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ABSTRACT

An orhit perturbation procedure is applied to the description of
monochromatic, large-amplitude, electrostatic plasma wave propagstion,
In the lowest order approximation, untrapped electrons are assumed to
follow constant-veloclity orbits and trapped electrons are assumed to
execgte simple harmonic motion., The deviations of these orbits from the
zctual orbits are regarded as perturbations, The nonlinear damping rote
and frequency shift are then obtained in terms of simple functions. The

results are in good agreement with previous less approximate analyses,
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1. INTRODUCTION

There is currently strong interest in the nonlinear behavior of
plasmas involving large-amplitude waves, or high levels of turbulence,
The relevant theory has advanced from analyses of wave-wave and wave-
particle interactions based on second- or third-order perturbation series
in the wave amplitude (Kadomtsev 1965 Sagdeev and Gnleev 19G9; Tsytovich
1970), to the inclusion of higher-order nonlinear effeccts, which become
important as the level of perturbation increases, The theory is quickly
limited by mathematical difficulties, one of which stems from time secu-
larjties in the perturbatian series coused by trapped particles (Dnvidson
1972}, Since the larger the wave amplitude, the more particles are trapped,
the series rapidly becomes non-convergent. Furthermore, trapped particles
oscillate with periods proportionnl to a fractional power of the wave
amplitude (proportional to the square root of the amplitude for particles
at the bottom of a monochromatic wave potential). Thus, when trapped
particle dynamics are significant, the series does not give a proper
approximation.

A number of theories have been developed to include trapping effects
for a coherent, electrostaotic wave, when the wave amplitude is not too
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large, i.e., when qf= (ﬂw/vt)(ew/T) ] << 1 for n one-dimensional

Maxwellian electron velocity distribution; here v _ and vt[: (T/m)l/e]
are the wave phase velocity ond electron thermal Jﬁlocity, respectively
(0'Neil 1965; Al'tshul and Karpman 1966; Taniuti 1969; Imamura, Sugihara
and Taniuti 1969; Lee and Schmidt 1970; Bailey and Denavit 1970; Oei

and Swanson 1972; Sugihara and Kamimura 1972). ‘The various theories
have predicted different time evolutions of the wave depending on the
value of ¥ /u_ , where YL is the linear Landau damping rate and

mB[= (ekEO/m)1 2] is the electron bounce frequency, When YL/»B 2 3,
the wave damps out according to the Landau (1946) treatment, before
trapped electrons can execute any significant bounce motions. For larger
wave amplitudes, the trapped electrons tend to flatten the velocity
distribution locally, so that the damping rate decreases with time from
1ts initial value, Y . For a wave of even larger amplitude (typically

L
Y /g << 1), the initial Landau damping rate decreases rapidly at about




nBt ~ % , ond osclllates thereafter as the trapped electrons bouncn. This
oscillation eventually disappesars, and the wave evolves towards a stendy-
state Bernstein-Greene-Kruskal mode (1957). The wave frequency in this
state is different from the linear value, the difference being proportional
to iy (Munheimer and Flynn 1971l; Morales and O'Neil 1972; Dewar 1972,
Lee and Pocobelli 1972 and 1973). The foregoing characteristics are in
general agreement with cxperiments (Malmberg and Wharton 196 (; Franklin,
Hamberger and Smith 1972; Vidmar, Malmberg and Starke 197H), account
being taken of the fact that the theories treat temporal rather than
spatial variations, and with computer simulntions (Armstrong 1967; Tsai
1974 ; Canosa and Gazdag 197h; Matsuda and Crawford 1975).

There is considerable interest in cases for which the condition
o << 1 4is unnecessarily restrictive, For example, sidebond instabilities
are prominent ior ¢ > 1 (Wharton, Malmberg and O'Neil 1968; Franklin,
Hamberger, Ikezi, Lampis and Smith 1972; Jahns and Van Hoven 1973). In
fact, a << 1 1is more restrictive thon the small-amplitude condition of
the usual perturbation theory for the non-resonant region, (€ Eg/n'l‘)l/2 << 1
or @ << (v /v )3/2 {Bud'ko, Karpman and Shklyar 1972).

