish them with counter-examples of common experience.

The idea of equating complexity with the difficulty of understanding

a program has been generated out of the frustrations of concocting

and demolishing more simple-minded, direct ideas, such as counts of

branches, data references, etc.

He feels that structured programming is a first broad attempt to deal with
the complexity of control logic in programs - yet the control of data
reference complexity is as important but as yet there has been minimal

work done. The current trends in programming theory - subroutines, multipro-
gramming, etc. are attempts to factor problems of complexity into smaller
units comprehensible by human intelligence. Mills then postulates that the
complexity of a program is equivalent to the difficulty of proving the
program correct. Since proofs of program correctness are barely in the
preliminary stages, this is not a feasible approach.

Within these three areas discussed above, there has been Tittle quanti-
tative or qualitative evidence to validate one opinion or another. The
major problem is that there have beer far too many subjective opinions offered
and just as many simple hypotheses formed on what is a valid complexity
measure. Many of the individual factors which have been put forth such as
the number of executable instructions or the number of inter-program and
intra-program interactions or the number of independent paths are perhaps

components of an effective measure but each by itself is not a consistent

or reliable variable. We must know what to measure in order to know.

131

Therefore, our first step is to develop methods which will enable a
determination of what programming characteristics are indeed relevant to

program complexity.

132

Poverad] Wi

Gy

ety

4.3 Data Collection System

The goal is to build a complexity metric - "a measure of the extent or
degree vo which a program possesses and exhibits complexity" [29]. The
preceding section provided insights from various authors as to what program
variables constitute a complexity factor. Several compiexity measures
were also described based on program characteristics which may be relevant
in some circumstances but which lack any sort of objective proof or data to
reinforce them. The major fault with the hypotheses offered to date is
that they assume the measure - e.g. number of independent paths - and pro-
ceed to build their analysis technique around it. As Knuth's study [27] pointed
out, too often what we hypothesize to be important is quite the opposite from
what actual program data shows to be reality.

With the opinions so diverse and varied as to what is important and
what is not with regard to complexity, it seems far more logical to base
a measure on the assumption that program complexity is a function of several
variables and not just one or two. Yet, which program variables are the
correct ones to use in a measure poses a major problem. Since a metric
should "correlate well with estabiished notions of software quality" [29],
it seems feasible to develop & technique for investigating which program
variables are factors in a measure of complexity by utilizing as many
established notions as possible. A data collection scheme whereby data
based on these pre-established characteristics can be collected from
sampie programs and analyzed would serve such a purpose. This data -
essentially a feature vector of possibie factors for a complexity measure

of the sample program - can in turn be analyzed via multivariate analysis

133

L s
e

¥ ety
[P

or factor analysis methods. These techniques will determine the "fundamental
and meaningful dimensions" [30] of the vector's domain (equivalently, a
measure) - i.e. which of the variables serve as the minimum number of
dimensions required for the description of differences between samples

analyzed.

The following paragraphs will outline the implementation of the above
ideas for data collection, will discuss the sampling procedure and sample

programs collected, and the data analysis techniques to be used.

4.3.1 Data Collection

In order to analyze programs with respect to specific variables, a
data collection system had to be set up. As can be seen from Section 4.2,
there are a wide variety of program characteristics said to affect complexity
and therefore the data collection must be extremely flexible. Information
on items such as the type and purpose of the program, the language written
in, the environment of the program, its subprogram interactions, the con-
trol and data flow of the program, the program size, instruction mix
characteristics, etc. must be collected.

In addition to its flexibility., the system had to be fairly inexpensive
to use, automated, and based on an analysis for program samples which would
be easy to obtain. Manual systems, by their very nature, rely too heavily
on cooperation by people not involved in the analysis project and, most
importantly, not interested in the project. Evidence to this effect can
be seen in some of the error/history data collection schemes to date

£31, 32]. 1Ideally, analysis of a program by the data collection system

134

Ao d
w '

LERRENY
PR

should be independent of the author/maintainer of the program.

The ability to sample a wide variety of programming styles within a
language as well as the desire to obtain knowledge about frequently used
and easily useable languages prompted the data collection system to be set
u for the analysis of COBOL and FORTRAN source programs. These two
Tanguages are the most heavily used by people at the Data Processing
Center and there exists a broad sample of users' programming styles
available as will be discussed below.

The SPITBOL languzge was chosen as the vehicle for system implementa-
tion. The data collection involves the manipulation of a lot of data in
the forms of lists, counts, tabies, and strings. These have to be handied
quickly and efficiently. SPITBOL was designed to facilitate these diffi-
culties, i.e. it is specifically a pattern-recognizing and string-manipulat-

ing language.

4.3.1.7 #anual Data Collection - Questionnaire

Iinfortunately, not all of the necessary information is collectible
througk an automated program analysis. The author's/maintainer's input
is needed for a minimal description of the program as outlined below and
for an initial complexity rating of the program. This compiexity rating is
useful in differentiating between the sample programs collected and pro-
vides some input from the author/maintainer as to his/her opinion of the
program's complticatedness. Therefore, beverz descrii'ng the SPITBOL
programs that constitute the formal data coilection system, the additional

information collected on the programs is discusced below. The ques::isnaire

135

programmer's time to fill out.

QUESTIONS:

1. Language

2. Type of Program

3. Purpose of Program

4., Batch or Inter-active

5. Frequency of Use

6. On a program complexity rating

scale of O through 10:

A. How would the general
category of programs
named in question 2
above rate on this scale?

B. How would the particular
program named in question
2 above rate on this scale?

C. Why? i.e. what particular
program characteristics
affected your rating?

7. Are you the program's author

or maintainer?

8. A. How large is the program?

B. Approximately how many lines
did you write?

C. Does the program use sysiem
utilities?

was kept as "objective" as possible and only entails a few minutes of a

(How would the programmer classify
this code.) e.g. Data Manipulation,
File processing, statistical,
computational, etc.

(Brief description of the function
of the program.)

(The running schedule for a program
affects the style in which it was
written.)

{A means of differentiating between

programs.)

(Attempt to categorize the
programmer's evaluation of his

type.)

(How does this program rate with
respect to the programmer's other
“works"?)

(How does the programmer regard
complexity?)

(Perspective on the person's
attitude toward the program.)

(A through E relates the program
to be analyzed within its total
environment.)

i 136

[RE]

e B)

|

D. Is the program part of a
larger system? If so, approxi-
mately how big is this system?
and how much of it are you
responsible for/have control
over?

E. Are all modules written in the
same language?

9. Does this program utilize special (These factors should be evidenced
techniques? e.g. use structured in the analysis -- knowing the
programming? is it modular? top- programmer used special techniques
down design, etc. facilitates an analysis of whether

these techniques indeed differentiate

between this program and others not
utilizing them.)

10. Are there hardware devices necess- (Device-dependedness)
ary for the program's execution
and how many? e.g. tapes, disks,
terminals, plotter, etc.

11. How would you characterize the (How much "outside® interaction
files used in the program? e.g. is there?)
stand-alone, shared (under your
control?) etc.

4,.3,1.2 Automated Data Collection - Source Program Scanner

As was mentioned earlier, the automated data collection system consists
of a set of analysis programs written in SPITBOL. The programs for the actual
data collection are a set of eight SPITBOL programs (SNOINST, SNODATA,
SNOCONTR, SNOCONTRZ, SNOCINST, SNOCDATA, SNOCCONTR, SNOCCONTR2). These
programs analyze source code and result in a set of data points Tor the
program which are in turn output to a tape. The raw data on tape is
then available for further analysis by a series of programs which will
be discussed in Section 4.3.3. Due to the expense of running large-sized

programs in any language, not just SPITBOL, it was decided that the data

collection system should be broken up in the following way:

137

i

w@n

3%

2

T
i

Source raw data Analysis of refined data Muitivariate

Frogram ——3 Tape data for summar- % analysis pro-

Analysis ization and grams, etcs pro-
simpiification grams for building

a measure from
data collected

The specific characteristics analyzed by these eight static analysis
programs named above are important in themselves and these SPITBOL data
collection programs are only a tool for obtaining this information. Accord-
ingly, specific complexity characteristics analyzed via the eight programs
will be discussed in their totality in Section 4.4. VWhat will be pointed
out below are some of the problems which occurred in building the tools
for data collection - i.e. the problems involved in writing the programs and
the specific routines that had to be written to obtain some of the more
hidden information - e.g. a flow graph. It must also be further emphasized
that at a certain point program length starts to retard program efficiency
with SPITBOL. In particular, the frequent use of tables, arrays and fairly
long pattern strings made it much more efficient and maintainable to build
the system out of eight small and fairly simple "pieces," each piece having
a specific runction.

The eight programs used for data collection each perform a different
task as follows:

SNOINST -

Length: ~ 700 source statements (excluding COMMENTS)
Input: FORTRAN program plus its subprograms
Purpose: Analyze a FORTRAN program in order to collect data on

instruction mix characteristics, some control flow

information, and subroutine nesting data.

138

fesd

SNODATA -

iength:
Input:

Purpose:

SNOCONTR -

Length:
Input:

Purpose:

SNOCONTRZ -

Length:
Input:

Purpose:

SNOCINST -

Length:

Input:

Purpose:

~ 410 source statements (excluding COMMENTS)
FORTRAN program plus its subprograms

Anatyze a FORTRAN program in order to coliect data
on program variables' locality and reference,

some control flow information, levels of DO Toop

nesting, and other pertinent DO Toop information.

n 505 source statements (excluding COMMENTS)
FORTRAN program plus its subprograms

Analyze a FORTRAN program and collect structure

and control flow data, parameter nesting levels and
function reference data. The program's primé%y

purpose is to build a flow graph for a FORTRAN program.

~ 325 source statements (excluding COMMENTS)

Structure and control flow data from SNOCONTR

Analyze progrem loop structures, spans of branches,

and implement the complexity measure of Petersen et.al.

[24] described in Sections 4.2 and 4.4

~ 850 source statements (excluding COMMENTS)
COBOL source program

Analyze COBOL program in order to collect instruction

mix characteristics and some control flow information.

139

SNOCDATA -
Length: ~ 400 source statements {excluding 7LMENTS)
Input: COBOL source program
Purpose: Analyze a COBOL program in order to collect data
reference and locality information.
SNOCCONTR -
Length: ~ 505 source statements (excluding COMMENTS)
Input: COBOL source program
Purpose: Analyze a COBOL program in order to collect structure
and control flow data. The primary purpose of the
program is to build a flow graph for a COBOL program.
SNOCCONTRZ -
Length: n~ 400 source statements (exciuding COMMENTS)
Input: Structure and control flow data from SNOCCONTR
Purpose: Analyze program loop structure (exluding branches
caused by PERFORMS), spans of branches, and imple-
ment the complexity measure of Petersen et.al. [24]
described in Sections 4.2 and 4.4.

4.3.2 Program Sampies

To ascertain what variables affect program complexity, sample
programs must be analyzed to see which of these complexity characteristics
appear often enough to be relevant. QOutlined above was a system which
does a static analysis of both FORTRAN and COBOL source programs. But a
data collection system is useless without a good set of samples to anaiyze.

Therefore, it was necessary to collect FORTRAN and COBOL programs.

140

PRI
[

o

Debugged production programs. written by full-time programmers and non-student
personne]l were desired.

A university environment is ideal for this sort of problem as its
computer users run full spectrum from the professional programmer to the
scientist who is strictly FORTRAN-oriented and not schooled in new theories
such as structured programming. In addition, the DOMONIC system was written
utilizing the concepts of structured programming. Therefore, its modules
offer a contrast to the orientation of other COBOL application programs
availabie via the Data Processing Center. So there exists a sufficient
range of samples to select from and the probiem becomes how to collect
these sampie programe.

With any kind of data collection scheme there has to be some dependence
on peopie, They in turn tend to be far more cooperative when their input
activity is minimal but the return on their time investment js maximized.
Therefore, the sampling procedure consisted only of two steps:

(1) a questionnaire to be filled out

(2) collecting three programs which the person sampled had rated

as simpie, medium, and complex.

The sample group was requested not to make size a differentiating factor
in the programs they chose as samples. Emphasis was placed for their
decision to be based on specific program characteristics they felt
affected the compiexity of their programs and not on the fact that one
program was 1800 statements long, another 900 statements, and another 150
statements. Program size is obviously a factor affecting complexity but
often it can be an overwhelming one and obscure other just-as-relevant

characteristics.

141

When asked to help in this project, most people were very enthusiastic
about wanting to see results of the analysis - i.e. they were quite curious
as to how their programs related to others, what were its important character-
istics, etc. This enthusiasm cairied over into their selection of sample
programs for analysis. There is a broad spectrum of varying degrees of
compiexity amorg the programs received 30 far.

Approximately fifty sample FORTRAN programs are availabie for analysis
at the present moment and they have been coilected from people in academic
departments, research groups, and the Data Processing Center. These FORTRAN
programs range in size from a couple of hundred statements to combined
program/subprogram size of over 2500 statements. The FORTRAN programs also
vary in type. We have access to text editing programs, a fiow charter,
data editing programs, insect population modeis, a Tight penetration model,
statistical-oriented applications, financial and budjet analysis programs,
an analog-to-digital processor program, and mathematical and scientific-
oriented prograis.

Approximately twenty-five CCROL programs have been collected and an
attempt was made to cover a range of programming styles. The DOMONIC
system provides data on programs written in a structured programming style.
This system was coded in a top~down design and therefore samplie modules
range from drivers of major system commands through single-purpose modules.
Also, it was possible to collect sampie COBOL programs from people who were
not the author of a set of programs but who now must maintain these pro-
grams. This provides a different viewpoint than that of the author who

is also the maintainer of a program.

142

Hence, the sample collection process is well underway and there are

a sufficient number of simpies at hand to perform worthwhile analyses.

4.3,3 Data Analysis

The previous two sections outlined the major portion of the data
collection system. The purpose of this section is to briefly outline the
kinds of data retrieval and analysis programs that are needed to perform
basic analyses on the data collected.

There are many varied statistics collected on each program and there-
fore the possibilities for worthwhile results from even simple analysis
routines are quite promising. More elaborate schemes for data analysis
will be discussed in Section 4.5.2.

The static analysis routines of the data collection system produces
a feature vector - f(X1, Xz, vees Xn) - of complexity characteristics,

Xi’ for a program. These feature vectors in turn wili be utilized in
various statistical analyses to gain insights into the hierarchial classifi-
cations among the variables within the vector and between the vectors them-

selves. That is, the final output from analysis will be a complexity

measure = FC(X1,X2,X3,X4,X5) such that

)'(-i =9 (DATA LOCALITY)
X2 =g, (INTERACTIONS)

X3 = 93 {CONTROL FLOW)

X4 = g4 (STRUCTURE)

X5 = 95 {INSTRUCTION MIX)

143

az

Refinement of the raw data collected and previously put on tape for
each sample program consists of programs which wiil compute total counts,
percentages, maximums, minimuins, means, etc. For example, each sample
has a count taken of its instructions. These counts in turn can generate
a large numper of varied statistics depending on the emphasis of the
analysis, e.g. percent sequential versus percent non-sequential; percent
1/0 versus percent computation, percent conditional statements; etc. Also,
for each DO statement in a FORTRAN program, the nesting levels within the
range of the DO have been collected. So all these nesting level counts
for a program must be summarized via a maximum or mean statistic.

The refined data for each program must be utilized in at least a
minimal analysis to get data poinits such as means, maximums, and minimums
between gach of the vectors, i.e. inter-vector measurements. Exampies
would consist of entities such as mean number of loops within all FORTRAN
sampie programs analyzed or mean number of breaks in sequential flow for
programs with complexity rating of 0 - 4, and in the 5 - 7 rating group,
and the 8 - 10 group. There is a great deal of information that can be
processed via analyses such as these.

There are also inter-language analyses that can be run. For example,
FORTRAN and COBOL both allow interactions in the form of subroutines and
also instruction type comparisons in such forms as numbers of conditional
type statements vs. unconditional type statements vs. sequential state-
ments. FORTRAN and COBOL programs are reducible to a flow graph which

itself eliminates the language barrier and shows only control flow. There-

fore, comparisons of various data points between the two languages are possible.

144

Beyond the above types of analyses there are various factor analysis
and multivariate analysis techniques available to aid in differentiating
between variables within a set of vectors. Packaged routines will be used

for applying these statistical methods to analyze the refined data further.

145

4.4 Complexity Characteristics

This section will enumerate in detail the complexity characteristics
collected by the static analysis routines described previously. It is
important to note that this is a description of the raw data which must in
turn be refined and used as input into other data manipulation schemes which
allow more generalized categories. For exampie, the counts of various in-
struction types can be categorized into percent executable, percent non-
executable or percent specification, percent subprogram, percent iterative,
percent computation, percent conditional, percent unconditional transfer.
These types of categories in turn are independent of language which allows
flexibility for analyzing the data across languages.

There are obvious differences between languages as to the kinds of detail-
ed program characteristics that can be analyzed via a static analysis system.
For example, PL/1 has more language features and therefore has more measure-
able characteristics than FORTRAN and COBOL. On the whole, the coliection
scheme centers on characteristics of the program itself, and not on character-
istics of the Tanguage in which the program is written. Data points measured
for FORTRAN or COBOL programs can be categorized under general headings,
although the measured characteristics under these headings may be language
dependent. It is interesting to note here that the differences in the lists
of characteristics under each heading for FORTRAN and COBOL serve to under-
score the strengths and weaknesses of each of these languages.

There are a great number of complexity data points collected. Al1
of this data is in some aspect relevant to the problem. No one of these

variables in itself constitutes a solution as a measure of complexity. The

146

discussion in Section 2 concerning measures which have been proposed to date
emphasizes this fact. However, analyses of these characteristics in various
groupings should provide a combination{s) of program variables that indeed
do define program complexity.

When analyzing a program it is most important to examine its total
environment. Both the common environment a program "“shares" with other
programs/subprograms and the environment of the program as an entity unto
itself must be examined. Therefore, program characteristics affecting
complexity have been categorized into two areas: those that are concerned
with a program's interaction with other independent programs/subprograms and
those that concern the program itself. The discussion below outiines cap-
abilities of the data collection scheme in terms of the complexity data

points analyzed.

4.4.7 Program Interactions

In this category, emphasis has been placed on what program characteristics
affect interactions between the program and other programs/subprograms - i.e.
the environment of the program within a total system. This can include shared
files, file manipulation, subprogram connections and interfaces, shared data,
etc. Even though program simplicity can be enhanced by dividing a program
into a system of separate pieces each of which is an independent entity,
complications can and do arise with the coupling effects of such a division.
Sheer numbers of connections between pieces and the various types of inter-
faces necessary for communication provide an enovmous impact on the complexity

of a single piece of a system.

147

§§ Accordingly, the data coliected under this heading leans toward sub-

program interaction and the varied types of parameter passage. Emphasis

has been piaced not only on the number of connections a program has with

other programs but also on the data involved in this connection - how many

parameters are passed, how complicated is the parameter Tist expression,

i how "far-reaching" is the value of the variable passed, etc. We are trying
to measure the potential impact of its common environment on a program.

L The data points collected are as follows:

COBOL

Li I. Connection Information:

rumber of entry points

number of subroutines called

,u..r‘-—..
I

nunber of times each subroutine cailed

nesting level of each subroutine cafll

11. Interface Information:

1

i number of Tinkage parameters per entry point

number of linkage parameters for main program

number of parameters passed for each subroutine call

total number of variabies in the LINKAGE SECTION

Total number of COPY variables in the LINKAGE SECTION

R

FORTRAN
I. Connectioh Information:

- number of subprograms with multipie returns plus the number of

I returns for each

s
LI

3

iw Er

-

148

I1.

number of subroutines called plus the number of times each called

number of function statements plus the number of times each
referred to

number of function subprograms plus the number of times each
referenced

number of calls to FORTRAN supplied functions plus the number
of times each called

number of substitutes for external variables called {counted
only in subprograms where external variables have been
passed)

number of external variables referenced in a set of arguments
passed to a subprogram (counted only in main program)

number of entry points in each subprogram

nesting level of each function reference in the main program

numser of LABELED COMMON areas plus the name of each area and

the number of variables in each area

Interface Information:
- number of variables in blank COMMON

- number of parameters passed to each function reference {plus

the number of computations and function references in the

argument Tist)

- nasting Tevels of parameters

A, For each parameter in the argument 1ist of a subroutine

or subprogram definition the following data is kept:

149

1. the nesting level{s) of the parameter

2. the total number of function references the parameter
is passed through

3. a string of (non-duplicated) function names through
which the parameter's value is passed (See Figure 1)

B. For each parameter passed in a function reference's
argument 1ist both in the main program and each subprogram
the following data is kept:

1. the nesting level{s) of each parameter

2. the total number of function references the parameter's
value passes through

3. the string of non-duplicated function names the variable

passed through

(Note that in both A and B above, part '3' gives the number of unique
function references for a parameter while '2' yields the total number

of such references.)

4,4.2 Characteristics of the Program as an Independent Entity

Within the program itself - neglecting its sharea environment - there are
a number of program characteristics that have been proffered as variables
affecting complexity. These can be categorized under three general headings -
data reference, structure and control flow, and instruction mix characteristics.
Data falling into these headings have been analyzed with regard to the pro-

gram as it stands. Justification for the enumeration of many of these

150

i FIGURE 1
! SUBROUTINE ~ SUBT(X,Y,Z)
4 CALL SUB2(X,A,B)
r
L AC = SIN(X)
” AK = TAN{Y)
i CALL SUB2(X,AC,B)
i .
i RETURN
END
. SUBROUTINE SUB2(Q,AC,B)
} .
] A =.B + SIN(Q)
. STOP
END
3 PARAMETER INFORMATION:
1. Number of Functions Passed
Argument Nesting Levels Function References Through
i %-5UB1 /2/1/2] 5 SUB2/SIN
Y-SUBT /1/ 1 TAN
- 7-SUB1 - - -
v Q-SUB2 /1/ 1 SIN
EE R-SUB2 - - -
5 S-SUB2 - - -
- SAMPLE FORTRAN PROGRAM WITH
o PARAMETER DATA COLLECTED ON ARGUMENTS

g 181

e i
[

variables as complexity characteristics has been outlined previously. Further
explanation for some of the variables coliected - especially in the area of
structure and control flow - will be rendered as is necessary. Section 4.4.2.1
discusses instruction mix characteristics while Section 4.4.2.2 is concerned
with data reference variables and Section 4.4.2.3 deals with the measurement

of structure and control flow.

4.4.2.1 Instruction Mix Characteristics. The numbers and types of

instructions used in a program is an indicator of how the programmer used
a language and is an obvious reference point in describing a program. An
instruction mix indicates the kinds of control constructs governing the
program; how much of the code is actually executable; how understandable
the program is via the number of comments, etc. There are also other types

of variables related to instruction counts which are analyzed.

Information can be collected on simple assignment-type statements versus
computation-oriented assignments. For a language such as FORTRAN which is
compute oriented it is important to consider factors such as function references
any! computations which camplicate subscripting as well as various instruction
types. There are verbs in COBOL such as the SORT that can be as complicated
as a programmer chooses. With these particular verbs, data should be collected
on all relevant aspects of the verb's use. COBOL also has the capability
for nesting IF statements. This can greatly complicate a program's structure
as well as its readability et al.

The size of a program is an imbortant characteristic for measurement,

as is repeated by many different authors. Size for a COBOL program can be

152

measured by the actual number of verbs and also by the number of statements
(80 character lines). The number of labels, for both FORTRAN and COBOL, and

particularly the number of statements between labels yields a rocugh picture

PR

i

& o

of how many segments there are to the program - i.e. how many program

pieces must be kept track of.

The following is a Tist of data obtained under the heading of instruc-

tion mix:

COBOL

- sjze of program - number of statements and number of verbs in

procedure division
number of paragraphs
number of sections
segment sizes - number of statements in each paragraph - number
of verbs in each paragraph
number of outer nested IFs - the number of IFs that either stand

alone or begin a nested sequence

- nesting level of IF - gives depth of nesting (plus breadth) for

every nested branch

SORT verb data - indicates how the SORT is done - via input
procedures, output procedures, files, etc.

ENTER verb data ~ number of routines to be executed in another
language

SET verb data - number of assignments in the statement

COMPUTE verb data - number of operations in the statement

153

-3

- ADD and SUBTRACT verbs data - number of assignments in the state-
ment

- number of instruction types - total number of instructions plus
the number of each different instruction type

FORTRAN

size of program

number of labels

]

segment sizes - number of statements between each label

number of computations per statement - this count is kept for
any statement in which an arithmetic operation can be per-

formed

number of function references per statement - this count is kept

for any statement in which a function reference is possible

number of instruction types - total number of instructions plus
the number of each different instruction type (IF statements are
counted individually under the statement following the condi-

tions)

4.4.2.2 Data Reference. Ideas describing what is and is not important

to measure for data variables have been tossed around as frequently and as
madly as FORTRAN programmers use 6-letter non-mneumonic names in their pro-
grams. Data locality, scope of variable reference, structure of the data.
etc. are entities tﬁat authors say should be investigated and yet it is
difficult to find consensus definitions of these terms and worse to locate

algorithms with which to measure them. Therefore, data has been collected

154

on what is reasonably attainable via static analysis, without resorting to

F o aiabate T
1 B

complicated traces through various paths to trace data definition points.

Information on counts of different variable types, sheer numbers of

L Amuiantd
LIRS

variat™ . numbers of input variables, as well as specific information per-
i tine... v the Tocality of reference for a variable is available for analysis.

One of the most important characteristics of a program variabie is that its
1; value must be retained by the programmer for as much of the program as
it is referenced. Each variable serves then as something that must be re-
membered by the programmer/maintainer as the program is being used. The
span of a variable is an attempt to measure this characteristic in a super-
ficial sense - i.e., for what percentage of the program is a variable a
retention problem. The frequency of reference for a variable within this
. span is measured by the average distance between references to the variabie.
| The DATA DIVISION of COBOL specifically defines every program variable.
What is of interest, though, is how these different data types are used
within a program - i.e. are the group hierarchical variables used more
frequently than the elementary level, how often are copy variable names
referenced, etc. FORTRAN does no* offer this wide veriety of data use but
relevant counts can be made of numbers of input variables, dimensioned
variables, etc.

The following are data reference variables collected for analysis.
Data reference information:
C0BOL.
- total number of variables used in the Procedure Division

?f - the number of COPY variabies defined in the Data Division

i 155

EXsi

fresmic

P
pinic}

|

~ the number of variables defined in the LINKAGE section

- the number of files READ plus the variables affected by the INTO

option of the READ

- for each variable:

1.
2.

