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Abstract

The theoretical optimum acoustic impedance for
higher order spinning modes was studied In cylindri-
cal ducts with a boundary layer at the outer edge of
auniform flow. All of the propagating modeE were
cc,nafdered from highly propagating to nearly cut-
off. An interesting observation from the results of
Elie study was that the mode cut-off ratio uniquely
determined the optimum wall impedance and maximum
possible attenuation for a given boundary layer
thickness, Mach number and frequency. For example,
the (3, 7) mode ( three circumferential lobes -
seventh radial) has nearly the same optimum wall re-
sistance and reactance as the ( 8, 5) mode if both
modecut-off ratios are nearly the same. The Impli-
cationa of this phenomenon are quite important in
noise sup pressor design. Instead of the acoustic
power distribution Among all of the propagating
modes, only the power distribution as a function of
cut-off ratio needs to be known. This should be a
simpler in-duct measurement than a complete modal
measurement. Also, the far field radiation pattern
is a function of modal cut -off ratio, and much
needed Information for liner design can be obtained
from these more easily obtained data. A correla-
tion of the results is provided which allows the
optimum acoustic impedance to be calculated over the
entire cut-off ratio range for any inlet Mach num-
ber, boundary layer thickness, frequency, and acous-
tic mode.
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Transverse gradients in the steady flow veloc-
ity profile (for example, a boundary layer) of an
inlet duct have been shown to have a potentially
large effect on the propagation of sound in the
duct. This problem has been studied extensively
(for example, refs. 1 to 6) and a review of the
current literature on the subject was r e ported in
reference 7. Wwover, only receptly has much atten-
tion been 0 ,!voted to the notion of maximum attenua-
tion and o,.timum acoustic impedance for duct modes
propagating in ducts with a sheared flow (refs. 8
and 9). Such an optimization procedure appears to
be a natural step in the evolution of improved
acoustic lining design techniques.

In reference 9 the optimum impedance was pre-
sentedfor a ulde range of duct modes propagating
In ducts with a sheared steady flow near the duct
wall. A correlating equation was also presented
which unified the results and provided rapid esti-
mation of the boundary layer refraction effects on
liner optimum impedance. However, the results were
limited to well-propagating modes (far above cut-
off) which have essentially axially propagating wave
fronts. The purpose of the work reported in this
paper is to extend the results of reference 9 to
include all of the propagating modes from well-
propagating to near cut-off (where waves travel
transverse to the velocity gradients). Sample cal-
culations and a correlation equation valid for any
cut-off ratio are presented.
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A new acoustic liner design procedure based
upon modal zut-off ratio is outlined. Proposed ex-
periments to substantiate this design procedure are
outlined.

Symbols

A	 complex function of mode cut-off ratio

c	 speed of sound, alsec

D	 duct diameter, m

adB	 sound attenuation In liner, decibels

F	 boundary layer refraction function (see
eq. (15))

f	 frequency, Hz

I l	integral function across boundary layer (see
eq. (17))

i

Jm	Bessel function of first kind, order m

j	 index on summation

k	 w/c, m-1

K	 factor in axial wave number (see eqs. (1)
and (2))

MO	axial steady flow Mach number - free stream
:niform value

m	 spinning mode ::`! number (circumferential
order)

P	 acoustic pressure, N/m2

p	 part of acoustic pressure which is function
of r^dial coordinate (see eqs. (1) and (3))

R	 amplitude of eigenvalue a

RHW	 hardwall eigeevalue

Rop t	amplitude of eigenvalue at optimum impedance

r	 :adial coordinate, m

r0	circular duct radius, m

t	 time, sec

X	 axial coordinate, m

y	 distance from the wall in the boundary
layer, m

y	 nondimensional coordinate in boundary
layer (y16)

a	 complex radial eigenvalue (a - Reim)

6	 mode cut-off ratio (see eq. (11))

0H,	 mode cut-off rata: for hardwall ducts (see
eq. (10))

