
NASA
AUTOMATIC DOCUMENTATION SYSTEM EXTENSION TO

MULTI-MANUFACTURERS' COMPUTERS AND TO

MEASURE, IMPROVE, AND PREDICT

SOFTWARE RELIABILITY

04 grir ,
Q.N FINAL REPORT

NASA CONTRACT NO. NAS 5-20715

%D

OCTOBER 1975

Ln

04

E-m K4 pq H APPENDI AND B Q3 AY 197r,

RECEIVED :0I4 U" NASA STI FCLoo r 7 F cl ',
, IINPUT B

' Submitted to /

H Z O H NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

'A0 GODDARg SPACE FLIGHT CENTER

0oGREENBELT, MARYLAND

0 W REPRODUCED By

c H . PNATIONAL TECHNICAL

- z H HINFORMATION SERVICE
U.S. DEPARTMENT'OF COMMERCE

Ipq4 SPRINGFIELD,VA.22161

;,~4rI) V1 -H
by
FA HpSubmitted

(n H DATA PROCESSING CENTER

EXA) A&

En U PN4TEXAS A&M UNIVERSITY

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

THE DOCUMINTATICIN, NCNIIOR

AND

CONTERO

(DCHCNIC)

SYSTEM

DOMCNIC User's Guide

Prepared for NASA

Goddard Space Flight Center

Greenhelt, Maryland

By

Advanced Techaclogy Gro'p

Data Processing Center,

Texas A S M University

PRICES SUBJECT Th 0U14GE

June, 19"5

BYREPRODUCED
NATIONAL TECHNICAL

INFORMATION SERVICE
U.S. 	 DEPARTMENT OFCOMMERCE

SPRINGFIELD, VA. 22161

DOBONIC USER'S GUIDE

PUBlICATIC14 NOTE

This manual was compiled by the Texas Engineering Experiment- tation,

Data Processing Center at Texas A&M University, College Station, Texas.

It was compiled under Contract NAS5-11988 for the National Aeronautics
and Space Administration, Goddard Space Flight Center, Greenftlt,
Maryland. Project monitor was E.P. Damon.

This manual was generated, by the IBM Administrative Terminal System
(ATS/360) and was input through an IB.F. 2141 Comnunications Terminal.

This manual was stored on an IBM 360 computer and printed cn an -IBM1403

high-speed line printer using a TN print train.

Appreciation is expressed for the -edi'cated efforts of Glen Hascall, Lou

DeVito, Eliseo Pena, Ollie Pclk, Nancy McKinney,, Hank Lyle, Pam Masters,

Michael Quick, Mike Hogan, Joseph Presley, Chap-Chi Wong, Janis Studdard

Bartlett, Jean Zclnowski, Charles Neblock and Susan Arseven during
system development and imrlementation.

Principal investigator for the project is Dick B. Simmons. Project

manager is Pete Marchtanks.

Documentation editor for this manual is Mike Hogan.

Page 2

DOMONIC USER'S GUIDE

TABLE OF CCNTENTS

PAGE

1.0 INTRODUCTION ... 6

2.0 WHAT YOU MUST KNOW TO USE DOMONIC 7

2.1 ENTERING INFORMATION FROM A TERHINAL.....; 7

2.2 ENTERING INFORMATION FROM CARDS 8

2.3 HON TO USE DOMCNIC COMMANDS 10

2.3.1 WHEN TO ENTER A COMMAND OR SUBCOEMAND 11

Z.3.2 HON TO ENTER A COMMAND OR SUBCOflMAND.., 11

2.4 HOW TO INTERPRET DOMONIC MESSAGES........................ 12

2.5 HOW TO USE THE HEIP COMMAN 13

2.6 STARTING AND ENDIIG A TEIMINAL SESSION 15

266.1. IDENTIFYING YOURSELF TO THE SYSTEM..................15

2.6.2 ENDING A TERMINAL SESSION............................15

3.-0 FUNCTIONS OFP DOMC .C 17
...

4.0 ENTERING AND MANIPULATING DATA 19

4.1 IDENTITYING TEE DATA UNIT 21

4.2 DATA UNIT NAMING CONVENTIONS............................... 21

4.3 CREATING A DATA UNIT 2......................................24

4.4 FINDING AND POSITIONING THE CURRENT IINE POINTE3..........24

4.4.1 FINDING THE CURRENT LINE POINTER...................... 26

4.4.2 POSITIONING THE CURRENT LINE POINTER 28

4.5 UPDATING A DATA, UNIT 29
4.5.1 DEIETING DATA FROM A EATA UNIT 29

'4.5.2 INSERTING DATA IN A DATA UNIT 30

4.6 RENU2BERING LINES OF DATA 37

4.7 LISTING THE CONTENTS OF A ZATA UNIT 38

4.B STORING THE CCNTENTS OF A DATA UNIt......................... 39

4.9 ENDING THE BDIT FUNCTIONS................................. 43

4.10 ERASING A PEREANINT EATA UNIT . 43

5.0 TEMPLATES AND DATA DEFINITIONS46

5.1 TYPES OF TEMPlATES
46
5.2 SOURCE TEMPLATES 6...46

5.3 TEtFIATE STRUCTURE 46

5.4 DATA DEFINITION LANGUAGE 47

5.5-. BOUND TEMPLATES.. 50

5.6 BINDING TEMILATES... 50

5.7 CHANGING BOUND TEMPLATES 51

6-.0 RECIPES, AD DOCUMENT GENERATION 56

6.1 DOCUMENT GENERATION 56

6.2 RECIPE EXPANSION PROCESS57

6.2.1 RECIPE ... 57

6.2.2 DOCUMENTATION AID TESCRIPTION 57

6.2.3 LOGICAL STREAM-PHYSICAL DEVICE TABLE................ 59

6.2.4 - INPUT-OUTPUT STREAM TABLE 60

6.3 RECIPE INSTRUCTION LANGUAGE............................... 60

Page 3

DOBIONIC USER'S GUIDE

PAGE
6.3.1 DEFINE INSTRUCTICN 60

6.3.2- END INSTRUCTION 61

6.3.3 CAIL INSTRUCTION ... 62

6.3.4 TJITERAI INSTEUCTION 62

6.3.5 DATA-UNIT INSTRUCTIGN. 63

6.3.6 $BOCAlT INSTRUCTIGN 64

6.3.7 STREAM,INSTRUCTION65

6.3.8 DUI4r Y INSTRUCTION 65

6.4 RECIPE EXIAISICN AND OUTPUT GENERATION PROCESS............67

7.0 INITIATING A PROJECT.. 70

8.0 ENTERING AND CHANGING SECURITY CONTROlS........................ 71

8.1 TYPES OF SECURITY .. 71

8-2 SECURITY RECORDS..-'
72

8.3 SECURITY COMMAND.. 73

8.4 CREATING A FASSNORD RECORD............................... 73

&5 CREATING A USER EECORD 75

8.6 CREATING AN EXCEPTION RECORD............................. 76

8.7 CREATING A rEEAULT RECORD.................................... 77

APP-ENDIX A TERMINAI CHA ACTRIST-CS78

APPENDIX B SAMPlE BATCH J0B DEC 82

Page 4

DO MONIC USER'S GUIDE

LIST O FIGURES

PAGE

FIGURE 1 SAtPIE INSTRUCTION SEEET FOR A THRMI1AL 16

PIGURE 2 VAIUE OF LINE IOINTEHR A- END 02 EDIT SUBCOMANDS 27

FIGURE 3 SOURCE TEMPLATE LISTING FRCM THE EEITOR 44

FIGURE 4 BOUND TEMPLATE LISTING FROM DEFINE DAAA..................... 45

FIGURE 5 EXAMPLE OF A SIMTLE RECIPE 54

FIGURE 6 EXAMPIE OF AN EXPANDED RECIPE 55

Page 5

DOIONIC USER'S GUIDE

INTRODUCTION

1.0 INTRODUCTION

Your project management determines which of the facilities of DOMONIC
you can use (ie,. which commands are available to you). All of the
DOMONIC facilities are oriented towar'd constrnction, maintenance and
control of a data base containing project-related documentation data.

This data base is called a dbcumentaticn unit. Data may include te-xtual
information, program source code and graphical information. Procedures
are provided to limit access to either contents of the documentatidn
anis or to the various DGflONIC facilities. These security functicns

are under control of the local project management. In addition.DOONIC

provides means for monitoring the construction and ffaintenance of the

documentation units.

The DOfONIC system can be used in either a batch or a terminal-access

environment, when operating in an interactive environment, you receive

prompting messages in the case of inccmpletely specified commands or in
the case of incorrectly entered commands. Also, when in an interactive
environment, you can interrupt processing at any time to enter a new
comm an d.

You can type BElP whenever you are unsure which command to use or how to

use a particular command. .RLP is a special command that provides
information on all the other DOCNIC commands.

This manual explains tow to use the DCMCNIC command language. The

manual consists of the following sections:

1. Introauction

2. What You Must Know To Use DOMONIC

3. 2nctions~of DOMONIC

4. Entering and Manipulating Data

5. Templates.and Data Definitions

6. Recipes and Document Generation

7. Initiating A Project

8. Entering afid Changing Security Controls

The first four sections must be known by all DOfONIC users. Sections 5,

7 and 8 describe functions normally usEA- only by project management.

Section 6 tells how to generate documents

This manual specifies what commands to use in performing each of the

functions mentidned above. For more details on 'how to enter each
command, refer-to the DOONIC CCMAND BEFEREECE ANUAL.

Page 6

DOfONIC USER'S GUIDE
RHAT YOU MUST £NOW TO USE DCMONIC

2.0 WHAT YOU MUST KNCW TO USE DOMONIC

You will be using DOMONIC either in a card-oriented environment or in a

terminal-oriented envircnment.

In a terminal-oriented environment, you should know:,
*How to enter information from the terminal.
1How to use DONCNIC commands.
*How to interpret DOMNIC messages.
*How to use the HELP command.

In a card-oriented environment, you should know:

*How to enter information via cards.

*How to use DOECNIC commands.

-How to interpret DOMONIC messages.

2.1 ENTERING INFORNATICLI FiON A 'IERNINA

kll terminals supported by DCMONIC have a typewriter keyboard.through

which you enter information into the system. The various terminals

supported by DONONiC do not have identical keyboards. Some terminals do

not have a backspace key; some do not allow lowercase letters. The

features of each terminal as they apply to DOMONIC are described in

Appendix A.

Certain conventions apply to th.e use cf all terminals with the flOMNIO4lC
system. They are:

1. All lowercase letters typed on the keyboard are

interpreted by the system as uppercase letters.

For example, if

system-abstract in t3

was typed on the keyboard, the system interprets it as:

SYSTEI-ABSTRACT IN T3

The only exceptions are certain text-han.dlino

applications which allow both uppercase and

lowercase letters to be entered from the

keyboard.

2. All messages sent to the terminal by the system

will be typed out in uppercase letters.

Output from the previously mentioned text-handling

applications will be typed out both in uppercase

Page 7

DOMONIC USER'S GUIEW

WHAT YOU MUST KNOW TO USE DOMONIC

and lowercase if te terrinal has that capability.

If it does not, lowercase letters will be typed

as the correspcnding uppercase letters.

The methods you may use t c correct your typing mistakes are discussed in

Appendix A since they are dependent on the type of terminal -you are

using.

After you type a line and make any necessary corrections, you can enter

that line as follows:

1. Press the REIURN key on an IBM 2J741 Communications terminal.

2. Press the PETURN key and LIN IEE-D keys on the teletype.

All examples in this manual assume operation with an IBM 2741

Communications Terminal. Refer to Appendix A for information about the

terminal you ate using.

NOTE: A null line (a line with no characters in it) can be entered by

typing a semicolon in the first position and then pressing the key used

to enter a line (RETURN key on 2741). Also you cannot make corrections

to a command line once you have entered it. If the line was data, it

can be changed using the EDIT command (described in the Section 4.0.)

ALL CONHANDS AND SUBCOMMANDS MUST END WITH A SEMICOICN. Sometimes a

command will not fit on one line and must be continued on the next and

subsequent lines. THE SEHICOON MUST APPEAR AT THE END OF THE lAST lINE

OF THE COMMAND. The semicolon convention must be observed even if all

the information for the command fits on one line. Also, you must still

press RETURN to enter each line.

2.2 ENTERING INFORMATION FROM CARDS

When using DOONIC in a card-oriented environment, all commands and'data
to be entered into the DOhCNIC system during a session must be prepared
prior to using the system. The cards would normally be prepared with
some off-line key-entry system such as a keypunch. After the cards have
been prepared and checked for accuracy, they can be run as data cards in
a batch job deck. A batch job deck begins with, a job card to identify
the user, how long the job may take to execute and other administrative
information. Besides being a job control language card, the job card
must conform to the installation's format. The next cards are also JCL
cards,. These cards will tegin the execution of the DOMO1IC system; for
IBM installations the JCL will consist of one 'EXC 1 card entering the
catalogued procedure name that is necessary to invoke the system
followed by one //SYSIN DD * card.

Page 8

D0ONIC USER'S GUIDE
WHIT YOU MUST KNOW TO USE DCMtNIC

The DOMONIV command and data cards are placed next in the deck
immediately following the //SYSIN DD * card. These cards are read one
at a time by the DOMONIC system just as if they were entered from a
terminal where each card represents one line from a terminal. This
implies that the first data card will contain a SIGGN command and that
the last card will be a SIGNOFF card.

There are often slight differences between batch jot decks from one
installation to ancther. Appendix B shows a sample batch job deck and
explains what information is reguired for a typical installation. The
example given sh6uld be adapted to the ccnventions and procedures for
your installation. Note that tie DOMONIC ccmmands and data will not

ch.ange, only the makeup of the rest of the deck may change.

Certain contentions apply to the use of cards in the DOMGNIC system.

They are:

1. Each card represents one input line.

2. Only those characters that can be punched on the

card can be input. Normally this implies no lower
case letters.

3. Since a card-oriented system is not interactive,

there is no character or line deletion.

4. All messages sent to you by the system will be

printed in uppercase letters. Output from

text-handling applications which have both upper
case and lowercase letters will print both

cases if the proper type line printer

is specified'in the JC1 cards. If net,

lowercase letters will be printed as the cor
responding uppercase letters.

Remember that each card entered in sequence in a card-oriented system

corresponds to each line entered, in Ecguence, in a terminal-oriented

system. Since all examples in this manual assume an IBM 2741

Communications terminal, it is only necessary to notice tie order in

which iiformation is required to be entered in ofder to prepare a

correspondimg card deck.

If the information being entered does not fit on one card, simply
continue it on the next card- AFTER YOU HAVE ENTERED All THE
INFORMATION FOR THAT CONMAN-D, TYPE A SEIICGLON (;). The semicolon
coavantion must he obsdrved even if the command you are inputting fits
on one card. The sem'icolcn is used by the system to delinit the end of
a command.

Page 9

DOONIC USER'S GUIDE

WHAT YOU MUST KNOW TO USE DOCNC

2.3 HOW TO USE DCONIC COHMANES

You communicate with the DOMONIC system by typing requests for work,

commands, at the terminal. (All references to terminals apply to card

input). Different ccmmands specify different kinds of work. You can

enter data into the system, modify the data and retrieve it. You can

specify data reguirements and document specifications for a project.

You can enter security orders for a project. -The ccmmand make the

facilities of the DOHONIC system available at your terminal.

When you input a command to the system, it specifies which system

function is to be performed. 7or some commands, the function involves

several operations that ca-n be identified separately. One of the

-separately identifiable operations can be specified (after entering the

command) by entering a-subcommand. A subcommand like a ccmmand is a

request for work. The work zeguested is a particular operation within a

function established by a command.

The commands and subcommands recognized by DOMONIC, form the DOMONIC

command language. ibe command language is diesigned for easy use. The

command names and subcommand names are descriptive of the work they

perform. The number of command names and subcommand names has bee-n kept

to a minimum. You need only know those commands associated with the

type of work you are to control-

In addition to entering the name of a command or subconmand, you are

often required to input more information to further clarify the work you

want performed. Operands (words or numbers that acccmpany the command

names) are used to define the additional information. Many of the

operands have default values which are used by the system if you choose

not to in-put the operand with the command or subco'uiand. Some operands

are required. If you neglect tc input a required operand, the system

sends 'you a prompting message asking you to supply the requested

operand.

In the case of a card-oriented system, the prompting message will be

output to the printer and the system will expect the operand to be on

the next .card read.

The publication, DOMONIC COMFIANf EFEBE1CE WANUAL, shows all operands

for each command, indicates the default values where applicable, and

describes how to enter the commands.

The DOMONIC system.allcws you to abbreviate many of thetcommand names,"

subcommand names and operands. You ca-n reduce the amount of typing'

required by using defaults and abbreviations. The abbreviations and

their use are discussed in the DCMCIC CCMMAND RE1BRENCE MANUAL.

Page 10

DOMONIC USER'S ,GUIWT
WHAT YOU MUST KNOW TO USE DCMONIC

2.3.1 WHEN TO ENTER A CCHNNAND OR SUECOSMAND

The system sends the message

READY

when it is ready to accept a new ccmmand. If the system is ready for

you to enter a subcommand or data, the system will output the name of

the current command or subcommand, such as:

EDIT

or

INPUT

If instead of entering a subcommand, you wish to enter a command, enter
the subcommand:

end;

The subcommand END will make the READY message appear again.

The system will accept commands until cue of the six commands (DEFINE

DATA, EDIT, ERASE, CENERATE, SYSTEM, MCNITOR, SECURITY) that have

subcommands is entered. Subsequently, the system accepts only the

subcommand's of that command until a READY message is reguested by

entering the END subccmmand.,

2.3.2 HOW TO ENTER A COMMAND OR SUBCCMAND

The system will send you a message when it is ready to accept a command

or a sub6ommand. Then you must:

1. Type the command or subccmmand name and theselected operands.

2. Type a semicolon (;) at the end.

3. Correct any typing mistakes with the character deletion character.

NOTE: This culy aprlies to terminals that

have a character deletion character,

such as backspace. The character

deletion character works like backspace,,

erasing t-he last previously not

erased charabter on tbe.line.

Press the RETURN key.

Page 11

4

DOMONIC USER'S GUIDE

WHk YOU MUST KNOW TO USE DOMONIC

If all the operands do not fit cn ene line:

1. Type the command or subccirmand name and the

selected operands.

2. If all of the selected operands do not fit

on the line, correct any typing mistakes on the line.

3. Press the RZTUFN key.

4. Continue entering the operands'. If they do

not fit on the next line, continue frcm 2.

5. After all-the operands have been entered.,

type a semicolon C;
6. Correct any typing mistakes on the final line.
7. Press the RETURN key.

Command names, subcommand names and operands can be typed in either

uppercase or lowercase letters. If ycur terminal has lowercase,
capability, you will usually find it more convenient to use lowercase.
Since the system outputs in uppercase, this, allows you to distinquish
your input from the system's messages in you. listing. The examples im
this manual follow this ccnvention;

2.4 HOW TO INTERPRET DO CNIC MESSAC-eS

There are four types of messages:.

*Mode Messages

*Prompting Messages

*Broa-dcast Messages

*Informational Messages

*Mode Messages

A mode message informs you the system is ready to accept a command,

subcommand or data. When the system is ready; the m6de message printed

at your terminal is:

READY

If you enter a comanand that has subcommands, the system will output a

mode message that is the name of the current command, such as:

EDIT

If the subcommand, you entered expects data to be entered,- the system
will type out the mode message:

IN-PUT

The mode messages are displayed when the mode changes.

Page 12

DOMONIC USER'S GUIDE

WHAT YOU MUST KNOW TO USE DfOCNIC

*Prompting Messages

If you neglected to input scme information or if some information you

input was incorrectly specified, the system will type a prompting

message. Such a message requests you to supply or Correct ftat

information. The following is an example of a prompting messagev

ENTER S-CURCECODE TYPE

You should respond by entering the requested operand: in this case the

source code type, and by pressing the RETUEN key to enter it. For
example, if the source code type is GRAPHICS you would respond to the

prcmpting message as follows:

ENTER SGURCECODE TYPE

graphics;

4 Broadcast nessages
Broadcast messages are messages of general interest to nsers of the

system. The system operator can broadcast messages to all users of the
system or to any specified 'signed-ron' user., Usually these messages

-will concern system availability. For example:

NASA WIlL HA1T OPEEATICNS FOR P.M. IN 30 MIN.

*Informational Messages
Informational messages tell you a-bout the system's status and your
terminal session. For example, an informational message may inform you
when,-document generation has ended, or bow much time you have used.
Infbrmational messages do not require a response. In some cases, an
informational message may serve as a mode message; for example, one that
informs you of the end of a subcommand's operation also implies that you
can: enter another subcommand.

2'.5 HOW TO USE THE EIP CCBLAND

-The HELP command provides ycu with information about the function,

syntax and operanids of commands and subccmmands. When you enter the

HEIP comma-nd., the system displays a brief discriFtion of the desired
function. If you need help tith the HELP ,command, enter:

help help;

If y-ou are already familar with the help command, you can enter the word
HELP to receive a list of the valid commands for the system. For

example:

VALID COBBfNDS ARE: SIGNCN, SIGNOFF, EDIT, SECURITY,

Page 13

DOMONIC USER'S GUIDE

WHAT YOU MUST KNOW TCG USE DGNONIC

MONITOR, GENTRATI, DTlIfE, ERASE, HiBIP, END

Tf 	you need help with one of the commands, for instance SIGN, you

would enter:

help signor;

The system res'ponds by typing out the function, syntax and operands of
the SIGNON 'command. You may however, enter the command followed by the
word,, FUNCTIOX, SYNTAX or OPRAND, if you do not need help with all

three.

2.6 STARTING AND ENDING A TEiMIN-AL ESSION

This shction describes the commands you ca-n use to:

. Identify yourself to the system.

* End your terminal session,.

2.6-.1 IDENTIFYINIG Y-OUESELF TO THE SYSTEM

If you are using a terminal, the first thing you must do is turn on the

power according tci instructions provided by your installation. In many

cases, you will find an instruction sheet such as the one-shown in

Figure 1 attached t6 the termial. in the example shown in Figure 1,

instructions 1 throug-h 8 must be followed tc turn cn the power and to
establish the connection iith the system.

After you turn on the power, you must use the SIGNON command to initiate

use or or gain entry to the DOMCNIC system. You must supply, as
operands of SIGNON, the user attributes assigned to you by your
installation. Your user attributes axe:

1. User Id (required) -- an eight character string that

identifies you to the system.

2. 	User-Password (required) -- an eight character string that
identifies the password that ycu are authorized to use.

3. Documentation-Unit-Td (required) -- a character string
-of maximum 30 characters thkat identifies the documentation unit
you, are going to wcyk on.

Your user attributes are recorded in the system, with the attributes of
all other terminal users. When you SIGNON, the system compares the

attributes you specify in the SlGNCN command to the recorded attributes

of each user to determine if you are an authorized user o-f the system.

Page 14

DOMONIC USER'S GUIDE

WHAT YOU MUST KNOW TO USE DOMCNIC

2.6.2 ENDING A TERMIINAL SIESSION

You can end your terminal session by rntering the SIGNOFF ccmmand.

The SIGNOFF command tremoves you frcm active status in the system tables,

e.g. recipe, template, etc.

After you have entered the SaGNOFF command, the system will print out at.
your termin-al or on your listing the elapsed time of the session.

Page 15

DOMONIC USER'S GUIDE

WHAT YOU MUST KNOW TO USE DCMCNIC

Trerminal *4

(Available 8:00 a.m. - 4:00 p.m.
For 	 additional time call S. -Warren ext. 220)

1- Turn ON/OT switch to OP."
2. Make sure the COM/iCI switch is set to CON1.
3. Remove handset fro telejhone (data unit).
4. Press TALK button on telephcne.

5. Dial ext. 225, 226, or 227.

6. 'Watt for a'high pitcbed tone. When-you bear this tone you are in

contact with the computer. If you get a busy signal or no answer,
hang up and repeat trom step 3 trying anotber extension.

7. Push-the DATA button on tle telep-hcne. If LATA button light goes
oft at any point during session, repeat from step 3.

8. Enter SIGNON command:

sigion user arseven password r7 dui nasadoc;

tuser-idi (password) (do cumentation-un it-idetif ier)

10. 	If you-arTe in the interactive mlcde, the system will prcmpt you for

your user-id, pssword and documentation-unit-id if you

fail to -enter them.

1. SIGNON will respond with the time and data, if the above items
- pass the security test.

12. 	 If a fault is detected, an error message is returned and the user
is asked to enter SIGWN again.

NOTE: Please turn C/OFF sw;itch to Ol after you enter SIGNOFF.

FIGURE 1 SAYPIE INSTSUCTION SHEET FOR A TERMINAL

Page 16

DO ONIC USER'S GUIDE

FUNCTIONS OF DOMONIC

3.0 FUNCTIONS OF DONONIC

DOMONIC is oriented to support project documentation. This section

summarizes terminolcgy relating to:

p-roject definition

-data definition
edocument generation

*data input

*project control

*security specification

osystem

'Project Definition

'Each project must have some-means of identifying itself and of keeping
its data separate fxom other projects. In the DOIONIC system a project
i called a DOCUMENTATION UNIT. The DOCUMENTATION UNIT ID (DU19 is a
unique name used to identify a specific DOCUMENTATION UNIT. All data
pertinent to a p;roj'ect is associated with its DOCUMENTATION UNIT. This
data might include management ccntrol informaticn, description of
project documentation reguirements, d-escription of document generation
requirements, the documentation data itself along with other.
aaministrative information.

'Data Definition

Each project manager must describe the data 'Yhich is to be generated to

complete the required documentation package. for that project. The data

definition for a documentation unit is called a TEMLATE. The template

describes the data required -to be collected and made part of the

documentation unit.

*Document Generation

The form and content of a document output from the system is specified

with a RECIPE. -The recipe describes which data in the documemtation

-unit is to be output, in which order it is to be prqcessed, whether it

is to be passed through a 'driver' for processing by a standard system

program such as a compiler, and any special formatting controls.

NOTE: Common libraries of both templates and recipes are maintained.

Thus, a documentation unit may make a copy of a template or a recipe

from the common template library or from the common recipe library. The

copy then becomes part of the documentation unit and is completely under

change control of that documentation unit.

,,Data inputDocumentation unit data, templates and recipes are input into the system

through use of the editor. The editor allows you tc type in and

interactively modify data. It recogni2es lowercase characters.

Page 17

DOIONiC USER'S GUJDE

FUNCTIONS 'OF DUMGNIC

'Project Control

Management of a project may benefit frcm rerorts produced by the

MONITOR. The monitor will be able to report on. terminal activity,

current status of documentation data generation.

*Security Specification

local managers will need to control access-to the various facilities of

the DOMONIC system. Some users will be allowed to specify recipes and

templates while others may be allowed only to access documentation unit

data. The manager may control access through the SECURITY command of

the system.,

[System

in order to maintain the system, systems analysts must be able to modify

critical system tables. System commands make it possible to make a

documentation unit known to the system and to manipulate data sets that

will be used as the permanent storage for the documentation units.

Access to the system command is restricted.

Page 18

DOMONIC US-ER'S GUIDE

ENTERING AND MANIPULATING DATA

4.0 ENTERING AND MANIPULATING DATA

Nearly all application systems are ccrceined with tte processing of

data.. Therefore, you should learn how to input data and how'to modify,

store, and retrieve data after it has been entered. Any group of

related data that is input is known as a data unit. For example, a data

unit may be a data element, template, recipe, or documentation aid

description (docaid)

A data element may contain:

* Source commands. compose d,of programming lang'uage statements

(PL/1, COBOL, FORTRAN, etc,).

*Text' for descriptions-. manuals, etc.

*JOCONOL (JCL) statements.

Templates contain:

*Statements in the data definition (template) language.

Recipes contain:

*Statements in the document generation (recipe) language.

-Text for literals.

Documentation Aid Descriptions contain:

*Statements describing plograms used for documentation and debugging.

-When you create a data unit, you must -give it a name. The system uses
the name to locate the data unit wtenever you vant to modify or retrieve

it.

The EDIT .command is used to create and edit data units. It operates in

either of two modes: In-put Mode or Edit Mode. When you use the EDIT

command to enter data into a data unit, you are using the input Mode.

When -you use the EDIT command to enter subccmmands to- edit the data in a

data unit, you are using,the Edit Mode.

In Input Node, you can type a line of- data and then enter it into the

data unit ty pressing the terminal's carriage return key br by entering

another card. You can continue entering lines as long as EDIT is

operating in Input Mode. If you-enter'a command or subcommand while in

Input-node, the system adds it to, the data unit as input data.

The system will,assign a line number to each line as it is entered.

- Line numbers make Edit Mode operations easier, since you refer to each

line by its number. You can ask the system to prompt you with the new

line number at the start of each ne-w input line.

Page 19

DOIONIC USER'S GUIDE

ENTERING AN) EAINIPUIATING DATA

After you finish entering data in the data unit, you can switch to Edit
Mode by entering a semicolon and striking the RETURN key or by entering
a card with a semicolon in the first column.

The system lets you know you are in Edit Mode by printing the following

message:

EDIT

In Edit Mode, you can enter subccmmands to point to particular limes of

-the
 data unit, to modify c renumber lines, to add and delete lines, or

to-control editing of input.

When EDIT is operating in Edit Mode, it uses a current-line pointer to

keep track of the next line of data to be processed. The operations you

specify with the sucommands are performed beginniig at the line

specified by the pointer. For example, the DElETE -subcommand deletes
the line indicated by the pointer. After a subcmmanad is executed., the
system repositions the pointer.

You may want to reposition the- pointer before a subcommand is executed.
You can do so h.y :eith-er of two methods: line number, editing. or context
editing. You can specify a line number as an operand of a subccmmand
and the system will move the pointer to that line before it executes the
subcomman-d. For context editing a set of subcenmands (BOTTOM, CHANGE,
UP, DOMN', and FIED) allow you to move the pointer up or down a specified
number of. lines, or to find a line with a particular series of
characters in it and move the pointer to it. After the pointer is
positioned, you can enter the snicommand that performs the function you
need. The subcommand may use an asterisk (j* instead of a line number
to specify the line indicated by the pointer, or it may operate on the
current line by default.

After you finish editingthe data, you can-switch tc Input Mode by

either of two methods: I

-1. Enteringythe INPUT or INSEETI subcommand.

2. Entering a semicolcn and striking the RETURN 'key or entering a

card with a semicolcn in the first column.

The system lets you know you are in Input Mode by printing the following

messa'ge=

INPUT

You can terminate the EDIT command at a-ny time by changing to Edit Node
(if you are not already in Edit Mode) and entering the END subccmmand.
The system then prints a BEADY message, and you can enter any c-cmmand
you choose.

Page 20

DOnONiC USER'IS GUIDE

-NTERIVG AND IANIPUlKTING DATA

If you .want to enter a blank line in your data unit, you must enter a
blank by pressing-the space ba-r and then the RETURN key or by entering a
blank card. You can then enter lines after the blank lines'. If you type
a semicolon in the first column or entcr a card. with a semicolon in the
first column this will cause EDIT to change modes.

-The
in:

rest of this section explains how

Identifying the data unit.
Data unit naming conventicns.
Creating a data unit.

*,Finding and positioning, the cur
Updating a data unit.

the

rent

snbco

line

mmands of

pcinter.

EDIT are used

Renumbering lines of data.
listing the contents of a data
Storing a data unit.

- Ending the EDIT functions.

unit.

,The followiing functions e-xplained in this section are performed with
commands other than EDIT:

- rasing -a permanent data unit

4.1 IDENTIFYING TE DATA U'iT

The EDIT command is used to specify the name of a data unit and whether
you want to create it or edit it. When you enter a data unit name, the
system will scan the existing names for the ame you entererd. If the
name does not exist, the system will put you in the Input Mode. The
following listing results when you enter a new data,unit called
NASAREPORT:

RE ADY
edit nasareport;

INPUT

If you wish to edit a data unit named MODULi.SUBSYSTEN. (DATA-
MANAGEMhENT,DFNDDTA) which has already been entered, the following will
result:

READY

edit mod-ule.sutsystem. (data-management,dfnddata);
EDIT

?age 21

DOMONIC USER'S GUIDE

ENTERING AND AVIEUATING DATA

4.2 DATA-UNIT RAMING CCNVENTIONS

The name you give a data unit should follow certain conve-ntions. A data
unit name can either be a template name, recipe name, docaid name or
data element name.

A template, recipe and docaid name all have a maximum length of 30
characters. The first letter must be an alphabetic character while
positions 2-30 may contain'alphabetic characters, digits, dashes and

underscores. No other characters including blanks are permissable.. Amn

example of a template name is:

SY STE-DATA-DETINITIO N

NOTE: A template name uniquely defines a template to the system. Within
a template, individual data elements of the docuientation unit are named
by a long name.

An example of a recipe'name is:

NASA-SYSTEM-RECIPE

An example of a docaid name-is:

FZOWCHARTER

A data element name consists of both data definition names and

identifiers.

NOTE: the rules for writing an iD (identifier) axe:
1. An ID has a maximum length of 30 characters.

2. It must begin with a:n alphabetic character.

3. Positions 2-30 may contain cnly alphatetic characters, -dashes,

digits and underscores,. Noother characters are petmissable.

The rules for -writing data element names are:

T. A short name must begin with the letter 'T' and be
followed by an integer. T1-T32759 are the only acceptable

short names. An example of a short name is:

T 1:3

2. A long name has a maximum length cf 30 characters. It

must begin with an al-phabetic character and [ositions 2-30

may contain only alphabetic characters, digits, dashes

and underscores. No other characters are permissable.

T'1-T32759 cannot be used as long names. They are reserved

Page 22

DOMONIC USER'S GUID

ENTERING AND MiANIPULATlNG LATA

for short names.