. For o =# l the wave may have quite different characteristics from
those described for « << 1 , For example, consider nn arbitrarily large
wave amplitude, so that YLAQB << 1 even for low phase velocity. We might
anticipate that this wave will propagate at an arbitrarily low phase
velocity, and reach a steady state by trapping. However, this does not
happen: since the distribution function increases rapidly with decreasing
velocity, the number of trapped electron increases rapidly with the wave
amplitude, These electrons take more energy from the wave, asnd thus
enhance the wove damping (Armstrong 1947; Dawson and Shanny 1968; Sato,
Ikezi, Takahashi and Yamashita 1969; Nakaemura and Ito 197Ll; Tsai 19Th;
Vidmar, Malmberg and Starke 1975; Sugihara and Yamanaka 1975; Canosa 1975).
Consequently, a wave of amplitude larger than a certsin value damps out,
the precise value depending on the phase velozity, Dawson and Shanny
(1968) have shown that this eventual total damping occurs for all values
of amplitude when vw/vt 2 3.5,
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It is extremecly difficult to extend rigorous theorles for g << 1
to the case of o » 1 , Here, we shall sacrifice exactness, and apply
a perturbation procedure to the case of ¢ << 1 . Specifically, we
consider a coherent, monochromntic, electrostatic wave, and separate the
dynamics of untrapped and trapped clectrons, following 0O'Neil (L9on)., In
the lowest npproximation, we assume the untrapped and trapped electron
orbite to be of constant velocity and simple hnrmonic motion, respectively.
We then consider the difference between these orbits and the actunl rruits
as perturbations,

In §2,the damping rate and frequency shift are obtained from the
lowest-order orbit approximation. In §3,an appropriate perturbation
theory is developed. This is applied in &% and §) to untrapped and
trapped electrons, respectively, to include the effect of the orbit
perturbations, In §6, our results are compared with those of Morales

and O'Neil (1972), and some general conclusions are drawn,




2, LOWEST ORDER APPROXIMATION FOR NONLINEAR DISPERSION RELATION

Consider an infinite, homngenecous, collisionless plasma, with a
neutralizing background of immobile positive 1ens, driven by & single,
longitudinzl wave E(x,t) 2 Eo(t) sin kx , We shall rostrict our interost
to an initial value problem, where k 1s a renl constant, ond will assume
that temporal variations of the wave amplitude, EO , ond frequency (hence
the wave phase velocity) are small. In the wave frame, the electron
velocity distribution function in phasec spuace, f(x,v,t) , is described

by the 'lasov equation

f(x,v, t) o

3r(x,v,t f(x,v,t) e ..
-——E%—L—l-k v —g—t - - B osin kx g . (1)

Together with (1), Poisson's equation

A A/
m,
s - -0 B fdv 9% Ar(x,v,t) exp(ikx )
E, ("elc//?\b(”) p(ikx) , (2)
= -A\/7
constitutes the complete set of equations. Here Af(x,v,t) = f(x,v,t) - fo(v),

fo(v) ts the initial distribution function, and A(- 2n/k) is the wave-
length., Equation (l) implies conservation of the distribution function

along the electron orbit,
X = v V- - S E_ sin kx , (3)
? m O

Although f 1s expressed conveniently in (Lagrangian) coordinates
moving with the electrons accerding to (3), EO is better described by
fixed (Eulerian) coordinates. This difficulty may be minimized by finding
an invariant of the electron motion, and using this as an independent
coordinate, If EO is infinitely small, we may neglect the right-hand
side of the v-equation in (3), regard v as a constant of the motion,
and expand (1) in terms of EO to the desired order, This is the pro-
cedure of the usual small-sipnal theory (Sagdeev and Galeev 1959). For
large amplitude, we can find several invariants, e.g. energy, the trapping

parameter (0'Neil 1965), or the action variable (Goldstein 1950), and
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transform the (x,v)-coordinntes to this new coordinate for (1) and (2),
Thig had been done by many authors cited in 1. The transformation is
rather involved and, in most cases, the integrations in (2) can not be
performed analytically, In order to simplify the procedure, we first
obtaoin the orbit equation from (j) Ly multiplying the v equation by v '

ond integrating with respect to time,

)
(L) + ) sin® (,lf—:i) 9( ”n + l) , ()
v M A
r “Vl‘

1

where H 18 the totnl enorgy of on eclectron, and vr(: “B/k) is the
trapping velocity. The electron orbit deseribed by (&) is drawn in
figure l(n) .