0	 dimensionless quantity (see eq. (16))

6	 boundary layer thickness, m

t	 dimensionless boundary layer thickness, 61rO

optimum specific acoustic impedance with a
boundary layer

1
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CO optimum specific acoustic impedance with zero
boundary layer thickness ( slip flow at the
wall)

n	 frequency parameter, fD/c

B	 specific acoustic resiutance

u	 radial mode number

(	 nondimensional radial coordinate, r/rO

a	 attenuation,coefficie.it (see eq. (2))

T	 propagation coefficient ( see eq. (2))

9	 angular coordinate, radians

C	 phase of elgenvalue, degrees

yA	 phase of complex function A

X	 specific acoustic reactance

Vm	 angle of maximum far-field pressure for a mode

circular frequency, rad/sec

Theoretical Model

In thin Section the propagation theory will be

only briefly reviewed. The theory is exactly as

presented in reference 9 and only enough will be

repeated to establish the necessary nomenclature and

provide the groundwork for definitions of optimum

impedance and cut-off ratio.

The geometry and steady flow profile considered

here are as shown in figure 1. The duct is circu-

lar, with no splatter rings or hub. The boundary-

layer velocity profile is linear near the wall and

has a 1/7 power law dependence outside of this

linear region. The stead y flow is assumed to be
uniform in the central region of the duct outside of

the boundary layer.

Solutions are of the form,

P- p(r)e iwt-imO-ikKx	 (1)

where m is the spinning mode lobe number and

"r0	
fn

we	 c

The damping and propagatior. coefficients (o, T) are
related to the radial eigenvalues (a) by,

-iMo+1 1-(1-M5(a/wr.)2
a + iT	 2	 (7)

1-K
0

Note that the quantities K, a, T. and a should

all have a double subscript (m,p) to denote the
lobe number and radial mode number under considera-

tion. This subscript has been deleted here for

brevity.

Optimum Nall Impedance and Maximum Attenuation

Figure 2 shows a set of equal attenuation (o)

and propagation coefficient ( T) contours on the wall
impedance plane which are used as an illustration

to define the optimum impedance for a particular

mode (m - 1, least attenuated radial). As the damp-
ing is increased the constant a contours are seen

to be reduced in size. In the limit as the closed
contour shrinks in size, the optimum impedance is

reached. If the damping is increased further the

o contours ire no longer closed contours in the

impedance re jon just discussed but instead are

Just off optimum contours for the next hig; , er radial
mode. The results reported here thus proviie the

maximum possible damping for the particular mode

under consideration.

The results reported in reference 9 were ob-

tained from plots such as shown In figure 2. The

results of this paper were obtained by a comptter

optimization routine which defined the optimum 17.-

pedance by

a ) ti 
a	

0	 (e)
T	 T

(6)

K I T-lo w -1(o+IT)	 (2)
and

is a part of the complex wave number which deter-
mines the mode damping through a am,d the axial
phase velocity through T. In the central uniform
flow region closed form solutions exist for p(r)
as,

	

p(r) - Jm{tr 9	 (3)
o

These solutions are coupled at the outer edge of the
boundary layer to the Runge -Kutta integration neces-
sary in the nonuniform flow region. Finally, using
th•. numerical results at the wall, the wall specific
acoustic impedance is calculated Zrom,

	

C - 6 + ix 
- 1̂P	 (4)

	

d 	
E.1

where

	

{ = r/r o	(5)

and the frequency parameter is defined as,

iL) ti 
A I . 0	 (9)

0	 /o

at the optimum impedance. The subscripts in equa-
tions ( 7) and ( 8) indicate the quantity which is
held constant. Numerical partial derivatives were
required due to the numerical Runge -Kutta integra-
tion . equired in the boundary layer. Other mathe-
matical definitions of the optimum impedance are
-vailable (references 10 and 11) but equations (8)
and (9) provide an efficient routine for the cal-
culation procedure used here. Except for the use
of equations ( 8) and (9) to define the optimum im-
pedance in the computer search rou-lne, the calcu-
lation procedure is exactly as in reference 9.