SYSTEm-ABSTBACT IN T3

(long name) (short name)

3. A simple data element name is a long> name or short name.

(See rules 1 and 2.) An example of a simple data element

is:

T5 (short name)
SYSTEM-ABSTBACT (2ong name)

4. To qualify a data element name simply give the na-mes-of the levels

in the template hierarchy. (See Figure 3.) An example of a
qualified data element name.is:

'MODUt-TITLE.SBSYSTEM-MODULES.SUBSYTE-MS

NOTE: As long as the qualified na-me is uiiglne;

level names do not have to be given. A qualified name

must be qualified.to the level which makes it unique,

but an identifier must be given for each level with

repeated occurrences whether or mot the data definition

name is given for that level.,

When g-ualifying data element names, the data definition
names must he depareted by period.s and must be listed
from the most specific to the least specific (from
bottom to-top). For example in Figure 3., if you wanted
'SUBSYTEE-ABSTBACT", you would enter:

SUBSYSTEi-ASTRACI.SUBSYSTES;

or

You could enter'just the short name.For example:

SUBS YSTxN-ABSTRACT. T2.;

or

T 1-. T 3;

or

T 14. SUBSYSTEMS

5. If any sub-level of a qualified name is a repeated occurrence,

Page 23

http:qualified.to

DOZONIC USER'S GUIDE

ENTERING AND HANIPULATING LATA

additional identifiers are needed in ord-er for the system to

locate the desired level.

An identifier for each level of heirarchy mtst be given from the

least specific to the most -pecific. For example:

SUBSYSTEN-NANE.SUBSYSTEB S(DATA-MANACIMENT,DTNDATA)

or

TL.T3 (DATA-MANAGEM1N,DFN-rATA)

If you want I-DESCBIPTION (Figure 3) located on level T10,
you would enter:

I-DESCRIPTICN. NODULE-INPU'I& SUBSYS2EM-MODULES..SUBSYSTENS
(DATA-MANAGEMENtDNIA.A,COMMOT-AREA)

or

T1O.T8.T5.TJ(DlTA ANGMNTDrNBATA,COFMON-AREA)

or

Any combination of long or short names:

I-rDESCRIPTI C (EAT -FN ACEM ENTDFNTATA ,CMNON-A REA)
T10 (DATA-MAINAGENENT,DFNLATA,COMNON-AREA)
I--DESCBIPTION.15 (EAThA-ANAGEMENT,DFfNlAaA,COMION-AREA)
T1-0.T(DATA-MANAGMENT,DNEATA,COMfl-nREA)

Identifiers must be enclosed within parenthesis,

separated by commas and listed from left to right

beginning with the most general to most specific.

(Begin at the top and work toward the bottom.)

4.3 CREATING A. DAA UNIT

You usually create a data unit when in the Input Mode of the EDIT
command. You request Input Mode when one of the following is done:

1. You press the carriage return key after typing only a semicolon
or a punched card is read with a semicolon in the first column.

2. 	You enter the INPUT subcommand.

NOTFE: This subcommand initiates line count and increment.

3. 	You enter the INSERT subcommand vith no operands.

Pace 24

http:I--DESCBIPTION.15

DOMONIC USER'S GUIEE
ENTERING AND BANIUILATING LATA

After entering the imput Mode the system sends you the following

message:

INPUT

After this message is printed tie system prints the first line number of

your data unit if you have requested prompting. The first line number

printed is 00010. Type the first line of input-to the right of the line

number and press the BETUMN key to enter'it. The system then prints the

second line number, which is 00020, and you may then enter your second

line of input, and so forth.

Nhen you -reach the end of the data, you enter a null line by typing a
semicolcn and Pressing the carriage return key or by entering a card,
with a semicolon in the first column. You w-ill then be in Edit Node.
You will also switch to Edit Mode when there is no more space for lines
to be inserted into the data unit and resequencing is not allowed or
when an error is -encountered when reading or writing the data unit. The
following is an example of the above:

READY

edit module-inputs.subsystem-mcdules.$u'tsystems (data management,dwrite);

INPUT

00010* enter-dwrite

00020- move wsam-area-number to wsam-io-area,

00030* -4* get the working storage data enttyy

00040 call 'wgtwsdat'using ccb,,cda

00050
EDIT

In the example., the line numbers have the standard increment of 1Q. If

you prefer a different increment, you can use the INPUT subcommand to

change it. To do this you must first requeit a switch to Edit Mode by

entering a semicolon and then striking the carriace return or entering a

card with a semicolon in the first column, after you receive the IN-PUT

message. Then entei the INPUT subcommand specifying the numbet of the

first line and the size of the imcrement. After entering the INPUT

subcommand, tie system switches to In'put Mode and prompts you' with the

first line namber. For example, to start with line 5 and use increments

of 5, you could use the fcllowing seguence:

Pace 25

DO1ONIC USER'S GUIDE

ENTERING AND MiANIPULATING £ATA

READY

edit module-inputs.subsstem--mcduJaes. subsystems(data-management,dwrite);
INPUT

0001.0;

EDIT

input 5 5;

INPUT
00005* enter-d-rite

o,0"01 move esam-area-number to wsam-io-area,

00015* get the imorking storage data entry *

00020 call 'wgtwsdat' using ccb,cda

00025;

EDIT

You can create the same data unit in Edit Mode. However, you must enter
the line-numbers you wish to use.

READY

edit module-inputs.su.bsystem-mcdules.subsystems (data management,dwrite) ;
INPUT

00010

EDIT

5 enter-dwfite

10 move wsam-area-number to wsaia-io-area,

15 * get the working storage data entry *

20 call 'wgtwsdat, using cct,cda-

NOTE: Requesting an increment larger than 1, makes it easier for you to
insert lines in your data unit later cn. (See 'Section 4. 5 for

instruction on how to insert lines in your data unit.)

4.4 FINDING AND ECSITIONING THE CURRENT LINT PCINTER

Unless you use line num-bers for all edit operaticns, you should know how

to find and reposition the current line pointer. These operations ire

explained in the following paragraphs.

4.4.1 FINDING THE CURRENT LINE POINTER

The location of the current line Fcinter is determined by the last

subcommand you entered. If you are editing an old data unit, the
current line pointer is positioned at the.last line of the data unit
upon initial entry into Edit Mode. - The following fi-gure shows the
location of the pointer at the end of each subcommand.

race 26

D0140NIC US-ERIS GUILE

ENTERING AND EANIrUIATING DATA

EDIT SUDCONNA1NDS

ALTER

BOTTOM

CHANGE
DELETE

DONN

END

FIND

HELP

INPUT

INSERT

Insert/Replace

/Delete

LIST

RENUM
SAVE

TABSET

TOP

UP

VERIFY

FIGURE 2

VALUE O0 POINTER AT BND OF SUBCO1HAND

Last line changed..

Last line (or zero) for empty data

units.

Last line changea.

line prece-ding deleted line (or zero

if the first line of the data units

has beed deleted)

Line n relatve lines,telow the last

line referred to, where n is the

value of the 'count' parameter, or

bottom of the data unit for line

zero fcx empty d-ata units).

No change.

line containing specified string, if

a'ny; else, no change.

No change.

last line entered.

-Last line entered.

Inserted line or replaced line or

line preceding the delete& line if any

(or zero, if no preceding line

exists).

last line listed.

Same relat'ive line.
No change.

No change.

Zero value.

Line n relative lines a-beve the

last line reterred to, where n

is tb value cf the !count'

parameter., (or line zero for empty
data units)

No change'.

VALUES OF LINE POINTER REFEREED TO BY AN ASTERISK

Page 27

DOBONIC USER'S GUIEE

ENTERING AND HANIPUlATING tAfA

If you do not remember this infcrmaticn, you can use the LIST subcommand
with the * (-asterisk) operand to find the line at which the pointer is
positioned. For example:

- list *;

THIS IS NHERE TEE CURRENT 1NE OINTER IS POSITIONED

You can also have the system display the line at which the pointer is
positicned every time the pointer changes as a result of the CHANGE,-
TOP, BOTTOM, UP, DOWN, FIND and DELETE subccmmands. To do this enter:

verify;

The VERIFY subcommand is in effect until you enter it again with the OFF

operand. For example:

verify off;

4.4.2 POSITLONING THE CURRFNT LINT POINTER

By using the UP, DOWN, TOP, EOJTCH and FIND subcom-mands, you can move
the current line pointer.

The UP subcommand moves the pointer a specified number of lines up,
relative to the beginning of your data unit. Tor example, to move the

pointer so it refers to a line located five lines before the location

currently referred to, enter;

up 5;

The DOWN subcommand-noves the pointer a zpecified number of lines down,

relative to the end of your data unit. For example, to move the pointer

so it refers to a line located 17 lines after the location currently

referred to, enter:

doun 17;

The TOP subcommand moves the pointer to the positicn preceding the first

line of your data unit. TOP is often used in combination with the DOWN

subcommand. For example, if You want the pointer to refer to the third

line of your data unit, use the following sequence:

top;

down 2;

The BOTTOM subcommand moves the pointer to the last line of the data

unit.

Page 28

DOHONIC USERBS GUIDE
EN'TERING 'AND MANIPUIATING DATA

The FIND subcemmand moves the pointer to a line that contains a

specified sequence of characters. For exam.ple, to move the pointer to

the line that contains SUBSYSTM-NAME, enter:

find xsubsystem-name;

-The -7x inserted before 'subsystem' is a special delimiter that marks
the beginning of the s.equence of characters the system has to locate.
The special delimiter can be any character cther than a number, blank,
tab, or asterisk. The special delimiter must be placed next to the
first character of the sequence yo-u want to find. Any blanks inserted
between,the special delimiter and the first character are considered to
be'part of the sequence of characters. You must not use-the extra
character in thd character string.

4_.5 UPDATING A DATA UNIT

Certain functions of the EDIT command allow you to update a data unit.

For example, you may:

1. Delete data from a data unit.
2. insert data in a data unit.

3. Replace data in a data unit.

.4. Change lines in a data unit.

5. Renumber lines of a data unit.

NOTE: The Insert/Replace/Delete function inserts, replaces
or deletes a line of data without indicating a subccmmanA

name. If you want to insert or replace a line, simply
s-pecify the location and the new data. To delete a line,

indicate the location. A line number or an asterisk

should be used to specify the location. The asterisk

tells' you that the location to be used is pointed to by

the line pointer vithin the system. By using the UP, DCWN,

BOTTON and FIND subcommands, you can change the line

pointer.

These functions are explained in the fcllow.ing paragraphs.

4.5.1 DELETING DATA FROM A DATA UNIT

If you want to delete only one line, you do not heed a subccnmand.
Indicate only the line number or-an asterisk. For example , if you want
to delete line 38, enter:

38;

race 29

DOMONIC USER'S GUIDE

ENTERING AND EANIPULATING DATA

If you.want. to delete the line indicated by the current line pointer,

enter:

You can also use the EIETE subcommand to perform the same function.

For example:

delete 38;

or

del *;

DELETE also allows you to delete consecutive lines. To do so you can

specify the line numbers of the first and last lines to be deleted, or

the number of "lines to be deleted starting with the line indicated with

the current line pointer. For example, if you want to delete all the
lines between and including lines 9 and 64, enter:

delete 9 E4;

If you want to delete 22 lines beginning with line 6 and the current

line pointer is currently positioned at line 6, enter:

delete * 22;

If you want to delete all the lines in your data unit, use the TOP and

DELETE subcommand in combination, specifying for DELETE a number of

lines greater than the number of lines in your data unit or another

asterisk. For example:

top;

d-elete 9
99999;

or

del ;

After the system deletes the lines you requested, the current line

pointer is positioned at the line befome the first deleted line.

4.5.2 INSERTING DATA IN A DATA UNIT

To insert only one line in a data unit, you do not need a subcommand;

indicate only the line number. The line number referred to should not

Page 30

-DOMONIC USERIS GUIDE

ENTERING AND RANIPUlATING DATA

exist. (That is, it should fall between two nonconsecutive line numbers
in the data unit.) For example, if you want to insert 'hOVE 3.1416 TO
PI' as line 55 enter:

55 move 3.1416 to pi;

The characters you want to enter must be separated from the line number
by a single blank., Any additional blanks or commas. are considered to be
part of the input data. You may opticnally use the tab key to separate
characters from the line number or asterisk. In this case all blanks,
including the first, resulting from the tab will be part of the input
data. The number of blanks resulting from the tab is determined by the
logical tab setting. The logical tab setting results from
subcommand or the default tab setting.

the TABSET

To insert one line of data after the current line, use
subcommand with the insert-data operand. For example:

the INSEBT

list *

MOVE 3.1416 TO PI
insert circum = 2-* pi * radius

The rules for separating data from line numbers also apply for

separating,inserted data from the subccnmand name.

When you want to insert more than one line, use the INSERT or INPUT

subcommands.

NOTE*: The NSERT subcommand increments each line by 1 and the INPUT

subcommand increments each line by 10.

The INSERT subcommand inserts one or more lines of data following' the

location pointed to by the current line pointer. If the data you are

entering is longer than that line-, ycu will receive a message informing

you of a truncation. In order to add the extra data, you must insert a
new line.

For example, suppose you have the following data unit:

D0 75 tlr10.
ELEMNT (I) =ELENNT (I) +2
Y (a,I) =X (IJ)

75 CONTINUE

To insert three lines after the entry for YJ,I)=X(I,J) and before 75
CONTINUE, you must first position the current line jointer at the third
line. your listing would look like this:

Page 21

DOEONIC USER'S GUIDE
ENTERING AND MANIPUIATING DATA

EDIT

top;

down 2;

insert;

INPUT
.do 66 m-1,3

-a(m)=x (i,j) +elemnt (m)
33 cohtihue

(null line)

EDIT

You 'must enter a null line by typing a :emicolon and striking the
carriage return key or by entering a 'card with a senicolon in the first
column. A null line shifts the mode from Input to Edit.

The INPUT subcommand is used in a manner similar to the INSERT
subtommand. Use an asterisk in the INPUT subcoimand'to indicate that

the lines of input that follow are to be inserted in the location

following the current line pointer. For example, assume that you have

the following data unit:

DO 75 1=1,,10

EIEHNT (I)=E1EMNT (I) 42

Y (J,I)=X (I,J)

75 CONTINUE

To insert four lines after the line fcz Y(J,I)=X(I,J) and before 7-5
CONTIN'UE, enter:'

EDIT
top;:

downi2;

input *;

INPUT

do 66 m=I,3

a (m)=x (i,j) +elennt (m)"

33 continue

(null line)

EDIT

Note that after you' enter the INSERT or the INPUT subcommand, EDIT
changes to Input mode.

You tan use the INPUT or INSERT subcomma-nd to replace lines or to insert

one or more lines of data between two existing lines of the -data unit.

You can also specify a smaller increment for the neA lin e numbers so
that they fit between the line numbers of the-existIng lines by
specifying the INSERTsubcommand. For example, suppose you have the
following data unit:

Page 32

DOONIC USER'S GUIDE

ENTERING AND EANIPULATING DATA

RETURN-CODE

=0--EVERYTHING IS OKAY.

=1--IDENTIFIER NOT GIVEN BY USER.

=2--DATA NAME IS VAIIE.

To replace the third and fourth lines, you must first position the
current line pointer at the third line.

EDIT

top;

down 2;

input * r;

INPUT

=1--too many operands.

=2--invalid data name.

(null line)

EDIT

Your updated data unit would look like this:

RETURN-CODE
=0--EVERYTBING IS GKAY.
=1--TOO MANY OPERANDS.
=2--1NVALID DATA NA-ME.

In the following example, tle data unit with line numbers is:

00010 RETURN-CODE
00020 EVERYTRING IS OKAY.
00030 IDENTIFIER NOT GIVEN BY USER.
00040 DATA NAME IS VAlID.

To replace -lines 30 and 40, your listing should lock like the following:

EDIT
input 30 r;

INPUT

00030 =1--too many operands.

00040 =2--data name is invalid.

00,050 ; -null line)

EDIT

Your updated data unit will look like the following:

00010 RETURN-CODE

00020 =0--EVERYTHING IS CKAY

00030 =1--TOo MANY OPERANDS.

00040 =2--DATA NAME IS INVAlID.

Page 33

DOEONIC USER"S GUIDE

ENTERING AND ANIUATING DATA

You can also replace a line and insert additional lines. For example,
assume the same data unit:

00010 RETUBN-CODE

00020 =0--EVERYTHIN G IS 'OKAY.

00030 =1--IDENTIFIER NOT GIVEN BY USER.

00040 =2--DATA NA,ME IS VALID.

To replace line 30 and insert two lines with a line increm.ent of 2, your
listing should look like tie following:

EDIT

input 30 2 r;

INPUT
00030 =1--invalid change order number.

00032 too many ojerands..

00034 data name is invalid.

00036 ; (null line)
EDIT

Your updated-data unit will look as follows:

00010 RETURN-COflE

00020 =0--EVERYTHiNG IS CKAY.
00030 =1--INVALID CHANG-E ORDER NUMER.

00032 TCO MANY OPERANDS.

00034 DATA NAi IS'INVA.IE.

00'040 =2--EATA NAME IS VAlID.

To replace more than one line with a greater number of.lines, you can
also use the DELETE 'subcommand to delete those lines and then use either
INPUT or INSERT to insert the replacement lines.

Use of the numbers subcommand causes thbe line numbers to be printed each

time the data is,printed. This is the. system default. It works in
conjunction with the prompt feature of the input sutcommand; For
example:

numbers on;

Use the CHANGE subccmmand to change only part of a line or lines. Use
the ALTER subcommand, an option of the CHANGE subcommand, to replace a
single character uith a hexadecimal number. For example, to change the

characters 'SYSTEM STATUS' to 'NASA BEPOET' in line 16 of your data

unit, enter:

change 16 xsystem statusxnasa report;

Page 34

http:IS'INVA.IE

DO!ONIC USER'S GUIRE
'ENTERING AND MANIPULATTNG DATA

NOIE: since you are replacing a 13 character string with an 11

character string, the system autcmatically squeezes up the line and

justifies the line to the left.

The 'x' placed before the characters to be changed and the replacement

characters is a special delimiter that marks the beginning of those

seguences of characters. The special delimiter can be any character

other than a number, hiank, tab, or,asterisk. Make sure tle character

you choose as a special delimiter does not appear in the sequence of

characters you specify. If you leave blanks between the last character

to be replaced and thie special delimiter for the replacement characters,
the blanks are considered part of the characters to be replaced. The
special delimiter need not appear at tie end of the replacement
characters unless other parameters are to follow.

An asterisk may be used in place of a-line number., For example, if the

change is in the line currently indicated by the current line pointer,

enter:

change * .system statusxnasa report;

You can have the system search for a sequence of characters in a range

of lines rather than in one line. You can indicate the range of lines

by giving the numbers for the first and last lines of the range, or by

indicating the current line pointer and the number of lines you,want to

have searched. for example, if the characters 'SYSTEM STATUS' appear

somewhere between lines 1'0 and 18, enter:

change 10 18 ?system statusnasa report;

If the characters appear within the 5 liTes starting with the one

indicated by the current current line pointer.

change * 5 ?system status?nasa report;

NOTE: the above examples find and change the first and only the first

instance of the string 'SYSTEM STATUS'.

You can change the sequence of characters every time it appears within

the range of lines. To do this specify the, ALL operand after the

replacement seguence. The special delimiter must be used to end the

replacement string before typing 'all'. For example,

change 10 18 xsystem statusxnasa reportxall;

or

change * 10 xsystem statusxna:sa reportxall;

Pace 35

DONONIC USER'S GUIDE

ENTERING AND ?ANIPUIATING DATA

if you desire, you can have the system find a sequence of characters in

a line and print that line up to those characters. You can then type

new.characters to complete the line and enter the new line when you

press the carriage return key. For example, assume you want to change

the charabters 'FRIDAY" to 'MONDAY' in the. following line:

00018 PROJECT BEPOET DUE FRIDAY

Your listing will look like the following:

change 18 /friday;

00018 PROJECT REPORT DUE monday

If the characters you want to change are in line indicated by the
current line pointer, your' listing would loo-k like this:

change * /friday;

00018 PROJECT REPORT DUE monday

You can also ask the system to print out a specified number of

characters of a given line. Then you can enter te characters you want

to replace the remaining characters in the line. For example, you can

ask that the first 15 characters of tle line 3 PROJECT REPORT FINISHED'

be printed:

ch-ange 18 15

00018 PROJECT REPCRT finished

You can have the system print the first-several characters of a range of
lines. This is particularly useful when you want to change a column in
a table. For example, assume you have the following data unit.

00010 SECURITY CECK

00*012 J. SMITH S2
00014 Ml. SCHNIICKER R6
00016 1. 7UINOjSEI Z9

00018 G JONES J10

If you want to change the data in the last column, which begins in

position 21, enter:

change 12 18 21;

00012 J. SMITH js1

00014 H. SCHMICKER ms6

00016 1. ZUINOWSKI zl0
00018 G. JONES gj5

If you want to change the data in the last column and the current
line pointer is at line 12, enter:

page 36

DOMONIC USERT'S GUIDE

ENTERING AND EANIPUATING LA'A

change * 5 21;
00012 J SMITH js1
00014 M. SCHMICKER ms6
00016 1. ZULNOXSXI zl0
00018 G. JONES gj5

You can insert a character sequence at the beginning of the line. For

example, if line 22 of your data unit is as follows:

00022 MISSILE SYSTEMS

enter:

change 22 xxnasa report of

to obtain:

00022 NASA ETBOT OF MISSILE SYSTEMS

You can also delete a character sequence using the CEANGE subcommand.

For example, to delete NASA from line 22 atove, enter:

change 22 xnasaxx;

or

change 22 xnasax;

to obtai.:

0.0022 REPORT OF BISSILE SYSIEMS

4.6 FERUMBERING LINES OF DATA

You can use the RERUN subcommand to renumber the lines of a data unit.

If you enter:

renum;

the system assigns new line numbers to all the lines of the data unit.

The first line will be assigned the number 10 and subsequent lines will

be incremented by 10.

You can assign'a number to the first line of the data unit. For

example, if you want the first line to have number 5, enter the

following:

Page 37

DONIONIC USERIS GUhDE.

ENTERING AND MANIPULATING DATA

renum 5;

The remaining line numbers will be 15, 25, 35, etc.

You can specify an increment other than 10 in addition to the number of
the first line. For example if you vamt the first line to be number
one, and the remaining line numbers to increase by 5, enter:

renum 1 5;

You can specify-that renumbering'is'to start at a given line. You must

also specify the new number for this line (which must be iqual to or
greater than the cid line number) and the increment. For example, if
you want to start renumbering at line 42, and the new line number is to
be 4,5 and the increment is to be 5, enter:

renum 45 5 42;

If you use the RELUM subccnmand to renumber your data unit, the renumber
increment you specify is used when you enter the INPUT" subcommand the
next time during the EDIT session. For example, if the following
-sequence occurred:

li st;
00010 LINE 1 OF DATA UNIT

00020 LINE 2 OF DATA UNIT
00030 LINE 3 OF DATA UNIT
END OF DATA
renum 3 3;
input;
INPUT
00012 line 4 of data unit
00015 line 5 of data unit
00018 ; (null line)
ED IT

Your datatunit would look like this:

00003 LINE 1 OF DATA UNIT
00006 INE 2 OF DATA UNIT
00009 LINE 3 OF DATA UNIT
00012 LINE 4 OF DATA UNIT
00015 LINE 5 OF DATA UNIT

If you want to override the existing line number increment use the

increment operandd on the INPUT subcommand.

Page 38

DOMONIC USER'S GUID'E

ENTERING AND MANIPULATING DATA

4.7. LISTING THE CCNTENTS O1 A IATA UNIT

The LIST subcommand allows you to display the contents of a data unit.

To list -the entire ccntents of the data unit,. enter:

list;

*.To list a group of lines, enter t.e number of the first and last lines

of the group. For example, to list lines 60 through 140 of the data

unit, enter:

list 60 140;

You can also use the current line jointer and the number of lines to be
listed. For example, to list the 10 lines that begin with the line
indicated by the pointer enter:

list * 10;

To list only one line, indicate the line number or the current line

pointer. For example, if you wish to list line 72, enter:

list 72;

If you want to list tie line pointed at by the current line jointer,

enter:

list-;

You, can use the SNUM cperand to sulpress listing the line numbers..

list snum;

list 60 140 snum;

list * 10 snum;

list 72 snum;

list * snum;

The LIST subcommand uses a standard listing format. . The lines displayed
will consist of only the data pcrtion of the records. For example,' to
list a data unit with line numbers suppressed-

list SNUN;

LINE 1 OF DATA UNIT

LINE 2 OF DATA UNIT

LINE 3 OF DATA UNIT

END OF DATA

Page 39

DONONIC USER'S GUIDE

ENTERING AND MANIPULATING EATA

If you list a data unit with nuzbers, the system will separate the line

number from the data with a blank. The line number prints to the left

of the data. For example, data with a 5-digit line num-ber would print:

list;
00-010 LINE 1 OF DATA UNIT
Q0020 LINE 2 OF DATA UNIT
00030 LINE 3 OF DATA UNIT

4.8' STORING A DATA UNIT

The data unit you have created or the changes you made to a previously

existing data unit are -retained by the system only' rntil you finish

using the EDIT command and its subcommands. That is, as soon as you

notify the system that you want to use another command and you get a

R'ADY message, your newly created data unit, or your new set of changes,
is discarded. If you want the system to make your new data unit'a
permanent data u-nit, or if yor want the system tq incorporate your
changes into the existing data unit, ycu must use the SAVE subcommand of
the EDIT command.

For example, in the fcllowing sequence you create a data unit named

MOULE-CODE and ask the system to store it as a permanent data unit:

READY

edit modtle-ccde (editor, esvalid);

INPUT

00010. identification division

00'020 program-id esvalid

00030 envircnmen± division

00040 ; (-null line)

EDIT

save;

EDIT

end;

READY

In,the following sequence you add a aine'to the MODULE-CODE data unit
and ask the system to make it part of the d ata unit:

READY

edit module-code (editor, esvalid) ;

EDIT

40 remarks

save;
EDIT
end;

Page 40

DOMONIC USER'S GUIDX

ENTERING AND MANIPULATING -ATA

RIEADY

In some cases you may want to retain the existing data unit intact and

have the system make the changes to a data unit that is a copy of the

original data unit. To do this you mu-st enter a new data unit name for

the copy when you enter the save subccmmand. For example, if you want

to keep the MODUII-CODE data unit intact, and you vant your changes to

be made tO a copy, of MODUlE-CODE n amed 'esvalid2', use the following

sequence:

READY

edit module-code (editor, esvalid)

EDIT

40 remarls

save module-code (editor, esvalid2) ;

EDIT

end;

READY

Now you have two -data units. The one named ODULE-CODE (EDITOR,

ESVAID) looks like this:

00010 IDENTIFICATICN DIViSICN

00020 PROGRA-M-ID ESVAIID

00030, ENVIRONMENT DIVISION

The data unit na:med MODUI-F-CODE (EDITOR, ESVAITD2) looks like this:

00Q.10 IDENTIFICATION EIVISTON_

00-020 PROGRAM-ID ESVALID

00030 ENVIRONMENT fDVISICN

00040 BEMARKS

You can use the SAVE subcommand whenever you are using the EDIT ccmmand.
For -example, you can create a data unit and sav.e it. Then you can start
making changes to the data unit and once you, are satisfied with those
changes you can save them to make - them part of-the data unit. For
example, in the following sequence you create a data unit, save it, find
a character string, change it, delete lines 160C and 1610, insert a
line, renumber the data unit, list it and save it.

Page 41

DOMONIC U'SERIS GUIDE

ENTERING AND HANIPULATING DATA

READY

edit module-ceae (editor, esvalid);

INPUT

01580 *remove command name

01590 call 'extiact]' using command-length, commd-buffer
01600 *data name found
01610 call 'enampars' using common-contrcl-blcck
01620

EDIT

save;

EDIT

tdp-;

find c'ommnd-buf fer;

01-590 CALL 'EXT'EACTI' USING COMMAND-1ENGTH, COM11ND-BUFFER

change * xcdmmdccom~mand4
01590 - CALL 'EXTRACTLI USING COM1AND-iENGTH, COMMAND-BUTEER,

delete 1600 1610;,

insert * remove data name if many;

renum;

list;

01580 *REMOVE -CCiMAND NAMl

01590 CAIL 'EX2RACTL' USTNG COMMAND-LENGTH, CCMfAND-BUTFER

01600 *RE.OVE D-ATA NAME IF MANY

0161-0;

save;

EDIT

end;

-READY

Page 42

DONONIC USER'S GUIDE

ENTERING AND MANIPULATING DATA

4.9 -ENDING THE EDIT FUNCTIONS

Use the END subccmmand to end the cperation of the EDIT command. If you
have made changes'to your daia unit And have not entered the SAVE
sabcom-mand, the system -will 'ask -you if you want Lo save the modified
data unit. If so, you can enter the SAVE sulcommand. If you do not
want to save the changes, re-enter the END subcommand.

After you enter the END sutcommand, you receive the READY messaqe. Ycu

can then enter ang command you choose.

4.10 ERASING A PERMANENT DATA UNIT

Use the ERASE command to remove a permanent data unit from a

documentation unit. Once a data unit has been erased it can no longer

be retrieved as an old data unit by issuing an EDIT command. Any

reference to it vill tc as a new data unit.

For example, to eras a data unit named 'rODUIE-CODE1 and uniguely

identified by h6 identifiers (data nanagement,dxrite), enter:

erase modtule-code (data-management, dwrite);

Other examples are:

erase auto-flow docaid;

erase user-manual common recipe;

If the data unit is found, the system iill prompt you to be sure that
you wish to peTmanently erase the data unit.
decide to erase. A typical 'dialog would be:

Your answer is' yes if you

erase system-block-diagram;

If you wish, to erase this data unit enter YES. For example:

yes
THE DATA UNIT REQUESTi- HAS BEEN SUCCESSFUY EBASED
en.d;
READY

Page A3

DOMONIC USER'S GUIDE

TEMPLATES AND DATA TEFINITIONS

Short Data

Name

T SYSTE-M-CVERVIEW, TEXT, MAX 10,000 LINES, /*NORD

DESCRIPTION OF THE SYSTEM*/;

T2 SYSTEM-BCCK-DIAGEAa, GRAPHICS, MAX 25 PAGES, /-SYSTEM

FLOWCHARTS*/;

T3 SUBSYSTEMS, MAX 20 TIMES ID=SUBSYSTEM-NAME;

T4 SUBSYSTEE-NAE IN T3, TEXT, MAN 30 CHARACTERS;

T5 SUBSYSTEM-MODIES IN T3, MAX 500 TIMES ID=MODULE-TITLE;

T6 MODULE-TITIE IN T5, TEXT, MAX 30 CHARACTERS;

T7 EODUIE-CCDE IN T5, SOURCICODE=COEOL El/i ASSEMBlIER,

MAX 100 TIMES, /*STRUCTURED PROGRAMMING IS TO BE

USED IN ALL PROGRANS*/;

T8 MODULE-INPUTS IN T5, MAX JO TIMES I=I-DESC;

T9 I-NAME IN TB, TEXT, MAX 8 CHArACTErS;

T10 1-TESCRIPTION IN T8;

Tli* MODUE-CUTPUTS IN T5, MAX 10 TINES ID=C-NAME;

T12 ONA'E IN T10,-TEXT, MAX 8 CHARACTERS;

T13 O-DESCRIPTION IN T10, TEXT;

T14 SUBSYSTEN-ABSTRAC IN '3, TEXT, MIN 3 PAGES;

T15 MODULE-ABSTRACT IN 15, TEXT, EXACTIY 2 PAGES;

FIGURE 3 S'OUECE TENEATB LISTING FROM TEE EDITOR

Page 44

DOfONIC USER'S GUIDI

TEMPLATES AND DATA DEFINITIONS

!I1 SYSTEN-lVERVJHW

T2 SYSTE-BLOCE-DIAGRA

T3 SUBSYSTEMS

T4 SUBSYSTEM-NAME

T14 SUBSYSTEM-RBSTIACT

T5 SUBSISTEM-ODULES

T6 MODULE-TITLE
T15 MODULE-ABSTRACT
T7 MCDUIE-CODE
T8 MODUIE-INPUTS

T9 I-NAME

T10 I-DESCBIPTION,

T11 NODULE-OUTPUTS

T12 O--NAME

T13 O-DESCEIPTION

FIGURE 4 BOUND TEMPLA'E LISTING FROM DEFINE DATA

Page 45

DOONIC SERIS GUID"F

TENPLATES AND DATA DEFINITIONS

5.0 !EMPLATS8 AND DATA DEFINITIONS

Templates specify basic elements of i'formation reguired to develop,and

document a programming project. The manager, hy mean-s of a template

names the data elements to be collected, specifies their characteristics

and defines their hierarchical relationships to each other. The data

characteristics include, a,data element's type (TEXT, GRAPHICS,

SOURCECODE), its length and the number of times it can be repeated. The
hierarchical relationship detbrmines where it is placed in a tree

structure corresponding to the'template.

5.1 TYPES OF TEMTIATES

There are two types of templates: source templates and bound templates.

Source templates are in character string form amd are stored in -the

common template library or in the private template library for the

documentation-unit. A bound template is created from a source template.

'It has a fixed internal structure which makEs possible the storage And

retrieval of data elements. There is cnly ome bound template for each
documentation unit.

5.2 SOURCE TENPIIATES

A source temFlate consists of a seguence of data definitions. Each data

definition describes a data element of the documentation unit. The

source template is entered through the editor in the normal line by line

fashion.

The editor handles the source template just as if it were lines ot text.
Each line may be changed, listed, deleted, etc., using the full range of
editor subcommands. The editor does not interpret the template data
definitions. ifhen the edit session is finished, the source template is
saved in the template library of the documentation unit. Many source
templates can be-stored in the template library.

5.3 TEMPLAIE SIRUCTURE

Template data definition language descriies data element attributes and
specifies the hierarchical structure of data elements in a documentation
unit. In order to specify hierarchy there are two types of data
definitions, those which define group levels (hierarchy) and those which
define data elements.

PaGe 46

DOMONIC USERIS GUIDE

TEMPlATES AND DATA DEFINITIONS

A group level definition is one which has other definitions subordinate
to it.

The data elehent definition is one which does not have any other

definitions subordinate to it. Only data elements definitions will have

data physically associated with tem.

The highest level in the template is the template itself and is
implicitly defined to be level zero. (See Figure 4 -'Section 5.)

