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SIMPLIFIED THEORY OF LARGE-AMPLITUDE NAVE PROPAGATION

by

11ong,Jin Kim

Institute for Plasma Research

Stanford University

Stanford, California 914305

ABSTRACT

An orbit perturbation procedure is applied to the description of

monochromatic, large-amplitude, electrostatic plasma wave propagation.

In the lowest order approximation, untrapped electrons are assumed to

follow constant-velocity orbits and trapped electrons are assumed to

execute simple harmonic motion. The deviations of these orbits from the
e

actual orbits are regarded as perturbations. The nonlinear damping rate

and frequency shift are then obtained in terms of simple functions. The

results are in good agreement with previous less approximate analyses.
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1. INTRODUCTION

There is currently strong interest in the nonlinear behavior of

plasmas involving large-amplitude waves, 	 or high levels of turbulence.
e

The relevant theory has advanced from analyses of wave-wave and wave-

particle interactions based on second- or third-order perturbation series

in the wave amplitude (Kadomtsev 1965; Sagdeev and Gnleev 1969; Tsytovich

1970),	 to the inclusion of higher -order nonlinear effects, 	 which become

important as the level of perturbation increases. 	 The theory is quickly

limited by mathematical difficulties, one of which stems from time secu-

lari 'cies in the perturbation series caused by trapped particles ( Davidson

1972).	 Since the larger the wave amplitude, the more particles are trapped,

the series rapidly becomes non-convergent.	 Furthermore,	 trapped particles

oscillate with periods proportional to a fractional power of the wave -

amplitude ( proportional to the square root of the amplitude for particles

at the bottom of a monochromatic wave ootential).	 Thus,	 when trapped

particle dynamics are significant, 	 the series does not give a proper -

approximation.

A number of theories have been developed to include trapping effects
k

for a coherent,	 electrostatic wave, when the wave amplitude is not too
1/2

large,	 i.e. when	 IX[= (v
ca
/ v t )( eCD/T )	 ] << 1	 for a one-dimensional -

/2]
Maxwellian electron velocity distribution; here	 v	 and	 vt[= (T/m)1

(P
are the wave phase velocity ind electron thermal velocity,	 respectively

(O'Neil 1965; A1'tshul and Karpman 1966; Taniuti 1969; Imnmura, Sugihara s

and Taniuti 1969; Lee and Schmidt 1970; Bailey and Denavit 1970; Oei ,r

and Swanson 1972; Sugiharn and Kamimura 1972).	 The various theories
s
-f

have predicted different time evolutions of the wave depending on the

value of	 Y /a,p	where	 Y	 is the linear Landau damping rate and,

:yB[- (e1cC0/m) 1/2 ]	 is the electron bounce frequency. 	 When	 YL/:uB ^ 3 , +
the wave damps out according to the Landau (1946) treatment,	 before

x

trapped electrons can execute any significant bounce motions. 	 For larger

wave amplitudes, 	 the trapped electrons tend to flatten the velocity

distribution locally, 	 so that the damping rate decreases with time from
A

its initial value,	 Y 
	 For a wave of even larger amplitude (typically 2

Y L/W	 << 1),	 the initial Landau damping rate decreases rapidly at about z

S

1
's

'h
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p B 
t ^-_ it , and oscillates thereafter as the trapped electrons bounce. This

oscillation eventually disappears, and the wave evolves towards a steady-

state Bernstein-Greene-Kruskal mode (1957). The wave frequency in this

state is different from the linear value, the difference being proportional

to uB (Manheimer and Flynn 19'(1; Mornles and O'Neil 19'(2; Dewar 1972;

Lee and Pocobelli 1972 and 1973). The foregoing characteristics are in

general agreement with experiments (Malmberg and Wharton 196(; Franklin,

Hamberger and Smith 1972; Vidmar, Malmberg and Starke 197')), account

being taken of the fact that the theories treat temporal rather than

spatial variations, and with computer simulations (Armstrong .1967; Tsai

1974; Canosa and Gazdag 1974; Matsuda and Crawford 19M -

ThereThere is considerable interest in cases for which the condition

O' << 1 1s unnecessarily restrictive. For example, sideband instabilities

are prominent for a > 1 (Wharton, Malmberg and O'Neil 1968; Franklin,

11amberger, Ikezi, Lampis and Smith 1972; Jahns and Van Hoven 1973). In

fact, a << 1 is more restrictive than the small-amplitude condition of

the usual perturbation theory for the non-resonant region, ( C OED/nT) 1/2 << 1

or a << (v /v t ) 3/2 (Bud I ko, Karpman and Shklyar 197?_).

