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FOREWORD

The investigation described in this report was performed by the
Electrical and Systems Engineering Department of Rensselaer Polytechnic
Institute for the Flight Dynamics and Control Division of the Langley
Research Center as a part of the Digital Fly-By-Wire Program. It was
carried out during the period September 15, 1972 -~ June 15, 1975. The
investigation was headed by Professor Howard Kaufman who was assisted
by three graduate students supported under the grant.
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‘SYMBOLS

Am : Model system metrix

AP : .Plant system matrix

Bm Model input matrix

Bp ) Plant input.matrix

e Error vector, EP - Em

F, FP Continuous system matrices

G, GP Continuous input matrices

H Measurement selector matrix

I (IP) Identity matrix (of dimension p x p)

J Performance index

K Feedback gain matrix (eq. 3.6 or eq. 3.19)

K(k), Kq(k), Kx(k) Estimator correction gains

Ku Gain matrix multiplying pilot input u
m

Ku Gain matrix multiplying plant input up
P

Kx Gain matrix multiplying plant state EP
P

Kx Gain matrix multiplying model state X
m

n Number of ‘plant or model states

n(k) Measurement noise vector at sample number k

P Riccati matrix or covariance of estimate

P Incremental roll rate

Q Weighting matrix

a Incremental pitch rate

q Vector of parameters to be identified
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RESEARCH IN DIGITAL ADAPTIVE
FLIGHT CONTROLLERS

by

Howard Kaufman¥*
SUMMARY

Adaptive flight control systems are of interest because of their
potential for providing uniform stability and handling qualities over a
wide flight envelope despite uncertainties in the open loop characteristics
of the aircraft. Since such controllers combine the functions of perform-
ance assessment, state and parameter estimation, gain adjustment, and control
computation, it is most advantageous to consider implementation in digital
rather than analog fly-by-wire systems.

To this effect, a study has been made in order to define an
implementable digital adaptive control system which can be used for a typical
fighter aircraft. Since online adjustment of the control gains requires an
easily computable index of performance, a model of the desired aircraft behav-
ior was developed and used in real time for computing the error between plant
and model output.

With regard to control gain adjustment, based upon the error in
model following, consideration was primarily given to explicit adaptive con-
trol systems which directly utilize parameter estimates for gain adjustments.
Implicit adaptive controllers, while not requiring the explicit computation
of parameter estimates, are not readily tunable to system specifications
unless the plant and model structures are such that a "perfect model follow-
ing" control law can be defined.

Relative to the need for both parameter and state estimates, it was
observed that online estimation of the states and parameters is best performed
by a weighted least squares procedure which first identifies the parameters
directly from the noisy measurements, and then computes state estimates using
both the parameter estimates and the noisy measurements.

Based upon analytical studies and simulation of both the linear and
nonlinear aircraft equations of motion, two explicit adaptive controllers
were recognized as being suitable for inflight implementation. The first
design uses control and gain adaptation logic developed using infinite time
linear optimal regulator theory. Control gains are therefore stabilizing
(for a fixed system) and are adjusted in response to parameter changes through

¥ Associate Professor, Electrical and Systems Engineering Department,
Rensselaer Polytechnic Institute, Troy, New York 12181



an iterative correction made to the Riccati matrix. The second design is
based upon single stage performance indices which result in gains that are
immediately computable by formula evaluation. To assure stability of the
closed-loop system, a simplified Riccati iteration was used for correcting
the feedback gain matrix. ' ;

Results showed that these adaptive controllers were effective in
compensating for parameter variations and were even capable of rapid recovery
from highly erroneous parameter estimates which could in fact define a set
of destabilizing gains.



1. INTRODUCTION
1.1 Background

Fly-by-wire flight control systems have been of considerable inter-
est to designers because of their advantages over mechanical linkages.- in
coping with the complex control problems associated with high performance
aircraft and space vehicles.ls? Furthermore, with the present capabilities
for incorporating integrated circuits into lightweight low cost minicomputers
and microcomputers, digital implementation of fly-by-wire control becomes
especially attractive. Digital logic is itself very reliable and with ade-
quate redundancy incorporated into the design, such a system can be designed
to insure adequate flight safety.3

Another feature of digital implementation which makes it extremely
advantageous is the potential for the implementation of complex control
systems which incorporate high order nonlinearities and which utilize time
sharing for multiple loop control. One such complex control structure is an
adaptive system which is capable of online adjustment of the control para-
meters in response to changing flight characteristics. The desirability for
such adaptive control systems has been established for providing uniform
stability and handling qualities over the complete flight envelope despite
drastic changes in the aircraft's open loop characteristics, even in the
presence of disturbances. 4,5 Although control parameters (e.g., gains) can
be scheduled as a function of altitude and mach number, this is not always
desirable because of the inaccuracies which arise from computing offline and
then scheduling the aircraft characterizations at different flight conditions
and the effects of unpredictable uncertainties themselves (e.g., sloshing,
fuel- weight, structural changes).

Thus, because of the attractiveness of adaptive control and the
availability of digital flight computers, the possibility of implementing a
digital adaptive flight control system has been studied since September 1972.
Preliminary results of this study have led to two adaptive control algorithms,
namely:

An interfacing of linear optimal regulator logic with a
weighted least squares identifier.

An interfacing of control logic designed using a single
stage performance index with a weighted least squares
identifier.

Although implementation of this latter structure was very simple
relative to that of the former, stability could not be guaranteed even if
identification were perfect; thus some modification was necessary. Another
important result from this study was the recommendation that in view of
observed convergence properties, parameter identification be performed separ-
ately from state estimation.



Towards the goal of developing digital adaptive flight control
algorlthms suitable for implementations in an onboard digital computer, con-
tinued efforts have been concerned with stabilizing the single stage adap-
tive control logic, determining identification requirements and evaluating
the designed control systems on NASA Langley's nonlinear six degree of
freedom simulation.

It should be noted that since stability in the presence of large
parameter variations was of concern, initial studies were concerned with
explicit adaptige controllers which make direct use of online parameter
identification. Implicit adaptation procedures which do not require expli-
cit parameter estimates for adjusting controller gains, do not guarantee
stability unless certain idealistic structural constraints hold. »9 However,
because of the attractiveness of eliminating the need for identification
logic, some effort has since been expended in defining a stable implicit
adaptive controller useful for digital flight control.

1.2 Objectives

In view of the desirability for designing an implementable digital
adaptive flight control system, Rensselaer Polytechnic Institute has since
September 1972, performed research related to the following overall objec-
tives:

1) Develop and evaluate adaptive control logic using the
linearized lateral and longitudinal equations of motion
for a typical fighter aircraft.

2) Evaluate the linearized designs on NASA Langley's nonlinear
six degree of freedom dimulation.

3) Recommend digital adaptive control logic suitable for
inflight implementation

1.3 Scope and Outline

Development of a digital adaptive flight control system requires
the:

. Development of mathematical models

Formulation of the controller structure and the gain
adjustment procedures

Design of parameter and state estimation logic

As stated in the preceding sections, all initial designs were per-
formed using the linearized lateral and longitudinal equation for a typical
fighter aircraft. The precise modelling of these dynamics along with a
description of the representations of the actuato- iynamics, sensors, and
bending modes is contained in Section 2.0.



Using these models, two distinct explicit adaptive controllers were
designed based upon optimal linear regulator theory and a single stage index
modified so as to insure stability. These are discussed in Section 3.1.1.
Results of a parallel study on the feasibility of implicit adaptive con-
trollers are presented in Section 3.1.2.

In view of the need for parameter estimation for explicit adaptive
control, an analytical and experimental study was made of candidate procedures
for online identification. These results are contained in Section 3.2.

Results of evaluating the overall adaptive control system on both
the linearized and nonlinear equations of motion are presented in Section L,
and finally, conclusions regarding implementation are presented in Section 5.

1.4 Significance

Development of a digital adaptive flight control system is of signif-
icance not only to the particular aircraft considered but also to digital pro-
cess control in general. Such a development represents an important applica-
tion of modern digital control theory that is a step towards the narrowing of
the gap between theory and practice.

Of immediate significance was the demonstration of two digital
adaptive control flight controllers which are capable of identifying and com-
pensating for time varying uncertainties in the open loop characteristics
without the need for altitude and mach number information.

2. PROBLEM FORMULATION
2.1 Mathematical Representations
2.1.1 Aircraft Dynamics
2.1.1.1 Linear Representation

The linearized dynamics of the aircraft as supplied by NASA can be
represented by the vector state equation

=F x +G (2.1)

X u
- PP P ~-P
where denotes the incremental state vector

X
% !

Hp denotes the incremental control vector
F

and and GP are matrices of the appropriate dimension.

Y
In particular, for linearized lateral notion:



roll rate

yaw rate

sideslip angle (2.2)

Ax
< ™ R “w

roll angle

aileron deflection

a _
and Ep ) rudder deflection (2.3)

Similarly for linearized longitudinal motion:

pitch rate

velocity
(2.4)

Ep angle of attack

D R 9 Q

pitch angle

elevator deflection
(2.5)

and u €
- GT Thrust

The elements of F and G known to vary with mach number and
altitude were provided for a typical fighter airecraft for several flight con-
ditions (FC's). These are provided in Appendix A.

The objective of the research was to find implementable digital
algorithms for computing the control signals 6 , 6 , 6 , and & so as to
insure uniform and desirable handling quantitieg for anaircraft flying with-
in the given flight envelope. This was to be performed assuming that during
flight, the elements of F and G_ were not readily available (e.g., as
scheduled functions of mach number 5na altitude).

Because of the need to implement the control system in a digital
flight computer, eq. 2.1 was transformed into the equivalent discrete form:

x (k+1) =4 x (k) + B u (k) 2.6
_,p() p_,p() p-p( (2.6)
FT
where A = e P
P
T Fpr
= G
Bp J e at P
0
T = Sampliing period



and x (k), u (k) denote x u at time k * T

Eq. 2%6 is d_galld represen%gtlon assuming that F and G do not vary for
kT<+t < (k+t1) T and that the control signal is constant between sample
times, i.e.,

u (t) = u (kT) for kT < t < (k+l) T
- =p - -

2.1.1.2 DNonlinear Effects

Since the controllers designed using the linearized equations . of
motion defined in 2.1.1.1 were to be applicable to the actual nonlinear six
degree of freedom equations, it is necessary to recognize that the x and
u_ vectors of eq. 2.6 are incremental variables which result from a *linear-

iZation about the trim conditions. Thus if x ® and x respectively
denote the actual and trim aircraft state vecEBrs, and u and ut
respectively denote the actual and trim controls, then P
x = x% - x°¥ (2.72)
-Pp P =P
U o= u® - u t (2.7v)
P -P -P

However, in actual flight, these trim states will not be explicitly
avallable for computational purposes. Furthermore, direct computation of the
trim states themselves is not permissible because of the lack of knowledge of
the stability derivatives and the severe computational requirements needed
for solving the resulting nonlinear system of equations.

Thus as an alternative it is suggested that the trim states be
computed by averaging or low pass filtering, the actual state vector. This
is reasonable in view of the expectation that the pilot will almost always be
flying the aircraft close to trim conditions. As an example if x; denotes
a particular state of interest,

t t

X, = o x, + (1 -0)x2
i i i

where 0 < a < 1

If straight and level flight is in progress, then & should be set close to
1.0 resulting in a filter which will effectively smooth out any disturbance.
However, if a maneuver is required as indicated by a significant change in

the pilot input, then o should be set closer to zero in order for the filter
to be able to track the change in trim. These adjustments in o could be
made by the computer program in response to sensed stick motion.