To lowest-order, we moy approximate ()) by n constant velocity
orbit for the untrapped electrons (H > mvi) . We can then follow the
procedure of the usual smnll-signal theory to solve the Vlasov equation,
Neglecting higher-order mode-mode coupling, we obtain the well known,

linearized solution of (2),

ek \ f£/(v)
Af(x,v,t) = ( ())( bu ) [cos k(x-vt) - cos kx] , (%)

mk

where the prime denotes the velocity derivative, For trapped electrous

(n« mvi) , we replace the wave potential by s paraboln as shown in

figure 1(b), Nesar the bottom of the potential well, it is quite accurate,

The largest differepnce arises near the wave crest, However, electrons

travel very slowly near the crest and do not exert a significant effect

on the wave, Therefore, we consider this potential difference a perturbation,

In the zeroth order approximation, (%) reduces to

2
(:_r) v ()2 = g(m%Jr 1) , (6)

which describes a circular orbit in the (kx, v/vr)—plane.
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FIG 1. Actual (-—) and approximate (---)
(a) trapped electron orbits and
(b) wave potentials.
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with theso appre<imations, the Vinsov cquation may be written as

Af of Do Bf 2 [sin kx af
TtJ“"EE'“an_v""nx(""T&'_’l)'éV' (1)

The characteristic curve of the left-hand side is8 the ¢ircular orbit of
(6). The right-hand side represents the perturbotion due to the differcnce
between the sinusoidal and pnrabolic potontiuls, Changing the variables

(x,v) to circular coordinates (r,y) defined by

kx - r sin § , v/vr = ocos Yy o, (8)

(7) can be put in the fomm

%IE. 4 ‘Y g.i: < (ﬂ:_fm.)_ - 5in¢) (- siny %;: + r cosy g"l;’) ]
(9)

where F(r,y,t) = I(x(r,¢,t),v(r,¢,t),t) . In the zeroth order apprnxi-
mation for trapped electrons, we neglect the right-hand side of (9), The

solution is then
Flr,y,t) = Id:rvr cos{y - uBt)] . (10)

Following Morales and 0'Neil (1972), we assume that the wave ampli-
tude is small (@ << 1) so that, in the tropped region, fo(v) can be
cxpanded obout v = 0 as

£5(v) = 2,(0) + ve[(0) + Y fZ)(O) Foaee (11)

[a)
11

Substituting this into (10) gives

F(r,‘%t) - F(r:‘y:o)

n

AF(r,y,t)

2
, :1)Bt 'aant (rvr) p
= Ervrfo(o) sin (—5—) sin(y - + IO(O) sin wpt sin(2¢ﬁnBt) .
(12)




In order to use () ond (L), we hove Lo separate contributions to

h() I-‘U ' l'.,l,

clectron contribution, we determine the lower hound |v| o vU of the

(?) of untrapped nnd trapped electrons, . For th2 untrapped
urtrapped region hy considering the area between the x-axis and the
orbit of the electron during one wave period, This nrea is the actlon
variable (Goldstein 1) U), From (#), we see that the minimum of this

aron occurs when H mvi and tokes the value ' in the (kx,v/vr)wplune.
Since the untrapped electron orbit is of constiont veloclity in the lowest
order approximation, the lower bound is given by R)v”/vr =8, or

T (h/n)v . The untrapped clectron contribution to (ﬁ) is then
r

-y o
s U
iﬂ.!p
- PO I i u to :
y Y TR “[' IJ[ dv.“av,t),

(13)
1
d{ kX
fk(v,t) - /r -é:r)—Af(x,v,L) exp(ikx) .
n
substituting (%) gives £, as
el r(’)
. RO SRR N 1) . )
1k(v,L) (ka) ” (exp ikvt-1) (1h)

The untrapped electron contribution, EU s thercfore becomes

o VU
IS J"(V)
E, -5 [£ - dv — (cos kvt-l)
u O\k v
—n —vU

—vU @
up 2 I(’(V)
- iE | == - -
O( T ) + av - sin kvt ,
- VU

(1)




where the barred integral sign denotes the Couchy principal value, In
the real part, the first integration of the cosine term phase-mixes to
zerc, For tha second integration, we may use (11l), In the imaginary
part, most of the contribut.on comes from near |v| =Yy and we nay again

use (11) for ié(v) . Carrying out the integration reduces (13) to

L
u_)EE :l.’c')(v) fﬂ)e ; sin kv t
E, = B, (k ) - dv - 2 B, (k vyl O(0) (l - "FF;E")
-]
w2 D
- inE, (EB) fé(O) (1 - Si(kat)) , (16)
where Si{a) is defined by
a
si(a) =J/. Siz X ax . (17)

0

Changing variables (x,v) to (r,y) gives the trapped electron

contribution to (2) as

5 a

- mw
E,= -2 (a-l-(-—) v, rdr Fk(rlt) ,

0
(18)