For a ;^ 1 , the wave may have quite different characteristics from

those described for a << 1 . For example, consider an arbitrarily large

wave amplitude, so that Y 1 GuB << 1 even for low phase velocity. We might

anticipate that this wave will propagate at an arbitrarily low phase

velocity, and reach a steady state by trapping. However, this does not

happen: since the distribution function increases rapidly with decreasing

velocity, the number of trapped electron increases rapidly with the wave

amplitude. These electrons take more energy from the wave, and thus

enhance the wave damping (Armstrong 1967; Dawson and Shanny 1968; Sato,

Ikezi, Takahashi and Yamashita 1969; Nakamura and Ito 1971; Tsai 1974;

Vidmar, Malmberg and Starke 1975; Sugihara and Yamanaka 1975; Canosa 1975).

Consequently, a wave of amplitude larger than a certain value damps out,

the precise value depending on the phase velocity. Dawson and Shanny

(1968) have shown that this eventual total damping occurs for all values

of amplitude when v
(D t
/v ^ 3.5.



,.....	 ......	 ..	 ..	 ... s	 9	 -max.	 ... ..: ua*Hdt .x . ^ a.: ^ r , c	 a.6> N h- srcs.,	 ^	 .NwE L°++Fk"4^, [.v'i vu,ryk-yy.^
1
1

!

It is extremely difficult to extend rigorous theories for ct « 1

to the case of a a 1	 Ifere, we shall sacrifice exactness, and apply

a perturbation procedure to the case of IX << 1 	 Specifically, we

consider a coherent, monochromatic, electrostatic waves and separate the

dynamics of untrapped and trapped electrons, folLowing O'Neil (196 j), In

the lowest approximation, we assume the untrapped and trapped electron

orbits to be of constant velocity and simple harmonic motion, respectively.

We then consider the difference between these orbits and the actunl rr'jits

as perturbations.

In §Q,the damping rate and frequency shift

lowest-order orbit approximation. In §3 ) an app

theory is developed. This is applied in P and

trapped electrons, respectively, to include the

perturbations. In §6, our results are compared

and O'Neil ( 1972), and some general conclusions

are obtained from the

roprinte perturbation

§') to untrapped and

effect of the orbit

with those of Morales

nre drawn.
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P. LOWEST ORDER APPROXIMATION FOR NONLINEAR DISPERSION RELAPION

Consider an infinite, homogeneous, col7lsionless plasma, with a

neutralizing background of immobile positive inns, driven by a single,

longitudinal wave E(x,t) -: E O(t) sin kx . We shall restrict our interest

to an initial value problem, where k is a renl constant, and will assume

that temporal variations of the wave amplitude, E 0 , and frcquency (hence

the wave phase velocity) are small. In the wavc frame, the electron

velocity distribution function in phase space, f(x,v,t) , is described

by the "lasov equation

ar(x v t + v ar(—Xt) - 0 Ii sin kx °f(—	t) o	 (1)
t	 x	 m '0	 v

'together with (1), Poisson's equation

2 m	 %/?

E	
- ^_ m P	 dv J/' dx Af(x,v,t) exp(ilcx)	 (2)

0	 ` elc	 J	 ?

constitutes the complete set of equations. Here Af(x ) v,t) = f(x,v,t) - f0(v),

f0(v) is the initial distribution function, and X(:= 2t1/k) is the wave-

length. Equation (1) implies conservation of the distribution function

along the electron orbit,

	

x - v ,	 v = - m E0 sin kx	 (3)

Although f is expressed conveniently in (Lagrangian) coordinates

moving with the electrons according to (3), EO 1s better described by

fixed (Eulerian) coordinates. This difficulty may be minimized by finding

an invariant of the electron motion, and using this as an independent

coordinate. If E 	 is infinitely small, we may neglect the right-hand

side of the v-equation in (3), regard v as a constant of the motion,

and expand (1) in terms of E 	 to the desired order. This is the pro-

cedure of the usual small-signal theory (Sagdeev and Galeev 1969). For

large amplitude, we can find several invariants, e.g. energy, the trapping

parameter (O'Neil 1965), or the action variable (Goldstein 1950), and

1F
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transform the (x,v)-coordinates to this new coordinate for (1) and (2).

This had been done by many authors cited in §1. The transformation is

rather involved and, in most cases, the integrations in (2) can not be

performed analytically. In order to simplify the procedure, we first

obtain the orbit equation from (j) +,y multiplying the v equation by v

and integrating with respect to time,

^°	
•1• II sing ( kx l

/
 - 2(I II

myL 
1.J	 1, i	 (II)

r

where 11 is the total energy of an electron, and V r(= D11/k) is the
trapping velocity. The electron orbit described by (h.) is drawn in

figure 1(a).

To lowest-order, we may approximate (h) by n constant velocity

orbit for the untrapped electrons (II > mv r j	 We call 	 follow the

procedure of the usual smnll-signal theory to solve the Vlasov equation.