If, however, the trim states computed in this manner, are not
accurate, in that they do not satisfy the true nonlinear equations of motion,
then a bias term must be added to eq. 2.6 so as to account for the additional
errors. Thus controls would have to be computed for the system:



x (k+1) = A x (k) + B u k) + C - (2.8

x(k+1) P.‘_P() p B+ (2.8)
where elements in the C vector should be identified along with the elements
Ap and BP.

2.1.2 Actuator Dynamics

In order to more effectively evaluate the developed control algor-
ithms it is necessary to include the influence of the actuator dynamics in
the equation of motion, 2.1. This effect can be modeled by placing in series
between each component of the control wector u and the aircraft dynamics,
a set of secondary and primary actuator dynamicgpdefined by the equations:

.- ) . o o
Ge = -2 tsec “sec Ge - 6e T W 6e (2.9a)
sec sec sec “sec c Ny
8 = o¢ w § A T ) (2.9b)
a sec sec a sec a a
sec sec sec e
§ = -2z w 8 - w_ 2 ) + w2 § (2.9¢)
r sec sec r sec r T
sec sec sec c
for the aircraft considered, T = .5 and w = 100.
sec sec
ae = (ae - (Se)/Tl (2.10a)
c sec
§ = (s Y (2.10b)
a asec a 2
Gr = (sr - (‘Sr)/'r3 (2.10c)
sec
GT = (aT - <ST)/TLL (2.104)

For the aircraft of interest, T, = 1/12.5, T, = 1/30,.7, = 1/25, and T, = 1/5.

The computed control signals de , Ga . Gr are thus ig reality applied to

the secondary actuator dynamics,gqs. 5.9; ®the outputs of which, Ge .

8 , § are then in turn applied to the primary actuators,eqs.sec2.10,
tos§§eld £RE aircraft input vector u . Note that the thrust input requires
only the primary actuator dynamics dePined by eq. 2.10d.

These actuator equations can be used in a test simulation in order
to determine the effects of neglecting them in the design of u , or they
can actually be incorporated into eq. 2.1 and used for direct Egmputation of



the actuator inputs (Ge . Ga . Gr T, 6T
sec sec sec c

2.1.3 Sensor and Bending Modes

In designing the adaptive control system, it was necessary to take
into account the effects of sensor noise and structural bending modes. These
were modelled as correlated noise sequences which were added to the state
variables in order to form the measurements, ys- More precisely

xﬁ(k) = zp(k) + n(k) | (2.11)
where Ep as before denotes the aircraft state vector

n  represents the correlated measurement noise sequence
and Xp denotes the measurement vector.

Characteristics of the measurement noise are given in Appendix B-
2.1.4 Disturbances

In evaluating the performance of the adaptive controller, it was
necessary to take into account the response to wind disturbances and the
requirements for a deterministic dither signal to aid identification.

To evaluate the effects of wind, the longitudinal response to verti-
cal disturbances was considered by simulating an angle of attack perturbation
equal to the ratio of the wind velocity to the aircraft velocity. The power
spectrum of the wind velocity W(t) was defined by:

2
o L N
. {w) = ——m— _— (2.12)
o ™ Y b+ (2 w)?
v
0
where L = T762m (2500 ft.)
= standard deviation of the wind velocity in m/sec

and VO = aircraft velocity

Thus the angle of attack perturbation Ao can be written as:

Ao = w/vO : (2.13)

and the modified longitudinal equations of motion become:



qQ q Ap(l,3)

a hia v AP(2,3) 66

at | o - Ap ) * A (3,3) Ao + Bp S (2.14)
6 0 Op

With regard to computed or deterministic dither signals for aiding
identifiication, it was necessary to take into account that the resulting
behavior be imperceptible to the pilot. This fact was modelled by constrain-
ing maximum lateral acceleration to be less than 0.03 g and maximum longitud-
inal acceleration to be less than 0.lg in response to commanded dither inputs.

2.1.5 Desired Behavior

Inherent to the effectiveness of any adaptive control system is the
capability for rapidly assessing the performance and making the necessary
modifications to the control gains. One such procedure that fits these
requirements and at the same time has the potential for insuring uniform
handling qualities is the concept of model following control. This concept
has been of interest to many investigators over the past few years.8’9’loa11312
In fact, relative to these efforts, Erzbergerl has published a set of condi-
tions under which the output of the process can be made identical to the out-
put of the model.

Being that the ideal objective of model following flight control is
to force the aircraft to respond as the model would to a given pilot command,
it is often desirable to simulate the online model dynamics in the flight
computer and to generate the aircraft control signal using the actual air-
craft states, the pilot input commands, and the model states. This situation
is sometimes referred to as the pilot's flying of a computer with the computer
filying the aircraft.

More precisely the model following problem can be stated as follows:

Given the aircraft dynamics:

zp(k+l) = A zp(k) * B u (k) (2.15)
where zp(k) is the aircraft (nxl) state vector at sample time k
: Ep(k) is the (mxl) control vector
and Ap, B are matrices with the appropriate dimensions;

find the contol u (k) such that the process state vector x (k) approxi-
mates "reasonably—gell" some model's state vector zm(k) defined by the
equation:

10




Em(k+l) = Am X (k) + B u. (k) (2.16)

where gm(k) is the (nxl1l) model state vector
Em(k) is the (mx1) pilot input
and Am’ Bm are matrices of the appropriate dimensions.

The desired behavior for the aircraft considered in this study was
defined by the following continuous models specified by NASA.

LATERAL MOTION

D ~-10 0 -10 O P
a r ) -.7 9 0 r .
at B -1 -.7T O B
¢ 0 0 0 b
20 2.8
-3.13 sa
0 s (2.17)
"
0] 0]
eigenvalues = (0, -10., -0.7 + j3.)
LONGITUDINAL MOTION
a -1.70 0 -9.87 o© q -9.87 0
v 0 -.1 0 0 v 0 1 <Se
i = + (Sm
dt o 1 0 -.5 0 o 0 0 Tm
5] 1 0 0 0 0 0 0
(2.18)

eigenvalues = (0., -0.1, -1.1 + j3.1)

As shown in fig. 2.la an aileron step command, while not affecting
sideslip and yaw rate, results in an overdamped roll rate response with a
settling time of about 0.5s. However, a rudder step does affect all states
as shown in fig. 2.1b. With regard to the desired longitudinal response,
figs. 2.2a and 2.2b show that while a thrust command affects only the
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velocity, an elevator command will affect all states except for the velocity.
2.2 Adaptive Control System Representation

When designing an algorithm to be implemented, practical considera-
tions must have influence on the trade-off between accuracy and simplicity.
In a digital adaptive flight controller, one of the prime practical restric-
tions is the size and speed of the online digital computer. This will
affect both the timing and storage requirements of the adaptive system shown
in block diagram form in fig. 2.3. The smallest time interval is the control
computation interval and typically is between 0.03 and 0.20 seconds.

State estimation if used must be as fast, since the state is used by the
feedback controller in calculating the new control.

The two larger intervals involve gain adaptation. The parameter
identification interval must not be longer than the gain update interval,
since the gain update algorithm requires the new parameter estimates. If
parameter estimation alone is performed, then it is possible to have the
identification interval greater than the control period; however, if states
and parameters are to be estimated simultaneously, then it is necessary that
these be equal.

The various functions to be implemented are discussed below.
2.2.1 Controller Formulation

In designing an adaptive control system, it is necessary to first
give consideration to the design of either an explicit or an implicit adap-
tation algorithm; the differences being that: .

In explicit adaptation, online estimates of the aircraft
parameters are used for gain adjustment.

In implicit adaptation, some measure of the error between
the actual and the desired state trajectories is used for
gain adjustment. No explicit parameter identification is
used.

Previous studies have indicated the advantages of explicit adapta-
tion if gain magnitudes are constrained and if large parameter variations
are to be expected.7 Furthermore no implicit adaptive control system which
has been developed to date can guarantee stability unless Erzberger'sl3
conditions for perfect model following hold. »9 In view of these items,
this study has concentrated on the analysis, synthesis, and subsequent evalu-
ation of explicit adaptive controllers for inflight implementation. However,
in parallel with these efforts, some consideration has been given to develop-
ing implicit adaptive controller which do guarantee stability at least in the
sense of a bounded error between the plant and model states. These results
are discussed in Section 3.1.2.
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In designing a model reference adaptive control system, it is
necessary to develop a control algorithm that is meaningful in terms of per-
formance and is readily adjustable online in response to parameter variations.
To this effect quadratlc performance 1nd1ces which simultaneously weight the
error,

e = x - EP _ | (2.19)
and the control vector u_ were minimized subject to the gatisfaction of the
state equations. P

If the model state vector is defined as in eq. 2.15, then the error
vector can be written as:

e(k+l) = x (k+1) - a_cp(k+1) = (A x (k) +B u (k))

- (Ap Ep(k) + BP E?(k)) (2.20)

This representation of the model dynamics as part of the state equation leads
to a real model following control congiguration which requires the model
state vector X for implementation.

Alternatively the model dynamics can be incorporated directed into
the performance index by defining

e(k+1) = (A, x (k) + B w (k) - (A x (k) + B u (k) (2.21)

This definition which corresponds to re-initializing the model state at each
step to the aircraft state results in an implicit model following controller
which is independent of the model state x

Although real model following is more complex in that it is neces-
sary to initialize the model states equal to those of the aircraft, it was
anticipated and shown by experiment that it is more effective in compensating
for unknown parameters and disturbances. For actual implementation of such
a system, it is suggested that the model state vector be reset equal to the
aircraft state vector whenever a significant change in pilot command u is
detected. Alternately, this initialization procedure might be performe
sequentially with a period equal to twice the largest closed loop time
constant.

2.2.2 Gain Adaptation
Since the controller parameters must be readily adjustable online
in response to identified parameters variations, it would be ideal if the
control gains were easily computable algebraic functions of the parameters in

the aircraft equations of motion.

This type of controller will in fact result if a single stage per-
formance index of the form:

16



J(k) = gT(k) Q e(k) + 1_1PT(k) R gp(k); Q, R>0 (2.22)

is used.6’lh’15 However, since this index results in a set of control gains
which do not guarantee stability, it may be desirable to incorporate Chan's
modificationl® and include an error feedback term of the form Ke, where

K mnust be degermined so as to stabilize the closed loop aircraft matrix

(A - B K).l With this modification, the feedforward gains from the model
cal sti¥1 ve computed online as algebraic functions of A and B_, but the
gain K must either be computed in an iterative manner sB as to sPabilize
(A, B.) or must be determined a priori offline so as to (if possible)
stgbilgze (Ap, Bp) over the entire flight envelope.

An alternate procedure for computing the control gain is to use
an infinite time quadratic performance index of the term

o0
J= )
k=0

when Q > 0, R > 0.

This approach is attractive in that it yields % constant set of feedback gains
that stabilize the closed loop control system. > 1T However, since the gains
require solution of a nonlinear matrix Riccati equation, an online iterative
procedure must be used for adaptation purposes.l7

[el(k) Q e(k) + upT<k) R u (k)] (2.23)

2.2.3 Estimation

Because of the need for using both the state vector x and the
aircraft matrices A_, B for explicit adaptive control computggion, it was
necessary to includePestPmation logic into the system as shown in fig. 2.3.

In designing estimation algorithms, attention must be given to the
measurement noise characteristics. Whereas a relatively large variance neces-
sitates the use of an identifier with a long memory to achieve smoothing, a
small variance will enable the use of a short memory identifier that will be
more responsive to parameter variations.

