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PRE FA CE

GTDS is documented in several parts in order to satisfy the specific require- , i

ments of different audiences. The Mathematical Theory of the Goddard Trajec- ._

l_i tory Determination System presents the derivations of all algorithms (including *, :

I_!. observation modeling equations) used in the system. This document is specifi- _,

cally directed to the analyst, i

The GTDS Design Manual I presents a comprehensive overview of GTDS capabil-

_( ities for the programmer who is totally unfamiliar with GTDS. This manual _ :)emphasizes the structure of the software system and the relationships among
the individual components of the system. For this reason, the design manual is

most suited as an introduction to GTDS for programmers who must maintain and
enhance the system. It i._Jalso helpful, however, to the analyst who must be :_

familiar w_th the syste:n at the algorithm level, i
%

The GTDS User's Guide 2 is directed to a general audience which includes aim- /t
lysts, programmers, and data technicians. Although a brief description of the ...." _

system is provided in this document, the principal contents are a description of

D the specific requirements for data card input to the system.

)
T

_'_

1Zavaletu,E. k.: 1975,GoddardTrajectoryDeterminationSystemDesignManual,Computer _ ,
_: SciencesCorporationReportCSC/5D-75/6092,March1975. i

2 Zavaleta, E.k. ondSmith, E.J.: 1975,GcddardTrajectoryDeterminationSystemUse_s _
' , Guide,ComputerSciencesCorporationReportCSC/SD-75/6005,April 1975. .i
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• ABSTRACT

_:,_:: This document presents a description of the mathematical

._:._::.;,°= theory underlying the Goddard Trajectory Determination .'t :
g_ _ System (GTDS), and includes an overview of the system .:/.
_. capabilities. The basic mathematical formulations pre-

t*: sented include mathematical descriptions of coordinate and

_,_- time systems, perturbation models, orbit propagation tech-

,)_ niques, numerical integration techniques, observation
_._ models, statistical estimation methods, and early orbit :L

_':' determination techniques.

_.,

• k:c

g

!2'_ PRECEDING PAOE BLANK NOT FILMF_L)

vii ,_ "

] 9760] 7203-005

ABSTRACT 

This document presents a description of the mathematical 
theory underlying tr.e Goddard Trajectory Determination 
System (GTDS), and includes an overview of the system 
capabilit~eFl. The basic mathematical formulations pre
sented include mathematical descriptions of coordinate and 
time systems, perturbation models, orbit propagation tech
niques, numerical integration techniques, observation 
models, statistical estimation methods, and early orbit 
detennination techniques. 

PRECEDING PAGE BLANK NuT FILMED 

vii 



t _ ,

TABLE OF CONTENTS ,_

,!
:_ Chapter 1 - Introduction ...................... 1-1

Chapter 2 - GTDS Overview .................... 2-1"J_-/ _

2.1 GTDS Programs ...................... 2-1 _
2.1.1 Differential Correction Program ........... 2-2 =i

t _ 2.1.2 F phemeris Generation Program ............ 2-2
_,,_• 2.1.3 Ephemeris Comparison Program ........... 2-2 _

2_ 1.4 Filter Program ................... 2-2

,_i 2.1.5 Early Orbit Determination l_rogram .......... 2-3 i
_ 2.1.6 _ata Simulation Program ............... 2--3 _

_: 2.1.7 Error Analysis Program ............... 2-3
_._ 2.1.8 Data Management Progrsm .............. 2-4

2.2 System CapabiEties ..................... 2-4

_ 2.2.1 T_ajectory Generation ................ 2-6 _! _,

_i _ _ /_
2.2.2 Observation Modeling ................ 2-9 :,_

_ 2.2.3 Estimation Techniques ................ 2-13 :

_"- ID 2.2.4 Early _._rbit D ete rm_,.rlation .............. 2-14 :_

2.2.5 Optional Modes of Operation ............. 2-16 i

_:,:, 2.3 Spacecraft Dynamics .................... 2-17

_'_

:i: 2 4 Near Real-Time Operation and Postflight Processing ...... 2-19 i

_:_' Chapter 3 - Coordinate and Time Systems .............. 3-1

3.1 General Comments and Definitions .............. 3-1

:_:.. 3.2 Coordinate System Descriptions 3-3 'I
,,_....., 3.2.1 Body-Centered Equatorial Inertial (Geocentric _

_;__ S_lenocentrie, or Planetoeentrtc) ........... 3-3
_ 3.2.2 Body-Centered Rotating ............... 3-4

3.2.3 Local Plane System ................. 3-5 _i
_, 3.2.4 Topocentric Local Tangent (East/North/Up) ....... 3-6 .
:: 3.2.5 Orbit Plane ..................... 3-7 _ ,

I_ 3.2.6 Orbital Elements .................. 3-8_'_ii_, 3.2.7 Vehicle-Fixed .................... 3-10
_,_

...._,:, t'_!I'_,_';!_,._,._.,_,:,4_,BLANK NOT F_ .i_

,' .j

]9760]7203-006

TABLE OF CONTENTS 

Chapter 1 - Introductiol!' . 

Chapter 2 - GTDS Overview 

2. 1 G TDS Programs 
2.1.1 
2.1.2 
2.1. 3 
2,1.4 
2.1. 5 
2.1. 6 
2.1. 7 
2.1. 8 

Differential Correction Pr·ogram 
Ephemeris Generation Prot~ram .. 
Ephemeris Comparison Program 
Filter Program . . . . . . . . . 
Early Orbit Determination Program 
Data Simulation Program. 
Error Analysis Program. 
Data Management Program . 

2. 2 System C apabil :ties . . . . . 

2.::S 

2.2.1 T:cajector"J Generation 
2 . 2. 2 Observation Modeling 
2.2.3 Estimation Techniques 
2.2.4 Early Orbit Determi.nation 
2. 2. 5 Optional Modes of Operation 

Spacecraft Dynamics 

2.4 Near Real-Time Operation and Postflight Processing 

Chapter 3 - Coordinate and Time Systems. 

3. 1 General Comments and Definitions 

3.2 Coordinate System Descriptions 
3.2.1 Body-Centered Equatorial Inertial (Geocentric, 

S~lenocentric, or Planetocentric) 
3.2.2 Body-Centered Rotating . . . . . . . . . 
3. 2. 3 Lo~al Plane System . . . . . . . . . . . 
3.2.4 Topocentric Local Tangent (East/North/Up). 
3.2.5 Orbit Plane ... 
3.2.6 Orbital Elements 
3.2.7 Vehicle--Fixed. . 

ix 

1-JL 

2-11'--/ 

2-1 

2-2 
2-2 
2-2 
2-3 
2 .. 3 
2-3 
2-4 

2-4 
2-6 
2-9 
2-13 
2-14 
2-16 

2-17 

2-19 

3-1 

3-1 

3-3 

3-3 
3-4 
3-5 
3-6 
3-7 
3-8 
3-10 



L

! 3.3 Specific Transformations .................. 3-i0 _
4

3.3.1 1950• 0 Inertial to True of Date ............ 3-11i

•_ 3.3.2 True of Date to Body-Fixed .............. 3-18 _2 I.

, 3.3.3 Selenocentric True of Date to Selenogr_phic ...... 3-26 ,_
_ 3.3.4 Spherical-Cartesian Transformations ......... 3-34
_,_ 3.3.5 Body-Cevtered True of Date to Orbit Plane ....... 3-39
• 3.3.6 Body-Fixed to Geographic Transformations ....... 3-40 i_
. 3.3.7 Earth-Fixed to Topocentric Local Tangent

. (East, North, Up) .................. 3-47

• 3.3.8 Keplerian-Cartesian Transformations ......... 3-49
3.3.9 Equinoctial-Cartesian Transformations ........ 3-58 ,:_,
3.3.10 Herrick-Cartesian Transformations .......... 3-62

3.3.11 Keplerian to Equinoctial and Herrick
i Transformations _-64 _ '_

/ 3.3.12 Vehicle-Fixed to Body-Centered True of Date -
Transformations ................... 3-65

' -,_ 3.4 Time Systems ....................... 3-66 ,,

" 3.4.1 Ephemeris Time, ET ................. 3-67 _:1" ]

_ 3.4.2 Atomic Time, A. 1 .................. 3-67 I i :_3.4.3 Universal Time, UT ................. 3-67 : _

: 3.4.4 Uncorrected Universal Time, UT0 .......... 3-69 _i .:
3.4.5 Universal Time, UT1 .............. 3-69
3.4.6 Universal Time, UT2 ................ 3-70 _ _.,
3.4.7 Universal Time Coordinated, UTC ........... 3-70 _

3.4.8 Station Time, ST ................... 3-71 i

3.5 Transformations Between Time Systems ............ 3-71 1
, 3.5.1 Transformations by Standard Formula ......... 3-71 I _

"'-_. 3.5.2 Transformations by Time Polynomials ......... 3-72 _ i

3.6 Polynomial Representation of Ephemeris Data .......... 3-73 I _'*

3.7 References ......................... 3-80
f

''r

Chapter4 - PerturbationModels and VariationalEquations ...... 4-1 /

4.1 Tot_ Perturbation Model and Variational Equations ....... 4-2

; 4.2 Point Mass Effects 4-4

: 4.2.1 N-Point Masses Perturbation Model .......... 4-5 _

4.2.2 Associated Partial Derivatives ............ 4-8 ii_

X _
_t

1976017203-007

3.3 Specific Transformations ..... . 
3.3.1 1950.0 Inertial to True of Date 
3.3.2 
3.3.3 
3.3.4 
3.3.5 
3.3.6 
3.3.7 

3.3.8 
3.3.9 
3.3.10 
3.~.11 

3.3.12 

True of Date to Body-Fixed. . 
Selenocentric True of Date to Selcnographic 
Spherical-Cartesian Transformations . . . 
Body-CeD~ered True of Date to Orbit Plane. 
Body-Fixed to Geographic Transformations. 
Earth-Fixed to Topocentric Local Tangent 
(East, North, Up) . . . . . . . . . . . 
Keplerian-Cartesian Transformations . . 
Equinoctial-Cartesiful Transformations 
Herrick-Cartesian Transformations .. 
Keplerian to Equinoctial and Herrick 
Transformations. . . . • . • . . . 
Vehicle-Fixed to Body-Centered True of Date 
Transformations. 

3.4 Time Syst~ms . . . . . 
3.4.1 Ephemeris Time, ET. 
3.4.2 Atomic Time, A.l .. 
3.4.3 Universal Time, UT . 
3.4.4 Uncorrected Universal Time, UTO 
3.4.5 Universal Time, UTI 
3.4.6 Universal Time, UT2 
3.4.7 Universal Time Coordinated, UTC. 
3.4.8 Station Time, ST. . . . .. 

3.5 Transformations Between Time Systems. 
3.5.1 Transformations by Standard Formula 
3.5.2 Transfol'mations by Time Polynomials •. 

3.6 Polynomial Representation of Ephemeris Data 

3.7 References.. . . . . . . . . . . . . .. 

Chapter 4 - Perturbation Models and Variational Equations 

4.1 Total Perturbation Model and Variational Equations. 

4.2 Point Mass Effects . . . . . . . . . . • 
4.2.1 N-Polnt Masses Perturbation Model . 
4.2.2 Associated Partial Derivatives . . 

x 

3-10 
3-11 
3-18 
3-26 
3-34 
3-39 
3-40 

3-47 
3-49 
3-58 
3-62 

!:s-64 

3-65 

3-66 
3-67 
3-67 
3-67 
3-69 
3-69 
3-70 
3-70 
3-71 

3-71 
3-71 
3-72 

,)-73 

3-80 

4-1 

4-2 

4-4 
4-5 
4-8 



• ,.._ ''I_ ..... _'_' _' " ":_'/ ' ;'_-_ _-" _ .......... i i ¢ ................. " - - -_,_

•_ 4.3 Nonspherical Gravitational Effects .............. 4-9

• 4.3.1 Nonspherical Gravitational Perturbation Model ..... 4-9
_: 4.3,2 Associated Partial Derivatives ............ 4-14

I

4.4 Indirect Oblation Perturbation Model ............. 4-18

• 4.5 Aerodynamic Forces and Atmospheric Models ......... 4-22
4.5.1 Introduction ..................... 4-22

4.5.2 Aerodynamic Force Modeling ............. 4-24
4.5.3 Associated Partial Derivatives ............ 4-29

4.5.4 Jacchia-Roberts Atmospheric Model .......... 4-33
4.5.5 Associated Partial Derivatives ............ 4-50

4.5.6 Modified Harris-Priester Atmospheric Model ...... 4-53
4.5.7 Associated Partial Derivatives ............ 4-57

4.5.8 Comparison of Atmospheric Models .......... 4-60

4.6 Solar Radiation Pressure .................. 4-60

_ 4.6.1 Solar Radiation Pressure Perturbation Model ...... 4-60

4.6.2 Associated Partial Derivatives ............ 4-63 _ ,'"

Q 4.7 _titude Control Effects ................... 4-64
4.7.1 Attitude Control Perturbation Model .......... 4-64

4.7.2 Associated Partial Derivatives ............ 4-6_

4.8 Thrust Effects ....................... 4-66

4.8.1 Thrust Acceleration Model .............. 4-67

i 4.8.2 Associated Partial Derivatives ............ 4-69
i

_ 4.9 Replacement Acceleration .............. 4-73

\ 4.9.1 Replacement Acceleration Model ........... 4-73
4.9.2 Associated Partial Derivatives ............ 4-74

,, 4.10 Analytic Partial Derivatives ................. 4-75
4.10.1 Definition of the Perturbation Variables ........ 4-75

:, 4.10.2 State Transition Matrix Elements ........... 4-79 _"

4. ln. 3 Conversion of Differential Corrections ......... 4-83

4.11 References ......................... 4-87

Chapter 5 - Formulation of the Orbital Ectuations of Motion ..... 5-1 ,_
i

5.1 Introduction ........................ 5-1

]9760]7203-008

4.3 Nonspherical Gravitational Effects , . . . . . . . . 
4.3.1 Nonspherical Gravitational Perturbation Model 
4.3.2 Associated Partial Derivatives 

4.4 Indirect Oblation Perturbation Model . 

4. 5 Aerodynamic Forces and Atmospheric Models 
4. 5. 1 Introduction. . . . . . . . . 
4.5.2 
4.5.3 
4.5.4 
4.5.5 
4.5.6 
4.5.7 
4.5.8 

Aerodynamic Force Modeling . . . . 
Associated Partial Derivatives . . . 
Jacchia-Roberts Atmospheric Model. 
Associated Partial Derivatives . . . . 
Modified Barris-Priester Atmospheric Model. 
Associated Partial D~rivatives . . 
Comparison of Atmospheric Models 

4.6 Solar Radiation Pressure . . . . . . . . 
4.6.1 Solar Radiati.on Press~re Perturbation Model. 
4.6.2 Associated Partial Derivatives 

4. 7 ... ~titude Control Effects . . . . . . . 
4.7.1 Attitude Control Perturbati.on Model 
4.7.2 Associated Partial Derivatives 

4.8 Thrust Effects . . . . . . . . . . . 
4. 8. 1 Thrust Acceleration Model . . 
4.8.2 Associated Partial Derivatives 

4. 9 Replacement Acceleration . . . . , . 
4.9.1 Replaceme'lt Acceleration Model 
4.9.2 Associated Partial Derivatives 

4.10 Analytic Partial Derivatives . . . . . 
4.10.1 Definition of the Perturbation Variables 
4.10.2 State Transition Matrix Elements • . . 
4.10.3 Conversion of Differential Corrections. 

4.11 References. . . . . . . . . . . . . . . . . 

Chapter 5 - Formulation of the Orbital Equations of !\lotion . 

5.1 Introduction 

xi 

4-9 
4-9 
4-14 

4-18 

4-22 
4-22 
4-24 
4-29 
4-33 
4-50 
4-53 
4-57 
4-60 

4-60 
4-60 
4-63 

4-64 
4-64 
4-66 

4-66 
4-67 
4-69 

4-73 
4-73 
4-74 

4-75 
4-75 
4-79 
4-83 

4-87 

5-1 

5-1 



i I
r

_.,._.,_,_._. _,_e._,_._ _,_ _ _._ ,, ..... • _ _._-_.--.,,.-_.-_,_ ,_ _, _ .r_.,. _- - _.-_ .: ,_ _ ,_. ._ ,_..