7
Fk(r,t) = / %AF(r,ﬂ;,t) exp(ir siny) ,
=x

where the upper bound of the r-integration is determined by 1ra2/2 =8

1
or a = h/r /e . Substituting (12), and performing the {-integration

(Gradshteyn and Ryzhik, 1965) yields

2
v
r o“ 2 ‘
Fi = = 5 fO(O) r Je(r)(l—cos Emnt) + 1vrf0(0)rJl(r)sin wpt -

(19)



Using the derivative formuila for Bessel functions (Abramowitz and Stegun

196%)

E:‘i-' (thn(r)) ) r“Jn-l(r) ! (20)

the r-integrations in (18) can be performed to obtain

a3 P2y ' (0)(1-cos 2w t) - 12025 (a)® "fﬂaf’(o)sin ot
E, == J,(a) E () “ro 3 % kYo B"
r o2 3 0lk
(21)
The Poisson equation involves the sum of {16) and (21), Substitution

yields the dispersion relation

E = € +ﬂ€:0, (22)

where e! is the linear dispersion relation; GL and 6¢ are given by
4

>}

v f e

-

:up 2 M I sin kVUt ’13
be = of 2 T - . R - ,
€ g(k ) vrro(o) (1 T ) T J3(n)(l cos 2J)Bt)

£

4,2 2
n Pl g - PR . .
bodon (k ) :fO(O) [ Si(lwut) - JQ('\) sin 1)}312} . (23)

=iro

We now let w» = g * 6y + 1Y , where n, satisfies the linear

dispersion relation (GL o), and -~xpand {(22) about To first

o
order in &€ , & , and Y , we obtain

o, sin(l.Q'I:nBt)
" .
5(; = - 2.55 (1 - T + 0.99 (1 - cos 2u,t) ,

Y
— = 1 - 0.6h 81(1.27 » t) + 1.32 sin u t , (24)
YL B B

10




whore : (v /k 2v I” 0 de_ /8, -1 the Landau damping coefficient
Qo r o o/

v, = - o /0720028 /20 )™, and 5,(h/n"2) = 0,41 ana J3(lb/nl/2)

hove been substituted. The first bracketed terms for &, s and the first

= 0.17

two terms for Y , are the untrapped electron contributions; the remaining
terms are the trapped electron contrihutions,

The frequency shift and damping coefficient of (2i4) are shown in
figure 2. They exhibit the essentinl features of experirental observations
(Malmberg and Wharton 1907; Vidmar, Malmberg and Starke 1975) : Qpﬂqo and
Y/YL decrease within or near gnBt = % ; oscillatory behavior follows with
periods of about EﬁBt for GM/QO and ‘nBt for Y/YL . The time-
asymptotic value, ﬁn&)O = -~ 1,50 is in reasonable agreement with the
more accurate value of ﬁn/no = - 1.63 obtained by Morales and O'Neil
(1972).

To gain insight into tne relative imporiuance of trapped and untrapped
electron contributions, theyv are shown separately in figure 2, as well as
combined, The sinusoidal behavior of the former is well understood from
energy and momentum consideravions for the irapped electrons and the wave
(Morales and O'Neil 1972). The behavior of the latter has not been
clarified previously: in the linear theory, the constant velocity orbit
is assumed for the entire region of velocity., 1In the present case, of a

large-amplitude wave, it can be assumed only forv |v| > v The Poisson

equation therefore assumes the form of a finite Pourier tzansform [ see (13)].
This contributes the (1 - sin x/x) and Si(x) [x = l.ETcuBt] terms in
(24}. The initial increase of 6¢yb0 and Y/Y, of the trapped electron
part is thus offset by the contribution from the untrapped electrons.

1t should be noted that,whereas Morales and O'Neil show bm/QO =0
and Y/YL = 1 for some time before they decrease, figure 2 shows
°m/QO >0 and Y/Y_ > 1 for ut € 0.6r . This difference is mainly
due to our approximation that all trapped electrons have the same bounce
frequency, and hence exchange energy and momentum with the wave cohurently.
The actual bounce frequency is, of course, lower for electrens closer to
the separatrix. If we include this different bounce frequency, the first

peaks of Om/QO and Y/YL will be reduced; the amplitudes of their

oscillations will be decreased; the maxima and minima will be delayed,

11



FiG. 2{a). Frequency shift in the lowest order
approximation, Dashed lines are contributions

of untrapped (U) and trapped (T) electronms,



P S S

FiG. 2(b). Damping rate in the lowest order
approximation, Dashed lines are contributions

of untrapped (U) and trapped (T) electrons,
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and the oscillations will eventually decay away, ns demonstrated by
Morales and O'Neil (1974), To include these effects, we shall take
account of the difference between the actual and the lowest order orbit,

ns a perturbation effect, in succeeding sections,
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3. ORBIT PERTURBATION