Furthermore in a digital enviromment, it is advantageous to
identify the unknown parameters of the discrete transition matrix itself
rather than the physical stability derivatives. This follows because the dis-
crete transition matrix is a highly nonlinear function of the stability deriv-
atives making identification rather difficult. Since the discrete control law
itself is directly related to the discrete transition matrix, the latter would
ultimately have to be recomputed using the stability derivative estimates.

Finally, of importance is the performance of the identification pro-
cedures under closed loop control. Because such control often results in
transient behavior for only a very small amount of time and steady state be-
havior for a relatively large amount of time, there may not be sufficient
excitation to allow accurate enough identification. Thus the need for an
induced dither signal must be examined. BSuch dither could in fact be produced
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by feeding back for control computation the noisy state measurements them-
selves rather than filtered state estimates. In any event the performance of
the identifier should ultimately be measured by the overall behavior of the
adaptive control system rather than the individual estimates it produces for
the various parameters. This follows from the fact that not all states are
equally excited by any given pilot input command. Hence various motions will
be completely decoupled or very insensitive to the specific values obtained
for some.of the parameters. Thus while there may not be sufficient excita-
tion present to accurately track a parameter, its value may not be influential
to the maneuver being undertaken. Accurate tracking of all parameters con-
tinuously will only be possible if dither can be acceptably introduced into
the motion of the aircraft.

An additional factor which can aid the identification is the effect
of having an improperly identified aircraft resulting in the application of
erroneous control gains which in turn can cause erratic motion. However,
since identification works best in the presence of such motion, it is antici-
pated that the adaptive system will rapidly correct for large inaccuracies.

3. PROBLEM SYNTHESIS
3.1 Control Computation Procedures
3.1.1 Explieit Adaptive Controllers

Explicit adaptive control logic directly utilizes online'pérameter
estimates for adjusting the control gains; thus, relative to implicit adapta-
tion, better stability margins with lower gain requirements were anticipated.
Two explicit adaptive control systems were subsequently designed and tested.

3.1.1.1 Adaptive Optimal Linear Regulator Logiec

Because ease of implementation was an important consideration, a
linear feedback structure with constant gains (for a given flight condition)
was very desirable. To design such a system, infinite time quadratic per-
formance indices were minimized for the system defined by egs. 2.15, 2.16.
Such an index generally consists of some positive semi-definite quadratic
function of the model following error (x (k) - x (k)) Dbalanced against a
positive quadratic function of the controX Ep(kj?

. Alternatively it was shown by Asseot®  that penalizing the control
rate u (t) rather than the control itself yields reduced sensitivity to
plant Egrameter variations. For the continuous case this necessitates treat-

ing the plant control u (t) as an additional state variable with correspond-
ing equation, I

u (t) = v (t) (3.1)

thus resulting in a type one controller.
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Relative to a type zero controller, a type one controller yields
improved steady state performance, reduced sensitivity, and the capability
for penalizing the control rate itself. Thus the discrete version of the
type one controller was defined by replacing the integrator by an accumulator
(i.e., & unit delay with unity feedback). The corresponding state equation
then becomes:

3?(k+1) = gp(k) + zp(k) (3.2)

The optimization problem used for defining the controller was:

Minimize:

1% T

J=3 kzo{ (ggp(k) - x ()7 alx (k) - x (k)

+ XPT(k) R ‘—’p(k) + HPT(k) S g_p(k)} (3.32)

subject to:

}_cp(k+1) = AP :_cp(k) * B Ep(k) (3.3Db)
Ep(k+l) = Ep(k) + Xp(k) (3.3c)
gm(k+1) = A gm(k) + B Em(k) (3.3d)
Em(k+1) = Em(k) (3.3e)

This cost index (3.3a) represents the simultaneous penalization of
model following error, control rate, and the control vector itself, each
weighted according to the designer's choice of Q, R, and S. Note that an
additional state equation (3.3e) is used to represent the pilot input
u (k) as a step function. This results in a set of control gains independent
oF the step magnitude which in turn can be accounted for by specifying it as
an initial condition, Em(O).

With regard to model initialization, since it is desirable upon
application of a pilot input u that the plant and model be at the same
state, x (0) was set equal to" x (0). Furthermore, to reflect the fact
that control surfaces cannot changg instantaneously, u (0) was selected as
zero. Finally, it was determined through simulation thit weighting u in
eq. (3.3a) was not necessary in view of the weighting on v . Thus S  has
been replaced by zero for the remainder of the development.

This optimization problem can now be cast into the form:
Minimize:

[x'(k) Q' x(k) + ul(k) R' u(k)] (3.ha)

-
1}

N |-

Ne~-18
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subject to

x(k+1) = A x(k) + B u(k) (3.4p)
where:
~ — =] ~ ]
k A B 0 o 0
() o %
u (k) 0 I 0 o© I
(k) ¥ (k)=v_(k) A B
X = u =V = -
gm(k) - - 0 0 A B 0
_%JKL | 0 0 0 I_| | oL

Q' = R'=R_

0 0 0 0

The existence of a set of optimal control gains for this problem
can be demonstrated even though the model, which has been incorporated into
the state equations, is not controllable.l? The control u(k) = v_(k)
will be a linear feedback law of the form: P

(k) = =K x(kx) (3.5)

e

The control gain K is then in turn defined by the relation:
- T
K= (B PR+ r)T Bl pa (3.6a)
where P 1s specified by the steady state Riccati equation:

T -1 BT

P=Q+ ATPA - ATPB(R + B~ PB) PA (3.6Db)

By partitioning eq. 3.5 the control EP can be expressed as:

Bp(k+l) = Ep(k) + Xt(k) (3.7)
or
Ep(k+1)= -KXp gp(k) - me zm(k) - KumEm(k)+(I'Kﬁp)Ep(k) (3.8)

Similar partitioning of P into:
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P11l P12 P13 P1k

PlZT P22 P23 pok

p13T P23’ P33 P3h

L_FlhT poL T P3hT Phlh

pa———

results in the following alternative form of eq. 3.6b

P11 = Q + APT(Pll - P12(P22 + R)™T P12%) A (3.9a)
T r, L oy=1 T -1 :
Pl2 = Ap [(P11-P12(P22+R) ~ P12 )BP+P12(I-(P22+R) p22)]  (3.9b)
T -1 T -1
P22 = BP [(P11-P12(P22+R) ™~ P12 )Bp+Pl2(I—(P22+R) P22)]
+ [(1-(p22+Rr) tpo2) P127] BP+P22(I—(P22+R)—1 p22) (3.9¢)
P13 =—Q + APT (P13 - Pl2(P22 + R)'l P23) Am (3.94)
Plh = APT [Plh+(Pl3—Pl2(Paa+R)_1P23)BmfP12(P22+R)_l p2h] (3.9e)
P2L = BPT [Plh+(P13—Pl2(P22+R)_1P23)Bm—Pl2(P22+R)—l P2k]
+ (P23_P22(P22+R)'l P23)Bm + P2h-P22(P22+R)'l Pol (3.9r1)
T _ -
P23 = BP (P13-P12(P22+R) 1 P23)Am+(P23—P22(P22+R) lP23)Am (3.9g)

P33, P3L, and Pili were not needed for defining the control gains and there-
fore were excluded from computation.

The specific gains defined by eaq. 3.8 may now be expressed as:

K, = —(P22 + R)‘1 (P12T AP) (3.10a)
P

K =-(P22 + R)™ (P12" B+ P22) (3.10b)
b D

K _ -1

X = -(P22 + R)™~ P23 Am (3.10¢)

K, = -(pP22 + R)'l (P23 B+ p2L) (3.104)
m
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Although the above expressions do appear quite formidable for
online evaluation, iterative procedures do exist for solving the Riccati
sub-equations (3.9 a, b, ¢, d, e, £, g). Once the P submatrices are avail-
"able, evaluation of the gains (egs. 3.10) is straight forward formula eval-
uation. The required inverse, which is common to all four gain matrices and
thus need only be computed once, is of the same dimension ag the control
signal. For the aircraft problem being treated, this inversion is of second
order, and thus can be performed by simple.formula evaluation.

The adaptation logic for this type controller is based upon an
online iteration of the partitioned Riccati equation, eqs. 3.9. Since the
alrcraft parameters vary continuously and relatively little within the
anticipated gain update cycles, it can be expected that the exact solution
to the corresponding steady state Riccati equation will not vary significantly
between gain updates. Thus, if at each gain update time the Riccati equation
is initialized with the most recent solution, it is hypothesized that it will
be necessary to iterate only a few times to find the proper solution.

Three iterative procedures, as described below, were considered for
updating the solution to eq. 3.9.

@ Backwards iteration of the time varying Riccati solution

This procedure, which is the simplest to implement, is equivalent
to solving backwards in time the Ricc%gigsquation corresponding to the
finite time linear regulator problem.—”* The P matrix is initialized
to anytgositive semi-definite value at the zero iteration and updated at
the k iteration using:

P(k+1)=Q+A  P(k)A-ATP(k)B(R+B" P(x)B) T B (k)A (3.11)

To illustrate the role of eq. 3.11 in an adaptive mode, assume that
at some time Kk, P(k) is already available corresponding to the estimates
A(k) and B(k) for Athand B respectively. Since A and B will be
changing between the k and (k+1)5% samples, the estimates A(k+1),

B(k+l) will be different from the corresponding values at time k. However,
if these differences are not too severe, then it is anticipated that the
appropriate value of P which corresponds to the true values of A and B
at time k c¢an be approximated by evaluating the right hand side of eq. 3.11

with P(k), A(k+1), B(k+1).
@ Quasilinearization procedure

A quasilinearization procedure proposed by Hewer?l for finding the
steady state solution of (3.9) can be summarized as follows:

P = 1lim v
ko k

where Vk satisfies the linear equation
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V=0V ¢ + L RL +Q (3.12a)
and
_ T -1 _T
L, =(®+B VvV, _, B~ BV ,A (3.12b)
6 =A-BL (3.12¢)

This procedure requires the selection of L such that (A - BL.) = Q

is stable. A means for such an initialization has in fact been given by
Kleinman. 2 Again this procedure can be applied to adaptation by evaluating
the right hand sides of (3.12) with the most recently computed value for V
and the currently identified values of A and B.

® First Order parameter expansion

If between gain update times, the parameter changes AA and AB
are not too large, then the Riccati matrix corresponding to A + AA and B+ AB
(i.e., P(A + AA, B + AB) can be expressed as a first order expansion about
P(A, B). This will result in a system of n(n+l) linear equations which

can then be solved for the n(n+l)/2 elements o% AP = P(A + AA, B + AB) -
P(A,B).

These three procedures were evaluated (assuming perfect identifica-
tion) by:

Initializing the P matrix to a value corresponding to a given
flight condition and evaluating the convergence to neighboring
flight conditions. Typical per sample changes in A and B
were considered.

Initializing the P matrix to zero and investigating the con-
vergence of the gains as well as the Ricecati matrix for
various flight conditions. This test is an indication of the
ability for adapting to large parameter changes. Because

AA and AB are not used, only the first two procedures were
evaluated in this manner.