Lj_

Q I

5.2 Cowel 1.Method ....................... 5-8 )

:f
_ 5.3 Time Regularized Cowell .................. 5-9 _i_

: 5.4 Kustaanheimo-Stiefel (KS) Formulation ............ 5-10 '
5.4.1 The KS Variation of Parameters (VOP) "::

Equations of Motion ................. 5-11 :;
" 5.4.2 Transformation from Cartesian Position and

_ Velocityto KS Parametric Values ........... 5-13
5.4.3 Transformationfrom KS Parametric Variables

to CartesianPositionand Velocity........... 5-15

5.5 Delaunay-Similar(DS)Elements ............... 5-16
5.5.1 The DS Variationof Parameters (VOP)

_ Equationsof Motion ................. 5-17
5.5.2 Transformation from Cartesian Position and

; Velocity to DS Elements ............... 5-20
5.5.3 Transformation from DS Elements to

%' Cartesian Position and Velocity . . . . . . . . . . . 5-24 /

5.6 Picard Iteration Using Chebyshev Series ............ 5-26 I

5.7 Gaussian Variation of Parameters Formulations ........ 5-30

5.7.1 Keplerian Elements ................. 5-31
5.7.2 Equinoctial Elements ................. 5-33
5.7.3 Rectangular Formulation ............... 5-34

3.8 Numerical Ave.raging Formulations .............. 5-37
5.8.1 The Averaged Equations of Motion .......... 5-38 _
5.8.2 Numerical Evaluation of the Averaged

" Equations of Motion ................. 5-39 I
5. g. 3 Averaged Equinoctial Variation of E

Parameters Formulation ............... 5-40

5.8.4 Averaged Keplerian Variation of
Parameters Formulation ............... 5-40

5.8.5 Trmisformation from Osculating Orbital

Elements to Averaged Elements ............ 5-40 ,,

5.9 Brouwer Theory ...................... 5-42
5.9.1 Transformation from Osculating Orbital

Elements to Brouwer Mean Elements ......... 5-45

{

•xii REPRODUCIBIL_[_ OF THB ,

OI( AL pAGE t00

]9760]7203-009

5. 2 Cowen Method . . . . . 

5.3 Time Regularized Cowell 

5.4 Kustaanhelmo-Stiefel (KS) FormulR-tion 
5.4.1 The KS Va~iation of ParametC!rs (VOP) 

Equations of Motion . . . . . . . . . 
5.4.2 Transformation from Cartesian Position and 

Velocity to KS Parametric Values . . . .. 
5.4.3 Transformation from KG Parametric Variables 

to Cartesian Position and Velocity . 

5.5 Delaunay-Similar (DS) Elements . . . . . 
5.5.1 The DS Variation of Parameters (VOP) 

Equations of Motion . . . . . . . . . 
5.5.2 TransformaUon from Cartesian Position and 

Velocity to DS Elements . . . . . . 
5.5.3 Transformation from OS Elements to 

Cartesian Position and Velocity 

5.6 Picard Iteration Using Chebyshev Series. 

5.7 Gaussian Variation of Parameters Formulations 
5.7.1 Keplerian Elements .. 
5. 7.2 Equinoctial Elements. . 
5.7.3 Rectangular Formulation 

3.8 Numerical Aw~raging Formulations 
5.8.1 The Averaged Equations of Motion .. 
5.8.2 Numerical Evaluation of the AYeraged 

Equations of Motion . . . . . . 
5.9.3 Averaged Equinoctial Variation of 

P!lrameters Formulation . . . . . 
5.8.4 Averaged Keplerian Variation of 

Parameters Formulation . . . . 
5.8.5 Transformation from Osculating Orbital 

Elements to Averagl3d Elenumts .. 

5.9 Brouwer Theory . . . . . . . . . . . . . . 
5.9.1 Transformation from Osculating Orbital 

Elements to Broll.wer Mean Elements 

5-8 

5-9 

5-10 

5-11 

5-13 

5-15 

5--16 

5-17 

J-20 

5-24 

5-26 

5-30 
5-31 
5-33 
5-34 

5-37 
5-38 

5-39 

5-40 

5-40 

5-40 

5-42 

5-45 

.xii REPRODUCIBILITY OF J!E 
ORIGmAL PA.GE IS P 



t 1
I

I

p

_ 5.9 2 Transformation from Brouwer Mean Elements
_

_. to Osculating Keplerian Ele,,mnts ........... 5-46
_< ,"

,_3: 5.10 Brouwer-Lyddane Theory 5-51

_ 5.10.1 Transformation from Osculating Orbito_ Elements_!: to Brouwer Mean Elements .............. 5-52
v_

_ 5.10.2 Transformation from Brouwer Mean Elements

_i:_,_ to Osculating Keplerian Elem_ ............ 5-52

5.11 Intermediate Orbit ..................... 5-58

i: 5.12 Vinti Theory ........................ 5-59 ,:

_}} 5.13 References 5-61 !

_:_i Chapter 6 - Numerical Integration of the Equations of Motion

_ and Variational Ec]uations .............. 6-1 :

_'" 6.1 Adams-Cowell Ordinate Second Sum :'ormulas ......... 6-2 ,y

_" 6.2 Predict-Pseudo Correct Algorithm for Equations of Motion 6-7 _

_ 6.3 Corrector-Only Cowel] Integration for Linear Systems 6-9 i _*

_: 6.4 Corrector-Only Algorithm for Variations!_ F,__........ -^-,,,_ ...... 6-11 ,_ ;i

_i 6.5 Mapping of Position Partial Derivatives ............ 6-15 _

_! 6.6 The Runge-Kutta Integration Method ............. 6-16 _I

L*

:_,_ 6.7 The Starting Procedure ................... 6-19 _

,_,*_ 6.7.1 !terative Starter ................... 6-19 i 'L

_/ 6.7.2 Runge-Kutta Starter 6-20

,'; 6.8 Interpolation ........................ 6-21 !__;

_i, 5. -3 '" ^_ _' _ .... ,"^,_-.,-,,,a 6-2 ] "

Z? 6.10 Time Regularization .................... 6-22 _

_i 6.11 References 6-26 _ :

F" ,

• xtii r _"

_,_

1976017203-010

5.9.2 Transformation from Brouwer Mean Elements 
to Osculating Keplerian EleT,lents 

5. 1\) Brouwer-Lyddane Theory . . . . . . . 
5.10.1 Transformation from Osculating Orbit!!l Zlements 

to Brouwer Mean Elements . . . . . . . . . 
5.10.2 Transformation from Brouwer Mean Elements 

to Osculating Keplerian Elem~ 

5.11 Intermediate Orbit 

5. 12 V inti Theory 

5. 13 References . 

Chapter 6 - Numerical Integration of the Equations of Moti0'l; 
and Variational Equations . . . . . . 

6. 1 Adams -Cowell Ordinate Second Sum i'ormulas 

6.2 Predict-Pseudo Correct Algorithm fer £quations of Motion 

6.3 Corrector-Only Cowell Integration for Linear Systems 

6.4 Corrector-Only Algorithm for Variational Equ:.!tionf:l 

6.5 Mapping of Position Partial Derivatives 

6.6 The Runge-Kutta Integration Method 

6.7 The Starting Procedure .. 
6.7.1 Iterative Starter. . . 
6.7.2 Runge-Kutta Starter 

6.8 Interpolation. . . . 

" n v.~ Local Error Control 

6.10 Time Regularization 

6. 11 References. . . . . 

xiii 

5-46 

5-51 

5-52 

5-52 

5-58 

5-59 

5-61 

6-1 

6-2 

6-7 

6-9 

6-11 

6-15 

6-16 

6-19 
6-19 
6-20 

6-21 

6-2] 

6-22 

6-26 



1 "---- I I

: ,, 1 i | 1 J ,8 , n ..- .... _ ..
f

b

.[

Chapter 7 - Observation Models ................. 7-1 ._

7.1 General Description ..................... 7-1 " :,

7.2 Ground Based Trdcker Models ................ 7-4

7.2.1 rrackingProcess ................. 7-4 !
7.2.2 Local Tangent Plane Coordinates ........... 7-5

: 7.2.3 Measurement Equations and Partial Derivatives ..... 7-7 i _"

"_' f

7.3 Satellite-to-Satellite Tracking (SS7') Model. . . . . . . . . . . 7-18 '_
7.3.1 Introduction 7-18 _ :

_ 7.3.2 Light Time Modeling ................. 7-21 _
7.3.3 The Range Observation 7-21 _
7.3.4 The Doppler Observation 7-27 ,, _

: 7.4 Radar Alt:imeter Model ................... 7-34 _
i

7.4.1 S_arface Model .................... 7-34
7.4.2 Measurement Equation 7-38 _

i 7.4.3 Partial Derivatives ................. 7-40 .:

7.5 Very Long Baseline Interferometer (VLBI) Model ........ 7-41 ', :

7.6 Atmospheric Effects ..................... 7-43 !t •
; 7. _. 1 Troposphere Model .............. 7-43
: 7.6.2 Ionosphere Models 7-44 !

7.6.3 Chapman Profile Refraction Corrections ..... 7-52
7.6.4 Segmented Profile Refraction Corrections .... 7-64 _ :

',, 7.7 Additional Corrections .................... 7-76 _

: _" 7.7.1 Light-Time Correction ............ 7-76 _
7.7.2 Anteruaa Mount Corrections .............. 7-76

7.7.3 Transponder Delay Correction ............ 7-77

7.8 Estimation M_lel ...................... 7-77

7.9 References ........... 7-80 _ ,
t

Chapter 8 - Estimatiou ...................... 8-1 I'

_ 8.1 Description of the Prvb]em ................. 8-1

; i

xtv

1976017203-011

Chapter 7 - Observation Models 

7.1 General Description. . . 

7.2 Ground Basec ~:::-d.cker Models 
7.2.1 fracking Process .. 
7.2. 2 Local Tangent Plane Coordinates 
7.2.3 Measurement Equations and Partial Derivatives. 

7.3 Satellite-to-Satellite Tracking (SST) Model. 
7. 3. 1 Introduction. . • . . . 
7. 3. 2 Light Time Modeling. . 
7. 3. 3 Thf! Range Observation. . 
7. 3. 4 The Doppler Observation 

7 . 4 Radar Alt'lmeter Model 
7. 4. 1 S.lrface Model . 
7.4. 2 Measurement Equation . 
7.4.3 Partial Derivatives 

7.5 Very Long Baseline Interferometer (VLBI) Model. 

7. 6 AtmJsph(~ric Effects. . . . . 
7.6.1 TI'oposphere Model 
7.6.2 Ic.nosphere Models. 
7.6.3 Chapman Profile Refraction Corrections 
7.6.4 Segmented Profile Refraction Corrections 

7. 7 Additional Corrections. . . . . . . 
7. 7. 1 Light-Time Correction. • 
7. 7.2 Antenna Mount Corrections 
7.7.3 Transponder Delay Correction 

7.8 Estimation Model . 

7. 9 References. . . 

Chapter 8 - Estimati0l! 

8.1 Description of the PrvbJen. 

xiv 

. . . . . 

. . . . 

'/_1 

7-1 

7-4 
7-4 
7-5 
7-7 

7-18 
7-18 
7-?l 
7-21 
7-27 

7-34 
7-34 
7-38 
7-40 

7-41 

7-43 
7-43 
7-44 
7-52 
7-64 

7-76 
7-76 
7-76 
7-77 

7-77 

7-80 

8-1 

8-1 



L

t i :

f

8.2 The Batch Estimator Algorithm ................ 8-5
8.2.1 Mean and Covariance of Estimate ........... 8-8 _

8.2.2 Observation Partial Derivatives ............ 8-12 . _'
8.2.3 Covariance Matrix Transformation,_ 8-15

" " " * • • " " ° " I 7"

8.2.4 Computational Proced.re for the Differential '
Corre _tion Program ................. 8-19

_ 8.3 Error Auaiysis Application .................. 8-22

8.4 Sequential Estimation .................... 8-27

8.4.1 Derivation and Applications of the Extended
Kalman Filter .................... 8-28 _:

8.4.2 Dynamic Model Compensation Filte-ing ........ 8-37
8.4.3 Statistical Adaptive Filtering ............. 8-42

8.4.4 Computational Procedure for the Filter Program .... 8-47

8.5 Covariance Matrix Interpretation ................ 8-50

8.5.1 Augmented Vector and Covariance ........... 8-50 ,.

8.5.2 Hyperellipse Probabilities .............. 8-51 , ,,'_ ,
8.5.3 Hyperrectangle Probabilities ............. 8-54 :

8.5.4 Correlation Coefficient 8-56

_ 8.6 Estimation Related Techniques 8-57

8.6.1 Matrix hwersion .................. 8-57 _

_ 8.6.2 Editing of Observation Residuals ........... 8-60 "
_,_ 8.6.3 Iteration Control for the Differential

' Correction Program ................. 8-60
8.6.4 Weigh*ed Lesst Squares and FHter Statistic3 ...... 8-61

"" i 8.7 References ......................... 8--64 1 _if

_ Chapter 9 - Early OrbitMethods .................. 9-I ,

{
9.1 Angles Only Methods .................... 9-1

9. i, 1 Transformation of Topocentric Gimbal

_, A lgles to Inertial Coordinates ............. 9-2 •
' 9.1.2 Gauss Method .................... 9-6

_._ 9.i.3 Double r-lteratio..Methoo .............. 9-14

9.2 Range and Angles Method .................. 9-24 '

_ 9.3 References ......................... 9-31

I_
: , "2/ ".z ,_ ,"

• ._ . ; .',

...... :, '2 ,- .............. _(......... ._q_ _ __ '-,,-,-_m,,,,._, _. ;. .......... i." ..... ,.:._._,'.,." o ..:.......

9760 7203-02

8.2 The Batch ESLlmator Algorithm. . . . . 
8.2.1 Mean and Covariance of Estimate 
8.2.2 Observation Partial Derivatives. 
8.2.3 Covariance Matrix Tram:formation~ 
8.2.4 Computational Procednre for the Differential 

Corn ~tion Prcg.ram 

8.3 Error Analysis Application 

8.4 Sequential Estimation . . . 
8.4.1 Derivati.:m and Appltcations of the Extended 

Kalman Filter. . . . . . . . . . . . 
8.4.2 Dynamic Model Compensation Filte "ing . . 
8.4.3 Statistical Adaptive Filtering . . . . . . , 
8.4.4 Computational Procedure for the Filter Program 

8.5 Covariance Matrix Interpretation. . . . .. 
8.5.1 Augmented Vector and Covariance. 
8.5.2 Hyperellipse Probabilities . 
8.5. S Hyperrectangle Probabilities 
8.5.4 Correlation Coefficient. 

8.6 Estimation Related Techniques . 
B. 6.1 Matrix hlVersion 
8.6.2 Editing of Observation ResIduals 
8.6.3 Iteration Control for tne Differential 

Correction Program . . . . . . , . 
8.6.4 Weighted Least SquaJ'es and Filter Stattst;'~3 

8.7 References. . . . . . . . 

~hapter 9 - Early Orbit Methods . 

