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Abstract 

Initially spherical blast waves are systematically distorted due to persistent 

latitudinal solar wind structure. This i s  to be distinguished from the non-systematic 

(random) distortion due to va~/ ing structure i n  longitude which introduces an 30' 

average deflection of shock normals from radial. The systematic latitudinal effect 

should be at least 25' at mid-latitudes, andobservable i n  the 300 noise level wi th  

14 or more shocks for statistics. The observed occurrence rate of shocks during 

solar maximum i s  sufficient to detect the effect. Corotating shclcks should become 

dete~table between 1 and 5 AU. Identification could be a problem because of the 

30' noise level becoming greater beyond 1 AU. However, the three-dimensional 

geometry of corotating shocks show a strong latitudinal structure which can be used 

in  an out-of-the-ecliptic mission for a statistical identification based on shock 

occurrence rates. 



Introduction 

Most of the interplanetary shock waves observed with 1 AU of the sun 

originate from some short lfved solar event, such as a solar flare, and then 

propagate out as a more-or-less spherical shock wove until they leave the solar 

system. Beyond 1 AU another class of interplanetary shock wave becomes common-- 

the cortating shock pair formed by the interaction of long lived solar wind streams. 

We discuss here the three dimensional geometry of these two classes of interplanetary 

shocks and how these geometries can be studied with an out-of-the-ecliptic mission. 



Out-of-the-Ecliptic Distortion of Solar Blast Waves 

Lack of spherical symmetry in  the solar wind distorts tke surface of a shock 

wave as i t  propagctes away from i t s  solar origin into interplanetary space. This 

phenomonon i s  observed near the solar equatorial plane at 1 AU, where the inhomo- 

geneities associated with solar wind streoms produce typically a 30' deflection of 

the shock wave normal away from the radial direction (Heinemann and S;scoe, 1974; - 
Hirshberg et a!., 1974). The distortion results from differential advecrion of the 

shock front due to solar wind speed variations and from differential propagation 

speed of the shock in the solar wind due to density variations--the shock propagates 

more slowly in : j h  density regions. In spite of the large distortion of individual 

shocks, the averaged shock normal direction near the equatorial plane at 1 AU i s  

radial from the sun (Chao and Lepping, 1974; Yeinemann and Siscoe, 1974). - 
A systematic variation i n  latitude oi (he solar wind speed and density pro- 

duces a systematic distortion in  latitude of the surfaces of solar produced shock waves, 

That is, the averaged shock normal direction (;; ) in general wi l l  not be radial from 
-6 

the sun. The angle between and the radial direction wi l l  depend on latitude in 
-5 

a manner which reflects the average latitudinal dependence of the solar wind speed 

and density. 

A lower iTm t on the deviation of 6 from rad~al  i s  shown in Figure 1, Hare 
5 s  

a shock wave that was spherical at 20 solar radii becomes distorted irito a quasi- ellipse 



at 1 AU by the action of a differential advection of 400 km sec-' ~t the equator 

-1 
increasing smoothly to 600 km sec at the poles. This latitudinal gradient of solar 

-1 -1 
wind speed, approximately 2 km sec d g  , is at the lower end of the range of 

gradients suggested in  the literature (see reviews by Gosling, 1975, Hundhausen, 1975, 

D&rowolny and Moreno, 1975). The figure probably also underestimates the dis- 

tortion for h e  assumed gradient since i t  neglects the possible latitudinal gradient in  

density-decreasing toward the poles (Hundhausen et al . , 1971)--causing the shock to 

propagate faster i n  the solar wind at higher latitudes. 