It was observed during the first evaluation procedure that adapta-
tion based upon the third method, (i.e., first order expansions) was extremely
inaccurate relative to the other two procedures, both of which performed
equally well in terms of the number of iterations needed for computing the
gains to within three figure accuracy. For typical per sample parameter
transitions, only one, or at most two, iterations of the first two procedures
were needed to insure three or four figure accuracy in the gains. However,
because the first procedure required only a formula evaluation, while the
second procedure required the solution of the n{(n+l) components of

eq. 3.12a, the first or backwards iteration proced%re required less computer
time per iteration. Therefore, the backwards iteration procedure was
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selected for application to the adaptive system design.
3.1.1.2 Single Stage Adaptive Controller

Development of an implementable digital adaptive control system
requires that consideration be given to designing a control algorithm that
performs well, and at the same time is easily adjustable online in response
to parameter changes. For example, while feedback gains determined from the
solution to the linear quadratic optimal control problem can be easily
designed offline, adaptation of these gains, as shown in the previous section,
requires the online solution of a nonlinear matrix (Riccati) equation.

An alternative to such a design may be feasible if Erzberger's13
conditions for perfect model following apply, i.e.:

+
I-3B_ B A -A)=0 3.13a
(T-3, 8" (4, - & (3.13a)
(I-B B')B =0 (3.13b
pP)m )
where Bt is the pseudo-inverse of B . If these conditions are satisfied,

then thepimplicit model following contrgller:

a =BT (A-A)x +BVB u (3.1L4)
-p P m p’ P P mm

will result in perfect model following.

However, because these conditions of perfect model following are
not always attainable in practice and because the gains for perfect model
following can be too high, single stage performance indices, which penal%ze
both the model following effort and the control effort, were considered. »23
In particular a performance index of the form
T (k) (3.15)

J = _e_T(k+1) Q e(k+l) + u k) R

u
-P
where

e(k+1l) = (A x (k) + B u (k)) : (3.16)
- (Ap :_cp(k) * B, 1_1p(k))

was minimized to yield the real model following control law:

T Q3B ]—l

3 BpT ofa_ x (k) (3.17)

Ep(k) = [R + BP

- A :_cp(k) +B u (k)]
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Although this controller is attractive because the control gains
can be readily computed online by formula evaluation, the penalization of
the behavior only one step into the future makes it impossible to guarantee
stability. Thus a modification as suggested by Chanl?2 was incorporated.
This results in a real model following control law which yields perfect
model following if Erzberger's conditions are satisfied and an error that
is bounded, otherwise. This controller (for R=0 and Q=I) has the form:

EP = El + 1__1_2 (3.18)
where
El = +K 9_ (3.19&)
= + - + +
u, B (A Ap) X BB, Uy (3.19b)
e = x -X
e X T

In a manner similar to Chan's development for continuous sytems,
it was shown in ref. 16 that if K is chosen to stabilize (A. - B K),
then the above controller will yield stability at least in th® senfe of
boundedness even if the conditions for perfect model following are not satis-
fied. Combining eqs. 3.18 and 3.19 yields the composite controller:

u =-Kx +K x +K u (3.20a)
=P =1 X ~m 1 ~m
m m
where
K = Bt (A -A)+K (3.20b)
X b m P
m
and
K = Bt B (3.20c)
. P m

Clearly online adjustment of the gains in 22 (eq. 3.19b) can be
readily accomplished by simple formula evaluation as updated parameter esti-
mates are received. However, online evaluation of K so as to stabilize
G = (A.p - BP K) may not be as straightforward.

One procedure for stabilizing G is to solve the linear optimal
regulator problem:

el(k) Q e(k) + u,(

1
Minimi H = =
inimize J > ]

) k) R u (k) (3.21)
k=0
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Subject to:

e(k+l) = A.P e(k) + Bp Ei(k) (3.22)

Then under the conditions that (A_, B ) is a controllable pair2 R is positive
definite, Q = DD, and (Ap, D) i obBervable, it can be shown®® that

u = Ke (3.23)

where
-1 T
)

B~ PA (3.21).

K=+ (R+B T PB
Y Y 1Y 1Y

Thus for online adaptation purposes, K might be adjusted using one
of the procedures discussed in Section 3.1.1.1.

Alternately, it may be possible through a judicious selection of
the nominal values for A and B to find a gain K that stabilizes
G = (Ap - Bp K) over thePcompletePflight envelope.

One approach for determining such a gain is to determine a con-
troller which catisfies the guaranteed cost criterion as stated by Chang and
Peng2l4 for continuous systems. In partic dar, if for a given set of con-
trollable F_ and G matrices (appearing in the continuous eq. 2.1), it is
possible to Pind a maPrix P > 0 satisfying

T T

1 T 1
=X x +=u Ru +x PLF x +G u <0 (3.2
2E, QX T8, T4t L PP D -p] - >)
where
w =-RTag T P x (3.26)
b o P
then the closed loop transition matrix
F -G RYa'p
Y Y o
will be stable for all F and G in the given set. Furtherm@re, the
cost function J, dgﬁineg in eq. B.o1. will be less than %— xP (o) P xp(O),

the guaranteed cost.
Substitution of eq. 3.26 into eq. 3.25 yields

L TIwpc BT p2prc RIGI PP F+F T P] x < O
2°p o o p o PP D —



This condition holds if P 1is such that the matrix

PF +F Pp+pP[c RteT-2¢ RYgT]p+q
P P O (o] P o

is negative semi-definite for all F and G_. Because F and G
appear separately in this expressiong a P mbtrix satisfyiBg (3.25)pcan be
determined from the matrix Riccati equation

PF +F P-PG RLG - P+Q=0 (3.27)
o o) o) o}
if
_ /
Fo = fl 0
0 f2
0 0 il
3
0 0 fh - T
(F_+F ")
where: fl > f2 > f3 > fh > maximum absolute eigenvalue of 5
and Go is selected such that
¢ F'eT<e R el for all e (3.28)
o) o — o P b

This -latter condition is satisfied if G can be expressed as the product of
a nominal matrix Gn and a positive defPnite square diagonal matrix G_,
i.e.,

G =¢ G (3.29)

Therefore, for the systems defined in egs. 2.2-2.L4, GD would be
of the form

= < < .
Gp 0 g, 0<g <&, (3.30)

and Go can be chosen as

1
Go 0 g* (3.31)

where g.* is the smallest value of g with respect to all permissible vari-
ations over the flight envelope. This representation as defined in eq. 3.29
does not appear unreasonable in view of the given values for G over the
flight envelope of interest. P
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Application of these procedures to the discrete optimization problem
is not as straightforward because it is not possible to separate the effects
of selecting A from the effects of selecting B . Thus it is recommended
that either: °

. The continuous feedback gains (eq. 3.26) be used directly
~in the discrete system. This should be stabilizing if the
sampling time is not too large.

or
. That the equivalent discrete system be found corresponding

to (F , GO). Computation of the control gains would then

proceed by applying egs. 3.22-3.2k.

It should be noted that in applying these procedures, the resulting
feedback gain may not give desirable transient behavior for all flight condi-
tions. This can result from the desire to trade off a constant stabilizing
gain with a time varying gain optimized by some online iterative procedure.

3.1.1.3 Comparative Discussion

Relative to the adaptive optimal regulator controller and the single
stage adaptive controller respectively discussed in 3.1.1.1 and in 3.1.1.2,
the following points should be noted:

The gain update logic for the single stage algorithm is more
easily implemented. This is especially true if a satisfactory
constant feedback gain can be determined that stabilizes the
open loop dynamics over a fairly wide portion of the flight
envelop. If however this is not possible and an online

update of the Riccati equation (3.24) is desired, then it
should be noted that for a fourth order system, this would
correspond to the need to update only 10 equations rather

than the 69 equations (3.9) for the adaptive optimal regulator
controller.

The optimal regulator is more amenable to a redesign for
implicit model following, since the stabilized single stage
controller does require feedforward of the model state vector.

The optimal regulator design allows penalization of the control
rate and results in a type one controller which should yield
better performance with respect to steady state model

following in the presence of uncertain parameters.

3.1.2 Implicit Adaptive Controllers
Implicit adaptive control slgorithms are attractive for implementa-
tion because they do not require the explicit use of parameter estimates.

Consequently the problem of how to satisfactorily implement online identifica-
tion is eliminated.
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Although several implicit adaptlve controller have been proposed
for linear model reference systems, no assurance of stablllty can be cited
unless the plant and model satisfy certain structural conditions. Typical
examples include the "MIT method", which cannot in general be shown to be
stable,25 the procedure of Winsor and Roy which requires the ability to
independently adjust each element of the plant matrices,8 and Landau's
hyperstability approach9 which yields asymptotic stability if the plant and
model matrices conform according to Erzberger's conditions for perfect model
follow1ngl3

However, since these conditions for perfect model following are
not valid for the problem as presented in Section 2.0, it was necessary to
determine what, if any, modifications were required in order to guarantee
stability, at least in the sense of a bounded error, if an implicit adap-
tivetive control algorithm is to be used.

To this effect, since Landau's algorithm was general enough to
have been previously applied to an aircraft model reference control system”,
its use was attempted in a simulation of the problem defined in Section 2.0.
Results (presented in Section 4.1. 2)1ndlcated that even though the conditions
~ of perfect model following did not apply, the adaptive control law was
capable of improving the performance in the presence of unknown parameters
and yielding bounded errors.

Consequently an analytical study was performed in order to deter-
mine if these results could have been predicted. This was done by defining
the controller to be of the form:

Ep(t)'= —KXP Ep + Kim x * K y u + ¢(t)§P + P(t) u (3.32)
+ ¢(t) x,+ P(t) u
and applying the Lyapunov function:
vV = g? P e + Trace (¢-A) Q_l ((b—A)T + Trace (Y-B) gt (lp—B)T (3.33)
wWwhere e = x -~ x
=" & T %
$ =D g}_cpT Q (3.3k4a)

~ ~

P, Q, R are positive definite symmetric matrices, and D, A, and B are
matrices to be selected so as to insure stability.
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T
Taking the time derivative and selecting D = G_ P, and using eqs. 2.15 and

2.16, yields: P
. T T~
V=oe [+PF +PG K +D Ale (3.35)
= P P x =
P
_2e PG D e(x T Qx )
= p ==
-2 eT PG D e(u T Ru)
= P —-m “m
+2elP[F ~F -G K -G K +DFA]lx
= m p P X P X “m
P m
+2el[PG -PG K -D' Bl u
= m P u “m
m
T

Note that with D=G P, the second two terms will be negative
definite, and the first term $i11 vecome:

o [PF +PG (K -4)]e
- P 1) xp -

To guarantee that this term_ is negative definite, it is only necessary to
show that there exists an A such that

-~

PF + PG (K -A)<oO . .36
. P(xp ) (3.36)

~
S

since A does not appear in the control law. The existence of such an A
is evident since, the above requirement for negative definiteness corresponds
to finding the eight elements of K such that the determinants of the four
principle minors of xp
-(PF_+PG K )-(PF_+PG K )T
b P XP P p Xp

are all positive.

Since the last two terms of -V involve products of the bounded com-
ponents of the model state and.control with components of the error vector,
there will exist values of e such that the first three terms of VvV will
dominate.

fonsequently regardless of the initial gain values, Kx ’ Kx" Ku , the

. ) m .
control law defined by eqs. 3.32 and 3.34 will result in stabili%y in the
sense of bounded error. However, since D =G P, this controller requires
knowledge of GP which in fact may be unavailBbile.