9.1 Angles Only Metho1s . . . . . . . . . . . 
9.1. 1 Transformation or Topocentric Gimbal 

kIgles to Inertial Coordinates. 
9. 1. 2 Gauss Method . . . . . . 
9. 1.3 Double r-Iteratio"1 Methoa 

9. 2 Range and Angles Method 

9. 3 References. . . . . . . 

xv 

8-5 
8-8 
8-1i 
8-15 

8-19 

8-22 

8-27 

8-28 
8-37 
8-42 
8-47 

8-50 
8-50 
R-51 
8-54 
8-56 

8-57 
8-57 
8-60 

8-60 
8-61 

8··64 

9-1 

9-1 

9-2 
9-6 
9-14 

9-24 

9-31 



Appendix A - Trajectory Sensor System Functional

Descriptions and P 'eF_oces:5,n__ ............ A-1

A. 1 Goddard Range and Range-Rate (GRARR) System and
I

: Applications Technology Satellite Range and Range-

Rate (ATSR) System ..................... A-1
A. 1.1 Functional Description ................ A-1
A.,.2 Preprocessing Description .............. A-4

A.2 C-Band Radar System .................... A-9

: A. 2.1 Functional D.:=_.ription ................ A-9
A.2.2 Preprocessing Description .............. A-10

A.3 bnified S-Band (USE) System ................. A-!0
• i A. 3.1 Functional Description ................ A-10
/

A.3.2 Preprocessing Description .............. A-13

_ A.4 Minitrack System ...................... A-14 ,,
A.4.1 Functional Dp_cziption ................ A-14

A.4.2 Preprocessing Description .............. A-17
I

A. 5 Very Long Baseline Interferometer (VLBI) ......... A-27

A.6 Ran _' Altimeter ...................... A-zo

A, 7 Satellite-to-Satellite Tracking ................ A-30

A. 8 Relevences ...................... A-34

. Appendix B - Time Elements ................... B-1

B. 1 Unperturbed Motion ..................... B-2

B. 1.1 Time Element Corresponding to the
Eccentric Anomaly (a= ]) .............. B-2

B. 1.2 Time Element Corresponding to the
True Anomaly ( _ = 2) ................. B-3

B.2 Perturbed Motion ...................... B-3

B.2.1 Time Element Equation Correspond%g to
the KS Formulation (a = 1) .............. B-3

B.2.2 Time Element Equation Corresponding to

the DS Formulation (_-- 2) .............. B-5

l

xvi

1976017203-013

Appendix A - Trajectory Sensor System FU'1ctional 
Descriptions and p"~l::oce~:~.~ ... 

A.l Goddard Range &nd Range-Rate (GRARR) SY5tem and 
Applications Technology Satellite Range and Range
Rate (ATSR) System. . . . . . . 
A. 1. 1 Functional Description . . 
A • .&..2 Preprocessing Description 

A.2 C-Band Radar System ..... . 
A. 2 . 1 Functional D ';'~I"!ription . . 
A. 2.2 Preprocessinr; Desc.r:!!ltion 

A.3 unified S-Band (USE, System. . . 
A.3.1 Functional Description. . 
A. 3.2 Preprocessing Description 

A.4 Minitrack System. . . . . . .. 
A.A. 1 Func:tional Dp~(, .. ·iption . . 
A. 4. 2 Preprocessing Description 

A.5 Very Long Baseline Interferometer (VLBI) . 

A.6 Rae.. ~.I: Altimeter 

A.7 Satellite-to-Satellite Tracking 

A.8 References. . . . . . 

Appendix R - Time Elements 

B. 1 Unperturbed Motlon . . 
B.1.1 Time Element Corresponding to the 

Eccentric Anomaly ( a = ]) • • • • • 

B.1. 2 Time Element Corresponding to the 
True Anomaly ( a = 2) .. 

B.2 Perturbed Motion. . . . . . 
B.2.l Time Element Equation (;orrespond;",,{ to 

the KS Formulation (a = 1) . . . . . . . 
B. 2.2 Time Element Equation Corresponding to 

the DS Formulation (a = 2) . . . . . . . 

xvi 

A-I 

A-I 
A-I 
A-4 

A-9 
A-9 
A-JI) 

A-IO 
A-IO 
A-J3 

A-14 
A-14 
A-17 

A-27 

A-30 

A-34 

B-1 

B-2 

B-2 

B-3 

B-3 

B-~ 

B-5 



L.

Appendix C - Development of Range-Rate Formulas ......... P-1 !

Appendix D - Obselwatien Weighting ................ D-1 i

Appendix E - Matrix Identities Associated With i i

SequentialEstimation................. E-I i

I E. 1 DerivationoftheRecursive Form ofthe Co,mrianee I
Matrix ofError, PAxm+ I................. E-i

I E. 2 Derivation of an Alternative Form of the Optimal

LinearGain ....................... E-3 !
Glossar_ ............................ G-I ]

:1
Index ........................... I-1 _

'- I
"i

_ f

: #

i

: xvii
<

,_ i _

] 9760] 7203-014

Appendix C - Development of Range-Rate Forml!las 

Appendix D - Obser~ati('n Weighting . . . . . 

~ndix E - Matrix Identities Associated With 
Sequential Estimation. . . . . . 

E. 1 Derivation of the Recursive ForIL ':'If the Cov~riance 
Matrix of Error, Ptlxm + l' . . . . . . . . . . . 

E.2 Derivation of an Alternative Form of the Optimal 
Linear Gain . . . . 

Glossary 

Index 

x'/ii 

('-1 

D-l 

E-1 

E-l 

E-3 

G-l 

1-1 



ii ,i ;

-I

) LIST OF ILLUSTRATIONS -

:: 2-1 Schematic Diagram of the Differential
< Correction Process ................... 2-5 ,

: 2-2 Schematic Diagram of the Ephemeris
=r ,.

Generation Process ................... 2-7
2-3 Schematic Diagram of the Data Simulation Process ...... 2-11
2-4 Schematic Diagram of the Error Analysis Process ...... 2-15 .

_ 3-1 Body-Centered Inertial Coordinate System ......... 3-4 :

': 3-2 Body-Centered Rotating Coordinate System ......... 3-5
r:

3-3 Local Plane System .................... 3-6

3-4 Topocentric Coo.-_linates ................. 3-7
3-5 Orbit Plane Coordinates 3-8 _

3-6 Orbital Parameters .................... 3-9
- 3-7 Vehicle-Fixed Coordinates ................ 3-10

3-8 Precession Angles .................... 3-13
_ ! _-9 Nutation Angles ..................... 3-15

_: ! 3-10 Greenwich Sidereal Time .................. 3-18 /_ _"
3-11 Polar Motion Schematic .................. 3-2!
3-12 Polar Motion Errors ................... 3-23

: 3-13 Selenocentric/Selenograph_ c Geometry. _-27

: 3-14 Selenographic Transformation Angles ............ 3-29
3-15 Ellipso,d Geometry .................... 3-42 _

', 3-16 Greenwich Hour Angle .................. 3.-88
4-1 Schematic of Point Mass Gravitational Bodies 4-6 :

: 4-2 Body-Fixed System .................... 4-11 :,
4-3 Sample Deviations of Jacchia-Roberts Densities

from Jacchia 1971 Values ................ 4-i8 _ "

4-4 Best-fit Value of _ as a Function of the Exosph_ric _' :

,, Temperature T¢_ .................... 4-49 l

: 4-_ Cylindrical Shadow Model ................. 4-_ i _
4-6 Orbital Geometry ..................... 4-76 _ _

:' 7-i SST Tracking Geometry .................. 7-20

: 7-2 Geoid Undulation 7-35 :{

7-3 GeoidGeometry ..................... 7-39 1 _
7-4 Empirical Worldwide Electron Density Profile ........ 7-45 _ , .

7-5 Refraction Correction Comparison of Ray Trace vs. I
_ GTDS Algorithms (CSC Model) ............. 7-57
" 7-6 UplinkPath Geometry atSpacecraftSignalR_eption ..... 7-62 _

b-i ComputationalSequence for the Diffcrenti_

: CorrectionProgram .................. 8-20

_'

xviii

1976017203-015

Figure 

2-1 

2-2 

2-3 
2-4 
3-1 
3-2 
3-3 
3-4 
3-5 
3-6 

LIST OF ILLUSTRATIONS 

Schematic Diagram of the Differential 
Correction Procesf:. . . • . . . . 

Schematic Diagram of the Ephemeris 
Generation Process. . . . . . . . • . 

Schematic Diagram of the Data SimUlation Process. 
Schematic Diagram of the Error Analysis Process. • 
Body-Centered Inertial Coordinate System 
Body-Centere<i Rotating Coordinate System 
Local Plane Syst\;,m. •. .••• 
Topocentric Coo!'dinates 
Orbit Plane Coordinates • 
Orbital Paramet.ers. • . 

3-7 Vehicle-Fixed Coordinates 
3-8 Precession Angles . • . 
:;-9 Nutation Angles . . . . 
3-10 Greenwich Sidereal Time 
3-11 
3-12 
3-13 
3-14 
3-15 
3-16 
4-1 
4-2 
4-3 

4-4 

4-:' 
4-6 
7-1 
7-2 
'7-3 
7-4 
7-5 

7-6 
t,-1 

Polar Motior. Schematic. 
Polar Motion Errors . . 
Selenocentric/Selenographlc Geometry 
Selenographic Tl'ansfor~ation Angles. 
EllipSOid Geometry. . • . . . . . . 
Greenwich Hour .Angle . . . . . . . 
Schematie: of Point Mass Gravitational Bocies 
Body-Fixed System. . . . . . . . . ... 
Sample Deviations of J acchia-Roberts Densities 

from ,1 acchia 1971 Values . . . . . . . . . 
Best-fit Value of Q as a Function of the Exosph-Jric 

Tempp'rature To<> . • . 
Cylindrical Shadow Model . 
Orbital Geometry. . . . 
SST Tracking Geom..:cry . 
Geoid Undulation. . .. 
Geoid Geometry . . . . . 
Empirical Worldwide Electron Density Protile. 
Refraction Correction Comparison of Ray Trace vs. 

G'iDS Algorithms (CSC Model) . ...... . 
Uplink Path Gecmetry at Spact3craft Signal Re:::eption . 
Computational Sequence for the Diffcrenti!ll 

Corr~ction Program . . . . . . • • . . . . . . 

xviii 

2-5 

2-7 
2-11 
2-15 
3-4 
3-5 
3-6 
3-7 
3-8 
3-9 
3-10 
3-13 
3-1C 
.3-18 
:3-21 
::1-23 
3-27 
3-29 
3-42 
3·-88 
4-6 
4-11 

4-48 

4-49 
4-li~ 

4-'/6 
7-20 
7-:35 
7-39 
7-·45 

7·-57 
7-63 

8-20 



- ,l !!
: ;_ LIST OF ILLUSTRATIONS (Cont'd.) I

Page
;a

8-2 Computational Sequence for the Filter Program ....... 8-49

8-3 Error Ellipse and Rectangle ................ 8-54

9-1 Position Vector Geometry ................. 9-6 }

9-2 Gauss Method CoInputational 5o,4uence ........... 9-12 J

9-3 Double r-Iteration Computation Sequeuce .......... 9-21 i
9-4 Range and Angles Me_hod Computational Sequence ...... 9-30

A-1 Schematic of GRARR Gimbal Angles ............ A-3

A-2 GRARR and ATSR Data Preprocessor Computations
and Inte__faces ..................... A-5

A-3 Minitrack Baseline and Signal Reception Geometry ...... A-15 i
A-4 Minitrack Preprocessor and Interface Schematic ....... A-18 i
A-5 Simplified Schematic of VLBI ............... A-28

A-6 Iu_erfe .'ometer Fringes .................. A-28 i

A-7 Radar Altimeter Cone ................... A-30 t
A-8 Range Sum Geometry and Transmission Legs ........ /_-31
C-] Signal Propagation Geometry ............... C-4 _ ,

1

J

i

?

i
J

t

I!,
xtx

]9760]7203-0]6

Figure 

8-2 
8-3 
9-1 
9-2 
9-3 
9-4 
A-I 
A-2 

A-4 
A-5 
A-6 
A-7 
A-8 
C-l 

LIST OF ILLUSTRATIONS (Cont'd.) 

Computational Sequence for the Filter Program 
Error Ellipse and Rectangle. . . . . 
Position Vector Geometry. . . . . . • 
Gauss !VIdhod CoItlp~tation.al &0quence . • 
Double r-Iteration Computation Sequellce . 
Range and Aagles Method Computational Sequence 
Schematic of GRARll Gimbal Angles • • . . . . 
GRARR and ATSR Data Preprocessor Computations 

and Interlaces • . . . . . • • . • • . . • . . 
Minitrack Baseline and Signal Reception Geumetry. . 
Minitrack Preprocessor and Interface Schematic. 
Simplified Schematic of V LBI 
Ir.terfe.,:,ometer Fringes . . . . . . . . . . 
Radar Altimeter Cone, . . . . . . . . . . 
Range. Sum Geometry and Transmission Legs 
Signal Propagation Geometry . . . . . . . 

xix 

8-49 
8-54 
9-6 
9-12 
9-21 
9-30 
A-3 

A-5 
A-15 
A-18 
A-28 
A-28 
A-30 
A-31 
C-4 



LIST OF TABLES _ ":

Table Page

3-I Polar Motion Coefficients ................. 3-25

3-2 Time Difference Coefficients ............... 3-74

3-3 Bounds for Truncation Error When Using Fifth-Order

Everett InterpolationFormula ............ 3-76

4-1 Aerodynamic Force Coefficientsfor Elementary Surfaces. 4-26

4-2 Atmospheric Constituents and Related Constants ....... 4-42

4-3 Polynomial Coefficientsfor ConstituentDensities

at 125 km ....................... 4-46

4-4 Density Altitude Tables .................. 4-55

4-5 DODS Variable Dependency ................ 4-78

5-1 Characteristics of High Precision Orbit Generators ..... 5-6

5-2 Characteristics cf Approximate Orbit Generators ...... 5-7

5-3 Partial Derivatives of the Auxiliary Paramcters

°J rl , r2, _3, x4 .................... 5-21
J
, 5-4 Partial Derivatives of the Auxiliary Parameters

; q, p, e, r ....................... 5-22
J

7-1 Sea Surface-Geoid Deviation Sources ............ 7-35

8-1 llyperellipse Probabilities ................ 8-53 !

8-2 Hyperrectangle Probabilities ............... 8-55 ]
A-I GRARR and ATSR Stations................. A-2

A-2 C-Band Radar Sites.................... A-9

A-3 Unified S-Band (USB) Stations ............... A-10
A-4 Minitrr_ck Stations .................... A-14

A-5 Minitrack Counter Sequence ................ A-17

D-I Dynamic Weighth_g Factors ................ D-l

D-2 Typical A Priori Data Standard Deviation .......... D-2

J

i

#

XX

"19760"17203-0"17

Table 

3-1 
3-2 
3-3 

4-1 
4-2 
4-3 

4-4 
4-5 
5-1 
5-2 
5-3 

5-4 

7-1 
8-1 
8-2 
A-I 
A-2 
A-3 
A-4 
A-5 
D-l 
D-2 

LIST OF TABLES 

Polar Motion Coefficients . . . . . . . . . . . . . 
Time Difference Coefficients . . . . . . . . . . . . 
Bounds for Truncation Error When Using Fifth-Order 

Everett Interpolation Formula . . . • . . . . . . 
Aerodynamic Force Coefficients for Elementary Surfaces. . 
Atmospheric Constituents and Related Constants . 
Polynomial Coefficients for Constituent Densities 

at 125km ...... . 
Density Altitude Tables . . . . . . . . . . . . 
DODS Variable Dependency • . , . . . • • . . 
Characteristics of High Precision Orbit Generators 
Characteristics cf Approximate Orbit Generators 
Partial Derivatives of the Auxiliary Parameters 

T l' T 2' T 3 • x4 • • • • • • • • • • • • • • 

PartiallJerivatives of the AuxHiary Parameters 
q. p. e. r . . . . . . . . . .. 

Sea Surface-Geoid Deviation Sources . 
Jlyperellipse Probabilities 
Hyperrectangle Probabilities 
GRARR and ATSR Stations .. 
C-Band Radar Sites. . . . . 
Unified S-Ban<! (USS) Stations 
Minitrl:.ck Stations . . . . 
Minitrack Counter Sequence . 
DynamiC Weighting Factors . 
Typical A Priori Data Standard Deviation 

xx 

3-25 
3-74 

3-76 
4-26 
4-42 

4-46 
4-55 
4-78 
5-6 
5-7 

5-21 

5-22 
7-35 
8-53 
8-55 
A-2 
A-9 
A-IO 
A-I4 
A-I7 
D-I 
D-2 



I

!
CHAPTER 1

)

INTRODUCTION ._

This publication presents a description of the mathematical theory for the earth/' _

- _ lunar/interplanetary Goddard Trajectory Determination System (GTDS). GTDS i

is a multipurpose computer system designed :_

: _ "to provide operational support for individual earth, lunar, alid planetary. ,_.
_ space missions and for the research and development requireme_:ts of

the various projects of the NASA/Goddard Space Flight Center scientific

_ community" (Reference 1) 1

i _ This orbit determination program includes many of the capabilities of pre- _
vious orbit determination programs developed by GSFC (References 2 and 3).