In addition to a.template-baving hierarchy it may also have depth. The

depth is achieved by allowing data definitions to be used multiple

times. The data defintion can be replicated; each replication being

uniquely identified. The nunber of times a data definition can be

repeated cam be controlled by the template writer. The repetition is

created when the actual data is entered and stored.

5.4 EATA DEFIXITICN lANGUAGE

Templates contain definitions of data elements. Tbese data definitions
describe what data is to be entered by system users for project
development and documentation. The template is normally designed by the
project managet or is designate before development begins. The data,
definition language is used to write source templates.

A data definition (a statement in the data definition language) consists
of a short and a long name for the definition, a list of attributes
(repetition factor, units of measure, data element type) , designation of
position in a hierarchy and an explanation of the data definition. Each
data definition in a source template starts ith a short name and ends
with a semicolon (;). The data definition format-is:

short-name long-name {IN fatler-short-tame] [data-element-type]
[units-of-measure] [repetition-factor] f/*explanation*/];

short-name

a IT' concatenated with a five-digit integer less than 32760.

Valid short-names range from T1 tc 732759, TO is a system

assigned short-name and always refers to the top level. It

- cannot be assigned to a data definition in the template.

Page 47

DOfONIC USER'S GUIDE
TEMPLATES AND DATA DEFINITIONS

long-name
the descriptive'name of the data definition. It is a character
string of length 1 to 30. The first character must be
alphabetic, characters 2-30 may be alphabetic characters,
digits,. dashes or underscores. Short-names are not valid
long-names.

father- short-nam.e
the shortname of the data definition in the template to which

this data definition is subordinate (at the next lowest level

in the hierarchy). If 'IN- is not specified the-entry is

assumed to.be on the main level which is referred to

by T0. Se-yen levels of subordination are Ferm-itted.

data-element-type
the type of data element this data definitlon defines.
Da.ta-ele-ment-ty-pe may be either TEXT, GRAPHICS', or SOURCECODE.
The for-mat for data-element-type is:

T-RXT

A-NY

SOURCECODE = lang-1 lang-2....

GRAPRICS

where lan g'l lang-2... ae separatedby blanks and are chosen

from COB01, FORTIZAN, ASM, P1/i. The .defatult for

data-element-type is TEXt.

unit s-of-mea sure
specifies limits on the size of the data element, if. any.

The format for the units-of-measure is:

MIN CHABACERS
-MAX integer WORDS -

EXACTLY LINES
MANY PAGES

where MAX, KIN, EXACTLY, MANY (sizetest) and the integer

(between I and 3'2759 inclusive) limit the size f the data
element and CHARACTERS, NORDS, LINES, PAGES give the
units-of-measure textmeasure) . One word is 10 characters,
one line is 60 characters and one page is 50 lines.

Page 48

DONONIC USER'S GUIDE

TEMPLATES AND DATA DEFINITIONS

Defaults:

1. 	if no units-of-measure is given, the default is

MANY CHARACTEBS.

2. 	 If the sizetest is given and textmeasure is not, the

default for textmeasure is CHARACTEFS.

S3. 	If sizetest is not given and textmeasure is given, the

default for sizttest is IXACTLL.

'The units-of-measure determines the size of the stored data

element and in no way affects the size or format of any output.

repetition factor,

specifies how may times a data element or group of

data elements may occur. The tormat for the

repetition-factor is:

MAX
MIN
EXRCTIY integer TIMES ID = id-def-name
MANY

wh-ere MAX, MIN, EXACTlY, MANY (sizetest) and the integer

(between 1 and 3275,9 inclusive) 2imit the number of times

a data element or g.oup of data elements may occur..

The id-def-name is the name (short or long) of the data

definition whose value uniquely identifies a particular

occurrence of a data element. TIMES and the ID = phrase

must always be given in the reretition-factor.

Defaults:

1. 	 If sizetest is given and tie integer is not, the

default is MANY TIMES.
2. 	If sizetest is not given and the integer is given,

- the default is EXACTLY integer TIMES.
3. 	 Sizetest MANY overrides any integer given.

expl 	anation

any description or instruction about the data to be entered for

the definition. Any EBCDIC character string is allowed.

Data definitions for group'-levels may contain only .e short-name, long
name, IN phrase and repetition-factor rarts of the generalized data

definition. Data definitions for' data elements may-contain all parts of

the generalized data definition. The only parts which are required for

a definition are the short-name and the long-name; all others will take

default values.

Page 49

DOHONIC USER'S GUIDE

TEMPLATES AND DATA DEFINITIONS

5.5 BOUND TEMPLATES

Once the manager is satisfied with his data definition (as written in a

source template), it can -he translated into the bound temvlate for the

docume-ntation unit. The bound template consists -of a number of internal

system tables which determine the structure and the attributes of the
data in the documentation unit. It also contains pointers to maps which
tell where data is stored. The operation of producing these tables is
known as 'binding the template'.

The template binding process creates a bound template from a source

template. Prior to binding, no data elements may be eitered iito a
documentation unit.

Template binding is the main function of the DEFINE DATA command. The

DEFINE DATA command also provides -access to the-subcommands to make

additions or corrections to a bound template. After. the user has

entered the DEFINE DATA command, he'may enter the template manipulating

subcommands for which he is authorized.

5'. 6 BINDING TEMPLATES

The tw o subcommands of DEFINE DATA used in bindixg templates are the

TEST subcommand and tLe SAVE subcommand.

The TEST subcommand performs what might be called 'trial binding'. The

format for the TEST subcommand is-

TEST USING source-template-name;

The source-template-name is the name of a scwurce template'stored in the
documentation unit' s private template library.

In the TEST process, the source template is read in line by line from

the'source template library. Each line is scanned to recogtize and
extract the data definitions. A data definition may continue across

many lines but always begins with a short-name and ends with a

semicolon.

As the data definitions are isolated, each is checked for ptoper syontax.
If syntax errors are found, a message is sent to you.

Page 50

DOMONIC USER'SGUIDF

TEMP-LATES AND DATA DEFINIffIONS

Scanning continues even though an error is found so you can be-notified
of all syntax errors. If no syntax errors are fo-un6, the structural
relationships given in the 'IN' phrases of definitions are checked for
validity. If a structure error is found the checking of further
relationships is terminated. If nc errors are found, you are informed
the ttial binding process was successful. No reaults from the TEST
subcommand are saved in the documentation unit. It is designed-for
'deb-ugging' the source'tem~late.

The SAVE'subccmmand of DEFINE EllA creates the bound template. The

format for the SAVE snbcomnand is:

SAVE USING source-template-ame;

The s6urce-temriate-name is the na-re of a source template stored in the

documentation unit.

The SAVE subccmmand performs the same operations as the TEST subccmmand

exce.pt that if the syntax and structure are erro--free, the SAVE

subcommand creates the bound template.

5.7 CHANGING BCUND TEMPITIS

The template writing and binding procedures are designed to encourage
yon to make most of your changes to the source temilateb.efore it is
bound by utilizing the editor. Hovever, additions and changes to the
bound template are inevitable. The ADD, CHANGE and DELETE subcommands
of D-EFINE DATA'are used to alter h bound template.

The ADD subcommand has the folloving format:

ADD long-nam[ej IN fathcr-short-name] [-data-element-type 3
[units-of-measure] [repetition-factor 3 [/*exrlaaiation*/]

vhere all the variables listed in lowercase letters are the same as

those defined in Section 5.4.

When an ADD operation is performed, a short-name for the new data

definition is automatically assigned. The bound template is altered to

reflect the nex definition..

Page 51

DONONIC USER'S GUIDE

TEMPLATES AND DATA EEFINITO,1NS

The CHANGE subcommand is used to change a data definition name, its

attributes or its place in the hierarchy. The format of the CHANGE

subcommand is:

CHANGE old-data-def-name = new=def-name,
[IN fatter-short-name],

[data-Element-type),

[units-of-measure],

[repetiticn--factor],

[/*explanaticn--/]

Certain changes which could cause ambiouities or wuld necessitate

chang.es to the data'base itself are prohibited. Foi example a change

from a repeated group to a n.enrepeating group. Suppose the data

definition for T17 as originally specified as occuring MANY TIMES. If

data exists for any occurrence of T17 then

CHANGE T17 EXACTLY 1 TIME

would be prohibited.

Or a change from a larger size to a sraller size (e.g. from 100 pages to

30 characters) would he prohibited because it would necessitate looking

at the data to, see if it were already larger than 30 characters.

To delete a data definitiom in a bound template, use the DELETE

subcommand of DEFINE DATA. The format of the DELETE subcommand is:

DELETE data-def-name [in fatter-short-name]

If the data definition to be deleted has other data definitions

subordinate to it, then all of the subordinate definitions will be

deleted. (The entire subtree for which data-def-name is the root will

be deleted.) If the data definition to be deleted cr any data

definitions subordinate to it have data associated with them, the

deletion is prohibited.

in this case you must first use the ERASE command tc erase the data

elements and then return to DEFIN EATA's DEIETE suhcommand to delete

the data definition.

Fage 52

http:chang.es

DOIMONIC USER"'S GUIDE
TEMPLATES AND DATA DEFINITICNS

After changes have been made, the LIST subcommand can be used to get a

listing of tire bound template. The fcrmat for the LIST command is:

LIST TEEPtATI;

This will give a listing of the bound template for your documentation

unit with indentation to show levels of subordination. (See FIGUBE 4)

If you want a listing of the data definition names and their

associated attribntes enter:

list template attributes-;

,For instance if you entered the above command, the system would

respond by typin.g cut:

T00001 S-STEM-OVEBVIEW IN 100000, TEXT, MAX 1000-0 LINES

etc.

In addition to the above informaticn you may also recleive a

listing of any 6xplanations. For this infarmaticn, enter:

list template attributes explanation;

If the,above command vas entered, the system would type out:

(REFER TO FIGURE 3)

T00-001 SYSTEM-OVERVIEW IN T00000, TEXT, MAX 10000 IINES

/*jWf DESCRIPTION OF TfE SYSTEM*/

etc.

To end a DEFINE DATA session, use the END suhcommand. The format for

the END subcommand is:

END;

Page 53

DOMONIC USER'S GUTEF

RECIPES AND DOCUMENT GENEEATION

DEFINE NASA"SISTEN USING SPAR1, &SUERCPE RICIPE-CIASS IS 5

/*THIS IS TEE HIGHEST LEVEL BECIPE OF A SIT OF RECIPES NECESSARY

TO PRODUCE A DOCUMENT FROM THE DATA STORED UNDER TEMPLATE NASA

-SYSTEB*/;

STREAM $PRINTER TO EPINTER;

/*SET OUTPUT NAME SPRIETER TO POINT TO LOGICAL NAME P5INTER*/;

STREAM $OBJSET TO LISK1

/*POINT OBJECT MODULES TO PIEMANENT DISK DATA SET*/;

LITERAL 'DOMONIC' OUTPUT IS ($PIIN7ER,+20)

/*TITLE TO BE PRINTED 20 LINES DEEP CN A NEW PAGE*/;

&PARM1 OUTPUT = (,5)
/*ROUTE THE DATA-ElEMENT &PAE1 TO BE SANE OUTPUT STREAM AS THE

PREVIOUS LITERAI. FIVE BLANK LINES ARE INSERTED BEFORE PRINTING*/;

END NASA-SYSTEM;

FIGURE 5 EXAMPLE OF A SIMPLE RICIPE

Page 54

DONONIC USER'S GUIDT.

RECIPES AND DOCUMENT GENERATION

DEFINE NASA-SYSTEM USING SPARM1, &SUBECPE RCIPE-CLASS=7
/,-THIS IS THE HIGHEST LEVEL RECIPE OF A SET OF RECIPES NECESSARY TO

PRODUCE A DOCUMENT TRCM DATA STORED UNDER TEMPATE-NASA-SYSTEM*/;,
STREA-I SPRINTER TO PRINTER;

/*SET OUTPUT NAME SPRINTER TO POINT TO LOGICA NAME PRINTER*/;
STREAM SOB'JSET TO DISKi

/-POINT OBJ-ECT MODULES TC PEIRMANENT DISK DATA SET*/;
LITERAL 'DCMONIC' OUTPUT IS ($PEINTER,--20)

/*-TITIE To BE PRINTED 20 LINES DEEP ON A NEW PAGE*/;
SYSTEM-OVERVIEW OUTPUT = (,5)

/*BOUTE THE DATA 7 ELEMEIIT FPABM1 TO THE SAME OUTPUT STREAM AS THE
PREVIOUS LfITIRAL. FIVE BIANK LINES .ABE INSERTED BEFORE PRINTING*/;

CALL SUBSYSTEE-HlANDLER USING IDITOB-SUBSYSTEM,CAII,EDITOB,CALL,

ESAVE,CAIL,EIEPUT

/*GET SU-BECIPE FOR DCCUMENTING THE RECIPE*/;

DEFINE SU-BSYSTEM-HANDIER USING &SUBSYS,&VERBI,&MOD1,&VERB2,

MOD2,-&VERB3,SMCD3 TECIPE-CLASS=5

I /*A RECIPE TO HANDLE EOCUMENSATION OF A SUBSYSTEM*/;

LITERAL. 'EDITOR-SUBSYSTEM" OUTPUT IS '($PRINTER,+O)

/*PRINT SUESYSTEM-NAME AT TOP OF PAGE */,

T12 (EDl:TOR-'SUBSYSTEt) OUTPUT IS (SPRINTER)

/*WRITE THESUBSYSTEM ABSTRACT*/;
/*THE FOLLOWING INSTRUCTIONS ARE PROTOTYPES TO HANDLE

SUBSYSTEMtIODULES/;
CALL MODUIE-HANDLER USING EDITOR, SPRINTER;

DEFINE MODULE-RANDLER USING SPGN1," &OUTPUT1 RECIPE-CIASS=3
/A RICIPE TO HANDLE INBIVIDUAl MOD:ULES IN A SUBSYSTEM*/;

LITERAL 'EDITOR' -OUTPUT IS ($PRINTER,3)
/*PRINT MODULE NAME AFTER SKIPPING 3 LINES*/;

T1.3 (EDITOR) ThUTPUT IS (sPRINTER)
/-PRINT THE MODULE ABSTRACT*/;

'$COBT2DY INPUT - T7 (EDITOR) , OUTPUT = ($EDITOR)
/*-INVOKE COBOL TIDY PE-OG.RAM FOR SOURCE MODULES; TIDIED

SOURCE SATED ON TEMPORARY DATA SET*/;
$COBCOMT INPUT = (SEDITOR), OUTPUT = (SPRINTER, SCBJSET)

/ZNVCKE COBOL COMPILER; SOURCE INPUT IS FRCM PREVIOUS
DATA SET; PRINTED OUTPUT GOES TO SOUTNAME, OBJECT CODE

GOES TO SOEJSIT*/;.

END NODULE-HANDLEB;

END SUBSYSTEM-HANDLER;

'
EN'D NASA-SYSTEM;

FIGURE 6 TXAMPLE OF AN EXDANDID RECIPE WHICH WAS INVOKED

BY TBE CCMMAND, vGENERATE NASA-SYSTEM USING SYSTEM-

CVERVIEW, CALL;'

Pace 55

nOinIC USER"S GUIDE

ThCIPES AND DOCUMENT GENERATION

6.0 RECIP-S AND DOCUIENT GENEFATION

The vehicle for producing output from DOONIC is the recipe. Recipes

,provide the link between raw data stored in the documentation unit and

development and documentation aid programs which prcduce output.

Examples of documentation aids are compilers, linkage editors, text

formatters, flowcharters and crcss reference generators.

Recipes may be simple or complex. A simple recipe might be a recipe to

compile a single program and produce a -listing. A complex recipe such

as one to produce a user's manual co-mbines many data units with many

output producing programs and formats all outputs into a document with
table of contents, chapters, headings and page numbering. A recipe is a
combination of data unit names from the documentation unit, names of
out ut producing programs and. instructions for processing amd formatting
the overall document.

The recipe is written in the recipe language. It is entered into the

documentation unit through the editor and stored for immediate or future

"
xse. All editor facilities can be used to input and update the recipe.

The editor treats a recipe as if it were text and does not interpret

recipe instructions.

6.1 DOCUMENT GENERATICN

The goal of document generation is to make the production of documents

as easy as possible for you. In order to do this three entities used in

document generation must be specified in advance. These are a recipe, a

documentation or development aid description (docaid) and a logical
physical device table (1-P table). All are part of the documentation

unit.. In addition, another table, the input-output stream table is

automatically built during the generaticn process. This table is not

retained after document generation. The recipe, docaid, L-P table,

input/output stream table are used during the recipe expansion and

document production process.

The actual document production is a separate batch job executed
independently of the system. The job stream for this batch job is
created during the recipe expansicn process performed under the control
of DOMONIC. When the job stream has been created by the IBM 4ersion of
DOMONIC, it is written to a HASP intern-al reader. (For systems without
HASP, the job stream is written on a disk and an OS reader must be
started using an operating system command.)

Page 56

DOOCNIC USER'S GUIDE

RXFCIPES AND DGCUIENT GENERATION

6.2 RECIPE EXPAFSICN PROCESS

The recipe expansion prccess'ccmpiles a job stream (sequence of job

control language statements) which prcduces a document from a group of

inputs specified by you. Before explaining the recipe expansion process

the various inputs are described.

6.2.1 RECIPE

A recipe is a sequence of instructions written in tte recipe language.

describing how a document is produced. Recipes can be used-as main

,recipes or as subrecipes. Recipes may be defined with parameters. This
allows the writing of general purrcse recipes in which the names of data
elements or documentation aids are specified when the recipe is invoked.
If a recipe is defined with yarameters, the corresponding arguments must
be supplied in the GENEEATE command or CALL instruction. Up to four
levels of calls are permitted.

6.2.2 DOCUMTNTEIION AID DESCRIPTION

A documentation aid description (drcaid) is similai in many ways to a-n
IBM assembly language macro definiticn. It consists of a docaid
prototype statement and a series of model statements. The prototype
statemefit gives the name of the docaid and, its symbclic parameters. Tie
model statements model job ccntrcl language (JCL) statements and control
cards. One or more job steps are generated from the model statements.

The symbolic parameters of the dccaid prototype statement are diviled

into three classes:,inputs, outputs and options. The format of the

docaid prototype statement is:

$docaidname [INPUT= (i-i,...)] OUTPUT= (o-1,...) -OPTIONS= (p
- 1,...)]

docaidnam e

the name by which the documentation aid will be referenced.

Syntax is the same as for template and recipe names.

i-i

a list of input parameters. Ttey correspond to inputs specified

in the model statements. There are two types,:

data-unit-names

usually the name of a data element, but could be a template-,
recipe or docaid (last three treated as text). A data-unit
input parameter generates a DD * statement in the job

Page 57

c-i

DflONIC USER'S GUIDE

RECIP-ES AND DOCUMENT GENEBATION

stream. This is followed by the data r4trieved from the

data base

i-o stream name

the name of an input data set generated by a previous

ste,p in-the document producticn. The name must start

with a $ followed by alphabetic character concatenated

with zero to six more characters.

a list of i-o stream names used for output frm this documentation
-aid (may later be inputs to other doQaids). They correspondW
to outputs in the model statements.

p-i1

a list of option parameters used as simple replacement parameters

in the model statements. If a parameter contains multip-:le

items, it must be enclosed in parentheses. The whole character

string without the parentbeses will be used in replacement.

An input, output, or option parameter is referenced in the "aocaid model

statements according to the follcwing conventio7:

&Xnn

where "

S is.reg.uired and marks this as a replaceable parameter.
k is one of the letters 1,0 or P for input, output, option

respectively.
n(n) is a one or two digit number uniquely defining the parameter

within its class.

The following is a example of a docaid and its expansion during

recipe generation. The name of the private'docaid is COBC1-CCMPILE.

/&SP1 EXEC COBUC,PARM='CLIST'

//SYSLIB DD-DIS =SHR, DSN=TSO.NASA.COPYLIB

//SYSIN DD :11 (SPi)

//SYSLIN DD SO1,(T1)

During the execution of the recipe, the i-o name $OBJIB has been
streamed to the logical stream name OEJIIB whose physical entry
in,the k-P table (see 6.2.3) is 'DISP=SHR,DlN='SO.NASA.OBJLIB'.
Similarly, $SOURCE has been streamed to SOURCLTB whose physical

Page 58

DOMONIC USER'S GUIDE

RhECIPES AND DOCUMENT GENEBATION

entry is 1 DISP=SHR,DSN=TSO.NAS&.SOURCLIB'. The following docaid

prototype statement was used in a recipe:

$COBOL-COHPILE INPUT=SOUBCE

iOUTPUT=$OB4JIIB OfTICNS=EDITOR

The expansion of the docaid 'COBOI-COMPIIE' is as follows:

i/,EDTOR EXEC CCBUC,P1M='CLIST1

//SYSLIB DD DISP=SR,DSN=TSO.NASA.CCPYIIB

//SYSIN DD DISP=SBR,DSN=1SO.NASA.SOURCLTB <EDITOB)

//SYSLIN-DD DISP=SHBDSN=TSO.NASA.OBJLIB(EDITOR)

Docaids are entered using the editor and stored in the library for the

documentation unit or in the system, ccmmand library.

6.2.3 IOGICAi STREAM-PBYSICAI DEVICE TABLE

The logical stream-physical device table (L-P table) links logical i-o
streams used.in a recipe to actual physical devices. 'he table is
entered into the recipe library for a documentation unit by a,JCI
programmer using the ,editor. Any number of these tables may be entered
into the recipe library, each with a unique name. The table to be used
in a r.ecipe expansion is designated in the GENERATE command. If none is
specified, the system L-P table is used.

Each entry in this table has two parts: 1) a logical stream name and 2)
a JCL phrase defining the physical device. For example a logical stream
with the name PRINTER could define a physical device with JCl phrase
SYSOIJT=A. The format for table entires is:

I=logical-stream-name; P=physical-device-J-Ci-phrase;

An L-P table can be listed either in the form it was input by using the

editor or formatted by using the liST subcommand of the GENERATE

command.

The logical stream names are asscciated with input and output names used
in recipe instructions by using a STREAM instruction.

Page 59

DOONIC USER'S GUIDE
RECIPES AND DOCUMENT GENERATION

The recipes, docaids and tie 1-P tables are all members of the library

of a documentatioit unit. Tbey are permanent in nature. They -must all

exist before a GENERATE command is issued.

In addition a temporary table (input-output stream table) is created

only for the duration of the recipe expansion.

6.2.4 INPUT-OUTPUT STREAM TABLE

This table'contains a list of correspondences between input and output

names used in: recipes and logical stream names in the L-P table. The

assignment of a input or output name to a logical stream is done by the

stream instruction in a recipe. Tie- assignment is only valid for a

given recipe expansion and document generation. It can be changed

within the same expansion or from cne recipe expansion to another. This

allois you to direct in-puts a-nd outputs to different devices without

- changing input and output parameters in recipes.

6.3 - RECIPE INSTRUCTION LANGUAGE

A recipe is composed2 of a sequence of character strings called
instructions. These instructions define-the inputs to be used, where

the output is to be placed and the documentation aids to 'be used to

generate the output. The geneoral format for a recipe instruction is:

instruction-ame [operands] [/explanatin*/];

The instrhction name is taken from the set of instruction names DEFINE,
END, CALL, STREAI, $DOCAID,, 111RA1, LIST or -DUIVIY. In addition, the
LITERAL instruction may be replaced by using the reguired literal string
in quotes while a fully qualified data element na-me may take the place

of the LIST instruction. The total length of the instruction-name and

operand fields may not exceed 9-80 characters after any variable

pa-rameters have been-replaced with real arguments. The operands are

determined by the syntax particular to the instruction and the

explanation field is any character stri:g.

6.3.1 DEFINE INSTRUCTICN

The define instruction names the recipe. It is the first instruction in
a recipe and marks the beginning of the recipe. The format for the

define instruction is:

DEFINE recipe-name [IVSING-Sparm-1,...] [RFCIPE-ClASS = n]

Page 60

DODONIC U-SER'S GUIDE

RECIPES AND DOCUMENT GENERATICN

[/!*explanaticn / ;

recipe-name
the name of the recipe being defined. It can be from I to 30

characters (alpbabetics, digits! dashes, underscores) long and

must start with an alphabetic character.

&parm-1

a list of parameters replaced by read values (arguments)

when the recipe is called from the-library to generate output.

Parameters are alphanumeric, 1 to 8 characters long and must start

with an ampersand.

n
an integer in the range 0-9 whic-h denotes the class of this recipe.

This field is compared to a user's reci~peathorizatidi for

permission to use this recipe. Class 0 is for the simplest

recipe's while class 9 is for the rcst complex. Recipes with a

class of 7 or higher may only be generated using the batch version

of DOMONIC. If the RECIPE-CLASS ptrase is omitted from the

define instruction, a class value of 9 is assumed.

explanation

a character string explaining the recipe.

6.3.2 END INSTBUCTION

The end instruction marks the end of a'recipe. Each recipe must begin

with a DEFINE instruction and end with an END instruction. The format

for the end instruction is:

END [recipe-name] [/*explanaticn*/];

.Page 61

D0O0NIC USERIS GUIDE
RECIPES AND DOCUMENT GENEE'IION

recipe-name

The name of the recipe being defined. It can be from 1 to 30

characters (alphabetics, digits, dashes, underscores) long and

must start with an alphabetic character. The use of this field is

optional. However, if it is used the name must m-atch that on the

Define instruction for the recipe.

explanation

a character string explaining the recipe.

6.3.3 .CALL INS-iEUCTICN

The call instruction is used to invoke a recipe from another recipe.
This instruction can be thought of as a 'subrecipe' call. Arguments may
be passed to match the parameters defined for the recipe. The format
for the call instruction is:

CGI, recipe-name [USING a'rg-1,... Jf/*explanation,/];

recipe-na me
a valid recipe name.

arg-1
-a list of, arguments ccrrespcnding to the parameters define6 for

the called'recipe. Each argkiment is a character string with

a maximum length of 510 characters. If an argument .contains

a comma, the argument should be enclosed in parentheses. The

parentheses -are.not-considered a part of the-argument.

explanation

any character string.

6.3.4 LITERAL INSTRUCTICYN

The literal instruction is 'sed to insert a literal into the output

stream (usually the printer). The format for the literal in'struction

is:

[LITERAL] 'literal-string'

[OUTPUT= ([outp ut-name][,s ip-r])]

[/*explanation*/];

Page 62

DOMONIC USER'S GUIEE

RECIPES AND DOCUMENT GENELkZION

literal- string
a character string. if a single quote is desired withih'the

literal string, txo quote marks together must be used.

outp ut-name
the name of the out-put stream to w-hich the literal is to be
routed. If not given the I-0 NAME $PRINTER is the default.

skip-n

an integer s-pecifying the number of lines to be skipped from

the current position before outputting this line. To start

a new page and then skip n lines precede the integer with a
plus sign, e.g.. +10. A value of zero will suppress skipping,
to a new line. The default is 1 line.

explanation
any character string.

6.3.5 DATA-UNIT INSTRUCTION

The data-unit instruction is used to retrieve a data unit and moute it

to a designated outrut stream-(usually the printer) for inclusion in the
document. The format for the data-unit instruction is:

[IIST] data-unit-name-I,...
[OUTPUTj= ([output-name][,skip-n]]) [/*explanation*/];

data-unit~name-l

a list of data units to be retrieved and output. If more than

one data-unit is listed.the data retrieval will be concatenated

on output.

output-name

the name of the output stream to -hich the data units are to be
ronted. The I-0 NAME $PiNTBR is the default if no output option
is given. The output line format will depend on the data unit type.
Elements of type SOURCBCCDE and docaids will halve each line
expanded to an 80-character card image with data left justified.
For templates, recipes and elements of type text and graphics
the data will be divided into 132 character printer lines. Each

line of the data unit will start on a new line- Data unit lines

longer than 132 characters will be continued on subseguent printer

lines.

Page 63

DOMONIC USERIS GUIDE

RECIPES AND LOCUBENT GENERATICN

skip-n
an integer specifying the number of lines to be skipped from the

current position before outputting this line. To start a new

page and then skip n lines precede the integer with a plus sign,

e.g. +10. A value of zero will suppress skipping to a new line.

The default is 1 line.

explanation

any tharacter string.

6.3.6 $DOCAD INST-UCTITN

The Sdocaid instruction invokes a develCrment or documentation aid. The

OCt necessary to execute the appropriate docaid program during the

generation of a document is assembled. The operands of this instruction

names the inputs, outputs,and options to be used for this execution of
the documentation aid program.. The operands are used to replace the
dummy parameters in the docaid model statements. For a further
discussion of docaids see Section 6.2.2. The format for the Sdocaid
instruction is:

$docaid--na-me [INPUT=(i'-,...)]

I CUTPUT= (0-1,...)J

[OPTIONS=(p-i,...)] [/*exrlanation*/];

docaid-name

the name of the docaid in the recipe litrary. Follows the rules

for forming template and recipe names.

i-1

a list of data unit names (usually data element names) or input

names which refer to input streams or temporary data sets.

An input name starts ith a $ followed by an alphabetic character

followed by 0-6 alphabetics and digits.

0- 1

a list of output names referring to output streams or temporary

data sets. The name formation rules are the same as for input

names.

p-1

a list of o'Ftions for the documentation aid program. Each option
can be a.character string ur to 100 characters in length.

Page E4

DOMONIC USER.S GUIDE

RECIPES AND £OCUMENT GENERATICN

explanation

any character string.

6.3.7 STREAM INSTRUCTION

The stream instruction assigns input and output na-mes (i-o names) used

as acguments in a $docaid, literal or data-unit instruction to logical

input-output {i-o)- streams. The lcgical i-c streams must correspond to

existing entries in the L-P table. The format for the stream

instruction is:

STREAM i-o-nam-e TO logical-stream-name [/*explanation*/];

i-o-name

an input or an output name used in a $docaid, literal or

data-unit-instruction.

logical-stream-name

the name of a logical i-c stre-am in the I-P table given in the

GENERATE command.

expla nation

,any character string.

6.3.8 DUMMY INSTUCTION

The dummy instrxction is an instruction that does nothing. It is a 'no
op.' instructicn. It will most commonly be used as an instruction

genherated.as the result of the replacement of a recipe parameter by the

argument "DUMMY' in a recipe call. The dummy format instruction is:

DUAMMY [any character string];

The dhmmy instruction is used, to vary the d-ocumentation aids invoked or

the output produced by a recipe. For example, suvpcse• e have two

recipes, RECIPE-i and-RECIPE-2 and data element SYS.TEMABSTRACT wh'ere

RECIPE-1 calls' BECIPE-2.

DEFINE RECIPE-1 REC2Pt-CA-SS=1;

Page 65

http:genherated.as

'
DON1CNIC USERIS GUIDE

RECIPES AND DOCUMENT GENERATION

CALL RICIPE-2 USING.__. ,..,SYSTEM-ABSTrRACT;

CALL RECIPE-2 USING . , . ,DUUEY;

END RECIPE-I;

DEFINE RECIPE-2 USING , ,&INST RECIPE-ClASS=2
/*list out data elements*/;

SINSTi OUTPUT-$PRINTER

END RECIPE-2;

RECIPE-i calls RICIPE-2 twice. The first time it lists

SYSTEM-ABSTRACT, the second time nothing is listed. If the 'foulowing

command is issued:

GENERATE RECIPE-1;

in the expa-nded RECIPE-I,' RPECIPE-2 expandq to a data unit instruction

and a dummy instruction:

SYSTEM-ABSTRICI OUTPUT=$PRINTER

DUMMY OUTPUT=$PRINT1R

This example of the, dummy inEtruction also serves an an introduction to

the subject of recipe expansicn.

Page 66

DO7IONIC USER 'S GUIDhE

RECIPES AND DOCUMENT GENERATION

6.4 BECIPE EXPANSION AND OUTPUT GENERATION PROCESS

The recipe expansion process starts with a GENERATE command. The

command names the recipe to be used, supplies recipe arguments and

identifies the lcg.cal stream-pbysical device table (L-P table) to route
outputs generated.

You first enter a GENERATE command. The command is parsed. The recipe

library is searched for the recipe and 1-P table names given. If they

are found, the L-P table is assembled and both are stored in working
storage. The system returns to you for a subcoiimand.

The GENERATE command has -six subconmands. They are SCAN, PROCF, RUN,

LIST, HELP, and EN-D. None of these subcommands require operands, except
the PROOF subcomnand does allow the use cf an operand 'WITH JCL'. The

format is the subcommand name fcllowed by a semicolon.

Use the SCAN subcommand to do syntax checking of recipes. The SCAN

starts with the first line. of the main recipe and Irocedes through the

recipe line by line, expanding the recire calls as it goes. Each line

is checked for correct syntax. The entire expanded recipe is listed

back to you with subrecipe calls indented. For exaiple if you entered

the command:

ge-nerate nasa-system using overview-a, subsystem-handler i-o-table =
standard-io-table;

The system would then ask you to enter a GENERATE sifcommand, in this

case SCAN. The system would then give you a printout of an expanded

recipe like the one in 'igure 6 plus any error messages. Soe possible

error messages would be:-

RECIPE NAME IN DEFINE INSTRUC ION NOT SAME AS IN PREVIOUS CALL.

ONLY 4 LEVELS OF SUBRECIPES ARE AILCWED.

END INSTRUCTION MISSING FOR ENED OE RECIPE.

etc.

The PROOF subcommand checks the existence of inputs and docaids and
prints an abbreviated listing (Iroof copy) of data referenced in data
unit, literal or docaid instructions. , As in SCAN, a syntax check is run
first. If a syntax error is found, the subccmmand is changed to SCAN
and appropriate error messages are printed. In either case, the
expanded recipe is listed. By using the 'WITH OCL' option, you can get
a listing -of the generated job control language in addition to data.

' An example of the J'ROOF subccmmand is.:

generate cobol-compile using (recipe,rgetdata) ,cist;

Pa.ge 67

DOMONIC USER'S GUIDE

RECIPES AND DCCUENfT GENERATION

ENTER GENERATE SUBCCMMAND.

proof;-

DEFINE-COBGl-CCMPILE USING &MOENAME, SPARM RECIPI-CLASS IS f0

$COBCOMP INEfT=CODE(RECIP B,RCETDATA) ,OPTIONS=CIIST

567 ** TO LINES FROM'I INPUT DATA-UNIT 1 FOLlOW,-TYPE IS COBOl.