Neglecting higher-order mode-mode coupling, we obtain the well known,

linearized solution of (2),

cli	 /f^(v)
Af(x,v,t) _ ^ iik )1 `v	 [cos k(x-vt) - cos kx]

 )

where the prime denotes the velocity derivative. For trapped electrons

(1i G mv2 ) , we replace the wave potential by a parabola as shown in

figure 1(b). Near the bottom of the potential well, it is quite accurate.

The largest difference arises near the wave crest. 11owever, electrons

travel very slowly near the crest and do not exert a significant effect

on the wave. Therefore, we consider this potential difference a perturbation

In the zeroth order approximation, (4) reduces to

2

	

+ (kx)2 = 2	 II
J	

2 + 1^ ,	 (6)
 my

r

which describes a circular orbit in the (kx, v/vr)-plane.

5
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FIG 1. Actual (--) and approximate

(a) trapped electron orbits and

(b) wave potentials.
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	With those	 the Vlasov cquntion may be written as

of	 Bf _ 2	 of2	 sin kx	 of
S + v 

rx	
'B 

x Tv - ` Bx ( Icx - 1 Sv	 (7)

The characteristic curve of the loft-hand side is the circular orbit of

(G). The right-hand side ropresents the perturbation due to the difference

between the sinusoidal and parabolic potmitiuls. Changing the variables

(X,v) to circular coordinates (r,*) defined by

Icx : r sin ^ P	 v/V r -_ r cos ^ )	 ($)

(7) can be put in the form

aF	 BP	 sin(r sing) 	 dF	 aF

Tt .1. `B ^ 	 13 ('
	 r	 - sink/ (- sinY 	 s• r cosy dl.

(o)

where F(r.^,t) = f(x(r Y * Y t) ) v(r1 * Y t) Y t) . In the zeroth order approxi-

mation for trapped electrons, we neglect the right-hand side of (9). The

solution is then

I'( 1'^'Yi t) = f 0[ rV r cos lV - -13t )]
	

(10)

Following Morales and O'Neil (1,)72), we assume that the wave ampli-

tude is small (a << 1) so that, in the trapped region, f 0(v) can be

expanded about v = 0 as

2

f0(v) = f 0(0) + vf0( 0) + ° f.0(0) •1 ...	 (]1)

Substituting this into (10) gives

AF(r P il,t) = F(rP y,t) - F(rP^PO)

nt  2ut	 (rv) u
= 2rvrf0(0) sin ( 2 sin( - 2 + 2 ^ 	 t^3(0) sin wB sin(2W-"B t ) .

7
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U A order to use (') and ("L ), we bnve to sepnrate contributions to

(,') of untrnpped and trapped electrons ) 	E tt	 4: U , I:, I' .	 For th va till trapped

electron contributions we determine the lower bound IVI - V  of the

tu • trnpped region by considering the nreu between the x-axis and the

orbit of the electron du r ing one wave period. This nreu is the actLon

variable (Gol(Istein 1.') u).	 I rom ( 11), we see that the ndnimutn of this

area occurs when 11	 mv`t, and takes the value ^' in the (Icx,v/vt.)-prone.

Since the untrnpped electron orbit is of constant velocity in the lowest

order npproximntion, the lower bound is given by 100,11/v 1, - 8 ) or

vu	 (h/jt)v t . The untrnpped electron contribtitlon to (f') is then

_	 m

	

"	
v

 Um,^

I'U	 ckh	 dv 1' it v, C)
 

I 
fn	 vU

n

d

	

f lt ( v i t) _	 (Icx) (,f(x, v, t) exp(ihx)

-n

Substituting (j) gives f it as

	

eL	 f 

	

i k (V) t)	
(pink, v (exp i.lcvt-7.)

The untrnpped electron contribution, L U ) therefore becomes

(1;1)

(111)

>> 2	
m

/ P	 t

-m

u
/
-v

iy^ 
k9 

J

U	

i,t)(v)
(IV	 (Cos kvt-7-)

V

-vu

m

/
eV f t VJ

V 

sin kvt ,

(1:)

i
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where the barred integral sign denotes thri Cauchy principal value. In

the real part, the first integration of the cosine term phase-mixes to

zerc. For the second integration, we may use (11). In the imaginary

part y moot of the contribution comes from near M - % , and we may again

use (11) for i'
0
(v)	 Carrying out the integration reduces (15) to

r

W 2	 fO(v)	 a 2	 sin kvUt
E  = E  ( k
	

v dv - 2 E	
^

O ^ k	
vUf 0(0) 1	 kvUt

/,u 2
- inEO GE f1(0) (1 - rt Si(kvUt))	 (16)

where S1(a) is defined by

a
s

Si(oO = J sin x dx	 (17)
0

Changing variables (x,v) to (r,*) gives the trapped electron

contribution to (2) as

A

/ 
mi)