Mode Cut-Off Ratio

Equation ( 7) can be used to define the cut-off
ratio. This is quite simple for hard-walled ducts
where the radial elgenvalue a is real. When the

second term in the radical of equation ( 7) exceeds
unity ttis term contributes to the damping (a) in-
stead of to the propagation coefficient (T) and the

mode is cut -off. The cut-off ratio can thus be

f
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defined as,

BItW	
*n(10)

1}1W	 1-Mo

where RHW is the mode eigenvalue for hardwalls.
Equation (10) expresses the same cut-off ratio con-
cept as In reference 12. When BHW > 1 the mode

	

propagates, when B	 1 the mode is cut -off and
attenuates.

For soft palls where a is complex (a - Reim)
the modes always damp and there is no precise cut-

off point. perhaps a minimum acoustic power trans-

fer or group velocity definition might be used but

these result in complicated expressions. h simple

definition is used here as,

	

B -	
en	

(11)

R (1-Mo)cos 20

for which when B - 1 the real part of the radical

in equation ( 7) is zero. This reduces to equa-
tion ( 10) for hardwalls and gives results verysim-
ilar to equation ( 10) for soft-walls near the opti-
mum Impedance since ( for . -'ven mode) Rup t > RHW
but cos 20op t < 1.

Farfieil directivity pattern relation to cut-

off ratio. - A useful relationship can be estab-

lished between the frn far-field directivity pattern

and the duct mode cut-off ratio. It has been shown

(refs. 13 and 14, for example) that the peak in the

far field directivity pattern (o:curring at angle

ym) is related to the duct mode eigenvalue by,

wrR
co bin 

Wm	 tW	
(12)

For hard walls and zero Mach number, equations (6)

and (10) can be used in equation ( 12) to obtain,

sin ^pm - B `-	 (13)
HW

Thus nearly cut -off modes ( B i 1) radiate predomi-
nantly at 90 degrees from the inlet axis while well
propagating modes ( BHW large) radiate nearer to the
axis.

Results of Calculations

In this section the main conclusions drawn
from this study will be illustrated by means of
several sample calculations using the procedures of
the previous section. In the next section a cor-
relating equation will be given which allows ap-
proximate reproduction of the results without the
necessity of these time comsuming complete calcula-
tion procedures.

Sample calculations made for the conditions in
an inlet suppressor trst -!d with a General Electric
TF-34 engine are shown t figure 3. The frequency
was chosen at 2690 Hz since this represented the
frequency of peak attenuation observed in the ex-
periment. The calculated optimum Impedance points
are shown as open symbols for the several modes
cor.sidtred. The filled symbol represents the esti-

mated impedance of the liner for the stated con-
ditions.

Three Interestltg points can be seen from fig-
ure 3. First, although there are a multitude of
modes represented by the calculated points, all of
the optimum Impedances lie along a common curve.
The position occupied along this common curve will
be shown to depend upon mode cut-off ratio. Two

coincident points have been singled out in the in-

sert table. The property that these two modes have
In common Is the cut-off ratio. This dependence

upon cut-otf ratio will be shown later to be more
general than dust for these calculation conditions.
The second observation from figure 3 is that the
impedance optima tend to cluster in the near rut-off
range of the cut-off ratio. The density of the
modes near cut-off is even greater than appears In

figure 3 since many of these modes have not been in-
cluded in the calculations. Note in th figure sym-
bol legend that the modes have been se:ected in
somewhat of a geocclri. progression of lobe number.
phis was a l so ;one for the radial mode numbers to
reduce the number of calculations required. The
thirdobservation to be noted from figure 3 is that
the iatimated liner impedance of this liner lies
nearest the cluster of modes shown to be nearing
cut-off. A very crude first approximation might be
offered that the Impedance of a good performing
uniform liner might be near the centrold of the
collection of propagating mode optimum impedances.
This is only a first approximation since each mode
peak attenuation, off optimum performance, and
acoustic power weighting might in general be ex-
pected to be different. However, if anywhere near
an equal power distribution among the modes might be
expected, then it is natural that the best liner
would be located near the denReNr cluster of mod,
optima as shown in figure 3. In reference 13, a