FORTRAN

1

1

1.

2.

3.

the number of references to the variabie within the program
the span of the variable - the percentage of the program
spanned by the variable from its first to last reference
average distance between references within the span

type of variable - an indicator of whether the variable
falls within any of the following classes: COPY, GROUP,
ELEMENTARY, LINKAGE, RENAMES, CONDITION, OCCURS., REDEFINES,

paragraph name, function name

total number of variables
number of function veriables
number of dimensioned variables
number of input variables

for each variable:

the number of references to the variable

span of the variable

average distance beiween references to the variable within
its span

type of variable - an indicator of whether the variable 1is

DIMENSIONED, EXTERNAL, FUNCTION, or INPUT

156

NOTE: 1if the variable has been passed as a parameter in an argument
1ist for some function reference, depth of nesting information is col-

lected as described 1n Section 4.4.2.

4,4,2.3 Structure and Control Flow. In a discussion of structure and

control flow, there are the cbvious program variables which should be enu-
merated - e.g. numbers and kinds of control constructs, number of times
sequential flow altered by a jump upward or downward, numbars of conditionals
and unconditionals and language-defined loops, levels of DO Toop nesting
and sizes of DO loops, ad infinitum.
These types of variables are collected for analysis as foilows.
Basic Structure Data:
COBOL
- number of each conditional type - conditional types are:
IF, ON, SEARCH, EOP, INVALID, END, SIZE
- number and type of instructions executed on each condition -
conditional types are: 1IF, ON, SEARCH, EQP, INVALID, END, SIZE
- number of branches in GO DEPENDING
- number of ON conditions in a SORT
- number of when conditions in a SEARCH
- number and type of iest for each condition - (SIGN, CLASS, CONDI-
TION, RELATIONAL)
- number of logical conditions evaluated - count the number of
connectives plus the number of conditional operators

- number of times the sequential flow aitered - number of jumps in

157

. program (indicates whether an upward or downward flow)
se - number of alters in an ALTER statement

T FORTRAN

number of unconditional statement types - unconditionals:

RETURN, STOP, GO TO

number of conditional statement types - conditional statement

types: COMPUTED GO TO, ASSIGNED GO TO, ARITHMETIC IF, IF..

-3

READ W/ERR=, READ W/END=, CALL WITH MULTIPLE RETURNS

number of DO Joops

Tength of each DO loop - number of statements in the Toop

- nesting levels of DO Toops - counts every nesting seguence

i within an outer DO
- number of nested DOs within an outer DO
- numher of conditions evaluated in an IF condition - counts all
connectives and relational operators
- number of function references and computations involved in a
conditional expression - tu indicate complications involved
T in the logical expression
- number of times sequential flow altered - number of jumps in the

program - indicates whether an upward or downward jump

The above mentioned variables are refevant to program structure

and do provide necessary data points for a description of a program. However,

N no one of these characteristics in itself sufficiently handles the problem
f of measuring structuire. Each adds a dimension to a measure but does not

i 158

yield an all-encompassing figure of merit for the structure of a particular
program. It is undecided among authors just what kind of a measure is a rea-
sonable one for handiing the structure of a program. Below are some opinions
on the topic.

Gileadi and Ledgard [33] have written a paper concerning a measure of
program structure. They attempt to measure how well-structured a particular
flowchart is with respect to the precepts of structured programming. An
abstracted flowchart of a program is mupped into a deterministic finite-state
sequential machine of the Mealy type and then a measure of software-work is
applied to the automaton. Implicit in their work is an assumption that the
flowchart doing the least amount of work to compute a given function is in
fact the best structured. The authors present a minimal example of their
technique and offer no proof for their assumptions. Further, their ideas are
impractical for large programs.

De Balbine [26] has written an automated tuul for the purpose of rewriting
existing programs to make their Togic more understandable. He claims that the
structure of a program's flow graph alone is sufficient knowledge in order to
perform & good restructuring of the program. Meissner [34] also emphasizes
the flow graph as a means of providing independent structural information.
Peterson et. al. [24] have devised an algorithm to restructure a program direct-
ly via its flow graph.

The much-heralded structured programming has been promoted as a cure-all
for structuring difficulities. If a program is written according to the pre-
cepts of this discipline then the program is supposedly far less compiex and

eminently understandable (Donaldson et. al. [18]). In examining various

159

opinions on structured programming, authors point up program characteristics
such as: no jumping around, simple control paths, single entry, single exit,
minimal use of go to, read strictly from top to bottom, no back-tracking, direct
correspondence between the static form of the program and its dynamic flow
during execution, program divided into easily understandabie units, etc.

Also, there exist restructuring algorithms (e.g. reference [24]) which make

use of a flow graph in transforming a program to a structured form.

But does this mean that programs cannot be written without using the
specific key constructs of structured programming and still exhibit the above-
mentioned characteristics of good structure? Is the problem that FORTRAN or
COBOL programs lack structure or rather that their structure may be difficult
to discern? Meissner [34] contends that the key control statements of FORTRAN
really do Tittle to enhance the recognition of good program structure. There-
fore, what is needed is an objective way of examining a program, structured
or otherwise, to discern what is bad structure from what is good structure.

In so doing, the ideas stated above as to what program characteristics affect
structure can be utilized.

These characteristics of good structure will be analyzed as they appear
in arbitrary FORTRAN and COBOL programs. Included in this analysis 1is an
application of an algorithm used in a mechanical restructuring method [24]
which determines how much effort is involved in restructuring a program. This
algorithm will be defined further on. This approach will utilize the flow
graph of a program both for its measureable characteristics and for its

facility in finding other structural data points. This flow graph analysis

160

is independent of whether the program is written in COBOL or FORTRAN with one
exception. This has to do with counting the number of loops in a COBOL pro-
gram and will be discussed further in the narrative.

- As the specific structural data points are enumerated, definitions and

i explanations will be inserted where applicable.

o CONTROL FLOW INFORMATION - FLOW GRAPH DATA

A. Flow Graph
1. Definitions: (The following is from Aho and Ullman [25] - cf.
Figure 2 for an application of these definitions)
- Defn: A statement S in a program P is a basic block entry if
a. S is the first statement in P or
b. S 1s labeled by an identifier which appears after GO T0 in
a G0 TO or conditional statement, or
c. S is a statement immediately following a conditional state-
ment.
- Defn: Thebasic block belonging to a block entry S consists of
5 and all statements following S
a. Up to and including a halt statement or
b. Up to but not including the next block entry.
- Defn: A flow graph is a labeled directed graph G containing
a distinguished node N such that every node in G is accessibie
on from N. Node N is called the begin node.
- Defn: A flow graph of a program is a flow graph in which each

node of the graph corresponds to a biock of the program. Suppose

161

read p

read g
Toop r < remainder (p,q)
T « r¥r
if t=o0 4o to done
p +q
q «r
go to loop
done write g
halt
Figure 2A - Sample Program
read p
read q Block 1
|
. | loop: ré— remainder (p,q)
g t &= r*r
if t = 0o go to done
Y]
Pg=e g done: write g
Block 3 qQé= 1 halt
go to loop
|
Figure 2. Application of Flow Graph Definitions

Black 2

Block 4

that nodes i and j of the flow graph correspond to blocks

i and j of the program. Then an edge is drawn from node i

to j if

a. the last statement in block i is not a go to or halt
statement and block j follows block i in the program, or

b. the last statement in block i is GO TO L or IF...GO TO L
and L is the label of the first statement of block j.

2. Data Collected from Flow Graph

total number of basic blocks in the program

size of each block - number of verbs in each block

blocks flowed to from each block

number of branches to each block

Note: Figures 3A and 3 present an example of this flow graph data.
Interval Analysis on Flow Graph
What is useful about interval analysis is that it places a hierarchial
structure on the program; divides the program into pieces which can be
examined independently, and it eliminates some of the bowl-of-spaghetti
effect by eliminating seguentia! and unimportant branches.
1. Definitions:
- Defn: A technique used in data flow analysis for compiler

optimization. It is ar algorithm for partitioning a flow

graph uniquely into disjoint intervals as follows: If h is

a node of a flow graph F, define I{h), the interval with

header h, as the set of nodes of F constructed as follows:

163

e e B e

Biock i

Block 1

Block i

Block i

Block i

Block 1

Block i

Figure 3A.

N‘I
P
w

DO 214 J3 = 1,N
J = TSTOR (J3)
N5 = FMORT (CJ3,2)

J——

DO 213 J5 = 2,Ni
IPOINT = FN(J5)
IF (IPOINT . GT. I) GO TO 212

CONTINUE

[s ¢

SAU(J3) = IPDINT
GO TO 214

SAU(J3) = ENDIT(M,2)
XFACT = IPOINT

CONTINUE

STOP
END

Flow Graph for Figure 3A.

Excerpt from Sample FORTRAN Program with Basic Blocks Denoted.

Tl o
b

By

&

ia

R
¥

[T —
P

[
E %

Fniinnis)

R (e

TOTAL NUMBER OF BLOCKS =
SIZE OF BLOCKS:

Number Branches
Number Branches
Number Branches
Number Branches
Number Branches
Number Branches
Number Branches

Block i flows to
Block 1+1 flows to
Block 1+2 flows to
Block i+3 flows to
Block i+4 flows to
Block i+5 flows to
Block i+6 flows to

Figure 3. Sample Flow Graph Data

7

Size {i) =
Size 2 1;
Size {i+2

Size (i+3)
Size (i+4)
Size (i+5)
Size (i+6)

w nna 1w

P = N N — W

[ab]

to i =
to j+]
to i+2
to i+3
to i+d
to i+h
to i+6

—) e e PN

n a4 i n nwu

i+l
1+2, it+4
T+, 343
1+5
it

s it6

I_l...l
+

a. h <« I{h)

b. If n is a node not yet in I(h), n is not the begin node,
and all edges entering n Teave nodes in I(h), then add n
to I(h).

¢. Repeat 2 until no more nodes can be added to I(h)

Note: Figure 4 presents an example of interval analysis

appliied to a flow graph.

. Data Collected from Interval Analysis Applied to & Flow Graph

total number of intervals formed from the fiow graph initially

number of blocks contained in each interval

span of each interval
% of instructions in the program contained in the interval

number of branches inside each interval

non-sequential branches from 1 block to another within
interval

interval number to which each branch from an interval flows

gyives some feeling for the "sequentialness" of the inter-
vornections between intervals

gives the hierarchy of the structural flow

sequentialness of the flow
an interval 1s formed by adding node branches from one block
to dnother - therefore, if there is a Targe jump in the pro-

gram flow it will be indicated by the block numbers making

up the intervals. cf. Figure 5

166

Flow Graph, F:

Intervals of F are as follows:

Interval 1 = <{node 1, node 2}
Interval 2 = {node 3}

Interval 3 = {node 4, node &, node 6}
Interval 4 = {node 7, node 8, node 9}

Figure 4. Interval Analysis Applied to a Flow Graph.

{mamn)

A "'f

rmiind

Flow Graph, F:

Intervals of F: IT = node 1
*12 = node 2, node 3, node 8, node 9
13 = node 7
14 = node 10
15 = node 4, node 5, node 6
* NOTE the nodes composing I, - indicates non-sequentiainess of the

2
Tlow.

Figure 5. Interval Analysis Used in Analyzing Non-Sequential Flow

Varjables Measureable via a Flow Graph
Aside from yielding information about itself, the flow graph can be
used in measuring other variables as follows:
- span of each branch -~ number of statements jumped over by a back-
ward or forward branch
- number of backward branches
Vs:
- number of loops - a loop defined as any sequence of blocks that
can be executed repeatedly
Note: It must be mentioned here that COBOL verbs - PERFORM...UNTIL,
PERFORM. ..VARY, PERFORM...TIMES - do set up a looping sequence
which will be evident in the flow graph. However, these Toops
are essentially independent - i.e. at the end of a PERFORMed
paragraph, bar any go to's from the paragraph, control returns
only to the statement after the PERFORM verb and cannot flow
elsewhere as a flow graph might indicate. Figure 6 provides an
axample of this problem.
Two sets of data therefore are available for COBOL programs:
1. Block and interval analysis information with PERFORM
branches included
2. Block and interval analysis plus looping information with
PERFORM back branches and inner Tooping eliminated
i.e. elimination of PERFORM branches except for actual

branches to do the PERFORM

169

Suppose & COBOL rm-igram was set up as follows:

Procedure Division Using A], A2

PAR-1.
Block 1 PERFORM P1 THRU PT1-EXIT UNTIL A EQUAL TO B.

Block 2 MOVE I to Jd.
GO TO PAR~Z, P2 DEPENDING ON COUNT.

PAR-2.
Block 3 PERFORM P1 THRU P1-EXIT UNTIL J EQUAL TO K.

Block 4 ADD K T0 1

GO BACK.
Block 5 P1.
MOVE B TO C, D.
PT-EXIT.
EXIT.
Block 6 P2.
GO BACK.

then a flow diagram for the above program would be:

NOTE: The flow graph shows interconnection
between Perform loops that really are
not there, e.g. the graph shows that
2-3-5 is a loop.

This is impossible since the perform of
Biock 1 is completed before any perform
at Block 3 and therefore the branch to 2
out of 5 does not really exist upon enter-
ing Block 3.

Figure 5. Example of Looping Problem
with COBOL PERFORM verbs.

H

'

1

number of closed path loops

intersections and nestings of loops

size of each Toop

number of exits out of a loop

measurement of how well~structured a program is (i.e. how
difficult it would be to restructure the program). As was
described in Section 4.2, Peterson, et al [24] have developed
an algorithm which determines the degree of difficulty involved
in restructuring a program via its fiow graph into a well-
structured program consisting of oniy seaquences, alternative
clauses, iterative clauses and multi-leva] exits. The method
essentially consists of counting the number of loops which have
multiple-independent entry points - i.e., there exist paths, whose
nodes are not elements of the Toop, from the start node to more
than one node in the Toop.

e.g,:

2-3~4 is a loop with 2 entry

points, nodes 2 and 3.

Specifically, they define the complexity of a flowchart by a pair
of integers {N,M) where N is the number of nodes in a largest

multi-entry Toop and M is the number of multi-entry Toops with

N nodes.

17

|5

f‘i” sl s : W tn

This measure is easily attainabie via a continued application of
the interval reduction algorithm described previously in this
section. If a program has no multiple entry loops then continued
applications of the interval reduction algorithm will reduce the
graph to a single node., If the program does have loops with
muitiple entries then the interval reduction algorithm reduces
its flow graph so that all the flow graph shows are the multiple-
entried loops. Figure 7 provides examplies of interval analysis

applied in this manner.

172

} Flow Graph F:

Interval

Interval 1' T

Interval 3'

Flowgraph F_I is reducible and therefore has no multiple-entry loops.

Figure 7.

(Continued next page)

Interval 1

. — ot e

The intervals cannot be combined any further. The flow graph is
reduced to a Joop between nodes 2' and 3' with 2 entry points, nodes 2'

and 3'.

Figure 7. Examples of Interval Analysis Reduction.

4.5 Preliminary Results/Future Analyses/Summary

At this point, the data collection system has been written and both
FORTRAN and COBOL samples have been collected. The emphasis to date has
been concerned with the actual coliection of data - what program variables
should be collected - how the data should be taken - and in general making
certain that as much information as possible is procured from this static
data collection. It is far better to have the capability of obtaining too
much data than too 1ittle and it is most important to ensure that this
data is in a form whereby it can be utilized easily.

This section discusses some preliminary results from data collected
on several FORTRAN sample programs via the SPITBOL programs SNOINST and
SNODATA. The data is incomplete as informatien is not available for all
of the FORTRAN samples from the structure program SNOCONTR at this time.
Yet, an examination and discussion of these initial results provides
some interesting insights and yieids results which lead into several im-
portant directions for future analysis of the data. These directions
are in essence various aspects of what constitutes a measure and provide

a frame of reference for a discussion of the term "measure."

4,5.1 Preliminary Results

The analysis was based on data points collected from 14 FORTRAN
programs each with a complexity rating as given by their author/maintainer.
This is a summary of some results and it is not intended to be all-encompass~
ing of the data so far collected. The data points were selected somewhat
at randem as an initial starting point for determining what types of statistics

and counts are relevant and which do not provide useful information and

175

IR———

therefore need another perspective. Fach category will be defined below,
the results indicated, and then a discussion of the program data collected
under each heading foliows. The circies around numbers indicate those
counts or averages or percentages which are grossly different from other
numbers under a particular heading - note that these circled numbers do
not always agree with the rating of the program given it by its author/
maintainer.

These circles under particular headings serve to emphasize categories
from which more data types should be analyzed - e.g. number of function
references discriminates between programs. This implies data on inter-
face connections, types of subprograms, parameter nesting, etc. should be
investigated. After a discussion of the data points individually, a
summary of all the data will be shown via Figure 8, and trends seen in the
data will be discussed more fully.

In a discussion of each of the individual headings the weaknesses
in each category will be emphasized - i.e. where statistics appear to be
faulty, where more data obvicusly needs to be analyzed, etc. Also,
strengths in these categories and where these seem to be leading will be
pointed out. Note that we are trying to get statistics that indicate
the "complicatedness” of the program. This can be done mainly in two
ways: via a norm to compare programs against or by getting data points
which differentiate between programs.

1. Complexity Rating - the score given to the program by its

author/maintainer in the gquestionnaire previously described.

176

Progra

Numgerm 112134156 7| 81910 111 ;1213 |14
Complexit :
‘Rarg?ngx Y1112 |3|5 5|5 6165775 | 8] 9] 9 | 9

The First category indicates the "complexity rating” given to the
program by its author. No attempt has been made to normalize these. They
are as they have been given - to serve as an initial separator between pro-
grams. It will be obvious, however, with close scrutiny of the data to
follow that some of the program writers thought their programs to be far
more compiicated than the data indicates. Some tended to confuse the diffi-
culty in solving the actual problem with the difficulty of writing the
code for it. Or perhaps there are features to these programs, e.g. structure
and control flow, which are not illuminated by the present collected data

but which do merit the complexity rating given by the program's author.

2. MNumber of Subprograms attached to the Main Program

P

NE?;EQ?"‘ 1 2723 14 5 ‘ 6| 789 {10 | T 12 13 14
Subprograms A ; .
Attached 0 |0 0 [0 |4 0713|484 3|13 5 | 9 10

3. Percentage of the Program Spanned by Subprograms - how much of the

total code is contained in subroutines.

Program T4] T 1 —T 5 ? ' 1
Numbe 1 2 3 ' 4 5 6 7 18 | 9 10 N 12 14

13
% Program T ! ‘ ——t
Spanned by [0 [0| O 0| 42%| 0 |50% 1 39% 1 56% ez%
Subprograms ; | ; [; N

! L i
1 i

177

The number of subroutines attached to the main program appears to
differ greatly between the programs - and yet the amount of code performed
within these subroutines is on the whole always greater than 50% of the total
code, implying that the programmers attempted modularization of a fashion.
Obviously, more samples are needed here to see if this phenomenon holds true
in general. A better data point might be to Took at how modular the code
indeed is - are the total instructions mainly in one or two subprograms or are
the subprograms relatively small or at least all of approximately the same
size? The way in which the FORTRAN program data has been collected greatly
facilitates this as data counts have been taken for each subprogram independently

of its main program.

4. Number of Logical Operations - What is the average compliexity
Number of IF Statements of the Togical expressions.
Pr
Number {2t slalsi{e|7 8|9 |10 (11 |12]13]1a
progOpernsd o by b |1 e e frale [0 a1 |]

This category, dealing with th2 complexity of logical expressions,

appears to differentiate minimally between programs.

5. Number of Function References ~ the number of subroutines, subprograms,

function statements, and FORTRAN functions referenced in the program.

'ngmm
Number 1 2 3 4 5 6 7 8 9 10 12 13 14

1
P 7 a0 {18 | s 17 | 40 |i08 | 28 29 | 20 |61) | 48

178

Under this heading, there is a variation in the counts between pro-
grams but it should be noted that the largest numbers of function references
are not necessarily found in what have been classed as the most compliex pro-
grams. Since this does appear to be & discriminating characteristic, more
data in this interface/function reference environment should be included in

future analyses.

6. Total Number of Instructions - the upper part of the biock indicates

number of instructions including COMMENT statements; the lower part

of the block is the total instructions without COMMENTS.

gsgggim 1 2 3 4 5 6 7 8 9 10§ 11 ¢ 1271 13} 14
Ins%rucs. 93 (200 (229 {387 |378 |233 {791 [758 {686 | 398 {989 {538 [950958
FTnstrucs. T Tl T OV DR OO SN S B
(No comments |82 166 167 {366 {324 [185 |591 |688 §321 | 320 | 758 {440 | 700|755

Category 6 is strictly an indicator of size. It is interesting to note
that the sizes are not in order of increasing complexity - e.g. the author of
Program 7 with its 791 instructions gave it a rating of 6 whereas the author
of Program 12 with its 538 instructions gave it a rating of 9. This at least
indicates that some thought toward program characteristics as opposed to program
size went into the samples the programmers chose for analysis. It should be
pointed out here the difference COMMENT statements can make in some program
sizes - e.g. Program 9 is cut by a factor of 2 in size when COMMENT statements

are not counted,

179

7. Percentage of Total Instruction Count that are comments.

Program
nten |1 l2la e s el 7]8totw |11 [12] 13| 4

comonee (125 {172 {278 | s |1ag {213 | 253 | o 53z |200 | 231 | 18w | 26% | 102

8. Percentage of Total Instruction Count that are unconditional statement

types - the upper part of the biock indicates the number with

COMMENTS included in the instruction count,

Program
Numger 1 2 13 4 5 6 7 8 9 10 11 12 13 14

el 6% L 151201 4%) 5% 119 1 76 4%)1 3% 1 8% 1 3% 1. _3%_1..7%_ _} 8%
Uncondit.| 7% 1% 12% ¢ 4% § 5% t 2% 110% | 5% | 6% 6% 3% 3% 9% 6%

9. Percentage of Total Instruction Counts that are conditional

statement types - the upper part of the block indicates

the number with COMMENTS included in the instruction count.

Program

Number 1 2 |31 41 516} 7] 8} 9 }10 11 i2 13 14
el be_ .l 4e] dkl136 11E“_5ZFZI%TIZZ__S%-__GZ_"-_SZi:__9%___18%_____9% _____
Conditionali 18% | 5% | 6%] 14% 12%| 6%{28% 137 11% 31 11% | 10z | 117 1 24% 11%

10, Percentage of Total Instruction Counts that are DO statements - the

upper part of the block indicates the number with COMMENTS included

in the instruction count.

Program
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P o L T R e e e e . el e el L) TRy PR A SURRAp S APt Ay Sl L SRRy

180

11. Percentage of Total Instruction Counts that are Sequential statement

types - the upper part of the block indicates the number with

COMMENTS included as an instruction type.

Program

Number 1 2 3 4 5 6 7 8 9 10011412 113] 14
S N 61%].66%] 64%] €8%] 6/%) 68%] 4371 69%| 38z 1 66%] 5/%] 62%] 473| 56%
Sequential|{ 70 | 79 } 88 | 72 | 79 | 86 @ 75 B3 | 74176 69

Categories 7 through 11 are a minimal attempt at instruction type

categorization.

With few exceptions, the percentages under unconditional,

conditional, do, and sequential fall within similar ranges for each of the

programs.

This suggests that instead of serving as a differentiating factor

between programs, these categories could serve as a norm against which programs

could be evaluated.

Obviously, more samples need to be looked at before any

conclusions can be drawn but this initial data indicates how this type of

statistic could b2 used.

12. Average Subprogram Nesting Depth

: rogram 1l213tals | el7]lsletrwolrlie |13 [
~Sub
ﬁ;gﬁﬁg B;g:’;;:a“‘ 1] el edeslief e 1.4] 2.1 1.9 |2.6

13. Number of Subprogram Nestings - how many subprogram branches emanate

from main program.

{Program

Number 112} 3/4j516] 718y 910111112 113_114
Subpro-

gram Nestings] 3 | 11 31 220 § 6117;25(11 6 21111 127 |26

181

The average depth of subroutine nesting, category 12, does vary
between programs but here average is not a good indicator of anything.
The median depth or maximum/minimum depths would yield a wider spread
between programs. Perhaps, though, this average nesting depth should be
Tooked at in conjunction with category 13, the numbeyr of nestings. For
example, the average nesting depth of 1.4 of program 11 compares favorably
with that of program 12 with its nesting depth of 2 when consideration is
given te the fact that program 11 has 21 such nestings whereas program 12
has only 11. So where program 12 has more depth in its function references,

program 11 has mcre breadth, i.e. mnre nestings to be concerned with,

14. Number of Breaks in Sequential Flow of Program ~ how many times

is the program broken by a jump upward or downward or a do loop.

Program
Number 1 2 3 4 5 6 7 8 g 10 11 12 131 14

lBrﬁaks 22 43~ |18 @ 58 | 18 @ @ 45 | 52 @ 94 @ 09

The number of breaks in sequential program flow obviously differen-
tiates between programs - witness how program 9 and program 10 appear to be
totally out of place in this categqory with programs having even Tower complexity
ratings than they. This general category leaves the door wide open for explora-
tion into all facets of this program flow problem and emphasizes the need for
inclusion of the control flow and structure data from programs SNOCONTF and

SKOCONTRZ.

182

e,] om

15. Number of Instructions - an indicator of how many program

Number of Sequential Breaks

statements on the average can be spanned without hitting a

"jump" of some sort. (The upper part of the block indicates

the average for total instructions including comments - the

lower portion of the block is for instructions excluding comments.)
Sﬂﬁggim 1 2 3 4 5 6 7 8 9 10 11 12] 13 If!
mst..__| 0259 [l 6.5 [izislat [3:3 1s.2f 77 [6.5 57 |a1 [a0
Foeke | 62]4.9]10.4/63| 5.7 103160 6D | 7.2|6.2 | 5.0 4.7 |60 [G.8

Category 15 is an attempt to negate size and question within any

program, on the average, how many statements can be spanned before hitting a

break in the flow.

Notice that while program 1 is a relatively small program

of 93 instructions with a not-too-high total number of breaks in sequential

flow {when this category lcoked at independently), it has a very low ratio

of program jumps to number of statements, indicated by category 15, making it

comparable in this regard to programs with complexity ratings of 10!!