GTDS is, by its very nature, an evolutionary system. The first document des- _ t
cribing the GTDS mathematical theory (Reference 4) corresponded to a develop- _/ i

• mental version of GTDS. Since then, GTDS has evolved through several opera-
}

_ tional versions, and a Research and Development (R & D) version has been
developed to peLmlt evaluation of promising methods for operational, nonroutine, _

and highly precise orbit determination. This document corresponds approxi- _!

mately to GTDS Version 3.0, which will be implemented at GSFC in the spring _!

i of 1976. As additional capabilities are added to _..e system, this document will
_ be updated or appended.

This document is not intended to represent a set of mathematical specifications
for developing the GTDS software, but rather is _ development of the basic
mathematical formulations used in GTDS. The format varies somewhat from

; section to section, ranging from a straightforward presentation of the basic
_ equations used in the program to a tutorial approach which delves into some of

_: the underlying theory, depending on the topic under discussi_n.

,.'_ Inadditio-to describingthe basicmathematicalformulationsofthisparticular ._
_- system, this document is also intended to provide the reader with a compre-

_ hensive overview of the key physical and mathematical models required by orbit :
_: determination systems which have been developed in recent years, and the re- '
_ sults of various evaluations and improvements developed at GSFC as a result of

years of operational orbit determination experience.

T '
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CHAPTER 1 

INTRODUCTION 

This publication presents a description of the mathematical theory for the earth/ 
lunar/interplanetary Goddard Trajectory Detennination System (GTDS). GTDS 
is a multipurpose computer system deRigned 

"to provide operational support for individual earth, lunar, alid planetary 
space missions ~.!ld for the research and development requiremeds of 
the various projects of the NASA/Goddard Space Flight Center scientific 
community" (Reference 1) 

This orbit determination program includes many of the capabilities of pre
vious orbit determination programs developed by GSFC (References 2 and 3). 

GTDS is, by its very nature, an evolutionary system. The first document des
cribing thp, GTDS mathematical theory (Reference 4) corresponded to a develop
mental version of GTDS. Since then, GTDS has evolved through several opera
tional versions, and a Rese~rch and Development (R & D) version has been 
developed to Pt:i~illit e':aluation of promising methods for operational, nonroutine, 
and highly precise orbit determination. This document corresponds approxi
mately to GTDS Version 3.0, which will be implemented at GSFC in the spring 
of 1976. As additi(}nal capabilities are added to L •• e system, this document will 
be updated or appended. 

This document is not intended to represent a set of mathematical specifications 
for developing the GTDS software, but rather is a development of the basic 
mathematical formulations used in GTDS. The format varies somewhat from 
section to section, ranging from a straightforward presentation of the basic 
equations used in the program to a tutorial approach which delves into some of 
the underlying theory, depending on the topic under discussi,)n. 

In additio- to describing the basic mathematical formulations ,)f this particular 
system, this document is also intended to provide the reader with a compre
hensive overview of the key physical and mathematicai models required by orbit 
determination systems which have been developed in recent years, and the "e
sults of various evaluations and improvements developed at GSFC al:: a result of 
years of operational orbit determination experience. 
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An overview of GTDS is pl_sented in Chapter 2. This overview includes a i
, discussion of the programs available in GTDS, system capabilities, and sche- , :

matic diagrams of the differential correction, ephemeris generation, data sJmu- _

:_ lation, and error analysis processes, along with an indication of which chapters '
in this document contain the algorithms associated with each function.

I

Chapter 3 presents the coordinate and time systems necessary to accurately
model the spacecraft's dynamic motion and tracking observations. Chapter 4

. . details the acceleration models which constitute the Cowell equations of motion
and the variational equations. Chapter 5 details the formulation of the orbital

: equations of motion, including general perturbation and special perturbation
methods. Chapter 6 describes the numerical integration of the equations of
motion and variational equations, while Chapter 7 describes the observation
models and systematic error corrections applied to the observations. Chapter
8 contains a description of the estimators and statistical models, and Chapter 9

: presents early orbit techniques which can be used to obtain deterministically an

estimate of the vehicle state from observations.
o

Several appevdices are also included in this document. Appendix A gives func-

tional descriptions of v_rious tracking systems and preprocessing techniques. ,,
i A detailed description of time elements as used in the regularized equations of .// _

motion can be found in Appendix B, and Appendix C contains a rigorous discus-

'_ sion of the conversion of Doppler measurements to range rate. "_ppendix D pre-
sents information on typical a priori standard deviations and dynamic weighting

factors for several observation types, and Appendix E presents a derivation of
matrix identities associated with the sequential estimation process.

Finally, a glossary and an index are provided for the convenience of the reader.

• RE FERENCES ,

i. Goddard Space FlightCenter: 1970,FlmctionalRequirements forthe Lunar/

Planetary Orbit Determination Subsystem of the Goddard Trajector), Deter- ,
ruination System.

2. Velez, C. E. and Brodsky, G. P.: 1969, GEOSTAR-I, A Geopotential and
Station Position Recovery System, Goddard Space Flight Center Report
X-553-69-544, December 1969.

i
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An overview of GTDS i.s presented in Chapter 2. This overview includes a 
discussion of the programs available in GTDS, system capabilities, and sche
matic diagrams of the differential correction, ephemeris generation, data simu
lation, and error analysis processes, along with an indication of which chapters 
in this document contain the algorithms ass('ciated with each function. 

Chapter 3 presents the coordinate and time systems necessary to a~curately 
model the spacecraft's dynamiC! motion and tracking observations. Chapter 4 
details the acceleration models which constitute the Cowell equations of motion 
and the variational equations. Cbapter 5 details the formulation of the orbital 
equations of motion, including general perturbation and special perturbation 
methods. Chapter 6 describes the numerical integration of the equations of 
motion and variational equations, while Chapter 7 describes the observation 
models and systemat.ic error corrections applied to the observations. Chapter 
8 contains a description of the estimators and statistical models, and Chapter 9 
presents early orbit techniques which can be used to obtain deterministically an 
estimate of the vehicle state from observations. 

Several appeDdices are also included in this document. Appendix A gives func
tional descriptions of v..lrious tracking systems and preprocessing techniques. 
A detailed description of time elements as used in the regularized equations of 
motion can be found in Appendix B, and Appendix C contains a rigorous discus
sion of the conversion of Doppler measurements to range rate. ''Appendix D pre
sents information on typical a priori standard deviations and dynamic weighting 
factors for several observation types, and Appendix E presents a derivation of 
matrix ic!entities associated with the sequential estimation process. 

Finally, a glossary and an index are provided for the convenience of the reader. 
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CHAPTER 2

: GTDS OVERVIEW
: t

L_

Orbit determination in GTDS involves a complex mathematical process which
: " combines the disciplines of orbital dynamics observation modeling, and estima-

tion theory. This process is implemented through thc use of several separate

programs which are briefly described in Section 2.1.

_ I The capabilities of the system are discussed in Section 2.2. These capabil-

! ities include trajectory generation, observation modeling, and estimation tech-
: niques. Also included is a discussion of the early orbit determination process, J

which allows a crude, initial estimate of the orbit to be obtained from early track- 1-/

ing data. In addition, the orbit determination system combines capabilities which

_: i are frequently useful in mission analysis studies when executed independently; i
: GTDS has been provided with several modes of operation in order to permit i

utilization of these separate capabilities. _i/_

,_, _* The acceleration sources which are accounted for in the GTDS dynamic model :

are described in Section 2.3, while Section 2.4 discusses near real-time opera-

i_ tion and postflight processing.

2.1 GTDS PROGRAMS :!

To meet the varying demands imposed upon the system by operational sup-
port of the research and development requirements of various projects, GTDS _

..\ includes the following programs:

• Differential Correction Program

• Ephemeris Generation Program
• Ephemeris Comparison Program

• Filter Program
• • Early Orbit Determination ProTram

i • Data Simulation Program
• Error Analysis Program /?

• Data Management Program
• Permanent File Report Generation Program

L
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CHAPTER 2 

GTD~ OVERVIEW 

Orbit determination in GTDS involves a complex mathematical process which 
combines the disciplines of orbital dynamics, observation modeling, and estima
tion theory. This process is implemented through the use of several separate 
programs which are briefly described in Section 2.1. 

The capabilities of the system are discussed in Section 2.2. These capabil-
ities include trajectory generation, observation modeliag, and estimation tech
niques. Also included is a discussion of the early orbit determination process, 
which allows a crud~ initial estimate of the orbit to be obtained from early track
ing data. In addition, the orbit determination system combines capabilities which 
are frequently useful in missior.. analysis studies when executec1 independently; 
GTDS has been provided with several modes of operation in order to permit 
utilization of these separate capabilities. 

The acceleration sources which are accounted for in the GTDS dynamic model 
are described in Section 2.3, while Section 2.4 discusses near real-time opera
tion and postflight processing. 

2.1 GTDS PROGRAMS 

To meet the varying demands imposed upon the system by operational sup
port of the research and development requirements of various projects, GTDS 
includes the following programs: 

• Differential Correction Program 
• Ephemeris Generation Program 
• Ephemeris Comparison Program 
• Filter Program 
• Early Orbit Determination Pro7ram 
• Data Simulation Program 
• Error Analysis Program 
• Data Management Program 
• Permanent File Report Generation Program 
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This document presents the mathematical models and procedures for all of these
programs except tne Permanent File Report Generation Program. A brief _ •

description of each of the programs is given in the remainder of tY.is section, i

r

2.1.1 Differential Correction Program _ ;

The primary purpose of the Differential Correction Program is to estimate the
satellite orbit and associated parameters. The estimation algorithm used in )

the Differential Correction Program is called the weighted least squares with a ,
priori algorithm or the Bayesian weighted least squares algorithm. It minimizes
the sum of the squares of the weighted residuals between actual and computed

observations, while simultaneously constraining the model parameters to satisfy |

• the a priori conditions to within a specified uncertainty. Both first- and second- i
, order statistics (i.e., the mean and covariance matrices) are determined for the _

estimated variables.

: i

; 2.1.2 Ephemeris Generation Program _ :

The function of the Ephemeris Generation Program is to compute, from prescribed -J

initial conditions, the value at a specific time of the vehicle state and, optiona!ly, the
_j state partial derivatives, h order to meet varying precision and efficiency require-

meats, several orbital theories have been provided, ranging from a first-order anal-
'_ ytic theory to a high-precision Cowell-type numerical integration. The state partial _

:, derivatives can be computed by precision nvmerical integr.qtion of variational equa- _
tions. The statepartialderivativeswith respecttothe initialstate,i.e.,thestate
transition matrix, can optionally be generated by a twc-body analytic approximation.

• \ '! 1.3 Ephemeris Comparison Program _ ,_
,%

The Ephemeris Comparison Program compares two input ephemerides. The i
comparison can be _pecified ove_" a particular arc or over the arc of overlap •

between the ephemerides. The radial, along-track, and cross-track differ-
ences are computed and outtmt.

2.1.4 Filter Program : •,

The Filter Program provides an alternative to the Differential Correction
Prograan for estimating the satellite orbit _nd associated parameters. The

f

Filter Program contains four sequential estimation algorithms called the _
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This document presents the mathematical models and pl'ocedures for all of these 
programs except the Permanent File Report Generation Program. A brief 
description of each of the programs is given in the remainder of this section. 

2.1.1 Differential Correction Program 

The primary purpose of the Diffe.rential Correction Program is to estima.te the 
satellite orbit and associated parameters. The estimation algorithm useci in 
the Differential Correction Program is called the weighted least squares with a 
priori algorithm or the Dayesian weighted least squares algorithm. It minimizes 
tne sum of the squares of the weighted residuals between actual and computed 
observations, while Simultaneously constraining the model paramE'ters to satisfy 
the a priori conditions to within a specified uncertainty. Both first- and second
order statistics (i.e., the mean arid covariance matrices) are determined for the 
estima.ted variables. 

2.1.2 Ephemeris Generation Program 

The function of the Ephemeris Generation Program is to compute, from prescribed 
initial conditions, the value at a specific time of the vehicle state and, optionally, the 
state partial derivatives. 111 order to lneet varying preciSion and efficiency require
ments, several orbital theories have been provided, ranging from a first-order anal
ytic theory to a high-precision Cowell-type num~rical integration. The state partial 
derivatives can be computed by precision numerical integr9.tion of variationa~ equa
tions. The state partial derivatives with respect to the initial btate, i. e., the state 
transition matrix, can optionally be generated by a twc-body analytic approximation. 

'.~ 1.3 Ephemeris Comparison Program 

The EphemeriS Comparison Program compares two input ephemerides. The 
comparison can be epecified ove" a particular arc or over the arc of overlap 
between the ephemerides. The radial, along-track, and cross-track differ
ences are computed and ou\.t)Ut. 

2.1.4 Filter Program 

The Filter Program provides an alternative to the Differential Correction 
Program for estimating the satellite orbit and associated parameters. The 
Filter Pt'ogram contains four sequential estimation algorithms called the 
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Extended Kalman Filter (EKF), the Modified Extended Kalman Filter (MEKF),
the Jazwinski Filter (JF), and the Modified Jazwinski Filter (_,IJF). These _
sequential filters differentially correct (update) the satellite state recursively
at each observation point processed. As a result, these methods are referred i,

to as sequential processing methods, in contrast to the batch processing method i i
used in the Differential Correction Program. Other elements of the Filter I

Program, such as model parameters and observation handling, are the same as !

in the Differentiai Correction Program.
t

2.1.5 Early Orbit Determination Program 1
]

The Early Orbit Determination Program is designed to determine approxi-
mately an initial estimate of an earth orbit when there is no a priori e_timate
available to start a differential correction process. The program provides three
methods for doing this: (1) the Gauss Method, (2) the Double r-iteration Method,
and (3) the Range and Angles Method.

_J

2.1.6 Data Simulation Program _1

The Data Simulation Program computes simulated observations of a space-

craft from specified ground tracking sites. The simulated data are generated
for specified observation intervals and sampling frequencies. The program also i
Ires the capability to simulate attitude sensor measurements. Optionally, random
and bias errors can be added to the observations. Observations can also be

t modified to account for the effects of atmospheric refraction, antenna mounterrors, tran_)onder delays, and signal propagation time delays.

2.1o7 Error Analysis Program _'

The GTDS Error Analysis Program provides the capability of analyzing the ,
_. effect of tracking error uncertainties, solve-for vector uncertainties, and con-

sider parameter uncertainties associated with a specified orbit and station-

_' dependent tracking schedule. Since the Error Analysis Program functions are
• similar to those performed in the Differential Correction and Data Simulation :

programs, these programs share common mathematical processing subroutines,
input processors, and data management options. The Error Analysis Program
features which are common to the Differential Correction and Da.ta Simulation

programs include the use of a tracking sch_;dule, selection of tracking stations,
select.ion of obsem ation measurement types, specification of observation standard

deviations and weights, and specification of the a priori state co,,ariance matrix.
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Extended Kalman Filter (EKF), the Modified Extended Kalman Filter (MEKF), 
the Jazwinski Filter (JF), and the Modified Jazwinsld Filter (I.IJF). These 
sequential filters differentially correct (update) the satellite state recursively 
at each observation point processed. As a result, theae m~thods are referred 
to as sequential processing methods, in contrast to the batch processing method 
used in the Differential Correction Program. Other elements of the Filter 
Program, such as model parameters and observation handling, are the same as 
in the Differentiai Cvrrection Program. 

'>-.1.5 'Early Orbit Determination Program 

The Early Orbit Determination Program is designed to determine approxi
mately an initial estimate of an earth orbit when there is no a priori et;timate 
available to start a differential correction process. The program provides three 
methods for doing this: (1) the Gauss Method, (2) the Double r-iteration Method, 
and (3) the Range and Angles Method. 

2.1.6 Data Simulation Program 

The Data S;mulation Program computes simulated observations of a space-
craft from specified ground tracking sites. The simulated data are generated 
for specified observation intervals and sampling frequencies. The program also 
has the capability to simulate attitude sensor measurements. Optionally, random 
and bias errors can be added to the obRervations. Observations can also be 
modified to aecount for the effects of atmospheric refralJtion, antenna mount 
errors, tranflpondel' delays, and signal propagation time delays. 