So far, we have considered the lowest order orbits: constant velo-
city for untrapped electrons, and circular orbits for trapped electrons.
Under the influence of the wave, however, an untrapped eclectron changes
its velocity as it travels, Similarly, a trapped electron changes its
radius nnd the angular frequency because of the difference between the
parabolic and sctual sinusoidol wave potential, We shanll assume the
time-scales of these changes to be large compared to the time for an
untrapped electron to traversc one wavelength, or for o tropped electron
to complete one cycle of its trapped orbit.

We write the Vlasov equation in oper.tor form,

—a— *+ LI(x,t) = 0, L = g,(xt) ;f:— (25)
i

where x represents both spatinl and velocity coordinates, B is the
generalized velocity, and the summation convention on the repeated index
is understood, We divide {f into a slowly-varying part, (£ y and a
rapidly-varying part, fl s Where ( ) denotes o time average over the
shorter of the two time-scales. We assume <g> =0 . [If this is not
the case, we need only consider X to be a coordinate moving with (g> 3
and <E> then disappears from {25)]. Taking the time average of (25)
gives the secular part. Subtracting this from (25) gives the rapildly-
varying part, "

af
%%L (L)) =0, 3—1}4- (1-Ayut; + 1) =0, (26)

where 1 and A are identity and averaging operators, These equations i
are identical to those used in the renormalization procedure of plasma
turbulence (Dupree 1966; Orszag and Kraichman 1967; Frisch 1948;
Weinstock 1969; Rudakov and Tsytovich 197L; Tsytovich 1972; Benford and
Thomson 1972; Misguich and Balescu 1975).

Following Tsytovich (1972), we introduce an average collision

operator, v , such that

15




W) = - (L), (27)
and rewrite (26) as
.a.gfl = w(f) . (28)

This expression is then integrated to obtain

t
(1) = {12(0)) + /dtl v(tl)u(tl))
0
t t t
- (1 +/ dt; v(tl) +/ dt, dt, \)(tl) v(te) + aes
0 0 0
¢ il fn-1
+/dtl/ dt, ... f \,(tl)v(te...v(tn) + ) {z(0)) .
0 0 0

(29)

Unless indicated otherwise, throughout this section the argument of
f is time, Introducing a time-ordered exponential function defined by
{ Kubo 1962)

t t t
expO/ dtlv(tl) EZi—!-/dtl.../ dt‘no[v(tl)...v(tn)]
(o} n=0 0 0
" t tn-l
=2 /dtl.../ dt V(tl)...v(tn) , (30)
n=U0 " o]

we may cast (29) in the compact form
(£(t)) = u(t,0) (£(0)) , (31)

16




where the average propagator, U , is given by

t

u(t, t,) = exp, /dtl Wty (3)
t
o]
the operstor O denotes the chronological ordering in v's , Bnd U
satisfies the group property U(t,to) = U(t,tl) U(tl,to) (weinstock 19(,9).
For the rapidly-varying part, fl , we may use the guasilinear form

of (26) (Benford and Thomson 1972; Misguich and Balescu 1979)

afl
5 - Vi 1K) =0 . (33)
The sovlution is then
t
£ (t) = -/dtl u(t, t) L(ty) U(ty,0) (£(0)? , (3L)
0

where we have assumed the initial condition fl(O) = Q , Substituting
this into (27) gives

t
vit) =/ at, (L(t) u(t, ) L(t))) U(ty,t) . (35)
0

The effect of the modified orbit on 1, is contained in U, which
can be found by iterating (32) and (35). If U =1, (34) reduces to the

result for the lowest order orhit,

17




t,  UNTRAPPED ELECTRON CONTRIBUTION TO LLECTRIC FIELD

In 8 coordinate system moving with the lowest order stralght line

orbit (y,w) , defined hy
y . x=vt , w oV, (30)
the Vlasov equation {1) tankes the form of (1) with
e 3 8
) z — K 5 fow i - a— = . (.
Liy,w, t) - PO sin k{y+wt) (L_dy E;) (37)

To carry out the iteration of (32) and (30), we [first let U =1 . Noting
that sin k{y+wt) aond (td/3y - B/0w) commute, we can write (3y) as

t
v o= (% EO) (t E - W)/ cl!;1 {sin k(y+wt) sin k(y-i—wtl)) (tl E—; - g:v-)
0
t
Lie ¥ (23 2 3 @ .
"E(E EO) €y " aw dT cos kwT ((t—‘l‘) 5w (38)
0