This can be avoided by defining the augmented state vectors

-ag T
X ® = u 3.37a
x5 (J_cp, _P) (3.37a)
ag _ T
J_cm - (}_cm: 1_1111) (3-37b)
with state equations:
x 8= %% ,5% (3.382)
-P P P b P :
* ag _ a _ag a *
X SFp Zn v O 5y (3.38b)
where
a F G a 0 n
Fe=17 P G = (3.39a)
P 0 0 p I m
D s
m
a Fm Gm a 0 i n
F - = G~ = (3.39p)
- 0 0 m 1/ 1 =n
s
m

An analysis similar to that of eq. 3.33-3.35, but now performed on the augmented

System results in the stabiiizing controller

u =-K x®+x x2ix 4 (3.40)
- X X_ —m u_ —m
P m
[ ] ag - ag L]
+<1>(’c)g_cp +W(t)gm+¢(t)ggp +P(t) u
where D =P G: (3.L41a)
2B 88 _ 4 38 (3.41b)
e X, e
. ag ag -1 (3.4
=D 3.k41c)
¢ e, Q
b=pe*®u’ R (3.214)
P, Q, R>0

Since G &
P

is well defined, Gp

is no longer needed for computing D.
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3.1.3. Implementation Considerations
3.1.3.1 Actuator Dynamics

As stated in Section 2.1.2 the computed control signal u (k) is
in reality applied to a mechanical actuator represented by the dYnEBics.of
eqs. 2.9 and 2.10. TFor the system being considered, the time constants of
the primary actuators were less than .08 sec, and the time constants of the
secondary actuators were less than .02 sec. These figures are useful in
determining the sampling frequency and in ascertaining the Iimportance of these
dynamics to the design. Since little would be gained by computing a new con-
trol input faster than the actuator can respond, the control sample period
should in general be no less than 1/10 the smallest actuator time constant.
Thus, it should be expected that control commands applied more frequently
will be subjected to actuator filtering.

With regard to the anticipated effect of the actuators upon the
behavior of the closed loop system, it should be noted from the actuator data
given in Section 2.1.2 and the model data presented in 2.1.5, that the two
dominant lateral actuator time constants of 1/30 and 1/25 are significantly
less than the time constants of 1/10 and 1/.7 which correspond to the eigen-
values of the lateral model. Similarly the time constant of 1/12.5 associated
with the elevator actuator is considerably less than the dominant longitudinal
time constant of 1/1.1, and the thrust actuator time constant of 1/5 is less
than the velocity time constant of 1/1. Consequently, in the present of good
model following, it is anticipated that the effect of the actuators will be
negligible relative to the closed loop dynamics. This in fact has been
observed from simulations which evaluate the influence of the actuator dynam-
ics in the overall adaptive system.

3.1.3.2 Stability

Although the explicit adaptive control algorithms discussed in
Sections 3.1.1.1 and 3.1.1.2 were designed to be stable, it siiould be noted
that this can be guaranteed only if the parameter identification is accurate.
If however, at some time, the identification is so poor that the correspond-
ing control gains result in an unstable closed loop system, then the input
and output signals will become very oscillatory and large relative to the
measurement noise. With this behavior the parameter estimates should quickly
converge towards their true values, resulting in a stabilizing effect on the
system states. Consequently although an analytical proof is not possible,
it can be expected that while the explicit adaptive controllers may at times
have rather large outputs, these will be reduced quite rapidly through the
resulting improvements in identification.

With regard to stability of the implicit adaptive controller, it
should be realized that this was designed, independent of the parameter esti-
mates, for stability in the sense of boundedness of the error between plant
and model., Clearly the size of this error will be a function of the initial
control gain, the constants in the gain adjustment logic, and the amount of
system excitation.
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3.1.3.3 Nonlinear Effects

As stated in Section 2.1.1.2, it is necessary to realize that
the linear controller algorithms have in reality been designed for regulat-
ing incremental motion about the trim states. Thus, it is to be expected
that performance will be best for small stepwise perturbations about a con-
stant trim state. For large and possibly time varying pilot commands, it is
necessary to compensate for the resulting large incremental motion about trim
and also for the effects of changing trim states.

This is partially accomplished by the use of an online identifier
which yields those parameters which define the incremental aircraft motion
about trim. Also the use of explicit model following, wherein the model
trajectory is always used in the controller, tends to compensate for mis-
alignments between plant and model due to uncertainties. More specifically,
consideration must be given to the following situations for which linearized
model following design is not directly applicable:

No pilot command; large external disturbance. - In this situa-
tion the trim states should not be altered by the washout
filters, and control actions should be such as to return the
aircraft to trim. Although the linearized equation will not
be indicative of the actual behavior, the estimated para-
meters should be usable for computing those control actions
which will at least reduce the disturbance effects to the
point at which linearized analysis will again be valid.

Large pilot command; no net change in trim (possible for
certain lateral commands). - The effects of a large pilot
input, which results in a large deviation about the trim
state, might be compensated by the identifier and the feed-
forward of the model state. Alternately, such a command might
be handled by linearizing the equations (at time k) about the
previous states and controls (at time k-1). Thus, the control
action would be designed so as to make the per sample change
in aircraft motion follow the per sample change in the model
states. Note that for a step pilot command, the per sample
change in Em(k) would be zero for k > 1.

Large pilot command resulting in a trim variation. -~ If the
pilot command results in a trim variation, then it is necessary
to use washout filters with short enough time constants for
tracking these variations. Thus, with increasing time, the
incremental variables should decrease, in turn making the
linearization more accurate.
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. Variable pilot command. - If over some extended period, the
pilot command is continuously variable, then it may be
desirable to have the computer periodically re-initialize the
model states to those of the aircraft in order to prevent
large errors which would degrade the control effectiveness.
This could be performed with a period equal to twice the
largest closed loop time constant.

3.1.3.4 Performance Index Weighting Factor Selection

The performance indices (egs. 3.3a and 3.21a) for the explicit
adaptive controllers both contain weighting matrices @ and R which
penalize respectively undesirable state trajectories and excessive control
signals. These were chosen experimentally according to the following con-
siderations:

. Good following of the two lateral states p and B and of at least
two of the longitudinal states q, V, and a.

Constraints on the control signals -~

-27.6° < 8, < 6.5% [§ | < 30°, [8_| < €°

e
Restriction of the gain values to be such that ingtabilities
do not occur because of actuator nonlinearities.2 '

A constant pair of weights Q, R which can be used over
the entire flight envelope.

One approach towards the selection of Q and R was to weight only
those states of interest and then through a series of simulations decide on
the proper ratios. As an example, this procedure resulted in the selection:

th 0 0 O 5
o o0 o 10 0
% = o 10" o By = 0o 10
cC 0 0y
for lateral motion and
100. o 0 O
o= 0 1 0 0 ", = 100
0 O 0 © 100
0 0 0O ©

for longitudinal motion.
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. An alternate approach found to be equally effective was to restrict
Q@ and R to again be diagonal with elements:
-1
: . 2
[maximum X, ] bs)
-1
. 2
[maximum uy ]

-2
i

94

r

ii

where P, is a weight used to indicate tolerable percentage errors in model
following. For lateral motion, the maximum assumed values for p, r, B, ¢,

Ga, Gr were respectively 6.98 r/s, .873 r/s, .349r, =, .873r, .873r (i.e.,

Ge = Gr ), for p, = .01, p, = .10, and Py = .01,
200. 0 0 0
0 131. 0 0 1.31 0
Q = R =
3 0 0 82000. 0 3 0 1.31
0 6] 0 0

For longitudinal motion the maximum assumed values for q, V, o,
8, Ge, §.,, were respectively 1.75 r/s, 2000 f/s, .524r, », .873r, 100%.
Then™fors P, = .01, p, = .01, and Py = .10,

3280. 0 0
0 .0025 0]
0 0 36k.
0 0 0

1.31 0

o O O O

In addition to studying the relationship between Q and R and
model following errors in the four lateral and four longitudinal states, it
was also important to consider the behavior of the vertical acceleration

_ Vv .
n, = 3 (@ - a)

This can indirectly be considered by a judicious choice of the weights on ¢
and o. Alternately n can be expressed as a linear transformation of the
state variables themselVes, and then included in the per?ormance index.

Note, however, that since n, and V are functions of @, the corresponding
transformation will vary with flight condition changes.

Examination of results obtained by penalizing n, and V
simultaneously, revealed that the resulting improvements in n behavior
were not significant enough to warrant its inclusion into the performance
index.
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3.2 Estimation Procedures

In designing a procedure for state and parameter estimation, it
should be noted that algorithms can be classified according to whether or
not states and parameters are estimated simultaneously or separately. Where-
as the problem of simultaneous estimation is nonlinear because of the need to
determine quantities that multiply each other (parameter times state), the
procedures for separately estimating states and/or parameters are linear.

To this effect, following a formal statement of the estimation
problem, Sections 3.2.2 and 3.2.3 discuss linear procedures which are used
when state estimation is performed separately from parameter identification.
Following this presentation, Section 3.2.4 discusses the extended Kalman
filter which can be used for simultaneous estimation of both states and para-
meters. Finally, Sections 3.2.5 and 3.2.6 respectively compare and discuss
the implementability of the proposed algorithms.

3.2.1 Problem Statement

The problem considered is that of determining the values of certain
parameters appearing in the discretized aircraft equations of motions given
exact measurements of the inputs and noisy measurements of the outputs. As
given in eq. 2.15, the lateral or longitudinal motion of the aircraft can be
represented by the vector difference equation

:_cp(k+1) = Ap(_q_) zp(k) + Bp(g_) Ep(k) (3.42)

where g 1is now used to denote a vector whose elements are unknown para-
meters appearing in the discrete plant matrices. For estimation purposes,
it will be assumed that the system measurements can be described by

xp(k) =H :_cp(k) + n(k) (3.43)

where: n(k) is a vector of independent correlated noise sequences
with statistics as defined in Appendix B.

and H is a selector matrix indicating just which states or
combinations of states are measured. For the problem
considered, all states were assumed measureable, and
hence H = I, the identity matrix.

3.2.2 Weighted Least Squares Identification

Since as indicated by eq. 3.43 the state measurements are corrupted
by measurement noise, both state and parameter estimates are needed, the
former for control computation and the latter for the gain computation. If
the parameters were known, state estimation could be performed using a linear
filter derived by minimizing a conventional weighted least squares perform-
ance index. Similarly if the states were available, parameter estimates
could also be obtained using a linear weighted least squares estimator.



This leads to a two-step procedure at each sample time 1; namely:

Step 1) An estimate for the parameter vector g(i)
is computed using the measured values .y(i)

and (i-1) for x (i) and x (i-1

b _.P_)_, ?( .)

respectively.
Step 2) An estimate for the state vector x (i) is
computed based upon the matrices Kﬁ(ﬁ(i)),

Bp(_f'i(i))-

N An alternate procedure for step 1) in which the estimates x (i)
and x (i-1l); rather than the measurements were used,was observed to ;?eld
poor igrformance. This- result was. not surprising since large errors in
bs due to initialization and the subsequent transient response of the
Eaentifier, can in turn cause large errors in g. The proposed approach
however as outlined in step 1) and developed below is completely independent
of errors arising from state estimation. In fact, a similar procedure was
shown by Anderson et. al, for stable open loop systems, to be consistent
for both state and parameter estimation:

For identification purposes, the time-varying aircraft parameter
changes were modelled as fictitious noise disturbances according to the
difference equation:

q(i) = g(i - 1) + w(i - 1) : (3.4L4)

where is a white Gaussian noise vector with zero mean and covariance

matrix

=g

Eq. 2.1 can then be rewritten in terms of g(k) as:

%(i +1) =C(i) (i) + D(i) s (3.45)

where g and s are the vectors containing the unknown and the known
elements respectively of the A and B matrices, and C(k) and D(k)
contain the appropriate measurel controlPand state values. A pseudo-
measurement vector 2z 1is then defined as:

z(i) = xp(i) -D(i -1) s (3.46)

where XP(i) is as defined in eq. 3.L43. Estimates g(k) for the unknown
parameter vector g(k) can now be determined by forming C and D from the
available measurements and minimizing: '

(2(i+1) - C(1) a(1)) N1 (z(i+1) - c(i) g(4)) (3.L7)

i=0

gy
]
LR

where N 1is an apriori chosen weighting matrix.
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The resulting estimates are then defined by:

q(k+1) = g(x) + Kq(k+l) (z(k+1) - C(k) d(k)) (3.148)
-1

Kq(k+l) = Pq(k+1/k) CT(k) [N+c(k) Pq(k+l/k) CT(k)] (3.49)

Pq(k+l/k) = Pq(k) + W (3.50)

Pq(k+l) = Pq(k+l/k) - Kq(k+l) c(k) Pq(k+l/k) (3.51)

Note that the fictitious noise covariance matrix W keeps P , the para-
meter covariance matrix, from getting so small that the paramgter updating

becomes insignificant.