The maximum deviation of from radial (A9 ) occurs at mid-latitude a-d 
s max 

is about 25O at 1 AU. In order to observed this effect, enough solar generated hock 

waves must be measured while a spacecraft i s  i n  the mid-loti fude region to obtain a 

value for the polar angle 6 ) of n with a statistical error considerably less than 
s * 

*Omax 
. For the sake of having a numerical e.:ample, we toke the requirement that 

the expected standard deviation of 5 be less than or equal to 1//3 of the conservative 
s 

0 
value obtained above for A8 

ma' 
i.e. S. D. 6 ) s8 . 

s 

Near the equo+orial plane the distortions produced by solar wind streams 

0 
cause approximately a 30 standard deviation in  the ongle between individual shocks 

and their average, radial direction. The standard deviation of the average mgle of 

0 0 
N slacks i s  30°/ J N  . For N = 14, this i s  - 8 . Thus in o 30 backgrounc boise 

level ir the angle of individual shocks due to stream structure;it taker 14 shocks to 

0 
cbr-~r a value of with a3 expected standarc; deviation of 8 from the true value. 

s 
0 

I t  i s  likely that the noise level at mid-!otitudes i c  less thun 30 since the effect of streams 
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in producing solar wind inhomogeneities as measured by enhanced radio scintillations 

is  apparently confined to within 40° of the equator (Houminer, 1973). Thus the 

requirement of 14 shocks i s  probably more than necessary. 

To estimate the time needed to observe 14 solar generated shocks, we use 

the 100 years of SSC statistics compiled by M ~ d ( 1 9 7 5 ) .  The validity of this 

procedure i s  based on the study of Chao and Lepping (1974) showing that a t  least 

874 of SSC's can be associated with solar activity such as solar flares and type 2 

and type 4 radio bursts. There are on average about 10 SSC8s per ye0  during solar 

minimum and about 35 SSC8s per year during solar maximum. Thus about 17 months 

ore required in the first case and 5 months in  the second of mid-latitude observations 

to observe 14 shod: waves originating from a solar surface source. We conclude that 

an ou t-of-the-ecl iptic mission scheduled for solar maximum would have high probability 

of observing systematic shock wave distortion even if the worst-case example discussed 

above should apply. 

The importonce of measuring the systematic distortion of the shock shape lies 

in its use in determining the systematic latitudinal dependence of solar wind parameters. 

This method i s  independent of al l  other methods. It does not involve unravelling 

separate space and time variations. In the case of an out-of-the-ecliptic mission via 

Jupiter, the space dependence involves both radial distance and latitude angle which 

coo give independent contributions to any variation. observed i r l  i n  situ measurements. -- 
Knowledge of the three dimensional shape of blast waves i s  important also for determining 

the flow of flare ener- y into interplanetary space. A non-spherical shock hope implies 

tl~a! , q y  i s  not distributed uniformly but converges in some places--relative to 



a purely radial flow--ond diverges in  others. In the case considered, energy would 

diverge away from the equator cawing the shock strength to decrease faster in the 

equatorial plane thun would be expected on the basis of spherical symmetry. 

Three Dimensioml Structure of Cototating Shocks 

Near the equatorial plane the border between contiguous solar wind streams 

is a spiral ( S d h a i ,  1963; Dessler, 1967). If the trailing stream--in the sense 

determined by the direction of the solar rotation--is foster, a pair of shock waves 

will form at some distance from the sun (Hundhousen, 1973 a,b). Such shock wave 

pai rs  hove a pafently been observed between 1 and 5 AU by the Pioneers 10 and 11 

spocecreft (Hundhousen and Gosling, 1975; Smith and Wolfe, 1975). In o steady 

state situation, the streomt. their spiral border, and the shock pair al l  corotate with 

the sun. In th is  section we estimate the heliocentric distance of shock formation i n  

the equatorial plane as a function of the speed differential between the streams and 

give a qualitative description of the three dimensional shape of the shock surfaces. 

For the latter we assume that the stream border i s  perpendicular to the equatorial 

plane. This example il lustrates the essential aspects of the geometry and possibly 

represents the typical case as indicated by radio scintillation observations (Houminer, 

1973) and the north-south alignment of coronal holes which might be the sources of 

fast streams (Krieger et al. , 1973; Noyes, 1075). 