ET - 2 1 ekP
 ) yr f rd r Fk( r^ t )

G

(18)

/rn

Fk(ryt)	 J 2 AF(r,*,t) exp(ir sin*)

_a

where the upper bound of the r-integration is determined by na 2/2 = S

or a = 4/nl/2 . Substituting (12), and performing the *-integration

(Gradshteyn and Ryzhiky 1965) yields

2

Fk = - r fU(0) r2J2 (r)(1-cos 2a)Bt) + ivrfo(0)rJl (r)sin LoBt

(19)

9
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Using the derivative formula for 13essel functions (Abramowitz and Stegun

1T)`' ),

clr ( r	 (I), _ 1Jn-1(1')	 (20)

the r-integrations in (18) can be performed to obtain

	

2	 5)2

E I _ 23 J 3( a) EO 
^u^^2 vrf0(0)(1-cos 2:1)13t) - 12_11 J2(a)G0 k 	 f0(0)sin „Bt

It 	
(21)

The Poisson equation involves the sum of (10) and (21). Substitution

yields the dispersion relation

e = c  + Gs - 0 ,	 (22)

where C  is the linear dispersion relation; c  and 6e are given by

W

i `2	 fo(v)
C L, = 1 - kP/	 v d 

2	 sin kv t	 3
Ge = 2^ kP l v rf 0(0) I ^1	 kvUtU	 J3(a)(1-cos 2w t)

/ .0 2	 r 	 l

	

+ 1 a 
\kp^ 

f1(0) I1 - it S1(IcvU t) + `a i2 ( q )sin •I ) t I	 (23)
 it

we now let n = :n0 + 6s, + 1Y , where ,0 satisfies the linear

dispersion relation (eL = 0) , and expand (22) about ;u0 . To first
order in 6s , kD , and Y , we obtain

/	 'Tu
nO	

sin(1.2
= - 2.55 \l -'13tU t) ) o- 0.99 (1 - cos 2 aiUt)

Y	 \Y = 1 - 0.64 Si(1.27 g nat) + 1.32 sin ,,Ut ,	 (24)
L

10



1
where p	 (: u3^/k)

2
 v f""(0) (de /an)	 , the Landau damping coefficient

Y I 	- x( i )p/k)9 '( 0)( de I! b i
3
O )	 , and J2 (4/nl/2 ) = 0.41 and J3(4/r.1/2) = 0.17

have been substituted. The first bracketed terms for Ow , and the first

two terms for Y , are the untrapped electron contributions; the remaining

terms are the trapped electron contributions.

The frequency shift and damping coefficient of (24) are shown in

figure 2. They exhibit the essential features of experimental observations

(Malmberg and Wharton 1967; Vidmar, Malmberg and Starke 1975): 6:1)/n 0 and

Y/YL decrease within or near -nB t	 g ; oscillatory behavior follows with

periods of about 2.uBt for 6,u/n 0 and uBt for Y/Y L . The time-

nsymptotic value, 	 6.i,/Q0 = - 1. `)6 is in reasonable agreement with the

more accurate value of 6 A)0 = - 1.63 obtained by Morales and O'Neil

(1972)•

To pain insight into the relative importance of trapped and untrapped

electron contributions, they are shown separately in figure 2, as well as

combined. The sinusoidnl behavior of the former is well understood from

energy and momentum considerations for the trapped electrons and the wave

(morales and O'Neil 1972). The behavior of the latter has not been

clarified previously: in the linear theory, the constant velocity orbit

is assumed for the entire region of velocity. In the present case, of a

large-amplitude wave, it can be assumed only for M > vu . The Poisson

equation therefore assumes the form of n finite Courier transform [see (13)].

This contributes the (1 - sin x/x) and Si(x) [x = 1.27 ;uBt] terms in

(24). The initial increase of b u/f)0 and Y/Y L of the trapped electron

part is thus offset by the contribution from the untrapped electrons.

It should be noted that,whereas Morales and O'Neil show 0:p/0 0 = 0

and Y/Y L = 1 for some time before they decrease, figure 2 shows

6j,/00 > 0 and Y/Y L > 1 for ,B t 4 O . 6n . This difference is mainly
clue to our npproximation that nll trapped electrons have the same bounce

frequency, and hence exchange energy and momentum with the wave coherently.

The actual bounce frequency is, of course, lower for electrons closer to

the separatrix. If we include this different bounce frequency, the first

peaks of 6. i ,/C)
0
 and Y/YL will be recluccd; the amplitudes of their

oscillations will be decreased; the maxima and minima will be delayed,

1

11
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and the oscillations will eventually decay away, as demonstrated by

Morales and O'Neil (1974), To include those effects we shall take
account of the difference between the actual and the lowest order orbit,

as a perturbation effect, in succeeding sections,



3. ORBIT PIRTURBATION

So far, we have considered the lowest order orbits; constant velo-

city for untrapped electrons, and circular orbits for trapped electrons.