fairly convincing argument is made that the modes

are present with about equal acoustic power in all

of the propagating modes at least for static test

installations. Thus the TF-34 data point shown on

figure 3 represents about the best reactance value

for a uniform liner at this frequency. If the re-
actance had been more negative (thinner liner), the
well propagating modes would have damped better but

damping of the near cut -off modes wou3A have been
decreased. A thicker liner ( lens negat : ve) would
have damped the nearly cut-off code r. mote but would

have left a higher noise level in the well to mod-

erately cut -on modes.

A better liner than the single section liner of

figure 3 might be composed of several sections each

aimed at a range of cut-off ratio values. Figure 4

shows the results of sample calculations and pro-

posed multi - section liner impedances for a Lyconing
YF-102 inlet assemblage which was designed to attack

this range of modes. Three boundary layer thick-

nesses are shown that approximate the range from the

beginning to the end of the proposed acoustic treat-

ment. Several spinning modes were considered; some

are labeled to show the range of values. Note that

the optimum impedance of well-propagating modes

((1,1) for example) is sensitive to houndnry layer

thickness while that of the nearly cut-off modes is

not (for example the ( 30,3) mode coincident for all
th •,ee boundary layer thicknesses). This result

world be expected when the direction of the wave

fronts with respect to the velocity gradient is con-

sidered (cut-off spinning mode wavefront motion is
transverse to velocity gradients).



inator. The following associated expressions ar.
required to evaluate equation (14).

6— 2F	 con 1 -
(^n)2

B	 (nnK) 2 + m2

-
I	

f1

	
(17)

1	 0 (1-MoKyl 7)2

The integral I I can be estimated by,

1 ti 1 + 7	 +1 (M K) I 	(18)
1	 A.(J+1) °

The optimum wall impedance without a boundary layer
({o ) for use in equation (14) can be estimated from
the correlating equations given in reference 15.
Although the determination of the factor A was em-
pirical it was not completely arbitrary in Its posi-
tion in the equation. Since it was known from ref-
erence 9 that equation (14) is valid (without A) for
well propagating modes (large cut-off ratio 0 It
was desirable that A + 1 as E	 Also the exact
calculations of this paper Indicate that the bound-
ary layer has very little refractive effect at cut-
off since the wave fronts are traveling transverse
to the velocity gradients. Thus It Is desirable
that A - 0 as 0 + I and then { . to
(t - o/r 0 « 1). In keeping with the arguments just
made, It was l,gical to try and correlate A with
cut-off ratio. This was found to produce a very
good correlation with onlv a small dependence on
mode number beyond the cut-off ratio dependence.

The fe.ctor A in equation (14) can be repre-
sented as,

1¢
A - JAJe A	 (19)

with

	

2	 2
J A I -	

8	
— 0
	 (20)

11( 	 -	 04-80`+32

(15)

(16o

k,

The cylindrical section wall lining impedances
are ahuwn on figure 4. The three sectloun (used
one at a time) at x - -1 are designed to attenu-
ate mainly the modes near cut-otf. These would
have the largest back cavity depth of the sections
shown. The two panels at x - - 2 (intermediate
back cavity depth) are designed for the Intermedi-
ate cut -off ratio modes. The thinnest panel at
x - -5 is used to attenuate the well propagating
modes. The three panel approach when used as an
assembly may resemble what has been called "phased"
or "segmented" treatment. However, the reasoning
for these panel' selectiuns is quite simple and does
not depend upon mode conditioning or reflection a,
although such mechanisms may possible be present.