2.1.1 Error Analysis Program 

Thoe GTDS Error Annlysis Program provides the capability of analyzing the 
effect of tracking error uncertainties, solve-for vector uncb:rtainties, and con
sider parameter uncertainties associated with a specified orbit and station
dependent tracking sf!hedule. Sir.ce the Error An..'llysis Program functions are 
similar to those 'Performed in the Differential Co~rection and Data Simulation 
programs, these programs share eornmon mathematical proceSSing SUb:"outines, 
input processors, and data management options. The Error Analysis Program 
features which art~ common to the Differential Correction and Data Simulation 
pl:'ograms include the use of a tracking scht"!dule, selection of tracking stations, 
select-ion of obser, ation measurement types, specification of observ:ttion standard 
deviations and weil~hts, and specification of the a priori state co>'ariance matrix. 
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_ Construction of ti:e normal matrix and the use o_ the consider mode to account

:. for the effect of con_ider parameter statistics on the covariance matrix of the
*- solve-for vector are performed in the same manner as in the Differential Cor- i
, reetion Program.

2.1.8, Data Management Program

The primary functmn of the Data Ma_,agement Program is to create working
files of data to be used by other pro_,rar.s in _TDS.

-_ 2.2 SYSTEM CAPABILITIES

' The key elements of the differential correction process are shown schematically ?

J in Fi_,ure 2-1. The chapters of this document which contain algorithms asso-
ciated with each function are indicated in this and s':cceediug figures. Both ,,
the batch and sequential modes for estimating the orbital _tatv are shown. The

_ _ use of common modules to perform key functions is basic to the GTDS structure.
For this reason, algorithms derived in this document are applicable to many _- .
areas of GTDS. As sho_n in Figure 2-1, an estimate of the orbital state at an

initial epoch must first be specified _tpriori from an independent source. 41
Observation measurements _o be pr,_cessed are retrieved fz om an observation ,_

file, and an orbit generator determi_es the satellite trajectory (position and

velocity) at times corresponding to t:m measurement sampling times. _n addi- •
; tion, at each sampling time estimate_ of the observation measurements a-e

computed as a 'mnction of the satellite trajectory.

* _ma batch mcde, this process is performed sequentially from data time to data ,

_ time, and constitutes the inner loop of _he process (see Figure 2-1). In addi- ".
,\ tion to the computed measurements, p_ rtial derivatives of the measurements :

with respect to the epoch state must be computed in the inner loop for _. ,e in the
: statistical m,gression process. Upon ccmpletion of the inner loop processing at

the measure,_ent times, _e epoch state is differentially corrected by means of

a Bayesian _eighted least square_ meth,,d. The updated epoch state is then '_sed ,_

to perform another inner loop iteration. Repeated iteration of the inner loop, cul-
, minating each time with a differential co _rection to the epoch state, constitutes the

._ outer loop. /,s the iterations proceed, tim epoch state converges to the Baye,sian .' _
' _elghted leas_ squares sotutton to the non,linear orbit determination problem. ,

In the sequential filter mode, a single loop is used to perform these measurement
: calculatio_s and partial deri_ attve calcul_tloa_, and the state and covariance _;

matrices _.re updated at'tot each measure_ aent to obtain the final state. It sl,ou td
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Construction of the normal matri'K and the use of the consiner mode to account 
for the effect of con~ider parameter statistics on the covariance matrix of the 
solve-for vector are p.:!rformed in the same manner as in the Differential Cor
rection Program. 

2.1.t! Data Management Progr8.lY' 

The primary functIon of the Data Manage11'lent Progral:l is to create working 
files of data to be used by other proF;rarus in ,}TDS. 

2.2 SYSTEM CAPABILITIES 

The key elements of the differential correction process are shown schematically 
in Fi~ure 2-1. The chapters of this document which contain algorithms asso
ciated with each functi.on are indicated in this and s '!cceeding figures. Both 
the batch and sequential modes for estima.ting the orbital Rtaw are shown. The 
use of common modules to perform key functions is baSic to the GTDS structure. 
For this reason, algorithms derived in this document are applicable to many 
areas of GTDS. As sho\l"n in Figure 2-1, an estimate of the orbital state at an 
initial epoch must first be specjfied "a priori from an independent source. 
Observation measurf:ments 1:0 be pr'lCessed are retrieved flom an observation 
fiip, and an orbit gf)nerator determines the satellite trajectory (position and 
veloci ty) at times corresponding to tIe me~.surement sampling times. In addi
tion' at each sampling time estimatel: of the observation measurements a"e 
computed as a ~Ullction of the satelliu' trajectory. 

!n a batch mede, this process is performed sequentially from data time to data 
time, and constitutes the inner loop of :he process (see Figure 2-1). In addi-
tion to the computed measurements, p~ rtial derivatives of the rneaeurements 
with respect to the epoch state must be computed in the inner loop for c' ,e in the 
statistical rf'gression process. Upon c(mpletion of the inner loop processing at 
the measure,nent ti~nes, the epoch state is differentially corrected by means of 
a Bayesian 'Weighted least squareo meth"ll. The updated (jpoch state is then '.lsed 
to perform another inner loop iteration. Hepeated iteration of the inner loop, cul
minating e:lch time with a differential co t'rection to the ,=,pnch state, constitutes the 
outer loop. As the iteratl.or.s proceed, tile epot:h state converges to the Bayt!,sinn 
weighted least squares solution to the nOltlinear orbit determinati(ln problem. 

In the sequenU,11 filter mode, a single locp is used to perform these measurement 
calculations and partial de'rh ahve calcuh':tiolls, and the st"te and covariance 
matrices ere updated ai'ter each measure, nent to obtain the final state. It sl,ou ld 

~-4 



OUTfR LooP , 
INNER LOOP 

(07FFE"RiH"n .. :- • 
~. ( o:~~~:'~ ) ._ ._~~~J~=~ 

IN""'! C1P,UL .::: • .aTl.. "1 ('OCt 
I'EAFO"," ONE··"""E 1~1T1,Io.. .. ll.;"l. 

FUNCTION IN c'HE~.(ft~'§ GUI;:~A!OP J 
-----ChmERJ- --] 

--r-

... Fo.JGINNINGo.-1 
ITERATION INITIALIZATION I 
IN EPH£MEfuS GENERATOR 

CHAPT~ 

GENERATE ORBITAL STATE 
USING EPrlEMEfUS GENERATOR 

(OBTAIN IJRtUT • PARTIAL DERIVATIVES 
AT OBSERVATION TIME! 

- ---cHiPTERS-i~ 

r--- ---- - ----, ,.----

I 
BATCH 
ItAOCE~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I l 
COfllRECT STAl[ AT t "DCH CONv'.' STATE 
• T IM[ '0,. OUTPUT 

---CHAPTER ~j -- --

NO 

L _______ _ 

LAS! 
IHIIIA.TlON 

I 

I 
I 
I 
I 
I 
I 

I SEOUENTIAL 

I FILT'iR 
PROCESS 

I 
I 
I 
I 

( A£1\ .. r:", 

'---- ---'" 

'ES 

----, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1<" I 

Figure 2-1. Schema,tic 11iagram of the Differential Correctioll Process 
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_ be noted tlmt Figure 2-1 depicts functional relationships and not the _ctual GTDS
_" structure. Within the GTDS structure, the filter mode logic is separate from the _

_ batchmod.,_ logic. ._
';

2.2.1 Trajectory Generation ' :

_. Trajectory generation is performed through integration of the orbital equ;
_, - tionb of motion in the Ephemeris Generation Program. Ephemeris generation "
: can be performed as a standalone function as shown in Figure 2-2. In addition, .

_ trajectory generation is a key element cf the differential correction: process
_* shown in Figure2-1. The analyticand numericaltheoriesavailablein GTDS '_
: are discussed in this section.

The ,_rbi_al equations of motion can be expressed most shnply it. terms of
the rec.*a_gular components of the acceleration vector acting on the satellite. :

' )_ Considerable research lu s focused on the problem of transforh,ing th_ orbita]
; equations of motion into a more desirable form. The general approach is to _

reformulate t_m equations in terms of a new set of orbital elements, to solve the ,,
* _- transformed set of equat:'ons for the value of the orbital elements at the desired .,/

time, and they to transform these elements to the desired element set (e.g.,

Cartesianor Keplerlan). _ ,_

In the general perturbations appro_.ck, _his reformulation o._the equations
of motion yields a set of equations which can be integrated ar_lytically. The
chief advantage of such trajectory generation methods is their high efficiency. _.
However, reformulation of the orbital equations such that an analytic solution

is possible usually requires some approximations. For example, in Brouwer

theory, which is a general perturbations method in GTD'_, the pert_rbction model t ;'
includes only the effects of a point mass earth and the lvw-order zonal harmonics _'_

in the gravitational potential. For the generation of satellite trajectories for _

-. which theseare thedominant perturbations,Brouwer theoryissufficiently
accurate.

&

Solution of the equations c f motion via numerical integration is classified as "*
a special perturbations method. The numerical integration techniques avail-
able in GTDS are discussedindeL_ilin Chapter6. In thehigh-precisionspeciat :_
perturb._ionsapproach,theperturbingacceleratmnwhich acts on timsatellite " ":

is modeled a_ accuratelyas possible.The variousperturbationmodels and , _..
numerical integrationtechniqueswhich v.reavailableinGTDS are discussedin
Chapters 4 sad 6, respectively. The chief advantage of the special perturbations 2

approach is high accuracy; however, these methods are considerably more ex- _'

pensive, in terms ofcompute, time, than the g_reral perturbation methods. _
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be noted ~13.t Figure 2-1 depicts functional relationships and not the I).ctual GTDS 
structure. Within the GTDS structure, the filter mode logic is separate from the 
batch modt~ logic. 

2.2.1 Trajectory Generation 

'Trajectory generation is performed through integration of the orbital eqw. 
tion& of motion in the Ephemeris Generation Program. Ephemeris generation 
can be performed as a standalone function as sho'\\'1l in Figure 2-2. In addition, 
trajectory generation is a key element cf the differential correctiol: prOC9SS 
shown in Figure 2-1. The analytic a.nd numerical theories available in GTDS 
are discussed in this section. 

The :lrbi~al equation~ of motion can be expressed most shnply it: terms of 
the rect~Dgular components of the acce~eration vector acting on the satellite. 
Considerable research lu s focused on the problem of transforIaing tho:: orbita1 
equations oi motion into a more desirable f(}rm. The general approach is to 
reft)rmulate tile equations in terms of a new set of orbital eleme::'!ts, to solve the 
tranflformed set of equat:ons for the value of the orbital elembnts at !;he desired 
time, and then to transform these elements to the deSired element set (e.g., 
CarteSian or Keplerian). 

In the general p£:rturoations approR,ch, thIS reformulation O,r the equations 
of motion yields a set of tlquations which can be integrated ar..alytically. ~i'he 

chief advantage of such trajectory generation methods is tileir high efficiency. 
However, reformulation of the orbital equatious such that an analytic solution 
is possiblE' usually requires some approximations. For example, in Brouwer 
theory, which is a general perturbations method in GTD-J, the pert'lrbc.tion model 
includes only the effects of a point mass earth and the IvV/-order zonal harmonics 
in the gravitational potential. For the generation of satellite trajectories for 
which theE:e are the dominant pf rtul'bations, Brouwer theory is sufficiently 
accurate. 

Solution of the equations (' f motion via numerical integration 1s classified as 
a special }.:erturbaUons method. The nu.nerica! integration techniques avail
able in GTDS are discus~ed in deUiil in Chapter 6. In the high-precision specia! 
perturb:ltions approach, the perturbing :lcceleration which acts on the satellite 
is motleled aa accurately as possible. The various perturbation models and 
numerical integration techniques which J.re available in GTDS are discussed in 
Chapters 4 o.1d 6, respectively. The chief ~dvantage of the special perturbations 
approach is hi8h accuracy; however t these methods are considerably more ex
pensive, in terms of compuk.. time, than the ganeral perturbation methods. 
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: N,,merieal integration of the orbital equations expressed in terms of the Cartesian
_ component5 of the acceleration vector acting on the satellite is called the Cowell

Method. In both the Variation of Parameters (VOP) and htermed_ate Orbit ap-
proaches, the Cowell equations of motion are reformulated to obtain equations

_ that are better conditioned for numerical integration. In the VOP approach, a i
transformation i,,"made to a set of orbital elements which provide aa exact solu-
tio,a to the two-body problem. The orbital equations expressed in terms of these

: eiemeuts incluue variations in orbital elements arising only from the perturbing
" • acceleration vector, i.e., the point mass effects or the earth are integrated ex-
_ actly. In _ases where inaccurate numerical integratiot._ of the point mass gravi-
_ tational effect of the earth is a significant error soucce (e. g., geosynchro_ous1

orbits), VOP methods are superior to the Cowell Method.

In the Iutermediate Orbit approach, aa approximate solution obtained by an
! analytic theory is used as a reference solution, and the time rate-of-change of :

the difference between the true solution and this reference s6tution is numerically
' integrated to _b_in an improved solution. Intermediate Orbit methods can be :

deve!oped for any analytic theory; however, only two Intermediate Orbit me_ods
have been considered for implementation in GTDS. The first is the Brouwer

..: _ _ Intermediate Orbit with only first-order short-period terms due to J2 or with _'/'
the first-order short- and long-period terms and second-order secular terms

due t_ J2. The second method is a similar orbit de-¢e]oped using Poincare var- _ ]
: iables so that orbits of low ec_enfficity and low inclination can be considered.

The Intermediate Orbit approach should be optima! mr an orbit for which numer-

_, ic_l inaccuracies in the integration of the elemen_ rates arising from two-body

or J2 effects are a major error source. The major drawback of both the VOP '
and I_mrmediate @rbit approaches is the computational cost associated with the i

_*_tuired transformation cf the orbital eleme_ts to and from the Cartesian state i
vector, i .

; . Fixed-step numer;cal integration is inefficient for the computation of highly
"_. eccentric orbits (i.e., eccentricity greater than 0.1) if time is used as the inde- "

pendent variable. For such applications, an automatic mechanism is required _,

to force a small stepsize in the region of larger perturbations and a large step-
size in the region of small perturbations. A variable-stepsize option is avail-

: able in GTDS; h_wever, stepsize changes are costly and frequently introduce
errors. Therefore, an alternative analytic stepsize control me,_h,mism is also

available. In this procedure, the equation_ of motion are refcrmulated in terms J
of a new independent variable s instead of time t, such that

ds _--1 dt (2-1)
r n
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NI!:a1erical integration of the orbital e~uations expressed in tenns of the Cartesian 
component.3 of the acceleration ve<.:tor acting on the satellite is called the Cowell 
Method. In both the Variation (If Pammeters (VO?) and Illt€rmed~ate Orbit ap
proaches' the Cowell equati(lns of I11otion are refonnulated to obtain equations 
that are better conditioned for numerical integI'fti.on. In the VOP approach, a 
transformation h' made to a set of orbital elements which provide an exact solu
tion to the two-body problem. The orbital equations expressed in terms of these 
elements incluae variations in orbital elements arising only from the perturbing 
accelerc1tion vector, i. e., the point mass effects of the earth are integrated ex
actly. In ~ases where inaccurate numerical integration of the point mass gravi
tational effect of the earth is a Significant error source {e. g., geosyn<.:hronous 
orbits), VOP methcds are superior to the Cowell Method. 

In the Intermediate Orbit approach, all approximate solution obtained by an 
analytic theory is llsed as a reference solution, and the ti..'lle rate-of-change of 
the difference between the true solution and this referetlCe solutiol1 is numerically 
integrated to "Ibtin an improved solu.tion. Intermediate Orbit m~thods can be 
deve!oped for any analytic theo-r:'Y; however, only two Intermediate Orbit methods 
hava been considered for implemen~l.tion in GTDS. T1:e first is the BrOllwer 
Intermediate Orbit with only first-order short-period terms due to J2 or with 
the first-order short- and long-period terms and second-order el'.lcular terms 
due t') J 2 • The second method is a similar orbit dWv'eJoped us~ng Poincare var
iables so that orbits of low ec .... entricity and low inciinatio!1 can be eonsidered. 
The Intermediate Orbit approach llhould be optima! lor an orbit for which numer
iC'll inacl:uracies in the integration of the element rates arising from two-body 
vr J 2 effec~s are a major error source. The majOl' drawback of both thp. VOl> 
and Inrermediate Orbit approaches is the computational cost associated with the 
r".:quired transformation ci the orbital elemel1ts to and from the CarteSian state 
vector. 

