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ABSTRACT

The general relativistic equations of stellar structure and

evolution are reformulated in a notation which makes easy contact

with Newtonian theory. Also, a general relativistic version of

the mixing-length formalism for convection is presented. Finally,

it is argued that in previous work on spherical systems general

relativity theorists have identified the wrong quantity as "total

mass-energy inside radius r."

F

Subject headings: interiors: stellar, relativity.
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I. INTRODUCTION

The general relativistic equations of stellar structure for zero-

temperature stars (neutron stars) were first presented in their modern form

G

by Oppenheimer and Volkoff (1939). Two decades later the discovery of

discrete, galactic X-ray sources (Giacconi et al. 1962, Gursky et al. 196')

motivated theoretical studies of hot, relativistic neutron stars by Chiu

and Salpeter (1964), Morton (1964), and Tsuruta (1964); and the huge energy

requirements of strong radio sources motivated Hoyle and Fowler (1963a,b)

to develop the theory of hot. e fficiently convective supermassive stars in

which, it was soon realized, relativistic effects can be important (Feynman

1964, Ch.andrasekhar 1964, Fowler 1964). In response to these developments,
i

and others, Bardeen (1965), Misner and Sharp (1965), and Lindquist (1966)

developed the theory of diffusive heat transfer in relativistic stars, and

Bondi (194), Chandrasekhar (1965) and Thorne (1966x) elucidated the rela-

tivistic version of the Schwarzschild criterion for convection. All. of these

piec.es of relativistic stellar theory were put together and combined with

relativistic equations for nuclear energy generation by ilameen-Anttila and

Anttila (1966) and by Thorne (1966b, 1967) to give the currently standard

version of the relativistic equations of stellar structure and evolution.

Recently Anna 'ytkow and I began analyzing the structure of red super-

giant stars with degenerate neutron cores (see the following paper and

references cited therein). For this purpose the standard relativistic

stellar equations are unsatisfactory in two ways: (i) they do not make easy

contact with the standard Newtonian equations; and (ii) they do not include 	 ai

a mixing-length formalism for convective energy transport. The purpose of
J	 ^

this paper is to remedy these defects by (i) translating the relativistic
a

'a
7
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equations into a new notation, and (ii) presenting a straightforward rela-

tivistic generalization of the standard Newtonian mixing-length equations.

No detailed derivations will be given because the translation from the old

notation (Thorne 1966b, 1967) to the new is straightforward; and the deriva-

tion of the relativistic mixing-length theory is identical to the Newtonian

derivation, if one works in the proper reference frame of a static relativistic

observer.

Throughout the paper c.g.s. units will be used; the speed of light c

and Newton's gravitation constant G will not be set equal to unity.

II. FUNDAMENTAL VARIABLES

As our independent thermodynamic variables we choose the following —

all of which are determined by measurements using standard, physical rods

and clocks, in the mean local rest frame of the baryons. After the symbol

for each quantity, we indicate its units in brackets.

p	 (density of "rest mass") 	 (
_	 mass of one hydrejen

cm''	 - ;atom in its ground state)

X (number density 	
(la)of baryons 

T[ OK]	 = (temperature);	 (lb)

	

fractional abundance of nuclear species i, 	
(lc)X i.	 - (by rest mass or equivalently by baryon number

As our independent radial and time variables we choose

"rest mass" inside	 mass of one hydrogen
`lr [g]	 (	 "radius r"	 - (atom in its ground state)

X total nLIMber of baryons	
(2a)inside radius r	 ) ;

12



"Schwarzschild time	 time coordinate such that [apt] r is
t[sec]	 _	 coordinate"	 ) = the time-translation Killing vector and .(2b)

t is proper time at radial infinity

The gravitational field is characterized by three fundamental variables

which are functions of M and t:
r

r[em]	 = ("radius")= (112n) x (circumference around center of star); 	 (3a)

M [g]	 _ "total mass inside radius r" — including contributions from rest ;(3b)
tr	