In order to reduce the noise at a particular
frequency, all of the modes carrying acoustic power

must be attenuated. If only the modes near cut-off
are attenuated, the well propagating modes would act
as a floor below which the noise level could not be
reduced. More of the same type of treatment would
be inefficient since it does readily attenuate the
remaining modes.

The liners designed for the near -cut-uff modes
should provide quite large acoustic power attenua-
tions mainly toward the sideline. This is expected
since equation (13) shows that these modes radiate

mainly near 90 degrees. The intermediate mode sec-
tions should provide more modest attenuations at
intermediate angles, while the well propagating
mode liner will provide modest attenuation even
nearer to the duct axis.

The results of some additional sample calcula-
tions arc ahown in figures 5 and r, showing optimum
resistance and reactance plotted against mode cut-
off ratio. These calculations were made using the
conditions in a scale model of a QCSEE (Quiet,
Clean, Short -h:,.ji ixperlmenta .ngine Program) low
Mach number inlet. Notice r.eafn in these two fig-
ures that for constant frequency, Mach nurher, and
boundary layer thickness the cut -off ratio curre-
lates the optimum resistance and reactance for the
entire range of propagating modes. Also the bound-
ary layer has a relatively large effect on the
optimum impedance for modes well above cutoff but
not for the near cut-off modes.

Correlating Equations
and

A correlating equation was developed in ref-
erence 9 which expressed the effect of boundary
layer refraction on the optimum wall impedance for
spinning modes. This equation was developed start-
ing from the theory of reference 4. This correlat-
ing equation was tested in reference 9 only for
well propagating modes ( 6 » 1). When the equation
was checked against the results of this paper for
modes near cut-off (8 i 1), the equation did not
reproduce the results of the exact calculations.
The equation was thus modified as follows to make
it valid for modes with any cut-off ratio.

The new correlating equation is,

(1+t){

{	 1-1FA{o	
(14)

which differs from equation (26) of reference 9
only in that the factor A is inserted in the denom-

22582
OA -
	 (21)

(04- 3.6)2+302

with 1A in degrees. The behavior of the functions
JAI and $A are shown in figure 7. For very small
values of 8, JAI behaves as 0 2 /4%/-2, it peaks at

for 0	 2f, and then falls to unity at
large S. The phase, ^ A , peaks at 180 degrees for
8 -%(2 and falls cff rapidly (ti8 2 and 110 2 ) for
cut-off ratios below and above this value. There
Is a small modal dependence to the value of A for
which no attempt was made to accommodate intc the
correlation. There is thus about a 210 percent
scatter around the mean curves shown in figure 7.
The correlation for A repre4ented by equations
(16) and ( 17) and shown in figure 7 were generated
by observing optimum impedance calculations for
many modes. The lobe numbers included m - 1, 7,
and 20 with radial mode numbers u - 1, 2, 5, and

4
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ed each value of n . The cut-off ratios
npanned a range from 0.7 to B.S. Note that for
large 6, JAI y 1 and OA + 0. Thus the correla-
tlon given in reference 9 remains valid for well
propagating modes.

Liner Design Considerations

From the discussion in the preceding sections
a cut-off ratio distribution might suffice in place
of a modal distribution in at least part of the
liner design procedure. The optimum wall impedance
was shown in figures 3 to 6 to be determined by the
model cut-off ratio alone rather than by the modal
numbers (m and U). In addition, the cut-off
ratio distribution might be estimated by the far-

field radiation pattern through equation (13).

However, no mention of expected attenuation has yet

been made and this damping rate will determine the
length of treatment required in any given applica-
tion. In the following.discussfon some aspects of
attenuation rate will be considered.