16. Percentage of Breaks in Secuential Flow Downward -
ogrami gl 3l a5 {6 7] 8] 9|00 [12f1 |
%
Down 827% 24%37.54 54% | 647 | 28% | 72% 65%| <4 | 48%| 37%| 50% | 71% | 45%

183

i’

17. Percentage of Breaks in Sequential Flow Upward -

Program
Number 1 2 3 4 5 6 7 8 g 10 |11 12 }13 14

_ug 0% | 3% @ 9%} 16% | 5% | 12% | 14% @6 2%| 3% @ 4%

18. Percentage of Breaks in Sequential Flow Due to DO Toops -

rrogram
Number 1 2 3 a 5 6 7 8 9 10§17 (12 |13 14

Lo 1182 @ | 37,537 | 2; 16% | 21% | 150 | 29% |61} 8

Categories 16, 17, 18 delineate these flow breaks cf category 14 into
upward, downward, and loop. This data, in its present form, does not really
indicate too much of anything. Even within the set of programs with a large
number of breaks in their flow (e.g. Pirugram 7 and Program 11) the percentages
of each under the three headings vary greatly. A lot of upward flow, accord-
ing to good programming techniques is considered a bad omen - but perhaps this
is best measured in terms of numbers of Toops and backward branches and the

span of each and not just by a count of how many upward jumps exist in the

program.

19. Average size of DO loops ~

Program
Number 1 2 13 4 5 6 7 8 g J10 § 11 12 {13 14

Avg. Do
Size 17.0 {14.3[41.8119.3 | 19.3)9.2 1 4.9 | 11.7{11.6{6.6 }13.6 | 11.117.9 4.0

184

;:ng

20. Number of DO Loop Nestings - the number of outer DO's in the program.

Program
Numhav 1 2 3 4 5 6 7 8 9 10 11 i 13{ 14

%]

ﬁei’%kgﬂpz 12| 4| 9| 1 |G GDI s] 1 @s)| 19/ (79)

21. Average Depth of DO LOQP Nesting -

Frogram

Number 1 2 3 4 5 6 7 8 9] 10] 11 121 13 14
Avg. Nesting

Depth 1. 11.3 .51 1.81 .7} .41} .13t .81 .71 .61 1.71 .9} .05f .5

The average DO size, category 19, is again an instance where average is
not a good statistic. This average would tend to de-emphasize programs where
essentially the whole program was a DO loop but where there were many smaller
DO loops within the program thus decreasing the average size. A maximum/
minimum or median statistic or even the numbers of DO loops falling info various
size categories might be a better indicator of how complex the DO loop structure
of the program really fis.

Whereas the number of DO loop nestings seems to be a good differentiator,
the average nesting depth for a DO loop appears to be a faulty statistic in some
regards. It does not yield a good picture of how complicated the DO expressions
of a program are. Here a statistic such as the maximum nesting depth and
breadth and the size of the outer DO for this nesting would yield a more informa-
tive data point. dther statistics on nesting will at least indicate whether
what appears to be true right now, i.e. nesting depth of DO loops {no matter how

it is measured) is winimal for most programs - is indeed correct. Also, we

185

want statistics that indicate "compiicatedness" within a program and perhaps

the above mentioned is a better way to get at this.

22. Average Number of References to a Variable -

!Program
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Avg. #
Refs. 5.4i1M5.614.4 {11.0}5.115.313.414.014.9)6.7 5.7 |3.6 [3.7 6.4

23. Average Span of Each Variabie - on the average, what percentage

of the statements in the program are spanned by the variable.

Program
Numbey 1 2 3 4 5 6 7 |8 9 10 11 12 13 | 14

Avg.
Span 38.3 4§;}§23.9 35.1130.5437.7125.6]132.0134.4135.6 {33.0 |32.0 }31.8}]42.2

24. Total Number of Variables Referenced in the Program -

Program

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14
L

Vars. | 28 |30 |107 {96 | 173 |100|@0D|63Y [191 | 135|314 |66 [63) | 297

25. Percentage of the Variables which are Inputs -

Program
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

%
Input 14, 1200 104 (280 | 6% | 8 | 26 6% 23 5% &% 7% Thi 1%

186

Variables within a program are considered under categories 22 through

25. OFf these four, only the number of variables differs greatly between the

programs. It is interesting to note that the average number of statements

spanned by a variable from its first reference in a program to its last

reference falls within the same approximate range for most of these 14 pro-

grams. It is also of interest to point out that this span of a variabie's

reference is quite large - "remembering" a variable and its value for 30 state-

ments or more certainly retards retention span.

26. Average Segment Size - average number of statements between

1abels.

Program

Number 1 2 3 4 5 6 7 8 9 10 11 12 13§ 14

Avg. Seg-

nent Sise3.0 4.1 6.2 6.96.4]8.0{6.916.9] a.9{5.3| 5.3 6.2 | 6.)/8.
27. Number of Labels in the Program -

P

ottt 12| 3] afl shoel 7y 8|9 [w|u {12]|13] 4

E:
Labets 22 | 20| 26| 107] 50| 22 [§aD{G7) |61 | 37 |131 ! 66

i

&

Average segment size and number of labels is an attempt to look at

pieces of a program - what is the so-called eye-span for the programmer as

the program is scanned. This average and the count of Tabels is in no way

indicative of the program's flow. Since a labeled statement tends to be a

"veferred to" statement within a program, the fact that the data collected

187

*g 3unblL4

léf.ﬁé.{f@l_ﬂfiﬁﬁ@ﬂjfﬁﬁﬂ_@’ﬁ:az;zzzszx,zz.s'.zén
o n 6. amP— w——— e— — —— — ——— pusn—
> g S';bﬁ ,e%‘ i*% ::*N msa ZI-Q % { %o | Yo 'zo 5:.32{% :‘;? fns I | %, {7, fAve] ¥ jAvelave {avel s | o lave] s
[rd ;": Bnjvrees ' 7 Id D] E | g 8 / D N ce NE e # uag| y I 5% h
B SRR M e LS N B B I I R P o A I Bl P D B R DU R ER ER R
2% I AL 2 BN - I A 4 N I I I I O R 2
‘93% A g Subhs s |weal H NI T sl o % e P i z E o 5 1y s
2w vl | ot s | 47 Ja e[Bls 1y 2 s s
%’u 93 xR cm i, Y,
B proeeany |/ |O1O 1/ |7 ,;,3,/2%”/% [5%Zﬂ 3 22O onlizalino | 2 1 1. |54 |3es|2e |anlElez
77 709/ |19 ur, u/v/m 57 |
PRoGaRam 2. 0| O 10 | I |20 Vie 1772/ 194 /593 /s /295 Lol |34 Ax) 24T} 37 [:73% 13| 1213 u“.rf 3o 0%)41 | 4o
227 R4 VLT N Vil TR 142
prosran 3 | | 0 Vo | 1 1t folaml ok dalbnl dsl £ |3 {16 Vs, P78 R0 4 | .5\t |39)07 {062} 26
357 12/ |13} 9 1y 4.
ProcRam 4 | S 1o |O| 7 | s Vbl 57 /M Al 4o Azl 1 | 2 Gl 54| 7. 372@ /8 @3;,; 96 {24754} ro7
379 s 37477 L5
PRo6oam & |5 |4 \uard 11 bl 1 /57 ,@%/;‘ 16 @58 | L \CH b zanl@3) 7 | 7|57 |seslaD) b2fes | 5o
| Ry 17V sV 571687 129
ProGRom & |5 1O O |1.2)17 | oo 2/,;/_;j’f/67,/;,‘ G011 6148) fodl 2 .6’?,@ g2/ |4 15:3|317)00 | £2}d 0|22
; W 7VETY 4 43 "y
PRoGem 7 | b {7 @L&, 4o | ol 25 /10 281/ 571 4. @@ 3_,@'/.22 JE4 7|39 [13 | 3.4 25 6[H02 27@@
L~ 758 LA A Va4 Ay 33
T}
PRocRAm 3 |6.5|/3 {907) 1.4 foi)l /sl 7|57} /A" D) Vo @ e R A <D B Bl DR U @
(A1) avrsyl e, 4 152 _
proceam 9 | 7 | 4 {39%)7.2 | 204, | ik o /2 o 1 (D) ¢ 7, Sl isad e | 6 1.7 {9 |2 {ED| 25 09 |2/
- NGt A 71
Proceam fo |7.5] 3 1637) 1 (M) £l 2al/ 0 4 2 st 18] 6 V52 | @Bl anl ol 11)¢ |67 |ssafras)| sBY 53157
' %g/ Py b i Gy, b5
PRoGeAm 11 | & |13 [GEn] 1.1 {29 45| 232 3./.4Jé (14 @G 4 | 30 22| @) s @D 7 | 57 |asofGr] wnf s | o
534, EX bl L 5.
PRoGrAm 12 | T V5 k&%) / |29 4 'y A ,/;’ /,5%2' 21X 4|5 32@//.;@ G |36 {20436} 72402 el
459 g ifeml 27wty H
procran 13| 7 |7 (€2 11|60 /7 Wl BB s |17 |es|a7 e [63)] el
N N 4 al —
Procram p | 7 |10 1G4 1./ 14 b Vil gl 40V % Eﬁ@@{; 4] 42 @-4,0 G\ 5 |t {un 2} /2[0S Y53

for average segment size differentiates between the programs, reinforces
the need for some sort of measurement of program pieces. The control flow
blocks and interval analysis described previously is a better statistic for
this data - these data points at least follow the true control flow of the
program yielding program segments more indicative of what the eye-span in

following the program has to be.

4.5.2 Future Analysis

Figure 8 contains the data just enumerated in summary form. With even
a cursory look at this figure a couple of points are obvious: first, the
compiexity rating scheme of the questionnaire, while providing an initial
means of separating the programs is too dependent on the individual programmer
and therefore is not uniform, and second, there is no one variable that by
itself appears to differentiate between categories of programs. But it is
clear that the analysis techniques employed in Figure 8 for getting counts,
averages, percentages, etc. can yield valuable information and can serve as
a beginning in predicting trends in data. Some of these data categories indi-
cate they could be a standard norm against which programs can be evaluated,
e.g. complexity of logical expressions (category 4) while others are obvious
differentiators between programs, e.g. category 14, the number of breaks in
~equential flow. This type of analysis aiso points up where categories appear
to . inadequate and yield ne conclusive information and where a different

perspective on a variable is needed - e.g. average nesting depth of a DO Toop.

There are a large number of ways to manipulate the data coilected but

there are also Timits as to how many samples can be collected and analyzed.

189

A 50-dimensional feature vector cannot be put through an analysis based on
only 50 sample programs. Therefore, the types of analyses done in Figur: 8
must be used to refine the data ccllected into a set of relevant statistics
which can in turn be used in more complicated schemes. But even at this, there
. are just too many data points in the program's feature vector. Therefore,
some type of selection technique must be chosen to decide exactly what variables
should constitute a reduced feature vector. This implies in essence that we
are selecting a specific measure with which to evaluate complexity.
Instead of choosing specific variables as definitive complexity factors,
» a scheme was set up to investigate a wide variety of variables as possible
= compiexity factors. Similarly, a more objective method for selection of a
complexity metric would be to refrain from choosing a specific technique as
a measurement tool and instead explore multiple techniques that could serve
as a means for getting a complexity measure. The data can then be looked
at through various frames of references. That is, different sets of variables
: can be analyzed using varying techniques. By not choosing one specific
direction for data analysis, the program can be viewed as a learning problem,
as a series of retention barriers, or as simply a group of structural factors
5 or data factors or combinations of each. Also, techniques that aliow a
. random choice of variables to be input and then provide a classification of

> these arbitrary variables into groups can be utilized.

et

190

Statistical techniques such as multivariate analysis, factor analysis,
da and cluster analysis are eminently suitable for taking different pieces of
- information and combining these pieces into a single "best" predictor of
compiexity. It is possible to approach a measure in several ways using
i% these methods - e.g. as an equation for predicting an unknown complexity
” score of a program from the known set of complexity factors or as a measure
&j of the significance of differences among groups of feature vectors.
7 There are methods then available for exploring various sets of complexity
characteristics. These can be utilized blindly, i.e. with no rhyme or
i; reason as to how the characteristice are put into the feature vector. The
interpretation of the results might be difficult in these cases and would
%é necessitate some type of subjective judgment as to what the measure actually
was predicting. Therefore, a frame of reference must be given to data used
in these techniques. As was seen from the preliminary results, there are
quite a few natural groupings in the variables which could be used. Some
ideas for different frames of reference for the variables are as follows.
Weinberg [35] states that "psychologists have Tong observed that the
P capacity of the brain to deal with several items at one time is lTimited."
He feels that about 30 lines of code, divided into 3 or 4 groups, is about
all that can be mastered. Miller [36] points out that there exists a finite
span of immediate memory and for a Tot of different kinds of test materials
I this span is about seven items in length. Further, to increase the amount
of information that‘can be dealt with it is necessary to group or organize the
input sequence into units or chunks. One can then ask what are the program

{g factors that affect retent.on - what are programming tools and characteristics

Lé 191

o R el e Goedamo

4

Lacann ST

that organize a program into "good chunks"? Therefore, coilected program
characteristics that affect retention span or affect our "learning" the
program can be used as input into a multivariate analysis scheme. Factors
such as numbers and sizes of modules, depth of subroutine and parameter
nesting, numbers of blocks in a flow graph, numbers and sizes of unigue
intervals the program can be broken into, etc. are just a few of the
possible input variables.

Another frame of reference would be to use Gunning's [37] style and
attempt to take the fog out of a program - to eliminate "noisy" unnecessary
complexity. Instead of coming up with fagtors that differentiate, a set of
standard norms would be developed - a set of principles which would serve
as a yardstick against which other programs would be measured. Variables
used in tnese techniques would be those that initial analysis showed couid
be normalized to give a number considered "non-harmful® or a reasonable
standard to set for the program's comprehensibility.

The Tist of possibilities for structuring the data is endless and each
presents a new orientation which is far more worthwhile than a single compiex-
ity measure, FC (X1, Xz, ces Xn), where each X, represents some arbitrary
program characteristic. The goal is a single complexity measure but one
which presents complexity as a multi-faceted problem. Structural complexity
versus interface compiexity versus retention span compiexity, etc. will all
be aspects for which measures are at hand. These are perspectives on the
problem which can {n turn be measured for their individual worth in evaluating

a program. In this way, then., we will have attempted to investigate the

192

probiem from all sides and will therefore have far better tools for an

evaluation and judgment for any program at hand.

£ 4.5.3 Summary

The previous sections have provided justification for an investigation of
I program complexity and have described a method which attempts such an investi-
gation. The implementation phase of this data collection method is under-
L way and emphasis is presently on actual data analysis. It is now possible
e to discuss a program objectively in terms of its collectible characteristics.
If results to date prove correct, even straightforward analyses of the
data can be quite useful in assessing a program via its complexity. With
data available from COBOL programs as well as FORTRAN programs, inter-language
i; comparisons can be made. Conclusions from analyses are therefore appiicable
™ in both the scientific and data processing spheres of influence.
Fach phase of the investigation provides a reuseable tool for program
i analysis not only in terms of complexity but also in other areas of on-going
: research. The previous section described the thrust for future research in
%; the complexity area and the solution of the immediate goal of a complexity
7= measure. However, since the data collected provides objective information
on a program, then a profile of each program in terms of its measureable
i? characteristics is availabie. This provides a firm basis for understanding
B the source of the reliability problem, the program itself. For it is impossible
i to discuss software without objective data to reinforce opinions and this

13 data coliection method makes uch data readily availabie.

193

b
B ey

]

-

4.6 Bibliography

10.

11.

12.

13.

14.

Clapp, J.A., Sullivan, J.E. Automated Monitoring of Software Quality.
Proceedings of National Computer Conference, 1974, pp. 337-341.

Pietrasanta, A.M. Resource Analysis of Computer Program System Develop-
ment. On the Management of Computer Programming, (Ed.) Weinwurm,
Auerback, Philadelphia, 1970.

Weinwurm, G.F. On the Economic Analysis of Computer Programming. On
the Management of Computer Programming., (Ed.) Weinwurm, Auerbach,
Philadelphia, 1970.

Pietrasanta, A.M. Functional Estimating of Computer Program System
Development. On the Management of Computer Programming, (Ed.)
Weinwurm, Auerbach, Philadelphia, 1970.

IBM, Custom Contract Services. Estimating Systems Costs, reprinted
November 20, 1971.

Nelson, E.A. Management Handbook for Estimation of Computer Programming
Costs, S.D.C.., AD648 760, March 20, 1967.

Farr, L., LaBolle, V., Willmorth, N. Planning Guide for Computer
Program Development, S.D.C., May 10, 1965.

Wolverton, R.W. The Cost of Developing Large Scale Software, 1972 IEEE
International Conventjon Digest, pp. 178-179.

Wolverton, R.W. The Cost of Developing Large Scale Software, IEEE
Transactions on Computers, Voi. C-23, No. 6, June 1974, pp. 615-636.

Wejssman, L. Psychological Compliexity of Computer Programs: An
Experimental Methodoliogy. SIGPLAN Notices, June 1974.

Anderson, P.G. and Crandon, L.H. Computer Program Reliability,
RCA Engineer 19, 5 (Feb. - Mar. 1974§

Dickson, J.C., Hesse, J.L., Kientz, A.C. and Shooman, M.L. Quantitative
Analysis of Software Reliability. Proceedings of 1972 Annual Reliability

and Maintainability Symposium. IEEE Cat. No. 72CHQ 577-7R, pp. 148-157.

Rubey, R.J., Wick, R.C. and Beathley, L. Comparative Evaluation of
PL/1. U.S. Air Force Report AD-669 096, July 1968.

Goldberg, J. (Ed.) Proceedings of a Symposium on the High Cost of
Software, September 17-19, 1973.

194

15. Mills, H.D. Mathematical Foundations for Structured Programming,
1BM, February, 1972.

16. Dijkstra, E.W., Dahl, 0.S., Hoare, C.A.R. Structured Programming,
Academic Press, 1972.

17. IBM, Management Overview, 1973.

18. Donaldson, J.R. Structured Programming, Datamation, December, 1973.

e GE) N B

19. Ramamoorthy, C.V., Cheung, R.C., and Kim, K.H. Reliability and
Integrity of Large Computer Programs, U.S. Government Report AD-779 339,
March 1974.

P

20 Rhodes, J. Tackle Software with Moduiar Programming. Computer Decisions,
o October 1973, pp. 21-25.

21. Constantine, L.L., Stevens, W.P., Myers, G.J. Structured Design,
IBM Systems Journal, No. 2, 1974.

A 22. Goodman, L.I. Complexity Measures for Programming Languages. U.S.
Government Report AD-729 011, October, 1971.

23. Sullivan, J.E. Measuring the Complexity of Computer Software. Mitre
Corporation, MTR-2648, Vol. V, June 1973.

: 24. Peterson, W.W., Kasami, T., Tokura, N. On the Capabilities of While,
= Repeat, and Exit Statements, CACM, Volume 16, November 8, 1973.

25. Aho, A.Y., Ullman, J.D. The Theory of Parsing, Translation, and
o Compiling, Vol. 17: Compiling, Prentice-Hall, Inc., 1973,

ki 26. de Balbine, G. The Structuring Engine: A Transitional Tool,
g Computer, Voi. 8, No. 6, 1975.

- 27. Knuth, D. E. An Empirical Study of Fortran Programs, U.S. Government
3 Report AD-715-513, February, 1971.

28. Mills, H.D. The Complexity of Programs. Program Test Methods., (Ed.)
W.C. Hetzel, Prentice-Hall, Inc., 1973, pp. 225-239.

29. TRW Systems Group, The Quantitative Measurement of Software Safety and
Reliability, Redondo Beach, California, August, 1973.

30. Cooley, W.W., Lohmes, P.R. Multivariate Procedures for the Behavioral
- Sciences, John Wiley & Sons, Inc., 1962.

: 31. Endres, A. An Analysis of Errors and Their Causes in System Programs,
Proceedings of the International Conference on Reliable Software, April, 1975.

zm—.w;

195

|
p—

1

-

T

(i

-

[SUSR

%

32.

33.

34.

35.
36.

37.

Shooman, M.L., Bolsky, M.I. Types, Distributien and Test and Correction
Times for Programming Errors, Proceedings of the International Conference
on Reliable Software, April. 1975.

Gileadi, A.N., Ledgard, H.F. On a Proposed Measure of Program Structure,
ACM SIGPLAN Notices, VYol. 9, No. 5, 1974.

Meissner, L.P. A Method to Expose the Hidden Structure of Fortram Programs,
ACM SIGPLAN Notices, Vol. 10, No. 6, 1975.

Weinberg, G.M. PL/1 Programming: A Manual of Style, McGraw-Hi1l Co., 1970.

Miller, G.A. The Magical Number Seven, Plus or Minus Two: Some Limits
on our Capacity for Processing Information, The Psychological Review,
Vol. 63, No.2, 1956.

Gunning, R. How to Take the Fog Out of Writing, The Dartnell Corp., 1964.

196

i

i)

PRV
e

s Anrd

4.7 References

Elspas, B., Green, M.W. and Levitt, J.N. Software Reliability. Computer,
January/February, 1971, pp. 21-27.

Mulock, R.B. Software Reliability Engineering. Proceedings of 1972 Annual
R&M (Reliability and Maintenance) Conference. IEEE Cat. No. 72 CHOb77-7R,
pp. 586-593.

de S. Coutinho, J. Quality Assurance of Automated Data Processing Systems,
Parts I and II. Journal of Quality Technology, Vol. 4, #2, Aprii, 1972
pp. 93-101. Vol. 4, #3, July, 1972, pp. 145-155.

El1ingson, 0.E. Computer Program and Change Control. Record of 1973 IEEE
Symposium on Computer Software Relijability. IEEE Cat. No. 73H0741-9CSR,

pp. 107-116.

Keezer, E.I. Practical Experiences in Establishing Software Quality
Assurance. Record of 1973 IEEE Symposium on Computer Software Reliability.
IEEE Cat. No. 73H0741-9CSR, pp. 132-135.

Girard, E. and Rault, J.C. A Programming Technique for Software Reliability.
Record of 1973 IEEE Symposium on Computer Software Reliability. IEEE Cat.

No. 73RO0 741-9CSR, pp. 44-50.

McGeachie, J.S. Reliability of the Dartmouth Time Sharing System. Record
of 1973 IEEE Symposium on Computer Software Reljability. IEEE Cat. No.

73H0741-9CSR, pp. ~17-123.

Bloom, S., McPheters, J.J. and Tsiang, S.H. Software Quality Control, Record
of 1973 IEEE Symposium on Computer Software Reliability. IEEE Cat. No. 73HO

7ET-9CSR, pp. 107-116.

Elmendorf, W.R. Controlling the Functional Testing of an Operating System.
1FEE Transactions on Systems Science and Cybernetics. S.C-5. October, 1969,

pp. 284-290.

Taylor, T., LeVarn, M. and 0'Connell, J. Performance Monitoring and Fault
Diagnostics of Command and Control Systems. RE-19-5-24, January, 1974.

Chandler, A.R. Software Verification and Validation for Command and Control
Systems. RE-19-5-23, November, 1973.

Teichroew, D. and Sayani, H. Automation of System Building. Datamation,
August 15, 1971, pp. 25-30.

197

Bisens

D-:_-.x.{..ii g.ar-m-«- =y

g

=1
13

e

Ogdin, J.L. Designing Reliable Software. Datamation, July, 1972, pp. 73-76.
Ogdin, J.L. Improving Software Reliability. Datamation, January, 1973.
Trauboth, H. Guidelines for Documentation of Scientific Software Systems.

Record of 1973 IEEE Symposium on Computer Sofiware Reliability. IEEE Cat. No.
73HO741-9CSR, pp. 124-131.

Seveik, K.C., Atwood, J.W., Crushcow, M.S., Holt, R.C. Horning, J.J.,
Tsichritzis, D. Project SUE as a Learning Experience. Proceedings AFIPS
1972 FJCC. Vol. 41, pp. 331-338.

Rose, C.W. LOGOS and the Software Engineer. Proceedings AFIPS 1972 FJCC.
Vol. 41, pp. 311-323.

Buzen, J.P., Chen, P.P. and Goldberg, R.P. Virtual Machine Techniques for
Improving System Reliability. Record of 1973 IEEE Symposium on Computer
Software Reljability. TEEE Cat. No. 73CHO741-9CSR, pp. 12-17.

de S. Coutinho, J. Software Reliability Growth. Record of 1973 IEEE
Symposium on Computer Software Reliability. IEEE Cat. No. 73CH0741-9CST,
pp. 58-64.

Littlewood, B. and Verrall, J.L. A Bayesian Reliability Growth Model for
Computer Software. Record of 1973 IEEE Symposium on Computer Software
Reliability. IEEE Cat. No. 73CHO 741-9CSR, pp. 70-77.

Jelinski, Z. and Moranda, P.B. Appiications of a Probability - Based model
to a code reading experiment. Record of 1973 IEEE Symposium on Computer
Software Reliability. IEEE Cat. No. 73CHO 741-9CSR, pp. 78-81.

Beizer, B. Analytical Techniques for the Statistical Evaluation of Program
Running Time. Proceedings AFIPS 1970, FJCC, pp. 519-524.

Flynn, R.J. On the Smallest Number of Program Modules Needed to Duplicate
Dynamic Independent Interactions. Record of 1973 IEEE Symposium on Computer
Software Reljability. IEEE Cat. No. 73CHO74-9CSR, pp. 65-69.

Ingalls, D.H.H. Jdr. Execution Time Analyzer. OFFICIAL GAZETTE of U.S.
Patent Office, Octobar 31, 1972, p. 1714.

Stucki, L.G. A Prototype Automatic Program Testing Tool. Proceedings AFIPS
1972 FJCC, Yol. 41, pp. 829-836.

Estrin, G., Hopkins, D., Coggan, B. and Crocker, S.D. Proceedings AFIPS 1967,
SJCC, pp. 645-656.

198

i

[

£l it

o 4
r 4

Bzpsiiy
PR

EA;F’:"?%

i

Fragola, J.R. and Spahn, J.R. The Software Ervor Effects Analysis: A
Qualitative Design Tool. Record of 1973 IEEE Symposium on Computer
Software Reliability. IEEE Cat. No. 73CHO741-9CSR, pp. 90-93.

Lucena, C.J. A Methodology for Producing Reliable Software Systems.
Proceedings of the ACM, 1973, p. 432.

Paige, M.R. On Testing Programs. Record of 1973 IEEE Symposium on Computer
Software Reliability. IEEE Cat. No. 73CHO-741-9CSR, pp. 23-37.

buckley, F.J. Software Testing - A Report from the Field. Record of 1973
IEEE Symposium on Computer Sofiware Reliability. 1IEEE Cat. No. 73CH0O741-9CSR,

pp. 102-106.