_	 mass, nuclear binding energy, internal energy, and gravity ^•

2	 /	 \

^sec2J	
("gravitational. potential") - 2 c2 .Qn I^^	

1^1
	(3c)

\\	
r	 r

Energy transport through the star is characterized by three quantities,

each of which is determined by measurements using standard, physical rods and

clocks in the mean local rest frame of the baryons at radius r:

L	 C erg^ ("local luminosity")	
(non-neutrino energy being transported acrossl

r	 sect l the sphere at radius r, per unit time J

(1+a)

nv _erg  luminosity
I,ame as above, but for neutrino energy

L Csec]
— ("neutrino

"} _
produced in thermonuclear reaction

from nuclear burning
,cycles which change the abundances X.I

(4b)

ov	 erg
Lr	 [sec]

"neutrino luminosity not) =
(

same as above, but for neutrino
energy	 byproduced	 processes (4c) 

from nuclear burning"
which, in time-average, do not

change the abundances Xi

The complete stellar structure and evolution are characterized by the

functions p(M	 rtrr ,	 rt), T(M ,	
I

t), X. r(M , 	rt), r(M , t), 1`i (M r , 	rt), q(M , 	 r
t), L (`1 , t),

Lrv(Mr,t), and L=v(Mr^t).

J

J
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III. AUXILIARY VARIABLES

a) Thermodynamic, Nuclear Burning and Opacity Variables

The following auxiliary variables are algebraic functions of the funda-

mental variables; and like the fundamental variables they are determined by

measurements using standard, physical rods and clocks in the mean local rest

frame of t<<e baryons

P(p,T,Xi) Ldyn2s^ = (total pressure);
cm

erg	 binding energy of nuclei, per unit 	 n'i X i	 2
B(X') 

C g	 ( rest mass, relative to hydrogen ) = 1 - E	 A	 c	 (mob)
1 L	 i N i

where mi is the mass of atomic species i in its ground state, N is the mass

of atomic hydrogen, Ai is the number of baryons in atomic species i, and c is

the speed of light;

11(p,T,Xi) rerg^
	

_ ("specific internal energy")
g

(total mass-energy of a sample of 1
`stellar material in energy units/ + B X	 - c2	5c

total rest mass of the sample) ( i ) 	( )

P (p,T,X,) g 1	 (density of total non-gravitational) _ P (1 - B/C2 + Rgc2); (5d)t	 icm3 	 mass-energy, in mass units

2
K (p,T,Xi) 

[_c9fl_ 
(opacity) = (Rosseland mean opacity);	 (5e;

4

R

(5a)

i



erg	 _ 	 per unit rest mass, at which nuclear(rate,
tnuc (p ' T' X i ) (S f_)gsec 	 burning creates non-neutrino energy

)	 erg	 _	 rate, per unit rest mass y at which nuclear
Env(p ' T'Xi
	 [-,
	 )sec]	 burning creates neutrino energy 	 ' S

(	 g)

mate, per unit rust mass, at which non-nuclear- l
ergE	 (p,T ' X - I	 burning processes [processes with no change 	 I	 ;Cov	 i)	 ^ se
 c]

(5h)
 \ JJJin X 

i I 
create neutrino energy

Cx	 T X	 sec 1
	 _ (rate at which the abundance Xi of species i

i (p '	 ' C	 - ]i)	 changes due to nuclear burning
(5i )

b)	 Relativistic Correction Functions

The above auxiliary variables (except B and p t ) are all familiar from

the Newtonian theory of stellar interiors.	 In the relativistic theory it is

useful to introduce the following additional auxiliary variables, each of

which is dimensionless and is unity in the Newtonian limit

i;

("redshift correction factor") = exp((D/c 2 }; (6a)

2-1 2("volume correction factor") 	 = (1 - 2CMtr/c r)	 ; (6b)

i 1 
nr P

3 / 
c 
2

+ rMtr
("gravitational-acceleration)