Figure 2 shows the relevant geometry in the equatorial plane. The figure 

also i ilustrates one argument for expecting the existence of shock pairs which at the 

same time suggests a simple calculation for the approximate heliocentric distance to 

their point of formction. The spiral labeled stream interface i s  the border between 



the streams. Sample flow streamlines-labeled fast and slow--are shown in  the eorotating 

reference frame in  which a l l  geometrical features are time independent. With the fad 

stream trai lirg, the pitches of the spiral streamlines i n  both streams are such that they 

would intersect the spiral interface unless prevented from doing so by forces that act to 

deflect the flows away. The build up of pressure at the interface resultirq from the con- 

vergence of the flow there produces such a force (Siscoe, 1972). Relative to the flows - 
in the two streams, the interfat, looks, l ike a C-ng wall and the flows are forced to 

follow the curve because of the increased pressure. The compressive deflection of a 

supersonic flow by a curving wall is known to produce a detached shock wove i n  the 

flow (Landau and Lifschitz, 1959, p. 429). Streamlines intersecting the shock waves 

are deflected paallel to the interface spiral, bringing to an end the compressive 

interaction between the streams. 

The approximate location of the origin of the shock mires can be found by 

considering the characteristics of the flow eminating from a point, A, on the interface 

close enough to the sun that the streamlines are essentially radial but far enough from 

the sun to be i n  the supersonic region. The characteristics are generated by foll ,wiw 

the progress of a sound wave starting at A and subsequently expanding and being con- 

vected with the flow, as illustrated i n  the figure. However, before the shocks are 

formed, the flow converges cn the interface; thus the sound speed ml~st be greater than 

the speed characferizirq the convergence in  order for the sound wave to expand. As 

the wave moves out fmrn point A, the sound speed decreases because the solar wind 

cools as i t  expands, and the speed of convergence increases becouse of the relative 
, 



pitches of the spirals. A distance i s  reached when convergence exceeds the speed of 

sound and the wave begins to shrink. 

From the point of view of an observer moving with the flow along a streamline, 

and l d i n g  at the wall represented by the interface, he sees the wall approach him- 

that is, convergence in his fmme of reference. If we think of the wall CIS a piston 

moving into the flow, at the point where the sound wave begins to shrink, ti.? piston 

i s  moving faster than the local speed of sound, and a shock wave will form upstream 

from the piston. Thus, the origins of the shock waves will be approximately at points B 

i n  the slow stream cmd C in the fast stream marking where the sound wave stops 

expanding away from the interface. 

To find the approximate locations of these points and ti.. ir dependence on the 

speed c;Ifference between the streams, we consider an idealized case in which the slow 

stream has constant speed Vs, the fa t  stream has constant speed Vf, the speed at the 

interface i s  Vo = (VS+vf)/2, and the Mach number, M, i s  constant throughout. Using 

the procedure given in Heinemonn and Siscoe (1974), we find the equations of the 

characteristics to be 

where r) i s  the azimuthal angle in the corotating reference frame, r i s  the heliocentric 

distance, and r, = V/M CI, rf = Vf/Mn . Without h e  en terms, these are the equations 



of Parker's solar wind s.3imls (Parker, - 1963, p. 138). The qin terms represent the 

movement of the sound wave away from the spiral. The equation of the interface is 

with ro = VJM n . To estimat~ where the shocks form we determine where the radial 

separation between the characteristics and the interface begins to decrease, i.e. set 

dAr/d q = 0. The result i s  h o r n  in  Table 1 for different speed differentials, Vf -Vs 

-1 
with Vo = 400 km sec and M = 4. 

As expected, the bigger the differential, the nearer the sun the shocks form, 

111 the biggest case corsidered 160 km set-', they form near the orbit of M a .  Ay 

-1 
differential bigger than approximately 50 km sec produces shocks inside the orbit 

of Jupiter, Although this example i s  idealized, it gives a fair test of the argument 

based on characteristics to predict qualitatively the essential geometrical aspects 

of the formation of corotati ng shocks. The prediction that typical solar wind streams, 

-1 
which have di fferectirtls bigger than 50 km sec , should form shocks between the 

orbits of Earth and Jupiter i s  apparently confirmed by the Pioneer 10 and 11 observations. 

This justifies applying the argument to determine the out-of-the-ecliptic shape of 

corot~fing shock waves. 