As defined, this identification procedure will yield biased esti-
mates because of the statistical dependence between the noige in z{i),
i=1, ..., K and the components of C(i), i =1, ..., K.2

For state estimation as required in Step 2), the index

se T ) - x GNTET (g - x (1) (3.52)
i=0 = P * P " .

is minimized subject to:

J_cp(i+l) =4 (g(i)) :_cp(i) + Bp<§(i)) gp(i) (3.53)
giving:

>_’Ep(k+l/k) = A (a(x)) :_“cp(k) + Bp(g_(k)) u, (k) (3.54)

:_“c,p(kﬂ) = _:tcP(kﬂ/k) + K (k+1) [y(e+1) - icp(kﬂ/k)] (3.55)

K (k+1) = P_(k+1/k) [rR + Px(k+1/k)]'l (3.56)

P (k+1/k) = APT(§_(k)) P, (k) A (§(x)) (3.57)

Px(k+1) = Px(k+l/k) - Kx(k+l) Px(k+l/k) (3.58)

3.2.3 Minimum Variance Identification

Whereas the weighted least squares identifier discussed in the
previous section, neglected the measurement noise contained in C(i) and
D(i) as defined in eq. 3.45, it is desirable to develop an alternate



identifier based upon a minimum variance index. To illustrate this approach,
it will be assumed that the measurement noise is uncorrelated, i.e.,

& [n, n,'] R i=) (3.59)

and that the parameter g 1is deterministic and constant, i.e.,
a(k+1) = g(k) (3.60)
As in the previous section, a linear identifier will be developed.
However, identification will now be performed every other sample period so
as to alleviate some of the statistical dependency problems which arise
because ogothe multiplicative noise inherent in the product C(i) g(i) of
eq. 3..45.

Thus defining the identification algorithm to be:

§(x+1) = §(k-1) + Kq(k+l) [2(k+1) - C(k) g(k-1)] (3.61)
it is necessary to determine Kq so as to minimize:
7 =] & (g - g wn? (3.62a)
i

which is the trace of the covariance matrix

€ la®) - 4] [a(x) - a7 (3.620)

This matrix can in a straightforward manner be formed by substituting eq.
3.61 into eq. 3.62b.30 The resulting minimization of J with respect to
elements of the gain matrix Kq yields:3o

T T -1
Kq(k+l) = Pq(k) C (k) (C7 (k) Pq(k) C(k)+V+Req(k)) (3.63)
Pq(k+l) = Pq(k) - Kq(k+l) c(k) Pq(k) (3.64)
where
v o= £lcn) aa’ ¢ (n)] (3.65)
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R, (k) =R + & [p(ny) 8) s7(k) D' ()] (3.66)
and C(n,) and D(n, ) denote the nondeterministic portions of C
and D Tas defined "in eq. 3.L45).

These equations, except for V and the additional term in R
are identical to eqs. 3.54-3.58 if W is set to equal to zero and the
weighting matrix N is replaced by (V. + Req)' .

In practice V can be computed using either the initial estimate
or the most recent estimate for g.

€q

Although this linear minimum variance algorithm as given by
egs. 3.61-3.66, will still yield biased estimates, it is possible to alter
eq. 3.61 so that the estimate for q will be at least asymptotically
unblased, i.e.,

Lim E;(ﬁk) =g

koo

This will be true if the prediction term in eq. 3.61 is modified, resulting
in:30

G(k+1) = (T + Pq(k+1)E:[cT(nk) [Req + V] C(nk)]‘l) a(k-1)  (3.67)

+ K (k+1) (z(k+l) - C(k) g(k-1))

a1

In a similar manner, it can be shown that the minimum variance esti-
mator for the states taking into account the parameter uncertainty is defined
as follows:

gp(k+1/k) = Ap(g(k)) 2p(k) + Bp(g(k)) Ep(k) (3.68)
gp(k+1) = gp(k+1/k) + K (k+1) [y(k+1) - gb(kfl/k)] (3.69)
K (k+1) = P_(k+1/k) [R + Px(k+l/k)]_l (3.70)
P (k+1/k) = A7 (4(k)) P, (k) A_(4(x)) (3.71)

+E[e(x(x)) P_(k) ¢t (x(x))]
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Comparison with the weighted least squares state estimation algor-
ithm egs. 3.54-3.58 shows that the predicted covariance (egs. 3.57 and 3.T1)
is increased by the additional term:

¢ [otx(x)) B (k) ¢"(x(x))]

where Pq is as defined in eq. 3.6.4.

3.2.4 Extended Kalman Filter

To simultaneously estimate both the states x , and the unknown
parameters 9y appearing in the state transition matriX A and the gain
matrix B_, it is necessary to form an augmented state vePtor. This is done
by appending to the aircraft equations (2.15) the parameter equation 3.LL.
Then the augmented system becomes:

2(k+1) = 2%(x*(x), k) x™ + B(x"(k), k) u(k) (3.72)

a
y(k) = B*(k) x"(k) + n(k) (3.73)

where

5? = gugmented state vector, given by

X
£ = |2
q
A (q) Ny Bp(g_)
a a
AY = | e B" = | -~ (3.74)
N, I 0

e [x | .|

T is an identity matrix of dimension (p x p), and N.,, N and N3 are
nB11 matrices with dimensions of (n x p), (p x n) and ~(n % p)
respectively.
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To estimate the augmented vector 5? using a Kalman filter, it is

necessary to linearize eq. 3.72 about some nominal trajectory' (5?, g?).
Denoting

a o
5 -X as A X, (3.75)
o
a-4q as Ag (3.76)
and y(i) - ®H x_p° as Ay, (3.77)

the linearized versions of eqs. 3.72 and 3.73 become:

d
A :_cp(i+l) = Ap(_q_o) A :_cp(i)+ 5 g {Ap(_q_) §p+BP(g) EP}'O Agq (3.78)
A g(i+1) = A g(i) (3.79)
Ay(i) =HA x(i) + n(i) (3.80)

These equations which are linear in A x and in A q are now
amenable to linear weighted least squares estimatibn of the augmented state
(A x_, A q). If the nominal trajectory (x o, g?) is always updated to
corrgspond with the most recent estimate, ive.,

Epo(i-l) = gp(i-l/i-l) (3.81)

§P°(i) = A (Q(i-1)) >_{p°(i_1) + Bp(ﬁ_(i—l))up(i—l) (3.82)

a®(i-1) = §(i-1/i-1) (3.83)

g (i) = g°(i-1) (3.84)
then the resulting filter equations become:18’31’32

gp(i/i) = gp<i/i-1) + K(i) (y(i) - H gp(i/i-l)) (3.85)

4a(i/1) = | §g(i-1/i-1)
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where

gp(i/i-1)=Ap(§(i-1/i-1)) gé(i-l/i-l)+BP(§(i-1/i-1))gp(i-l) (3.86)

K(i) = P(i/i-1) B*(1)T [E*(1) P(i/i-1) H (i) + R]™: (3.87)
P(i/i-1) = J(i) P(i-1/i-1) JY(i) (3.88)
P(i/i) = P(i/i~-1) - K(i) B*(i-1) P(i/i-1) (3.89)
and _
J(i) = A (q(i)) Baq [Ap<q) x, * Bp(q) up] (3.90)
0 I o, .
X, (1)
q°(i)

With regard to the convergence of this algorithm, it can be shown
that if the initial errors between the estimated and the true values are
sufficiently large, the estimates as defined by eqs. 3.85-3.90 will diverge.30
This behavior follows from neglecting the nonlinearities which can propagate
through the computations as systematic noise. Such behavior was in fact
observed in several computer simulations.

3.2.5 Comparative Discussion

Taking into account convergence properties, requirements for
implementation, and observed performance in simulation experiments, it is
recommended that the weighted least squares algorithm as discussed in
Section 3.2.2 be utilized.

Although as shown in Section 3.2.3, the minimum variance procedures
do take into account the system noise and at the same time can be imple-
mented almost as easily as the weighted least squares procedures, it was
noted during simulation, that the minimum variance state estimates were not
accurate enough for effective control computation. This is the result of
including in the computation of P (eq. 3.70) the parameter uncertainty
P . Thus a large initial value ofx P (which is needed for rapid conver-
ggnce of the parameter estimates) canqimmediately cause the state estimates
to track the measurement noise. However, it should be noted that the para-
meter estimates obtained from the minimum variance procedures were signifi-
cantly better than those resulting from either the extended Kalman filter
or the weighted least squares procedures.
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The extended Kalman filter is not recommended for implementation
primarily because of its divergent properties in the presence of large para-
meter errors and secondarily because of its relative complexity. Since it
is possible for the aircraft to change flight conditions without sufficient
excitation for identification, it is indeed probable that in the presence of
a pilot command, the parameter errors will be large enough such that diverg-
ence will occur. Such large errors have in fact been observed in simulation
experiments.

3.2.6 Implementation Considerations
3.2.6.1 Identifiability

In order for the parameter estimates to be meaningful, it is neces-
sary that the overall structure and excitation be such that the system is
identifiable. For the problem defined by eqs. 3.46 and 3.43, it has been
shown that32

If the only parameters to be identified are elements
of AP, then no restrictions are needed.

If elements of B are to be identified then the control
inputs u mustPbe independent.
Py
In addition to these necessary conditions, it is also desirable to

consider control inputs for optimizing the performance of the identifier. In
particular, if these inputs are to be found so as to maximize the weighted
trace of the Fisher information matrix, then it can be shown that the optimal
energy constrained input can be defined bg the eigenvalues and eigenfunctions
of a two point boundary value problem.33’ b However, because of the com-
plex nature of this problem and the need to restrict external inputs so as
to be imperceptible to the pilot, such an approach was not pursued.

Thus, as sources for sufficient excitation of the identifier, only
the following were considered:

On-off type dither inputs (discussed in 3.26).
. Pilot commands.

Large and oscillatory motions resulting from control
gains computed from poor parameter estimates.

3.2.6.2 Influence of Inputs Other Than Pilot Commands

Implementation of an online identifier requires that consideration
be given not only to behavior in the presence of pilot commands, but also to
the behavior resulting from dither, gusts, and sensor noise.