Fixed-step numerical integration is inefficient for the computation of highly 
eccentric orbits (Le., eccentricity greater than 0.1) if time is used as the inde
pendent variable. For such applications, an automatic mechanism is requ\red 
to force a small stepsize in the region of larger perturbations and a large step
size in the region of small perturbations. A val:'iable-stepsize option is avail
able in GTDS; h::>wever, stepsize changes are costly and frequently introduce 
errors. Therefore, an alternative analytic stepsize control mp-did.nism is also 
available. In this procedure, the equationr of motion are refcrmulated in terms 
of a new independent variable s instead of time t, such that 

-
1 dsoc- dt 
r" 
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"_. where r is file magnitude of the satellite's position vector. Th_ effect of this I
,i

._ transformation is to "regularize" the independent variable so that fixed steps i• in s correspond to variable steps in t that are smaller when r is small (i.e., i :_

where the perturbations are usually larger) and larger when r is large, i f

Several regularized trajectory generation methods are currently implemented ! :
- in GTDS. The Time-Regularized Cowell Method was developed by reformu- !

"_ lating the Cowell orbital equations in terms of the independent varmble s (with } :

n = 3/2 as the default value) in Equation (2-1). The Kustaanheimo-Stiefel (KS) i -

"_: Method is a regularized VOP formulation whicL uses the eccentric anoumly
!

as the independent variable (n = 1 in Equation (2-1)). The Delaunay-Similar 1
(DS) Method is a regulprized VOP _ormulation in which the true anomaly is ;

: used as the independent variable (n = 2 in Equatlon (2-1)). This form of ann- }
iytic stepslze control works well when the forces vary inversely with distance _,

.,;_! from the central body. The DS approach has the strongest regularization, fol-
lowed by the Time-Re_larized Cowell, and then the KS Method. The chief dis- i
advantage of the regularized methods is that they require numerical integration

of an additional equation, the time equation. For orbits with low eccentrici_ i
(i.e., less than 0.1), analytic stapsize control is not needed and the error intro.- _

_,., duced by numerical integration of the time equation may eve1, degrade the solution. _*>" :.

_ I Special perturbation methods are also included ia GTDS for generation of a mean : ;
:_, trajectory, representing only the long-term evolution of the orbit. Numer-
-_,-' ical averaging is one such long-term orbit prediction method in GTDS. The , •

numerical a:,eraging method is a VOP approach in which the short-periodic per- : ,
r/ turbing effects are numerically averaged out of the equations of motion, leaving _

-,_(_ only the long-term motion to be integratecl. The cost of each integration step is .,
_:;: high, but is usually far outweighed by th_ large stepsizes that are possible i_ the

._: integration of tbe averaged dynamics. The averaged prediction model is most i :_
•:_:: efficient for applications where knowledge of the short-period perturbations is
.v. not required (e.g., mission analysis or prediction of tracking station acquisition i t

_, times) or where the cost of numerically integrating the precision equations of i

_ motion is prohibitively high (e.g.: determination of gravitational models from ,
_, large amounts of tracking data). : ,,

_?: 2.2.£ Observation Modehng ,i '

'_: Observation measurements provide the means by which the estimate of the or- } '

bit of a spacecraft is compared with its true flight. The orbit estimate is ex-
_.., pressed in terms of the conceptual abstractions of position, velocity, and time, _ ,_.

...._'_ whereas the observations may involve measurements of some physical property ! F

:_'_ of electromagnetic wave propagations between the tracking station and the ,
i {_:_,:_ _
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where r is the magnitude of tile satallite's position vector. Th" effect of this 
transformation is to "regularize" the independent variable '30 that fixed steps 
in s correspond to variable steps in t that are smaller when r is small (i.e., 
where the perturbations are usually larger) and larger when r is large. 

Several regularized trajectory gencration methods are currently implemented 
in GTDS. The Time-Reguhl.rjzed Cowell Method was developed by reformu
lating the Cowell orbital equations in terms of the independent varIable b (with 
n = 3/2 as the default value) ia Equation (2-1). The Kustaanheimc-Stiefel (KS) 
Method is a regularized VOP iorrr.ulation whici.. uses the eccentric ano\..laly 
as the indepeudent variable (n = 1 in Equation (2-1». The Delaunay-Similar 
(DS) Method is a regul2L'ized VOP formulaiion in which the true anomaly is 
used as the independent variable (n = 2 in Equat.i.on (2-1». This f('rm of ana-
lytic stepsi.ze control works well when the forcts vary inversely with distance 
from the central body, The OS approach has the Etrongest regularization, fol
lowed by the Time-Regularized Cowell, and then the KS Metliod. The chief dis
advantage of the regularizp.d methods is that they require numerical integl'ation 
of an additional equation, the time equation. For orbits with low eccentricity 
(i.e., less than 0.1), analytic st~psize control id not needed and the error intro·
duced by nu..'llerical integration of the time equation may eveh degrade the solution. 

Special perturbation methods are also included itl GTDS for generation of ~ r.1ean 
trajectory, representing only the long-term evolution of the orbit. Numer-
ical averaging is one such long-term orbit prediction method in GTOS. The 
numerical ~. ',reraging method is a VOP approach in which the short-periodic per
tur"'ing effects are numerically averaged out of the equations of motion, leavir.g 
only the long-term motion to be integrated. The cost of each integration step is 
high, but is usually far outweighed by the large stepsizes that are possible i~ the 
integration of the averaged dynamics. The averaged predidion model is most 
efficient for applications where knowledge of the short-period perturbations is 
not required (e.g., mission analysis or prediction of tracking station acquisition 
times) or where the cost of numerically ir.tegrating the precision equations of 
motion is prohibitively high (e.g., determination of gravitational models from 
large amounts of tracking data). 

2.2S. Observation ModelIng 

Observation measurements provide the means by which the estimate of the or
bit of a spacecraft 1s compared with its true flight. The orhit estimate is ex
pressed in terms of the conceptual abstractions of position, velocity, and time, 
whereas the observations may involve measurements of some physical property 
of electromagnetic wave propagations between the tracking station and the 
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spacecraft. The propagation measurements aze selected such that they can be
easily related (via theoretical postulates) to the spacecraft state. This process
of analytically relating the measurement quantities to the spacecraft state is o

referred to as "observation modeling" and is vitally important to the accuracy __
' _ of the orbit estimate.

]

.- The observation models J_ GTDS ar_ employed in the differential correction :.
and data simulation processes, and, as shown in Figure 2-1, the algorithms are

':' "i presented in Chapter 7. The relationship cf these models to the GTDS Data
Simulation Program is shown in Figure 2-3.

- 2.2.2.1 Observation Types

GTDS provides for the processing of the following types of observations:

; 7 • Goddard Range and Range-Ra_ (GRARR) radar c'_'R (including the _
antenna X and Y gimbal angles)

_, • C-Band radar range, azimuth, and elevation data ,,

• Minitrack interferometer direction cosine data *

: • Unified S-Band (USB) radar propagation time delay, Doppler shift,
and X and Y gimbal angle data _'J

• Satellite-to-Satellite Tracldng (SST) propagation time delay and Doppler i _
shift data "

i 2.2.2.2 Data Preprocessing

! Before introduction into GTDS, data from the GRARR, C-Band, and Minitrack .

: ',_. systems undergo considerable preprocessing to convert frora measured quan-
• tities to estimates of the spacecraft state components relative to the track- :

ing station. The preprocessix;g of observation data is normally done by means
of a compt:ter program completely independent of GTD% Raw data are converted

! from the form received from the tracking stations to forms suitable for storage
: in the data base and for use in GTDS. Wild points are edited out, calibration ,:
; corrections are applied to eliminate known instrumentation errors, ambiguities ,

_n the data measurement and/or recording are resolved, conversions are made ,_
lrom the measurement units to units which are more phys;cally meaningful or

: convenient, and the data are optionally smoothed and possibly compacted if large
amounts of raw data are measured,

i .; r _
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spacecraft. The propagation measurements ale selected such that they can be 
easily related (via theoretical postulates) to the spacecraft state. This process 
of analyticaUy relating the measurement quantitie3 to the spacecraft state is 
referred to as "observation modeling" and is vitally important to the accuracy 
of the orbit estimate. 

The observation models jn GTDS ar3 employed in the differential correction 
and data simulation processes, and, as shown in Figure 2-1, the algorithms are 
presented in Chapter 7. The relationship cf these models to the GTDS Data 
Simulation Program is shown in Figure 2-3. 

2.2.2.1 Observation Types 

GTDS provides for the proceSSing of the following types of observations: 

• Goddard Range and Range-Rate (GRARR) radar c'~"'l (including the 
antenna X and Y gimbal angles) 

• C-Band radar range, azimuth, and elevation data 

• Minitrack interferometer direction cosine data 

• Unified 8-Band (USB) radar p:oopa.gation time delay, Doppler shift, 
and X and Y gimbal angle data 

• Satellite-to-Satellite Tracking (SST) propagat;on time delay and Doppler 
shift data 

2.2.2.2 Data Preprocessing 

Before introduction into GTDS, data from the GRARR, C-Band, and Minitrack 
systems undergo considt-rable preprocessing to convert from measured quan
tities to estimates of the spacecraft stat~ components relative to the track
ing station. The preprocessir .. g of observation data is normally dOlie by means 
of a computer program completely independent of GTDS. Raw data are converted 
from the form received from the tracking stations to forms suitable for storage 
in the data base and for use in GTDS. Wild points are edited out, cali oration 
corrections are applied to eliminate known instrumentation errors, ambiguities 
lin the data measurement and/or recording are resolved, conversions are made 
from the measurement uuits to units which are more phys~cally meaningful or 
convenient, and the data are optionally smoothed and possibly compacted if large 
amounts of raw data are measured. 
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More specifically, this preprocessing includes:

_ • Two-way propagation time delay conTersion to approximate one-way

(instantaneous) relative ranges

• Doppler-plus-bias cycle count conversion to approximate one-way

(instantaneous) relative range rate

• C-Band radar gimbal angle conversion to line-of-sight azimuth and
" elevation angles

• Minitrack interferometer frac*_onal phase count augn_entation with
whole cycle counts to reRolve ambiguities, and conversion into line-
of-sight direction cosines relative to t.he station e st-west and north-

: south baselines

The modeling within GTDS is thus greatly simplified. It is only necessary

: ,] to compute the apprepriate quantity from the relative position vector between
i the tracking station and the spacecraft in local tangent coordinates.

_., The minimal preprocessing of USB and SST data consists of simple reformatting /"
,- and c_nversion of reference frequency cycle counts to time intervals. "Y

2.2.2.3 Observation Models

! The GTDS observation modeling requires rigorous iterative solut'.ons for the
two-way USB propagation paths and for the round-trip propagation path from
the ground radar to the synchronous relay satellite to the target satellite and

back for SST. These finite speed propagation paths are computed as straight
lines in inertml coordinates. A round-trip circuit represents the modeling of
the "range" time delay measurement, and two round-trip circuits are necessary

'_. t_ model the Doppler measurem_.uts in terms of the round-trip light time differ-
ence. The USB Doppler measurement is implemented as a nondestruct count,
whereas th_ 8ST measurement is implemented in the form of e;ther a destruct

i or a nondestruct count.

All of these observation models assume vacuum propagation of the electro-

magnetic wave. Corrections to the actual observations are computed for the
refraction effects due to the presence of the atmosphere {the nondispersive

s

troposphere and the dispersive ionosphere). In addition, other corrections to
the observations are estimated for tracking antenna location error_ and space-
craft transponder delay characteristio.s. I

t

- i
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More specifically, this preprocessing includes: 

• Two-way propagation time delay conversion to approximate one-way 
(instantaneous) relative ranges 

• Doppler-plus-bias cycle count conversion to approximate one-way 
(instantaneous) relative range rate 

• C-Band radar gimbal angle convert>ion to line-of-sight azimuth and 
elevation angles 

• Minitrack interferometer fracHonal phase cQunt augn"entation with 
whole cycle counts to resolve aiubiguities, and conversion into line
of-sight direction cosines relative to the st9.tion f' st-west and north
south baselines 

The modeling within GTDS is thus greatly simplified. It is only necessary 
to compute the apprcpriate quantity from the relative pOSition vector between 
the tracking station and the spacecraft in local tangent coo-:dinates. 

The minimai preproceSSing of USB and SST data consists of simple reformattint;; 
and c,)nversion of reference frequency cycle counts to time intervals. 

2.2.2.3 Observation Models 

The GTDS observation modeling requires rigorous iterative solut'.ons for the 
two-way USB propagation paths and for the rOund-trip propagation path from 
the ground radar to the synchronous relay satellite to the target satellite and 
lack for SST. These finite speed propagation paths are computed as straight 
lines in incrtlal coordinates. A round-trip circuit represents the modeling of 
the "range" time delay measurement, ann. two round-trip circuits are necessary 
t:> model the Doppler meaSUrern01.1ts in terms of the round-trip light time differ
ence. The USB Doppler measurement is implemented as a nondestruct count, 
whereas th~ SST measurement is implemented in the form of either a destruct 
or a nondestruct count. 

All of these observation models assume vacuum proragation of the electro
magnetic wave. Corrections to the actual observations are computed for the 
refraction effects due to the presence of the atmosphere (the nondispersive 
troposphere and the dispersive ionosphere). In addition, other corrections to 
the observations are estimated for tracking antenna location errors and space
craft transponder deiay characteriBti~s. 

2-12 



I Ii

r

#

2; "

L I .:
, The modeling of the observations also includes the calculation of the partial

..7 _ "

derivatives with respect to the solve-for and consider variables. Variations of i :
-; all the variables except two, the tracking station locations and the tracking data _ :

_ _
-_ biases, result in changes in the estimate of the spacecraft orbit. For the re- i :

maining variables, the partial derivatives of the observations are computed in ! :t
terms of variations of the spacecraft state at the time of the tracking signal

_:_ turnaround. This variation with respect to the local state is then related back _

_: to the epoch time via the appropriate elements of the state transition matrix, t .

_" This matrix maps changes inthe initialstatevectorcomponents intochanges

" in spacecraft state components at any subsequent time of interest. Elements lof this state transition matrix are calculated by numerical integration of the

variational equations associated with the trajectory, i :

_ 2.2.3 Estimation Techniques i

"_ As statedin Section2.i.i, the primary estimationalgorithmavailablein GTDS
.;;;| is cvlled the weighted least squares with a priori or Bayesian weighted least

_i squaresalgorithm(seeChapter 8). This algorithmminimizes the sum ofthe . ,,i#S

"_ squaresof theweightedresidualsbetween actualand computed observations, ._.. _,
_._ whilesimultaneouslyconstrainingthestateto satisfyan a prioristateto with-

_- _ in _ specified uncertainty. The iterative estimation process differentiallv
_ correctstheestimatedvariablesand ultimatelydeterminestheweightedleast

squares solution.Both first-and second-orderstatistics(i.e. themean and

_. covariancematrices)are determinedfortheestimatedvariables.

_: A second method available in GTDS is the Extended Kalman Filter (EKF) s,_-

_; quentialestimator(seeChapter 8). Severalfeatureshave been incorporated
_, to prevent divergence due to model ecrors in the dynamics or measurements.
,_,:, These vary from artifically constraining the covariance gain to using adaptive
•_' techniques.

,_. Two classesof variablescan be accommodated inthe statisticalcomputations. ,
_:SI The firstclass,calledsolve-forvariables,includesmodel parameters whose
..ii_,_ valuesare known withlimitedcertaintyand are beingestimated. The second

:__, class,'calledconsidervariables,includesmodel parameters which are not
_}_ beingestimated,butwhose uncertaintywillaffectthe statisticsofthe solve-

for variables. Model parameters v hich can be included in either the solve-for
_: or consider classes include the following. _ ,

,,_- • Positionand velocitycomponents of thespacecraftinCartesian,

_, Keplerian, or spherical coordinates

• Atmospheric drag parameters

_t,% D
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The modeling of the observations also includes the calculation of the partial 
derivatives with respect to the solve-for and conSider variables. Variations of 
all the variables except two, the tracking station locations and the tracking data 
biases, result in changes in the estimate of the spacecraft orbit. For the re
maining variables, the partial derivatives of the observations are computed in 
terms of variations of the spacecraft state at the time of the tracking signal 
turnaround. This variation with respect to the iocal state is then related back 
to the epoch time via the apPl.'opriate elements of the state transition matrix. 
This matrix maps changes in the initial state vector components into changes 
in spacecraft state components at any subsequent time of interest. Elements 
of this state transition matrix are calculated by numerical integration of the 
variational equations associated with the trajectory. 