000010 IDENTIFICATION DIVISION.

000020 PROGRAM-ID. RGETRATA.

END COBOL-COMU-IIE

An example of'the PROOF WITH JCl is:

generate cobol-compile using (recipe,rgetdata),clist;

ENTER GENERATE SUECOMMAND.

proof with jcl;

//GENTEST JOB (X036,MVASA,5,5G),tflASCALI GEN DOC'

/-*mASSUORD AS A,N74

/*CLASS. A

/-ROUTE PRINT iRINTER3

DEFINE COBOL-COMPIlE USING &HODNAME, &PARM RECIPE-CLASS IS 0

$COBCGMP INPUT=CODE (RECIPE,RGETDATA) , OPTIONS=CLIST

//CARDFORM EXEC PSM=ULSTCARD
//STEPLIB DD DISP=SHRjfDSN=TSO.NASA.LOADLIB
//WRITER TD UN2T=SYSDA,DISP=(NEW,rASS) ,DSN==&&TEMPA,SPACE=(TlK,10)
*/SYSOUT DD SYSOUT=

//READER DD

567 **4 TWO IIEES FFOF INPUT DATA-UNIT 1 FOlLOW, TYPE IS COBOL.
00001-0 IDENTIFICATION DIVISCV.

000020 PROGRAM-ID. RGETDATA.

//COBOL EXEC COBUC,PARM='CLIST'

S//SYSLTB DD DISP=SHR,DSN=TSO.NASA.CCPYLIB

//SYSIN DO DSN=8&TEMPA,DISP=(OD,PAS-S)

END COBC-L-CCMPILE

When you are ready to produce the actual document, use the RUN
subcommand. As in PFOOF, if a syntax error is found, the subcommand is

-changed to SCAN. If some other error cck-rs, processing of the recipe
is halted and an error message is printed.

For example:

generate cobol-compile using (recipe,rgetdata),clist;

generate cobol-compile using (recipe,rgetdata),clist;

ENTER GENERATE SUBCCMliAND.

ru n;

Page 68

DONONIC USER'S GUIDE
RECIPES AND DCCUIIENT GENE'ZTION

For a formatted listing, of the 1-P table named in the GENERATE command,

use the LIST subcommand. The C1NTRATI session may be terminated by the

subcommand END.

An example of the use of the LIST subco,mand is:

generate compile-and-list;

ENTER GENERATE-SUBCOMfAND.

list;

506 LOGICXL NANT PEYSICAJ DEVICE.

507 PRINTER SYSOUT=A

507 PUNCH SYSOUT=(E,,50811716)

507 OBJLIB1 DISP=SH,DSN=TSO.NASA.OBJLIB

507 SOURCLIB DISP=SHR,DSN='ISO.NASA.SOURCLEB

507 SAVEIJE UNIT=SYSEA,ISN=STEMPFILI1,DISP=(.NFW,PASS

),SPACE=(TRK,10),
507 DUMPTAPE UflIT=TAPE9,VOL=SEF=N-ASATP ;DISP= (NEW,KEEP

IPBg= (,6)

Page 69

DOI-IONIC USER'S GUIDE

INITIATING A PROJECT

7.0 INITIATING A PBCJECa

The.SYSTEM command allows you to use SYSTEM sut1commands. . These
subcommajds are used by the systems analyst to maintain the system and
modify critical system tables. Since SYSTEM subcommands are not for use
by general users, access to this command is restricted. In order to
execute the SYSTEM command, a special documentation unit identifier and
password must be used at SIGNON.

In ge-neTal, the SYSTE subcommands are designed to make a documentaticn
unit kno-n to. the system and to manipulate the data sets that will be
used as the permanent storage for the documentation units. If a
documentation unit is initiated using ecmmon data sets, private data
sets can not be alJccqted at a later time.

A data set is a physical gronp of records on a disk that has been

allocated and named. All data sets whose names are used in a-ny of the

subcommands must be online, properly initialized and available to the
system.

To initiate a -new documentation unit, use the INITIATE,subctmmand.

To allocate a new, private data set to am existing documentation unit
that was originally initiated using private data sets', use the ALLOCATE
subcommand.
To deallocate a data set from an existing documentation unit, use the

DEAL.OCATE sutcommand.

To attach commdn data sets to tbe-system, use the ATTACH subcommand.

To remove a common data set from the system, use the DETACH subcommand.

If the system determines a documentation unit currehtly has storage

allocated to it on the data set, tle data set will not be dEtached.

For information on comxmands and command syntax, see tte DOHCNIC COMANAD

REFERENCE MANhAL.

Page 70

DO1IONIC USER'S GUIDE

ENTERING AND CHANGING SECURITY CCNTECIS

8.0 ENTERING AND CHANGING SECURITY CONTROLS

SECURITY is a subsystem of DCMCNIC. This subsystem protects the

documentation syste.m from access by unauthorized users.

8.1 TYPES OF SECURITY

There are three types of security-provided in the system. They are:

password security, functions seiurity ar.d data security.

Password security controls which users may SIGNON to documentation
projects. You must be assigned a password and a user identification

(user-id). Te password specifies which functions and users are

authorized for a given documentation unit. The user-id is associated

with a user description record -which contains the name, address,
department and passwords. . The manager must enter the user id's and
passwords beford ctters are permitted access to the documentation unit.

'The password, user id, and DUI must be given when signing on to the

system. (DUI is an abbreviation for documentation-unit-id. It is the

name by which a documentation unit is kncwn to the system.)

Function-security controls which commands, e.:g. DEFINE DATA, EDIT,

G-ENTRATE, you may perform, for a particular documentation project. The

functions authorized are associated with each password.

NOTE: the executive functions (commands) and their abbreviations

are:

SECURITY C
MONITOR H
ED IT
GENERATE G
DEFINE D
ERASE R

HELP B

Data security controls which data units you may access or update. The
data access authorizations are in effect wthen performing the EDIT or
GENERATE functions. The authorizations are:

READ-ONLY-----you may only display a data

unit.

WRITE-ONIT ---- you may only enter a data
unit.

UPDATE-------- you may display, enter and change a

Page 71

DOMONIC USER'S GUIDE

ENTERING AND CHA-NGLNG SEtURITY CONTRHlS

data unit.

CONMNT-0N -- you may display, enter and change
cnly the ccmments in data units of type
SOU-RCECODE.

NO-ACCESS ----7you may not have access to this data unit.

NOTE: the abbreviations for the authorizations are:
read-only read I
write-only write W
commemt-only comment c
update u
no access n

8.2 SECURITY RECORDS

There are four types of security records: Password, User, Data Default
and Data Exception.

A password record contain- tte your password, a-list'of the functions

for-which you arie authorized, a supervisor's password to which you are
responsible, user identifier, monitor class and recipe class.

NOTE: each user password is responsible to a supervisor password and

higher passwords. This forms various levels of resp6nsibility known

collectively as the 'pas-sword tree'. A pas-swordks supervisor may

also be called his ancestor. The supervisor password is entered in

the 'REPORTS TO' clause. A password may have no grea-er authority

than his ancestor.

User records contain, a user identifier,, usear nam-e, address, department,

'password(s) and city. The data in the user record is used tor display

purposes and not for checking.

A data default record specifies the default data security authorizations
for a documentation unit. It contains data-type - authorization pairs,
one pair for each of the,follow-ing: TEMPSTE-, RECIPE, DOCAID, TEXT,
GRAPHIC'S, and SOURCYCODE.

Data exception records specify exceptions to the data' default

authorizatidns for a particular data item and a particular password.
They are composed of a password, user identifier and authorizations
(read-only, write-ornly, update and comment-only).

Page 72

DOMONIC USER'S GUIDE

ENTERING]ND CHANGING SECURITY CONTROtS

8.3 SECURITY COMHAND-

The SECURITY command is used by the projebt manager to add, change,
delete and list all or parts of the password, user, data default or data
exception records. A session to create or chamge these records is'
started by entering:

security;

The subcommands of th-e SECURITY command arb: ADD PASSWORD, CHANGE
PASSWORD, DELETE PASSWORD, LIST PASSWORD, ALD USER, CHANGI USER, DELEIE
USER, LIST USER, ADD EXCEPTICN, CHANGE EXCEPTION, DELETE EXCEPTION, LIST

EXCEPTION, CHANGE DEFAULT, LIST DEFAULT and END.

8.4 CREATING A PASS7ORD RECORD

A password is a unique set of characters you must supply to meet

security requirements before gaining access to data. All passwords-used
in 	DOMONIC are from 1 to E characters.

When a new password is formulated,- it must be added to the password
file. The password file contains the control in.formation necessary to

provide password security and function authorization.

The newly created password is referred to as a password record and in
addition to the password it will contain 'the names of the users who are
authorized to use that password, the person or position to whom the
users or password is responsible, the monitor class, recipe class and
authorization. The monitor class specifies which mcnitor features you

may perform.

A number of monitor features are possible in DOONIC., For Example:
1. 	 ability for manager to control names, types, length and

occurrences of data elements.
2. 	 password control of allowable functions.
3. 	control -of data access.

Each monitor feature'is classified from 1-9 according to its scope and

functionl In the password record the monitor class refers to the
highest level of monitoring which you perform/- Monitor class zero means
no 	monitoring allowed. It is the same as not-being authorized for the

MONITOR command.

Page 73

DOBONIC USER'S GUIDF

ENTERINtAND CHANGING SECUITY CONaROLS

The recipe class in the password record indicates tbe highest level of

recipe which you may execute. Recipe class zero means no recipes may he

used. It is the same as not being authorized for the GENERATE command.

The purpos6 of the recipe class is to ccntrol theGquality and cost of

outrut production.

You are assigned specific fumctions which you may perform. e.g. DE1INE

DATA, EDIT, GENERATE, etc. The functions authorize.d are associated with

each password. in the password record, the authorization simply

specifies which functions are authorized for that password.

If you want to add a record to the passbord file use the ADD PASSWORD

subcommand.

FoQr example suppose you wanted to- create a password record na-med

'TEAMi'. You have the following information: users are JOE, DAN, and

MIKE; supervisor is MANAGEE; mcnitor class is 2; and authorization is

DTFINE and MONITOR.- Then you would enter:

add-password team, users = (joe, mike, dan), reports to

manager, monitor = 2, authcrized for (define, monitor);

NOTE: Users must be already be in the user file.

If you want to change a field in the reccrd you just created, you would

use the CHANGE PASSWORD subccmmand.

For example, in the passwcrd record 'TEMl' 'if you wanted to add JZOHN as

a user and GENERATE as an authorization, you would enter:

change password, user = john, authorized for generate;

After you have created a Eassword record, -you may want to dele-Ee the

entire record or part of it. To do this, you would use the DILETE

PASSNORD subcommand.

For example, if you wanted to delete password record ITEAM1', you would

enter:

delete-password teaml;

The system will respond by asking thether you-iant the entire password

record deleted. If so, -ycu would enter:

yes;

if you only wanted to delete JOHN as a u-ser in the password record

'TEAM1', you would enter:

Pace 14

DOMONIC USERIS GUIEB

ENTERING AND CHANGING SECURITY CONTROLS

delete password teaml, user = johm;

If at any time you would like a listing of the passxord record, use the

LIST PASSWORD subommand.

For example, if you want a listing of the passwcrd iecord 'TEAM1' you

would enter:

list password teaml;

8.5 CREATING A USER RECORD

You may add a record to the user file by using the ADD USER subdommand.

For example, if you- wanted to create a user record and yo have the
following information: user-id is MANAGER;, name is SMITH; city is
DALLAS; and department is DPC; ycu w~ould enter:

add user manager,, name = smith, city = dallas, department = dpc;

NOTE: Passwords are automaticllay up-atEd when users are added
or'deleted from the passwcrd file. Therefore, a user must be

in the user file before he can be added tO a password.

if you want to chang.e a record. in the user file, use the CHANGE USER

subcommand.

For example, if the user record is 'MANAGER, the street is MAINDEAG and

the CITY is SNYDER, you vould enter:

change user manager, street = maindrag, city = snyder;

To delete a -user record-or part of it use the DFLET USER subeommand.

For example, if you want to delete the' uaer record BA.NAGEB, you "ould

enter:

delete user manager;

Use the LIST USER subcommand when you want a list of user records. The

record may be'listed with or without rasswsords. However, enly the

master password may use the list password feature.

For example, if you want to list an entire record namdd MANAG ER, you

would enter:

list -nser manager.;

Page 75

D-fOTOIC USER'S GUIDE
ENTERING AND CHANGING SECUBITY CONTROLS

To list the passwords within the record EANAGEB, you would enter:

list user managgr, password;

To list all the users and there passwcrd enter:

list user manager password all;

8.7 CREATING AN EXCEPTICU FECOFD

An entry may be added 4o an exceptions file by using the ADD EXCEPTION
subcommand. For example if you wanted to add tio exceptions to record
SECURIT.DATA and password TEA12 has authorization CONMent, password
TEAM3 has authorization READ-ONLY and the CHG-APPROVAI is YES, then you
would en.ter:

add exception security.data, password tearn2, autborizatidn
comment, password team3, authorization read-only,

chg-approwval yes;

NOTE: You may add, change, delete or list any passwotds in
the records in which you have control.

In order to change an entry in the exception file-,, you use tte change
exception subcommand. For example if you want to change an
authorization frcm RWAD-ON1Y to UPDATE and one exception of record
SECURITY.DATA is password TEA113, then enter:

change exception security.data password team3 authorized
for update;

Use the LIST EXCEPTION subccmmand to get a listing of an exception file

or its subfield. For example if you want to list tbe exceptions for the

data unit SECURITY.DATA, you would enter:

list exception security. data;

NOTE: You would only reeceive the authorizations for your
password and the change approval.

If the passwords are known for the data unit above they may also be

entered. For example:

list exception security.data, passwords = team3, team2, teami;

Page :76

DOMONIC USER'S GUIDE

ENTERING AND CHANGING SECR YIT.
CCNTCIS

To-list-the exception change-approval for SECURTTY.DATA, enter:

list exception security.data chg-approval;

To delete a subentry in an exception file use the DELETE EXCEPTION

subcommand. If you simply enter the command DELETE EXCEPTICN without

specifying any subentries, you will receive a message asking is you want

to delete the entire record.- You may at that time enter YES, in which

case the file will be deleted or NO in which case you may then specify

which subentries you want deleted.

8.7 CREATING A DEFAULT RECORD

The only two commands available to you in the area of the default file

is the CHANGE DEFAULT subccmmand or tle LIS1 DEFAULI subcommand.'

Dse the CH&NGE DEFAULT subcommznd to change the authorization in the

default file,. For example if the recipe is READ-ONLY and the text is

COMMENT-ONLY and you want to change both to UPDATE, enter:

chan'ge default recipe = update, text = update;

The LIST DEFA.UIT subcommand give you a listing of the default file. To

receive a listing, you wonld enter-

Page 77

DOMONIC USEB'S: GUIDE
APPENbIX A

TERMINAl C.HARACTERISTICS

TEiETYPE MODEL 33 TERMINAIS

Keyboard:

Teletype Model 33 terminals have a four row typewriter-like keyboard

which can generate 96 codes out of a full 128 character ASCII set.

Printer:

Teletype Model 33 printers can print 63 characters, including

uppercase alphabetics, numerics, special symbcls and punctuation

marks. The 400 foot rolls of paper are friction-fed; pin-fea

is optional. Pages 8.5 inches wide are accepted by friction-fed.

Printing,is at 10 characters per inch with vertical spacing at

6 lines per inch. Automatic double spacing can be utilized.

TELETYPE MODEL 35 ThRMINAITS

Keyboard:

Teletype Mod'el 35 terminals have a four row typewriter-like
keyboard which can generate 96 characters out of the full 128
character ASCII set. By depressing combinations of keys,
control codes are generated.

Printer:

Teletype Model 35 printers accept friction-fed forms from an
8.5 inch wide, 400 foot roll. Vertical spacing is at 6 lines

per inch with automatic double spacing 'possible. Horizontal

spacing is 10 characters per inch. Automatic double spacing

is possible.

A total of 63 characters can be printe& including numerics,

uppercase alphabetics and' special symbols. forms up to 9.5

inches wide have an option of a pin-feed mechanism.,

Page 78

DOMONIC USER'S GUIDE

APPXND.IX A

TELETYPE MODE1L 37 TERMINAIS

Keyboard:

Teletype Model 37 terminals have a four row typewriter

arrangement. The keyloard can generate 128 graphics and control

codes of the ASCII character set. To generate the full range,

shift keys, control and prefix are used in conjunction with

character keys. Any character can be repeated automatically

by depressing the key telow the normal depressed position.

Printer:

Teletype Model 37 printers can print 9tV(standard), 110 or

126 symbols of the-ASCII graphic set. The hori2ontal pitch is

10 characters per inch with a future option of 12 characters

per inch. Vertical spacinc is 6 lines per inch and op.erators

can choose double spacing.

Standard platen is 8.5 inches wide with fricticn-feed. Pin-fed

platen .at 9.5 inches wide is opticnal. Options to be announced
are platens designed to accommcdate torms 3.625 to 9.5 inches
wide, edge to edge. Rear icading is standard, while front loading
is optional. Continous forms may he accommodated and stacked in
the rear.

TElETYPE MODEL 38 IFRIINAIS

Keyboard:

Teletype Model 38 terminals have a four row typexriter
arrangement. Ccntrol codes of ASCII character set and all
128

graphics can be generated frcm the key-board. To generate the
full range, control, shift keys and escape arerused in conjunction
with character keys. Characters can be repeated by automatically
depressing the key below the normal depressed position.

Printer:

Teletype Model 38 printers can print 94 symbols of the ASCII
graphic set in addition to upper and lowercase aiphabetics and

up to 132 characters per line. flcrizontal pitch is 10 characters

per inch. Vertical spacinc is 6 lines per inch and operators
can choose double spacing. 'With pin-feed, standard platen
is 15 inches .wide. An opticn acccmuodates friction-feed 8.5

Page 79

http:APPXND.IX

DOMOIC USER'S GUIDE-

APPENDIX A

inch roll paper and 14 7/8 inch pin-feed forms.

IB 10-50 DATA COMMUPICATIONS SYSTfM

Printer:

The 1052 printer-keyboard is built around an IBM Selectric

typewriter.

When- included in the 1050 sys-tem, the 1052 carries system switches
and indicators., There are two models which correspond to the two
communications models of, the 1051 Control Unit. The main
difference is the insertion of a different set of switches and

indicators corresponding to the ccmmunications/home-loop

and communications-only modes of operation of the two 1051

models. The printer -portion and the data entry portion of the

keyboard for the two models is the same.

Eighty-eight different symbols including upper and lowercase

aiphabetics at 14.8 or 8.33 characters per second can be

printed. The-printer provides a 15 inch, friction-fed carriage

with a 13 inch iwriting line (130 characters) is provided.

Pin-fed platen is optional.

Vertical spacing is at either 6 or 8 lines-per inch. As an

option, the 1052 can Is equipped with a vertical form control
mechanism to allow automatic spacing to predetermined positions
on a form. X second- option speeds the return of the typing
element on a carriage return by about 50 per cent.

IBM 2741 COMMUNICATTC TEFMINAI

Keyboard:

IBM 2741 Communication terminals have a 55 key typeriter style.

The keyboard can yield any of the 88 upper or lowercase

aiphabetics, numerics and special characters through upper and

lowercase control codes. Three 'keyboard's are available a-nd

each corresponds to one of three transmission codes.

The Typamatic Key option gives a repeat action while the

hyphen/underscore, backspace and srace-tar keys -are held

depressed.

Page 80

DOMONIC USER 'S GUIDE
APPEN.DIX A

Printer:

IBM 2741 Communication printers print data from the communications

facility or inp-ut from the keyboard..

The rated print speed is 14.8 characters per second and print

symbols total 88.

Several interchangeable print elements are available for each

code. The PTTC/EBCD amd PTTC/ECD -codes are compatible except

for punctuation and special symbcls. IBM stresses the use of

identical keyboards and print elements based on the selected

code for all terminals within the same network.

Friction-fed or pin-ted (optional) fanfold forms up to 15.5

inches wide are accommod-ated by the printer. The writing

width is 13 inches.

Horizontal spacing can be either 10 or'12 characters per inch.

Vertical spacing is 6 or 8 jopticnal) lines per inch.

IBM stresses the avoi6ance of intermixing character spacing on

terminals within the network.

Page 81

DOXONIC USER'S GUIDE

APPENDIX B

SAMPLE EA CH JOB DECK

//JOBNAME (account information)
//STEP EXEC - DCMONIC
//SYSIN DD DATA,DCB=ELKSIZI=80

(batch input to system)

Explanation:

The system is invoked by the execution of a procedure stored
in the system procedure library. In the above example this
procedure is given the name TOMONIC. The SYSIh card identifies
the batch input to the system. It is in 80 character card
format and must start xith a SIGNON command (see format in
DOMONIC COMMAND REFERENCE MANUAL.)

COAND 'GENERATE NASA-SYSTEM USING SYSTEM-CVERVIEW,CALL;'

Page 82

THE DOCUMENTATION, MONITOR

AND

CONTROL

(DOMONIC)

SYSTEM

DOMONIC Command Reference Manual

Prepared for NASA

Goddard Space Flight Center

Greenbelt, Maryland

By

Advanced Technology Group

Data Processing Center

Texas A & M University

June, 1975

DOMONIC COMMAND REIRENCE MANUAL

PUBLICATION NOTE

This manual was compiled by the Texas Engineering Experiment Station,

Data Processing Center at Texas ASM University, College Station, Texas.

It was compiled under Contract NAS5-11988 for the National Aeronautics

and Space Administration, Goddard Space Flight Center, Greenbelt,

Maryland. Project monitor was E.P. Damon.

This manual was generated by the IBM Administrative Terminal System

(ATS/360) and was input through an IBM 2741 Communications Terminal.

This manual was stored on an IBM 360 Computer and printed on an IBM 1403

High-Speed Line Printer using a TN Print Train.

Appreciation is expressed for the dedicated efforts of Glen Hascall, Lou

DeVito, Eliseo Pena, Nancy McKinney, Hank Lyle, Ollie Polk, Pam Masters,

Michael Quick, Ed Pena, Joseph Presley, Chap-Chi long, Janis Studdard

Bartlett, Jean Zolnowski, Charles Neblock and Susan Arseven during

system development and implementation.

Principal Investigator for the project is Dick B. Simmons. Project

manager is Pete Marchbanks.

Documentation editor for this manual is Mike Hogan.

Page 2

DOMONIC COMMAND FEFERENCE MANUAL

TABLE OF CONTENTS

P AGB
1.0 INTRODUCTION .. 7

2.0 INFORMATION NEEDED IN CODING COMMANDS....................... 8

2.1 COMMAND SYNTAX ... 8

2.1.1 POSITIONAl OPBRANDS 8

2.1.2 KEYWORD OPERANDS 9

2.1.3 DELIMITERS 9

2.1.4 SYNTAX NOTATION CONVENTIONS 9

2.1.5 SUBCONIANDS...................................... 11

2.2 HOW TO ENTER A COMMAND IN INTERACTIVE NODE............. 12

2.3 HOW TO ENTER A COMMAND IN BATCH MODE 12

2.4 DATA-UNIT NAMING CONVENTIONS 14

2.5 SYSTEM PROVIDED AIDES 16

2.5.1 THE HELP COMMAND 17

2.5.2 MESSAGES... 19

3.0 EDIT COMMAND ... 21

3.1 MODES OF OPERATION..................................... 23

3.1.1 INPUT NODE....................................... 23

3.1.2 EDIT MODE.. 24

3.2 CHANGING FROM ONE MODE TO ANOTHER 24

3.3 TABULATION CHAACTERS 26

3.4 TERMINATING THE EDIT COMMAND.......................... 27

3.5 EDIT SUBCON ANDS...................................... 27

3.6 BOTTOM SUBCOENAND 29

3.7 AITER/CHANGE SUBCOMMIAND 30

3.8 DELETE SUBCONMAND..................................... 34

3.9 DOWN SUBCOMMAND .. 36

3.10 END SUBCONNAND .. 37

3.11 FIND SUBCOMMAND.......................................38

3.12 INPUT SUBCOMMAND 40

3.13 INSERT SUBCOMMAND..................................... 42

3.14 INSEHT/REPLACE/DILETE FUNCTION.........................44

3.15 LIST SUBCOMIMAND....................................... 46

3.16 NUMBERS SUBCOMMAND.................................... 48

3.17 RENUM SUBCONMAND 49

3.18 SAVE SUBCOMMAND.................. 51

3.19 TABSET subcommand..................................... 53

3.20 TOP SUBCOMMAND.. 55

3.21 UP SUBCOMMAND... 56

3.22 VERIFY SUBCOMMAND 57

4.0 ERASE COMMAND ..58

5.0 RECIPES AND DOCUMENT GENERATION 62

5.1 DOCUMENT GENERATION 62

5.2 RECIPE EXPANSION PEOCESS63

5.2.1 RECIPE...63

5.2.2 DOCUMENTATION AID DESCRIPTION..................... 63

Page 3 S 5

DOEONIC COMMAND REJERENCE MANUAL

PAGE

5.2.3 LOGICAL STREAM-PHYSICAL DEVICE TABLE 64

5.2.4 INPUT-OUTPUT STREAM TABLE 65

5.3 RECIPE INSTRUCTION LANGUAGE........................... 65

5.3.1 DEFINE INSTRUCTION 66

5.3.2 END INSTRUCTION.................................. 66

5.3.3 CAI INSTRUCTION 67

5.3.4 LITERAL INSTRUCTION.............................. 67

5.3.5 DATA-UNIT INSTRUCTION 68

5.3.6 $DCCAID INSTRUCTION 69

5.3.7 STREAM INSTRUCTION 70

5.3.8 DUMMY INSTRUCTION................................ 71

5.4 GENERATE COMMAND...................................... 73

5.4.1 SCAN SUBCMtAD 74

5.4.2 PROOF SUBCOMMAND 76

5.L.3 RUN SUBCOMMAND................................... 78

5.4.4 LIST SUBCOMMAND 79

5.4.5 END SUBCCMMAND 80

6.0 SECURITY ... 81

6.1 TYPES OF SECURITY..................................... 81

6.2 SECURITY CHECKING AND MAINTENANCE....................... 82

6.3 SECURITY RECORDS......................................82

6.4 SECURITY COMMAND 84

6.4.1 ADD PASSWORD subcommand.......................... 85

6.4.2 CHANGE PASSWORD SUBCOMMAND....................... 87

6.4.3 LIST PASSWORD SUBCOMMAND 89

6.4.4 DELETE PASSWORD SUBCOMMAND 90

6.4.5 ADI USER SUBCOMMAND.............................. 92

6.4.6 CHANGE USER SUBCOMMAND 93

6.4.7 LIST USER SUBCOMMAND 94

6.4.8 DELETE USER SUBCOMMAND........................... 95

6.4.9 ADD EXCEPTION SUBCOMMAND......................... 97

6.5.10 CHANGE EXCEPTION SUBCOMMAND...................... 99

6.5.11 LIST EXCEPTION SUBCOMMAND....................... 100

6.5.12 DELETE EXCEPTION SUBCOMMAND............ 101

6.5.13 CHANGE DEFAULT SUBCONMAND........................ 102

6.5.14 LIST DEFAULT SUBCOIMAND 103

6.5.15 END SUBCOMMAND 104

7.0 SIGNOFF COMMAND... 105

8.0 SIGNON COMMAND .. 106

9.0 SYSTEM CCMMAND .. 108

9.1 PURGE SUBCOTAMAND 109

9.2 ATTACH SUBCOMMAND..................................... 111

9.3 DETACH SUBCOMAND 112

9.4 INITIATE SUBCOMMAND 113

9.5 ALLOCATE SUBCOMNAND 117

9.6 DEALLOCATE SUBCOMMAND 119

10.0 TEMPLATES AND DATA DEFINITIONS 123

10.1 TYPES OF TEMPLATES................................... 123

10.2 SOURCE TEMPLATES...................................... 123

A6
Page 4

DOONIC COMMAND REFERENCE MANUAL

PAGE
10.3 TEMPLATE STBUCTURE................................. 123

10.4 DATA DEFINITION LANGUAGE 124

10.5 BOUND TEMPLATES...................................... 127

10.6 DEFINE DATA CCMMA1ND 128

10.6.1 TEST SUECOMMAND 129

10.6.2 SAVE SUECOMMAND 130

10.6.3 DELETE SUBCOMMAND............................... 131

10.7.4 ADD SUBCOMMAND.................................. 132

10.6.5 CHANGE SUBCOMMAND............................... 134

10.6.6 LIST SUBCOMMAND................................. 136

10.6.7 END SUBCCMMAND..... 138

APPENDIX A TERMINAL CHABACTEISTICS............................. 139

APPENDIX B SAEPLE BATCH JOB DECK.................................143

Page 5.

DOMONIC COMMAND REFERENCE MANUAL

LIST OF FIGURES

PAGE

FIGURE 1 VALUES OF lINE POINTER AT END OF EDIT SUBCOMNANDS 25

FIGURE 2 FUNCTIONS OF THE EDIT SUBCOMMANDS 28

FIGURE 3 EXAMPLE OF A SIIAPLE TECTPE 60

FIGURE 4 EXAMPIE OF AN ElPANDED RECIPE.........................61

FIGURE 5 SOURCE TEMPLATE LISTING FROM THE EDITOR.................. 121

FIGURE 6 BOUND TEMPLATE LISTING FROM DEFINE DATA.................. 122

Page 6

1.0

DOMONIC COMMAND REFERENCE MANUAL.

fNTRODUCTION

INTRODUCTION

DONONIC is designed to document any computer language and run on any

hardware while taking advantage of existing documentation aids. The

system currently supports FORTRAN, COBOL, ASM and PL/1- DOMONIC is the

first system that brings all types of documentation aids together under

a single system.

Program documentation consists of all those items which are formulated
to aid someone in understanding a program, but which are not a required

part of the program.

DOIONIC is written in ANS COBOL and implemented on IBM/360. The system

can be operated in either batch (card input, line printer output) mode

or interactively through typewriter-type terminals (IBM 2741, 1052 and

TXl.

You can communicate with the system by entering requests for work

(commands) on a terminal or punched cards. The system will then respond

to your requests by performing work and sending messages to you.

The command establishes the scope of the work to the system. The scope

of some commands, work covers many operations that are identified

separately. Upon entering the commands, you may specify one of the

separately described operations by typing a subcommand. A subcommand is

also a request for work; however, the request for work is a specific
operation within the scope of work created by a command.

The DOPONIC command language is composed of commands and subcommands.

The commands and subcommands are verbs that describe the work to be

done. The data that you must provide is defined by operands. Operands

are words or numbers that accompany the command names and subcommand

names. If you choose to omit the operand from the command or

subcommand, most of the operands have default values that will be used.

ALL COMMANDS AND SUBCOMBANDS MUST BE FOLLOWED BY A SEMICOLON.- The

semicolon marks the end of the ccmmand or subcommand.

This reference manual defines what each command can do and how to enter,

or type in, a command at your terminal or on punched cards.

Page 7
 S

DOMONIC COMMA4D REBRENCE MANUAL

INFORMATION NEEDED IN CODING COMMANDS

2.0 INFORMATION NEEDED IN CODING COMMANDS

To use the DOMONIC command language you should know:

" The syntax of a command.

" The way to enter a command.

" The data unit naming conventions.

You should also be aware of the aids available to you:

" The HELP command.

" The messages sent by the system to you.

2.1 CCflHAND SYNTAX

A command consists of a command name which is usually followed by one or

more operands. The command name is usually a verb that describes the

function of the command. For example, the SIGNON command connects the

user to the system. Operands supply the specific information needed for

the command to carry out the requested operation. For example, operands

for the SIGNON command identify the user signing on, the password being

used and the name of the documentation unit to he accessed:

SIGNON USER ARSEVEN PASSWORD R7 DUI NASADOC;

command operand operand operand
fuser-id) (password) (documentation-unit-id)

There are two types of operands that are used with the commands:

positional and keyword. Positional operands follow the command name and

precede keywords.

2.1.1 POSITIONAL OPERANDS

Values that follow the command name in a prescribed sequence are called

positional operands. The values may be one or more symbols, names, or

integers. Positional operands are shown in lower case characters in the

command descriptions of this manual. A common positional operand is:

data-unit-name

You must substitute 'data-unit-name' with an actual data-unit-name when

you enter the command.

Page 8

DOMONIC CONMAND RETEDENCE MANUAL

INFORMATION NEEDED IN CODING COMMANDS

2.1.2 KEYWORD OPERANDS

Keywords are specific names or symbols that have a particular meaning to

the system. Keywords may be included in any order following the

positional operands. In this reference manual, keywords are shown in

upper case characters. A common keyword is:

MONITOR CLASS

In some cases you may specify values with a keyword. If the keyword has

multiple values, the list is enclosed within parentheses and the values

are separated by commas:

PASSWORD [=] (password,...)

2.1.3 DEIMITEES

You should separate the command name from the first operand by one or

more blanks when you type a command. Separate operands by one or more

blanks or a comma. For example:

edit nasa-module-i,

data-element-type,

units-of-measure,

repetition-factor;

For an on-line system, enter a blank by pressing the space bar.

For the batch system, leave one or more columns blank.

The system will stop scanning for operands after you type a semicolon

at the end of a command.

2.1.4 SYNTAX NOTATICN CONVENTIONS

The notations describing command syntax and format in this manual are

defined in the following articles;

1. The symbols below are used to define the format. (Never type
them in the actual statement.)
hyphen
underscore
braces]
brackets [3
ellipsis

NOTE: A hypen and or underscore may be used in an actual

Page g

DOHONIC COMMAND REREENCE MANUAL

INFORMATION NEEDED IN CODING COMMANDS

data unit name.

The special uses of the above symbols are explained in

articles 5-9.

2. Type uppercase letters and vords, number, and the symbols

listed below in an actual ccmmand exactly as shown in the

statement definition.

apostrophe

asterisk *

comma

equal sign

parenthesis 0

period

semicolon

NOTE: IS and ARE may be used in place of

3. Lowercase letters, words, and symbols appearing in a command

definition represent variables for which you should replace

specific information in the actual command.