From the approximate equations given in ref-
erence 16, for moderate to well propagating modes,
the sound attenuation can be estimated by,

AdB 
ti 8_7 R sin 24 %, -43	 (22)

L/D	 B	 8

where an average value of R sin 2p ti 5 was used.
The eigenvalue approximations of reference 15 were
exercised and the quantity R sin 2 4 was found to
be fairly Insensitive to modal lobe and radial mode
numbers. With I.Lm:i 20 and 1 < p S 10 the
range of R sin Z$ was from about 3 to 5.5. The
insensitivity observed was due to the fact that as
R increases due to either increasing m or u,
then p decreases almost enough to counterbalance
the R increase. If equation (22) were valid at
all 6 values then a quite convenient situation
would exist. Not only the optimum wall impedance
but also the maximum possible damping (per L/D)
would be uniquely determined by cut-uff ratio. Un-
fortunately this is not complete l y true. Very near
cut-off (6 ti 1) there is an abrupt Increase in the
modal attenuation for especially the higher order
modes which can be seen from figure 5 of reference
16. Again using the .esults of reference 16 the
attenuation at cut-off can be approximated by,

AdB
L/D ti -8.7V2 R sin 20	 (23)

This equation does not have the compensating effects
(as did equation (22)) between R and f. Again
for 1 s m S 20 and 1 S 1, S 10, the quantity
R sin 2m varies between 3.5 and 21 and thus equa-
tion (23) mus: be considered as a function of the
mode numbers. This modal dependence can probably
be ignored as a first astimate at least, since it
occurs only very near to cut-off. The damping cal-
culated from equation (22) at 6 - 1 will be less
than the actual damping from equation (23) so a
conservative design should result from this approx-
imati a.

Another attenuation consideration must be
realized. Any given wall material is optimum only
at one modal cut-off ratio. This cut-off ratio may
include several modes which would be at their opti-
mum but a multitude of other mod es would be off-
optimum. The approximate equation technique of

OR1^^^ 
^t^NxSl
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reference 15 will be used to handle the off-optimum
modes which will allow the rapid estimation of
attenuations without the need of the numerical In-
tegration required for an exact sound propagation
calculation with boundary layers. This approximate
equation technique can be cast In terms of cut-off
ratio since the only inputs required are the optimum
impedance (almost exactly a function of cut-off
ratio) and the maximum possible attenuation (approx-
imately a function of cut-off ratio).

One final liner design consideration 1s
offered. Recall that the propneed liners shown In
flgurr 4 were intended to damp the near rut-off,
intermediate, and well propagating modes at y - -1,
-2, and -5 respectively for the blade passage fre-
quency only. The X - -1 1a a relatively thick
liner while the X - -5 liner has a quite thin back
cavity. An efficient overall liner would have the
liner sections compromised somewhat to do double or
even triple duty. For example, the X - -5 liner
section could damp well-propagating modes at the
blade passage frequency, intermediate modes at the
second harmonic and near cut-off modes at the third
harmonic Frequency.

Concluding Remarks

Sample calculations were presented showing the
optimum impedance for a wide range of spinning modes
propagating in a cylindrical duct with a sheared
flow. Modes were considered from well propagating
to cut-off. The key result was that for a given
frequency, Mach number, boundary layer thickness,
and geometry (which, would be normally known Input',
the optimum impedance and maximum possible attenua-
tion are uniquely defined by the modal cut-off ratio
as an alternate to actual modes (indices m and

u)• Many modes may exist which have the same opti-
mum impedance and damping provided they have the
same cut-off ratio. It is suspected that modes of
equal cut-off ratio have the same effective angle of
incidence on the liner wall.

The results of the calculations were used to
generate a correlation equation for the spinning
mode optimum wall impedance. Thi ,; correlation will
allow the rapid calculation of optimum impedance in
a duct with sheared flow without the numerical in-
tegration usually required.

An fcoustic liner design procedure was outlined
which allows the circumventing of the knowledge of
the actual modal distribution. The cut-off ratio
distribution can be estimated from far-field direc-
tivity patterns and the liner can then he designed
at least approximately from this cut-off ratio in-
formation. This should be especially useful for
liners designed for flight tests where experience is
limited and modal measurement may b. Impractical.
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