Under the influence of the wave, however, an untrapped electron changes

its velocity as it trnvels. Similarly, n trapped electron changes its

radius and the angular frequency because of the difference between the

parabolic and actual sinusoidal wave potential. We shall assume the

time-scales of these changes to be large compared to the time for an

untrapped electron to traverse one wavelength, or for a trapped electron

to complete one cycle of its trapped orbit.

We write the Vlnsov equation in oper.Aor form,

af(xj t)
^— + Lf(x) t ) = 0	 L = gi ( xY t) ^x	 (25)

i

where x represents both spatial and velocity coordinates, g is the

generalized velocity, and the summation convention on the repeated index

1s understood. We divide f into a slowly-varying part, (f) 	 and a

rapidly-varying part, f l where ( ) denotes a time avernge over the

shorter of the two time-scales. We assume (g) = 0 . [If this is not

the case, we need only consider x to be a coordinate moving with (g)

and ( g) then disappears from (25)]. Taking the time average of (25)

gives the secular part. Subtracting this from (25) gives the rapidly-

varying part,

'	 of,
F (Lfl) = 0	 ^+ (I-A)Lfl + L(f) = 0	 (26)

f
where I and A are identity and averaging operators. These equations

are identical to those used in the renormalization procedure of plasma

turbulence (Dupree 1966; Orszag and Kraichman 1967; Frisch 1968;

'	 Weinstock 1969; Rudakov and Tsytovich 1971; Tsytovich 1972; Benford and
I,	

Thomson 1972; Misguich and Balescu 1975).

Following Tsytovich (1972), we introduce an average collision

Foperator, v	 such that

15
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t	 to-1

_	 dtl... f
n-

(30)dtn V(t1) ... V( tn ) i

we may cast (29) in the compact form

(f(t)) = U(t^o) (f(0)) I

16
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t`

	

v(f) _ - (Lfl) ^	 (27)

and rewrite (26) as

a(f) = V(f)	 (28)

This expression is then integrated to obtain

t fdt(f(0)) + l V(t1)(f(tl))

0

f

t	 t	 t
11+	 dt1	

r
v(tl) + / dtl t dt2 V(t1 ) V(t2 ) + ...

\	 0	 0	 0

f

tt tl	 to-1

+

	
dtl f dt2... f 	v(tl)v(t2 ... V(t n) + ...I	 (f(0)) .

0	 0	 0
(29)

Unless indicated otherwise, throughout this section the argument of

f is time. Introducing a time-ordered exponential function defined by

(Kubo 1962)

t	
r t
	 t

expo /
r 

dtiv(tl) 
° LI n f dt

l ... f dtnOLV(tl)...V(tn)]

0	 n=0	 0	 0

rt



A.

where the average propagator, U , is given by

f
tU( t , t0 ) = expo 	dtl v(tl)

t0

	 (32)

the operator O denotes the chronological ordering in v /s , and U

satisfies the group property U(t,t 0) = U(t,tl) U(tl,t,)) (Weinstock 1V^9).

For the rapidly-varying part, fl , we may use the quasilinear form

of (20) (Benford and Thomson 1972; Mi sguich and Balescu 1975)

bfl	

(33)

The solution is then

t

fl( t ) _ -	 dtl U ( t , tl) L ( tl) U ( t1, 0) (f ( 0 ) ) ,	 (34)

0

where we have assumed the initial condition f l(0) = 0 . Substituting

this into (27) gives

t

v(t) _ f dtl (L(t) U(t ) tl) L(tl )) U(tl,t)	 (35)

0

The effect of the modified orbit on fl is contained in U , which

can be found by iterating (32) and (35)• If U = I, (34) reduces to the

result for the lowest order orbit.

17
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14, UNTRAPPEU EUCTRON CONTRIBUTION To %um'RIC MEW)

In a coordinate system moving with the lowest order straight line

orbit (y,w) , defined by

y . x - v t ,	 w - v ,	 (30)

the Vlasov equation (1) takes the form of (2`,) with

e	 /

	

L(y,w,t) = 
ui 

EO sin k(ybwt) t atly - cT

a
 w

1	
(3't)

To carry out the iteration of (32) and (3j), we first let U = I . Noting

that sin k(yI-wt) and (ta/ay - d/dw) commute, we can write (35) as

t

e	 d	 0	 d	 a
(m E0 )n ( L - Ti—, 	

dt1 sin k(y+wt) sin k(y+wt1)) 
(t1 

ry 
3w\	 _y

0

t

21 e	 s	 a	 s
2 (m EO
	

(t ay

a

	aw ,	
(IT cos kwT (( t -T) ay - WW(38)