Example: if 'user-id' appears in a command definition,

you should substitute a specific value (for instance, ARSEVEN)

for the variable when you enter the command.

4. Stacked items represent alternatives. You should choose only

one such alternative.

Example: The representation

data-element

template

recipe

indicates that either data-element or template or recipe is

to be chosen.

5. Hyphens join lowercase letters, words, and symbols to make

a single variable.

6. An underscore specifies a default option. If you choose an

underscored alternative, you do not have to type it when

you enter the command.

Example: The representation

data-element

template

recipe

Page 10

DOMONIC COMMAND RETERENCE MANUAL

INFORMATION NEEDED IN CODING COMMANDS

indicates that you are to choose either data-element or

template or recipe; however, if you choose data-element,

you need not type it, because it is the default option.

7. Braces group related items, such as alternatives.

Example: The representation

DOCUMENTATION UNIT [=j documentation-unit-id
DUI

indicates that you are to select either documentation unit

or dui. If you choose dui, the result is:

DUI = DOCUMENTTION-UNIT-ID

8. Brackets also group related items; however, everything

within the brackets is opticnal and may he left out.

Example: The representation

SOURCECODE

TEIT

GRAPHICS

indicates you may select one of the items enclosed within

the br'ckets or that you may leave out all of the items within

the brackets

9. An ellipsis indicates the preceding item or, group of items

can be repeated more'than once in succession.

Example:

(fun.ction-i,...)

indicates that function-1 cam appear alone or can be

followed by function-2 any number of times in succession.

2.1.5 SUBCOMMANDS

work performed by some of the ccmmands is divided into individual

operations. Each'operation is defined and requested by a subcommand.

To request one of the individual operation, you must first enter the

command. Then you can enter a subcommand to indicate the particular

operation that you want performed. You can continue entering

subcommands until you enter the SND subccmmand.

The commands that have suhcommands are DEFINE DATA, EDIT, GENERATE,
SYSTEM, MONITOR, and SECUBITY. When you enter the DEFINE DATA command

Page 11,

DOMONIC COMMAND RE2ERENCE MANUAl

INFORMATION NEEDED IN CODING COMMANDS

you can then enter the subcommands for DEFINE DATA. Likewise, when you

enter the EDIT, GENERATE, SYSTEM, MONITOB and SECURITY commands you can

enter the appropriate subcommands.

The subcommand syntax is the same as that of a command. A subcommand

consists of a subccmmand name followed, usually, by one or more

operands. The discussion of operands and delimiters apply to

subcommands as vell as commands.

2.2 HOW TO ENTER A COMMAND IN INTERACTIVE MODE

A terminal session is designed to be a relatively simple process: you

identify yourself to the system by entering the SIGNON command and then

request work from the system by entering other commands. To enter a

command or subcommand:

1. Type the command or subcommand name and any cperands that

you choose followed by a semicolon.

2. Press the carriage return key.

You may begin typing at any position on the line; you don't have to

begin at the leftband iargin. You can type command names and operands
in either uppercase or lowercase characters. You may prefer to type

your input in lowercase characters so that you can distinguish your

inp'ut from the system's messages on your listing. The system prints in

uppercase characters.

In order to delete a character use the BACKSPACE key. Every backspace

deletes one character.

.2.3 HOW TO ENTER A COMMAND IN HITCH MODE

When using DOMONIC in a card-oriented environment, all commands and data

to be entered into the DOMONIC system during a session must be prepared

prior to using the system. The cards would normally be prepared with

some off-line key-entry system such as a keypunch. After the cards have

been prepared and checked for accuracy, they can be run as data cards in

a batch job deck. A batch job deck begins with a job card to identify

the user, how long the job may take to execute and other administrative
information. Besides being a job control language card, the job card

must conform to the installation's format. The next cards are also JCL

cards. These cards will begin the execution of the system; for IBM

installations the JCL will consist of one 'EXEC' card which enters the

catalogued procedure name that is necessary to invoke the system

followed by one'//SYSIN DD *' card.

Page 12

DOMONIC COMAND REFEENCE MANUMI

INFORMATION NEEDED IN CODING COMMANDS

The DOMONIC command and data cards are placed next in the deck

immediately following the '//SXSIN DD *' card. These cards are read one
at a time by the DOMONIC system just as if they were entered from a
terminal where each card represents one line from a terminal. An end
of-job card then terminates the batch job deck.

There are often slight differences between hatch jot decks from one

installation to another. Appendix B shows a sample batch job deck and

explains what information is required for a typical installation. The

example given should be adapted to the conventions and procedures for

your installation. Note that the commands and data will not change,

only the makeup of the rest of the deck may change.

Certain conventions apply to the use of cards in the DOMONIC system.

They are:

1. Each card represents one input line.

2. Only those characters that can he punched on the

card can be input.

3. Since a card-oriented system is not interactive,

there is no character or line deletion.

4. All messages sent to you by the system will be

printed in uppercase letters. Output from

text-handling applications which have beth upper
case and lowercase letters will print both

cases if the proper type line printer is

is specified in the JCL cards. If not,

lowercase letters will be printed as the cor
responding uppercase letters.

Remember that each card entered in seguence, in a card-oriented system

corresponds to each line entered, in sequence, in a terminal-oriented

system. Since all examples in this manual assume an IBM 2741

Communications Terminal, it is only necessary to notice the order in

which information is required to be entered in order to prepare a

corresponding card deck.

If the information being entered does not fit on one card, simply

continue it on the next card. After you have entered all the

information for that command, type a semicolon (;). The semicolon

convention must be observed even if the command you are inputting fits

on one card. The semicolon is used by the system to delimit the end of

a command.

Page 13

2.4

DONONIC COMMAND REFERENCE MANUAL

INFORMATION NEEDED IN CODING COMMANDS

DATA-UNIT NAMING CONVENTIONS

The name you give a data unit should follow certain conventions. A data

unit name can either be a template name, recipe name, docaid name or

data element name.

A template, recipe and docaid name all have a maximum length of 30

characters. The first letter must be an alphabetic character while

positions 2-30 of a name may contain alphabetic characters, digits,

dashes and underscores. No other characters including blanks are

permissable. An example cf a template name is:-

SYSTEM-DATA-DE1INITION

NOTE: a template name uniquely defines a template tb the system. Within

a template individual data elements of the documentation unit are named

with a long name.

An example of a recipe name is:

NASA-S YSTEM- RECIPE

An example of a docaid name is:

FLONCHARTER

A data element name consists of both data definition names and

identifiers.

NOTE: the rules for writing an ID (identifier) are:

1. An ID has a maximum length of 30 characters.

2. It must begin with an alphabetic character.

3. Positions 2-30 may contain cnly alphabetic characters, dashes,

digits and underscores. No oter characters are permissable.

The rules for writing data element names are:

1. A short name must begin with the letter 'T' and be followed by an

integer. T1-T32759 are the only

acceptable short names. An example of a short name is:

T13

2. A long name has a maximum length of 30 characters. It begins

with an alphabetic character and positions 2-30 may ccntain only

alphabetic characters, digits, dashes and underscores. No other

characters are permissable. T1-T32759 cannot be used as

long names. They are reserved for short names.

Page 14

DOMONIC CONMAND REDERENCE MANUAL
INFORMATION NEEDED IN CODING COMMANDS

SYSTEM-ABSTRACT IV T3

(long-name) (short-name)

3. A simple data element name is a long name or short name. (See

rules for writing lcng or short names). Examples of a

simple data element are:

T5 (short name)
SYSTEM-ABSTRACT (long name)

4. To qualify a data element name simply give the names of the levels

in the template hierarchy. (Figure 5 and 6, Section 10.0.) A

qualified data element name is:

MODULE-TITLE. SUBSYSTEM-MODULES.SUSYSTEMS

NOTE: As long as the qualified name is unique, intermediate level
names do not have to be given. A qualified name must be qualified

to the level which makes it unique, but an identifier must be given for

each level with repeated occurrences whether or not the data

definition name is given for that level.

When qualifying data element names, the data definition names

must be separated by periods and must be listed from the most specific

to the least specific. fFrcm bottom level upward) For example in.

Figure 5, if you wanted 'SUBSYSTEM-ABSTRACT', you would enter:

SUBSYSTEM-ABSTRACT.SUBSYSfTES;

or

You could enter just the short name. For example:

SUBSYSTEM-ABSTRACT.T3;

or

T14.T3;

or

T 14. SUBSYSTEMS;

5. If any'sub-level of a qualified name is a repeated occurrence,

additional identifiers are needed in order for the system to

locate the desired level.

Page 15

http:SUBSYSTEM-ABSTRACT.T3

2.5

DOMONIC COMMAND REFERENCE HANUAL
INFORMATION NEEDED IN CODING COMMANDS

An 	identifier for each level of heirarchy must be given from the

least specific to the most specific. For example:

SUBSYSTEM-NAME.SBSSTEM S(DATA-MANAGEENTDFNfDATA)

or

T4.T3 (DATA-MANAGEMENT,DFNDATA)

If you wanted I-DESCRIPTION (Figure 5) which is located

on level T10, you would enter:

I-DESCRIPTICN. MODUlE-INPUTS.SUBSYSTEM-MODUlES.SUBSYSTEMS

(DATA-MANAGEMENTDFNDATA,COMMON-ARA)

or

T10.T8.T5.T3(DATA-MANAGEMENT,DFNDATA,COMNON-A£n)

Cr

Any combination of long or short names:

I-DESCRIPTION (LATA-MANAGEMENT,DFNDATA,COMMON-AREA)

TIO(DATA-MANAGEMENT, DFNEATA,CCMMO-AEA)

I-DESCRIPTION.T5 DATA-MANAGEMENT, DFNDATA,COMMON-AREA)

TIO.T8 (DATA-HANAGEMENT,DFNDATA,COMNON-AREA)

Identifiers must be enclosed within parenthesis, separated by commas

and listed from left to right beginning with the most general to

most specific. (Begin at the top and work toward the bottom.)

SYSTEM PROVIDED AIDS

Several aids are available for your use:

1. The HELP command provides you with information regarding

the commands.

2. 	The conversational messages guide you in your work at the

terminal.

Page 16

http:I-DESCRIPTION.T5

DOIONIC COMMAND REFERENCE MANUAL

INFORMATION NEEDED IN CODING COMMANDS

2.5.1 The HELP Command

The HELP command provides you with information about the function,

syntax and operands of commands and subcommands. When you enter the

HELP command, the system displays at your terminal a brief description

of the function you are trying to perform or operand you are trying to

enter. (If you need help with the HELP command enter: help help.)

To receive help with the function, syntax or operands of a command, you

should enter:

COtMHAND OPERANDS

HELP [command name] [FUNCTION] fSYNTAX] [OPERAND)

command name

the name of the command with which you need help.

FUNCTION

the function of the command with which you help.

SYNTAX

the syntax of the command with which you need help.

OPERAND

the operands of the command with which you need help.

NOTE: if you just enter the command HELP followed by a semicolon, you
will get a list of all the commands of the system.

Example 1

operation: Asking the system for help.

help;

The system will respond by typing cut:

VALID COMMANDS ARE: SIGNON, SIGNOFF, EDIT, SECURITY, MONITOR, GENERATE,

DEFINE, ERASE, lELP, END

Page 17

DOMONIC COMMAND REFERENCE MANUAL

INFOR1ATION NEEDED IN CODING COMMANDS

Example 2

operation: Same as above.

known: You have not yet signed on.

help signon function;

The system will respond by typing out:

THE CONBAND SIGNON INITIATES USE OT TEE SYSTEM

Example 3

operation: You need help with the SIGNON syntax.

help signon syntax;

The system will respond by typing out:

SIGNON USER [=] USED-In,

PASSWORD [=] USER-PASSNOHD,

DOCUMENTATION UNIT [=] DOCUMENTATION-UNIT-IDENTIFIER

DUI

Example 4

operation: You need elp with the operands of SIGNON.

help signon operands;

The system will respond by typing out:

USER-ID: AN EIGHT CHARACTER STRING THAT IDENTIFIES THE USER.
USER-PASSWORD: AN EIGHT CHARACTER STRING THAT IDENTIFIES THE

PASSWORD THAT THE USER IS AUTHORIZED TO USE.
DOCUENTATION-UNI-IDENTIFIEE: A CHARACTER STRING (MAX LENGHT

30 CHARACTERS) THAT IDENTIFIES A DOC UNIT.

Page 18

DOMONIC COMMAND RETERENCE hAIUL

INFORMATION NEEDED IN CODING COMMANDS

2.5-2 MESSAGES

There are four types of messages:

*Mode Messages

*. rompting Messages

*Broadcast Messages

*Informational Messages

*mode Messages

A mode message informs you the system is ready to accept a command,

subcommand or data. When the system is ready, the mode message printed

at your terminal is:

READY

If you enter a command that has subcommands, the system will output a

mode message that is the name of the current command, such as:

EDIT

If the subcommand, you entered expects data to be entered, the system

will type out the mode message:

INPUT

The mode messages are displayed when the mode changes.

*prompting Messages

If you neglected to input some information or if some information you

input was incorrectly specified, the system mill type a prompting

message. Such a message requests you to supply or correct that

information. The following is an example of a prompting message:

ENTER SOURCICODE TYPE

You should respond by entering the requested operand; in this case the

SOURCECODE-TYPE, and by pressing the RETURN key to enter it. For

example, if the sourcecode-type is GRAPHICS, you would respond to the

prompting message as follows:

ENTER SOURCECODE TYPE

graphics;

/Pg/

Page 19

DOEONIC COMMAND REFERENCE MANUAL

INFORMATION NEEDED IN CODING COMMANDS

*Broadcast Messages

Broadcast messages are messages of general interest to users of the
system. The system operator can broadcast messages to all users of the
system or to any specified 'signed-on' user. Usually these messages
will concern system availability. For example:

NASA WIlL HRLT OPERATIONS 1OR P.M. IN 30 MIN.

*Informational Messages

Informational messages tell you about the system's status and your
terminal session. For example, an informational message may inform you

when document generation has ended, or how much tine you have used.

Informational messages do not require a response. In some cases, an

informational message may serve as a mode message; for example, an

informational message that informs you of the end of a subcommand's

operation also implies that you can enter another subcommand.

Page 20

3.0

DOMONIC COMMAND REERENCE HA4U L
EDIT COMMAND

EDIT Command

The EDIT command is the primary facility for entering data into the

system. Therefore, almost every application involves some use of EDIT.

With EDIT and its subcommands, you create, modify, store and retrieve

data units-from the data bass. Data units may either be a data element,

template. recipe or documentaticn aid description (docaid).

Data elements contain:

" Source programs composed of programming language

statements (P1/1, COBOL, FORTRAN, etc.)

" Text fo descriptions, manuals, etc.

" Job Control (JC) statements.

Templates contain:

* Statements in the data definiticn (tenplate) language.

Recipes contain:

" statements in the document generation (recipe)

language.

" Text for literals.

Documentation Aid Descriptions contain:

Statements describing programs to be used for documentation

and debugging.

COMMAND OPERMANDS

data-unit-na me
EDIT
E

ELENENT (SOURCECODE-TYPE)
FOFT AN
PL1
AS M
COBOL
J CL

TEXT
GRAPHICS

RECIPE PRIVATE

TEMPLATE COMMON

DOCAID

CAPS

ASIS

CHANGE-NO [=3 change-number

9Page 21

DOMONIC CONMAND 1EERRNCE MANUAL

EDIT COMMAND

dataunit-name

the name of the data elements, templates, or recipes that you want

to create or edit. (See data-unit naming conventions).

ELEMENT

specifies the data unit to be edited is a data element.

SOURCECODE-TYPE

specifies what language a data unit is written in. It must be

specified for a new data unit only. The following is a list of

sourcecode-types:

FORTRAN-states that the data unit identified by the first operand is

for FORTRAN statements.

PL1-states that the data unit identified by the first operand is for
PL1 statements.

ASM-states that the data unit identified by the first operand is for

assembler language statements.

COBOL-states that the data unit identified by the first operand is

for COBOL statements.

JCL-states that the data unit identified by the first operand is for

job control language statements.

TEXT

specifies that the data unit is text.

GRAPHICS

specifies that the data unit is graphics.

RECIPE

specifies the data unit to he edited is a recipe.

PRIVATE

specifies that the TEMPLATE or RECIPE to be edited is stored in a

private library.

TEMPLATE

specifies the data unit to be edited is a template.

COMMON

specifies that the TEMPLATE or RECIPE to be edited is stored in a

common library.

Page 22

3.1

DOMONIC COMMAND REFERENCE MANUAL

EDIT COMMAND

DOCAID

specifies that the data unit to be edited is a docaid.

CAPS

states that all input data is to be changed to uppercase characters.

If you omit both CAPS and ASIS, then CAPS is the default except when

the data-element-type is TEXT.

ASIS
states that input is to retain the same form (upper and lowercase)

as entered. ASIS will be the default for TEXT only.

change-number

a five digit number between 0 and 32759.

MODES OF OPERATION

Input mode and Edit mode are modes of operation for the EDIT ccmmand.

You enter data into a data unit in Input mode. You enter subcommands
and operands in Edit mode.
You must specify a data-unit-naire when entering the EDIT command. If
you do not, you are prompted for the name. The system places you in the
Edit mode if your specified data unit is not empty; if the data unit is
empty, you are placed in Input mode.

3.1.1 INPUT BODE

Nhen in the Input mode, you type a line of data and then enter it into

the data by pressing your terminal's carriage return key or by entering

another card. As long as you are in Input mode, you can enter lines of

data. One typed line of input becomes cne record in the data unit.

Caution: the system adds a command or subcommand to the data unit as

input data if you enter it while in Input mode.

Line number: the system assigns a line number to each line as it is

entered unless you specify otherwise. Line numbers make editing easier

since you refer to each line by its own number.

NOTE: All input records change to uppercase characters, except when you

specify the ASIS or when the data unit you are editing specifies Text in

the template. The TEXT operand also specifies that character-deleting

indicators are recognized, but all other characters are added to the

data unit unchanged.

Page 23

3.2

DOMONIC COMMAND REFERENCE MANUAL

EDIT COMMAND

3.1.2 EDIT MODE

When in the Edit mode, you enter subcommands to edit data units. By

referring to the number, data units with line numbers can be edited.

This is called line-number editing. You also edit data by context

editing. Context editing is achieved by utilizing subcommands that

refer to the current line value or a character combination, such as with

the FIND or CHANGE subcommands.

A pointer within the system indicates a line within the data unit. Upon

initial entry into EDIT for an old data unit, the current line pointer

indicates the last line of the data unit. Otherwise, this pointer

indicates the last line that you referred to. By using subcommands you

change the pointer so it points to any line of data you choose. You

then refer to the line that it points to by specifying an asterisk (*)

instead of a line number. Figure 1 shows the position of the pointer at

the completion of each subcommand.

NOTE: If the data unit does not contain a record zero, then a current
line pointer value of zero refers to the position before the first

record.

When editing data units, the line number field will not be involved in

any modifications made to the record except during renumbering.

CHANGING FROM ONE MODE TO ANOTHER

You begin processing in Edit mode if you specify an existing data-unit
name as an operand,for the EDIT command. You will begin processing in

Input mode when you specify a new data-unit-name or an old data unit

with no records, as an operand for the EDIT command.

Page 24

DOMONIC COMMAND REFERENCE MANUAL
EDIT COMMAND

EDIT SUBCOMMANDS

ALTER

BOTTOM

CHANGE

DELETE

DOWN

END

FIND

HELP

INPUT

INSERT

Insert/

Replace/

Delete

LIST

RENUM

SAVE

TABSET

TOP

UP

VERIFY

FIGURE 1

VALUE 0F POINTEL AT ENE OF SUBCOMMAND

Last line altered.

Last line (or zero) for empty data

units.
Last line changed.

Line preceding deleted line (or zero

if the first line of the data units

has been deleted).

Line n relatve lines below the last

line referred to, where n is the

value cf the 'count' parameter, or

bottom of the data unit for line

zero for empty data units).

No change.

Line containing specified string, if

any, else, no change.

No change.

Last line entered.

Last line entered.

Inserted line or replaced line or

line preceding the deleted line if any

(or zero, if no preceding line exists).

This is an implicit subcommand.

Last line listed.

Same relative line.

No change.

No change.

Zero value.

Line n relative lines above the

last line referred to, where n

is the value of the 'count'

parameter, (or line zero for empty

data units).

No change.

VALUES OF LINE POINTER REFERRED TO BY AN ASTERISK

Page 25 l/

3.3

DOMONIC COMMAND REBERENCE MANUAL

EDIT COMMAND

You will change from Edit mode to Input mode when:

1. You enter the INPUT subccmmand.

NOTE: Input will begin at the specified line if you

use the INPUT subcommand without the R (replace)

keyword and the line is null (contains no data).

Input will begin at the first increment past

that line if the specified line contains data.

If the INPUT subcommand is used with the R treplace)

keyword then input begins at the specified line,

replacing existing data, if any.

2. You enter the INSERT subcommand with no operands.

You will switch from Input mode to Edit mode when:

1. You press the carriage return key after typing only

a semicolon or a punched card is read with a

semicolon in tbe first column.

2. There is no more space for records to be inserted

into the data unit and reseguencing is not allowed.

3. When an error is encountered when reading or

writing the data unit.

TABULATICN CHARACTERS (for an-line version only)

Upon entering EDIT command into the system, a list of tab setting values

are established by the system, depending on the data-unit-type. The tab

setting values are logical and may or may not represent the actual tab

settings on your terminal. By using the TABSET command, you can

establish your own tab settings for input.

The default tab setting values for each data-unit-type, is presented in

the TABSET subcommand descripticn. The system scans each input line for

tabulation characters (the characters produced by pressing the tab key

on the terminal). Each tabulation character is replaced by as many

blanks as are necessary to position the next character at the

appropriate logical tab setting.

Each tabulation character encountered in all input data is replaced by a

single blank when tab settings are not in use. The tabulation character

also separates subcommands from their operands.

Page 26

3.4

3.5

DOMONIC COMMAND REFERENCE MANUAL.

EDIT COMMAND

TERMINATING THE EDIT COMMAND

You may end the EDIT operation at any time by switching to Edit mode (if

you are not already in Edit mode) and entering the END subcommand. You

should store all data before ending the EDIT command. To store the data

use the SAVE subcommand.

EDIT SUBCOMMANDS

Subcommands edit or change data mhile in the Edit mode. The format of a

subcommand is similar to the format of a command. Eigure 2 contains a

description of each subcommands function.

Page 27

DOMONIC COMMAND REERENCE MINURL

EDIT COMMAND

SUBCOMdANDS FUNCTION-

ALTER Allows use of characters not normally found on the
keyboard.

BOTTOM Moves pointer to last line.

CHANGE Modifies text of a line, or range of lines.

DELETE Removes lines.

DOWN Moves pointer toward the end of the data.

END End the EDIT command.

FIND locates a character string.

HELP Defines available subcomnands.

INPUT Piepares system for data input.

INSERT Inserts lines.

Insert/
Replace/
Delete Inserts, replaces or deletes a line. 4Explicit subcommand.)

LIST Prints specific lines of data.

NUMBERS Causes line numbers to be printed.

RENUN Numbers or renumbers lines of data.

SAVE Retains data units in documentation unit.

TABSET Sets tabs.

TOP Sets pointer to the first line.

UP Moves pointer toward beginning of the data unit.

VERIFY Causes current line to be listed -weneverthe current
line pointer changes or the text is modified.

FIGURE 2 FUNCTIONS OF THE EDIT SUBCOMMANDS

Page 28

3.6

DOHONIC COMMAND REFERENCE MANUAL

EDIT COMMAND

BOTTOM Subcommand of EDIT

The BOTTOM subcommand changes the current line pointer so it points to
the last line of the data unit being edited or so it contains a zero
value, if the data unit is empty.

SUBCOMMND 	 OPERANDS

BOTTOM

B

EXAMPLE
operation: 	 Change the current line pointer so it points to

the last line of the data unit.

bottom;

Page 29 	 //7

DOMONIC COMMAND RETIRENCE MANUAL

EDIT COMMAND

3.7 ALTER/CHANGE Subcommand of EDIT

To modify a sequence of characters (character-string) in a line or in a

range of lines use the CHANGE subcommand. You can modify either the

first occurrence or all occurrences of the sequence.

To replace a single character with a hexadecimal number (special

character), use the ALTER subcommand. You may specify the hexadecimal

number to replace a single character in a line or throughout the

document.

OER-NDS

SUBCONFAND

CHANGE *
C line-number-i [line-number-2]

* [count]-l
AITER

A string-1 [string-2 [special delimiter [ALL]]]

count-2

line-number-1

the number of a line you want to change. When used with line
number-2, it gives the first line of a range of lines.

line-number-2

the last line of a range of limes that you want to change. The

lines are scanned for occurrences of the sequence of characters

specified for string-i.

The line pointed to by the line pointer in the system is to be used.

The current line mill be the default value, if you do not specify a

line number or an asterisk.

count-1

starting at the position indicated by the asterisk, it gives the

number of lines that you want to change.

string-1

a sequence of characters (a character string) that you want to

change. The sequence must be preceded by an extra character which

serves as a special delimiter. The extra bharacter may be any

printable character except a number, blank, tab, or asterisk. The

extra character should not appear in the character string. Unless

you intend for the delimiter to be treated as a character in the

Page 30

DOMONIC COMMAND REFERENCE MANUAL

EDIT COMMAND

character string, do not put a standard delimiter between the extra

character and the string of characters.

If you request string-1 and not string-2, the specified characters

are displayed at your terminal up to (but not including) the

sequence of characters that you specified for string-1. You can

then edit the sequence of characters as desired. When used with the

ALTER subcommand, string-I is either a single character or two

hexadecimal digits.

string-2

a sequence of characters that you want to replace string-1. Like

string-i, string-2 must be preceded by a special delimiter. This

delimiter must be the same as the extra character used for string-1.

When used with the ALTER subcommand, string-2 is either a single

character or two hexadecimal digits.

ALL

every occurrence of string-1 within the specified line or range of

lines will be replaced by string-2. Only the first occurrence of

string-1 will be replaced with string-2, if this operand is omitted.

count-2

a number of characters to be shown at your terminal, starting at the

beginning of each specified line.

You can enter several different operand combinations. The system

interprets the operands according to these rules:

1. When entering a single number and no other operands, the system assumes

you are accepting the default value of the asterisk and the number
is a value for the count-2 operand.

2. When entering two numbers and no other operands, the system assumes they

line-number-1 and count-2 respectively.

3. When entering two operands and the first is a number and the second

begins with a character that is not a number, the system assumes

they are line-number-1 and string-1.

4. When entering three operands and they are all numbers, the system

assumes they are line-number-i, line-number-2 and count-2.

5. When entering three operands and the first two are numbers, but the

last begins with a character that is not a number, the system

assumes they are line-number-1, line-nuuber-2 and string-1.

//
Page 31

DOMONIC COMMAND RE2ERENCE MANUAL

EDIT COMMAND

EXAMPlE I

operation: 	 Change a character sequence in a line of a line

numbered data 	unit.
known: 	 Line number is 96.

Old character sequence is ELEMENT-TYPE.
New character seguence is DATA UNIU.

change xelement-typexdata unit;

Example 2

operation: Changing a character seguence when it appears in

several lines of a line numbered data unit.

known: 	 Starting line number is 16.

End line number is 52.

New character sequence is THE.

Old character seguence is THAT.

change 16 52 'that 'the 'all;

NOTE: The blanks following string-1 and string-2 are

treated as characters.

Example 3

operation: Change part of a line in a line numbered data unit.

known: line number is 164.

Number of characters in the line preceding the

characters to be changed is 13.

change 164 13;

NOTE: This causes the first characters of a line numbered

164 to be listed. To complete the line, type

in the new information and enter the line by

pressing the return key.

Example 4
operation: Change part of a particular line of a line numbered

data unit.
known: tine number is 16.

Character string to be change is * STXING-1.

change 16 x*string-1;

Page 32

DOMONIC COMMAND REERENCZ MANUAL

EDIT COMMAND

NOTE: line 16 is searched until the character string
'*string-1l is found. The line is displayed up
to the string. To complete the line, enter the
new version into the data unit.

Example 5

operation: Change table values.

known: line numbdr of first line in table is 267.

line number of last line in table is 304.

Number of columns containing values is 9.

change 267 304 9;

NOTE: Each line of the table is displayed up to the

column containing the value. As each line is

displayed, enter the new value. The next line

will not be displayed until the current line

is changed and entered into the data -nit.

Example 6

operation: Add a character sequence to the beginning of a line

that is currently referred to by the pointer.
known: character sequence is 'TO REMOVE ONE'.

change * //to remove one;

Example 7

operation: Delete a character seguence from a line

numbered data unit.

known: Line number is 5.

Character sequence to be deleted is NEVER.

change 5 /never//;

or

change 5 /never/;-

Page 33

3.8

DOMONIC COMMAND REFERENCE MANUIL

EDIT COMMAND

DELETE Subcommand of EDIT

To remove one or more lines from the data unit being edited use the

DELETE subcommand.

When the delete operation is ended, the current-line pointer points to

the line that preceded the deleted line. If the first line of the data

unit has been deleted, the current line pointer is set to zero.

SUBCONLAND OPERANDS

DELETE

D line-number-1 [line-number-2]

[count]

line-number-1

the line to be deleted or the first line of a range of lines to be

deleted.

line-nunber-2

the last line of a range of lines to be deleted.

the first line to be deleted is the line indicated by the current

line pointer in the system. If no line is specified, this is the

default.

count

starting at the location indicated by the preceding operand, it

specifies the number of lines to he deleted.

EXAMPLE 1

operation: Delete a line referred to by the current line pointer.

delete *;

delete;

or

Page 34

DOMOIIC COMMAND RERENCE MANUAL

EDIT COMHAND

NOTE: 	 the last instance is a use of the Insert/Replace/

Delete function and not a DELETE subcommand.

Example 2

operation: Delete a particular line from a data unit.

known: Line number is 10.

delete 	10;

Example 3

operation: Delete consecutive lines of a data unit.

known: First line number is 6.

last line number is 55.

delete 	6 55;

Example 4

operation: Delete lines from a data unit with no line numbers.

known: Number of lines to be deleted is 22.

delete 	* 22;

Example 5

operation: Delete all lines of a data unit.

known: Data unit contains 90 lines that are not numbered.

top

delete * 90;

Page 35

3.9

DOMONrC COMMAND EBERENCE MANUAL

EDIT COnMAND

DOWN Subcommand of EDIT

To change the current-line pointer so it points to a line that is closer

to the end of the data use the DOWN subcommand.

SUBCOMMAND 	 OPERANDS

DOWN [count]

DO

count

the number of lines toward the end of the data unit that you want to

move the current-line pointer. The default is one if you omit the

operand.

EXAMPLE 1

operation: Change pointer so it points to the next line.

down;

Example 2

operation: 	 Change pointer so you can refer to a line that is

closer to the end of the data unit than the current

line.

known: 	 Number of lines from current position to new position

is 6.

down 6 ;

Page 36

DOMONIC COMMAND REJERNCE MANUAL

EDIT COMMAND

3.I0 END Subcommand of EDIT

Use the END subcommand to end operation of the EDIT command. Upon

entering the END subccmmand, you may enter new commands. If you have

modified your data unit and have not entered the SAVE subcommand, the

system asks you if you want to save the modified data unit. If so,

enter the SAVE subcommand. If you don't want to save the data unit, re
enter the END snbcommand.

SUBCOMAND OPERANDS

END

Page 31

3.11

DOLONIC COMMAND REERENCE MANUAL

EDIT COMMAND

FIND Subcommand of EDIT

To locate a specified sequence of characters use the FIND subcommand.
The system first looks at the line referred to by the current line

pointer in-the system, and continues until the character string is found

or the end of the data unit is reached.

SUBCOMMA ND OPERA UDS

FIND string [position]
F

string

the sequence of characters (the character string) that you want to

find. These characters must be preceded by an extra character that

serves as a special deliiter. The extra character may be any

printable character other than a number, blank, tab, or asterisk.

Do not put a delimiter between the extra character and the string of

characters. You must not use the extra character in the character

string.

The operands you specified the last time you used FIND during this
current usage of EDIT are employed if you do not specify any
operands. The system begins the search for the specified string at
the line following the current line. Repeated use of this
subcommand without operands allows you to search a data unit line by
line.

position
the column within each line at which you want the comparison for the

string to be made. This operand also shows the starting column of

the field to which the string is compared in each line.

You must specify the digit 6 for the positicnal operand if you want

to consider a string starting in column 6. When using the position

operand with the special delimiter form of notation for 'string',

you must separate it from the string operand with the same special
delimiter as the one preceding the string operand.

A)(

Page 38

DOMONIC COMMAND LEPERENCE MANUAL

EDIT COMMAND

EXAMPLE 1

operation: Locate a character sequence in a data unit.

known: Character sequence is DIGIT FOR.

find xdigit for;

Page 39

I

DOMONIC COMMAND EERENCE MANUAL
EDIT COMMAND

3.12 INPUT Subcommand of EDIT

The INPUT subcommand places the system in the Input mode so you can add

or replace data in the data unit being edited.

SUBCOHMMAND OPERANDS

INPUT line-number [increment] R PROMPT
I * I NOEROMPT

line-number

the location for the first new line of input and the line number.

Input data will be added to the end of the data unit if no operands

are indicated.

increment

the amount you want each succeeding line number to be increased.
The default will be the last increment specified with the INPUT or

RENiM subcommand if you cmit this operand. If neither the INPUT or

RENUN subcommand has been specified with an increment operand, an

increment of 10 is used.

the next new line of input will replace or follow the line pointed

to by the current-line pointer, depending on whether you specify the

R or I operand. If an increment is specified it is ignored.

R
indicates you want to replace existing line of data and insert new

lines into the data unit. If you fail to specify either a line

number or an asterisk, this operand is ignored. The new line will

replace the old line if the specified line already exists. The new

line is inserted at that location if the specified line is vacant.

It is important to remember that all old lines between the new lines
of input will be deleted.

new lines to be inserted into the data unit without changing

existing lines of data. If you fail to specify either a line number

or an asterisk, this operand is ignored.