- (6c)
correction factor" 	 Mr

E- ("energy correction factor") 	 - 1 + (IT - B)/c2 = pt/p; (6d)

("enthalpy correction factor") - 1 + (TI - B + p/p)/c ? . (6e)

In terms of `hose variables, the general relativistic metric for spacetime

inside and around the star is

ds2 = _a c2dt^ -i ^ dr? + r2 (d92 + si.n2Pdq)	(7)

^.	 5
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c) Mixing-Length Variables

The Newtonian mixing-length theory of convective energy transport is

readily generalized to general relativity. One need only introduce the

local proper reference frame of an observer at 'test at radius r, and in that

reference frame analyze, in a manner identical to Newtonian theory, the

buoyant forces on convective cells and the heat exchange between convective

cells and their surroundings. The auxiliary variables that enter into such

an analysis, patterned after Paczynski's (1969) Newtonian variant, are

g
 I

_-
Eli- _ (local acceleration	 CM  'g( )

sec 21 _ \	
of gravity	 } - r2 ?f'	 Sa

	

HP [cm]	 _ (pressure scale height) _ (P/pg)' l ;	 (6b)
7

	I t [cm]	 = (mixing length [normally chosen equal to It 
P I);	 (Sc)

W = (optical thickness of one scale height) _ p1 t ;	 (8d)

	

C	 (specific heat at constant pressure) = 11
1	- 2(,- ^P	 P,;Ci p	 P,Xi

[ 8ec	 C p	 2.
yo 	

J - (coefficient of heat exchange} = 
P 
3 

1 + W /3	 (Sf)

	

J	 8QT	 w
I

where a = ac/4 is the Stephan-Boltzmann constant; and

Q _ _ r c) in p l

	
NOIn T JP X

^ 1

In terms of these auxiliary variables, the basic algebraic equations of the

6
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mixing-length theory are these: (i) An equation which defines the "radiative

gradient"

value that (u In T/)Mr ) t (3 In P/6 r ) t-1 - d M T/d in P1
Vrad	 ( would have if the material were non-convective 	 1 '

the equation for Vrad follows from equations (3.11-3) and (3.11-7a) of Thorne

(1966, 1967) by straightforward change of notation:

3	 KT.rP	 1
t	 Vrad - Tn —T v,9?! + (1 ?I)	

(0a)
G^iroT

(ii) The usual equation for the "adiabatic gradient"

V	 _ rc^ In Tl	 _ r2 - 1	 (9b)
rad ` 1n 

PJentropy,X 1 	r2
where r2 is the adiabatic index of the second kind. (iii) A set of four

1

coupled algebraic equations which determine the energy flux carried by con- 	 }

vection Fconv, the mean velocity of a convective cell ("turbulent velocity")
vt, the gradient associatec'. with a convective cell V', and the actual gradient
averaged over all convective cells and over the medium through which they

move, V:

_ 16aT4
Fconv	 3KpHP (Vrad - V)

' 	(l0a)

Fconv	 z OP P r 
v t 0 t/i;P) 

(V - 
V'),	 ( 10b)

vt2 = 1 g ,f t0 / l1 p ) Q ( V - v'),	 (10c)

(V - V')/(0' - Vad ) 
_ yo v t -	 (10d)

Equations (10b)-(10d) have identically the same form as in Newtonian theory

because their derivation in the proper reference frame of a static observer

7
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is identical to that of Newtonian theory. Equation (10a) also has standard

Newtonian form. I t. follows from equation (9a) with L  rewritten as

4rrr2(F
conv 

}Frad), and from the analogous equation for the actual gradient

V in terms of the radiative flux Frad

3	 K (hrrr 
F rad •'

) P	 1	 ^
V -^	

_ _ 
+

GM QT}
	 W,9 7/- ?^)•

r

Because equations (10) all have the same form as in Newtonian theory, one

can use the standard technique [eqs. (22)-(27) of Paczynski (1969)] to solve

them for the four unknowns Fconv' vt, V', and V.