0

Since the time-scale of slow variations is assumed to be much longer

than 1/kw , the integrand contributes only for a very short time. The

upper limit of the time integration may therefore be taken as t

Noting that

m	 m

11 dt cos kwt = ab(kw) . 0	 fdt sin kwt =	 (39)kw ^

0	 0

which follow from the fact that kwr 0 for entrapped electrons, we can

reduce (38) to

n	

1

2	 n

V = 2 (m E01L (kw / (t ayp - (kw)^
'
 aW (kw)2 Fy)	 (40)

18



Next, we may obtain U(t,t 0) from (32) as

f

x
s

!

1

1

(	 2	 2 t2 -t2 	2 2
U(t,t )= exp r 1 I°- E 1 

^l 
1 I	 0 a	 - ( t - t ) ( kw )2 a ( 1 	^

J r0	 j 2 `m U I `kw / L 2	 ay2	 0	 rw \ kw' y

(	 (141)

where the time-ordering subscript, 0 , has been dropped because the

exponent no longer involves the time-integration. We now substitute (41)

in (34) to obtain f1 . For the U(t,0) operating oil 	 , we first

note that, since (f(0)) is homogeneous, b/by	 0 . Therefore,

U(t1,0) = I . For the sume reason, L(t 1 ) becomes -(e EC)/m) sin k(y+wt1 ) ( b/bw) .

In the first U , we have b/by = f ikw	 Transforming back to the (x,v)-

coordinate consequently reduces (34) to

iE
T 1 lx,V,t)	 exp( -ikx)

t
2-

	

x J dT exp 1 ^ 
CEOOT ) I 1	1NT ^2 - V S^

1
 exp(ikvT) fo(v) {• C.C.

2mv

Il	 l	 (42)

Since we assume that the time for an untrapped electron to traverse

one wavelength, T . 1/kv , is much shorter than other variations, we

may put T >> T in (42)	 Therefore, we neglect the second term in the

square bracket in (42). The first exponential function in the integrand

then takes the form exp (A-1-B) , which can be expanded as (Misguich and

Balescu 19714; Louisell 1964)

exp ( A+B ) = exp ( A ) exp(B) exp(- (A, 13]/2) ... ,	 (143)

where [A,B] -- AB - BA	 Since [A,B] = O(EIt ) , and hence negligible, we

may factorize the exponential function. Since kvT >> 1 , the most

significant contribution to b/bv comes from operating on exp(ikvT)

Therefore, we replace b/bv by ikT . The Fourier transform of (42)

then becomes

19
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20

/	

f

L
	 2

f k (VI t) a 
2 

1_ f`(v)	 dT exp - ^I vwt ^ + i^^^^:u6T

(10l)

Since the first term, in the exponent gives only a slow variation, the

integration yields approximately

/	 t \12	
1

f (v t)	 i eE0 t f (v) exp^I
	

u

2v/v l/ + i (v4./'D11t 	 -	 1
k'	 2( l	 0	 vSt \a.	

v	 1 \V1.
I ;uSl:

I. i (
	

1.0 t	 \	 //
2v/vr/	 VIII U

(140

Note that, in the limit a )h t/(v/vr ) -: 0(1'^)	 0 , we recover from

(45) the linear result of (14). For simpliciti, we shall neglect this

small term in the denominator. Since we see that, when (45) is substituted

in (13), the dominant contribution of the c ,.xponential term is from the

small-v region, we shall write v 	 for v in the first term of the

exponent in ( 145). With these considerations, (10) is finally modified to

m

E O EO ^ k 
PIJ	 v	 dv

-m

u 112	 IW t 12 1 sin(!4%n t/n)

/

	

Iit EO ^kp/ v
r 1 0(v) 1 -exp I- ^—^-/ 

J	 kliB

inEO 1 -kz f^(0) exp I - f	 t/?J 1 - Ì Si I l^nBt^
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TRAPPED ELEC'T'RON CUNTRMuTION TO ELECTRK FLEW)

In order to cast tau Vlasov oquntion for trapped cloctrons, (g), in

the form of (25), we average the right-hand side of (9) with respect to,

y , over the range	 and subtract this averaged part from both

sides. We then obtain

a.F•EW	
aT. + LF :0	 L.- B fit

G
 + S 	(I()

Ot	 D1 cy	 r `\ ar

where the functions It and S are defined by,

R(r^y) _ 2— sin 2y -? cos ^ Sin (r sin

cos 2^ •I- ? Sin 1P sin (r sin 'y) -	 r	
(14p)

and mul is given by

-	 2J1(2>I .
.17111	 "13 (L^•6 1 )	 61	 1 -	 1,	 (119)