Page 40/

DOMONIC COMMAND REFERENCE MANUAL

EDIT COMMAND

PROMPT

indicates a line number to be displayed before each new input line

and each time data is printed using the other subcommands. If the

operand is omitted, the default is:

1. The value (either EBCMPT or NOPROMPT) that was

specified the last time you used Input mode.

2. PROMPT, if 	this is the first use of Input mode

NOROMPT

indicates that you do not mant to be prompted.

EXAMPLE 1

operation: Add and replace data in an old data unit.

known; Data unit is to contain line numbers.

Prompting is desired'.

The ability to replace lines is desired.

First line number is 4.

Increment value for line numbers is 4.

input 4 4 r prompt;

Example 2

operation: Insert data in existing data unit.

known; 	 Data unit contains text for a manual.

No line numbers.

Ability to replace lines is not needed.

First input data is 'NEW LINES TO BE INSERTED'

which is to be placed at the end of the data unit.

input;

Page 41 	 tts

DOMONIC COMMAND REIEENCE MANUAL

EDIT COMMAND

3.13 INSERT Subcommand of EDIT

To insert one or more new lines of data into the data unit, use the

INSERT subcommand. Input data will be inserted following the location

pointed to by the line pointer in the system. If you do not specify any

operands, input data will he placed in the data unit line following the

current line. By using the BOTTOM, DOWN, TOP, UP, FIND, and LIST

subcommands, you can change the position pointed to by the line pointer.

SUBCOHMANDS 	 OPERANDS

INSERT 	 [insert-data]
I

insert-data

the complete seguence of characters that you want inserted into the

data unit at the location indicated by the line pointer. The system

only recognizes a single delimiter. All except the first delimiter

is considered 	to be input data if you enter more than one.

EXAMPLE 1

operation: Insert a line into a data unit.

known: 	 line to be inserted is: 'TEXT IS SOURCECODE'.

The insertion follows line 24.

The current line pointer is pointed at line 19.

User is in Edit mode.

Before entering the INSERT-subcomnand, the current line

pointer must be moved down 5 lines to the lccation where

the line is to be inserted.

down 5;

The INSERT subcommand is now entered.

insert text is sourcecode;

Page 42 	 t L/

----- - -------- -----------------------

DONONIC COMMAND REFERENCE MANUAL

EDIT COMMAND

Example 2
operation: Insert several lines into a data unit.

known: Data unit contains line numbers in increments of 10.

Inserted lines to follow line 160.

Current line pointer is at line 130.

User operating in Edit mode.

Lines to be inserted are:

'USER IS ARSEVEN'

'PASSORD IS R7'

'DUI IS NASADOC'

Before entering the INSERT subcommand, the current line

pointer must be moved down 3 lines so it points to

line 160.

down 3;
-

INSERT subcommand is now entered.

insert;

NOTE: the system will respcd with

INSERT

lines to be inserted may no be entered.

Page 43

DOEONIC COMMAND BEFERENCE MANUAL

EDIT COMMAND

3.14 Insert/Replace/Delete Function of EDIT

The Insert/Replace/Delete function inserts, replaces or deletes a line

or data without indicating a subcommand name. If you want to insert or

replace a line, simply specify the location and the new data. To delete

a line, indicate the location. A line number or an asterisk should be

used to specify the location. The asterisk tells you that the location

to be used is pointed to by the line pointer within the system. Using

the UP, DOWN, TOP, BOTTOM, and FIND sutcommands, you change the pointer.

SUBCOAAND OPERANDS

line-number [string]

line-number
the number of the line you want to insert, replace or delete.

indicates a replacement or deletion of the line at the location

pointed to by the line pointer. You can use the TOP, BOTTOM, UP,

DOWN and FIND subcommands to change the line pointer without

modifying the data unit you are editing.

string

the sequence of characters that you want to either insert into the,

data unit or to replace an existing line. If a line exists at the

specified location and this operand is omitted, the existing line is

deleted. No delimiter is required between this operand and the

preceding operand when the first character of 'string' is a tab.

System Translation of Operands: when a line number or an asterisk is

specified, the system deletes a line or data. When a line number or

asterisk followed by a seguence of characters is specified, the system

replaces the existing line with the specified sequence of characters or,

if there is no existing data at the site, the system inserts the

sequence of characters into the data unit at the specified location.

EXAMPLE 1

operation: Insert a line into a data unit.

known: The number to be assigned the new line of data is

46 and the line is TESTTEMP COBOL A.

46 testtemp cobol a;

Page 44

DOMONIC COMMAND REFERENCE MANUAL

EDIT COMMAND

Example 2

operation: Replace an existing line in the data unit.

known: Numbered line to bhreplaced is 35.

Replacement data is 04 NAME PIC X(30).

35 04 name ric x(30);

Example 3

operation: Replace an existing line of a data unit that

does not have line numbers.

known: 	 Line pointer is pointing to

the line that is to be replaced.

Replacement data is MASTER TABLE.

master table

Example 4

operation: Deleting a line.

known: Line number is 627.

Current line pointer points to line 627.

627;

or

Page 45 	 /0

DOMONIC COMMAND REFERENCE MANUAL

EDIT COMMAND

3.15 LIST Subcommand of lDIT

To display one or more lines of your data unit at your terminal or on

the printer, use the LIST subcommand.

SUBCOMAND OPERANDS

LIST line-number-1 [line-number-2]
L

NUM
[countJ

SNUM

line-number-i
the number of the line that you want to be displayed at your

terminal or on the printer.

line-number-2
the number of the last line that you want displayed. All the lines
from line number I through line number 2 are displayed when you
specify this operand.

*

the line referred to by the line pointer in the system is to be

displayed at your terminal or on the printer. By using the UP,

DOWN, TOP, BOTTOM, and FIND subcommands without modifying the data

unit you are editing, you can change the line pointer.

NUM

line numbers are to be displayed with the text. If both NUM

and SNUM are omitted, this is the default value.

SNUM

line numbers will not be printed on the listing.

NOTE: If no numeric operand or asterisk is present, the entire

data unit will be deleted.

Example 1.

operation: Listing an entire data unit.

Page 46

DOMONIC COMMAND REYERENCE MANUAL

EDIT COMMAND

Example 2
operation: Listing part of a line-numbered data unit.
known: The first line to be displayed is 66.

The last line to be displayed is 104.

list 66 104;

Example 3
operation: listing part of a data unit without numbers.
known: The line pointer in the sytem currently points to

the first line to be listed.
The copy consists of 22 lines.

list * 22;

Page 47

DOMONIC COMMAND RIERENCE MANUAL
EDIT COHMA ND

3.16 NUMBERS Subcommand of EDIT

The NUMBERS subcommand causes line numbers to he printed each time data

is printed. This is the system default. It works in ccnjunction with

the prompt feature of INPUT.

S UBCO iHA ND OP ER AN DS

NUMBERS ON
NUN OFF

ON

indicates that you want to have the line numbers printed each

time data is printed. If you cmit both ON and OFF, this is

the default.

OFF

indicates that you want to discontinue the printing of line

numbers as data is printed.

Example 1

operation: Line numbers requested with data.

numbers on;

Example 2

operation: Discontinue line numbers.

numbers off;

Page 8 /30

DOBONIC COMMAND UEPERENCE MANUAL

EDIT COMMAND

3.17 BENUN Subccmmand of EDIT

Use the RENUN subcommand to assign a line number to each record of a

data unit that does not have line numbers and to renumber each record in

a data unit that has line numbers.

In all cases, the specified (or default) increment value becomes the
line increment for the data unit.

SUBCOIMAND OPERANDS

RENUM [nev-line-number [increment fold-line-number]]

REN

new-line-number
the first line number to be assigned to the data unit. The first

line number will be 10 if this operand is omitted.

increment

the amount by which each succeeding line number is to be

incremented. The default value is 10. Unless you specify a new line

number, you -cannot use this operand.

old-line-number

the site 'ithin the data unit where renumbering begins. Renumbering

will start at the beginning of the data unit if this operand is

omitted. Unless you specify a value for the increment operand, you

cannot use this operand.

EXAMPLE 1

operation: Renumber an entire data unit.

renum;

NOTE: Successive line numbers in the data unit will be 10, 20,
30, etc. See default values for new line number and increment.

Example 2

operation: Renumber part of a data unit.

known: Old line number is 72.

New line number is 64 and the increment is 1.

ren 64 1 12;

Page 49 /s/

DOMONIC COMMAND REPERE1CE MANUAL

EDIT COMMAND

Example 3

operation: Renumber part of a data unit from which lines have been

deleted.

known: The data unit contained lines 90, 100, 110,

120 and 130 before deletion. Lines 100 and

110 were deleted. Lines 120 and 130 are to

be renumbered with an increment of 10.

ren 100 10 120;

NOTE: 	 the lowest acceptible value for a new line number in this

example is 91.

Page 50

DOMONIC COMMAND REIERENCE MANUAL

EDIT COMMAND

3.18 SAVE Subcommand of EDIT

Use the SAVE subcommand to permanently keep your data unit. The updated

version replaces the original if an operand is not specified; both are

available for further use if you specify a new name.

SUBCOM9tMAND OPERANDS

SAVE data-unit-name,

S

ELEMENT

TEMPLATE COMMON

RECIPE PRIVATE

DOCAID

[CHANGE-NO [=] change-number]

data-unit-name

the name assigned to your edited data unit. It is the default. The

data-unit-type may not be changed during SAVE.

ELEMENT
specifies that the data unit is an element.

TEMPLATE

specifies that the data unit is a template.

COMMON
indicates the recipe, template or docaid is in a common library.

RECIPE
specifies that the data unit is a recipe.

PRIVATE
indicates the recipe, template or docaid is in a private library.

DOCAID

specifies that the data unit is a docaid.

change-number
a five digit number between 0 and 32759.

Page 51 /A

DOMONIC COMMAND REFERENCE MANUAL

EDIT COMMAND

EXAMPLE I

operation: Save the data unit that has just been edited.

known: User supplied name is ARSEVEN.

save arseven;

Page 52 /J/

DONONIC COMMAND REFERENCE MANUAL

EDIT COMMAND

3.19 TABSET Subcommand of EDIT

Use the TABSET subcommand to create or change the logical tabulation

settings or to void amy existing tabulation settings.

The TABSET subcommand causes each strike of the tab key to be translated

into blanks corresponding to the column requirements for the data-unit
type. For example, if the name of the data unit being edited has COBOL

as the sourcecode-type, the first tabulation setting will be in column

8. The values in the figure below will be in effect when you first

enter the EDIT command.

Tab Settings

TEXT 5, 10, 15, 20, 30, 40

GRAPHICS5, 10, 15, 20, 30, 40

(SOURCECODE)

ASM 10, 16, 31i 72

JCL 10, 20, 30, 40, 50, 60

COBOL 8, 12, 72

FORTRAN 7, 72

P1/i 5, 10, 15, 20, 25, 30, 35, 40, 45, 50

It may be to your advantage to have the mechanical tab settings coincide

with the logical tab settings. The logical tab positions are calculated

beginning at the next position after the prompt since a printed line

number prompt is not lcgically part of the data you are entering. It

follows that if you are receiving five-digit line number prompts and

have set a logical tab in column 10, the mechanical tab should be set 15

columns to the right of the margin. The mechanical tab should be set 10

columns to the right of the margin if you are not receiving line number

prompts.

SUBCOMMAND OPERANDS

TABSET ON [integer-list]

TAB OFF

IMAGE

Page 53

DOMONIC COMMAND REERENCE MANUAL

EDIT COMMAND

ON integer-list

tab settings are to be converted into blanks by the system. The

existing or default tab settings are used if you specify ON without

an integer-list. You can create new values for tab settings by

indicating the numbers of the tab columns as values for the integer
list. A maximum of 10 values is allowed. The default value is ON
if you omit both ON and OFF.

OFF
there is to be no interpretation of tabulation characters. Each

strike of the tab key produces a single blank in the data.

IMAGE

the next input line will define new tabulation settings. The next

line that you type should consist of 't's, specifying the column

positions of the tab settings, and blanks or any other characters

except It'. The zaximum number of tabs allowable is 10 settings.

You should never use the tab key to produce the new image line. It

is a good practice to use a sequence of digits between the It's so

you can easily determine which columns the tabs are set to.

EXAMPLE 1

operation: Be-establish standard tab settings.

known: Tab settings are not in effect.

tab;

Example 2

operation: Establish'tabs for columns 6, 46, and 66.

tab on (6 46 66);

Example 3

operation: Establish tabs on every fifth column.

tab image

1234t1234t123...;

Page 54

DOMONIC COMMAND REERE4CE MAUAIL

EDIT COMMAND

3.20 TOP Subcommand of EDIT

To change the line pointer in the system to the first line, use the TOP

subcommand.

If the data unit is empty, then the line pointer will be set to zero and

the message input mill be printed.

The TOP subcommand is useful in setting the line pointer to the proper

position for subsequent subccmmands that need to begin their operations

at the start of the data unit.

SUBCO NfA Nf OPER2 NUS

TOP

EXAMPLE 1

operation: Find the first occurrence of 'templates in the data

unit.

top

find 'template';

Page 55

3.21

DOMONIC COMMAND REFERENCE MANUAL

EDIT COMMAND

UP Subcommand of EDIT

To change the line pointer in the system so it points to a record nearer

to the start of the data unit, use the UP subcomand. You are notified

if the use of this subcommand causes the line pointer to point to the

first record of the data unit.

SUBCOMAND OPERANDS

UP Ecount]
--------------!

count

the number of lines toward the start of the data unit that you want

to move the current line pointer. The pointer is moved only one

line if the count is omitted.

Example 1

operation: Change pointer to point to preceding line.

up;

Example 2

operation: Change the pointer so it refers to a line that is 6

lines before the currently referred to line.

up 6;

Page 56

DONONIC COIMAND REFERENCE MANUAL

EDIT COMMAND

3.22 VERIFY Subcommand of EDIT

The VERIFY subcommand displays the line that is currently pointed to by

the line pointer in the system: whenever the current line pointer has

been moved, or whenever a line has been modified by use of the CHANGE

subcommand. You will have no verification of changes in the position of

the current line pointer until you enter VERIFY.

SUBCOMA-ND OPERANDS

VERIFY ON

V OFF

ON

indicates that you want to have the line that is referred to by the

line pointer displayed each tine the line pointer changes or each

time the line is changed by the CHANGE subcommand. If you omit both

ON and OFF, this is the default.

OFF

indicates that you want to discontinue service.

EXAMPLE 1

operation: Display the line referred to by the line pointer each

time the line pointer changes.

verify;

or

verify on;

Example 2

operation: End operation of verify subcommand.

verify off;

Page 57

4.0

DOONIC COMMAND RETEE1NCE RANUAI

EDIT COMMAND

ERASE Command

Use the ERASE command to remove a permanent data unit from a

documentation unit. Once a data unit has been erased it can no longer

be retrieved as an old data unit by issuing an EDIT command. Any

reference to it will be as a new data unit. The format for the ERASE

command is:

COMMA ND OPERANDS

ERASE data unit name
R

ELEMENT

DOCAID

RECIPE COMMON

TEMPLATE PRIVATE

[CHANGE-NO [=1 change-number]

data-unit-name

the name of the data elements, templates, recipes, or docaids

you want to erase.

ELEMENT

specifies that the data unit to be erased is a data element.

DOCAID

specifies that the data unit to be erased is a docaid.

RECIPE

specifies that the data unit to be erased is a recipe.

COMMON

specifies that the recipe, docaid or template to be erased is

stored in a common library.

TEMPLATE

specifies that the data unit to be erased is a template.

PRIVATE

specifies that the recipe, docaid or template to be erased is

stored in a private library.

Page 58 2

DOMONIC COMMAND REFERENCE MANUAL

EDIT COMMAND

change-number

five digit number between 0 and 3275S.

Example 1

operation: Erasing a data unit.

known: Data-unit-name is SYSTEM-BLCCK-DIAGEAL.

erase system-block-diagram;

If the data unit is found the system will prompt you to be sure that you
want to permanently erase the data unit. Your answer is YES if you
decide to erase and NO is you decide not to erase.

Page 59 /1

DOMONIC COMMAND IEUIENCE MANUAL

RECIPES AND DOCUMENT GENERATION

DEFINE NASA-SXSTEM USING SPARMII, &SUBCPE RCIPE-CizSS=5

/*THIS IS THE HIGHEST LEVEL RECIPE OF A SET OF RECIPES NECESSARY

TO PRODUCE A EOCUMENT FROM THE DATA STORED UNDER TEMPLATE NASA

-SYSTEM*/

STREAM $PRINTER TO PRINTER;

/*SET OUTPUT NAME $PRINTER TO POINT TO LOGICAl NAME PRINTER*/

STREAM $OBJSET TO DISKi

/*POINT OBJECT MODULES TO PERMANENT DISK DATA SET*/;

LITERAL 'DOMONIC' OUTPUT IS ($PDINTER,+20)

/*TITLE TO BE PRINTED 20 LINES DEEP ON A NEW PAGE*/;

SYSTEM-OVERVIEW OUTPUT-(,5)

/*ROUTE THE DATA-ELEMENT SPARM1 TO THE SAME OUTPUT

STREAM AS THE PREVICUS LITERAL. TIVE BLANK LINES

ARE INSERTED BEFORE PRINTING */,

END NASA-SYSTEM;

FIGURE 3 EXAMPLE OF A SIMPLE RECIPE

Page 60

DOMONIC COMMAND REFERENCE MANUAL*

RECIPES AND DOCUMENT GENERATION

DEFINE NASA-SYSTEM USING SPARM1, SSUBRCPE RECIPE-CLASS=7

/*THIS IS THE HIGHEST LEVEL OF A SIT OF RECIPES NECESSARY TO

,PRODUCE A DOCUMENT FROM DATA STORED UNDER TELPLATE-NASA-SYSTEM*/

STREAM SPRINTER TO PRINTER;

/*SET OUTPUT NAME SPRINTER TO POINT TO LOGICAL NAME PEINTER*/

STREAM $OBJSET TO DISKI

/*POINT OBJECT MODULES TO PERMANENT ISK DATA SET*/;

LITERAL 'DOMONIC' OUTPUT IS ($PEINTER,+20)
/*TITLE TO BE PRINTED 20 LINES DEEP ON NEW PAGE*/;

SYSTEM-OVERVIEU OUTPUT= (,5)
/*ROUTE THE DATA-ELEMENT £PARM-1 TO THE SAME OUTPUT STREAM

AS THE PREVIOUS LITERAL. FIVE BLANK LINES ARE INSERTED

BEFORE PRINTING */;

CALL SUBSYSTEM-HANDLER USING EDITOE-SU BSYSTEN,CALL,EDITOR,CALL,

ESAyE,CALL, El NPUT

/GET SUBDECIPE FOR DOCUMENTING TEE RECIPE/

DEFINE SUBSYSTEM-HANDLER USING &SUHSYS,&VERB1,MOD1,&VERB2,

&EOD2,8VERB3,&MOD3 WECIPE-CLASS=5

/-,A RECIPE TO HANDLE DOCUMENTATION OF A SUBSYSTEM*/

LITERAL 'EDITOR-SUBSYSTEM' OUTPUT IS ($PRINTER,+O,20)

/*PRINT SUBSYSTEM-NAME AT TOP OF PAGE */

T12 (EDITOR-SUBSYSTEM) OUTPUT IS (SPRINTER)

/*NRITE THE SUBSYSTEM ABSTRACT*/

/*THE FOLLOWING INSTRUCTIONS ARE PROTOTYPES TO HANDLE

SUBSYSTEM MODULES*/

CALL MODULE-HANDLER USING EDITOR, SPRINTER

DEFINE MODULE-BANDIER USING £PGMi, &OUTPUT1 RECIPE-CLASS=3

/*A RECIPE TO HANDLE INDIVIDUAL NODULES IN A SUBSYSTEM*/
LITERAL 'EDITOR' OUTPUT IS ($PRINTER,3)

/*PBINT MODULE NAME AFTER SKIPPING 3 LINES*/
T13 (EDITOR) OUTPUT IS (SPRINTER)

/*PRINT THE MODULE ABSTRACT*/
$COBTIDY INPUT = T7{EDITOR), OUTPUT = ($EDITOR)

/*INVOKE COBOL TIDY PROGRAM FOR SOURCE MODULES; TIDIED
SOURCE SAVED ON TEMPORARY DATA SET*/

$COBCOMP INPUT = (SEDITOR), OUTPUT = ($PRINTER,$OBJSET)
/*INVOKE COBOL COMPILER; SOURCE INPUT IS FROM PREVIOUS

DATA SET; PRINTED OUTPUT GOES TO SOUTNABE, OBJECT CODE
GOES TO $OBJSET*/

END MODULE-HANDLEP;

END SUBSYSTEM-HANDLER;

END NASA-SYSTEM;

FIGURE 4 EXAMPLE OF AN EXPANDED RECIPE

Page 61

DeONIC COMMAND REFERENCE MAVUDA

RECIPES AND DOCUMENT GENERATION

5.0 RECIPES AND DOCUMENT GENERATION

The vehicle for producing output from DOMONIC is the recipe. Recipes

provide the link between raw data stored in the documentation unit and

development and documentation aid programs which produce output.

Examples of documentation aids are compilers, linkage editors, text

formatters, flowcharters and cross reference generators.

Recipes may be simple or complex. A simple recipe might be a recipe to

compile a single program and produce a listing. A complex recipe such

as one to produce a user's manual combines many data units with many

output producing programs and formats all outputs into a document with
table of contents, chapters, headings and page numbering. A recipe is a

combination of data unit names from the documentation unit, names of

output producing programs and instructions for processing and formatting

the overall document.

The recipe is written in the recipe language. It is entered into the

documentation unit through the editor and stored for immediate or future

use. All editor facilities can be used to input and update the recipe.

The editor treats a recipe as if it were text and does not interpret

recipe instructions.

5.1 DOCUMENT GENERATION

The goal of document generation is to make the production of documents

as easy as possible. In order to do this three entities used in

document generation must be specified in advance. These are a recipe, a

documentation or development aid description Idocaid) and a lcgical
physical device table (L-P table). All are part of the documentation

unit. In addition, another table, the input-output stream table, is

automatically built during the generation process. This table is not

retained after document generation. The recipe, docaid, i-P table and

input/output stream table are used during the recipe expansion and

document production process.

The actual document production is a separate batch job executed

independently of the system. The job stream for this batch job is

created during the recipe expansion process performed under the control

of DOMONIC. When the job stream has been created, it is written to a

HASP internal reader. (For systems without HASP, the job stream is

written on a disk and an OS reader must be started using an operating
system command).

Page 62

DOMONIC COMMAND RERRENCE MANUAL

RECIPES AND DOCUMENT GENERATION

5.2 RECIPE EXPANSION PROCESS

The recipe expansion process compiles a job stream (sequence of job

control language statements) which produces a document from a group of

specified inputs. Before explaining the recipe expansion process the

various inputs are described.

5.2.1 Recipe

A recipe is a sequence of instructions written in the recipe language

describing how a document is produced. Recipes can be used as main

recipes or as subrecipes. Recipes may be defined with parameters. This

allows the writing of general purpose recipes in which the names of data

elements or documentation aids are specified when the recipe is invoked.

If a recipe is defined with parameters, the corresponding arguments must

be supplied in the GENRATH command or CALL. Up to four levels of calls

are permitted.

5.2.2 Documentation Aid Description

A documentation aid description (docaid) is similar in many ways to an

IBM assembly language macro definition. It consists of a docaid

prototype statement and a series of model statements. The' prototype

statement gives the name of the docaid and its symbolic parameters. The

model statements model job control language (JCL) statements and control

cards. One or more job steps are generated from the model statements.

The symbolic parameters of the docaid prototype statement are divided

into three classes: inputs, outputs and options. Its format is:

$docaidname [INPUT [=] (i-1,...)] [OUTPUT [=] (o-
1,...)4QOPTICNS [=] (p-1,...) ,

docaidname

the name by which the documentation aid will be referenced.

Syntax is the same as for template and recipe names.

i-i

a list of input parameters. They correspond to inputs specified

in the model statements. There are two types:

data-unit-names

usually the name of a data element, but could be a template,

recipe or docaid (last three treated as teit). A data-unit

input parameter generates a DD * statement in the job
stream. It is followed by the data retrieved from the data base.

Page 63 14

DOiONIC COMMAND RETERENCE 14ANUAL

RICIPES AND DOCUMENT GENERATION

i-o stream name

the name of an input data set generated by a previous

step in the document production. The name must start

with a $ followed by alphabetic character concatenated

with zero to six more characters.

0-1

a list of i-o stream names used for output from this documentation

aid (may later be inputs to other docaids). They correspond

to outputs in the model statements.

p-1

a list of option parameters used as simple replacement parameters

in the model statements. If a parameter contains multiple

items, it must be enclosed in parentheses. The whole character

string without the parentheses will be used in replacement.

An input, output, or option parameter is referenced in the docaid model

statements according to the following convention:

&Xnn

where

& is required and marks this as a replaceable parameter.

X is one of the letters 1,0 or P for input, output,

option respectively.

n(n) is a one or two digit number uniquely defining the

parameter within its class.

Docaids are entered using the editor and stored in the private library

for the documentation unit or in the system common library.

5.2.3 Logical Stream-Physical Device Table

The -logical-stream-physical device table (1-P table) links logical
input/output streams used in a recipe to actual physical devices. The
table is entered into the recipe library for a documentation unit by a
JCL programmer using the editor. Any number of these tables may be
entered into the recipe library, each with a unique name. The table to

be used in a recipe expansion is designated in the GENERATE-command. If

none is specified, the system I-P table is used.

Page 64 22

5.3

DOMONIC COMMAND REERENCE MANUAL

RECIPES AND DOCUMENT GENERATION

Each entry in this table has two parts: 1) a logical stream name and 2)

a JCL phrase defining the physical device. For example a logical stream

with the name PRINTER could define a physical device with JCL phrase

SYSOUT=A. The format for table entries is:

L [=] logical-stream-name, P [=] physical-device-3d-phrase;

An L-P table can be listed either in the form it was input by using the
editor or formatted by using the LIST subcommand of the GENERATE
command.

The logical stream names are associated with input and output parameters

used in docaids by using a stream instruction. (See Section 5.3.7.)

The recipes, docaids and the L-P tables are all members of the library

of a documentation unit. They are permanent in nature. They must all

exist before a GENERATE command is issued.

In addition a temporary table (input-output stream table) is created

only for the duration of the recipe expansion.

5.2.4 Input-Output Stream Table

This table contains a list of correspondences between input and output

names used in recipes and logical stream names in the L-P table. The

assignment of a input or output name to a logical stream is done by the

stream instruction in a recipe. The assignment is only valid for a

given recipe expansion and document generation.

It can be changed within the same expansion or from one recipe expansion

to another. This allows you to direct inputs and outputs to different

devices without changing input and output parameters in recipes.

RECIPE INSTRUCTION LANGUAGE

A recipe is composed of a sequence of character strings called

instructions. These instructions define the inputs to be used, where

the output is to be placed and the documentation aids to be used to

generate the output. The general format for a recipe instruction is:

instruction-name [operands] [/*explanation*/];

Page 65

DOMONIC COMMAND EEREUCE MANUAL

RECIPES AND DOCUMENT CENERATION

The instruction name is taken from the set of instruction names: DEFINE,

END, CALL STREAM, $DOCAID, LITERAL, DATA-UNIT or DUMMY. The total

length of the instruction-name and operand fields may not exceed 980

characters after any variable parameters have been replaced with real

arguments. The operands are determined by the syntax particular to the

instruction and the explanation is any character string.

5.3.1 Define Instruction

The define instruction names the recipe. It is the first instruction

and marks the recipe's beginning. Its format is:

DEFINE recipe-name [USING (&parm-1,...)] [RECIPE-CLASS j=] n]

[/*explanation*/];

recipe-name
the name of the recipe being defined. It can be from I to 30
characters (alphabetics, digits, dashes, underscores) long and
must start with an alphabetic character.

&parm-1

a list of parameters replaced by real values (arguments)

when the recipe is called from the library to generate output.

Parameters are alphanumeric, 1 to 8 characters long and must start

with an ampersand.

n
an integer in the range 0-9 which denotes the class of this recipe.

This field is compared to a user's recipe authorization for permission

to use this recipe. Class 0 is for the simplest recipes while

class 9 is for the most complex. Recipes with a class of 7 or

higher may only be generated using the hatch version cf DOMONIC.

If the RECIPE-CLASS phrase is cmitted from the DEFINE instruction,

a class value of 9 is assumed.

explanation

a character string explaining the recipe.

5.3.2 End Instruction

The end instruction marks the end of a recipe. Each recipe must begin

with a DEFINE instruction and end with an END instruction. The format

for the end instruction is:

Page 66

DOMONIC COMMAND REERENCE MANUAL

RECIPES AND DOCUMENT GENERATION

END [recipe-name] [/*explanation*/];

recipe-name

The name of the recipe being defined. It can be from 1 to 30

characters (alphabetics, digits, dashes, underscores) long and

must start with an alphabetic character.

explanation

a character string explaining the recipe.

5.3.3 Call Instruction

The call instruction is used to invoke a recipe from another recipe.

This instruction can be thought of as a 'subrecipe' call. Arguments may

be passed to match the parameters defined for the recipe. The format

for the call instruction is:

CALL recipe-name [USING (arg-1,...) J[/*explanation*/]

recipe-name

a valid recipe name.

arg-1

a list of arguments corresponding to the parameters defined for

the called recipe. Each argument is a character string with

a maximum length of 510 characters. If an arguirent contains

a comma, the argument should be enclosed in parentheses.

The parentheses are not considered to be part of the

argument.

explanation

any character string.

5.3.4 Literal Instruction

The literal instruction is used to insert a literal into the output

stream (usually the printer). The literal instruction format is:

[LITERAL] 'literal-string'

[OUTPUT [=] ([output-name][,skip-n])]J

Page 67

DONONIC COMMAND REBERENCE MAmUAi

RECIPES AND DOCUMENT GENERATION

[/*explanation*/];

literal- string
a character string. If a single guote is desired within the

literal string, two quote marks must be used together.

output-name
the name of the output stream to which the literal is to be

routed. If not given, the I-0 NAME $PRINTER is the

default.

skip-n

an integer specifying the number of lines to be skipped from

the current position before outputing this line. To start

a new page and then skip n lines precede the integer with a

plus sign, e.g. +10. A value of zero will suppress skipping

to a new line. The default is 1 line.

explanation

any character string.

5.3.5 Data-Unit Instruction

The'data-unit instruction is used to retrieve a data unit and route it

to a designated output stream (usually the printer) for inclusion in the

document. The format for the data-unit instruction is:

[LIST] (data-unit-name-l,...)

[OUTPUT [=] I[output-name][,skip-n]) J, [/*explanation*/];

data-unit-name-1

a list of data units to be retrieved and output. If more than

one data-unit is listed the data retrieval will be concatenated

on output.

output-name

the name of the output stream to which the data units are to be

routed. The I-0 NABE SPRINTER is the default if no output

option is given. The output line format will depend on the

data unit type. Elements of type sourcecode and docaids

will have each line expanded to an 80-character card

image with data left justified. For templates, recipes and

elements of type text and graphics, the data will be divided

into 132 character printer lines. Each line of the data

unit will start on a new line. Data unit lines longer

5cPage 68

DOMONIC COMMAND EESRENCE MANUAIL

RECIPES AND DOCUMENT GENERATION

than 132 characters will be continued on subseguent

printer lines.

skip-n

an integer specifying the number of lines to be skipped from the

current position before outputting this line. 'Iostart a new

page and then skip n lines, precede the integer with a plus sign,

e.g. +10. A value of zero will suppress skipping to a new line.

The default is 1 line.

explanation

any character string.

5.3.6 SDocaid Instruction

The Sdocaid instruction invokes a development or documentation aid. The

JCL necessary to execute the appropriate docaid prcgram during the

generation of a document is assembled. The operands of this instruction

names the inputs, outputs and options to be used for this execution of

the documentation aid program. The oFerands are used to replace the

dummy parameters in the docaid model statements. The format for the

$docaid instruction is:

$docaid-name [INPUT [=] (input-name-l,...)
[OUTPUT [=] (output-name-i,...)]
[OPTIONS 1=1 (option-1,...)] [/*explanation*/];

docaid-name

the name of the docaid in the recipe library. Follows the rules

for forming template and recipe names.

input-name-1

a list of data unit names (usually data element names) or input

names which refer to input streams or temporary data sets.

An input name starts with a $ followed by an alphabetic character

followed by 0-6 alphabetics and digits.

output-name-1

a list of output names referring to output streams or temporary

data sets. The name formation rules are the same as for input

names.

Page 69

DOMONIC COMMAND REFERENCE MANUAL
RECIPES AND DOCUMENT GENERATION

option-1

a list of options for the documentation aid program. Each option

can be any character string up to 100 characters in length.

explanation

any character string.

Page 70

DONONIC COMMAND DEfERENCE MANUAL

RECIPES AND DOCUMENT GENERATION

5.3.7 Stream Instruction

The 	stream instruction assigns input and output-names {i-o names) used

as arguments in a sdocaid, literal or data-unit instruction to logical
input/output (i-o) streams. The lcgical i-c streams must correspond to
existing entries in the 1-P table. The format for the stream
instruction is:

STREAM i-o-name TO logical-stream-name [/*explanation*/];

i-o 	name
an input or an output name used in a $docaid, literal or
data-unit instruction.

logical-stream-name

the name of a logical i-o stream in the IL-P table given in the

GENERATE command.

explanation

any character string.

5.3.8 Dummy Instruction

The dummy instruction is an instruction that does nothing. It is a sno
op' instruction. It will most commonly be used as an instruction

generated as the result of the replacement of a recipe parameter by the

argument 'DUMNY' in a recipe call. The format for the dummy instruction

is:

DUMMY [any character string];

The dummy instruction is used to vary the documentation aids invoked or

the output produced by a recipe. For example, suppose we have two

recipes, RECIPE-I, RECIPE-2 and data element SYSTEM-ABSTRACT where

RECIPE-i calls BECIPE-2.