IV. DIFFERENTIAL EQUATIONS OF STELLA!" STRUCTURE

There are 8+ N (where N is the number of nuclear species) differential

equation of stellar structure for the 8+ N fundamental variables p, T, Xi, 	 0.

r, Mtr , C,, L r . Lr v,	and LOV as functions of Mr and t. In these differential

equations )/6Mr acts at fixed t, and c/6t acts at fixed M r . Each equation is

a translation of the indicated combination of equations from Thorne (1966b,

1967) .

The equation for Mr as a proper volume integral of p; translation of

equation (3.11-1):

6r/Mr _ (4 rtr?pY) -1

The equation for total mass-energy inside radius r; translation of

equations (3.11-2) and (3.11-1):

(lla)

(Ilb)

8
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The source equation for the gravitational potential m; translation of

equations (3.11-h) and (3.' L-1):

^W
GMr 

	 ( llc )

Om 4 P

The equation of energy generation; translation of equations (3.11-5),

and (3.11-1):

2
1 

^(Lr^ ) 
= e	 - s	 _ 1 (M + P 1 a	 ( lid)

^2	 r	 nuc ov 6Z '6—t p2 W cwt

The equation for neutrino losses due to nuclear burning; translation

of equations (3.11-6) and (3.11-1), specialized to nuclear-burning neutrinos

1 a(Lry,,?)

R2  —

Ŷ _ — = e nv	 {llc)

The equation for non-nucle

equations (3.11-6) and

6^2

ar-burning neutrino losses; translation of

specialized to non-nuclear-burning neutrinos

6 (Lry,,2)

—7—
m--- E -3v	

(11 f )

1

The equation for c`.ianges of nuclear abundances due to nuclear burning;

translation of equation (1,a)

Q-1 c)X i/)t	 ai .
	

(llg)

The equation of energy transport; follows directly from the definition

of o; translation of the mixing-length-generalized version of equations

(3.11-7)

a fn l omr = Vrad c In PI)M r 	if	
Vrad 

5 
Vad'

6 In T/3Ar = V 3 In P/Mr	if	
Vrad > Vad'

(llh)

9
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The Oppenheimer-Volkof; equation of hydrostatic equilibrium; translation

of equations (3.11-3) and (3.11-1)

	

aP	
CM 	

t11i)

	

r	 4 rcr

This equation must be combined with the equation of state P(p,T,X i) and with

equations (llg,h) for aT/dMr and OX i/aMr to yield 3p/6Mr.

V. BOUN"4RY CONDITIONS

Corresponding; to each different derivative with respect to M r in the

equations of stellar structure there is a radial boundary condition. The

obvious boundary conditions at the star's center are

r = M tr = Lr == Lr v== Lr°V= 0	 at	 Mr =O
	

(12_a)

(translation of [3.38a]).

We shall denote the surface values of rest mass, total mass, radius, and

the total luminosities by

M	 Mr , M t = M tr , R = r, L = Lr, Lnv = 
Lnv , Lov = Lry at surface.	 (13)

At the surface the star's spacetime geometry (7) must match onto th-: external

Schwarzschild geometry

	

ds2 - -(1 - 2GMt/c2r)c2dt2 + (1 - 2GM t /c?r) -l dr2 + r2 ( dg';) sin2 9 dQ2 ).	 (14)

Smoothness of the match ("continuity of intrinsic geometry of surface")

requires that @ satisfy the surface boundary condition

= 2 c2 (1 - 2GM^ R)	 at	 it - M (surface of star).	 (12b)

10



Note that the luminosities as measured far from the star — which we denote

.6 -nv , and ;ov --	 trare not the same as the surface lumin . _ties L ),L
nv I and

Lov . Rather, they are the surface luminusities corrected for gravitational.-

r.edshift

	

env/Lnv - ^ov̂  Lov	 ( 1 - 2GMt^c ` R) .	 (1`')