Trapped electrons traveling according to

= ^uDl	 r	 0	 _ :1;Dlt + ^^O 	 r	 c•O ^	 (50)

feel the rapidly-varying force exerted by the L^term in (I47). To find

the orbit correction clue to this force, we shall assume j, BI = v R in

(50) for simplicity. Li terms of the coordinates ( 1 .
01 t o) Y ( 147) can

then be reduced to the form. of	 (2`), with	 L	 given by

W
L _ 0 (R < 0 i• S

Z 0^

n
•i• ^	 I	 (Jlir0 ( 0 R	 S

'0 \	 0 0 \	 0	 0

where	 R	 nn9	 S are given by	 ( 1 48) with	 (r.y)	 replaced by	 (r0)*O)

according to (50).



Substituting ('1) and U	 1 In (} ), ;nd talting the time nvernge

over one boul 'co period, ;'n/.13 , we obtain

W

IT I L(t) 1,(t-T))
	

Il

l

I

6	 -
c

r1n
to^Ia-
11	 1' rJ(I')

0 1	 ^,

n
+1`J(I')-=J	 (2r )

Jr	 0	 l	 r^	 1	 )
(')2)

q'ransforming (r0, 111 0 ) to	 (I', v)	 , ( 1 4 r)	 now becomes

whereRil "13	 (1. +	 6 1 ;-	 62 )	 and 6,	 is given by ('2) with r

replaced by r	 .

The dominant orbit correction ie obtained by neglecting the right-

hand side of (-A),	 yielding the equation

aF aF

a
ll

a,° = 11 , (^,li)

whose solution is

1.0(I1I'^'t) = T Q [rv r cos ('! - :iB t )] •	 6` )

Substituting this in (18) gives

FkO(r,t) = ivrf'(v) rJl(r) sin C3 13 t - v21 (0) 	 J2 (r)(1-cos 2013t)

( I (')
For the qunsilincar correction, we write (' 3) ns

aF	 aF

F + 013 3t1

22
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f	 '

4

Assuming X2 13/ar P, 0 , for simplicity, we obtain

t	

II

3'1^^'^')'^t) _ - v r f dT l y Ii(r,*-Q T)cos(y-QUt) - S(r,y-IST)sin(' -O t)^

0

X f0 [rvl cos(yr{t13T)]
	

(58)

Substituting this in (18), and using (11), (48),and integration formulas,

(C.radshtcyn and Hyzhik 1' ,',), gives

1 

013 t f

h i^(r,t) _ - ivrf^(0) (°f2
13	

I	 11111
lfds{rJl(r)cos(OUt-2Q) + 2J2(

p
r)t-P(r,$)cos(QUt-Q)l

_. 

0

Ct13t

n

v2fo(0) 
113 /

f181r2J0(r) sin2Q - r2J2 (r) sin(20at-Q)
B

0

- 2rJ1(r)J2 (r) sin2013t + 2rQ(r,Q)cos(QUt-Q)l	 (59)

Here, P(r, Q) and Q(r, Q) are given by

P(r,Q) = J0^2r sin 2/ - JO ^2r cos 2 1,

Q( r , Q ) = Jl (2r sin 2) cos(QUt - 2I - Jl 12r cos 2, Pin	I0 t - 2
(60)

Using standard Vessel function identities (Abrnmowitz and Stegun 1965) we

may express P and Q in series form as

23
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m

p(r' Q) = ItE J2	 (r)cos (2n+1)8
n=0

Q(r,Q) = 2 ĵ T2n+1(r) J2(nil)(r) sin[{^ Bt + (2n+1)Qj- T2,(r)sin[(^Bt
n=..O	

-(2n+1)e1I
L^^	 L 

(61)

The terms with n ^ 0 can be shown to make negligibly small contributions.

Retaining n_0 terms in (A.5), substituting in (A.3), and performing

9-integrations gives

Fkl(r, t) = iv x•f'(0) rJl(r) 6 1 sin 0,,t

/ 2\\
+ vrf0(0) (TI(JO(r)-J2 (r)^ 6 1 (1-cos 20 Bt) '	 (62)

where, since Fkl is small, we have used :uB nB
	

Adding this to

1kO in (56) gives

Fk ( r, t ) = Fk0 + Fkl

iv x fo(0) rJl(r)[1+6 1 (r)] sin 0 B t

2
- vrfU (0) (r (J2(r)[1+61(r)] -JO(r) (I-cos 0B t).