2.2.3 Estimation Techniques 

As stai~d in Section 2.1.1, the primary estimation algorithm available in GTDS 
is called the weighted leaat squares with a priori or Bayesian weighted least 
squ~.res algorithm (see Chapter 8). This algorithm minimizes the sum of the 
squares of the weighted residuals between actual and computed observations, 
while simultaneously constraining the state to satisfy an a priori state to with
in a specified uncertainty. The iterative estimation process differentially 
corrects the estimated variables and ultimately determines the weighted least 
squares solution. Both first- and second-order statistics (i. e., the mean and 
covariance matrices) are determined for the estimated variables. 

A second method available in GTDS is the Extended Kalman Filter (EKF) se
quential estimator (see Chapter 8). Several features have been incorporated 
to prevent divergence due to model errors in the dynamics or measurf'ments. 
These vary from artifically constraining the covariance gain to using adaptive 
techniques. 

Two classes of variables can be accommodated in the statistical computations. 
The first class, called solve-for variables, includes model parameters whose 
values are knC'wn with limited certainty and are being estimated. The second 
class, called consider variables, includes model parameters which are not 
being estimated, but whose uncertainty will affect the statistics of the sol ve w ' 

for variables. Model parameters "hich can be included in either the solve-for 
or consider classes include the following: 

• Position and velocity components of the spacecraft in CarteSian, 
Keplerian, or spherical coordinates 

• Atmospheric drag parameters 
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! • Solar radiation pressure parameter

• Gravitational potential coefficients

• Thrust parameters

• Tracking station locations

• Observation biases

Specified subsets of the spacecraft position a_d velocity components can option-
ally be estimated in mean of 1950. 0 o_"true of date inertial Cartesian coord-

: inates, classical orbital elements, _,pherical coordinates, or Definitive Orbit

Determination System (DODS) type elements (Reference 1).

GTDS can also operate in an error analysis mode, wherein only the covariance

matrix of the solve-for variables is differentially corrected and propagated

• y through the process. The error analysis process, shown in Figure 2-4, relies
_ heavily on functions in the differential correction process, such as the computa-

tion of observations and the update of the normal matrix. The solve-for variables
are unchanged from their a priori specified values. In this mode, only the un- /J
certainties of the tracking data, not the data, are required. This mode permits "_

simulation and analysis of the uncertainties resvlting from the estimation process

prior to mission operations. _

2.2.4 Early Orbit Determination

Occasionally, a priori state value estimates of sufficient accuracy to yield con-
vergence of the iterative process are unavailable, as when mission aL_omalies
occur and preflight e_timates of the state are no longer valid. For such cases,
GTDS has the capability of rapidly determining approximations of the spacecraft's
position and velocity, from a limited amount of early tracking data. These approx-
imations provide s_rter values for the differential correction process.

Three early orbit approximation methods, described in Chapter 9, are available
in GTDS. These methods are: (1) the Gauss Method, (2) the Double r-Iteration
Method, and (3) the Range and Angles Method. The Gauss and Double r-Iteration

Methods use three sets of radar gimbal angle observations to determine the state /
vector. The Range and Angles Method uses multiple sets of radar range and s

gimhal angle data to obtain the state vector.

$
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• Solar radiation pressure parameter 

• Gravitational potential coefficients 

• Thrust parameters 

• Tracking station locations 

• Observation biases 

Specified subsets of the spa~ecraft position and velocity components can option
ally be estimated in mean of 1950. 0 0:"" true of date inertial Cartesian coord
inates, classical orbital elements, f,pherical coordinates, or Definitive Orbit 
Determination System (DODS) type elements (Reference 1). 

GTDS can also operate in an error analysis mode, wherein only the covariance 
matrix of the solve-for variables is differentially corrected and propagated 
through the process. The error analysis process, shown in Figure 2-4, relies 
heavily on functions in the differential correction process, such as the computa
tion of observations and the update of the normal matrix. The solve-for variables 
are unchanged from their a priori specified values. In this mode, only the un
certainties of the tracking data, not the data, are required. This mode per:mits 
simulation and analysis of the uncertainties resl1 lting from the estimation process 
prior to mission operations. 

2.2.4 Early Orbit Determination 

OccaSionally, a prio:ri state value estimates of sufficient accuracy to yield con
vergence of the iterative process are unavailable, as when mission anomalies 
occur and preflight e~timates of the state are no longer valid. For such cases, 
GTDS has the capability of rapidly determining approximations of the spacecraft's 
position and velocit~' trom a limited amount of early tracking data. These approx
)mations provide S',\B.rter values for the differential correction process. 

Three t::Rrly orbit :::'ilproximation methods, described in Chapter 9, are available 
in GTDS. These methods are: (1) the Gauss Method, (2) the Double r-Iteration 
Method, and (3) the Range and Angles Method. The Gauss and Double r-Iteration 
Methods use three sets of radar gimbal angle observations to determine the state 
vector. The Range and Angles Method uses multiple sets of radar range and 
gimbal angle data to obtain the state vector. 
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2.2.5 Optional Modes of Operation _i

/

Each of the programs which make up GTDS can be utilized in a number of dif-
, ferent modes, depending on the needs of the user.

I "_

, The Ephemeris Generation Program can be used to propagate a vehicle state i

from a given epoch to some specified time. This program is useful for several
purposes: :_

!! • To generate a spacecraft ephemeris report on the online printer

• To generate a spacecraft ephemeris tape in either the ORBIT, EPEEM, •
or ORB1 (for Cowell integration only) format

• To perform vehicle lifetime studies

• To generate state partial derivatives over a given time span

i The Differential Correction Program employs a Bayesian weighted least squares _,
: algorithm to estimate vehicle state, various force model parameters, and non-

: ; dynamic parameters such as station locations and observation biases. The :
Differential Correction Program uses the Ephemeris Generation Program with /_'_
any of the available orbit theories to satisfy integration requirements. The Dtf- "_
ferential Correction Program can also be used to: '_

• Determine a definitive orbit during near real-time operational mission
support or during postflight support

• Determine better estimates of the harmonic coefficients, the coefficient
of drag, the solar radiation constant, etc.

• Save the results of a differential correction in the form of updated ele- _
ments on an elements file or an orbit history on an ORB1, EPHEM, or
ORBIT File _ -_

The Data Simulation Program is designed to compute simulated observations _:

at a specified frequency for given sets of tracking stations and observation in- ,:!
tervals. The program can create observational daia in either the DODS or

GTDS format. Simulated data are useful for controlled tests which require=
that the data conform to certain criteria (e.g., particu|ar force model, biases,
or corrections for particular portions of the orbit). The Data Simulation Pro-

gram aP"ws the observation tracking schedule to be specified in one of the four / i
followi_ orms:

• Periodic detailed schedule

• Spacecraft 1_ ss ,_
• Function of special events
• Function of times on actual observation tape

2-16
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2.2.5 Optional Modes of Operation 

Each of the programs which make up GTDS can be utilized in a number of dif
ferent modes, depending on the needs of the user. 

The Ephemeris Generation Program can be used t.o propagate a vehicle state 
from a given epoch to some specified time. This program is useful for several 
purposes: 

• To generate a spacecraft ephemeris report on the online printer 

• To generate a spacecraft ephemeris tape in either the ORBIT, EPI~EM, 
or ORBl (for Cowell integration only) format 

• To perform vehicle lifetime studies 

• To generate state partial derivatives over a given time span 

The Differential Correction Program employs a Bayesian weighted least squares 
algorithm to estimate ve11icle state, various force model parameters, and 000-

dynamic parameters such as station locations and observation biases. The 
Differential Correction Program uses the Ephemeris Generation Program with 
any of the available orbit theories to satisfy integration requirements. The Dif
ferential Correction Program can also be used to: 

• Determine a definitive orbit during near real-time operational mission 
support or during postflight support 

• Determine better estimates of the harmonic coefficiE'nts, the coefficient 
of drag, the solar radiation constant, etc. 

• Save the results of a differential correction in the form of updated ele-
ments on an elements file or an orbit history on an ORBl, EPHEM. or 
ORBIT File 

The Data Simulation Program is designed to compute simulated observations 
at a specified frequency for given sets of tracking stations and observation in
tervals. The program can create observational dahl in either the DODS or 
GTDS format. Simulated data are useful for controlled tests which requirt: 
that tile data conform to certain criteria (e.g., particular force model, biases, 
or corrections for particular portions of the orbit). The JAta Simulation Pro
gram aP"'ws the observation trackmg Achedule to be specified in one of the four 
followt> nrms: 

~ Periodic detailed schedule 
• Spacecraft p8 ss 
• Function of svecial events 
• Function of times on actual observatioTl tape 
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0
The Data Simulation Program also provides for random and bias errors in

the _,omputed observations as well as the effects of atmospheric refraction,
antenna mount errors, transponder delays, and light time. it uses the same
modeling algorithms employed by the Differential Correction Program and da'ta
from the GTDS ORBIT File to compute observations. .,

i

The Error Analysis Program provides the capability to perform anPlysis of

tracking errors for an arbitrary orbit, given the stati,_n-dependent tracking seb_-
: dule and other scheduling information. The program provideP, a variety of sta- _
: tistical output reports, including the following:

• The epoch covariance matrix and correlation coefficients associated +

with P.n entir_ tracking span, and standard deviations ass-)ciated with
elements and solve-for parameters in various coordinate systems.

+ Sensitivity information about the consider parameters and the noise
effect on the epoch state is also available.

+ • The user may optionally request that the epoch covariauce matrix and
sensitivity matrix be mapped _:orequested times. Trajectory standard
deviations and the root sum sqaare of position and velocity sigmas are

+ provided at each mapping time. At the last mapping time, the covariance /
matrix and associated correlation coefficients are also printed. "_

d

B The Error Analysis Program uses the Data Simulation Program tracking
_ schedule_ the differential correction matrix accumulation, and data from the

_t GTDS ORBIT File to construct the requ.red statistical matrices.
_:_

_:: 2.3 SPACECRAFT DYNAMICS

In order to accommodate the varying reouirements at GSFC in near-earth,

:. lunar, and interplanetary mission analysis, the GTDS dynamic model includes

_+ the following ._cceleration bou,'ces:

*' • N-Body Point Mass Gravitational Acceleratk, ns - These include all
• +

,i_! planets in the so!ar system, the sun, and the earthVs moon.

_:+ • Nonspherical Gravitational Accelerations - The nonspherical gravi-
.:: tational acceleration model allows the inclusion of up to a 21 x 21

_ potential field for the earth and moon. The _cceleration due to the
:_+ mutual nonsphecical gravitational attraction of the earth and moon
_¢_ can also be included. +

_+i. • Aerodynamic Force Accelerations - The aerodynamic force acceler-
_ model for the earth includes a dynamic atmosphere model which

'+_° D' 2-17 ,
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The Data Simulation Program also provides for random and bias enors in 
the ~omputed observations as well as the effects of atmospheric refraction, 
antenna mount errors, transponder delays, and light time. It uses the same 
modeling algorithms employed by the Differential Correction Program and datb. 
from the GTDS ORBIT File to compute observations. 

The Error Analysis Program provides the cap&.cility to perform andysis of 
tracking errors for an arbitrary orbit, given the stati..:;:!-dependent tracking scb(>
dule and other scheduling information. The program providea a variety of sta
tistical output reports, including the following: 

• The epoch covariance matrix and correlation coefficients associated 
with P.i1 entiL~ tracking span, and standard deviations ass:)ciated with 
elements and solve-for parameters in various cvordinate systems. 
Sensitivity information about the consider parameters and the noise 
effect on the epoch state is also availr:ble. 

• The user may optionally request thd the epoch covaria~ce matrix and 
sensitivity matrix be mapped w requested times. Trajectory standard 
deviations and the root sum sq"lare of position and velocity sigmas are 
provided at each mapping time. At the last mapping time, the covariance 
matrix and associated correlation coefficients are also printed. 

The Error Analysis Program uses the Data Simulation Probram tracking 
s(!hedule~ the differential correction matrix accu..."Ilulation, and data from the 
GTDS ORBIT File to construct the reql4..red statistkal matrices. 

2.3 SPACECRAFT DYNAMICS 

In order to accommodate the varying reauiremenis at GSFC in ne:.tr-earth, 
lunar, and interplanetar~' mission analysis, the GTDS dynamic mod~l includes 
the following ::;.cceleration bou"ces: 

• N-Body Point Mass Gravitational Accelerativns - These \nclude all 
planets in the solar system, the sun, and the earth's moon. 

" Nonspherical Gravitational Accelerations - The nonspherical gravi
tational acceleration model allow8 the inclusion of up to a ~1 x 21 
potential field for the earth and moon. The ~ccelet"ation due to the 
mutual nonspheI.'ical gravitational attraction of the earth and moon 
can also be included. 

• Aerodynamic Force Accelerations - The aerodynamic force acceler
ation modtJl for the earth includes a dynamic atmosphere model which 
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-_, accounts for gariations in the solar flux on the earth's upper atmosphere.

• A modified Harris-Priester model and Robert's analytical formulation of
the Jacchia (1971) mcclel are available.

_ _ • Solar Radiation Accelerations - The solar radiation model includes

shadov_ng and v_riations with distance from the sun. i
_r

_ • Attitude ContTol Syste_._ Accelerations - A generalized model is included
to account for the small accelerations resulting from the use of attitude _,

_ controlsystem_. ",

_ • Thrusting Maneuver Accelerations - A gene, ralized model is included to _,

, account for the accelerations resulting from propulsive maneuvers. :

,. • Replacement Accelerations- Provisionis made forreplacingallnon-
potential accelerations with the total acceleration measured by onboard
accelerometers. /

! -_"i The referen_.,ecoordinatesysten_fortheequationsofmotion isoptionally
; either the mean equator and equinox of 1950.0 or a true of date system at a •

_t specified epoch. Coordinate transformations acc,ount for precession, nutation,
• and polar motion of the earth's spin axis. Planetary positions are determined ,=// _.

- from a peripheral ephemeris file containing Chebyshev polynomial coefficients

derived from JPL ephe,neris data. ,_j ,

The program isprovidedwitha "flightsectioning"capability,wherein thecom-
pletetrajectoryarc can be partitionedintomultiplesubarcs. The dynamic

model options, numerical integration characteristics, and output quantities and
frequency can be suitably tailored for each subarc. The criteria for crossover
from one subarc to the next are based on either Lime or spatial conditions which
can be specified for each subarc.

,, The state transition matrix, required by th_ estimator algorithm, is obtained "

by numerically integrating the variational equations. A Cowell predictor-
corrector numerical inte_oTation algorithm is used to integrate the second order
equations of motion and associated variational equations. Automatic or semi-
automatic error control is provided by adjusting the integration stepsize by _,
using a time-regu!__r,.'zatio_ process.

Various options are provided in the dynamic models and n_meric_l integra- ,'
; tionall,rithmstogivetheversatilitytoaccommodate bothhigh-speednear , !

real-time applications and precision postflight applications.
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accounts for variations in the solar flux on the earth's upper atmosphere. 
A modified Harris-Priester model and Robert's analytit:lal formulaticn of 
the Jacchia (1971) medel are available. 

• Solar Radiation Accelerations - The solar radiation model includes 
shadowing and vcl-riations with distance from the sun. 

• Attitude ContI'ol Systei~ AcceleratiC'ns - A generalized model is included 
to account for the small a(;~~leraUons resulting from the use of attitude 
control systemag. 

• Thrusting Maneuver Accelerations - A gen6ralized model is included to 
account for the accelerations resulting from propulsive maneuvers. 

• Replacement Accelerations - Provision is made for replacing all non
potential accelerationa with the total acceleration measured by onboard 
accelerometers. 

The referent:e coordinate systaIl1 for the equations of motion is optionally 
either the mean equator and equinox of 1950.0 or a true of date syatnm at a 
specified epocL Coordinate transformations account for preceSSion, nutation, 
and polar motion of the earth's spin axis. Planetary positions are determined 

• from a peripheral ephemeriS file containing Chebyshev polynomial coeffiCients 
derived from JPL ephel~eris data. 