In addition to the boundary conditions ( 12a,b) one must also impose

surface boundary conditions ua pressure P and temperature T. If moderate

errors near the surface are allowable, one can impose the "zero boundary

conditions"

	

P == T = 0	 at	 Mr	M
	

(12c)

(translati on of eqs. [3.Mc,d]). If higher accuracy is desired o,e can

impose the boundary conditions of the relativistic version of the Eduington

approximation

L = 4nR?QTR ,	 KP =	 GM	 *f at	 Mr = M	 (12c')

(translation of eqs. [3.38c',d']). For still higher accuracy one can join

onto a model stellar atmosphere. If the atmosphere is thin compared to the

stellar radius R, then it can be constructed in the standard Newtonian manner

using a surface gravity of

	

g s = (GM t/r2 )	 at	 Mr = M,	 ( lE^

a surface luminosity equal to I., and radial and time coordinates r and t

related to r and t by

r	 (r - R) ,Y,	 t = tR;	 ft, - ?^ 1 _ (1 - 2GMt/c' R) 1/2 .	 (17)

11
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I£ the atmosphere is not thin compared to R, one can construct it using the

formalism )f general relativistic radiative transfer theory, which is reviewed

in §2.6 of Novikov and Thorne (1973). In the case of a thin atmosphere all-

spectral features as observed by a distant observer are redshifted relative

to their rest wavelengths by

	

A V?,	 (1 - 2GMt/c2R) z - 1.	 (18)

VI. SOME USEFUL RELATIONS

In this section we list several useful relations among the stellar-

interior variables.

The s::;;; of the fractional abundances X i must be unity at all times;

and consequently, the sum of t.:cir rates of change must vanish:

	

E X i	 1,	 E ai	 0.	 (19)

The total rate of energy release by nuclear burning muFt equal the rate

of change of nuclear bindin- energy

2
m,c

Enuc + e
nv :- 

S ^ 	 m lAi 

'i ;	 (20)

see equations (5b) and (llg).

The rate of change of the total mass-energy inside radius r, as measured

by an observer there, must be equal to the rate at 	 matter carries mass-

cnergv inward minus the rate at which luminosity carries it outward:

	

/ lM \	

RI

a

Mtr I	 R_1rW  -1 (T,r F Lnv+L0V)(2.1)

	

r 	 r	 c

12
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This mass-energy conservation law requires some discussion: (i) The time

derivatives here are taken at fixed radius r, whereas all previous time

derivatives were taken at fixed rest mass Mr ; the two types of time deriva-

tives are related by

(a/C)t) r = (c)/c)t)rl + (aMr/at) r (a/33lr)t	 (22)
r

(ii) The operator R 
1
(a/3t) r is derivative with respect to the proper time

•	 of an observer who sits at rest at radius r; see equation (7). (iii)

R_ 1 (aMrP O r is the locally measured rate at which rest mass flows inward

across radius r; and	 1 (Mr/3t) r W is the rate of inflow of rest mass

plus enthalpy in mass units. Enthalpy appears in the'conservat-ion law

rather than energy (V rather than E) for the same reason as it appears in

the Bernoulli equation: in moving matter, pressure (the difference between

pA( and pg) transports energy

(energy flux) = (pressure) X (velocity).

(iv) (l/c? )(Lr tLry  + Lr v ) is the locally measured rate at which mass-energy is

transported outward by neutrinos, photons, and diffusive heat flow. (v) Since

Mtr is the total mass-enemy inside radius r, one would have expected the

left side of equation (21) to read R_ 1 (dM tr pt) r — i.e., one would have

expected the ?r to be absent. The presence of V suggests to me that

relativity theor 4 sts such as Misner, Thorne, and Wheeler (1973) should not

have .e.iven the name "total mass-ener

the Quantit

inside radius r" to MRathertr—	 _..,

9N tr	 ( c2^G ) r ( 1 -'0f 1 )	 ( c 2 ^G)1. 1 - (1 - 2GMtr/c2r) .J

Mtr 1G Mtr2/c2r	 in Newtonian limit

(23)

'X)i^



should have been identified as total mass-energy insid e_ radius r because

it satisfies

-1 ( `̂ î^tr)	 -1 ( )Mtr	 -1	 rl	 1nv ov
t J •-t = 6t	 ^t ) 	2 (Lr •F• Lr + Lr 	(	 )

r	 r	 r	 c

Out of deference to established convention I suggest that people retain the

name "total mass-energy inside radius r" for 11 tr, but b.oep in mind that it

is a misnomer.