Fisher, R.A. Automated Testing of Software Systems. Proceedings of the Third
Annual Hawaii International Conference on System Sciences. Part 2, 1970,
tp. 886-889.

H?nfor?, K.V. Automatic Generation of Test Cases. IBM Systems Journal 9
8(1970).

Burkhardt, W.H. Generating Test Programs from Syntax. Computing, Vol. 2,
No. 1, 1967, pp. 53-73.

Kulp, J.C. Impact of Hardware/Software Tradeoffs in a Command and Control
System. RE-19-5-22, December, 1973.

Rowe, L.A., Hopwood, M.D. and Farber, D. J. Software Methods for Achieving
Fajl-Soft Behavior in the Distributed Computing System. Record of 1973 IEEE
Symposium on Computer Software Reliability. IEEE Cat. No. 73 CHO741-9CSR,
pPp. 58-75.

Grishman, R. Criteria for a Debugging Language. Debugging Techniques in
Large Systems. Rustin, R. {ed.) Prentice-Hall, 1971, pp. 58-75.

Itoh, D. and Izutani, T. Fadebug-1, A New Tool for Program Debugging.
Record of 1973 IEEE Symposium on Computer Sofiware Reliability. IEEE Cat. No.
73CHO741-9CSR, pp. 38-43.

Balzer, R.M. EXDAMS- Extendable Debugging and Monitoring System. Proceedings
AFIFS 1969, SJCC, pp. 567-580.

Grishman, R. The Debugging System AIDS. Proceedings AFIPS 1970, SJCC,
pp. 59-64. .

Dijkstra, E.W. The Humble Programmer. Communications of the ACM 15.
10{0ctober 1972), pp. 859-866.

199

I Mills, H.D. On the Development of Large Reliable Programs. Record of 1973

= 1EEE Symposium on Computer Software Reliability. IEEE Cat. No. 73CHO741-9CSR,

- pp. 155-159.

. Weissman, L. and Stacey, G.M. An Interface System for Improving Reliability
of Software Sys.ems. Record of 1973 IEEE Symposium on Computer Software

™ Reliability. IEEE Cat. No. 73CHO741-9CSR, pp. 136-142.

. Parnas, D.C. Some Conclusions fron an Experiment in Software Engineering

- Techniques. Proceedings AFIPS 1972 FJCC, Vol. 41, pp. 325-329.

2 Cohen, A. Modular Programs: Defining the Module. Datamation, January, 1972.

. pp. 34-37.

36 McIntosh, C.S., Evans, R.H. and Lastra, R. Survey and Analysis of Major

Computing Operating Systems. U.S. Government Report, AD-7014138, June, 1870.

Mittwede, W.C. Computer Operating Systems Capabilities: A Source Selection
and Analysis Aid. U.S. Government Report, AD-718973, April, 1970.

McIntosh, C.S., Choak, K.P. and Mittwede, W.C. Analysis of Major Computer

B Operating Systems. U.S. Government Report, AD-715919, February, 1970.

T Ziegler, E.W. An Introduction to the UMTA Specification Language. SIGPLAN
i NOTICES 9, 4(April, 1974), pp. 127-132.

- Parnas, D.L. More on Simulation, Languages and Design Methodology for

Computer Systems, Proceedings AFIPS 1969 SJCC, pp. 739-743.

London, R.L. Software Reliability Through Proving Programs Correct.
1 Digest of 1971 International Symposium on Fault-Toierant Computing. IEEE
e Cat. No. 71C-6-C, pp. 125-129.

T King, J.C. Proving Programs to be Correct. Digest of 1971 International

: Symposium on Fault-Tolerant Computing. IEEE Cat. No. 71C-6-C, pp. 130-133.

- Lyons, 7. and Bruno, J. An Interactive System for Program Verification.

i Algorithm Specification. Rustin, R. (ed.) Prentice-Hall, New York, 1972,

= pp. 117-141.

§° Weinberg, G.M. and Gressett, G.L. An Experiment in Automatic Vertification of
i Programs. Communications of the ACM 6. 10(October 1963), pp. 610-613.

Eispas, B., Levitt; K.N. and Waksman, A. A Comparison of Fovmal Program
Validation Techniques. Digest of 1971 International Symposium on Fault-
Tolerant Computing IEEE Tat. No. 7TC-5-C, pp. 140-T45.

fomi]

i

200

fLdy

Kay, R.H. The Management and Organization of Large Scale Software Develop-
ment Projects. Proceedings AFIPS 1969 SJCC. pp. 425-432.

Schneidewind, N.F. A Methodology for Software Reliability Prediction and
- u;ity Control. Naval Postgraduate School Report No. NPS555572032B, March,
g *

Anderson, P.G. and Crandon, L.H. Computer Program Reliability. RE-19-5-21,
November, 1973.

Boies, S.J. User Behavior on an Interactive Computer System. U.S. Government
2 Report AD-745-836, March 1973.

o

Clapp, L. Interactive Programming Systems and Languages. U.S. Government
Report AD-728-224, October, 1971.

Miller, L.A. Programming by Non-Programmers. U.S. Government Report
AD-760043, July 1873.

Smith, M.H.A, Toward Better Computer Programming. U.S. Government Report
AD-727-848, December 1971.

;j Grignetti, M.C. and Milier, D.C. Information Processing Models and Computer
' Aids for Human Performance, Task 2. Models of Human-Computer Interaction.
U.S. Government Report AD-732232, December 1971.

Zinn, K.L. Comparative Study of Languages for Programming Interactive Use of
Computers in Instruction. U.S. Governmeni Report AD-692506, October, 1969.

Mathur, F.P. A Brief Description and Comparison of Programming lLanguages
Fortran, Algol, Cobol, PL/T, and Lisp 1.5 from a Critical Standpoint.
U.S. Government Report N72-33190, February 1973.

James, T.A., Hall, B.C. and Newbold, P.M. Advanced Software Techniques for
Data Management Systems. Vol. 3, Programming Language Characteristics and
Comparisons Reference. Nasa Report NASA-CR-115515, July 1972.

DesRoches, J.C. A General Basis for Comparative Evaluation of AED, COBOL,
JOVIAL, and PL/1. U.S. Government Report AD-785205, May 1973.

Rubey, R.J., Wick, R.C. and Beathley, L. Comparative Evaluation of PL/1.
B U.S. Air Force Report AD-669 096, July 1968.

Sakakibara, K., Hatano, A. and Yoda, K. Aldol Programming, U.S. Government
Report N69-15155, February 1968.

Callender, E.D. and Rhodus, N.W. P1/1 and a Data Base. U.S. Government Report
AD-682305, April 1969.

201

—ay
E—

-
..

.m.,
S

it
o

e
PO

Berkowitz, R.L. A Comparison of Some Fortran Languages. U.S. Government
Report AD-716 738, March, 1971.

Wirth, N. On Certain Basic Concepts of Progfamming Languages. U.S. Government
Report PB-176 766, February, 1968.

Perstein, M.H. Some Techniques for Describing Programming Languages. U.S.
Government Report AD-666 370, May, 1968.

Tierran, J.C. Programming Languages for Digital Weapon Systems: Evaluation.
U.S. Government Report AD-66%9 443, July, 1968.

Teichroew, D. and Merten, A. The Impact of Problem Statement Languages on
Evaluating and Improving Software Performance. Proceedings AFIPS 1972 FJCC,
Vol. 41, pp. 849-857.

Kernighan, B.W. and Plauger, P.J. Programming Style for Programmers and
Language Designers. Record of 1973 IEEE Symposium on Computer Software
Reliability. IEEE Cat. No. 73CHO741-9CSR, pp. 148-154.

Schwartz, J.T. An Overview of Bugs. Debugging Techniques in Large Systems.
Prentice-Hall, 1971.

Knuth, D.E. and R.W. Floyd, “"Notes on avoiding go to statements.” Informa-
tjon Processing Letters 1, North-Holiand, Amsterdam, 1971

Dijkstra, "The Humble Programmer." Comm. ACM 15:10, 1972.

Hoare,C.A.R. "A Note on the for Statement." Bit 12:3, 1972.
Hopkins, M.C. “A case for the go to." SIGPLAN Notices 7:11, 1972.

Leavenworth, B.M. "Programming with{out) the go to." Proceedings ACM 1972;
SIGPLAN Notices 7:11, 1972.

Hull, T.E. "Would you believe structured Fortran?" SIGNUM Newsletter 8:4, 1973.

Cooper, D.C. "Some transformations and standard forms of graphs, with
applications to computer programs.” Machine Intelligence 2, American Elsevier,
N.Y.., 1968.

Bochmann, G.V. "Multiple exits from a loop without the go to." Comm. ACM 16:7,
1973.

Schmitt, S.A. Measuring Uncertainty: An Elementary Introduction fo Bayesian
Statistics, Addison-Wesley Co., Mass.

Meisel, W.S. Computer-Oriented Approaches to Pattern Recognition, Academic
Press, 1972.

2n2

Hilgard, E.R., Bower, G.H. Theories of Learning, Meredith Publishing Co.,

1966.
: Kernighan, B.W., Plauger, P.J. The Elements of Programming Style, McGraw-Hiil,
_ Co., 1974
i Plum, T.W-S. Mathematical Overkill and the Structure Theorem, ACM SIGPLAN

Notices, Vol. 10, No. 2, 1975.

Fleischer, R.J. Effects of Management Phijosophy on Software Production,
Mitre Corporation Technical Report, No. 2648, Vol. II.

5 Meyer, A.R. Ritchie, D.M. The Complexity of Loop Programs, Proc. of ACM
2 National Meeting, 1967.

. Goodenough, J.B. et al. The Effect of Software Structure on Software Reliability.
L Modifiability, Reusability and Efficiency: A Preliminary Analysis, Government
Report AD-780-841, December, 1973.

Weinberg, G.M. The Psychology of Improved Programming Performance,
Datamation, November, 1972.

3 Stewart, S.L. Concepts in Quality Software Design, Government Report,

b COM-74-50697, August, 1974

- Lyon, G. Stiliman, R.B. A FORTRAN Analyzer, Government Report Com. 74-50998,
ia October, 1974.

- Bulien, R.H.Jr. Software First Concepts, Mitre Corp. Technical Report, No. 2648,
§ Vol. III, June, 1973.

Cheng, L.L. Some Case Studies in Structured Programming, Mitre Corporation,
Technical Report No. 2648, Yol. VI, June, 1973.

Clapp, J.A., La Padula, L.J. Engineering of Quality Software Systems, Mitre
3 Corp. Technical Report No. 2648, Vol. I, June, 1973.

Henderson, P., Snowdon, R. An Experiment in Structured Programming, BIT, Voi.12.
™ 1972.

Browne, et al. Specifications and Programs for Computer Software Vaiidation,
uo Government Report N74-21831, November, 1973.
: Bjorner, D. Flowchart Machines, Bit, Vol. 10, 1970.
T Eishoff, J.L. A Case Study of Experiences with Top Down Design and Structured
A, Programming, General Motors Research Laboratories Research Publicatior. GMR-1742.

Lt

203

= Stucki, L.G., Svegel, N.P. Software Automated Verification System Study,

o Government Report AD-784086, January, 1974.

ha Sites, R.L., Some Thoughts on Proving Clean Termination of Programs, Government
Report PB 234102, May., 1974.

e

X

P

o

gty
4

GRE wesy

204

X G

5.0 INSTALLATION AND USE OF THE DAVE SYSTEM
AT TEXAS A&M UNIVERSITY

DAVE is a large FORTRAN program {approximately 22,000 FORTRAN state-
ments and comments) designed to perform static analysis of FORTRAN programs.
DAVE was developed at the University of Colorado by Professors Fosdick and
Osterweil during the past two years.* A comprehensive description of the
DAVE System is provided in Section 6 of this report. This section summarizes
the experiences gained in installing DAVE at Texas A&M University for the
eventual purpose of running it through DOMONIC.

DAVE was acquired by Texas A&M in order to gain firsthand experience
with a large, automaied program testing tool. Installation of DAVE was
complicated by the fact that 1t was developed on a CDC 6400 Computer and was
transported to the IBM 360/65 at Texas A&M. A previous attempt to install
DAVE on the IBM Computer at Argonne National Laboratory was unsuccessful,
targely due to incompatibilities between the CDC and IBM FORTRAN Systems.

A tape copy of DAVE was received by Texas A&M in May, 1975. During the
next month, a tTow level effort was directed to reading the tape and setting
up the 30 separate disk files of information that comprise the DAVE System.

In June, the head Colorado programmer on DAVE visited Texas A&M for a
week, and substantial progrggs was made toward installation of DAVE. A
short time later, after exchanging numercus phone calls and letters with
Colorado, DAVE became operational at Texas A&M. As a result of the experience

gained here, DAVE was successfully installed at Argonne National Laboratory.

* This work was sponsored by NSF Grant DCR 74-24546.
205

Fomanig]

Fiasd
f

|

s
b

ceiiy

iy
Koo v

s

Many of the problems encountered during the instaliation of DAVE were
caused by the size and complexity of DAVE and by the resulting communica-
tion problems in understanding what was required to install DAVE. For
example, 30 files had to be created and named, and certain of the files
had to be processed in specific order to initialize the system.

Other problems were installation dependent. In some cases, bugs in
the DAVE System that did not affect the operations of DAVE cn CDC equipment
were exposed on the IBM System. For example, an array that was not properly
initialized by DAVE did not affect the CDC operation., because the CDC
System automatically initializes core memory to zero. However, the IBM
System does not initialize core and the problem became evident at Texas A&M.
Also, certain CDC non-ANSI characters were used in writing DAVE and had
to be replaced with EBCDIC characters for IBM operation.

Another problem was that the maximum aliowable Tength of a single
record on IBM equipment is 32K bytes, which is less than the Timit that was
being used to write certain records of information on the CDC machine.

During the past two months (mid-July to mid-September), DAVE has been
used to analyze several FORTRAN programs. Experience with DAVE indicates
that it is a Tlarge system and that it is rather expensive tu operate. For
examplie, processing a 50-Tine FORTRAN program requires approximately 300K
bytes of memory and 1.5 minutes of execution time. Compilation of the DAVE
System, which is required only once per installation, needed 110K bytes of
core memory and 25 minutes of execution time.

On the other hand, DAVE is very good at identifying illegal and

questionable FORTRAN program constructions. A typical DAVE analysis of

206

foiend] o

[l

Frm

i

i

[y 1

]

By

e g

] s

Ceekeytng

Pk iacn
Aam e

LI

ot
FIN

L

a FORTRAN program is attached to this paper. The cost of analyzing a
program using the DAVE System must of course be balanced against the cost
of an undetected problem in the program.

One feature of the DAVE System deserves special comment: DAVE
assumes that the program being analyzed adheres to the ANSI Standards
for FORTRAN programs. However, it does not check for conformance. Thus,
a non-ANSI program can result in unpredictable behavior by DAVE. The
system would be improved by adding an ANSI checker as a preprocessor to the
DAVE System. This would, of course, increase the size and compiexity of an
already large and complex system.

The following pages provide examples of output from the DAVE System.

207

’ LINE STMT EBLOCK SCURCE

1 1. B COMMON/ELK/ S» Rs XMAX, YMIN
: e 2 1] DIMEMGICH QC18@)>s RC1GG,2)
: 3 3 1 . READ(5,18)1,S
’ 4 4 @ 1% FORMATCIIZ,F6.2)
5 5 i CALL INITC(R,Q.1I)
5 6 1 WRITECEs28)CACS)ad=15 169D
: 7 7 g 28 FCRMATCIGFS.2)
8 8 1 INTS=S
E G g 1 IFCINTS.LE.3)
4 g 13 2 SINS=1
15 11 3 M=MAVMIN (RY%INTS
11 12 3 STCP
12 13 o] EliD
1
. 13] 4] SUBRCUTINE INITCAsVECTCR,I)
; 14 2 g DIMENSION ACIGH)sVECTRCIED)
15 3] IFCIeLTels0Re1.GTeS8)
15 4 2 $I=1
¥ 1€ 5 3 DO1G J=1,1
; 17 6 2 186 ACI)I=dsd-18%LI*J/18)
18 7 5 IPI=I+1]
& is 8 5 IFCI«GT.S5)
[19 - 6 $I=5¢
23 18 7 D023 K=IP1,168%
21 11 8 28 ACJI=G
y 22 12 = READC5,35) (CVECTR(J)>J=15 158D
23 13 5] 3¢ FORMATCIGFE.2)
24 14 g RETURN
3} 25 15 g END
- 1
26] g FUNCTION MAXMINCR)
3 27 2 @ DIMENSION RC138)
) 28 3 @ CClMON /BLK/ RMAX, Rii IN» DUM&Y (231)
eg 4 I RMAX=R(])
. 3¢ 5 1 " RMIN=RC1)
Vi 31 6 1 DC 16 I = 1,166
L 32 7 2 IF(RMAX.LTRCI))
z 8 3 SRMAX=RC(I)
i 33 g 4 IF(EMINCGT-RCI))
(33 16 5 SEMIN=RCI)
34 11 6 J& CONTINUE
}' 35 j2 7 IF(BMAX.NE.PMIN)
35 13 8 SMAXYMIN=RMAX-RMIM
3 14 g RETUSN
. 37 15 G END
5
I B
i
EF @RIG.N&E ‘,B&GJE (9]

Froveini

[:.mm(}

GLCBAL MISSAGES FOR PROGRAM UNIT INIT

5]

]

— 5

i e s ok o ok % st e ok o 35 o s ok ok ok ok ok ok 3 oo s Sk ok ok ok ke oK ok 3k oK 3K sk s ok i e o e e sk sk sk ok o okt ok ok oK o sk s ok ok ok Sl kR ok
: sk kAR TNG '

g

[—

@ A VAEIABLE IN A PAPAMETER LIST IS USED FOF NEITHER INPUT NOR
oUuTPUT. :

—rd

NAMZ QOF VARIAZBLE VECTQR
e ok o s 3keof o sk ok ok ok s Sk sfe ok s ok 5 s sk sk ke sk e 3 o ok sl Sk o s sk o ok ok s S5 R 380 3Kk o o 58 3K oK S gk kst ok o ol ok s sk ok
LOCAL NMESSAGES FOR PROGZAM UNIT INIT

FenmaTay
PR

&

; G

T
!

g @ THE LOCAL VATIABLE NAMED VECTR RECEIV=S A VALUE IN ITS
LAST USAGE.
k3 ok sk 3 S ok sk o s e 3 o 3 ok ok vk sk vl ok o s s 5k 5k ok s ol ok of s sk sk sk sk ok o s s s ohe it o ook s ke s s e ok ke ok ok ok ok G o sk kSR 3R

sheske o ot sl o sk e o e ok sk e s o ok ske ok e ezl s ok s o sk ke s ke ok ok s Sl s s v vk st ok ol st ok ok o s e s Sionke ol o o ok sk o ke ke s e sk e sk o
Ak xWATN ING

t

[:.} &
sk sk ke s 5K 3 ok ok ke s sk o oK 3K she o ok o okl e sk e s e S e she e e s oK s se s Sk s sie s e s sk e o e ok ke ok e KKk ke R g SRR Sk kR

- sckkkk ERROR '

L

2

2] THE VARIASLE NAMED J BECOMES UNDEFINED (FALLING THROUGH

] STATEMENT NUMSER 63, YET 1S ALWAYS USED THEREAFTER TO SUPPLY
51 A VALUE.

E e sfe s s she sk s sk s s e 5 ookt ok ok sl s sk e ok s 3 5 sk 3K St o o o s o S sk ke o o s s ke 3k oK s 6 e o A 2K K o ok o e 5% R koK o SRR

1 CLASSIFICATION OF PARAMETER AND COMMON VARIAELES
o 3 SUBROUTILE INIT
}2 G- PARAMETERS/ENTRIES
. 0RDER © NAME INPUT CLASS CUTPUT CLASS
P i a }ON STRIGT
I% 2 FECTOR NON 10N
h 3 X STRICT QUTPUT

|

i .
H CALL GRAPH TAELE ENTRIES
o @SUBPROGRAM NAME= SYSMAIN
o PROCESSED AS ITEM NUMBER H IN THE INPUT FILE
EXTERNAL CALLS= 2
e @ SUBPROGRAM NAME= INIT
&i PROCESSED AS ITEM NUMBER s IN THE INPUT FILE
- EXTERNAL CALLS= @
- NAMES OF CALLERS
i SYSMAIN
s ZSUBPROGRAM NAME= MAXMIN
PROCESSED AS ITEM NUMBER 3 IN TEE INPUT FILE
i EXTERNAL CALLS= B
& NAMES OF CALLERS
SYSMAIN
e NEXT LEAF IS FILE ENTRY NUMBER 2
N NEXT LEAF IS FILE ENTRY NUMBE" 3
o NEXT LEAF IS FILE ENTRY NUMBER 1
3
i
ii

S

o

brsrinnd

ey

i

2

ozmng
23

ey

Pl
)

R 1]

1

Begrrirrre

P PSeatts
ied

s

Jom it

e
S wmnnd

M r-u-——“v F————— ———
b enoand { et — J N

.5‘4.-;.‘1
—

PP

]
[Rena—

<A

ety

Qe

[IR R Ry

GLOBAL MESSAGES FOR PA0GRAaM UNIT

e e ke ke sk ok s sk s 3 e e she ok e e ke sk sk sk ke s ke ok s e o ok o s ok e o ok o o ook 3K R sk ke sk ke sk ok e e e ok ok ok ok sk ok o sk sk ok ok ok oK ok ok ok

dokoke kW ARN ING

5]

A FUNCTION NAME IS NOT ALWAYS ASSIGNED A&

MNAME OF FUNCTION MAXMIN

sk e s sk s s sfe e e 3 S s ol sl e ke s S e S sk s s o she ok e he e sk e e 2k ok ok ok s sk e s obeshe ke sk e s sk s s o sk ok ke e R o ok e KOk R KR
LOCAL MESSAGES FOR FROGRAM UNIT

=R

B8~ &

ORDER

CLASSIFICATION OF PARAMETER AND

FUNCTION MAXMIN
PARAMETERS/ENTRIES
NAME INPUT CLASS
MARMIN NOoN
R STRICT
COMMON BLK
PARAMETERS/EMNTRIES
NAME INPUT CLASS
BMAX NON
RMIN MON
DUMMY NON
L SINAT PAG 5o
POOR Qua Y

COMMON VARIABLES

QUTPUT CLASS
OUTPUT
NON

OUTPUT CLASS
STRICT
STRICT
NON

k)

==

n

da

Faiin tiis
-

rad

e gt

i

s ny e ———_y

iy ot

GLOBAL ':ZSSAGES FOR PROGRAM UNIT

B8 & -

St s s o s s sk e o 3% 3 ke o 5 o e o 3 o o e e o s 2 ke ole e e sk Sk ok ke ok e skl ok o sl e s ok 3k ok s o o e ok o e ok sk o e o s ok kool sk ol ke
ke rARMING STATEMENT [.O. S BASIC ELOCK WNNO. i

8 CORRESPCNDING ARGUMENTS IN THE PARAMETER LIST> ATE OF
DIFFERENT DIMENSIONALITY.

CALLING SUBPROGRAM CALLEE SUBPROGRAM
SYSMAIN INIT
ARSUMENT POSITICN] 1
NUMBER OF DIMENSIOMNS 2 1
NAHZ OF ARGUMENT R a
VIND OF ARGULIENT IDENTIFIER
INPUT CLASS MOM-INPUT
QUTPUT CLASS 5TE.QUTPUT

sk e s o sk s s s ok sbe s ke ke s ke e 8¢ e 5k 58 e s e e 3B s s R it e ok ok o ot sk sl s S S ik 3 3K 3 o ok ol ok 5 3K ok ok s ok e e ok ook e ok sk e e e
&

sk sk ok e o o o e e o s i s o e ol o s oo ol sk e ofe ool ot ke o s s o o1 o 2 o o ol e e e e 3k s o s e RO e o o ok ok sk s ok o e The ok
kkkAWARNING STATEMENT NO. 5 BASIC BLOCE NO.]

g CORRESPONDING ARGUMENTS IN THE PARAMETER LISTS ARE OF
DIFFERENT DIMZNSIOWALITY.

CALLING SUBPROGRAM CALLEL SUBPROGRAM

SYSMAIN INIT
ARCUMENT POSITION 2 2
I'UMBER OF DIMENSIONS | 5
NAME OF ARGQUMENT 8| VZCTOR
KIND QF ARGUMENT IDENTIFIER
INPUT CLASS NON-INPUT
DUTPUT CLASS NON-CUTPUT

ke e e ke sfesis e o ok 2 o ok o sk e sk ok o o e sk oo skl skl o e e ok o s v e e s s i sl sk i o sk sk ok sl e ok s sk e sk kKo e R sk ok ke o
@
sic S e e o s s s sde ke s o s s ol o o o o e o o ook e ok o o ok e o o o s e e e e ok o 2k e ok sl sk e sl ol sl obe e o sk ¢ sk sk ok sk S e sk sk o

wakxkWARNIMNG STATEMENT 170. 1l BASIC ELOCH NG. 3
2 CORRESPONDING APGUMENTS IN THE PARAMEITER LISTS ARE OF

DIFFERENT DIMEMSIONALITY.

CALLING SUBPROGRAM CALLED SUBPROGRAM

S5YsSMAIN MAXMIN
ARGUMENT POSITICN i l
NUMBER QOF DIMENSIQIS 2 1
NAME OF ARGUMENT R B
KIND OF ARGUMEINT IDENTIFIER
INNPUT CLASS STRINPUT
QUTPUT CL£5S NON-0UTPUT

s e e o el sjt ok e s e st sl sheade e vk e e o sk e ofe sesie o o sl vl e s e e ioode vl s sie sl ok s e sk sk sk ke s e s sl sk sl sl kol R okl ok
=

2 ok s o oK e e e sk of o o ok o ok e s 5 30 o sk s ok o 36 36 9 e o ok 3 e e st ko ok o o ok s ke e ok oK 2 e s of ok o ok e ok ¢ ok ok ok oK

@RKﬂNAI}PAGE
OF POOR QuaLzry "

g

g{ kW ARN ING STATEMENT NO. 11 BASIC BLOCK NC. 3
o]

5 A POSSIBLE ILLEGAL SIDE EFFECT HAS BEEN DETECTED. Al
o ARGUMENT PASSED BY THE CALLING SUBPROGRAM (VIA PARAMETER
i LIST OR GOMMON) IS ALTERED BY THE CALLED SUBPROGRAM 45 &N

INDIRECT CONSEQUENGE OF THE CaLL.