(63)
The contribution to the electric field due to trapped electrons)

El, ^ is then obtained from (18) as
a

ET	 - 21E0 (kp ^2fp(0)rdr r2 Jl (r)[1+6 1(r)]sin C2Bt

0
(64)

\

\ 	a

+ 20 (
k

p
l2 v rf0(0)rdr r3 (J2(r)[1+61(r)] - JO(r)Ol(r)) (1-cos 2OBt)
/
I 	 0

21.
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6. CONCLUSIONS

The results of §4 and §5 are the equations (46) and ( 58). Combining

them gives the dispersion relation (22) with 06 given by

(

^)p 

2 
v f 

P 

( 0) 2.55	 exp	
sin(1.27 wB 

t)

	

k ) r 0	

1	

1 (0-39 w Bt) 
1 1.27 ,DBt

a

- 0.5fdr r3l
k 
i

2 
(r)[1+01(r)] - io(r)0 1(r) ( 1 -cos 20 

B t)

0 .	 1

+
 14

w E) 
2 
fo'(0)fexp[- (0-39 wBt) 2](1 - 0.64 si (1.27 ^b 

B t)k

a

	

+ 0.61f dr r2 
j 1 

(r) [1+01 (r)] sin n 
B 
t	 (64)

0

The frequency shift and damping rate are found by expanding C about

:D = w
0 

. We obtain

1
sin(1.27 LOBO

2.55 1 - exp	 (0. 39 ,o t)2
	

1.27 LD Bt13

a

+ 0.5 r dr r 3
 (j2(r)[1+81(r)] - JO(r)61(r) I

\
 (1-cos 2nBt)

0

Y	 exp	 (0.39 3 )Bt) 2] 1 - 0.64 Si (1.27 wB 
t)

ff

L

+ 0.64 dr r21  (r)[1+6 (r)] sin C 
Bf

0	 (65)
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Figure 3 shows 6100 and Y/Y L calculated from (6`)), with contri-

butions of trapped and untrapped electrons shown separately and combined.

Comparison with the results of Morales and O'Neil (1972) generally shows

good agreement. The asymptotic value of 6;u/a0 = - 1.62 is very

close to their result of Ow/n0 = - 1,63	 The figure indicates that

the untrapped electron contributions to 
O;u/n0 

and Y/YL change rapidly

for a,Bt < A , but remain substantially constant for m 
B 
t > n . As was

mentioned in §2, the origin of this characteristic can be easily ,zein by

dividing the velocity integration over the region I°I < vu , as shown

in (15), the first integral, ever the entire velocity region, gives the

linear dispersion relation and the Landau damping rate; it is the second

integral, over M < v  , that gives the time variation of the entrapped

parts of 6y/n0 slid Y/Y L . In the work of Morales and O'Neil, the

second integral has been combined with that of trapped electrons in (18),

slid is consequently observed in the subtraction of the linear charge

density from that of the actual perturbed density.

The damping rate, Y/Y L , and frequency shift, 6y/DO , are proportional

to f'(0) and f" (0) , respectively, Morales and O'Neil explain this from

momentum and energy considerations. If four conjugate points keep their

symmetry during motion in phase space about the potential well (which is

the case of a wave with constant amplitude and phase velocity), the total

momentum change experienced by them derives from the odd-order velocity

derivative terms in the Taylor series of (11); the contributions from the

even order derivative terms cancel out because the momentum is odd in

velocity. On the other hand, since the energy is even in velocity, the

total kinetic energy change of these conjugate points derives from the

even-order derivative terms. Since we keep only terms up to the second

velocity derivative of the distribution function, Y/Y I and 6a,/()0 are

consequently proportional to f'(0) and f0(0)	 For a larger amplitude

wave than has been considered here, it is apparent from the above picture

that, because of additional contributions from higher-order terms of the

Taylor series, the frequency shift and damping rate can be larger than

the present results.
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Wave amplitude and phase velocity changes may also enhance the

frequency shift and damping rate. It should be remembered that the

present theory assumes constant wave amplitude and phase velocity, i.e.

the momentum and energy gain by those four conjugate points during

acceleration is returned to the wave during deceleration. However, when

the wave damps initially, some of the trapped electrons which have gained

momentum and energy during initial acceleration are detrapped, and a

corresponding amount of momentum and energy is not recovered by the wave

during the next decelerating period. Similarly, the phase-velocity

change resulting from the frequency shift disrupts the symmertrical

motion of the four conjugate points. The damping rate and frequency

shift are then no longer necessarily functions of only odd and even

orders, respectively, of the velocity derivatives of the distribution

function.

Although it has been used for a monochromatic wave, the perturbation

procedure developed in §3 is identical to that previously used for
random waves. This is an important point since the literature developed

in §3 contains many analyses specialized to one or other of these two
t

extremes, but there is no easy way to combine them. The method used

here effectively links them,and is potentially applicable to such

important situations as slight randomness accompanying coherence, and 	 z

vice versa.
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