Since the time-scale of slow variantions is assumed to be much longer
than Ll/kw , the integrund contributes only for a very short time. The
upper limit of the time integration may therefore be taken as t ~ = ,

Noting that

@™ . =
1
/dt cos kwt = nb(kw) : 0, / dt sin kwt = =, (39)
¢ 0

which follow from the fact that kw # O for untrapped electrons, we can

reduce (38) to

2 2 0 _
1 (c (1 ( o oa 1 @ )
v o= == —_ t - (kw) R N (]+O)
2 m 0) kW) aye dw (kw)e Ey

18
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Next, we may obtain U(t,to) trom (32) as

2-t2 2 2
u(t, tO) = pr{% (_r_a"_ EO)E (%—;—;)? —-'2——(2 %}? - (thto)(kw)e ?rw (%{'.—”) -27 ’
(11)
where the time-ordering subscript, O , has been dropped because the
exponent no longer involves the time-integration. We now substitute (41)
in (34) to obtain £, . For the U(t,0) operating on (£{0)) , we first
note that, since (f(0)> is homogeneous, d/8y = 0 ., Therefore,
U(tl,O) =1 . For the sume renson, L(tl) becomes -(o Eo/m) sin k(y+wtl)(3/3w) .
In the first U, we have /3y =+ ikw . Transforming back to the (x,v)-

coordinnte consequently reduces (34) to

i eE
Il\x,v,t) 5 ( -

O)pr(-ikx)

2~

t
eE T ,
x./r dT exp {(Emg ) [? - %%; (2 - v g;)] exp(iva)fé(v) + c.c,
o

(h2)

Since we assume that the time for an untrapped elecctron to traverse
one wavelength, T ~ l/kv , is much shorter than other variations, we
may put T >> T in (ug) . Therelore, we neglect the second term in the
square bracket in (42). The first exponential function in the integrand
then takes the form exp (A+B) ; which can be expanded as {(Misguich and

Balescu 1974; Louisell 196L)
exp(A+B) = exp(A) exp(B) exp(- [4,B}/2) ... , (%3)

where [A,B] = AB -~ BA . Since [A,B] = O(Eg) , and hence negligible, we
may factorize the exponential function. S8Since kvt > 1 , the most
significant contribution to 8/8v comes from operating on exp(ikvT) ,
Therefore, we replace ©0/8v by ikT . The Fourier transform of (L2)

then becomes
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t 0
cE T E
i Ol . 1l B v
g = | — xnl- —— Yy, l.
vy -4 (= )10(\!)/(11' oxp 17("/",-) ‘i (vr)un |

0
(hh)
Since the first term In the exponent gives only m slow variation, the

integration yields upproximately

W Ipee

Ik(v,t) =

(o)

Note that, in the limit ﬁnt/(V/Vr) « O(Ei) = 0, we recover from
(45) the linear result of (1h). For simplicit/, we shall neglect this
small term in the denominator, S$ince we see that, when (45) is substituted
in (13), the dominant contribution of the exponentinl term is from the
small-v reglon, we shall write v for v in the first term of the

U
exponent in (45). With these considerations, (16) is finally modified to

-}

2 ’
B\ £ (v)
- B 0
EU_EO(R) ][ ” dv

-t

: . - \& ! t/ﬂ)
8 (D")g % g ty2 | sin(bop
- - EO vri (v) {1 - exp | - o muBt/ﬁ

B (2 T t\2 n oy t
p\ . B_ _Ee B ]
- inEg (k ) 10(0) exp [— ( 5 ) ] L-=st ( -

(46)
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v. TRAPPED ELECTHRON CONTRIBUTION TO ELECTRIC FIELD

In order to c6st tnu Vlissov equation for traopped clectrons, (9), in

the form of (25), we average the right-hand side of (y) with respect to,

over the range (-1, 1 and subtranct this averaged part from both
) PRV I

sides., We then obtailn

oF oF p 8 8
& L LF - ] el W
5t " YpL Y 0, L=~ "dr*'SETy ’ (h)

where the functions R uond § arce defined by,

Al
[
1

R(r,y) = 5 (sin oy - %-cos f sin (r sin ¢)) )

r 2 2Jl(r)
S(r,y) = = fcos 2y + - sin ¢ sin (r sin §) - = , (u8B)

and Wy, is glven hy

, 1 N E’Jl( r) |
. 4 b, - = - —] ., X
by g (8, 8y P r (h9)
Trapped electrons travellng nccording to

\b = “DBl 3 r =0 H \;l = :“Blt o+ lLIO 3 | S )'O » ()O)

feel the rapidly-varylng force exerted by the L-term in (7). To find

the orbit correction due to this force, we shall assume in

g1 T g
(50) for simplieity. In terms of the coordinates (r0’¢0) , (W7) con

then be reduced to the form of (2%), with L given by

=

|

L s

jeb} L

g [ 2 2 \ . ( 3 3 ) .