CALLING SUBPROGRAIM CALLED SHBPROGRAM

SYSMAIN HAXMIN
. COMMON BLOCK NAME BLX BELK
i NAME OF ARGUMENT R
da INPUT CLASS STR. INPUT
OUTPUT CLASS NON=QUTPUT STR. QUTPUT
g; e ke ko sk e sk o s ke 3k e ke 2K s e R sk sk ok 2N 3K o o ok s ol e o e e sl o s sk ok sk s sk ke sk sk s sk o ok oo e it e o s s ok ok o SR e o
?
- @ LOCAL MESSAGES FOR PROGRAM UMIT
£ 14
% |
ia st 2 sk s o o s ke ok s s e ok sk oo e ke ok e sbesle ok o s s sk ol o o ok sk o o o SR ok s 2 ok sl ok sk ok sk sk ofe ek sk ok e sk ok K ok s s ke ok ROK R
N HwkckukWARN ING
i 3 THE LOCAL VARIASLE NAMED I RECEIVES & VALUE IM ITS
LAST .USAGE

e ek koot s s ohe st sk skeoke sk ook sk s s s sl sfeole sk R v e i sl ok s o o e ok 58 ok st e sfe sk koo sl e sk sk ok ke ok ok e ok ok oK
: sk s ok o e ke e s o e stk ook s o sk o o ok o 530 sk o o o s s o ok o s s ke e ke s e ok ok o s e s sk s sl s ok sk o ko sl sk ok R sl el
- sk APNING
b -
o 3 THE LOCAL VARIABLE NAMED INS RECEIVES A VALUE IN ITS
3 LAST USAGE.
’% : she vhe s e sl e o e ol o sfe vl e ok s sl ol e e mde oo sk e e e ode ole e sheske e s e oo shesie v de i o e sl e g sl e Sk s ke o e He s sk s R o sk e sk ke sk e
b o '

sk sk o ok e ke s e sk ok e sl sk e ke s ok ke ke ok e e e ke okt e e ke sk e ok ok s s s e e sk ok o o s sk ke e sk o ok ok o ke i o ke sk e ok o sk ok SRR K e ke
g dkckWARNING
i

& THE LOCAL VARIABLE NAMED M RECEIVES A VALUE IN ITS

LAST USAGE.
s s o o ke s Sk e s o ke sk e she s s ok 3k e Sk o s e sk e s ke obe sk e o sk s s ke sk e s shesfe e e s i e e st Sk s Sk e e e e ok sk e e e ek e

CLASSIFIFrATION OF PARAMETER 4MND COMMON VARIAERLES

]
a COMMON BLE
§ “ PARAMETERS/ENTRIES
g ORDER MAME INPUT GCLASS OUTPUT CLASS
i S L ON STRIGT
2 R MO STRICT
3 XMAX MO 1 ON
z XMIN NON FON

(e B aniar TR o

e

]

6.0 TESTING, VALIDATION AND VERIFICATION

The objective of testing, validation and verification is to produce
quality software. Yet, what is quality software? As the adjective implies,
guality software is software of high value. It is software that performs
the function it was designed to perform with dependability and reliabitity.
It is software that is well-structured and documented, as well as easily
manageable and modifiable,

This report is not concerned so much with the specifics of structure
and documentation, et al, as it is with the testing aspect of reliability --
the elimination of errors or bugs in software. An error or bug indicates
the software failed to perform its intended function for a particular input.
This is not to say that structure and documentation are not impovtant aspects
of software quality that facilitate testing and, in fact, several aspects of
developing software systems that facilitate testing will be discussed.

The following discussions deal primarily with testing batch programs.
These techniques are applicable “o some extent to time-sharing and real-time
programs, but the additional complexities of these types of programs create

a number of difficult probiems for testing.

6.1 Terminology

To establish a basis for discussion, several definitions will be
presented. Testing implies an attempt to measure how well specifications
are met., There are two problems in this: first, to define the acceptance

criteria to be used, and second, to specify unambiguously exactly what is

214

i

]

il

expected of a piece of software. The specification must be adaptable to

C;'-E.:;;» .3}

allow extensions and alterations to the code without making the acceptance
™ criteria ambigupus. Errors or bugs are examples of failures to meet the

specifications for a particular piece of software. But differentiation
HH between debugging and testing should be made. Testing has already been
defined, debugging starts with known errors and attempts corrections. The
two are velated since testing discovers the inputs (errors) for the debug-
;* ging process.

Validation will be defined as assuring the Togical correctness of a

i; program in its operating environment. While verification will be concerned

with logical correctness independent of the program's environment, the

]
o e

non-logical properties such as resource utilization, execution time, I/0

device requirements and functional measures of effectiveness will comprise

ST
. o

the area of performance testing [1].

6.2 Goals of Testing

The primary goal of testing, as mentioned eariier, is to aid in produc-
ing a piece of quality software. The objective is to remove errors in the
}i software so it meets its specifications. This is certainly a non-trivial
problem. Dijsktra has said, "Testing shows the presence not the absence
L of errors" [2]. Unfortunately, this is all too true. Testing problems are
broadly placed into two categories: 1) how do you test software, and 2) how
do you know you have effectively tested the software. The types of testing
Will be discussed later.

Simply stated, the goal of testing is to eliminate errors. For a

P prnny [Oap——
RPN | S Mo orraed

- sophisticated piece of software, this becomes extremely difficult. The

e

f I

215

g

e
'

P
T .

e iy

e m—rariiy

feasibility of testing all variable ranges and branch paths may well require
astronomical amounts of time [3]. So, what is the solution? After-the-fact
testing, as already stated, is a very difficult task. Some solutions to
the problem may be found in software generation practices. Many techniques
are now coming into vogue that generate software with fewer errors and also
facilitate testing [3a,b,c]. The latter concept is very important -- to
design and generate software with testing plians incorporated. The above
approaches will tend to make testing a more tractable problem,

Concomitant goals of testing are to minimize effort, cost and time
for checking software. Also, it is desirable to have some means for measur-
ing testing effectiveness. The continuous testing of software as it is being
generated, plus documentation of this testing, greatly enhances the over-all
aspect of testing.

Ideally, the test philosophy is that tests be complete, controlled,

reproducible and documented in depth.

6.3 Types of Tesiing

Testing can be employed in a myriad of ways. The following sections

discuss testing from informal tests through automated formal testing.

6.3,1 Informal Versus Formal

One of the basic premises of testing is to test early in the develop-
ment. Statistics [4] have shown that testing can comprise up to 50% of
software development time. One simplistic way of trying to offset this
large expenditure of time is to train programmers to perform informal

testing as they develop the software, Simple desk checking and the running

216

PEE T
vooe

[rEr
[

F—
P

=]

of a simple test case onh small sections of code as it is developed can be
very beneficial.

Formal testing can cover several aspects. Formal test specifications
may te created with guidelines as to their executions. Formal proofs of
correctness may be attempted. These are discussed in a Tater section.

Separate test teams may be Tormed to test the software. For if a
separate test team can indeed test the software using only the system
documentation as provided by the developers, we have a better piece of soft-

ware,

6.3.2 Testing Stages

Beyond the stage of informal individual programmer testing of soft-
ware, testing may be viewed in three stages; integration, acceptance and
field. Software systems are usually developed in modules. As modules are
completed, they must be integrated into the total system and interfaces
must be checked out to assure compatibility. Once all the modules have
been integrated into the system and it has been delivered to the customer,
the software system must undergo an acceptance test. Here, specifications
for the system are checked against the operational software. Certain
software systems may have field sites for operation. If this is the case,

tests to check confirmation with field specifications are necessary.

6.3.3 Manual Versus Automated

The discussion of testing so far has centered around temporal aspects.
But once we have decided when to test, how do we actually perform the test-

ing? Testing runs the gamut from structured manual to automated systems --

217

P s
e

which of these techniques is applicable? How can test data be generated,
manually or automatically? These topics will be covered in a latter part

of the report.

6.4 Integrated Top-Down Testing

Classical software development has been a bottom-up procedure where
the lowest Tevel programs are coded first and then tested and integrated
into the system. Extraneous driver programs are needed to perform testing
and lower levels of integration. Data definitions and interfaces tend to be
simultaneously defined by several people and therefore inconsistent. There-
fore, during integration definition problems arise. Interfaces and data
definitions frequently need to be reworked. Prolem isoiation is difficult

because of the Targe number of possible sources.

6.4.1 iop-Down Development

The top-down approach is modeled after the approacn to system designs
and requires that programming proceed from developing the interfaces and
data definitions downward to developing and integrating the functional
units [5]. Top-down programming is an ordering of system development which
allows for continual integration of the system parts as they are developed

and provides for interfaces prior to the parts being developed.

In top-down programming, the system is organized into a tree structure
of segments. The top segment contains the highest level of control logic
and decisions within the program, and either passes control to lower level
segments, or identifies lTower level segments for in-line inclusion. This

process continues for as many levels as required until all functions within

218

Arivaiiaact
T E 3

Bt sy
T .

-,

a system are defined in executable code. The top-down approach requires
that the data base definition statements be coded and that actual data
records be generated before exercising any segment which references them.
Software is produced which is always operable and always available
for successive levels of testing that accompany the corresponding levels

of implementation.

6.4.2 Testing and Integration

The top-down approach to testing and integration starts with the test-
ing of the highest level system segment once it is coded. Since this seg-
ment will normally call or include Tower Tlevel segments, code must exist
for the next lower level segment. This code, called a program stub, may
be empty, may output a message for debugging purposes each time it is
executed or may provide a minimal subset of the functions required. These
stubs are later expanded into full functional segments, which in tuen
require lower level segments. Integration is, therefore, a continuous
activity throughout the development process. During testing, the system
executes the segments that are coded and uses the stubs as substitutes
for what is not yet coded. Thus, the need for special test data drivers
is eliminated. The developing system itself can support testing because
all the code that is to be executed before the newly added segments has
previously been integrated and tested and can be used to supply test data
to the new segments. Therefore, most problems are localized to the newly
added code. As the new segments are tested within the developing system,

the control architecture and system logic are also tested.

219

o

The testing cycle is partitioned in the following manner. Test require-
ments identify the functions to be tested, specify the number of cases, the
ranges and limits of data and describe the hardware and software environ-
ment. The test requirements specify the degree to which the product goals --
function, interaction, performance, operability, and useability are evaluated.

The test specification details the test design approach and test
structure, and identifies the methodology and procedures for testing.

The design review tests the software specification compliance with
system requirements and assesses implementational feasibility. The review
also evajuates accuracy, compatibility with other software and hardware

and compliance %o standards.

6.5 Automated Testing Tools

Automated testing tools can be partitioned broadly into two categories.
First, the automatic generation of test data for exercising software and,
second, the automatic monitoring of software to obtain characteristics of the
software. Obviously, the two interface, for the test data may drive the

program for automatic monitoring.

6.5.1 Automatic Test Generation

Three aspects of automatic test genzration are the generation of pattern
data, variahle range data and data for testing possible branch paths, Of

course, the last two may be intimately connected.

6.5.1.1 In the IBM 0S utilities there exists a program, IEBDG, a data

set utility to provide a pattern of test data. Seven patterns are available;

220

o
[

P B 1
PP

P ek Sy

| bt

WP Y,
[

alphanumeric, alphabetic, zoned decimal, packed decimal, binary number,
collating sequence and random number. The user supplies as input to IEBDG

the pattern type and the appropriate output pattern (random) is generated.

6.5.1.2 The question arises as to how to generate data to test
variable ranges. It would be desirable to have languages that allow
variable range specification. In turn, the compiler could insert code to
check these ranges.

Another approach being investigated is the Munte-Carlo generation of
software tests. This is coupled with heuristics to make the test generation
process more efficient by increasing the probability that a randomly
generated test will exercise a portion of the range of a variable which had

not previously been exercised and test the code more thoroughly [6].

6.5.1.3 A third problem is concerned with obtaining an optimal set
of test cases which exercise all branches in the source code of the user’'s
software modules. Exercising every path is impractical, but it is desirable
and feasible to exercise all Togical branches in a module. A determination
of these paths allows generation of the test data.

To arrive at this objective, a segment of code may be defined as the
smallest set of consecutively executable statements to which contrel can
be transferred during program execution, The first statement will be
directly accessib?g from another segment and the last will be a transfer
to a new segment. The segment relationship will be defined as the relation-
ship between two segments of code resuiting from the transfer of control

of execution from the first segment to the second. The objective now

221

becomes: find the minimum set of paths which exercise all the segment
relationships in any subject module,
- A method has been devised and mechanized to automatically generate
* the optimal path. This path and the relevant branch information in source
code form is displayed to the user to aid in generating the required test
data for execution [3].

Howden [7] has developed a method for decomposing a program into a

finite set of classes of paths in a manner such that an intuitively comilete

.- set of test cases would cause the execution of one path in each class. The

approach attempts to generate test data for as many of the classes of paths

as possible. The method constructs descriptions of input data subsets

éi which cause the classes of paths to be followed. Then the method transforms

these descriptions into systems of predicates which it attempts to solve.

[,
[V

Miller [8] has based automatic test case generation on a-priori knowl-
i edge of two forms of internal information: a representation of the tree

of subschema automatically identified from within each program text, and
I a representation of the iteration structure of each subschema. This
partition of a large program allows for efficient and effective automatic
test case generation using backtracking technigues.
: During backtracking, a number of simplifying, consolidating, and
consistency analyses are applied. The result is either (1) early recognition
of the impossibility of a particular program flow, or (2) efficient generation
of input variable specifications which cause the test case to traverse each

gé portion of the required program flow,

222

|

R

6.5.2 Automated Monitoring Systems

The following sections review five automated software systems for
the facilitation of testing and consequently improving software reliability.
Two types of analysis may be recognized - static and dynamic. Static
anaylsis results in code being examined without execution, while dynamic
analysis studies execution time characteristics. The following systems

exemplify both types.’

6.5.2.1 PET

The Program Evaluator and Tester (PET) [9] is a program test evaluation
tool which automatically generates self-metric software from existing soft-
ware. Basically, the technique instruments the source code to effectively
measure its own behavior. This system was developed at McDonneil Douglas
Astronautics Company.

This system has been implemented for FORTRAN and consequently has
demonstrated the value of a self-metric approach for higher level languages.
This tool basically instruments an application software package by inserting
the software equivalent of sensors into the package. Therefore the package
is self-measuring. Each time a significant event occurs, the system records
it.

Two techniques have been used to implement software sensors: (1) direct
code insertion, and (2) invocation of runtime routines. The ‘direct code
insertion appears to be faster in most cases but the run-time routine is
more flexible in that measurements can be more easily alfered at execution

time,

223

As a result of running the instrumented application program, a profile
. is produced containing part or all of the following measurements:
B 1. The number and percentage of all potential executable source
statements which were executed one or more times.

2. The number and percentage of those program branches taken.
3. The number and percentage of those subroutine calls which were
E? executed,
4. The number of times each subroutine was called, together with a
- 1ist of those subroutines that were never entered,
¥ 5. Relative timing on the subroutine level.
'1 6. Specific data associated with each executable source statement.
| a. Detailed execution counts.

b. Detailed branch counts on all IF and GOTO statemers.

c. Optional data range values {min/max/first/last) on assignment

statements.

d. Optional min/max ranges on DO-loop control variables.

| These summaries and detailed reports can be employed tr establish a figure

for the dearee of testing to which the program has been subjected.

PET consists of 2 major components (Figure 1):
{1} A highly structured preprocessor which instruments the source
program in such a way as to make it self-metric, and
(2) a post-processor to generate reports from the execution measure-

ment data produced by the instrumented self-metric software.

Both of these test systems components are written in a high-level

224

I User Source
‘ Cards
1 PREPROCESS 1
- Program
; Evaluator . PET
i

and Tester Data
q File

St Gt SCAS P Gy e St Smmel b VNS wm— et w—— Mu— T Ao~ i A . el s PR W uaam omer} VN e e coclih et e —

- Instrumented
- . Source Cards
; FORTRAN
i Compil

o COMPILE AND LOAD ompiler
B v
) Postprocessor Instrumented
- Object QObject Code

G s TS LIS WOy ekt A QR SO — el) Smevwn Gnmm dmm—— vy S l—— T WO Pumm G i TG PO — —— — WOv— w——_ G— ——

m,,.
RO

- User f/D User CU
{] Execution EXECUTE
B

) PET ”

: Postprocessor
POSTPROCESS i
i. PET

Report

¥

Figure 1. Program Evaluator and Tester (PET} Job Flow

it —;

PO
P ‘

[R—
. P—

e

language to create a more easily maintained system. The post-processor
component will generally be written in the same high level source language
for which the system was designed.

As an example of results obtained from using PET, consider the evalua-
tion of an eigenvalue eigenvector routine which had been in production for
over two years. Counts of 'true' and 'false' evaluations for branches re-
vealed a logically impossible flow path. Statistics showed that only 44.5%
of the possible executable source statements were actually tested and only
35.1% of the possible branches were tested. Information such as the above
tends to indicate the software we design may be very inefficient and wasteful.

Both space and time artifacts are introduced when using self-metric
instrumentation. The time artifact ranges between approximately a 1.25 to
2.5 factor for the execution time of a self-metric program, depending on
the measurement options specified.

The space artifact also varies widely depending on the types of measure-
ments being performed. Space artifacts are introduced in the following
areas:

(1) Additional memory is allocated for counters, timing cells, and

data range storage cells,

(2) Additional code is added to make the program self-metric.

6.5.2.2 PACE

The Product Assurance Confidence Evaluator (PACE) System [10] is
designed to provide programmers with debugging tools and managers support in
determining and controlling computer program quality. Specifically, PACE

assists in the planning, production execution and evaluation of computer

226

program testing. PACE consists of the following four phases:

f (1} Test Planning (Preparation of test materials)
° Analysis of computer program anatomy to determine what must
é: be tested
- ° Instrumentation of the prrgram to render it measurable as a

test item
35 ® Development of test data to exercise the desired portions of
| program anatomy
: (2) Test Pfoduction {Synthesis of test materials into a test package)
° Synthesis of test stimulus «~ta for a test
¢ Selection of test driver and data environment structure for a
I test

® Configuration of test job containing the above materials ready

for execution

(3) Test Execution (Operation of the computer program with test data)

i
.- ..

® Computer execution of the instrumented test item

® Measurement and recording of test output

L]
‘ cd

(4) Test Evaluation (Analysis of test results and program performance)
{. ° Analysis of execution frequency of program elements
° Analysis of comprehensiveness of test execution

° Assessment of validation confidence

i

R The object of PACE is not to find errors, but to quantitatively assess
it how thoroughly and rigorously a program has been tested and to use this in-
formation in the improvement of test design in order to prescribe and carry

out the conditions for validation.

227

7
%ﬁ

Py]

i

PACE has been used both for FORTRAN and assembly language programs.
The initial implementation of PACE was the FLOW module. FLOW analyzes
a FORTRAN program and instruments the code such that subsequent compilation
and execution is allowed. FLOW provides for an accumulation of frequencies
with which selected elements (e.g. statements, small segments of code, sub-
programs, etc.) are exercised as the program is being tested. A modification
of, and extension to, FLOW for UNIVAC systems has recently been completed.
This system is called TDEM (Test Data Effectiveness Measurement).

The TDEM systems consists of three elements: QAMOD - the code analysis
instruction program, QAPROC - which monitors execution and provides summary
statistics, detailed trace information and an indication of the effectiveness
of the test data, and QATRAK - which uses these results and displays internal
program transfer variables which can be changed to effect execution of the
unexercised code.

QATRAK also displays the statements which compute or input the transfer
variables. Figures 2 and 3 illustrate the program and data file interfaces
of the TDEM subsystem.

The QAMOD program sequence analyzes each statement of a FORTRAN source
program and the following results occur:

(1) The first executable statement of each element (i.e., subroutine

or main program) is assigned a pseudo statement number of one.

Fach subsequent statement is assigned a sequential pseudo number
and the statements are displayed with their pseudo numbers. State-
ments are Tater referenced from QAPROC and QATRAK by element name

and pseudo number.

228

Subject

Program -
Source Listing of
Element program with
QAMOD {OLDSRC) pseudo numbarg,
Control Unit & wmmary tables,
and optional
Options print a3
lect:
QAMOD i elccted
Conirgl cards /——\
to compule the
nstryrmented
;. IT progam Instrumented Doata fila
] i | Source Filo {KPROG}
Pl 4 [NEWSRC) Una M
5 Subject program Unit §
' input data
il Subject pro-
% . gram display
= Sratement . Subject N output

Execution Program
-1 Recording
EI data file
il {STATRC)

Unit X

i l FIGURE £ .TDEM/QAMOD Interfaces

s rariinry FR—
[——i

FE———

PrEC—

Sratement
Execution
Recarding

Data file
[KPROG)
Unit M

Statement execu

File tion frequency
s {STATRC} summary and
Ty Unit X ¢ optianal print
IR P o
o QARPROC 3.1 85 cetected

0 QAPROC |

.% / Coatrol Data il

1L Opuons ata hle Unexecuted
: Segments,
B ne tracking
. data and
i1 QATRAK optianal
Convol B print as
Options seiectod
al

R

i1

FIGURE J .TDEM/QAPROC-OATRAK Intorfaces

HRIGINAL PAGE IS

(2) The code is instrumented by the insertion of traps to an execu-

tion monitor subroutine. The function of these traps is the genera-

tion of a recording file during execution of the instrumented

program. The recording file registers the execution of each state-

ment and the order of execution.

After the analysis, the instrumented source code is output to a file,
NEWSRC, for compilation and execution.

A data file (KPROG) is also generated as QAMOD processed the program.
This file contains information describing each statement and information
relative to program size and structure.

The QAPROC program accesses the statement execution recording file
generated by execution of the instrumented>subject program and produces an
evaluation and summary of the test case executed. The recording fiie is
sequentially accessed and the data are assimilated into an internal table,
MAPTAB. At times designated by the input control options, a display is
printed which included the following:

(1} A map, delineated by subroutine, indicating the number of execu-

tions which have been recorded for each statement.

{2) Statistics indicating the percentage of the total executable state-

ments which were executed.
(3) Statistics indicating the percentage of the total number of sub-
routines which were executed.

(4) A T1ist of the names of subroutines which were not executed.

After processing the entire recording file, statement usage frequency

230

information is added to the data from the input KPROG Tile and this revised
information is output on a data file KPROG1., Statistics from recording
files (i.e. several executions of the subject program) may be summed and

a cumuiative summary compiled.

6.5.2.3 ACES

The Automated Code Evaluation System (ACES) [11] is a language processor
which examines source statements, performs a lexical and syntactical analysis,
and generates a data base containing symbols and their use, a Tist of state-
ment types and a graphical representation of the program structure. The
major advantabe of this system is the transfer of large amounts of programming
code into a more usable form (the data base) for use in the validation
process. An examination of the data base might show which subroutines and
functions are called by a system component and the names of parameters used

in each call, aliowing an analysis of interfaces.

Analysis

ACES detects two types of program errors - those related to semantics
and language constructs and those related to program structure and well-
formation. Additionally, program characteristics are collected and stored
in the data base, and an automatic monitor insertion feature is included

for an execution-time analysis of specified program variabies.

Lexical Analysis .

A lexical and syntactical analysis forms the basis for the detection
of semantic errors and undependable language constructs. Since the programs

submitted to ACES are supposedly working programs, they should contain few

231

PRURRSE

syntactical or semantical ervors. This allows the statement scanning routines

to quickly pick out the pertinent information. For example, assignment

statements may be scanned for variable and function names while ignoring all

intervening operators.

Ine of the primary functions of the lexical analysis is the detection
of undependable language constructs. Of course, this tends to be very
language dependent. Present programming languages are designed primarily
for effectiveness and flexibility rather than absolute dependability. As
a result, they often coniain language constructs which are conducive to
execution errors.

CENTRAN, the language ACES was designed for, is no exception to this

rule. Certain constructs, such as GOTO like statements, are susceptible

to execution-time errors. ACES notes such occurrences and the corresponding
statement numbers are stored far an error summary.
The analysis is a simple recognition process, but it does automatically

pinpoint sources for error. An extension of this process would be an auto-

matic examiration of critical variables involved in statements such as
computed G0T0's. Careful examination and consideration of a programming
lanyuage is necessary to determine error prone conditions such as those

descyribed above.

Data Base Genzration

A primary fTeature of ACES is extraction ui pregram characteristics
and the construction of a data base which provides a convenient means of

retrieving this information.

232

8 e ey
e i

i
.. '

O g Ty
1 +

s s
- .

i

i
e

G e

Therefore, the program investigators do not have to tediously examine
program 1istings for the information to validate the program. The data base
consists of four tables: symbol table, symbol use table, statement type
table, and an abbreviated connection matrix.

The symbol table contains information regarding all variables, items,
functions, macros, and labels used in a program. An entry in this table
consists of the symbol name, module number, type, and linkage to the symbol
use table. The symbol use table contains a record of the use of a symbol
name in a program. An entry consists of an indicator for the type of use
(either input or output), the statement number in which the symbol was used,
and 1inkage to other references to the symbol contained in the table. The
statement type table is simply a Tist of codes indicating the statement
type of each statement in the program. The logical structure of a program
is stored as an abbreviated connection matrix. Thus the data base provides
statistical information on symbol names and statements and can answer
questions such as:

(1) Does variable Vi appear as an input (output) to any of the

following statements: S], 52, s 5,7

(2) In what statements does Vi accur?

(3) What are the inputs (outputs) to statements Sk?

(4) Does any variable appear as an output and not as an input?

(5} What are the inputs for conditional branch Si? Where do they

appear as outputs? What are the inputs to these statements?

This information is important in the analysis of program behavior and

is particularly useful as an aid to implementing chandes in syntax, program

233

]

i

| '~1
LR

PO
PR

]

g
.

[E—

ey

modifications, and changes in programming practices. Feor example, the effects
of changes in a program variable, macro, or label can be easily determined
by accessing the list of references to that symbol in the program module and

other related modules.

Structural Analysis

The analysis of program structure is essential to the validation pro-
cess since it allows the detection of structural flows and the examination
of critical or interesting flow paths through the program.

Program structure is modelled by ACES as a directed graph in which
nodes represent program elements and edges represent 1ines of program flow.
Program elements may be either single statements or groups of statements
making up a program segment. The graph is first generated and stored using
individual statements as elements and later reduced to reflect the relations
between program seagments.