To assess the effects of dither, square wave signals with random
switching times were studied for their utility in improving the identifica-
tion especially during periods of steady flight motion. However, with the
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restriction that the switching frequency and the dither magnitude be such
that the resulting effects be imperceptible to the pilot, the resulting
dither signals were found to be non-influential in the noise environment
defined in Appendix B. Despite this, it was noted that the feedback of the
filtered measurement noise itself did offer some improvements in parameter
tracking. '

Although no significant dither could be'applied to the air-
craft during a steady transition between flight conditions, it was conjec~
tured, and shown by simulation, that if the aireraft changes flight con-
ditions without proper tracking by the identifier, then in response to a
pilot command, the aircraft may undergo large oscillatory motion due to
improper control gains. This would then have the effect of exciting the
identifier enough to result in rapid estimation of the proper parameter
values. Such behavior was indeed observeéd even when the initial parameters
were such as to produce control gains which destabilized the system. Oscil-
lations were in these cases observed to be eliminated within seven seconds.

The effects of gust disturbances can be assessed by reconsidering
the longitudinal equations modified as in eq. 2.14 to account for gusts:

x =A x +A(3)Aa+B u (3.91)
= pTp  p P D

Thus if a wind sensor is used so that A o 1is available, then the gust can
be regarded as an additional excitation aiding the identification. However,
it is anticipated that the effects of such gusts will be dampened out since
the controller is designed so as to reduce the error between plant and
model (which is itself not excited by the gust).

If the gust disturbance A o is not measured then it should be
modelled as a process nolise term added to the aircraft equation.

Concerning sensor noise, it was observed that the specifications
cited in Appendix B were such that the response contained some oscillations
due to the filter's inability to completely smooth out the included effects
of the bending modes. A reduction of the noise levels to one tenth of the
Appendix B values did however result in significant improvements. Although
the estimation algorithms considered did not take into account the cor-
related nature of the sensor noise, it was observed that the simulation of
uncorrelated measurement noise sequences did not result in any noticeable
improvement.

3.2.6.3 Initialization

In designing estimation logic for an adaptive controller, it is
necessary to determine initial values for the state and parameter estimates,
the corresponding covariance matrices, and the parameters W and R as
defined in eq. 3.L44 and eq. 3.52 respectively. To this effect the following
guidelines have been determined through simulation efforts:

45



L6

. Initialize parameters equal to their average values
as computed over the flight envelope.

Initialize the states equal to the measured values.

. Select the initial variance of each parameter estimate
to be in proportion to the square of three times its
largest possible value. A factor of 10™ times these
values was observed to yield satisfactory convergence.

Select the initial variance of each state to be zero
if the initial state values are well defined.

Select R anywhere between one and five times the
actual noise covariance matrix.

Select the elements of W equal to three times the
expected square of the per sample change in each of
the identified parameters.

In addition, so that the identification does not become too complex
and time consuming, it is desirable to select which parameters need to be
identified and which can be allowed to remain at the average value. A sensi-
tivity procedure which uses the state sensitivity vectors 9 x /3 q to
predict the change A x in x resulting from a correspon&?ng parameter
change A g showed thgg only Egght to twelve parameters nged be identified
for either the longitudinal or the lateral control system.

4. EXPERIMENTAL RESULTS AND DISCUSSION

Evaluation of the proposed digital adaptive flight control systems
was based upon a series of simulation experiments performed on Rensselaer's
IBM 360/67 computer and on NASA Langley's CDC 6600 computer. These experi-
ments considered the application of the controllers to both the linearized
equations of motion (as presented in Section 4.1) and the nonlinear six-
degree-of-freedom simulation (as presented in Section L.2).

4.1 Linear System Evaluation

Because of the need to examine the required preciseness of identi-
fication and the degree of adaption needed, a typical flight trajectory in
the altitude-mach number plane was postulated. This is defined in Appendix C
which cites the order and timing for a typical fighter aircraft to encounter
the six given flight conditions of Appendix A. This trajectory corresponds
to an initial acceleration from Mach .3 to Mach .9 at a very low altitude, a
combined climb to 3600 m and acceleration to Mach 1.1, a climb to 15,000 m,
a deceleration to Mach .9, and finally a combined dive to 6000 m and a
deceleration to Mach .7. For simulation purposes, it was assumed that the
parameters of the aircraft's discrete A and B_ matrices varied linearly
with time between these flight conditionS. P



As stated in Section 3.2.6.3, it is impractical, for explicit adapta-
tion, to consider the identification of all parameters of the A and B
matrices. A sensitivity study as discussed in reference 6 was tRerefore per-
formed to determine those parameters which least effected system performance
and which might therefore be considered constant. This effect upon system
performance considered not only the sensitivity vector but also the possible
change in each parameter. Thus even if a particular parameter is highly
influential, it could be excluded from identification if its expected varia-
tion is negligible.

Results of this study suggested that for lateral motion, the follow-
ing eleven parameters be set to their average values and thus not be identi-
fied:

Ap(l,h), Ap(e,l), Ap<2,2), Ap(z,h), Ap(h,1>, _
Ap(h,e), Ap(h,3>, Ap(h,h), Bp(z,l), Bp(h,l), Bp(u,g)

Additional parameters might be included in this list according to the partic-
ular pilot command being applied.

For longitudinal motion, the parameters not identified and there-
fore frozen at their average values included:

Ap(l,2), Ap(l,h), AP(2,1), Ap(2,2), Ap(a,h), AP(3,1),
AP(3,2), Ap(3,h), Ap(h,l), Ap(h,z), Ap(h,h), Bp(1,2),

BP(2,1), Bp(2,2), Bp(3,2), Bp(h,2)

Prior to testing the explicit adaptive controllers with the identi-
fication logic an evaluation of the gain update logic itself was made under
the assumption of pgrfect identification of various influential sets of time
varying parameters. This study, based upon the trajectory defined in
Appendix C, resulted in the suggestion that gain adaptation be performed once
every second and that the control signal itself be updated every 0.1 to 0.2
seconds. These results were based upon reponse observation and therefore could
be altered by pilot opinion.

4,1.1 Adaptive Optimal Linear Regulator Results

Results pertaining to the performance of the adaptive optimal linear
regulator controller applied to the linearized lateral equation of motion may
be found in references 6 and 17. Therefore, the following description is
concerned only with the behavior of the adaptively controlled linearized
longitudinal equations of motion.
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Objective:

. To study, using linearized 1ongitudinal:equations; the behavior of
the adaptive optimal linear regulator discussed in Section 3.1.1.1.

Procedure:

Using noisy state measurements,parameter estimates were obtained
at each control sample period and then used at each gain update sample in
one iteration of the Riccati equation (2.9). The gains were then computed
and used for control computation. Performance with and without state
estimation was considered.

Constant Factors:

Pilot input: + .1 radian elevator, 0.2 Hz square wave

Control sample period: 0.1 sec.

Gain adaptation period: 1 sec.

Identifier: weighted least squares (Section 3.22)

Parameters identified: Ap(l, 1), Ap(l, 3), Ap(2, 3), AP(3, 3),
Ap(h, 3), Bp(l, 1), Bp(3, 1), Bp(h, 1)
Initially set equal to their true values.

Remaining parameters: Set at their average values as computed
over the 6 FCS.

Measurement noise: as stated in Appendix B
Control index weights: Q3 and R3 as defined in Section 3.1.3.L

Results and Discussion:

Because of the relatively low variance inherent in the longitudinal
sensors, the use of a state estimator was observed from the initial simula-
tions to be unnecessary and was therefore omitted in subsequent experiments.

Figures L4.1-4.7 depict the state responses, vertical acceleration,
and controls while Figures 4.8-4.10 give the identified values for three of
the eight parameters being tracked. Corresponding feedback gains are shown
in Figure 4.11.

These figures and observations made beyond the illustrated records,
indicated the capability for tracking the gain variations, thus resulting in
acceptable V, o, O, responses. It was further observed that of the
eight parameters being identified, six were noted to track reasonably
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well, whereas and A were observed to have erratic responses. How-
ever, the model %gllow1ng being acceptable indicates that these two parameters
were not influential to elevator excitation.

4,1.2 Single Stage Adaptive Controller Results

Several simulation experiments were performed using the single
stage adaptive control logic with the lateral equations of motion in order to:

Compare the performance with that of the adaptive optimal
regulator logic.

Evaluate the feasibility of not adapting the feedback gain
K, (eq. 3.2L).

b
Assess the different identification algorithms presented in
Section 3.2.

. Assess performance in the presence of highly erroneous
parameter estimates.

Some of the more salient of these procedures follow:

Experiment I

Objective:

To compare using lateral motion, the behavior of the stabilized
single stage adaptive control system with the adaptive linear optimal regu-
lator, when the number of identified parameters for each controller is 8
(rather than 12).

Procedure:
Both parameter and state estimates were obtained at each control
sample period using the weighted least squares procedure discussed in

Section 3.2.2. Feedback gains for the single stage controller were adapted
using the Riccati update procedure described in Section 3.1.1.1.2.

Design Factors:

Pilot input: i_5o Aileron, 0.2 Hz square wave
Control sample period: 0.1 sec.

Gain update period: 1.0 sec.

Parameters identified: A A

122 A31’ A3h’

11° Bl2’ B22’ B3l

11°
B
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Results and Discussion:

Fig.'h.lZ depicts the roll rate responses for the single stage and
the optimal regulator adaptive control logiec. Corresponding roll rate feed-
back gains are shown in Fig. 4.13.

Observation of these curves (and other associated data) indicates
that while both adaptive control algorithms are equally capable of generat-
ing the desired behavior, the single stage gains were slightly larger than
those of the optimal regulator.

Experiment IT

Objective:

To investigate the feasibility of not adopting the feedback gain
in the single stage controller.

Procedure:

As in experiment I, weighted least squares procedures were used for
both state and parameter estimation. Using the trajectory defined in
Appendix C, and the lateral equations of motion, three cases were considered,
namely:

1) Adapting the feedback gain K according to the procedures
discussed in Section 3.1.1.2.

2) Fixing the feedback gain K so that it is stabilizing for
all flight conditions. This was done using eqs. 3.23, 3.2k
for the A of flight condition 3 and the B for flight
condition E, and the weights Q. , Rl from Seftion 3.1.3.k4.

3) Fixing K in accordance with the procedures described by
eqs. 3.25-3.31.

Results and Discussion:

Figure L.14t which depicts the roll rate response for cases 1) and
2) shows that it is possible to select a feedback gain that eliminates the
need for adaptation. Further tests which considered the effects of an
unstable initialization in fact revealed better initial performance when
the fixed feedback gain was used. Additional tests using no feedback gain
at all (which is stabilizing since the given loop lateral dynamics are
inherently stable) were, as expected, unsatisfactory.

With regard to the determination of a fixed feedback gain using the
guaranteed cost procedures defined in eqs. 3.25-3.31, it was found that in
order to satisfy these conditions,the feedback gains would be excessively
large (on the order of 103).
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Experiment ITI

Objective:

To assess the performance of different state and parameter estimation
algorithms when parameter estimateés are initially 50% of the corresponding true values.

Procedure:

Using the noise sequences defined in Appendix B, estimation was per-
formed with the weighted least squares, minimum variance and extended Kalman
filter procedures. Control was achieved using the stabilized single stage
algorithm with all gains being adjusted. The aircraft was simulated to be
fixed at flight condition 2. Those parameters being identified were initial-
ized at 50% of their true values.

Constant Factors:

Gain adaptation period: 0.2 sec.

Control sample period: 0.2 sec.