L=— |[Rg—+ 8 = —lg— R+ z— 58], (51)
o ( "o EI0) o \%Fo Yo

where R ammd S are given by (48) with (r,y) replaced by (ro,wo)
according to (50).
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Substituting ("1} nmd U 1 in (3 ), and taking the time average

over one bounce period, Pn/.n , we obtnin

N .—.[m- fu(e) w{e-m)) - 0 ET::—’
SRRV

(

2
3 |

1 3 € < (]
o g st B s R en)] o

e L (.

Transforming (r to (r,y) , () now hecomes

0)‘5;0)

; ar
gl- * Oy E% = (v ), (:3)

where Q= ny (1. + b, + 52) and 0p is given by (*2) with £y

replaced by r .
The dominant orbit correction is obtained by neglecting the right-
hand side of (% 3), yielding the equation
3"9 ___Q .0, ()
whose solution is
FO(T:"ht) = Iu[wr cos (’lJ - :.;'I'St)] ' (l)‘)
Suhstituting this in (18) gives
2
rw) Je(r) (l-cos QﬂBt)
(1€)

Fko(r,t) v £ (v) lJl(P) sin Q AR I (U) (

For the quasiliinear correction, we writce (*3) as

aFl ayl
Ft_ + OB EE_ . - IJI"!_J . (“7}
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Assuming mﬂ/ar =~ 0 , for simplieity, we obtain
¢
. 1
F(r = - = . T ! - . T
11(1,‘¥,t) V:’/mlr ll(x,q;-OB )cos(v-{)ut) S(‘:‘l"‘nn )sin(w-nBt)]

8]

7 [
X 1] [rvr cos(w-{zn'l')] . (58)

Substituting this in (18), and using (11), (48),and integration formulas,
{Gradshteyn and Ryzhik 190%), gives

QBt
’ l)B
lrkl(r,t) = - 1vr1’0(0) (%1;) de lx*Jl( r)cos(QBt—EQ) + 2J§(r)t-P(r,G)cos(QBt-O)}
0
QBt
D u ) 2\ 2
- V:-IO(O) (Fﬁ;)["e{r Jo(l) sin2@ - 1 Jg(r) sih(EQBt-O)
O
- 21‘Jl(r)J2(r) singn,t + ExQ(r,G)cos(QBt-G)] ' (59)

liere, P{r,®) and Q(r,8) are given by
P(r,@) = Jo(er sin g) - JO (2r cos -g-) »

e e o e
Q{r,9) = Iy (2r sin E) cos(QBt - é-) - Jy (Er cos 5) #in (QBt - -2-)

(60)

Using standard Bessel function identities (Abramowitz and Stegun 1965') we

may express P and Q in series form as




)
)
DK

P(r,0) = n+l(r) cos (2n+l)e ,
n=0

Q(r,8) = 22 .12“+l(1') Je(m_l)(r) sin[nBt + (2:14-1)9]- Jzn(r)sin[nnt—(Em-l)G]] .
n=0

(61)
The terms with n 7£ O caon be shown to moke negligibly small contributinns,
Retaining n=0 terms in (A.5), substituting in (A.3), and performing
B-integrations gilves

!
3 = . * DL
F ](r,t) ivrfo(o) 1Jl(1) 1 sin QBt

2
o0 1
. by M AT -
 Pei(0) ()il -3, )8y (2cos 200 (62)
where, since F, . is small, we have used TS QB . Adding this to
13 in (56) gives

k0O

Fk(r,t) = Fo* Pl

il

TRAORINE [1-..al(r)] sin Ot

- vi:f”(o) (]T—E)(Je(r)[l-ﬁl(r)] -JO( r)) (L=-cos QBt) .