An intermediate representation of program structure, consisting of a
1ist of "non-normal transition pairs," is generated from the existing tables
to serve as a basis for the following analysis. "Non-normal transition
pairs," (i,j) represent permissible transitions from statement i to statement
j» excluding "fall-through transitions (j=i+1)." The necessary information
for their generation is the use of Tabels (explicit transfers) and the
jdentification of statement types (implicit transfers e.g. IF statement}.
Special codes are inserted as the second element of a pair for certain
transitions, such as RETURN, END, computed GOTO, etc. The list of pairs

is then transformed into a more usable set of linked 1ists.

234

LS]
K

LRl §
PO i

L it el §
[

L T

W ey

From this information and that of the symbol table, it becomes a simple
matter to extract the structural characteristics of a program. These include
lists of undefined labels, unreferenced labels, unreachable statements, state-
ments with no successors within the program (RETURN, END, true faults), and
direct predecessors to all labeled statements. In addition, an enumeration
of program loops is provided.

The structural analysis performed by ACES also includes the generation
of reaching vectors for a specified set of statements. The reaching vector
of a particular statement provides a list of those statements whose exacution
may lead to the execution of the statement in question. This information
can be easily extracted from the linked 1ist representation of the program

graph.

Automatic Monitor Insertion

The methods of analysis presented thus far are of a static nature,
i.e., the execution of the program to be validated is not involved. As
previously mentioned, exhaustive testing of large programs is not feasihle.
However, the behavior of certain critical variables may be important in
validation and a means of making selective observations at run-time would
be valuable. This capability is provided to a Timited extent in debugging
systems through trace and trap routines. The approach taken in ACES is
somewhat different in that the program source code is temporarily modified
by automatically inserting calls to a monitoring routine. This relieves
the investigator of the tedious task of iocating all occurrences of a given

variable and allows flexibility in the monitor functions performed.

235

The input to ACES for the monitoring function is simply a Tist of
variables and their corresponding upper and lower bounds. The occurrence
of one of these variables as output from a statement causes the ACES system
to insert a call to a CENTRAN subroutine. This subroutine, which has been

written for use in conjunction with ACES, determines whether the current

P 0
v e

value of a variable is within the specified bounds. If an out-of-bounds

value is detected, the variable name, value, and corresponding statement

o
P

number are reported to the user. Otherwise, no report is made. This

RO,

differs from the usual trace procedure of reporting every change of value.
The system also allows the value of a specified array to be checked

in toto, i.e. each change in value of an array element is checked against

the bounds for the entire array. In addition, provisions are made to

monitoy implicit changes in program variables. For example, CENTRAN allows

the declaration and referencing of bit patterns (items) with a data word.

R If one item overlaps another item of the same variable, it is possible for

the value of one item to be changed by changing the value of the other item.
| Subtle errors may be caused by such a condition which are very difficult to
detect. The detection of implicit changes therefore causes the monitoring

{ subroutine to produce a warning message at run time.

] Organization and Operation of ACES

The operation of the ACES package is performed in three phases: informa-
tion gathering and monitor insertion, information publication, and structural

analysis (Figure 4). These phases are further divided into functionatl

P)

elements (modules) each of which contains one or more subroutines. Thus a
{ modular structure is imposed on the system, facilitating modification and

extension as well as debugging efforis.

¥
RS

236

o

[FRTeE Y

P

ooy

INFORMATICN GATHERING

AND MONITOR INSERTION _

‘ — v S— S — e Y v.‘T|
CENTRAN | !
Text 1 Text 170 Text H
1 v " Qutput
t + NEXT Monttor : Text
Calls
- _l 1 Lo —
1 ‘ h X '
] | Text Scanning System Contol pdoniter lnseruon I
MCALL and Statement
Hl mpct Tyoe MONTRCK !
| MGOTO Identification ” 1:e8RT |
1] Mass MAKSTMT !
f §SLIST MAIN BOUNDF t
ST CONVERT]
f y 1)
!] ,
| Table Handling I
1 y Routires L
1 TAEGEN]
RESTAR H
! VAPRET i
! HASH |
| RESET
L -
STRUCTUSAL ANALYSIS ——————n
e _r e ——
4 |
! Connectlon Matrix :
i Generation Unreachakla
{ [Leop Detection CONNECT Statement | |
i LOOPS CONMAT Detection I
t NopLoceP DIRPRED I
l UNREACE | !
1
T e e e
ot BN M) Spmpagmp e
|
! Table listing Summary Data Error 1
! Listing Message !
1 printir) Listing L Summary
i SUMMRY i Output
I LSEMRCH ERROR 1
I BYSZAT i
S _ .- __-T-=———21

Fig. 4, Block Structure of Automated Software
Evaluation System,

fORIGlNAL

| PAGE 15

Fopnaces
o

Brin iy
[]

S

Phase I

Phase I consists basically of scanning the CENTRAN text, collecting
information to be stored in the data base, and making any necessary modifi-
cations to the source code. The functional modules involved are similar
to those utilized by standard Tanguage processors (compilers).

Phase 11

Structural analysis constitutes a second phase of ACES processing.
Three functional modules provide for connection matrix generation, unreachable
statement detection, and Toop detection. These functions are performed in
sequential fashion in the manner previously described. A separate module
for the detection of a reaching vector may be used in this phase of system
processing or as a stand-aione program operating on the stored program graph
(connection matrix).

Phase 111

A final phase of processing consists of the publication of information
generated by the system. The extent of information reported is left to the
discretion of the user. A scan of the data base results in a summary 1list-
ing which includes various statements and variable cross reference Tlistings,
warning messages issued by the system, structural characteristics, etc.

The results of ACES analysis are a modified source listing, a printed
summary of information generated and a data base to be used for further
analysis on a local or global level.

A complete syétem evaluation is beyond the capability of ACES. However,
systems such as ACES can be powerful tools when judiciously used in an over-

all validation scheme. At the very Teast, they are quite useful in gleaning

238

B i

pektianiey &
P e an »

P by
FIPS

PN
N

information from large voTumes of source code which could not otherwise be
obtained. When properly utilized, such automated systems provide the frame-
work for three important validation concepts:
(1) Establishment of a running configuration of the software system
through weli-formation analysis.
(2) Generation of a structured data base for debugging and for check-
ing the compatibility of program updates and modifications.
(3) Instrumentation of the source code for run time analysis and

simulation.

Some of the features of ACES would be most helpful in debugging efforts
during program development. For this reason, the incorporation of such
features in compilers and run time systems would be valuable and could
reduce debugging time while producing more dependable code. However, this

does not reduce their effectiveness in evaluating existing software systems.

6.5.2.4 ISM

The ISM System [6.5.2.4] is decigned to allow experimentation with a
wide variety of information collection, analysis, and display toois. The
design methodology is applicable to procedural programming languages, and
ALGOL 60 is being used as the vehicle for elaboration of design principles
and implementation techniques.

ISM System Design Concepts

The ISM system provides the capability for characterizing programs by
both a static syntactic structure and a dynamic run time structure. Static

information is obtained by performing a syntactic analysis of the program

239

text and recording certain structural attributes of the program in a data
base. Other attributes of 'ne program can inen be inferred from the collec-
ted data. For example, recording attributes such as:

- modes and types of identifiers

- statement numbers that each identifier appears in

- statement types

- input/output variables of statemants

- basic blocks

- control paths
permits inference of attributes such as:

- graph structure of the program

- classes of execution paths

- unreachabie code segments

- input/cutput variables to subroutines

- calling sequences of subroutines

Dynamic analysis involves recording the program's execution history (or
some portion of it) into a data base and gleaning desired information from
the data after the program has terminated execution. The execution history
is collected by instrumenting the source program with subroutine calls to
record program history events in the data base. History collecting subroutine
calls are inserted into the source program by a preprocessor prior to compila-
tion of the program, thus rendering the source program "self-metric." The ISM
System is designed fo collect, analyze, and display both static and dynamic
information. However, major emphasis is placed on processing of dynamic

information.

240

v
i’ﬁ.

B e
Bt

[rem———
i i

v mer—

Dynamic information can be classified under the headings of:
- Execution Summary Statistics

Control Flow Information

Data Flow Information

Data Sensitivity Information

Execution Environment Information

Assertion Verification

Execution summary statistics include ranges of variablies, statement
execution counts, number of traversals of program segments, and timing
estimates. Control flow and data flow information can be combined to
provide variable dependency and computation dependency information. As is
subsequently described, the execution history can be interpreted in reverse,
permitting control flow and data flow tracebacks. Data sensitivity inform-
ation can be collected to show the effects of input data inaccuracies and
finite word length by tracing the numerical significance of the computation.
Environmental information includes scope and extent of identifiers, and
parameter passing and procedure evaluation environments. Assertions can be
local or global. A local assertion is a conjecture about the state of the
computation at a particular point in the execution sequence. A global asser-
tion is a conjecture about invariant conditions throughout a given segment
(perhaps all) of the execution history. Assertions are verified (or refuted)
by comparing the expected behavior to the execution history.

The primary adﬁantages of analyzing and displaying results from a post

mortem data base after the program has terminated execution are:

241

Bt

1. The program is executed in the actual usage environment.

2. The functions of data collection and data analysis are separated,
thus making the analysis and display tools independent of the
programming language being analyzed.

3. Experimentation with a variety of testing aids is facilitated.

4. Global summary information can be collected.

5. Global asseriions concerning behavior can be checked.

6. The execution history can be interrupted backward in time,
permitting analysis and display of how a given computation was
influenced by previous computations.

7. Existing processors (compilers, interpreters, loaders, Tlibraries)
can be utilized to collect the data base.

The primary disadvantages of the data base approach are: the inabilily
of the user to directly interact with an executing program, the potentially
large size of the data base, and the execution timing distortions caused by
the history gathering subroutines. The first difficulty is somewhat alleviated
by the ability to re-execute the instrumented program using new input data
entered via the user’s terminal, thus creating a new execution history. The
third problem is a consequence of the design methodology and is shared by

all selv-metric performance evaluation packages.

The ISM Data Base

Major components of the data base are: an identifier table, a program
model, and one or more execution histories. In addition, the oricinal source
text, and a textual cross reference table between the program model and

source text are maintained.

242

The various components of the ISM data base are interfaced to permit
the association of names with values, and control flow with program text.
The entire history can be searched to collect global information and summary
statistics. For example, ranges of variables can be obtained, assertions
about program behavior can be checked, data and control flow traces can be
accomplished, and statement execution counts can be obtained by interrogating
the data base. Local information concerning program behavior can be obtained
by aligning the history pointer to a particular position in the program
model and examining the computational state. Information is recorded into
the history to permit interpretation of the program model either forward or
backward in execution time. Thus, execution can be reversed in order to
determine how a particular computational state was influenced by previous

states.

The ISM Preprocessor

The preprocessor builds the symbol table and program model, prepares
a compressed version of the source program, and instruments the compressed
source code with subroutine calls. The various modules of the preprocessor
are generated automatically by a parser generating program (the PARSEC
metatranslator). PARSEC accepts a BNF-Tike notation (PARSEL} as input, and
generates a transiator to parse and perform semantic actions on programs

whose syntax conforms to the grammar specified in PARSEL.

ISM Program Ana1ys%s and Display

Analysis and display of program behavior is accomplished by routines

that access the data hase via the primitive accessing functions, and construct

243

o

appropriately formatted information displays. The data base can be accessed
in either the batch or the interactive mode, and the displays can be dis-
played on an interactive terminal or printed as batch output.

Displays are termed semantic models of program execution. Many di/ferent
types of semantic models are required to display the various attributes of
computer programs. A major goal of this study is to determine what informa-
tion is useful for testing purposes and how to display that information in
meaningful formats.

A partial Tist of useful information that can be displayed includes:

- variable range summaries

- statement execution counts

- branch execution counts

- syntactic structure of various program components

- control flew traces

- data flow traces

- control flow tracebacks

- data flow tracebacks

- data sensitivity analysis

- identifier accessing environments

- parameter passing environments

- procedure evaluation environments

- recursive procedure environments

- timing estimates

- assertion checks

244

St) CERE)

1
I
1
Y

Program execution can be observed in either the control flow domain
or the data flow domain. In the control flow domain, control flow and source
code displays can be combined to allow the user to observe the source state-
ments as they are executed in either the forward or backward direction.
The complete source code of every statement can be displayed, or scurce code
can be suppressed below a given level. In addition, data values can be
associated with every variable in every statement, or some variables in
some statements, if desired.

In the data flow domain, the sequence of values assigned to variables
can be displayed as they evoive forward or backward in execution time. The
association of source text and control flow information with particular data
values is possible. Thus, the dependence of data values on other data values
can be ohtained from the data base, along with the source text associated
with those values.

Preprocessing and execution of the program being tested results in
the creation of a data base that contains the source text, a symbol table,
a program, model, and one or more execution histories. Tne various components
of the data base are interfaced to permit the association of names with data
values, and source text with control flow. Each step in the execution history
can be reconstructad, permitting both forward and backward execution of the
program. The entire history can be scanned to coliect giobal information
and summary statistics. The data base is constructed using primitive
construction functions, and accessed using primitive accession functions, thus
isolating the details of internal data base organization from construction

and access.

245

U] ERHNE)

6.5.2.5 DAVE

A study of data flow within a program provides a key to an understand-
ing of program behavior. Such problems as delection of semantic program
errors, automated creation of assertions and automated production of program
documentation can be attacked. Thus, the data flow analysis system to be
described tracks the flow of data from statement to statement, block to
block, and subp qram to subprogram. The system is called DAVE (Documenta-
tion, Assertion generating, Validation, Error detection} [3].

The flow of control is represented by a directed graph. The nodes in
this graph are sequences of statements called basic blocks. A basic block
is a maximal segquence of statements having the property that whenever any
one of the statements in the basic block is executed, every statement in
the basic block is executed.

A variable plays a role in data flow for execution of a statement, a
basic block, and a subprogram by assigning an input-output classification
to it for each of these structures. In a statement such as:

A=B+C
the variables B and C are referenced to define a value for A. To identify
the role of the variables B and C they are called strict input variables
for this statement and A is a strict output variable for this statement. In
a statement a variable may be strict input and strict output; this is the
case for X in the statement:

X=X+Y

For completeness, the input role and output role of a variable in a

statement should be ciassified. In the first statement above A is non-input

246

]

st 8
3

and strict output (NI,SO) while B and C are non-output and strict input
(SI,NO). The classification is extended to basic blccks and subprograms.
Thus a basic block or subprogram strict input variabie is one which is
referenced by the block or subprogram before all definitions of the variable.
A strict output is one which is defined for all control paths within the

block or subprogram.

Data Flow Anomalies Detected

DAVE recognizes two types of data flow anomalies: event 1 - referring
to a variable which has not been assigned a value cn a path leading to this

reference; event 2 - assigning a value to a variable which is not referenced

on a path leading from this assignment. Either of these events is considered
symptomatic of an error. Event 1 anomalies violate th=2 principle that a
value must flow into a variable before it can flow out, and event 2 anomalies
violate the principle that data which flows into a variable should flow out.
The viewpoint here is that there is a conservation principle to be applied
to the data flow: it should be free of sources and sinks, excepting data
boundary points (READ's and WRITE's) and violation of this principle is
1ikely to be symptomatic of errors in the program. Viclation of the
principle may be traced to such things as: key-punch error, misspeliing,
statements out of order, failure to initialize, incorrect Tabel, incorrect
use of parameters in a subprogram reference, etc.

DAVE issues messages where the presence of data flow anomalies is
detected or suspected. These messages are in the form of warnings and
errors. Errors consist of those situations which are certain to yield an

illegal computation, while warning messages are issued only when the

247

fradei g

L

s

possibility of an illegal computation is established. Observation of event 1
on all control paths Teading to a statement will cause an error message

to be issued, while a warning message is issued if the event is present on
some, but not all, control paths. A warning is issued even if event 2 is
present on all paths, because event 2 does not seem to imply an erroneous

computation in the same way event 1 does.

Structure of the Analysis Proyram

The structure of DAVE is indicated in Figure 5. The subject program,
consisting of a main program and all subprograms referenced either directly
or indirectly is first preprocessed by a program analysis and instrumenta-
tion package, It is assumed that the subject program is a syntactically
correct ANSI FORTRAN program, however, as noted below recovery procedures
are possible when illegal statements are encountered.

During this pass, the program is divided into program units and these
are divided into basic blocks and statements. Statement type determination
is also made here. The preprocessed program js then passed to a Texical
analysis routine. This routine creates a token T1ist to represent each of
the program's source statements. Clearly, knowledge of the statement type
makes the job of the token Tist generator easier.

As the token 1ists are created, comprehensive data bases of informa-
tion about the various program units are also created. The data bases are
accessed using a data base creation and accessing package, designed to
facilitate data base restructuring. Each subprogram data base contains
a symbol table, label table, statement table, and table of subprogram wide

data. The symbol and Tabel tables contain much the same type of information

248

Subject

Program
-~
“a
S
~
~ Recognize statemente,
Divide program inte
‘| basic blocks
/
rd
g
Subdivided
gubject
program
* e Al
~
~ . Lexical analysis.
) Create Token List
< 7R
/7’
. 7
Token List
Representation
of subject Correction
program deck
i
1
<o \ \
RN Create data bases
~ reate data ba Recovery from non-
~\ for each subprogram ctandard FORTRAN
(statement table, label = a
table, symbol table, ~ :;atzmentsban
///;ﬁ subprogram-wide table) §sing subprograms
Data Base
System

Sequential file

of data bases for
program units of

subject program

Determine leafs-~up
reprocessing order,
program call graph

Figure 5.

Perform leafs-up
reprocessing, generating
error messages, warnings,
assertions, documentations

Structure of DAVE,

Message
File

EEPN

i
-‘(P‘"'!

found in most compiler symbol and label tables, listing symbol and Tabel
attributes as well as the locations of all references to the symbols and
labels. The primary purpose of the statement table is to hold the input-
output classification for every variable referenced or defined in each
executable or DATA statement. During this lexical scan phase, it is possible
to determine the input-output classes of all variable references and
definitions except those in which variables are used as arguments to sub-
program invocations. DAVE contains the input-output classifications for
ANSI FORTRAN intrinsic functions and basic external functions so the input-
output classes of variables used as arguments in these functions are also
determined during this phase. This determinable input-ocutput data is stored
in the statement table. Blanks are placed in the statement table for the
input-output classifications of varjables used as actual parameters in sub-
program invocations; these blanks will be filled in during a later phase of
processing.

The table of subprogram-wide data for a given program unit contains a
1ist of all subprograms referenced by the program unit, as well as represen-
tation of non-local variable lists. Ultimately, the non-local variabie 1ists
will be used to hold data about the subprogram-wide input-output behavior
of these non-local variables. The external reference Tists of the various
program units will he used to construct the program call graph.

Buring this pnase of processing, statements which are syntactically
illegal under the ANSI standard may be encountered. The system is capable
of pausing at this point and accepting a correction deck containing replace-

ments for the offending statements. In addition, the system will examine

250

PrER———.
P '

PR e

the external reference lists to determine whether all referenced subprograms
have been submitted. If not, DAVE will, at this time, also accept new
symbolic decks in order to satisfy such unsatisfied external references.

In the next phase, DAVE builds and examines the program call graph.
Using the call graph, leaf subprograms (those with no external references)
are identified. For such subprograms, the input-output classifications
of aill non-local variables are made. Hence, the input-output behavior
of all variables used in all invocations of such subprograms can now be
filled in, enabling in turn determinations of input-output classifications
of non-local variables in other subprograms. Using this scheme, all input-
output classifications can eventually be entered for all variables in all
statement table entries in all program unit data bases. This leafs-up (in-
verse invocation order) subprogram reprocessing order is determined in the
next phase through analysis of the program call graph.

The final phase of processing is the most interesting. During this
phase, the program units are reprocessed in the above-mentioned leafs-up
order. Missing input-output information is supplied, and global data flow
analysis is performed. It is at this time that events of types 1 and 2 in

the data flow are identified, and data flow assertions are made.

Data Flow Analysis Phase of Processing

The final phase of processing begins with the analysis of leaf subprograms.

The analysis begins with the construction of a basic block table for the sub-
program. This table holds input-output information about all variables
referenced in each of the basic blocks. 1t is constructed from data in the

subprogram's statement table.

251

Mgt g
N .

Once the basic hlock table has been constructed, the input-output
classification of program variables can be determined through the use of
an algorithm [14]. The locatl variables are analyzed first. An error
message is generated for all local variables which are found to be strict
input ¥ subprogram, since this situation implies a type 1 ancmaly
is certain. Correspondingly, local variables found to be of type input
cause the generation of a warning message. The last usage of all local
variables is also determined by means of an output category classification
algorithm. If a local variable is used last as an output, an event of
type 2 is present and a warning is issued.

The input-output classifications of the non-local variables are then
determined. These classifications are printed out, and also stored in the
subprogram-wide table of the subprogram under study. Warning messages

are also printed for all parameters which are found to be non-input and

non-output. Clearly each of these items of data in the subprogram-wide table

can be viewed as being an automatically generated assertion about the sub-
program. These assertions are useful mcreover in producing documentation
about the subprogram. This table is then copied into a master data base,

so that all invoking program units will be able to easily access the data

needed to classify the input-output categories of variables used as arguments

in invocations of this subprogram.

The analysis of a non-leaf program unit is more complicated. Such a
program unit will, of course, not be analyzed until all subprograms which
it calls have been analyzed. At such a time, however, it is possible to

111 in all entries which had to be left blank during the creation of the

252

P e,
’

PR

[,

as

(paitg

[0

calling unit's statement table. Hence, such blanks are filled in. Certain
FORTRAN semantic errors are also detected as this proceeds.

The system also exposes concealed data flows through subprogram invoca-
tions., Concealed data flows result From the use of COMMON variables as
inputs (or outputs) to (from) an invoked subprogram. Such situations are
easily exposed by examination of the COMMON block variable lists in the
subprogram-wide table of the invoked program. Because data flows through
such COMMON variables just as surely as through explicitly referenced
parameters, the statement table entry of such an invocation statement is
augmented by the input-output classifications of such variables. This
assures that the results of giobal input-output category determination
within the invoking program unit will be correct for these variables.

DAVE can also print cut the names and usages of all the variables which are
used as input or outputs to a statement but are not explicitly referenced.
Such information seems to be useful as a form of automated documentation.
It also seems to be useful as a debugging aid in that it may alert a
programmer to data flows which are hidden, perhaps forgotten, and hence
more prone to error.

The omission of a COMMON biock declaration in an invoking program unit
presents a tricky problem. If the COMMON block is referenced in the invoked
subprogram, then the variables named in the COMMON block may or may not
become undefined upon return to the calling program unit. Undefinition
will not occur provided that the COMMON block is defined in some program unit
currently invoking the program unit which omits the COMMON dzclaration. In

the absence of such a reference by a higher level program unit, errors are

253

possible. In particular, variables in such a COMMON biock which are strict
output or output from the invoked subprogram will become undefined - a type
2 event - and a warning is issued. Variables in such a COMMON block which
are =trict input or input can recejve values only through BLOCK DATA sub-
programs. Hence, a check of the subprogram-wide tables of such subprograms
js made. If no data initialization is found, a warning is issued.

If a COMMON block, B, is declared by a high level program unit which
invokes a subprogram, S, in which the block is not declared, then the ANSI
standard specifies that B must still be regarded as implicitly defined in
S provided that some subprogram directly or indirectly invoked by S does
declare B. Hence, data referenced by the variables in B may flow freely
through routines which do not even make reference to B. As already observed,
such data flows are noted and monitored by DAVE. In addition, DAVE is
capable of printing out the names and descriptions of all COMMON blocks
whose declarations are implicit in a given subprogram. This, too, seems
to be useful program documentation. The algorithm for determining which
blocks are implicitly defined in which routines involves a preliminary
leafs-up pass though the program call graph and then a final root to leafs
pass.

Only after all of the above described checking and insertion of input-
output data into the statement table has been done, does the system proceed
to the creation of the basic block table. As might be expected, the
creation of the basic block table entry for a basic block containing sub-
program invocations is rather complicated. The algorithm must contend
with such problems as non-strict usage of variables, and references to

variables not explicitly named.

o

Once the basic block table is constructed, analysis of the variables,
explicit and implicit, proceeds as described in the case of a leaf subprogram.
Subprograms are processed in this way until the main program is
reached. Processing of the main program is the same as the processing of
any non-leaf, except that COMMON variables must be treated differently.
Any COMMON variable which has an input or strict input classification for
the main program must be initialized i1n a BLOCK DATA subprogram, if not,
& warning message (class is input) or an error message {class is strict
input) is issued. Similarly, if a COMMON variable's last use was as an

output from a main program, a warning is issued.

6.5.2.6 Discussion

Exclusive of the DAVE system, the other systems ascertain test-effective-
ness by determining whether : (a) each source statement has been executed
at least once; (2) each branch path has been exectited at least once; and
(¢c) each subroutine call has been executed at least once. With this informa-
tion the systems seek to reduce the errors associated with the actual
structure of the computer program to a minimum.

in addition to measuring test effectiveness, the tools may be useful
for debugging and tuning purposes. Branching problems and code receiving
high or low usage ran be determined by the tools. These features and
others such as tracing subroutine calls and reporting of assignment state-
ment 1imit values are important to understanding and correcting improper
program operation.

Tuning involves studying high usage areas of code, then trimming and

altering the code to produce more efficient operation. Analyses have shown

255

that small percentages of code execute large percentages of the time -
therefore the need for tuning. Simplification of code can dramatically
impact the execution-time requirements it places on the system,

The objective of the test tools is aimed at increasing the reliability
of computer programs. Statistical informat:on (4) indicates they only
partially fulfill their purpose. Sequencing and control errors can be
significantly reduced, but these errors account for only about 20% of the
total error types commonly found.

Functional testing (conformation to specifications) is necessary,
especially if the software is time-critical. Structural analysis tools
do not attempt to test either the timing or data relationships that exist
within computer programs. Functional testing is also necessary to determine
that all required functions were implemented and that no functions were
impiemented which were not specified.

The key to effective and efficient use of these test tools to do
structural analysis is to base their use on levels of criticality applied
to the individual program modules. This aids in the goal of reducing the
cost required (CPU time, analyst hours and documentation) for using these
test tools properly. In certain cases these costs can easily outweigh the

benefits derived.