Parameters identified: 1st and 3rd rows of Ap, Bp
Pilot input: 1_50 aileron, 0.2 hz square wave

Results and Disucssion:

Roll rate responses achieved using the weighted least squares
algorithm and the extended Kalman filter are shown in Figures 4.15 and L.16
respectively. These results indicate that although both algorithms were
capable of recovering from the erroneous initial conditions, the weighted
least squares procedure was much more responsive. This, in fact, was
reflected not only in the depicted responses but also in the adapted values
for the gains.

With regard to the effects of using the minimum variance algor-
ithm, it was observed that the roll rate response was initially very
oscillatory, and that the parameter estimates and corresponding adapted gain
values were closer to their true values than those computed using the
extended Kalman filter and the weighted least squares procedure. The initial
oscillation in roll rate can be explained by noting from eq. 3.T71 that the
initial uncertainty in the state estimates, P is directly related to the
parameter uncertainty P . Thus an initial hiéh uncertainty in the para-
meter can result in stat® estimates that tend to track the measurement
noise. Because the control signal itself includes products of the adapted
gains with the state estimates, the poor initial state estimates tend to
degrade the overall response.
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Experiment IV

Objective:

To study the capability for fecovering from a set of erroneous para-
meter estimates which yield a set of destabilizing gains.

Procedure:

Weighted least squares procedures were used for both state and
parameter estimation in the presence of measurement noise sequences as
defined in Appendix B. All parameter estimates were initialized at the aver-
age values as computed over the six given flight conditions, when in reality
the aircraft was initialized at flight condition 2. The corresponding initial
gains were such that the closed loop system was initially unstable.

Constant Factors:

Gain adaption period = 0.2 sec.

Constant sample period = 3.2 sec.

Parameters identified: 1st and 3rd rows of AP and BP.
Pilot input: i_5o ailercon, 0.1 hz square wave

Results and Discussion:

Figures 4.17, 4.18, 4.19 respectively depict the roll rate response,
the estimates for B {1,1), and the roll rate ani sideslip feedback gains
for the situation inPwhich the aircrsft remains at flight condition 2. Similar
responses (except for the gains) are given in Figures 4.20, 4.21 for the case
in which the aircraft continues along the trajectcry defined ir. Appendix C.

The results show that even with the use of initially unstable gains,
the system is able to adapt to a stable operation. This is due to the
excellent response of the identifier to a very large and rapidly varying
signal. This, as shown in Figure 4.19, leads to a set of control gains which
are quickly adapted towards their optimal values.

4.1.3 Implicit Adaptive Controller Results’

The feasibility of using an implicit adaptive flight controller was
examined by applying the controller of eq. 3.32 to the linearized lateral
equations of motion. To this effect Figures 4.22 and L4.23 show the potential
of this method for improving the model following for the following conditions:
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Flight condition 1

Initial gains: Kx =1.5 [Kx - BP (Am- AP)]
D m
K =3B'3
u P m

Kx chosen to stabilize (Am, B )

- b
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D =
.Ls56 -2.%0 8.2k -.0T749
th 0] 0
0 1 0 0 O
Q = L R =
0 0 10 0 0 1 0 0
0 0 10
Sampling time = .05 sec.

Of interest is the capability to eliminate the large steady state error in
roll rate which results from the poor initial gain selection. (Fig. L.22)
This reduction in steady state error is a result of the significant adapta-
tion of the feedforward gain matrix Ku (see Fig. 4.23). Adjustments of the

feedback gain Kx were noted however to only be about 10%.
p
Preliminary testing using the augmented controller (eq. 3.40)
resulted in a stable but not satisfactory response. It is anticipated that
this can in the future be remedied by further tuning of the appropriate
weighting matrices.

4.2 DNonlinear System Evaluation

In order to assess the applicability of the linearized or perturba-
tion adaptive controller to an actual aircraft, tests were made using NASA
Langley's batch simulation of the nonlinear six degree-of-freedom equations
of motion. Initially for purposes of testing the feasibility of Jjust the
perturbation control algorithms, small magnitude symmetrical square wave
pilot commands were applied in order to maintain a static flight condition.
These tests showed that both the optimal linear regulator controller and the
single stage controller were effective in controlling the incremental states
of the simulated aircraft.
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Consequently further experiments were made in order to evaluate the
overall adaptive system including the identifier and trim update filters.
Procedures considered for trim computation included:

. Holding all trim values constant. This is valid however
only for small perturbations about a given flight condition.

.  Computing through the use of washout filters the trim values
- for <V, a, 6, 8§ , GT and assuming zero trim values for p, r,

B, ¢, a, §_, 6.5

a r

Computlng through the use of washout filters, the trim values
for all states and controls:

These washout filters for the states were defined by the low pass
filter equation:

where:

trim state

»
i

total state

»
]

The filter time constants Ti were set equal to three times the largest time
constant Tm for the corresponding model states as tabulated below.

x Tm(sec) Ty (= 3 max Tm)
Q .91 2.73
v 10.00 30.00
o .91 2.73
0 .91 2.73
D 1.0 4.20
r 1.k0 4.20
B 1.40 4.20
b 1.50 L.20

With respect to forming trim values for the control signals,
various possibilities must be considered in view of the presence of both the
pilot command w and the actual applied control EP.' These include:

(i
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. Computing a trim value for u_ using a washout filter,
and letting u denote the abtual incremental command.

Forming incremental values of u_ .as above and forming
incremental values of u_ by sﬁgtracting out from the
absolute stick motion th@ trim values for u . These in
turn can be formed by either washing out u " or by using
the trim values of u . It should be noted that this pro-
cedure applied to sth changes in u, will result in an
incremental command that varies from the initial step
change toward zero in accordance with the time constant of
the washout filters. This is reasonable if after a :
sufficiently long time, the new stick position is to be
regarded as a new trim position.

In all cases it is recommended that either periodically or upon
detection of a step change in stick position that the model incremental state
vector be reset equal to the aircraft's incremental state vector. This is in
keeping with the model following philosophy. i

To thus evaluate the applicability of the linearized digital adap-

tive controller, the optimal adaptive regulator logic was incorporated into
Langley's nonlinear simulation and tested according to the following outline.

Objective:

To evaluate the response of the overall adaptive system with and
without washout filters and to assess the effectiveness of the linearized
adaptive control algorithms.

Procedure:

The time constants for the filters on the controls were selected as

follows:
Control zi
Ge 2.73 same as q
6T 30.00 same as V
da 1.40 same as p
5r 1.k0 same as p

The states and trim were initialized to values corresponding to an altitude of
610m (2000 ft.)} and a Mach number equal to 0.3. The parameters to be identi-
fied were initialized at 50% of their true values while all other parameters
were held constant at their true initial values.



Design Factors:
Pilot commands:

+ .0l r,0 <t <5 sec
Aileron deflection 0r, 5 sec <t <10 sec
- .01 r,10 sec < ﬁ < 15 sec
0 r, 15 sec < t £ 20 sec

or elevator deflection of 0.3o step

Control sample time 0.1 sec
Identification time = 0.1 sec
Gain update time = 1.0 sec
The following four cases were tested:
(1) Constant Trim, No Adaptation
(2) Constant Trim, Fully Adaptive
(3) Washout trim correction of all aircraft states
and controls, pilot command Em corrected for trim

variation.

(4) Washout trim correction of v, a, 8, § , S .
. e’ r
No change of pilot command u,

Results and Discussion:

Figures L4.24ka, b, ¢, 4 depict the behavior of § , § , P, and B
in response to the aileron command for the non-adaptive online regulator
logic (case 1). The significant improvement resulting from adaptation with
a constant trim value is evident in Figures L4L.25a, b, ¢, d (i.e. case 2).

Of importance is the capability of the adaptive controller for removing the
transient oscillation in roll rate and for significantly reducing the magni-
tude of the sideslip angle. It should be noted that the excessive initial
oscillations exhibited under adaptive control can be attributed to the
transient response of the identifier. These, however, did dissipate within
three seconds.

It was further observed that correcting u for changes in trim
computed by washing out either u or u_(case 3)—%esulted in a tendency
for the model to be too sluggish?m Thus 1% was decided in further tests to
let u denote the incremental pilot command without any trim correction.
This i8 realistic assuming that incremental stick motion can be sensed by the
fly-by-wire logic. Case b results for an elevator step command to the modi-
fied single stage adaptive logic are shown in Figures L4.26a, b, c.
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As a guide towards determining the timing specifications for the
various adaptive control functions, the CDC-6600 nonlinear simulation operat-
ing in batch mode required the following time slices:

. Recursive identification of 16 parameters 6L ms

Adaptation of the optimal regulator gains for

both lateral and longitudinal motion 102 ms
(using eq. 3.11)
Computation of Sa, Gr, Ge, and GT 28 ms

Since it is not necessary to perform adaptation every sample
period, these results indicate that the proposed digital adaptive controller
can be operated without problems at least 10 times per second.

More prudent programming procedures and the use of machine language
coding might in fact double or triple this allowable frequency.

5. CONCLUSIONS AND RECOMMENDATIONS

Based upon both the analytical and simulation efforts described in
the previous chapters, the following recommendations relative to implementa-
tion can be made:

The two explicit adaptive controllers designed using
stabilized single stage logic and optimal regulator logic
are feasible for on-board application. This conclusion
is based upon analysis and simulation efforts using both
the linear and nonlinear equations of motion.

Online estimation of the states and parameters is best
performed by a procedure which first utilizes the noisy
measurements directly for parameter estimation, and then
utilizes these parameter estimates with the state measure-
ments for state estimation.

The explicit adaptive controllers are capable of rapid
recovery from highly erroneous parameter estimates which
could in fact define a set of destabilizing gains. This
follows because the relatively large oscillations in the
aircraft states will result in the identifier's being
forced by large signal to noise signals with a large
degree of fluctuation. Thus, rapid convergence towards
the proper parameter values will take place.

On-board implementation of the proposed linearized designs

is achievable if washout filters are used for computation
of trim states and controls.

83
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Implicit adaptive control logic should not as yet be
implemented. Although the resulting system will be
stable, no procedure has been found for tuning all the
pertinent weighting factors so as to yleld favorable
response characteristics.

Recommendations for future efforts include the following:

Determine procedures for designing implicit adaptive
controllers in accordance with desired system behavior .
specifications. Such procedures will, by eliminating the
need for an online identifier, reduce the complexity of
the adaptive system and further ease implementation.

Program the two explicit adaptive control algorithms into
the actual flight computer and interface it with NASA
Langley's simulation of the nonlinear equations of motion.
This will enable a more effective evaluation of the storage,
timing, and interface requirements of the controllers.

Determine the effects of directly incorporating the bending
modes into the state equations rather than into the sensor
noise characteristics. Recall from Section 2.1.3 that the
correlated measurement noise sequences were selected so as
to reflect both sensor noise and bending effects. Modelling
the bending modes with additional state equations will
permit the use of wider band noise sequences with smaller
variances.
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Appendix B

Noise Characteristics

Variable Rms Béndwidth
p, Roll Rate 2 Deg/Sec 2 Hz
g, Piteh Rate .5 Deg/Sec 2 Hz
r, Yaw Rate .5 Deg/Sec 2 Hz
v, Velocity 2. Ft/Sec 1. Hz
B, Sideslip .3 Deg 30 EHz
0, Angle-of-Attack .3 Deg 30 Hz
¢, Bank Angle .2 Deg 1. Hz
0, Pitch Angle .2 Deg 1. Hz
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Appendix C

Flight Trajectory Usefl For Evaluation

FC Time of encounter (seconds)
1 0
2 30
3 35
L 80
> 85
6 120
CR-2684
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