(63)
The contribution to the electric field due to trapped electrons,

E, , is then obtained from (18) as

a
u::p 2 , o
E, = - 21 (k—) fo(o)fdr r Jl(r)[l+5l(r)] sin Ot
v

(64)

a

E w 2 ¥t A
P22 () o for 7 (10D, - s (9] aosen sy
0
ol




6. CONCLUSIONS

The results of § and §5 are the equations (46) and (58). Combining
them gives the dispersion relation (22) with &€ given by

w2 o sin(l.27 r.nBt)
be = (EB) vrfO(O) 2.55 (l - exP[" (0.39 th) ] L.27 wyt

- O.5fdr r3(.12(r)[l+bl(r)] - JO(r)bl(r)) (l-cos EQBt)
O .

+ 1n(0;—p)2fé(0){exp[- (0.39 wBt)E] (l - 0,64 s1 {1.27 th))

a

+ O.6hfdr © Jl(r) [l+61(r)]sln QBt} . (64)
0

The frequency shift and damping rate are found by expanding € about

= mo . We obtain

B o sin(1.27 U)Bt)
(—_2—0— = - 2-55 (l - exXp [— (0-39 Ll}Bt) ] 1'27 u_)Bt

a

+ O.5]dr r3 (Je(r) [l+51(r)] - Jo( r)bl(r)) (L-cos EQBt) ,

0

-<|<

21.
= expf- (0.39 » t) (1 - 0,64 81 (L.27 w,t)
N [ B ] B )

a
+ 0,61L/dr r2Jl(r)[l+6l(r)] sin ot .
0 (65)
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Figure 3 shows ém/no and Y/Y = calculated from (65), with contri-
butions of trapped and untroepped electrons shown separately and combined,
Comparison with the results of Morales and O'Neil (1972) generally shows
good agreement, The asymptotic value of bm/no = - 1,62 is very
close to their result of ﬁm/no = - 1,63, The figure indicates that
the untrapped electron contributions to Om/no and Y/YL change rapidly
for th < n , but remain substantially constant for th > " . As was
mentioned in §2, the origin of this characteristic can be easily zenn by

dividing the velocity integration over the region |v| < v as shown

’
in (15): the first integral, Jver the entire velocity reggon, gives the
linear dispersion relation and the Landau damping rate; it is the second
integral, over |vl < vy s that pgives the time variation of the untrapped
parts of 63/QO and Y/YL . In the work of Morales and O0'Neil, the
second integral has been combined with that of trapped :lectrons in (18),
and is consequently observed in the subtraction of the linear charge
density from that of the actual perturbed density.

The damping rate, Y/YL , and frequency shift, &u/Al are proportional

}
to fé(O) and fg(o) , respectively. Morales and O'NeiIOQXplain this from
momentum and energy considerations, 1f four conjugate points keep their
symmetry during motion in phase space about the potential well (which is
the case of a wave with constant amplitude and phase velOCity), the total
momentum change experienced by them derives from the odd-order velocity
derivative terms in the Taylor series of (11); the contributions from the
even order derivative terms cancel out because the momentum is odd in
velocity. On the other hand, since the energy is even in velocity, the
total kinetic energy change of these conjugate points derives from the
even—order derivative terms. Since we keep only terms up to the second
velocity derivative of the distribution function, Y/YL and bm/ho are
consequently proportional to fé(O) and fg(O) . For a larger amplitude
wave than has been considered here, it is apparent from the above picture
that, because of additional contributions from higher-order terms of the
Taylor series, the frequency shift and damping rate can be larger than

Lhe present results.
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FIG. 3(a). TFrequency shift obtained from the orbit

perturbation. Dots are results of Morales and

O'Neil (1972).
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FIG. 3(b). Damping rate obtained from che orbit
perturbation. Dots are results of Morales and

0'Neil (1972). .
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Wave amplitude and phose velocity changes may also enhance the
frequency shift and damping rate. It should be remembered that the
present theory assumes constant wave amplitude and phase velocity, 1.e,
the momentum and energy gain by those four conjugate points during
noceleration is returned to the wave during deceleration, However, when
the wave damps initially, some of the trapped electrons which have gained
momentum and energy during initial acceleration are detrapped, and &
corresponding amount of momentum and energy is not recovered by the wave
during the next decelerating period, Similarly, the phase-velocity
change resulting from the frequency shift disrupts the symmertrical
motion of the four conjugate points, The damping rate and frequency
shift are then no longer necessarily functions of only odd and even
orders, respectively, of the velocity derivatives of the distribution
function,

Although it has been used for a monochromatliec wave, the perturbation
procedure developed in §3 1s identical to that previously used for
random waves. This is an important point since the literature developed
in §3 contains many annlyses specinlized to one or other of these two
extremes, but there is no easy way to combine them. The method used
here effectively links them,and is potentially applicable to such
important situations as slight randomness accompanying coherence, and

vice versa.
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