6.5.3 Debugging Techniguss

We have specifically delineated testing and debugging into two separate
categories. The former is the precurser of the Tatter. Yet this is not a
hard and fixed definition and therefore, some aspects of debugging will be

discussed - primarily, interactive and batch debugging systems [15]. The

256

s I S

philosophy taken is that the presence of an error is known, and some means

for Tocating the error is desired. Also, two additional requirements on
debugging aids will be assumed - transparency to the program and ease of

identification and removal.

6.5.3.1 Batch Debugging

For batch purposes there are some relatively simple techniques for
debugging programs. Hopefully, most syntactic errors will be detected by
the language translator. The simple concept of hand checking at a desk
can be beneficial, but is freguently not exploited. The programmer should
exhibit '‘good citizenship' - completely checking each run to locate as
many errors as possible. Lazy programmers exhibit 'poor citizenship' by

trying to have the computer solve all their problems.

Cross-references produced by language translators also prove to be
invaluable for debugging; multiply defined variables, point of definition
and points of reference can be studied.

Trace routines may be invoked to follow instruction-by-instruction the
program execution. Control flow and variable information are presented
in the trace output.

Dumps provide useful debugging aids. They may be complete, selective
or snapshot. The dump simply allows an examination of core images.

Execution profiles reflect characteristics such as control flow,
variable ranges, instruction execution frequency, plus additional features

that are dependent on the system producing the profile. Several of these

257

e

Ernd]

systems are discussed in section 6,5.2,

6.5.3.2 Interactive Debugging

Interactive debugging implies time-sharing execution at some type
of TTY or CRT terminal. Debugging aids similar to batch systems exist,
but interactive debugging extends beyond these through on-line interaction,
ease of use and speed of response.

Incremental execution with incremental traces may be invoked inter-
actively. A good text editor will allow rapid and sophisticated modifica-
tion of program text. With an interactive system, insertion and deletion
of code becomes very simple. The ability to stop execution and change
variable values is a powerful tool.

Interactive computing tends to encourage 'bad citizenship' because
of its very nature. It is certainly easier in this environment to let the

computer perform the work for you.

6.6 Certification

Certification can be considered the endpoint of testing, validation
and verification [16]. Ultimately a certified program is one which has
been widely accepted within the community of experts and users. It carries
the connotation of an authoritative endorsement and seems to imply testifying
in writing that the program is of a certain standard of quality. To assure
this credibility, the process of certification should include examination of:
1) comp1etenéss of program documentation
2) performance of the program relative to its documentation

3) comparison of the program with others of the same type in terms

258

firnommd |

appropriate to the problem

4} adequacy of continuing maintenance and support

A formal guarantee that the certification process has been satisfactorily
performed would be expressed by a document issued by an agency or institution

recognized by the communities of users and experts.

6.7 Proof of Correctness

Given the formal specifications and the text of a program in a formally
defined language, the question can be asked whether the program text is
correct with respect to those specifications.

1t should be made clear that a proof of correctness is decidedly different
from the standard process of testing a program. Testing can and often does
prave a program is incorrect, but no reasonable amount of testing can ever
prove that a non-trivial program will be correct over all allowable inputs

[17.18].

6.7.1 Nature of Correctness Proofs

The idea of proving program correctness was conceived to a large extent
in the earliest days of computing. Goldstine and von Neuman noted that a
proof of program correctness could be achieved if the programmer could
provide or assert a description of the state of the vector of program
variables after each step, or only selected steps, of the program. This
state information, which can be viewed as a relation among program variables
at a given instant, can then be used to verify the program.

This assertion approach has been recently formalized by Floyd [19] and

Manna [20]. 1he goal with regard to proving the implications associated

259

il

with state assertions, is for the mechanization of the process through the
use of automatic theorem-proving programs.

The procedure is generally known as the method of inductive assertions.
The assertion at the output is the specification of the correctness of the
program. The assertions at the input define the input conditions for which
the program ic Lo produce output satistying the output assertion.

The proof technique works as follows: somewhere within each loop
of a program an assertion is added that adequately characterizes an invariant
property of the loop. It is now possible to break the flow chart of a
program into tree-like sections such that each section begins and ends
with assertions and no section contains a loop. It is desired to show that
if the execution of a section begins in a state with the assertion at its
head true, when the execution leaves that section, the assertion at the
exit must also be true. By taking an assertion at the end of each of these
sections and using the semantics of the program statement above it, one
can generate an assertion which should have held before that statement if
the assertions after it are to be guaranteed true. MWorking up the tree,
all the assertions at the head of the respective sections can be generated.
Each section will then preserve truth from its first to its last assertions
if the first assertion implies the assertion that was generated at the head
of the section. One thus obtains the logical theorems or verification
conditions for each section. If these theorems can all be proven and if

the program hatlts, then it will halt with the correct output values.

260

6.7.2 Manual Proofs

The size of programs which can be proven by hand depends on the level
of formality that is used. A more informal approach to proofs has come
into vogue. The approach is rigorous, but uses a level of formality like
that in mathematics texts. Arguments are based on an intuitive definition
of the semantics of the programming Tanguage without a complete axiomatiza-
tion. Using these techniques a number of efficient programs to do sorting,
merging and search have been proven correct. The proof of a twenty line
sort program may require three pages.

A person proving a program correct by manual techniques must first
achieve a very thorough understanding of all details of the program. Manual
proofs techniques therefore are clearly limited to programs simple enough

to be totally comprehended by the program provers.

6.7.3 Automated Proofs of Correctness

Computer generated proofs at the present have not produced very
meaningful results except for very small and simple programs. Effort is
now being directed toward computer assistance for proving correctness.
This takes the form of systems to generate verification conditions and to
do proof checking, formal simplification and editing and semi-automatic or
interactive theorem proving. Unfortunately, at this time almost any
automation of the proof pr.cess forces one into more detailed formalism
and reduces the size of the program that can be proven. This is because
the logical size of the proof steps that can be taken in a partially

automated proof system is still quite small.

261

G
-

ap

6.7.4 Integrating Proofs with Program Design

Classically, proving a program correct has been done after the program

is written. An alternative is to integrate the proof with the program

design. This direction gives credence to the hope that proofs will eventually

help to organize and simplify the program production process. A n-oof of
correctness will greatly increase the amount of formalism that must be
dealt with. However, if a proof can be integrated into the design and
writing stages, it should eliminate most of the need for debugging and may

alleviate the problems of documentation and maintenance.

6.7.5 Discussion

Programs can be said to be correct only with regard to formal specifi-
cations or 1/0 assertions. Nothing says these specifications express
what the function of the program actually is. The assertions must be
manually produced, requiring in-depth understanding of the program. A real
problem 1ies in the fact that even for simple programs, the theorems that
are generated become quite long., After the proof is completed, a number
of things could still be wrong. What is actually proven may not be what
one thought was being proved. The proof may be incorrect or assumptions
about either the execution environment or the problem domain may not be
valid.

In 1ight of the above inherent difficulties, one may ask - Is proving
correctness worthwhile? The answer must be affirmative to the extent that
proving correctness causes an in-depth inspection of the program and con-
sequently may bring to Tight problems within the program, plus in general

a better overall understanding of the program.

262

6.8 Summary

As we view the prospect of testing a piece of software, hopefully
much thought and concern with regard to testing has taken place in the
specification, design, coding and documentation of the code. If not, testing
tends to become an almost intractable problem, especially for a Targe
software system.

What are some of the features of the code and its development that
cause the code to be amenable to testing? The code should be readable
{well documented), easy to modify, easy to maintain. The code should be
structured in modules. The code should be simple - eliminate coding tricks.

Aspects of the management of code development are very important.
Top-down development presents several advantages for its use. Continual
awareness of testing and planning for testing as code is developed are
important considerations.

The use of automatic monitor systems can check the degree to which
code is exercised and produce useful executicn profiles. Automatic test
case generation is still in the rudimentary stages of development but

offers promise for the future.

263

6.9

3a.
3b.

3c.

10.

1.

12.

Bib1iography

Hetzel, W.C., “A Defintional Framework," in Program Test Methods,
Prentice-Hall, 1973.

Software Engineering Techniques. Report on a Conference Sponsored by
the NATO Science Committee, Rome, Italy, October 1969.

Krause, K.W., et al, "Optimal Software Test Planning Through Automated
Network Analysis," Record of 1973 IEEE Symposium on Computer Software
Reliability, 1973.

Donaldson, J.R., "Structured Programming," Datamation, December 1973.

Baker, F.T. and Miils, H.0., "Chief Programmer Teams,"Datamation,
December 1973,

Miller, E.F. and Lindamood, G.E., "Structured Programming: Top-down
Approach,” Datamation, December 1973.

Boehm, B.W., “Software and its Impict: A Quantitative Assessment,"

Datamation, May 1973.

McHenry, R.C., "Management Concepts for Top-down Structured Programming,"
IBM Corporation, Gaithersburg, Md.

Lundstrom, S.F., Ph.D.Dissertation incomplete.

Howden, W.E., "Methodology for the Generation of Program Test Data,"“
IEEE Transactions on Computers, Vol. C-24, No. 5, May 1975.

MiTler, E.F. and Melton, R.A., "Automated Generation of Testcase Datasets,"

Proceedings International Conference on Software Reliability, April 1975.

Stucki, L.G. "Automatic Generation of Self-Metric Software," 1973 IEEE
Symposium on Computer Software Reliability, April 30, 1973.

Brown, J.R., et. al., "Automated Software Quality Assurance," Program
Test Methods., Prentice-Hall, 1973.

Ramamoorthy, C.V., et. al. "Design and Construction of an Automated
Software Evaluation System," 1973 IEEE Symposium on Computer Software
Reliability, April 30, 1973.

Fairley, R.E. "An Experimental Program Testing Facility," Manuscript
submitted for publication.

264

L amiea]

13.

14.

15.
16.

17.

18.

19,

20

Sciences, Yol. 3, #2, May 1969.

Osterweil, L.J. and Fosdick, L.D. "Data Flow Analysis as an Aid in
Documentation, Assertion Generation, Validation, and Error Detection,"”

Dept. of Computer Science, University of Colorado Technical Report
CU-CS~055-74, September 1974,

Osterweil, L.J. and Fosdick, L.D. "Automated I/0 Variable Classifi-
cation as an Aid to the Validation of Fortran Programs," Dept. of
Computer Science, University of Colorado Technicai Report CU-CS-055-74,
#37, January 1974.

Aron, J.D., The Programs Development Process, Addison-Wesley, 1974.

Keirstead, R.E. and Parker, D.B., "The Feasibility of Formal
Certification,” in Program Test Methods, Prentice-Hall, 1973.

Linden, T.A., "A Summary of Progress Toward Proving Program Correctness,"
FJCC, 1972.

Elspas, B. et. al, An Assessment of Techniques for Proving Program
Correctness, Computing Surveys, Vol. 4, No. 2, June 1972.

Floyd, R.W., "Assigning Meanings to Programs,"Proceedings Mathematical
Aspects of Computer Science, 1967.

Manna, Z. "The Correctness of Programs," Journal of Computer and System

265

3 6.10 References

%. Paige, M.R. and Miller, E.F., "Methodology for Software Validation - A
4 Survey of the literature,"” Gen. Research Corp., March 1972.

Reifer, D. and Ettenger, R.L. "Test Tools: Are they a Cure-all?" prepared
for Space and Missile Systems Organization Air Force Systems Commands.,
October 1974,

i Rustin, R., Editor, Debugging Techniques in Large Systems, Prentice-Hall,
' 1871

i

266

b
1%

-

do

risi b
'

MODERN SOFTWARE DESIGN TECHNIQUES

7.0 INTRODUCTION

The end product of the software design process is a set of design
specifications for a software system that will implement an acceptable
solution to the problem at hand. Design specifications are detailed
descriptions of the algorithms, data structures, and interfaces necessary
to satisfy the functional requirements of a system. Typically, the
functional requirements are the starting point of a software development
project; they include a description of the probiem to be solved, and the
constraints that exist for its solution. Design specifications are derived
from the functional requirements, and in turn form the basis for implementa-
tion, acceptance testing, and delivery of the system; design specifications
thus provide the 1link between functional requirements and an implemented
software system that satisfies those requirements.

Creative aspects of the software design process include establishing
a conceptual view of the system, developing algorithms and data structures
to reflect that conceptuaiization, identifying system functions, decoupling
the functions, decomposing functions to elementary levels, deciding what
functions to place in which program modules, establishing interfaces between
modules, and establishing interfaces to global data structures. A1l of this
must be accomplished within the framework of meeting operational requirements,
satisfying various design constraints, and promoting desirable quality
attributes in the system.

The cost, complexity, and failure rates of existing software systems

are well known (1). During the past few years, software has increased in

267

e

TEE]) cmees

size and complexity to the point that software design and development costs
presently exceed computing hardware costs; the expectation is that this
trend will continue into the foreseeable future. Software is typically
late in delivery, overpriced and unreliable. In addition to the high
development costs of new systems, enormous fiscal and social costs are
accrued by poorly designed, unreliable software systems that are in the
"production” phase of the software 1ife cycle. There is considerabie
social and economic incentive for the systematic design and impiementation
of reliable and efficient software systems, deveioped on time and within
cost estimates. This *ask is the charter of the software engineering
discipline.

The goal of systematic software design is development of detailed design
specifications for software systems that will meet their operational require-
ments, satisfy various design constraints, and exhibit desirable quality
attributes. Design constraints are imposed by functional requirements, and
by the resources available to implement and maintain the system. The func-
tional requirements might, for examgla, specify COBOL as the implementation
Tanguage (perhaps in the interest of transportability), even though technical
considerations would favor the use of a special purpose language more suitable
to the particular application area. Resources required to implement and
maintain a system include the hardware, supporting softwa , personnel
{(programmers, operators, users), and time. A softvare system must of course
he realistic in terms cf resource utilization.

The primary quality attributes of software include design clarity,

reliability, efficiency, and modifiability. Design clarity and reliability

are generally the most important attributes of a software system. Efficiency
is usually a secondary consideration to reliability; efficiency is of interest
only when the system is functioning properly. There are two aspects to
design clarity: First is the clarity with which the system decign reflects
the functional requirements; and second is the degree to which the design
specifications are mirrors in the source code implementation of those
specitications. Both aspects of design clarity are essential in achieving

a weil-designed and properly-implemented software system. Design clarity
contributes to 211 of the other quality attributes, including efficiency;

the performance of a well-designed and properiy-implemented system is by
definition more easily measured and tuned than is that of a poorly designed
system. Similarly, a well designed system will be easier to understand and
debug, hence easier to modify and maintain.

Functional modularity is the key to design clarity. Modularity is
achieved by decomposing a systcm into distinct program modules that communi-
cate through well-defined interfaces. Program modules are named sequences
of statements that can be referred to by their collective name. Methods
of implementing progr:n modules include closed subroutines, macros, and library
members. Methods for establishing the interfaces between modules are discussed
Tater.

Functional modularity is achieved by identifying each medule in the
system with a specific, well-defined system function., Functional modularity
reduces system complexity and enhances design clarity by decoupling the
interactions among modules. This decoupling has numerous beneficial effects:

interfaces between modules are explicitly specified as part of the design

269

process; modules can be tested either independently or in integrated
fashion; errors and design deficiencies are more easily localized; and
modifications can be made with minimal side effects,

The art and craft of software design is comprised of identifying the
system functions, deciding what functions to put into which modules, and
establishing interfaces between the modules., However, modularization of
a software system is a somewhat arbitrary process without a conceptual
framework for systematically achieving the goals of the design process.
Liskov (2) discusses the fact that improper modularization may introduce
additional complexity into a system i une or more of the following ways:

(1) too many related but different functions in a module will

tend to obscure the logic with tests to distinguish among
the various functions

(2) a common function is not identified soon enough, and as a result,

it is distributed among several different modules, obscuring the
logic of each

(3) modules may interact on common data in unexpected ways.

In this chapter, several techniques for achieving modular designs are
described. Also included are discussicns of notational schemes for specify-
ing the design, intramodule design, and the influence of the implementation
language on the desigrn. The thesis of this chapter is that software quality
must be designed into a software system, and that design techniques and
notational schemes'are available to facilitate the production of high quality
software systems.

The effect of size and scale must be taken into account in any meaningful

270

(i o ;

discussion of software design. In a small system {one written by one man
in less than one month) modular design will result in a superior product,
but is perhaps not essential to the success of the project. In larger

systems, a methodical approach to modular design is a necessary condition

for the success of the project.

7.1 Basic Design Strategies

Two basic strategies for achieving a modular design are the "top-down"
and "bottom-up" approaches. Using the top-down approach, attention is first
focused on global aspects of the overall system. As the design progresses,
the system is decomposed into sub-systems and more consideration is given to
specific issues. In the bottom-up approach to software design, the designer
Tirst attempts to identify a set of primitive concepts, notions and actions.
Higher level concepts are then formulated in terms of the basic ones. The
system design is thus facilitated by identification of the "nroper" set of
primitive ideas. In practice, the design of a software system is seldom
(if ever) accomplished in pure %op-down or pure bottom-up fashion. However,
most authors advocate a predominantly top-down design strategy.

The top-down strategy of decomposing tasks into algorithms and data
into data structures has been termed "step-wise refinement," "step-wise
program development,” and "“successive refinement" (3}. The basic principles
if step-wise refinement include:

(1) decomposing design decisions to elementary levels,

(2) isolating design aspects that are not truly interdependent, and

(3) postponing decisions concerning representation details as long

as possibie.

271

{zamme)

Numerous examples of the step-wise program development process can be found
in references 3, 4, 5, and 6. Perhaps the best known example for illustrating
step-wise program development is the 8 queens problem discussed by Wirth
in reference 5, and by Dijkstra in reference 6.

The concept of backtracking is fundamental to top-down design. As
design decisions are decomposed to more elementary levels it may “ecome
apparent that higher level decisions have Ted to an inefficient or awkward
modularization of lower level functions. Thus, a higher level decision
may have to be reconsidered and the system restructured accordingly. In
order to minimize backtracking, many designers advocate a mixed strategy
which is predominantly top-down, but which permits specification of the lowest
level modules first. A pure top-down strateqy is most successful when a
well-defined environment exists for software development; as for example,
in writing a compiler for use with an existing operating system. When the
environment is 111 defined, as in the development of an operating system
for a new machine, the design strategy must of necessity be a mixed strategy

or perhaps a predominantly bottom-up strategy.

7.2 Interface Design

The techniques by which interfaces between modules are established
provide a point of reference for discussing modular design methodologies.
The types of interfaces that exist betwen modules include: control interfaces,
data interfaces, and service interfaces. Control interfaces exist in the
invocations of, and in the entry and exit points of, the various modules.
Data interfaces are established by the parameters used to pass information

between modules, and by global data that is referenced in two or more modules.

272

Service interfaces among modules are munifest in the services that modules

perform for one another,

7.2.17 Control Interface Design

Traditional software design techniques concentrate on control interfaces,
Systems designed along control interface lines are characterized by the use
of flowcharts as design tools, and the program modules are typically imple-
mented as subroutines. This strategy can produce clearly defined control
interfaces, but it also tends to produce complex data interfaces.

A control interface design methodology that has yielded impressive
results is the strategy of integrated top-down design, coding, and testing [7].
In .ntegrated top-down design, coding, and testing, the design proceeds
top-down from the highest level routine whose primary function is to coordinate
the sequencing of lower level routines. .ower level routines may be imple-
mentations of elementary functions {those which call no other routines), or
they may invoke more primitive routines in order to accomplish their function.
There is thus a hierarchical structure to a top-down system in which routines
can invoke Tower level routines but cannot invoke routines on the same or a
higher level.

The integration of design, coding, and testing is jllustrated by the
following example. It is assumed that the design of the system has proceeded
to the point illustrated in Figure 1. The purpose of procedure MAIN is to
coordinate and sequence the GET, PROCESS, and PUT modules. These three
modules can communicate only through MAIN; similarly, SUB1 and SUB2 (which
support PROCESS), can communicate only through PROCESS. Some designers

would allow MAIN to communicate directly with SUBT and SUB2 while others

273

would require that MAIN communicate with SUBT and SUB2 by going through
PROCESS. In some cases a designer might restrict communication of data
between modules to the parameter lists, while in other cases global variables
might be permitied. A reasonable compromise is to restrict access of

common global data to modules on the same level of hierarchy. This approach
is particularly attractive when each hierarchical level is identified as a
"level of abstraction" in the system design [8].

The coding and testing strategy for the example might be as illustrated
in Figure 1.

Stubs are dummy modules that are written to simulate subfunctions in
support of higher level functions. As coding and testing progresses, they
are expanded into full functional units which may in turn regquire Tower
level functions to support them. The stub can provide a number of usefui
purposes prior to expansion into a functional unit. Stubs can provide output
messages, test input parameters, provide simulated output parameters, and
simulate timing requirements and resource utilization. In this manner, a
simulated system can be operational as the design progresses.

The integrated top-down strategy provides an orderly and systematic
framework for systen development. Design and coding are integrated because
expansion of a stub will typically require creation of new stubs to support
it. Test cases are developed systematically and each module is tested in
a simulated operating environment. A further advantage of the integrated
top-down approach {s the reduction of the system integration phase of the
project; the interfaces are established, coded, and tested as the design

progresses. The primary disadvantages of the top-down approach is that early,

274

|

STRATEGY:

Fiame 1.

PROCESS

SUBL SUB2
CODE MAIN
s7uRs FoR GET, PROCESS, PUT
TEST MAIN
CODE GET
TEST MAIN. GET
CODE PROCESS

sTuBs For SUB1, SUB2
TEST MAIN. GET. PROCESS

CODE PUT

TEST MAIN. GET, PROCESS. PUT

CODE SUB1

TEST MAIN. GET. PROCESS. PUT, SUB1
CODE SR

TEST MAIN. GET. PROCESS. PUT, SiBl. SR

Tor-Dowt INTEsRATED (oDING AND TESTING

high level design decisions (such as choice of data representations) may
have to be reconsidered when the design progresses to the lower level
functions. This may require design backtracking, and considerable rewriting

of code.

7.2.2 Data Interface Design

Traditional approaches to data coupling between program modules include:
parameter 1ists in the calling module, global variabies known in two or more
modules, and access to a common data base by several modules. Many trans-
action driven systems are designed around a large data base, which is the
focal point of the design.

Liskov has described a design strategy which emphasizes data interfaces
[9]. 1In her approach, a software system is viewed as a collection of abstract
data types and operations on those data types. An abstract data type is
defined in an “Operation Cluster," which defines the data type in terms of the
operations that can be performed on it. For example, a stack might be defined
by the abstract operators: push, pop, return top, erase top, and empty test.
The internal details of operation clusters are hidden from the modules that
make use of the clusters. Thus, a stack can only be accessed by the defining
operators and their parameters. This reinforces the functional modularity of
the system.

A programning language called CLU is being developed to support direct
implementation of software systems designea following the data interface
strategy. In CLU, a cluster definition consists of four parts: (1) a
description of the interface which the (luster presents to its users

(cluster name, parameters, and list of operations defining the cluster type),

276

et R e

{2) details concerning the internal representation of the data type, (3) the
code required to create instances of the data type, and (4) the operator
definitions. Operator definitions are similar to ordinary procedure
declarations, except that they have meaning only as part of a cluster
declaration.

The cluster description defines the template of an abstract data type;
instances of that type are created by assigning the template name to program
variables. It is therefore possible to define the abstract data type “stack"
and to create and manipulate several instances of stacks in the program.

The situation is analogous to the treatment of classes in SIMULA [10].

Because the manipulation of abstract data types involves their defining
operations, most of the procedure calls (abstract operations) in a program
are specific to, and subordinate to, the data tvpes being manipulated in the
program. In this manner, the data interfaces in the program are emphasized,
and procedure calls are incidental to the manipulation of abstract data. An
illuminating example of programming with abstract data types is presented

in reference 10.

7.2.3. Service Interfaces

In the service interface design mechod, a software system is viewed
as a set of modules that perform services for one another. FEmphasis is
placed on identification of a set of service functions that will implement
the system task. Three design strategies in the service interface category
are: levels of abstraction, nucleus extension, and information hiding. As
originally described by Dijkstra [8] levels of abstraction is a bottom-up

design technique in which an operating system was designed as a layering

277

of hierarchical levels, starting with level 0 (processor allocation, real
time clock interrupts) and building up to the level of processing independent
user programs. Each Tevel of abstraction is composed of a group of related
functions, some of which are external (can be invoked by functions on higher
levels of abstraction), and someof which are internal to the level. Internal
functions can only be invoked by other functions on the same level and are
used to perform tasks common to the work being performed on that Jevel of
abstraction. Each level of abstraction performs a set of services for the
functions on the next higher level of abstraction. Thus, a file manipulation
system might be layered as a set of routines to manipulate fields (bit
vectors on level 0), a set of routines to manipulate records (sets of fields
on level 1), and a set of routines to manipulate files (sets of records on
level 2). Each level of abstraction has exclusive use of certain resources
(1/0 devices, data) that other levels are not permitted to access. Higher
level functions can invoke functions on lower levels but lower Tevel functions
cannot invoka or in any way make use of higher level functions. The latter
restriction is important because the Tower level modules are self-sufficient
for supporting abstractions up to their level; they can be used without
change as the lower Tevel routines in other applications, or in adaptations
and modifications to an existing system. In addition, the strict hierarchical
ordering of routines permits "intellectual manageability" of a complex soft-
ware system [6].

A related design technique is the nucleus extension approach described
by Hansen Brinch [11]. Using this approach, the basic nucleus of a software
system is identified and implemented in such a way as to permit systematic

extension of the nucleus to a complete system. In the case of an operating

278

system, the nucleus might consist of facilities to handle dynamic creation,
control, and removal of processes, as well as communication between processes,

Although levels of abstraction and nucleus extension were developed
specifically as bottom-up techniques for the design and implementation of
operating systems, they are of much broader applicability. For instance,
some software designers advocate a combined top-dewn and levels of abstraction
approach to software design [2]. 1In this case, Tevels of abstraction provides
a conceptual framework for the placement of modules within the top-down
hierarchy.

The third service interface approach to be discussed is the "information
hiding" technique described by Parnas [12, 13]. Using this technique, each
module is chosen and designed to hide as much information as possible from
the other modules in the system. This criterion not only provides a basic
design strategy, but also provides a standard for elaboration and refinement
of a design. Parnas observes that the approach results in designs that are
functionally modular, and that have minimal coupling between modules. This
in turn provides increased clarity of the design.