DEFINE RECIPE-i RECIPE-CIASS-i;

CAIL R-CIPE-2 USING , ,SYSTEM-ABSTRACT;

Page '71

DOMONIC COMMAND REPERENCE MANUAL

RECIPES AND DOCUMENT GENERATION

CALL RECIPE-2 USING __, ,DUflY;

END RECIPE-I;

DEFINE RECIPE-2 USING ... ,_ INS I RECIPE-CLASS-2

/*list out data elements*/;

&INST1 OUTPUT=$TRINTER

END RECIPE-2;

RECIPE-1 calls RECIPE-2 t-wice. The first time it lists

SYSTEM-ABSTRACT, the second time nothing is listed. If the following

command is issued

GENIRATE RECIPE-I;

in the expanded RECIPE-I, RECIPE-2 expands to a data unit instruction

and a dummy instruction

SYSTEM-ABSTRACT OUTPUT=$PRINTER

DUMMY OUTPUT=$PEIINTER

This example of the dummy instruction also serves an an introduction to

the subject of recipe expansiom.

Page 72

DOIONIC COMMAND REFERENCE MANUAL

RECIPES AND DOCUMENT GENERATION

5.4, GENERATE Command

The recipe expansion process starts with a GENERATE command. The

command names the recipe to be used, supplies recipe arguments and

identifies the logical stream-physical device table (L-P table) to route

outputs generated. The format of the GENERATE command is:

COMMA ND OPERANDS

GENERATE recipe-name [USING arg-l,....]
[I-O-TABLE [=] 1-p-table-name]

recipe-name

the name of the recipe being defined. It can he from 1 to 30

characters (alphabetics, digits, dashes, underscores) long and

must start with an alphabetic character.

arg-1

a list of arguments corresponding to the parameters defined

for the called recipe. Each argument is a character string with

a maximum length of 510 characters. If an argument contains

a comma, the argument should be enclosed in parentheses.

The parentheses are not considered to be part of the

argument.

1-p-table-name

the name of an L-P table which links logical i-c streams

used in a recipe to actual physical devices.

Yon first enter a GENERATE command. The command is parsed and

the recipe is searched for the required L-P table. If it

found, it is assembled and stored in working storage.

The system returns to you for a subcommand.

The GENERATE command has six subcommands. They are SCAN, PROOF, RUN,

LIST, HElP, and END. None of these subcommands require operands.

However, the PROOF subcommand does allow the use of an operand 'WITH

JC,. The format is the subcommand name followed by a semicolon.

Page 73

DOMONIC COMMAND REERENCE EA4UAL

RECIPES AND DOCUMENT GENERATION

5.4.1 SCAN Subcommand of GE1EEATE

Use the SCAN subcommand of GENERATE to do syntax checking of recipes.

The SCAN starts with the first line of the main recipe and proceeds

through the recipe line by line, expanding the recipe calls as it goes.

Each line is checked for correct syntax. The entire expanded recipe is

listed back to the user with sub-recipe calls indented.

SUBCOMAND OPERANDS

SC AN

Example 1

operation: Scanning a recipe.

known: Name of recipe is COMPILE-AND-LIST.

generate comp ile-and-list;
ENTER GENERATE SUBCO1IMAND.

scan;

DEFINE COMPILE-ANrl-LIST RECIPE-CLASS IS 2

1 SYSTEM OVERVIEN' OUTPUT = ($LISTING,+)
SYSTEM-OVERVIEW OUTPUT=(,3)

CALL COBOL-COMPILE USING (RECIPE,RGETDATA),CIIST

DEFINE COBCL-COMPILE USING &MODNAME, SPARM RECIPE-CLASS IS 0

$COBCOMP INPUT=CODERECIP,RGETDATA),OPTIONS=CLIST

END COBOL-COMPILE

STREAM $PRINTER TO PRINTER
I MODULE ** RGETrATA' OUTPUT=(,+1)

CODE(RECIPE,RGETDATA) OUTPUT=(,3)

END COMPILE-AND-LIST

Page 74 76$

DOMONIC COMMAND REFERENCE MANUAL
RECIPES AND DOCUMENT GENERATION

Example 2
Operation: Same as above.

Known: Recipe name is LIST-MODULE.

generate list-module;

ENTER GENERATE SUBCCNNAND.
scan;

DEFINE LIST-MODULE RECIPE-CLASS IS 2
1 SYSTEM-OVERVIEW' OUTPUT - ($1ISTING,+)
SYSTEM-OVERVIEW OUTPUT = (,3)
STREAM $PRINTER TG PRINTER
I MODULE ** RGFTDATA' OUTPUT=(,+1)
CODE(RECIPE,RGETDATA) OUTPUT= (,3)

END LIST-MODULE

Page 75

DOMONIC COMMAND REFERENCE MANUAL

RECIPES AND DOCUMENT GENERATION

5.4.2 PROOF Subcommand of GENERATE

Use the PROOF subcommand to check the existence of inputs and docaids

and to get an abbreviated listing (proof copy) of data referenced in

data unit, literal or docaid instructions. A syntax check is run first

and if a syntax error is found, the subcommand is changed to SCAN and

appropriate error mesages are printed. In either case, the expanded

recipe is listed. When the 'WITH JCL' option is used, the actual jcl to

be used in document generation is listed.

SUBCOMEAND OPERANDS

PROOT -CL [ITH)

Example 1

operation: Initiating the PROOF.

known: Recipe name is COBOL-COMPILE.

generate cobol-compile using {recipe,rgetdata),clist;

ENTER GENERATE SUBCOMAND.

proof;

DEFINE COBOL-COMPIlE USING SMODNAME, SPRM RECIPE-CLASS IS 0

$COBCOP INPUT=CODE(RECIPE,RGETDATA),OPTIONS=CLIST

567 *** TWO LINES FROM INPUT DATA-UNIT 1 FOLLOW, TYPE IS COBOL.

000010 IDENTIFICATION DIVISION.

000020 PROGRAM-ID. RGETDATA.

END COBO1-COI.PILE

Page 76

DGMONIC COMMAND REFERENCE ZANUAL

RECIPES AND DOCUMENT GENERATION

Example 2

Operation: Same as above, but this time JCL is requested.

Known: Same as above.

generate cobol-compile using (recipe,rgetdata),clist;

ENTER GENERATE SUBCOMMAND.

proof with jcl;

//GENTEST JOB (X036,NASA,5,5,GH),'HASCAIL GE DOC'

/*PASSWORD ASAN74

/*CLASS A

/*ROUTE PRINT PRINTER3

DEFINE COBOI-COIPILE USING &MOLNA1, &PARM RECIPE-CLASS IS 0

$COBCOHP INPUT=CODE(RECIPE,RGETDATA),OPTIONS=CLTST

//CARDFORM EXEC PGM=ULSTCARD

//STEPLIB DD DISP=SHR,DSN=TSO.NASA.LOADLIB

//WRITER DD UNIT=SYSDA,DISP=(NEW,PASS),DSN=S&TMPA,SPACE=(TK,10)

//SYSOUT DD SYSOUT=A

//READER DD *

567 *** TWO LINES FBO INPUT DATA=UNIT 1 FOLLOW, TYPE IS COBOL

000010 IDENTIYICATION DIVISIC4.

000020 PROGRAM-ID. EGETDATA.

//COBOL EXEC COBUC,PARM='CLIST'

//SYSLIB DD DISP=SHR,DSN=TSO.NASA.COPYIIB

END COBOL-COMPILE

Page 77

DOMONIC COMMAND REFRENCE MANUAL
RECIPES AND DOCUMENT GENERATION

5.4.4 LIST Subcommand of GENERATE

Use the LIST subcommand to get a formatted listing of the i-P-table

named in the GENERATE command.

SUBCOMMAND OPERANDS

LIST

Example I

operation: Listing the I-P table.

known: Recipe name is COMPILE-AND-IIST.

generate compile-and-list;

ENTER GENERATE SUBCOMMAND

list;

506 LOGICAL NAME PHYSICAL DEVICE.

507 PRINTER SYSOUT=A

507 PUNCH SYSOUT=(B,,50811716)

507 OEJLIBI DISr-=SHR,DSN=TSO.NASA.OBJIB

507 SOURCLIB DISP=SHR,DSN=TSO.NASA.SOURCLIB

507 SAVFILE UNIT=SYSD,DN=&&TBMPFI11,DISP=(NEW,PASS

),SPACE=(TRK,10)

507 DUMPTAPE UNIT=TAPE9,VOLSEr=NASATP,DISP=(NEW,KEEP

),IJBEL-=,NL)

Page 79

DOMONIC COMHMAND REERENCE MANUAL

RECIPES AND DOCUMENT GENERATION

5.4.3 RUN Subcommand of GENERATE

Use the RUN subcommand to produce an actual document.

NOTE: If a syntax error is found, the subcommand is changed

to SCAN. If some other error occurs, processing of the recipe

is halted and an error message is printed.

SUBCOH AND -- OPEBANDS

RUN

Example 1

operation: Initiating the BUN subccmmand.

generate cobol-compile using (recipe,rgetdata),clist;

ENTER GENERATE SUBCOMMAND.
run;

Page 78

DOMONIC COMMAND REHENCE HANUIL
RECIPES AND DOCUMENT GENERATION

5.4.5 END Subcommand of GENERATE

Use the END subcommand to terminate a GENERATE sessi6n.

SUBCOMMAND OPERANDS

END

Page 80

DOMONIC COMMAND REIE2ENCE MANUAL

SECURITY

6.0 SECURITY

Security is a subsystem of DOMoNIC. This subsystem protects the

documentation system from access by unauthorized users.

6.1 TYPES OF SECURITY

Password security controls which users may SIGNON to documentation

projects. Every system user must be assigned a password and a user

identification (user-id). The password specifies which functions and

users are authorized for a given documentation unit. The user is

associated with a user description record which contains his name,

address, department and passwords. The manager must enter the user-id's

and passwords befcre others are permitted access tc the documentation

unit. The password, user id, and DUI must be given when signing on to

the system.

Function security controls which executive functions (commands) you are

authorized to perform for a particular documentation project. The

functions authorized are associated with each password. The executive

functions (commands) and their abbreviations are:

SECURITY C

MONITOR 4

EDIT E

GENERATE G

DEFINE D

ERASE R

HELP H

Data security controls which data units you may access or update. The

data access authorizations are in effect when performing the EDIT or

GENERATE functions. The authorizations are:

READ-ONLY-----	 you may only display data stored in

the documentation unit.

WRITE-ONLY----	 you may only enter data into the

documentation unit.

UPDATE-----you may display, enter and change

data in the documentation unit.

CAOMMENT-ONY--you may display, enter and change

only the comments in data units of type

SOURCICODE.

Page 81

DOMONIC COMMANID REFERENCE MANUAL
SECURITY

NO ACCESS----- you are not allowed access to the documentation unit.

NOTE: the abbreviations for the authorizations are:

read-only read R
write-only write 11
comment-only comment C
update U
no access V

6.2 SECURITY CHECKING AND MAINTENANCE

Security operations fall into two categories; security checking and

security record maintenance. (Only the latter has commands associated

with it).

Security checking is performed in conjunction with and internal to
almost all commands of the documentation system. Password security
checking is done at SIGNON; function security checking is done when
major commands such as DEFINE, EDIT, etc, are encountered; and data
security checking is done before the execution of the EDIT and GENERATE
DOCUMENTS commands and subcormands which access or change data. These
checking function are not initiated directly, but are performed after
you enter a system command.

The maintenance of the various security records used for checking

purposes is accomplished by use of the SECURITY command. Security

maintenance provides the facilities for entering, changing and deleting

security information. The security maintenance functions are performed

directly by you as subcommands of the SECURITY command.

6.3 SECURITY RECORDS

There are four types of security records: Password, User, Data Default

and Data Exception.

A password record contains your password, a list of authorized

functions, a supervisor password to which you are responsible, user-id,

monitor class and recipe class. A user-id must exist in the user file

before it can be added to a password.

NOTE: each user password is responsible to a supervisor password and

higher passwords. This hierarchy forms various levels of responsibility

known collectively as the 'password tree'. A password may have no

greater authority than the password that it reports to. A password's

Pae 82 / 0/

DOMONIC COMMAND REFERENCE MANUAL
SECURITY

supervisor may also be called his ancestor. The supervisor password is

entered in the 'Reports To' clause.

User records contain a user identifier, user name, address, department,
password(s) and city. The data in the user record is used for display

purposes and not for checking.

A data default record specifies the default data security authorizations

for a particular documentation unit. It contains data-type
authorization pairs, one pair for each of the following: TEMPLATE,

RECIPE, UOCAID, TEXT, GRAPHICS, and SOURCECODE.

Data exception records specify exceptions to the data default

authorizations for a particular data item and a particular password.
They are composed of a password, user-identifier, authorizations (read
only, write-only, update, comment-only and no-access), and change
approval.

Page 83 A 5

6.4

DONONIC COBNAND REFERENCE ANUL
SECURITY

SECURITY Command

Use the SECURITY command to add, change, delete and list all or parts of

the password, user, data default or data exception records of security

records. A session to create or change these records is started by

entering:

COR ND OPERANDS

SECURITY

The subcommands of the SECURITY command are; ADD PASSWORD, CHANGE

PASSWORD, DELETE PASSWORD, LIST PASSWORD, ADD USER, CHANGE USER, DELETE

USER, LIST USER, ADD EXCEPTICN, CHANGE EXCEPTION, DELETE EXCEPTION, LIST

EXCEPTION, CHANGE DEFAULT, LIST DEFAULT, HELP and END.

Example 1
operation:
known:

Ent
You

ering the SECURITY session.
are in executive session.

security;

DOMONIC COMMAND REREENCE MANUAL

SECURITY

user-id-1

a list of eight character identifiers for the users authorized to

use this password. A user-id must be in the user file before it can

be added to a password.

monitor-class
a single digit integer which indicates the highest class of monitor
functions this password is authorized to perform, if any. Zero is
the default which means none authorized.

recipe-class

a single digit integer which indicates the highest class of recipe

this password is authorized to use when generating documents.

Recipe class 0 is the default.

function-1

a list of executive functions this password is authorized to

perform. If a function is not listed, the default is that the

password is not authorized for that function. The defaults are

EDIT, GENERATE. ERASE and HELP.

EXAMPLE I

operation: Creating a password record.

known: Password record is 11AM1.

Users are JOE, MIKE, DAN.

'Report to' is MANAGER.

Monitor class is 2.

Authorization is DTFINE, MONITOR.

add 	password teaml, reports to manager, users = joe, mike, dan,

monitor = 2, authorized for define, monitor;

Example 2

operation: Creating a password record.

known: The default is REORT TO.

Signed on tc password MANAGER.

User is JOHN.

Reports to MANAGER.

Recipe class 1.

Authorized for DIFINE.

add 	password team2, user john, recipe = I, authorized d;

Page 86

DOMONIC COMMAND REFERE1NCE MANUAL
SECURITY

6.4.1 ADD PASSWOED Subcommand of SECURITY

Use the ADD PASSWORD subcommand to add a record to the password file.
When adding new passwords, the 'Reports To' must be specified so the

position in the 'password tree' may be located. (See Security Records).

If the 'REPORT'S TO' clause is not specified, the password will report

to the password that is currently signed on.

SUBCOMAND OPERANDS

ADD PASSWORD password,

[REPORTS [TO-] password-2],

[USERS J=] user-id-1,....],

[MONITOR [=] monitor-class],
[RECIPE [=3 recipe-class],
[AUTHORIZED fFOR] function-i,...]

NOTE: Any of the optional fields (operands) may be added as separate

eight character password which this password is responsible in the

subcommands following the ADD PSSIORD subcommand.
are not specified, standard system defaults will be

If optional fields
used. For example:

ADD PASSWORD

password

REPORTS [TO] password-2

[USERS [=] user-id-1,...]

[MONITOR [=3 monitor-class]

[RECIPE [= recipe-class]

[AUTHORIZED [FOR] function-i,...];

password
eight character identifier for the password.

password-2

organization of the project. Password-2 must be different from the
password. If this field is not specified, the password of the user
signed on is used.

Page E5
 672

DOIONIC COMAND REFERENCE MANUAIL

SECURITY

6.4.2 CHANGE PASSWORD Subcommand cf SECURITY

Use the CHANGE PASSWORD subcommand to change fields in a record in the

password file.

SUBCOMMAND 	 OPERANDS

CHANGE PASSWORD 	 password,

[REPORTS [TO] password-2],

[MONITOR r=] monitor-class],

[RECIPE [=] recipe-class],

[AUTHORIZED [FOR] function-I,...],
[USERS [=J user-id-i,...]

password

eight character identifier for the password.

password-2

the eight character password to which this password is responsible.

Password-2 must be different from the password. A password may not

be changed to report to a password that either directly or

indirectly reports to itself.

monitor-class

single digit integer indicating the highest class of monitor

functions this password is authorized to perform, if any.

recipe-class

single digit integer indicating the highest class of recipe this

password is authorized to use when generating documents.

function-1

a list of executive functions that this password is authorized to

perform.

user-id-1

eight character identifiers for users authorized for this password.

The user-id must be in the user file before it can be added to a

password.

Page 87

DOMONIC COMMAND REYERENCE MA1UAL
SECURITY

EXAMPLE 1

operation: Changing a password record.

known: 	 Passwcrd record is TEAMI.

User to be added is JOHN.

Authorization to be added is GENERATE.

change password teaml, user = john, authorized for generate;

Example 2

operation: Changing a password record.

known: Password record TIAM2.

Reports to MANAGER.

New reports to LEADER3.

change password team2 reports to leader3;

Page 6.e

DOMONIC COMMAND RETERENCE MANUAL

SECURITY

6.4.3 LIST PASSWORD Subcommand of SECURITY

Use the LIST PASSWORD subcommand to list a record in the password file

for a particular data unit and a specific password.

SUBCONIAND OPEEANDS

LIST PASSWORD password,[ALLJ

password

eight character identifier for the password. It will list only that

password record.

ALL
lists the password and all passwords that either directly

or indirectly report to it.

EXAMPLE 1

operation: List password entry.

known: Password record is TEAM1

list password team1;

Example 2

operation: Listing all passwords in a branch of a tree.

known: Password record is TEAMI.

list password teaml, all;

Page 89

DOMONIC COMMAND REFERENCE MANUAL

SECURITY

6.4.4 DELETE PASSWORD Subcommand of SECURITY

Use the DELETE PASSWORD subcommand to delete a record or record field in

a password file.

SUBCO4 AND -- OPER AN'DS

DELETE PASSWORD password,
[AUTHORIZID [FOR] function,...],
[MONITOR [=1 monitor-class],
[RECIPE [] recipe-class],
[USERS r=i user-id,...]

NOTE: if no subfields are specified, a message will be sent asking if

you want to delete the entire password record. You may at that time

respond either YES, in which case the entire password record will be

deleted or No, in which case you may then specify which fields within

the record you want deleted. All fields except users revert to the

default when deleted. Deleting subfields requires naming the subfield.

password

eight character identifier for the password that is to be deleted.

function

a list of executive functions to be deleted from this password.

NOTE: Deleting a function from a password mll also delete the

function from any password that reports to that password (See

Section 6.3 Security Records).

monitor-class

single digit integer indicating the highest class of monitor

functions this password is authorized to perform, if any. Zero is

the default and means no authorization.

recipe-class

single digit integer indicating the highest class of recipe this

password is authorized to use when generating documents. Recipe

class 0 is the default.

NOTE: Lowering the recipe or monitor class of a password also

lowers the recipe or monitor class of any password that reports to

that password (See Section 6-3 Security Records).

Page 90 17r

DOMONIC COMMAND EIERENCE MANUAL

SECURITY

user-id

a list of eight character user id's to be deleted from this

password.

EXAMPIE 1

operation: Deleting a password record.

known: Password record is TEAM1.

delete password teaml;

System will respond by asking whetBer you want the entire password

record and its descendants deleted. You should respond by entering:

yes;

Example 2

operation: Deleting a user and authorization in a password

record.
kncwn: 	 Password record is TEAM1.

User is JOHN.

Authorized for GENERATE.

delete password teaml, user = john, authorized for generate;

Example 3

operation: Same as above, but you enter:

delete password teaml;

The system will respond by asking whetter you wish to have the

record deleted. You should respond:

no user = john, authorized for generate;

Page 91
 7

DOMONIC COMMAND REIERENCE MANUAL

SECURITY

6.4.5 ADD USER Subcommand of SECURITY

Use the ADD USER subcommand to add a record to the user file.

SUBCOM AN-D -- OPERANDS
ADD USER user-id,

[CITY [=1 user-city-name),
[NAME [=] user-name],
[STREET [=] user-street-address],
[DEPT [=] user-department-name)

user-id

the eight character identifier for the user to be added.

user-name

a 20 character string for the user's name.

user-street-address

a 20 character string for the user's street address.

user-city-state-zip
a 20 character string for the city, state and zip code, if any.

user-department-name
a 10 character name for the user's department.

NOTE: Passwords are automatically updated in the user file when a user

is added or deleted from a password.

EXAMPLE 1

operation: Creating a user record.

-known: User-id is MANAGER.

Name is SMITH.

City is DALLAS.

Department is DPC.

add user manager, name = smith, city = dallas, department = dpc;

Page 92
 1

DOMONIC COMMAND REERENCE MANUAL

SECURITY

6.4.6 CHANGE USER Subcommand of SECURITY

Use the CHANGE USER subcommand to change a record in the user file.

SUBCOMNAND 	 OPERANDS

user-id,
CHAGE USER

[CITY [=3 user-city-name],

[NAME [=3 user-name],

[STREET [=] user-street-address],

[DEPT [=] user-department-name]

user-id

the eight character identifier for the user to he changed.

user-city-name

a 20 character string for the user's city which replaces the old

city name.

user- na me
indicates a 20 character string for the user's name.

user-street-address

indicates a 20 character string for the street address of the user.

user-department-name

indicates a 20 character name for the user's department.

EXAMPLE 1

operation: Changing a user record.

known: 	 User record manager.

Street is MAINDRAG.

City is SNYDER.

change user manager, street = maindrag, city = snyder;
city = snyder;

Page 93

DOMONIC COMMAND REFERENCE MANUAL

SECURITY

6.4.7 LIST USER Subcommand of SECURITY

Use the LIST USER subcommand when you want a list of user records. All

or parts of the user record may be listed for inspection.

SUBCONMAND OPEANDS

LIST USER user-id,

[PASSWORD] [ALL]

user-id

the eight character identifier for the user to Le listed.

PASSWORD
a list of eight character passwords for which this user is
authorized. These passwords must already exist in the password
file.

ALL

indicates the entire list of passwords for a user.

NOTE: Only the master password may list the rasswords of a user.

EXAMPLE 1

operation: Listing a user record without the passwords.

known; User record manager.

list user manager;

Example 2

operation: Listing passwords within a user record.

known: User record manager.

Tist user manager, passwords;

Page 94

DOMONIC COMMAND REERINCE MANUAI

SECURITY

6.4.8 DELETE USER Sutcommand of SECURITY

Use the DELETE USER subcommand to delete a record in the user file.

SUBCOIIAND OPERANDS

DELETE USER user-id,

[CITY] [NAME] [STREET] [DEPT]

user-id

the eight character identifier for the user to be deleted.

CITY

indicates a 20 character string for the user's city.

NAME

indicates a 20 character string for the user's name.

STREET

indicates a 20 character string for the user's street address.

DEPT

indicates a 20 character string for the user's department.

EXAMPLE 1

operation: Delete user record.

known: User record is MANAGER and delete CITY.

delete user manager, city;

Example 2

operation: Deleting a name in the user record.

known: User record manager.

User wants to delete name, but types

'DELETE USEE MANAGER;'.

The system will then ask you if you want to delete the entire record.

You will respond by entering:

no, name;

Page 95 272

DOMONIC COMMAND RETRENCE MANUAL

SECURITY

Example 3
operation:
known:

Delete manager in user
User record manager.

record.

delete user manager;

System will ask if you want to delete entire record. You

respond by entering:

yes;

NOTE: A user cannot be deleted if it contains a password.

Page 96)79

DOMONIC COMMAND REERENCE MAN1UAL

SECURITY

6.4.9 ADD EXCEPTION Subcommand of SECURITY

Use the ADD EXCEPTION subccmmand to create an entry in the exception

file. You may add, cahnge or delete any passwords from the exception

records that you have control of.

S UBCO1!AND OPERAN DS

ADD EXCEPTION DATA-fUNIT-NAE PASSWORD [=] password,

[AUTHORIZBD [iOR] &ata-authorization],

CHG-APPROVDL [=] YES

Y
NO

N

NOTE: If you do not specify any operands for authorization, the default

is UPDATE-ONLY and CHG-APPEOVAL is no.

password

eight character identifier for the password.

data-authorization

type of access to data allowed for this password. (For

authorizations see 'Types of Security')

CHG-APPROVAL

written authorization to change a data-unit.

Example I

operation: Adding an excepticn to record SECURITY.DATA.

known: Password is TEAMI.

Authorization is UPDATE.

add exception security.data password is team1, authorized for update;

"I

Example 2

operation: Adding two exceptions to record SECURITY.DATA.

known: Password TEAN2 has authorization COMMENT.

Password TEAM3 has authorization READ-ONLY.

Change-approval should be changed to YES.

Page 97

DOMONIC COMMAND REIERENCE MANUAL

SECURITY

add exception security.data, password team2, authorization comment,
password team3, authorization read-only, chg-approval yes;

Page 98

DOMONIC COMMAND REEERENCE MANUAL

SECURITY

6.5.10 CHANGE EXCEPTION Subcommand of SECURITY

Use the CHANGE EXCEPTION subcommand to create or change a subentry in

the exception file.

SUBCOMMAND 	 OPERANDS

CHANGE EXCEPTION 	 DiAT ID PASSWORD [=] password,...,

[AUTHORIZED [FOR] data authorization],

CBG-APPEOVAL =] 	 YES

Y

NO

N

password

eight character identifier for the password.

data-authorization

type of access to data allowed for this password.

(For authorizations see Section 6.1.)

CHG-APPROVAI

written authorization to change a data-unit.

Example 1

operation: Changing an authorization.

known: One exception for record SECURITY.DATA is password

TEAM3.

Authorization is READ-ONLY.

Change the authorization to UPDATE.

change exception security.data password team3 authorized for update;

Page 99

DOMONIC COMMAND RERENCE MANUAL

SECURITY

6.5.11 LIST EXCEPTION Suiccmmand of SECURITY

Use the LIST EXCEPTION subcommand to get a listing of an exception file

or its subfield.

SUBCOBiAND 0PERA N DS

LIST EXCEPTION data-unit-name,
[PASSWORD [=] password],
ECBG-APPROVAL]

NOTE: If you do not specify any operands the default is all.

data-unit-name

the name of the data elements, templates, recipes or docaids

you want listed.

password

eight character identifier for the password.

CHG-APPROVAL

written authorization to change a data-unit.

Example 1

operation: Listing the exceptions for the data unit SECURITY. DATA.

list exception security.data

Example 2

operation: listing exceptions for data unit SECURITY.IDATA.

known: Passwords are TEAM3, TEAM2, and TEAM1.

list exception security.data, passwords = team3, team2, teaml;

Example 3

operation: Listing the exception change-approval for SECURITY.DATA.

list exception security.data chg-approval;

Page 100
 /14c

DONONIC COMMAND REFERENCE MANUAL

SECURITY

6.5.12 DELETE EXCEPTICN Subcommand of SECURITY

Use the DELETE EXCEPTION subcommand to delete a subentry in an

exception file.

SIJBCOM MAND OPERANDS

DELETE EXCEPTION [DATA-U1IT-NAME PASSWORD [=] passvord,...],

NOTE: If no subentries are entered, a message will be sent asking if

you want to delete the entire exception file. You may at that time

respond either YES, in which case the entire exception file will be

deleted or NO, in which case you may then specify which subentries you

want deleted.

password

eight character identifier for the password.

Example 1
operation: Deleting a subentry.
known: Deleting frcm the exception file named SECURITY.DATA, the

passwords TEAN1 and TEAM2.
delete exception security.data passwords teami teaa2;

Example 2

operation: Deleting the entire exception record for the data unit

SECURITY.DATA.

You enter:

delete exception security.data;

The system will then ask whether the entire record should be deleted.

You respond:

yes;

Page 101

DOMONIC COMMAND REFERENCE MANUAL

SECURITY

6.5.13 CHANGE DEFAULT Subcommand of SECURITY

Use the CHANGE DEFAULT subcommand to change the authorization

in the default file.

SUBCOMNAND OPERANDS

CHANGE DEFAULT DATA-UNIT-TYPE [=] data authorization,
data-element-type,
CHG-APPROVAL [J YES

Y
NO
N

data authorization

type of access to data allowed for this password.

(For authorizations see 'Types of Security').

data-element-type

the type of information of the data-element: TEXT, GRAPHICS or

SOUECECODE.

CHG-APPROVAI

written authorization to change a data-unit.

Example 1

operation: Changing default for a system.

known: Recipe is READ-ONLY, Text is COMMENT-ONLY and

you want to change both to UPDATE.

change default recipe = update, text = update;

Example 2

operation: 	 Changing default for a system.

known: 	 Required Change-approval is NO and you want to change it

to YES.

change default chg-approval = yes;

Page 102

DOMONIC COMMAND REFERENCE MANUAL

SECURITY

6.5.14 LIST DEFAULT Subcommand of SECURITY

Use the LIST DEFAULT subcommand to get a listing of the default file.

SUBCOMMAND OPERANDS

LIST DEFAULT

documentation-unit-id a 30 character name for the documentation unit.

Example 1

operation: Listing a default file.

list default;

Page 103

DOMONIC COMMAND REIERENCE MANUAL

SECURITY

6.5.15 END Subcommand of SECURITY

Use the END subcommand to terminate the security session.

SUBCOMMAND OPERANDS

END

Example 1

operation: Terminating a SECURITY session.

end;

Page 1O047

7.0

DOONIC COMMAND RBEERENCE MANUAL

SIGNOFF COMMAND

SIGNOFF Command

Use the SIGNOFF command to end a session with the system.

The SIGNOFF command removes you from active status in the various

internal system tables, e.g. Templates, Security, etc. A message is

printed at your terminal or on your printed listing indicating the

elapsed time of the sessicn.

COMMAND OPERANDS

5INO-FF

EXAMPLE 1

operation: Ending a terminal session.

signoff;

SIGNOFF COMPLETE ** ELAPSED TIME - 1 HOUR 20 MIN 15 SEC

Page 105
 /

8.0

DOMONIC COMMAND REFERENCE MANUAL

SIGNON COMAND

SIGNON Command

Use the SIGNON command to initiate use of or gain entry to the system.

Successful completion of the SIGNCN command connects you to the system.

When using the SIGNON command you should give your user-id, password and

documentation unit identifier. If any of these items are onitted in the

interactive mode, you will be prompted. In the batch SIGNON, all items

must be supplied. SIGNON will respond with the time and date if the

three items successfully pass the security test. If a fault is

detected, an error message is returned and you are asked to enter SIGNON

again.

NOTE: possible error messages are:
MAXIMUM USERS SIGNED ON ** PLEASE TRY LATER
INVALID PASSWORD ** PLEASE SIGNON AGAIN
NO RECORD OF USER-ID FOUND ** PLEASE SIGNON AGAIN
DOCUMENTATION UNIT DOES NOT EXIST ** PLEASE SIGNON AGAIN
USER IS NOT VALID FOR THIS PASSWORD #* PLEASE SIGNON AGAIN

DOC UNIT NOT VALID FOR THIS PASSWORD ** PLEASE SIGNON AGAIN

COMMAND OPE1ANDS

SIGNON USER [=3 user-id

PASSWORD [=] password

DOCUMENTATION UNIT [=] documentation-unit-id

DUI

user-id

an eight character string that identifies the user.

password

an eight character stringthat identifies the password that you are

authorized to use.

documentation-unit-id
a character string (maximum 30 characters in length) that identifies
a documentation unit.

Page 106

DOMONIC COMMAND REFERENCE MANUAL

SIGNON COMMAND

EXAMPLE 1
operation: Initiate a session.
known: User-id is ABSEVEN.

Password is B7.
Documentation unit is NASADOC.

signon user = arseven password = r7 dui = nasadoc,

EXAMPLE 2

operation: Initiate a session.

known: User-id is ARSEVEN.

Password is R7.

Documentation unit is NASADOC.

signon;

'ENTER USER IDENTIFICATION

arseven;

ENTER PASSWORD

r7;

ENTER DOCUMENTATION UNIT IDENTIFIEB

nasadoc;

rage 1C737

DOMONIC COMMAND IEERENCE MANUAL

SYSTEM COMMAND

9.0 SYSTEM Command

Use the SYSTEM codmand to enter the system mode. This allows you to

execute the SYSTEM subcommands. THE subcommands of SYSTEM allow you to
attach or detach common data sets from the system, initiate or purge

documentation units, and change a documentation units allocated data

sets. The SYSTEM command is a restricted ccmmand.

COMMAND OPERANDS

SYSTEM

Page IC8S

DOMONIC COMMAND REFERENCE MANUAL

SYSTEM COMMAND

9.1 PURGE Subcommand of SYSTEM

Use the PURGE subcommand to remove a documentation unit from the system.

If the documentation unit is located on common data sets, the storage

used on those data sets is returned to the lists of available storage.

If a documentation unit is located on private data sets, you will be

prompted for a 'YES' or 'NO' response to indicate if the storage should

be freed.

COMMAND OPERANDS

PURGE [DUi [=]J name-i
[VERSION [=]] number

name-1

a I to 30 character documentation unit identifier.

number

a 2 or 3 digit number of the from d.d or dd.d that indicates the

version and level of the documentation unit.

Example 1

operation: Purging a documentation unit iccated on common

data sets.

known: Documentation unit is DOC-UNIT-1.

VERSION 2.2 exists.

purge dui = doc-unit-1 version 2.2;

Example 2

operation: Purging a documentation unit located on common

data sets.

known: (Sane as example 1).

purge dui doc-unit-1 version 2.2;

Example 3

Operation: Purging a documentation unit located on private

data sets.

known: Doc-unit is DOC-UNIT-2.

Version is 1.0.

Page 109

DOMONIC CONEAND RERENCE HANUIL

SYSTEM, COMMAND

purge dui=doc-unit-2 version=1.0;

DOC UNIT ON PRIVATE DATASEIS.