The application is  straightforeward, and the result i s  immediate i f  we consider 

the situation at the poles. Here the border between the streams i s  a radial line--the 

polar axis. The pitches of the streams lines are essentially zero and, hence, so i s  the 

speed of convergence of the streams. A sound wave starting here wil l  expand forever, 



althoqh it wi l l  slow down because of the radial decrease i n  sound speed, Thus 

corotating shocks wil l  not form over the poles. At intermediate latitudes, the pitches 

of the streamlines and the M e r  are not zero, but they are leu than at the equator, 

A sound wave must travel further before the convergence speed overtakes the sound 

speed and shocks form. Thus, the distance to the formation of the shocks increases 

with latitude. 

The three dimensional geometry of the stream interface and the shock pair 

i s  sketched in Figure 3. The interface is generated by an expanding meridian circle 

that rotates about the polar axis as it exponds so that its intersection with the equatorial 

plane moves along the border spiml. The leading points of h e  shocks are i n  the 

equatorial plane and the leading eclges spiml outward as they move away from the 

equator, maintaining a proximity to the interface. A sketch on an expanded scale 

of a single corotating shock surface i s  shown i n  Figure 4. The motion of this surface 

i s  analogous to that of a tapered paper banner attached to a st ick that is being twirled 

around the polo- axis. f i e  length of the banner i s  determined by the lifetime of the 

solar wind stream. 

To study these structures an out-of-the-ecliptic mission i s  needed that coven 

the radial range between Earth and Jupiter. Knowledge of the three dimensional 

nature of these shock waves i s  essential for the interpretation of cosmic ray data and 

for applications to other astrophysical situations. The distortion of solar shock wav& 

as described earlier and the highly structured geometry of corototing shocked woves 



illustrate the complexity of the problems faced by galactic cosmic rays as they try to 

enter the inner solar system. Three dimensional probing of the interplanetaty medium 

is  required to obtain a complete picture of the extended stellar envelope of a 

representative from a major population of main sequence stan. The interaction of 

such stars with the interstellar medium in various galactic situations can they be 

treated with a fuller understanding of the stellar parameters. Comprehension of the 

three dimensional aspects of structures generated because a star rotates has application 

to contemporary astrophysical problems such as the interaction of the Crab pulsar with 

the Crab nebula. 
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Table 1. Approximate heolcentric distances in the equatorial plane to the 

formation of shock pairs dcj  to interacting streams with various 

- 1 
speed differentials. In this example the average speed i s  400 km sec 

and the Mach number i s  4 throughout. 
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Figure Captions 

Figure 1. A meridian plane cross section through a solar origin shock surface assumed 

to be circular at 20 solar radii and distorted into a quasi-ellipse at 200 solar 

radii by the action of equator to pole solar wind speed differential of 200 km 

- 1 
sec . 

Figure 2. A sketch of geometrical features of the flow in  the equatorial plane and in  

the corotating reference frame. The stream interface separates a slow stream 

(leading) and a fast stream (trailing). Sample streamlines and corotating shocks 

in both streams are shown. The shocks deflect the streamlines parallel to the 

stream interface--with no deflection they \~ould intersect the interface. The 

circles are sequential snapshots of a sound wave starting at A and expanding 

while being convected with the flow (distortion due to the flow speed dif- 

ferential i s  neglected). Shocks form where the sound wave begins to shrink 

which happens when the speed of convergence of the streams toward the 

ir,terfar;e (due to the differences in the pitches of the various spirals) becomes 

bigger thon the local sound speed. 

Figure 3. A sketch of the three dimensional geometry irr the northern hemisphere of the 

stream interface and associated shock pair. The interfoce i s  generated by an 

expanding meridian circle that rotates about the polar axis as i t  expands so 

that i ts  intersection with the equatorial plane follows the interfoce spiral, like 



a needle in the groove of a record. The interface separates the shock poir, 

Their leading point i s  in  the equatorial plane and their leading edges spiral 

away from the sun as they move away from the equatorial plane, maintaining 

a proximity to the interface, 

Figure 4. A sketch on an expanded scale of a single shock surface. The location of 

the equatorial plane is  indicated by lines radiating from the sun. The motion 

of the surface i s  similar to that of a tappered paper banner attoched at its 

point to a stick that i s  being twirled around the polar axis. The length of 

the banner i s  determined by the lifetime of the streams. 