An interesting aspect of the information hiding approach is the use
of a non-procedural specification language to describe the functional modules.
In a well known example, Parnas illustrates the conventional control interface
design of a KWIC index production system, and an unconventional design of
the same system using the information hiding strategy [12]. The Tater design
is clearly superior to the conventional design in terms of functional modularity.
However, the information hiding approach tends to produce systems which require
a great deal of switching between modules. Efficiency considerations dictate

that the implementation of linkages between modules be accomplished by

279

techniques other than the traditional procedure call {which would impose a
control interface implementation on a service interface design). Parnas
suggests that functional modules be written as procedures to reinforce
modularity at the source code level, but assembled by in-line compilation

of code and by highly specialized 1inkage mechanisms, thus obscuring the
modularity of the object code and improving the efficiency of the implementa-

tion.

7.3 Structured Design

A software design methodology called "Structured Design” or "Composite
Design" has been described by Stevens, Meyers, and Constantine [14]. In
structured design, the goal is to make coding, debugging, and modification
easier, faster, and less expensive by reducing the complexity of the system.
It is argued that the programmer cost is the largest factor in the cost of
producing and maintaining a software system, and that reducing program
complexity will increase programmer productivity. Of course, the techniques
must be balanced with other constraints such as memory space and execution
time'required for the resulting programs. However, it is always easier to
optimize a functionally correct program of straightforward design than it is
to understand and debug an efficient but poorly designed and unreliabie
program.

The conceptual approach advocated in structured design is to configure
the system so that the number and complexity of connections between modules
is minimized. This is accomplished by minimizing the Jegree »f coupling
between modules and by maximizing the internal cohesion of each module. The

strength of the coupling between two modules is influenced by several factors,

280

F ¢___4

including: (1) the complexity of the interface, (2) the type of connection,
and (3) the type of communication.

The complexity of an interface is a function of how much information
is reeded to state or understand the connection. Thus, obvious relationships
result in lower coupling than obscure or inferred ones. For example, inter-
faces established by common control blocks, common data blocks, common
overlay regions of memory, common I/0 devices, and/or global variable names
are wore complex (more highly coupled) than interfaces established by
parameter 1ists passed between modules.

The connections between modules may be established by referencing a
module as a functional unit by name, which yields Tower coupling than a
connection which references internal elements of another module. In the
latier case, the entire content of the referenced moduie may have to be
taken into account when updating modules th:t refer to it. Modules that
can be used without any knowledge of their internal details produce lower
degrees of coupling.

The type of communication between modules includes passing of data,
passing elements of control (such as flags, switches, labels, and procedure
names), and modification of one module’s code by another module. The
degree of coupling is lowest for data communication, higher for control
communication, and highest for modules that modify other modules.

Internal cohesion of a module is measured in terms ¢~ the strength
of binding of elements within the module. Binding of elements occurs on a

scale of weakest to strongest in the following order:

281

Wi ki d
P

PP

H
H
£
7

1) coincidental

2) logical

3) temporal

4) communicational

5) sequential

6) functional

Coincidental binding occurs when the elements within a module have
no apparent relationship to one another. This results from "moduiarizing"
an existing program into arbitrary modules, or from creating a module of
unreltated instructions that appear several times in one or more modules.

Logical binding implies some relationship among the elements of the
module; as for example, in a moduie that performs all input and output
operations, or a module that edits all data. A Togically bound module
often tends to combine several related functions in a complex and inter-
related fashion; resulting in the passing of unnecessary parameters, and in
shared and tricky code which is difficult to understand or modify. For
example, a module to edit all data might better be decomposed into four modules
for editing master records, editing update records, editing addition records,
and editing deletion records.

Modules with temporal binding tend to exhibit the same disadvantages
as logically bound modules. However, they are higher on the scale of
binding because all the elements are executed at one time, and no parameters
or legic are requfred to determine which elements to execute.

The elements of a communicationally bound module are related by

reference to the same set of input and/or output data. For example,

282

= "print and punch the output file" is communicationally bound. Communicational

binding is higher on the binding scale than temporal binding because the

gf elements are executed at one time and also refer to the same data.

,i Sequential binding of elements occurs when the output of one element
§i is in the input for the next element. For example, "read next transaction
7 and update master file" is sequentially bound. Segquential binding is high

on the binding scale because the module structure usually bears close

j resemblance to the probilem structure. However, a sequentially bound module
can contain several functions or part of a function since the procedural
process in a program is often distinct from the function of the program.

Functional binding is the strongest, and hence most desirable, type of
binding of elements in a module because all elements are related to the per-
formance of a single function. Examples of function bound modules are
"compute square root," "obtain random number," and "write record to output
file.”

A useful technique for determining whether a module is functionally
bound is to write a single sentence describing the purpose of the module,
and to perform the following tests on the sentence:

1. If the sentence has to be a compound sentence containing a

comma or containing more than one verb, the moduie is probably
- performing more than one function. Therefore, it probably has
+ sequential or communicational binding.
' 2. Ifa senfence contains words relating to time, (such as

"First," "next," "then," "after," etc.), the module probably

has sequential or temporal binding.

ot ol

283

3. If the predicate of the sentence doesn't contain a single
T
é specific object following the verb, the module is probably

Togically bound; for example, Edit A1l Data has Togical

binding. Edit Source Data may have functional binding.
i3 4, MWords such as "initialize," "clean up," etc. imply temporal

binding.

If the types of sentences described are unavoidable in a complete
. description of the moduie, then the module is probably not functionally
éé bound.

The division of sub-functions into separate modules should be continued
until each module contains no subset of elements that could be useful alone
and until each moduie is small enough that its entire impiementation can be
grasped at once. It is suggesied that the implementation of a module should
require between 5 and 100 executable source statements. Weinberg has

suggested that a group of about 30 statements is the upper limit that can be

assimilated on first reading of a module [15]. In the initial design, one

[f should subdivide too finely when in doubt because small functions can easily
be recombined Tater, and duplicate functions may not be identified if the
subdivision is too coarse.

p The hierarchical tree structure depicted in Figure 2 is suggested as a

4 general form that will usually result in the lowest cost implementation. The
concepts of "scope of control" and "scope of effect" are useful aids for
determining the relative positions of modules in a hierarchical framework.
The "scope of control"” of a module is that module plus all modules that are

subordinate to ths module. In Figure 2, the scope of control of module B

{ 3

284

e
[P |

~
4

1
rod

i
15
oo

vty

| N

1

A—
(w)
(q]

A

Nosm

&

[
s}
Tt
T

o Figure 2. Hierarchical Software Structure

&

ey
Jo | [

sy
e

3
i}

SRk
i

EY

[T

is B, D, and E. The "scope of effect" of a decision is the set of all
modules that contain some code whose execution is based on the outcome of
that decision. Systems are simpler when the scope of effect of a decision
is within the scope of control of the module containing the decision. The
following example itlustrates the situation.

Referring to Figure 2, if the execution of some code in module A is
dependent on the outcome of decision X in module B then either B will have
to return a flag to A, or the decision will have to be repeated in A. The
former approach results in added coding to implement the flag, and the latter
results in dupiicating sume of B's function (decision X} in Module A.
Duplicates of decision X result in difficulties of coordinating changes to
both copies if the source code for decision X should be changed. In general,
the scope of effect can be brought within the scope of control either by
moving the decision element upward in the hierarchical structure, or by
taking those modules that are in the scope of effect but not in the scope of

-

control and moving them so that they fall within the scope of control.

7.4 Software Design Notation

In software design, as in mathematics, the notational scheme employed
is of fundamental importance. Good notation can clarify the interrelation-
ships and interactions of interest, while poor notation can complicate and
interfere with good design practice. At least two levels of design speci-
fications exist: general design specification describing the structure of
the system (what functions, what interfaces}; and detailed design specifica-
tions describing control flow and algorithmic considerations within the

various modules. Some notational schemes are appropriate Tur stating

286

both general and detailed specifications while some are appropriate for one

7
& or the other. This section describes several notational schemes commonly
? used in software design, including Structure Charts, HIPOS, pseudo ccde,
- structured flowcharts, and decision tables.

) 7.4.1 Structure Charts
g Structure Charts are useful during general program design as an aid
ij in determining the funct’ons, parameters and interfaces of the system. A
ii structure chart differs from a flowchart in two ways: a structure chart
3: has no decision boxes; and the seguential ordering of tasks inherent in a
i flowchart is suppressed in a structure chart. Figure 3 illustrates a
%? Flowchart and a structure chart for three modules; A which calls B which
i. calls C. The structure chart emphasizes the connections between modules
}; more clearly than does the flowchart. Thus, for examplie, it is obvious from
17 the structure chart that module A js responsible for invoking module B.

L This, in turn, focuses attention on the parameters to be communicated

i between A andB.

) The structure of a hierarchical system is often described using a

%{ structure chart as in Figure 4. The chart can be augmented with a module
™ by module description of the input and output parameters. At the higher
ii Tevels parameters are abstract; they become more concrete at the Tower

i} levels of the hierarchy. The lowest level routines deal with physical data

objects as input and output parameters.

7.4.2 HIPOS

4

HIPD Diagrams (Hierarchy plus Input-Process-Qutput) were developed

o)
b
]

Rotmipers

287

==

EQ
i A
i
i
Call B B's
s A's Code Processing
: &
! B's Code
Call € C's
f} Return Processing
C 2
C's Code A's
Return Processing
Ef Structure Chart Flowchart

Figure 3. Structure Chart and Flowchart

Lrrem] Eneid

18

itz

iy

J—

IN

ouT

Figure 4.

Structure Chart Augmented with Input/Output Table

by IBM for use as tools in top-down software development, and as software
documentation aids. HIPOS are formalized structure charts; as such they
describe function and not internal flow control. A HIPO package comprises

a set of diagrams that graphically describe the functional nature of a
system proceeding from the general to the detailed level. Typically, a set
of HIPO Diagrams consists of a Visual Table of Contents, Overview Diagrams,
and Detail Diagrams. The Visual Table of Contents is a directory to the set
of diagrams in the package; it consists of a structural overview diagram, a
summary of the contents of each of the overview diagrams, and a legend of
symbel definitions.

Overview Diagrams describe inputs, a process to support the function
being described, and the results of the process. Each overview diagram may
point to several subordinate detail diagrams, the exact number being a
function of the process described., Typical formats for the Visual Table
of Contents, Overview Diagrams, and Detail Diagrams are presented in
Figures 5 and 6. HIPQOS can be used as design toois and also as documenta-
tion aids; design specifications and documentation are thus in the same
format, which facilitates comparison of the desired product and the actual

product.

7.4.3 Pseudocode

Pseudocode notation can be used in both the general and the detzil
design phases. The designer describes the design using short concise
English language statements that ure structured by key words such as IF-THEN-
ELSE-DO-WHILE and ENDDO. Key words and indentation describe the flow of

control, while the English phrases descyibe the processing function.

290

Frami

[

Rt L}]

P
"

Coitiie 4

a1y
H

e i

PR
]

[.

RV

iﬁ%

VTOC
LEGEND
> || *————___| [DENTIFY EACH DiAGRAM
AP : T i BY GENERAL CONTENT
> 5 A AND DIAGRAM NUMBER
3|}a 6ji7| |92
CONTENTS =
TTeiEn ST o] [1
preseiehegommanngy é. ool]
== ==7T g i
5 om0 ===t
|} 0=

The overview and detail diagrams describe function. Each diagram shows:

¢ A process that supports the function being described.

® Results of the process.

° Necessary inputs.

Stated graphically:
INPUTS PROCESS OUTPUTS

= >

Figure 5. HIPQ Diagram Formats

. R
“

Visual Table of Contents

=
—_—— —

l e “ = l =
=
—— = —_—

Overview Diagrams

<5
00

Iit;ltj

Detail Diagrams

ojooa

‘r
i
10

Figure 6. HIPO Diagram Formats

Frions]

aious .

E‘ ;-i"".'i_g :_'" . g g . 3 FM -"'v

o'

i

As an example of a pseudocode design specification, assume that a word
frequency analysis program is to be described. The program will read a set
of textual records and extract each individual word from each record. A
table is to be constructed that contains each unique word found in the text,
and a count of the number of times each word occurs. When all records
have been processed, the contents of the tabie and other summary information
is to be printed. The pseudocode code description of the word frequency

analysis program might have the following form:

INITIALIZE THE PROGRAM
RCAD THE FIRST TEXT RECORD
D0 WHILE THERE ARE MORE WORDS IN THE TEXT RECORD
D0 WHILE THERE ARE MORE WORDS IN THE TEXT RECORD
EXTRACT THE NEXT TEXT WORD
SEARCH THE WORD-TABLE FOR THE EXTRACTED WORD
IF THE EXTRACTED WORD IS FOUND
INCREMENT THE WORD'S OCCURRENCE COUNT
ELSE
INSERT THE EXTRACTED WORD INTO THE TABLE
END IF
INCREMENT THE WORDS-PROCESSED COUNT
END DO AT THE END OF THE TEXT RECORD
READ THE NEXT TEXT RECORD
END DO WHEN ALL TEXT RECORDS HAVE BEEN READ
PRINT THE TABLE AND SUMMARY INFORMATION
TERMINATE THE PROGRAM

293

s

G v

iy
1

[k
v

| IR

Moy,

peiminy

Ll oy
$ §ereiend

P

1

In the top-down design strategy, each English phrase in the pseudocode
can be expanded into a more detailed pseudocode description of that phrase.
This can be continued until the design reaches the actual coding level.
Pseudocode can be used to replace flowcharts, and to reduce the amount of

external documentation required to describe the design.

7.4.4 Structured Flowcharts

Flowcharts are the traditional means for specifying and documenting
a software system designed along control interface Tines. Typically, flow-
charts incorporate rectangular boxes for actions, diamond shaped boxes for
decisions, directed arcs for specifying inter-connections between boxes,
and several other specially shaped symbols [16]. Structured flowcharts
differ from traditional flowcharts in that structured flowcharts are
restricted to compositions of certain basic forms., This makes the resulting
flowchart the graphical equivalent of a textual pseudocode description. A
typical set of basic forms and their pseudocode equivalents are illustrated
in Figure 7. The basic forms are characterized by single entry into and
single exit from the form. Thus forms can be nested within forms to any
arbitrary level, and in any arbitrary fashion, so long as the single entry-
single exit property is preserved. A composite structured flowchart and its
pseudocode equivalent are illustrated in Figure 8. Because structured
flowcharts are logically equivalent to pseudocode, they have the same
expressive power as pseudocode. In particular, the singie entry-single
exit property allows hierarchical nesting of structured.flow charts to
describe a top-down design, starting with general design considerations and

proceeding through detailed design. Structured flowcharts tend to place

294

i)

While P DO S
End

REPEAT S
UNTIL P

IF P THEN 51

ELSE §
2

Figure 7.

Equivalent Flowchart and Pseudocode Notations

7

23

Figure Ba.

Structured Flowchart

Bl

PSEUDO - CODE

(g

SR

S
WHILE Tl Do

By

IF T2 THEN 82

REPEAT 83

IF T3 THEN Sq
e ELSE 85
§j END

: UNTIL Tq
ELSE 87

!

—
[Fp]
o

]
i g

Basisieid B
et 1

Figure 8b. Pseudocode Equivalent of Figure 8a.

5

I8

pnicaast

¥ b

(AR EIN |
[Pt

[HERI]

g

gy Guid

increased emphasis on flow of control mechanisms due to the graphical nature
of the visual image. They are thus appropriate when the decision mechanisms

and sequencing of control flow are to be emphasized,

7.4.5 Decision Tables

Decision tables, 1ike flowcharts, are useful for describing flow of
control mechanisms. Decision tables are particularly useful when the flow
of control is dependent on complex combinations of several conditions.

In this case, flowcharts tend to become compiex and difficult to follow.

A decision table consists of four quadrants called the conditjon stub,
condition entry, action stub, and action entry. The condition stub occupies
the upper left gquadrant, and contains a 1ist of the conditions to be
examined. The condition entry is in the upper right quadrant of the table.
The condition stub and condition entry specify the conditions to be tested.
The Tower left quadrant is called the action stub and contains a statement
corresponding to each action that can result from the conditicns described
in the‘upper quadrants. The action entry section of the table (lower
right quadrant) indicates which of the actions in the action stub are to

be accomplished in response to a particular condition. A comprehensive

discussion of decision tables is presented in Reference 17.

298

wreeg

7.5 Influence of the Implementation Language

The implementation language provides a conceptual framework and a
set of basic notions for the design of a sofiware system. Thus, a LISP-Tike
lanquage based on recursive function theory and Tist structures will encourage
the designer to formulate algorithms as recursive expressions operating on
lists and binary trees, while FORTRAN will influence the designer in the
direction of algorithms operating on arrays. Implementation of a software
system is simplified when the data types, data structures, algorithms, and
interfaces described in the design specification correspond to notions
supported by the implementation language.

The crnceptual aspects of a programming language are manifest in the
data types, operators, and control structures of the language. Data types
include basic and structured data types. The basic data types available
in a programming language are typically a subset of the data types supported
by the hardware, and may include any or all of: integers, floating point
numbers, decimal numbers, characters, logical values, address pointers and
bit vectors. Mechanisms for structuring basic data types include arrays,
hierarchical structures, character strings, 1ists, trees, graphs, sequences,
and sets. The ease of writing algorithms to transform and manipulate data

of a given type (basic or structured) is determined by the operators pro-

vided for that data type. FORTRAN and ALGOL 60 provide arithmetic, relational,

and logical operators for the basic data types of integer, floating point,

and Togical. A subroutine capability allows the user to implement abstract
operators on basic and structured data. Newer languages, such as PL/1 and

APL provide some built-in operators for the structured data types, and a

stbroutine capability for user definition of abstract operators.

299

i
‘;@.
ot

—

The control structures in most programming ianguages reflect the basic
architecture of sequential machines; in the absence of explicit control
constructs execution proceeds from one statement to the next in lexicographic
order. Explicit control statements include various forms of conditional
statements, iteration mechanisms, and subprogram calls and returns. Con-
ditional statements include the arithmetic and Togical IF of FORTRAN, nested
IF-THEN-ELSE statements in ALGOL 60, success and failure exits in SNOBOL
statements, and the COND expression of LISP. Iteration mechanisms include
looping statements (such as the FORTRAN and PL/1 DO statement, and the
ALGOL 60 and PASCAL FOR statement) in which initialization, incrementing
and exit testing is described in the statement forms, as well as loops
constructed using IF statements and GOTOs in which initialization, incre-
menting, and testing is handled explicitly in the source text.

The current interest in structured programming is motivated by the
desire to provide control constructs that preserve the clarity of the
design specifications in the source code implementation of the design.

Basic premises underiying the use of structured control mechanisms are:

1) each basic construct must preserve the single-entry/single-exit property,
and 2) no basic construct permits backward transfers of control in the
source text (except the implicit transfers in Tooping constructs). Single-
entry/singie-exit control structures can be hierarchically nested within
other control structures to any arbitrary depth, and indentation of nesting
levels faci]itates-readab11ity of the source code. When the assumptions

of nested single-entry/single exit constructs and no backward transfers

are satisfied, the dynamic execution flow through the program can be made

300

{ e

[

[
e

g

R]

peliey

=1
¥

S

at
Qae

to correspond closely to the static structure of the source text. The source
text is thus highly readable and makes a significant'contribution to its own
documentation.

The use of GOTO statements has been criticized by structured programming
advocates because the GOTO provides an unrestricted mechanism for structuring
control flow, and it is quite easy to {intentionally or unintentionally)
violate the basic premises of structured programming using GO TO's. Elson
tists the following positive benefits to programming without GO TQ's [18]:

1) The programmer is forced to discipline his thought processes,
to formulate his logic according to an appropriate structure,

2) The programmer finds himself looking for similarities rather than
differences in sub-portions of this problem. Rather than simply
generating conditional branches to many program locations to
handle a number of cases, he is encouraged to handle them together
perhaps with additional use of variables serving as parameters to
differentiate between the cases.

3) The reader or inheritor of a program has a much easier time
following program logic if he can read the program sequentially
rather than with constant page flipping through the program 1isting.

Much of the current research in structured programming is concerned
with development of control structures that reflect the system design in the
source code without unduly restricting the programmer or forcing him into
unnatural modes of expression.

In addition to selecting a language appropriate to the application,

numerous impiementation details will influence the quality of the sofiware

301

{) 1.

N

L

D EE——=—
LRI

¥
1:
Ae

produced. The implementation features of interest may inciude:

1) Compile time and/or execution time efficiency

2) Memory space utilization

3} Adequacy of error messages

4) DPebugging options

5) Adherence to formal standards

6) Stability of the implementation

The stability of an impiementation is revealed by answers to a series
of questions such as: who maintains the implementation? at what level
of support? when was the lastupdate released? how long has the language
been installed? how often is it used? what are the experiences of other
users?

Documentation should be clear, concise, and well-structured. The
documentation should include an introductory users manual, an authoritative
reference manual, and explanations of machine dependent implementation
features, Al1 documents should be cross-referenced and indexed to permit
rapid access to any desired Tevel of detail. The implementation of
ambiguous, incomplete, and inconsistent features should be noted, along

with extensions to, and sub-setiing of the language.

302

[apdte sl
e

i
|
i
i
L

7.6 Summary

This chapter has discussed various aspects of the software design
process, including methodical approaches to software design, notational
schemes for describing the design, and the influence of the programming
language on the design process.

Design approaches discussed included top-down and bottom-up design;
successive refinement; integrated top-down design, coding, and testing;
programming by action clusters; levels of abstraction; nucleus extension;
information hiding; and structured design.

Notational schemes discussed included structure charts, HIPQS,
pseudocode, structured flowcharts, and decision tables. Various language
concepts and their influence on the software design process were mentioned.

The theme of this chapter has been that high quality sofiware can
only be achieved by thoughtful design and implementation, and that design
methodologies and notations do exist to facilitate the production of high
quality software. A1l of the techniques described have reiative strengths
and weaknesses which make them more or less appropriate in particular cir-
cumstances. No single technique is clearly superior to all others in all
situations.

The tragedy of sloppy system design and poor quality software is not
due to the lack of notational schemes and design techniques, but rather is
largely due to our failure to apply and experiment with the existing

methodologies.

303

£

gy

=

7.7 Bibliography

|

1. Boehm, B.W., "Software and Its Impact: A Quantitative Assessment,"
Datamation, May 1973.

L.
&

Liskov, B.H., "A Design Methodology for Reliable Software Systems,"
FJCC Proceedings, 1972.

|
[

3. Wirth, N., "Systematic Programming: An Introduction," Chapter 15,
Prentice-Hall, 1973.

A

4. Wirth, N., "Systematic Programming: An Introduction,” Prentice-Hall,

Il 1973.
5. Wirth, N., "Program Development by Stepwise Refinement," CACM, Volume 14,
T Na. 4, April 1971.

L.m=

6. Dahl, 0.J., Dijkstra, E.W. and C.A.R. Hoare, "Structured Programming,”
Academic Press, 1972.

| A
R

7. McGowan, C.L. and J.R. Kelly," Top-Down Structured Programwning
Technigues," Petrocelli/Charter, 1975.

%E T8 Dijkstra, E.W., "The Structure of the 'THE' Multiprogramming System,"
CACM, Vol. 11, No. 5, 1968.

9., Liskov, B. and S. Zilles, "Programming with Abstract Data Types,"
ACM SIGPLAN Notices, Vol. 9, No. 4, 1974.

3 10. Palme, dJ., "SIMULA as a tool for Extensible Program Products.'
- ACM SIGPLAN Notices, Vol. 9, No. 2, 1974.

11. Brinch, Hansen, P., "The Nucleus of a Multiprogramming System,"
CACM, VYol. 13, No. 4, 1974,

gj 12. Parnas, D.L., "A Technique for Software Module Specification with

1 ExampTles," CACM Vol. 15, No. 5, 1972.

- 13. Parnas, D.L., "On the Criteria io be Used in Decomposing Systems into
5 Modules," CACM Vol. 15, No. 12, 1972.

- 4. Stevens, W.P., G.J. Myers, and L. L. Constantine, "Structured Design,"
? I1BM Systems Journai, No. 2, 1974.

15. Weinberg, G.M., “The Psychology of Computer Programming," Van Nostrand
ze Reinhold, 1971.

304

B IR

R

& T
.o

16.

17.

18.

Chapin, N. "Flowcharting with ANSI Standard: A Tutorial," ACM Computing

Surveys, Vol. 2, No. 2, 1970.

Pooch, U.W., "TransTation of Decision Tables,” ACM Computing Surveys,
Vol. 6, No. 2, 1974.

Flson, M., "Concepts of Programming Languages,” Science Research

Associates, Inc., 1973.

305

e B

St |
R

e

g
&onn

e b

.

s

PrEs——
[

pimac g

P
P

(el

8.0 FUTURE EXTENSIONS

The DOMONIC system is operational and is being used in a number of
software projects at Texas A&V University. The Tatest version of DOMONIC
was installed at NASA, Greenbelt, in June 1975. The systém presently con-
sists of 315 separate modules and requires 290K bytes of memory. The
DOMONIC system contains an editor which can be used to edit source pro-
grams as well as all forms of documentation. The DOMONIC system has been
optimized to interactively edit documentation while requiring the voluminous
documentation to be produced off-line. At present., the compilation process
can be initiated from an interactive terminal but must run batch. The
DOMONIC system should be modified to allow the user to compile and execute
programs in time sharing mode. The actual compilation and execution process
should be performed under appropriate systems such as TSO on the IBM 360/370.
Other system improvements such as improved garbage collection routines and
appropriate utilities for transferring documentation units from disk to tape
should be developed.

Many aspects of program activity, project status, etc. can be monitored
through the monitor points made avaiiable within DOMONIC. Effectiveness of
a menitor requires more than designing monitoring capabilities into the
system. The monitor data must be captured in a form that can be digested
and reported in documents that are meaningful to management. Currentiy, the
DOMONIC system is monitoring resource utilization within the DOMONIC system.
Some of this data is useful for driving the reliability model developed as

part of the DOMONIC project. A monitor should be extended to automatically

306

{-:k.. , v

L

record and report information useful in validating software reliability models.

Two reliability models (a completion model and an acceptance model) were

developed as part of this project and were described in detail in Chapter III.
i The DOMONIC system should be used to gather extensive data to validate the
- above models as well as other reliability measurement algorithms described in
the Titerature.
P While the DOMONIC system has a number of existing documentation aids,
additiotal documentation aids should be developed for use with the system.
A generalized graphics documenting system should be incorporated in DOMONIC.

This system should have the ability to draw flowcharts, hierarchical diagrams,

Pz g
N ek

overlay maps and HIPO charts.

Bty
LTS

A |

 SEREY
H e

Bt i

I
i.

307