ENTER 'YES' TO FREE DATASETS STORAGE.

yes;

Page 110

9.2

DOIONIC COMMAND REERENCE MANUAL

SYSTEM COMMAND

ATTACH Subcommand of SYSTEM

Use the ATTACH subcommand to make a common data set known to the system.

One to three data sets may be entered.

OPERANDS
SUBCOANID

ATTACH 	 [DATA-SET] ds-name-i ON [VOLUME] vol-name-1

[DATA-SET] ds-name-2 ON [VOLUME] vol-name-2,

ds-name-I,ds-name-2
a 1 to 8 character identifier that conforms to the rules for
IBM data set names.

vol-name-I,vol-name-2

a I to 6 character identifier that conforms to the rules

for IBM volume names.

Example 1

operation: Attaching 1 to 3 common data sets to the system.

known: Volumes DOMONICi and DOMONIC2 are online.

Data-sets COINONI, COMMON2, COM2ON3, COMMON4 and COMMON5

have been allocated and initialized.

COMMON1, COMMON4 and COMMON5 are on DOMONICI.

COMMON2 and COMMON3 are on DOMONIC2.

attach data-set commonl on volume domonic1;

attach common2 on domonic2, common3 on domonic2;

attach data-set common4 on domonicl, common5 on volume domonicl;

Page 111

9.3

DOMONIC COMMAND REYRENCE MANUAL

SYSTEM COMMAND

DETACH S-ubcommand of SYSTEM

Use the DETACH subcommand to remove a common data set from the system.

If the system finds that a documentation unit currently has storage

allocated to it on the data set, then the data set mill not be detached.

SUBCOMMAND OPFRANDS

DETACH [DATA-SET] ds-name-1 ON [VOLUME] vol-name-1
[DATA-SET] ds-name-2 ON [VOLUME] vol-name-2,

ds-name-l,ds-name-2

a one to eight character identifier that conforms to the rules

for IBM data set names.

vol- name- I, vol-name- 2
a one to six character identifier that conforms to the rules

for IBM volume names.

Example 1

operation: Detaching I to 3 ccmmon data sets from the system.

known: 	 Volumes DOMONICi and DOMONIC2 are online.

Data sets COMON1 and COMMON4 are located on DOMONIC1.

Data sets COMMON2, CGMMON3 and COMMON5 are located

on DOMONIC2.

detach data-set commonl on volume dcmonicl;

detach common2 on domonic2, common3 on domonic2;

detach data-set common4 on dcmonicl, common5 on volume damonic2;

page 112

C,

9.4

DOeONIC COMMAND REZRRNCE MANUAL

SYSTEM COMMAND

INITIATE Subcommand of SYSTEM

Use the INITIATE subcommand to initiate a new documentation unit. To

start the initiation process, the INITIATE subcommand is entered Vith

the new documentation unit name and version number. If the

documentation unit name is unique, the user will be prompted for the

following information: MASTER PASSIORD, MASTER USER ID and DATA SET

ALLOCATION PARAMETERS.

The MASTER PASSWORD and the MASTER USER ID must be 1 to 8 chhracters in

length. The first character must be alphabetic and the remaining alpha
numberic.

If ANY is given as the response to the request for data sets, the system

will allocate a data set from the common pool. If private data sets are

desired, they must be named explicitly using the second response format.

A maximum of nine data sets may be specified.

SUBCOMMAND OPERANDS
INITIATE [fUl [=3] name-1

[VERSION [=]] number;

If the documentation unit name is unique, the user will be prompted.

The format for the prompt responses are:

ENTER MASTER PASSWORD name-2;

ENTER MASTER USER ID name-3;

ENTER DATA-SET ALLOCATION ANY;

[DAT-A-SET] ds-name-1 ON [VOLUME] vol-name-1

[DATA-SET] ds-name-2 ON [VOLUME] vol-name-2

name-1
a 1 to 30 character documentation unit identifier.

number

a 2 or 3 digit number of the form d.d or dd.d that indicates the

version and level of the specified documentation unit.

name-2
a 1 to 8 character password that will become the master password

Page 113 1 .

DOMONIC COLIMAND REUERENCE MANUAL
SYSTEM COMMAND

for the new documentation unit.

name-3

a 1 to 8 character user id that will become the master user id

for the new documentation unit.

ds-name-1

a 1 to 8 character identifier that conforms to the rules for

data set names.

vol-name-i

a 1 to 6 character identifier that conforms to the rules for

volume serial numbers.

ds-name-2

a 1 to 8 character identifier that conforms to the rules for

data set names.

vol-na me-2

a 1 to 8 character identifier that conforms to the rules for

volume serial numbers.

Example I

operation: Initiating a documentation unit.

known: Documentation unit is DOC-UNI--1.

VERSION 1.0 does not exist.

Desired user id is MANAGER and the desired

master password is JONES.

The manager of DOC-UNIT-1 wants the documentation

unit to exist on data sets SYSDUII and SYSDUI2

which are located on volume SYSDOC.

initiate dui = doc-unit-1 version =1.0;

ENTER MASTER PASSWORD

jones;

ENTER MASTER USER ID

manager;

ENTER DATA-SET ALLOCATION

sysduil on sysdoc sysdui2 on syzdoc;

Page 114
 (6

DOMONIC COMMAND REFERENC! MANUAL

SYSTEM COMMAND

Example 2

operation: 	 Initiating a documentation unit.

known: 	 Documentation unit is DeC-UNIT-1.

VERSION 1.0 does not exist.

The desired user id is MANAGER and the desired

master password is JONES.

The manager of DOC-UNIT-1 wants the documentation unit

exist on data sets SYSDUI1 and SYSDUI2 which are

located on SXSDOC

initiate dui doc-unit-1 version 1.0;

ENTER MASTER PASSWORD

jones;

ENTER MASTER USER ID

manager;

ENTER DATA-SET ALLOCATION

sysduil on sysdoc sysdui2 on sysdoc

CONTINUE

Example 3

operation: Initiating a docuentation unit.

known: (Same as example 1)

initiate dui doc-unit-1 version 1-0;

ENTER MASTER PASSWORD

jones;
ENTER MASTER USER ID

manager;
ENTER DATA-SET ALLOCATION

data-set sysduil on volume sysdoc

CONTINUE

data-set sysdui2 on sysdoc

CONTINUE

Example 4

operation: Initiating a documentation unit.

known: Same as example 1 except four data sets are

tb be allocated: SYSDU1 and SYSDU12 on volume SYSDOC,

SYSDUI3 on volume SYSNS1 and SYSDU14 on volume SYSNS2.

Page 115

DOMONIC COMMAND REFERENCE MANUAL

SYSTEM COMMAND

initiate doc-unit-1 1.0;

ENTER MASTER PASSWORD

jones;

ENTER MASTER USER ID

manager;

ENTER DATA-SET ALLOCATION
data-set sysduil on sysdoc
CONTINUE

sysdui2 on sysdoc sysdui3 on sysnsl

CONTINUE

sysdui4 on volume sysns2;

Example 5

operation: Initiating a documentation unit.

known:' '(Same as example 1, except common data sets are to be used).

initiate doc-unit-1 1.0;

ENTER MASTER PASSWORD

jones;

ENTER MASTER USER ID

manager;

ENTER DATA-SET ALLOCATION;

any;

Page 116

DOIONIC COMMAND 	IRE1RENCE MANUAL

SYSTEM COMMAND

9.5 ALLOCATE subcommand of SYSTEM

Use the ALLOCATE subcommand to attach a new data set to a documentation

unit that was initiated using private data sets. If a documentation

unit was initiated using common data sets (the ANY option of the

INITIATE subcommand), the system will automatically allocate other

common data sets to the documentation unit as they are needed. Data

sets should be on line and formatted before bring allocated to a

documentation unit.

SUBCOM AND 	 OPERANDS

ALLOCATE 	 EDamA-SET] ds-name-1 ON [VOLUME] vol-name-1

TO doc-unit-id VERSION number

ds-name-1

a 1 to 8 character identifier that conforms to the rules

for data set names.

vol-name-1

a 1 to 6 character identifier that conforms to the rules

for voluie serial numbers.

doc-unit-id

a 1 to 30 character identifier thit is the name of an existing

documentation unit.

number

a 2 or 3 digit number of the form d.d or dd.d that indicates the

version and level of the specified documentation unit.

Example 1

operation: Allocating a data set.

known: Documentation unit is DOC-UNIT-I.

VERSION 1.1 exists.

Data set SYSDUI13 ON VOLUME SYSDOC is online and

formatted.

allocate data-set sysdui13 on volume sysdoc to doc-unit-1 version 1.1;

Page 117

DOMONIC COMMAND 1EERENCE MANUUJ

SYSTEM COMMAND

Example 2

operation: Allocating a data set.

kn6wn: Documentation unit is DOC-UNIT-1.

VEfSION 1.1 exists.
Data set SYSDUI13 ON VOLUME SYSDOC is online and

formatted.

allocate sysdui13 on sysdoc to dcc-unit-1 version 1.1;

Page 118 o

9.6

DOIONIC COMMAND REIBRENCE MANUAL
SYSTEM COMMAND

DEALLOCATE Subcommand of SYSTEM

Use the DEALIOCATE subcommand to remove a previously allocated data set
from a documentation unit.

If the documentation unit has any storage allocated to it on the data
set, the data set will not -e deallocated.

SUBCOMMAND OPERANDS

DEALLOCATE [DATA-SET] ds-name-1 ON [VOLUME 3 vol-name-1
FROM doc-unit-id VERSION number

ds-name- 1
a one to eight character identifier that conforms to the rules for

data-set-names.

vol-name-I

a one to six character identifer that ccnforms to the rules

doc-unit-id
a 1 to 30 character identifier that is the name of an existing

documentation unit.

number

a 2 or 3 digit number of the form d.d or dd.d that indicates the

version and level of the specified documentation unit.

EXAMPLE 1

operation: Deallocating a data set.

known: Documentation unit is DOC-UNIT-1.

VERSION 1.0 exists
Data set SYSDUI21 ON VOLUME SYSDOC is allocated to

DOC-U NIT- 1

deallocate dataset sysout2l on volume sysdoc from doc-unit-1 version 1.0;

Page 119

DOMONIC COMMAND REYERENCE MANUAL

SYSTEM COMMAND

Example 2
operation: Deallocating a data set.
known: Documentation unit 'is DOC-UNIT-1.

VERSION 1.0 exists
Data set SYSDUI21 ON VOLUME SYSDOC is allocated to
BOC-U NIT-1

deallocate.sysdui2l on sysdoc from doc-unit-1 version 1.0;

Page 120

DOMONIC COMAND REFERENCE MANUAL

TEMPLATES AND DATA DEFINITIONS

Short Data

Name

TSYStM-OVERvIEW, TEMT, MAX 10,000 LINES, /*1IORD

DESCRIPTION OF TEE SYSTEM*/;

T2 SYSTEM-BLOCK-DIAGRAM, GRAPHICS, MAX 25 PAGES, /*SYSTEM

FLCWCHARTS*/;

T3 SUBSYSTEMS, MAX 20 TIMES ID=SUBSYSTEM-NAME;

T4 SUBSYSTEM-NAME IN T3, TEXT, MAX 30 CHARACTERS;

T5 SUBSYSTEM-MODULES IN T3, MAX 500 TIMES ID=MODULE-TITLE;

T6 MODULE-TITLE IN T5, TEXT, MAX 30 CHARACTERS;

T7 MODULE-CODE IN T5, S.OURCECODE=COBl PL/1 ASSEMBLER,
MAX 100 TIMES, /*SZRUCTURED PROGRAMMING IS TO BE -

USED IN ALL PROGEAMS*/;

T8 MODULE-INPUTS IN T5, MAX 10 TIMES ID1=I-NAME;

T9 I-NAME IN T8, TEXT, MAX 8 CHARACTERS;

T10 I-DESCRIPTION IN T8;

711 MODULE-OUTPU2S IN T5, MAX 10 TIMES ID=O-NAME;

T12 O-NAME IN T10, TEXT, MAX 8 CHARACTERS;

113 O-DESCIPTIN IN T10, TE7T;

T14 SUBSYSTEM-ABSTRACT IN T3, TEXT, MIN 3 PAGES;

T15 MODULE-ABSTEACT IN T5, TEXT, EXACTLY 2 PAGES;

FIGURE 5 SOURCE TEMPLATE LISTING FRO1 THE EDITOR

Page 121

DOMONIC COMMAND REPERENCE MANUAL

TEMPLATES AND DATA DEFINITIONS

T1 SYSTEH-OVERVIEW

T2 SYSTEM-BLOCK-DIAGRAM

T3 SUBSYSTEMS

T4 SUBSYSTEM-NAME

Ti4 SUBSYSTEM-ABSTRACT

T5 SUBSYSTEM-MODULES

T6 MODULE-TITLE

T15 MODULE-ABSTRACT

T7 MODULE-CODE

T8 MODULE-INPUTS

T9 I-NAME

T10 I-DESCRIPTION

Tll MODULE-OUTPUTS

T12 G-NAME

T13 O-DESCRIPTION

FIGURE 6 BOUND TENFLATE LISTING FROM DEFINE DATA

Page 122

DOMONIC COMMAND REITRENCE MANUAL

TEMPLATES AND DATA DEFINITIONS

10.0 TEMPLATES AND UATA DEFINITIONS

Templates specify basic elements of information required to develop and

document a programing project. You can, by means of a template, name

the data elements to be collected, specify their characteristics and

define their hierarchical relationships to each other. The data

characteristics include, a data element's type (TEXT, GRAPHICS,

SOURCECODE), its length and the number of times it can be repeated. The

hierarchical relationship determines where it is placed in a tree

structure corresponding to the template.

10.1 TYPES OF TEMPLATES

There are two types of templates: source templates and bound templates.

Source templates are in character string form and are stored in the

template library for the documentation unit. A bound template is

created from a source template. It has a fixed internal structure which

facilitates the storage and retrieval of data elements. There is only

one bound template for each docurentation unit.

10.2 SOURCE TEMPLATES

A source template consists of a sequence of data definitions. The

source template is entered through the editor in the normal line by line

fashion.

The editor handles the source template just as if it were lines of text.

Each line may be changed, listed, deleted, etc., using the full range of

EDIT subcommands. The editor does not interpret the template data

definitions. Mhen the edit session is finished the source template is

saved in the template library of the documentation unit. Any number of

source templates can be stored in the template library.

10.3 TEMPLATE STRUCTURE

The template data definition language is designed so templates can

impose a hierarchical structure on the data elements in a documentation

unit. There are as a result two types of data definitions, those which

define group levels (hierarchy) and those which define data elements.

A group level definition is one which has other definitions subordinate

to it.

Page 123

10.4

DOMONIC COMMAND REFERENCE MANUAL
TEMPLATES AND DATA DEFINITIONS

The data element definition is one which does not have any other

definitions subordinate to it. only data elements definitions will have

data physically associated with them.

The highest template level is the template itself and is defined to be

level zero. (See Figure 6 in this section.)

In addition to a template having hierarchy it may also have depth. The

depths is achieved by allowing data definitions to occur multiple times.

The data defintion can be replicated, each replication being uniquely

identified. The number of times a data definition can be repeated can

be controlled. The repetition is created when the actual data is

entered and stored and these replications are called repeated occurrence

groups. (See Figure 5 in this section.)

DATA DEFINITION LANGUAGE

Templates contain definitions of data elements. These data definitions

describe what data is to be entered for project development and

documentation. The template is normally designed by the project manager

before development begins. The data definition language is used to

write source templates.

A data definition (a statement in the data definition language) consists

of a short and a long name for the definition, a list of attributes

(repetition factor, units of measure, data element type), designation of
position in a hierarchy and an explanation of the data definition. Each
data definition in a source template starts with a short fame and ends
with a semicolon (;). The data definition format is:

short-name long-name [IN father-short-name] [data-element-type]

[units-of-measure] [repetition factor] [/*explanation*/];

short-name
a 'T' concatenated with a five-digit integer less than 32759.
Valid short-names range from TI to T32759. TO is a system
assigned short-name and always refers to the top level. It
cannot be assigned to a data ddfinition in the template.

long-name

the descriptive name of the data definition. It is a character

string of length 1 to 30. The first character must be

alphabetic, characters 2-30 may be alphalbetic characters,
digits, dashes or underscores. Short-names are not valid

long-names.

Page 124 o0o

DOMONIC COMMAND REFERENCE MANUAL

TEMPLATES AND DATA DEFINITIONS

father-short-name

the short-name of the data definition in the template to which

this data definition is subordinate (at the next lowest level

in the hierarchy). If 'IN' is not specified the entry is

assumed to be on the main level which is referred to

as TO. Eight levels of subordination are permitted.

data-element-type

the type of data element this data definition defines.

Data-element-type may he either TEXT, GRAPHICS, or SOURCECODE.

The 	format for data-element-type is:

TEXT

ANY

SOURCECODE = lang-l lang-2....

GRAPHICS

where lang-1 lang-2... are separated by blanks and are chosen

from COBOL, FORTRAN, ASM, P1/I. The default for

data-element-type is TEXT.

units- of-measure

specifies limits on tte size of the data element, if any.

The format for the units-of-measure is:

MIN 	 CHARACTERS
MAX integer WORDS

EXACTLY LINES,

MANY 	 PAGES

where MAX, MIN, EXACTLY, MANY Isizetest) and the integer

(between 1 and 32759 inclusive) limit the size of the data

element and CHARACTERS, WORDS, LINES, PAGES give the

units-of-measure (textmeasure). One word is 10 characters,

one line is 60 characters and one page is 50 lines.

Defaults:

1. 	 If no units-of-measure is given, the default is

MANY CHARACTERS.

2. 	 If the sizetest is given and textmeasure is not, the

default for textmeasure is CHARACTERS.

Page 125

DOONIC COMMAND 1BE3ZENCE MANUAL

TEMPLATES AND DATA DErINITIONS

3. 	If sizetest is not given and textmeasure is given, the

default for sizetest is EXACTLY.

The units-of-measure determines the size of the stored data

element and in no way affects the size or format of any output.

repetition-factor

specifies how may times a data element or group of

data elements may occur. The format for the

repetition-factor is:

MAX

MIN

EXACTLY integer TIMES ID = id-def-name

MANY

where MAX, MIN, EXACTLY, MANY (sizetest) and the integer

(between 1 and 32759 inclusive) limit the number of times

a data element or group of data elements may ocdur.

The id-def-name is the name (short or long) of the data

definition whose value uniquely identifies a particular

occurrence of a data element- Tbere must be at least one

data element assocaited with each id-def-name in the

template. TIME and the ID = phrase must always be given

in the repetition-factor.

Defaults:

1. 	If sizetest is given and the integer is not, the

default is MANY TIMES.

2. 	If sizetest is not given and the integer is given,

the default is EXACTLY integer TIMES.

3. 	Sizetest MANY overrides any integer given.

explanation

any description or instruction about the data to be entered for

the definition. Any EBCDIC character string is allowed.

Data definitions for group levels may contain only the short-name, long
name, IN phrase and repetiticn-factor parts of the 9eneralized data

definition. Data definitions for data elements may contain all parts of

the generalized ddta definition. The only parts which are required for

Page 126

10.5

DOMONIC COMHAND REPERENCE MANUAL

TEMPLATES AND DATA DEFINITIONS

a definition are the short-name and the long-name; all others will take

default values.

BOU14D TEmPLATES

Once you are satisfied with the data definition (as written in a source

template), it can be translated into the bound template for the

documentation unit. The bound template consists of a number of internal

system tables which determine the structure and the attributes of the

data in the documentation unit. It also contains pointers to maps which

tell'where data is stored. The operation of producing these tables is

known as 'binding the template'.

The template binding process creates a bound template from a source

template. Prior to binding, no data elements may be entered into a

documentation unit.

Template binding is one of the main functions of the DEFINE DATA

command. The DEFINE DATA command provides access to the subcommands

used to bind a templates or to make additions or corrections to a bound

template. After you enter the DIFINE DATA command, you may enter the

template manipulating commands for which you are authorized.

Page 127 4V

DONONIC COMMAND REERENCE MANUAL

TEMPLATES AND DATA DEFINITIONS

iO.6 DEFINE DATA Command

The DEFINE DATA command puts you in the mode to bind a template for a

documentation unit or to make additions or corrections to a bound

template.

COMMiAND OPERANDS

DEFINE DATA

Once you enter DEFINE DATA, you may enter the template manipulating

subcommands for which you are authorized. The subccmmands of DEFINE

DATA are:

TEST CHANGE

SAVE HELP

DELETE LIST

ADD END

Page 128 4;/6

-- ----

DOHONIC COMMAND REFRENCE MANUAL

TEMPLATES AND DATA DE1I1IUIlS

10.6.1 TEST Subcommand of DIFINE DATA (Template Binding)

Template binding scans your source template for errors.(A source

template is a template which is entered through the editor).

T-B --- _kEAD _ UF -SUECONNAND 0OPEE ANDS

TEST USING template-name

template -name
a source template which was entered through the editor.

EXAMPLE 1
operation: Trial binding the template

known: Template-name is TEMPLATE-NASA-SYSTEM.

test using template-nasa-system;

NOTE: After binding, this command can no longer be used for this

documentation unit.

Page 129

DOMONIC COMMAND REFERENCE MANUAL

TEMPLATES AND DATA EEFI1ITIGNS

10.6.2 SATE Subcommand of DEFINE DATA (Template Binding)

Use the SAVE subcommand when you have had an error-free TEST and want to

produce a bound template.

SUBCOqNAND -- OPERAN-

SAVE USING template-name

template -name

a source template which was input to the system through the editor.

EXAMPLE 1

operation: Producing the template.

known: Template-name is TEMPLATE-NASA-SYSTEM.

save using template-nasa-system;

NOTE: After template binding, this command can no longer be used for

this documentation unit.

Page 130

DOMONIC COMMAND BEERENCE MANUAL

TEMPLATES AND DATA DEFINITIONS

10.6.3 DELETE Subcommand of DEINE EATA

Use the DELETE subcommand to delete a data definition in the bound

template.

SUBCOMNIIND OPERANDS

DELETE data-def-na me,

[IN father-short-name]

data-def-name

the 30 character name of the data definition to be deleted. (For

rules in creating a data-definition-name see Section 10.4.)

father-short-name

the short name of the data definition to which data-definition -name

to be deleted is directly subordinate.

EXAMPLE 1

operation: Deleting an entry in the template.

known: Data-def-name is MODULE-ABSTRACT.

Module-Abstract short name is T13.

Father-short-name is T5.

delete module-abstract in t5;

or

delete t13;

NOTE: If you delete a definition that has other definitions subordinate

to it, all the subordinate definitions are also automatically deleted.

For example, if you delete 'SYSTEM NODULEs', you will also delete T6,

T13, T7, T8, T9, T10, and 111. (See Figure 5 in this section). If the

definitions you're trying to delete or any definitions subordinate to it

has data associated with it, the deletion cannot take place until the

data has first been deleted.

Page 131

DOMONIC COMMAND REEERENCE MANUAL

TEMPLATES AND DATA DEFINITIONS

10.6.4 ADD Subcommand of DEFINE DATA (Template Updating)

Use the ADD subcommand to add a data definition to the template.

SUBCOMBAND OPEEANDS

ADD data-def-name,

[IN father-short-name],
[data-element-type],
[units-of-measure],
[repetition-factor],
[/* explanation */]

NOTE: if you do not enter the attributes your definition will be

assigned the following defaults: TEXT, MANY CHARACTERS, EXACTLY 1 TIMES.

data-def -name
the name of the data definition to he added to the template. (For
rules in creating data-definition-ames see Section 10.4.)

father -short-name

the short name of the data definition to which the data-definition
name to be added is directly subordinate.

data-element-type

the type of information the data-definition is. If you do not enter

a data-element-type, the default is TEXT. (For format see Section

10.4.)

units-of-measure
specifies the units of measure of the data definition and any limits
placed upon the size. If you do not enter unit-of-measure, the

default is MANY CHARACTERS. (For format see Section 10.4.)

repetition-factor

specifies how many times a repeated group many occur. If you do not

enter a repetiticn factor, the default is EXACTLY 1 TIMES. (For

format see Section 10.4.)

Page 1312

DOMONIC COMMAND REBERENCE MANUAL

TEMPLATES AND DATA EX$INITIOS

EXAMPLE 1

operation: Adding a data definition to the template.

known: Data-def-name is SYSTEM-ABSTRACT.

add system-abstract;

Example 2

operation: Adding a data definition to the template.

known: 	 Data-def-name is MODULE-ABSTRACT.

Father-short-name is T5.

Data-element-type is TEXT.

Units-of-measure is EXACTLY 2 PAGES.

add module-abstract in t5, text, exactly 2 pages;

Page 133

DOIONIC COMMHAND REFERENCE MANUAL

TEMPLATES AND DATA DEFINITIONS

10.6.5 CHANGE Subcommand of DEFINI EATA

Use the CHANGE subcommand to change part of an entry that already exists

in the template.

SUHBCOMAND OPERANDS

CHANGE old-data-def-name t=] new-def-name,
[IN father-short-name],
[data-element-type],
[units-of-measure],
[repetition-factor],
[/* explanation */]

NOTE: you do not have to specify old-name = new-name unless you want to

change the definition name. Otherwise, change [data-def-name IN father
short-name] is allowed, only include those attribute phrases you wish

to have modified. Whatever you specify will replace what is already in

the template.

old-data-def-name

the data-definition -name to be changed.

new-def-name
the data-definition -name which will replace the old-data-definition

-name.

father-short-name

the short name of the data definition to which the data-definition
name to be changed is directly subordinate.

data-element-type

the type of information of the data-definition-name. (For format

see Data Definition Language - Section 10.-4.)

units-of-measure

specifies the units of measure of the data definition and any limits

placed upon the size. (For format see Data Definition Language -

Section 10.4.)

repetition-factor

specifies how nany times a repeated group may occur. (For format

see Data Definition language - Section 10.4.)

Page 13A/4

DOBONIC COMMAND REERENCE MANUAL

TEMPLATES AND DATA DEFINITIONS

EXAMPLE 1

operation: 	 Changing a template entry.

known: 	 Old-data-def-name is SYSTEM-OVERVIER.

New-data-def-name is DOCNRIC-OVERVIEW.

You wish to change data-element-type to TEXT.

change system-overview = domonic-overview, text;

Example 2

Operation: 	 Same as above.
known: 	 Data-def-name is MODULE-TITLE.

Father-short-name is T5.

Units-of-measure is MAX 20 CHARACTERS.

change module-title in t5, max 20 characters;

Page 135

DOONIC COMAND RETEBRE14CE MA11UAI

TEI PLATES AND DATA DEFINITIONS

10.6.6 LIST Subcommand of DEFINE DATA (Template Updating)

Use the LIST subcommand to get a listing of y,our template.

SUBCO MAND OPERANDS

LIST TEMPLATE

TEMPLATE ATTRIBUTES
TEMPLATE ATTRIBUTES EXPLANATION

template

gives a listing of the data names in the template and

the associated short names for the active documentation

unit.

template attributes

gives a listing of the data names and their associated

attributes in the template for the active documentation

unit.

template attributes explanation

gives a listing of the data names, their attributes, and

their explanations in the template for the active

documentation unit.

EXAMPLE 1

operation: listing a template.

list template;

The system will respond by typing out:

T0000 I SYSTEH-OVERVIEW

etc.

Example 2

operation: Listing template attributes.

list template attributes;

Page 136

DOMONIC COMMAND RETERENCE MANUAL

TEMPLATES AND DATA DEFINITIONS

The system will respond by typing cut:

T00001 SYSTEM-OVERVIEW IN TOOOOO, TEXT, MAX 10000 lINES

etc.

Example 3

operation: Listing template-attribute-ex planation.

list template-attributes-explanation;

The system will respond by typing out:

T00001 SYSTEM-OVERVIEW INT0C0O0, TEXT, MAX 10000 LINES

/* WORD DESCRIPTION OF THE SYSTEM */

Page 137

DONONIC COMMAND IEEERNCE MANUAL

TEMPLATES AND DATA DEFINITIONS

10.6.7 END Subcommand of DBENE DATA (Template Updating)

Use the END subccmmand to end a DEFINE DATA session. You may then enter

another command-

SUBCO IMAND OPEB NDS

END

EXAMPLE 1

operation: Terminating a template binding or updating session.

end;

Page 138

DOMONIC COMMAND REFERENCE MANUAL
APPENDIX A

TERMINAL CHARACTERISTICS

TELETYPE MODEL 33 TERMINAIS

Keyboard:

Teletype Model 33 terminals have a four row typewriter-like keyboard

which can generate 96 codes out of a full 128 character ASCII set.

Printer:

Teletype Model 33 printers can print 63 characters, including

uppercase alphabetics, numerics, special symbols and punctuation

marks. The 400 foot rolls are friction-fed; pin-fed

is optional. Pages 8.5 inches wide are accepted by friction-fed.

Printing is at 10 characters per inch with vertical spacing at

6 lines per inch. Automatic double spacing can be utilized.

TELETYPE MODEL 35 TERMINALS

Keyboard:

Teletype Model 35 terminals have a four row typewriter-like

keyboard which can generate 96 characters out of the full 128

character ASCII set. By depressing ccmbinations of keys,

control codes are generated.

Printer:

Teletype Model 35 printers accept friction-fed forms from an

8.5 inch wide, 400 foot roll. Vertical spacing is at 6 lines

per inch with automatic double spacing possible. Horizontal

spacing is 10 characters per inch. Automatic double spacing

is possible.

A total of 63 characters can be printed, including numerics,

alphabetics and special symbols. For forms up to 9.5 inches, there

is an optional pin-feed mechanism.

Page 139 c(

DOMONIC COMMAND EIRINCE MANUAL
APPENDIX A

TELETYPE MODBI 37 TEENINALS

Keyboard:

Teletype Model 37 terminals have a four row typewriter
arrangement. The keyboard can generate 128 graphics and control
codes of the ASCII character set. To generate the full range,
shift keys, control and prefix are used in conjunction with
character keys. Any character can be repeated automatically
by depressing the key below the ncrmal depressed position.

Printer:

Teletype Model 37 printers can print 94 (standard) 110 or

126 symbols of the ASCII graphic set. The horizontal pitch is

10 characters per inch with a future option of 12 characters

per inch; Vertical spacing is 6 lines per inch and operators

can choose double spacing.

Standard platen is 8.5 inches wide with friction-feed. Pin-fed

platen at 9.5 inches wide is opticral. Options to be announced

are platens designed to accommcdate forms 3.625 to 9.5 inches

wide, edge to edge. Hear loading is standard, while front loading

is optional. Continous forms may be accommodated and stacked in

the rear.

TELETYPE MODEL 38 TERMINALS

Keyboard:

Teletype Model 38 terminals have a four row typewriter

arrangement. Control codes of ASCII character set and all 128

graphics can be generated from the keyboard. To generate the

full range, control, shift keys and escape are used in conjunction

with character keys. Characters can be repeated by automatically

depressing the key below the normal depressed position.

Printer:

Teletype Model 38 printers can print 94 symbols of the ASCII

graphic set in addition to upper and lowercase alphabetics and

up to 132 characters per line. Horizontal pitch is 10 characters

per inch. Vertical spacing is 6 lines per inch and operators

can choose double spacing. With pin-feed, standard platen

is 15 inches wide. An option acccmmcdates friction-feed 8.5

Page 140

DOMONIC COMMAND REERENCE MANUAL

APPENDIX A

inch roll paper and 14 7/8 inch pin-feed forms.

IBM 1050 DATA COMMUNICATIGNS SYSTEM

Printer:

The 1052 printer-keyboard is built around an IBM Selectric

typewriter.

When included in the 1050 system, the 1052 carries system switches

and indicators. There are two models which correspond to the two

communications models of the 1051 Control Unit. The main

difference is the insertion of a different set-of switches and

indicators corresponding to the communications/home-loop

and communications-only modes of operation of the two 1051

models. The printer portion and the data entry portion of the

keyboard for the two models is the same.

Eighty-eight different symbols including upper and lowercase

alphabetics at 14.8 or 8.33 characters per second can be

printed. The printer provides a 15 inch, friction-fed carriage

with a 13 inch writing line (130 characters) is provided.

Pin-fed platen is optional.

Vertical spacing is at either 6 or 8 lines per inch. As an

option, the 1052 can be equipped with a vertical form control

mechanism to allow automatic spacing to predetermined positions

on a form. A second option speeds the return of the typing

element on a carriage return by about 50 per cent.

IBM 2741 COMMUNICATION TERMINAL

Keyboard:

IBM 2741 Communication terminals have a 55 key typewriter style.

The keyboard can yield any of the 88 upper or lowercase

alphabetics, numberics and special characters through upper and

lowercase control codes. Three keyboards are available and

each corresponds to one of three transmission codes.

The Typamatic Key option gives a repeat action while the

hyphen/underscore, backspace and space-bar keys are held

depressed.

Page 141

DONONIC COMMAND IE!XRENCE MANUAL

APPENDIX A

Printer:

IBM 2741 Communication printers print data from the communications

facility or input from the keyboard.

The rated print speed is 14.8 characters per second and print

symbols total 88.

Several interchangeable print elements are available for each
code. The PTTC/EBCD and PTTC/BCD codes are compatible except
for punctuation and special symbols. IBM stresses the use of
identical keyboards and print elements based on the selected
code for all terminals within the same network.

Friction-fed or pin-fed (optional) fanfold forms up to 15.5

inches wide are accommodated by the printer. The writing

width is 13 inches.

Horizontal spacing can be either 10 or 12 characters per inch.

Vertical spacing is 6 or 8 (optional) lines per inch.

IBM stresses the avoidance of intermixing character spacing on

terminals within the network.

Page 142

DOMONIC COMNAND REFERENCE HANUAL
APPENDIX B

SAMEPLE BATCH JOB DECK

//JOBNAME (account information)

//STEP EXEC DOMONIC

//SYSIN DD DATA,DCB=BLKSIZE=80

(batch input to system)

Explanation:

The system is invoked by the execution of a procedure stored

in the system procedure library. In the above example this

procedure is given the name DOMONIC. The SYSIN card identifies

the batch input to the system. // is in 80 character card

format and must start with a SIGNON command (see format in
'COMMIND LANGUAGE REFERENCE').

Page 1413