The equation of mass-enery conservation (21) can be derived from the

equations of stellar structure by first deriving the relation

a(' 1	 nv	 ov 2	 ) 	 C)Mtrl
r ?_ r r	 r	 ^ t	 - c^tJ /c	 r	 r

where o/cr acts at fixed time t, and by then invoking the boundary conditions

	

L  = L
zv 

- LT' = Mr = Mtr = 0
	 at	 r = 0.

A derivation of equation (24) proceeds as follows: (i) By combining equations

(lla,d,e,f), (?0), and (Gd) derive the relation

(L	 + Lrry
G^
^'	 _+ L	 )^

r`

-4Tcr2P?! 6^ l
c

_
(>^l	

P p (6p

^)Mdt M 	 c2
r r

i

i	 (ii)	 Use equations	 (22) to convert from time derivatives at fixed Mr to time

derivatives at fixed r; and then use equations	 (lla,c,i)	 and (Ga,d,e) to obtain

d	 1	 nv
C-	 (I,	 + L ov	 2L	 )S^	 _ 2-4rtr p?r a^ ^(

c3^	 P c^2
-	 (mot

gip \ -
I

r	 rc ^' r cat
r	 cG r-

(25a)
Om

3t ) r or

'
J
k

f ^ a



(iii) Use equation (lla) to derive the relation

^^M 
l
	 aM l
	

('

	

c^r ^t ! ^^ -(1	 ^ft) + 4rcr2 ^,lSZ I ^^ 1̂) 	(25b)
r	 r	 L	 r

(iv) Use equations (6a,b,c,d,e) and (lla,b,c) to derive the relation

(a/ar ) (Y R) = 41t (G/ c2 ) rPW jf R

and then use equations (lla,b) and (6b) to (.btain

t I r 	 4Ttx "S^ P^! 
L 

'^ r +' F' I r ;	 (25c)[( 'Mtr

 I	 1	 ►

(v) Finally, combine equations (25a,b,c) and (6d,e) to obtain equation (24).

Note that the equation of mass-energy conservation (21), when evaluated far

outside the star, just says that if the rest mass of the star is held fixed

then its total mass-energy decreases at a rate given by the photon and neutrino

muss-energy losses

&I /dt = - (l/c2)(;,p + env + ,ov ).	 (26)

VII. SUMMARY

Coordinates Mr , t for the stellar interior are defined in equations (?alb).

The star's structure is described by 8+ N (where N is the number of nuclear

species) fundamental variables p, T, X i , r, M tr , 0, Lr , Lr v, and Lr v, which

are functions of Mr and t, and which are defined in equations (1), (3), and

(4). These 8+ N variables satisfy the S+ N differential equations of stellar

structure (11), subject to the radial boundary conditions (12). The differen-

tial equations (11) contain a number of auxiliary variables, which are

algebraic functions of the fundamental variables, and which are defined in

1r,

^



equations (5)-(10). Quantities which characterize the surface of the star,

its external gravitational field, and the radiation which leaves the star

are described by equations (13)-(18). Several useful relations among the

stellar variables are given in equations (19)-(21) and (26).

This version of the equations of stellar structure and evolution reduces

to the standard Newtonian version when one sets the following relativistic

correction factors to unity: R. 7, li, g, W in the interior; (1 - 2GMt/c2R)

and (1 - 2GMt/c2r) at the surface and in the exterior.

i- a

16
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