The program is providcf.1 with a "flight sectioning" capability, wherein the com
plete trajectoi.'y arc can be partitioned into multiple subares. The dynamic 
model options, numerical integration characteristics, and output quantities and 
frequency can be suitably tailored for each subarc. The criteria for crossover 
from one subarc to the next are based on either time 01' spatial conditions which 
can be specified for each subare. 

The state transition matrix, required by th~ estimator algorithm, is obtained 
by numerically integrating the variational equations. A Cowell predictor
corrector numerical integration algorithm is ulded to integrate the second order 
equations of motion and associated variational equations. Automatic or semi
automatic error control is provided by adjusting the integration stepsize by 
using a time-regularizution process. 

Various options are provided in the dynamic models and numerical integra
tion al[ 'rithms to give the versatility to accommodate both high-speed near 
real-time applications and precision pl)stfli",ht applicadons. 
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_ 2.4 NEAR REAL-TIME OPERATION AND P_, IrLtGHT PROCESSING

-_. To p,'t, vidc vperational support, GTDS includes a near real-time capability with
_ interactive graphics report and control facilities. The interactive capabilities

allow the user to edit individual data point, based on grapaicaI displays of _heir ,
residuals; to modify iterative convergence critcria; to modify editing criteria

ff

_:. such as data time spans, processing, rates, data types, etc. ; or even to change
_., modes during a run.
,t

.... Near real-t_m._ operation usually necessi_.ates a compromise in computational

_ precis!ca compared with tb.at generally achieved during postflight processing.
_. Several options are included for this purpose. These options permit more rapid

_:_, computation without seriously jeopardizing precision, and effect orbit generator
._ type selection, model approximation, and control over the number of var_ab!es
_ being estimated or considered.

\
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2.4 NEAR REAL-TIMI: OPERATION AND PO~FLIGHT PROCESSING 

To p"'f'~i::1o operational support, GTDS includes a near real-time capability with 
interactive graphics report and control facilities. The interactive capabilities 
allow the user to edit individual data pointf basec:l on graphical displavs of their 
residuals; to modify iterative convergence criteria; to modify editing criteria 
su~h as data time spans, processing, rates, data types, etc.; or even to change 
modes during a run. 

Near real-Umo operation usually necessitates a compromise in computational 
preCiF!!Oll compared with tlw.t generally achieved during postflight processing. 
Several options are induded for this purpose. These options permit more rapid 
computation without seriously jeopardizing precision, and effect orbit generator 
type selection, model approximation, and control over the number of var;:ibles 
being estimated or consider'ed. 
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g.-- CHAPTER 3

_" COORDINATE AND TIME SYSTEMS
t

V _
The orbit deter mt_n_ion _roccss m_,_!ves measurements that are taken and forces

"_' that are modeled in several different space and time coordinate systems, This

._ chapter defines these systems and gives the necessary transformations between
_- them, i

f

_: 3.1 GENERAL COMMENTS AND DEF_ITIONS

i _-_ The GTDS coordinate systems consist of the fundamental astronomical reference
_, systems and other systems that were originally borrowed from aeronautics or

l originated from special requirements of space exploration. Requirements for !

different coordinate systems occur from the following three sources:

• input d_ta ,,
".,. • internal computations _ /_ ,<i

• ou_ut requirements,

For example, the input ephemerides of the planets are heliocentric and refer to
• the mean equator and equinox of !950.0.* The input observational data are in a
,:: tepocentric c_ordinate system. The integration is done in either geocentric,
¢.

: selenocentr.ic, planetocentric, or heliocentric rectangular coordinates referred
to the mean equator and equinox of 1950.0 or of a specified epoch. The force

- model includes t_._'ms referred to a coordinate system th_ is fixed in the rotat-

_ ing earth and terms that are referred to the moon and planets, The output ru-
_: quirements may be osculating elements with respect to the earth, moon, or

p ..... c s"_+_,_ are defined and discussed later in!- planets. These s _-_ .... _: ....
-- this chapter.

Sinoe several different coordinate systems are used in GTDS, tlv_.se systems

-, must be defined ar,:l provision must be made for transforming from ,,_e coordinate

( sysLem to anoth_,'. A coordinate system is defined by specifying the origin of the
:_ coordinates, a reference plume, and a principal direction in the reference plane.

This specification of the reference plane includes an identification of the"positive,

, or north, or outward sense along the normal to the plane. The reference plane
is an equivalence class of mutually parallel planes. For example, the equator is
defhmd to be the plane normal to the earth's axis of rotation. Usually, thie plane
contains the earth's center of mass; however, in selenocentric equatorial coordinates,

Thebeginningof the Besseliansolaryear is denotedby thenotation.Oafter theyear. The nota-
' tion 1950.0correspondsto January0.d923,1._50ephemeristime.-.For a detailedexplanatior_,seeRef-

-i D erencel, pages22, 30,and59.
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CHAPTER 3 

COORDINA TE AND TIME SYST EMS 

The or!Jit deter minat!cn process ing'JJves measurements that are taken and forces 
that are modeled in several different space and time coordinate systems. This 
chapter defines these systems and gives the necessary trmsformations between 
them. 

3.1 GENERAL COMMENTS AND DEFINITIONS 

The GTDS coordinate systems consist of the fundamental astronomical reference 
systems and other systems that were orif;inally borrowed from aeronautics or 
originated from special requirements of apace exploration. Requirements for 
different coordinate systems occur from the following three sources: 

• inPllt d1.ta 
• internal computations 
• output requirements, 

For example, the input ephemerides of the planets are hellocer.tric and refer to 
the mea."l equator and equinox of 1950.0.* The input observational data are in a 
topocentric cf'ordinate system. The integration is done in either geocentric, 
selenocentr.ic, planetocentric, or heliocentric rectangular coordinates referred 
tv the mean equator and equh'l,ox of 1950.0 or of a specified epoch. The force 
model includes ~'J.·nJS referred to a courdinate system tha is fixed in the rotat
ing earth and terms that are referred to the moon and ,?lanets. The output r~
quirements may be osculating elements with respect to the earth, moon, or 
planets. These specific coordinate ;;;YGte!!)R are defined and discussed later in 
this chapter. 

Sin~e several different coordinate systems are used in GTDS, il~'~se systems 
must be defined ard provision must be made for transforming frOl~ (·ne coordinate 
system to anothE:.J.'. A coordinate system is defined by specifying the origin of the 
coordinates, a re~erence plane, and a principal direction in the reference plane. 
This specification of the reference plane includes an identUication of the' positive, 
or north, or outward sense along the normal to the plane. The reference plane 
is an equivalence class of mutually parallel planes. For example, the equator is 
defined to be the plane normal to the earth's axis of rotation. Usually, this plane 
contains the ear!h' s cent~r of mass; however, in selenocentr ic equatorial coordinates 

The beginning of the Besselior. solar year is denoted b~ the notation ,0 after the year. The nota-
tion 1950.0 corrtlsponds to January 0?92'3, 1950 ephemeri 5 ti;tu:. For a detai led explanation, see Ref

erence " pages 22, 30, and 69. 
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the paralle! _lane contains the moon's center of mass. To avoid any such diffi- " " ]
culty, the celestial sphere of infinite radius is introduced, and the celestial
equator is *.he intersection of the equatorial plant wi_h the celestial sphere.

This is another way of identifying the equivalence eiasses of paraUel planes and
: parallel lines. The reference plane often refers to that member of the equiva-

lence class that contains the origin of coordLuates. The corresponding statement
holds for the equivalence of parallel lines in defining a principal direction.

:!

• The designations of coordinate systems, according to the location of the origin,
are given in the following table:

' Origin of Coordinates Designation of System

The observer Topocentric
: The center of the earth Geocentric
: The center of the moon Selenocentric

The center of the sun Heliocentric
; The center of m_ss Baryeentric

The following reference planes are used: /r

: • The Horizon. Without further designation, the horizon is the plane
tangent to the oblate ellipsoid earth model _t a specified point on the

surface. The outward normal is directed away from the earth model.
• For topocentric coordinates, the reference plane is the geographic
/ horizon corresponding to the point on the earth model whose normal

passes through the observer.

• The Equator. The equator is the earth's equator, unless otherwise speci-
fied. This is the plane normal to the earthVs axis of rotation, and north

,, is in the direcuon of the angular velocity vector of the rotation, also
" called the celestial pole. The moon's equator is defined in a

corresponding way.

w The Plane of an Orbit. The plane of an orbit is defined by two-body
motion and north is the direction of the angular "momentum. In the prob-
lem of more than two bodies, the o._culating plane enrrespouds to the
state at a given epoch or the mean plane that has the periodic perturba-
tions removed.

• The Ecliptic: The eci_ptic is the e_rth-sun orbital plane and is _ special
case of the plane of an orb!t. North is the direction of the systemVs angu-
lar momentum, o lso called the ecliptic pole.

n
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the parallel tllane contains the moon's center of mass. To avoid any such diffi
culty, the celestial spher-e of infinite radius is introduced, and the celestial 
equator is the intersection of the equatorial plan(. with the celestial sphere. 
This is another way of identifying the equivaleuce classes of parallel planes and 
parallel1ines. The reference plane often ref'3rs to that member of the equiva
lence class that contains the origin of coordinates. The corresponding statement 
holds for the equivalence of paranel lines in defining 3. principal direction. 

The designations of coordinate systems, according to the location of the origin, 
are given in the following table: 

Origin of Coordinates 

The observ€lr 
The center of the earth 
The center of the moon 
The center of the sun 
The center of ma.ss 

The following reference planes are used: 

Designation of System 

Topocentric 
Geocentric 
Selenocentric 
Heliocentric 
Baryoentric 

• The Horizon. Without further designation, the horizon is the plane 
tangent to the oblate ellipsoid earth model at a specified point on the 
surface. The outward normal is directed away from the earth model. 
For topocentric coordinates, the reference plane is the geogTaphic 
horizon corresponding to the point on the earth model whose normal 
passes through the observer. 

• 'i'he Equator. The equatvr is the earth's equator, unless otherwise speci
fied. This is tl}e plane normal to the earth's axis of rotation, and north 
is in the direction of the angular velocity vector of the rotation, also 
called the celestial pole. The moon's equator is defined in a 
corresponding way. 

It The Plane of an Orbit. The plane of an orbit is defined by two-body 
motion and north is the direction of the angular· momcJl":um. In the prob
lem of more than two bodies, the ol'3culating plane ('n~respoilds to the 
state at a b'iven epoch or the mean plane that has the periodic perturba
tions removed. 

• The Ecliptic~ The eciiptic is the \)~th-sun orbital plane and is J. special 
case of the plane of an orbit. North is the direction of the system's angu
lar momentum, also called the ecliptic pole. 
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The principal direction is usually specified by giving the sense along the inter-
section of the reference p!_ne with some other plane. The other plane may be
a mer"Jian plank, an equatorial plane, or another orbital plane. A meridian

plane is defined as any plane that contains the axis of rotation of one of the _i
principal gravitating bodies. Commonly used meridians of the earth and moon
which are used to determine principal directions are: _ ,

• The Greenwich or Prime Meridian. The Greenwich meridian is the !

earthts meridian plane that passes through the former Royal Observatory _ :

at Greenwich, England. I

• The Lunar Prime Meridian. The lunar prime meridian is the moonts _

meridian plane that passes through the mean center of the apparent lunar
disk (that point on the lunar surface that would be intersected by the
earth-moon line, were the moon to be at the mean ascending node when

this node coincided with either the mean perigee or the mean apogee). !

• The Local Meridian. Tl:e local meridian is the earth's or moonVs

meridian plane that passes through the observer's position. This con-

cept is not meaningful when the observer is situated on the axis of _ 7 t
rotation.

Other principal directions frequently used in astronomy are: !

! • The Vernal Equinox or Equinox. The equinox is the fundamehtal principal

direction used in astronomy. It is defined as the intersection of the
ecliptic and the earth's equator with the positive sense being from the ?

' earth to the sun as the sun crosses the equator from south to north.

.:: • The Ascending Node. The ascending node is the intersection of an orbital

"If plane and the reference plane with the positive sense being from the origin !,

toward the orbiting body as it crosses the reference plane from the south

i: to the north. Thus, the vernal equinox is an ascending node.

3.2 COORDINATE SYSTEM DESCRIPTIONS

3.2.1 Body-Centered Equatorial Inertial (Geocentric, Selenocentric, or _
_**_" Planetocentric)

" 0 ¢

_ Origin: Center of the reference body

_ Reference Plane: Equatorial plane of earth at epoch
,. Principal Direction: Vernal equinox of epoch

_:=: 3-3
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The principal direction is usually specified by giving the sense along the inter
section of the reference pl::.ne with some other plane. The other plane may be 
a mer:jian plant::, an equatorial plane, or another o-.:-bital plane. A meridian 
plane is defined as any plane that contains the axis of rotation of one of the 
principal gravitating bodies. Commonly used meridians of the earth and moon 
which are used to determine principal directions are: 

• The Greenwich or Prime Meridia~t. The Greenwich meridian is the 
earth's meridian pl3.ne that passes through the former Royal Observatory 
at Greenwich, England. 

• The Lunar Prime Mer-idian. The lunar prime meridian is the moon's 
meridian plane that passes through the mean center of the apparent lunar 
disk (that point on the ItL'lar surface that would be intersected by the 
earth-moor. line, were the moon to be at the mean ascending node when 
this node coincided with either the mean perigee or the mean apogee). 

• The Local Meridian. Tb.e local meridian is the earth's or moon's 
meridian plane that passes through the observer's position. This con
cept is not meaningful when the observer is situated on the axis of 
rotation. 

other principal directions frequently used in astronomy are: 

• The Vernal Equinox or Equinox. The equinox is the fundamental principal 
direction used in astronomy. It is defined as the intersection of the 
ecliptic and the earth's equator with the positive sense being from the 
earth to the sun as the sun crosses the equator from south to north. 

• The Ascending Node. The ascending node is the intersection of an orbital 
plane and the reference plane with the positive sense being from the origin 
toward the orbiting body as it crosses the reference plane from the south 
to the north. Thus, the vernal equinox is an ascending node. 

3.2 COORDINATE SYSTEM DESCRIPTIONS 

3.2.1 Body-Centered E~~~torial Inertial (Geocentric, Selenocentric, or 
?lanetoctlntricl 

Origin: Center of the reference body 
Reference Plane: Equatorial plane of earth at epoch 
Principal Direction: Vernal equinox of epoch 
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Figure 3-1. Body-Centered Inertial
Coordinate System

f Rectangular Cartesian Coordinates (See Fibmre 3-I):
;

x-axis _ the prLucipal direction

y-axis _ the normal to the x and z axes to form a right-handed system /
z-axis _ the normal to the equatorial plane of epoch in the direction of the _

angular momentum vector.

Within the folJowing formulation, R, X, _, and Z designate the position vector and
Cartesian coordinates referred to the mean equator and equinox of 1950.0. Simi _

laxly, rz, xz, Yz, and z z designate the position vector and Cartesi__n _oordinates
referred to the mean equator and equinox of epoch and r, x, y, and z designate

the position vector and Cartesian coordin__tes referred to the true equator and
equinox of epoch. _'

. SphericalPolarCoordinates:
'\

r _ radial distance from the origin to the point being measured

c__ rightascensionmeasured eastfrom theverualequinox,tan-I (y/x) i

declination measured north from the equator, sin -_ (z/r)

3.2.2 Body-Centered Rotating

Origin: Center of the reference body i

Reference Plane: Equatorial plane of reference body a_ epoch

PrincipalDirection: Interseccionofthe prime meridian withthe equator

Ig76017203-043
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Figure 3-1. Body-Centered Inertial 
Coordinate System 

Rectangular Cartesbn Coordinates (See Figure 3-1): 

x-axis '" the p:.-i.."'lcipal direction 
y-axis""' the normal to the x and z axes to fo,,-m a right-handed system 
z-axis", the ilormal to the equatorial plane of epoch in the direction of the 

angular momentu!ll vector. 

Within the following formulation, R, X, Y, and Z des!gnate the position vector and 
Cartesian coordinates referred to the mean equator and equinox of 1950.0. Simi
larly, rE , xE' YE' and ZE designate the position vect0r and Cartes tan ..::oordinates 
referred to the mean equator and equinox of ep')ch and r, x, y, and z designate 
the position vector and Cartesian coordinates referred to the true equator and 
equinox of epoch. 

Spherical Polar Coordinates: 

r '" radial distance from the origin to the !Joint being measured 
u. '" right at:lcension measured east from the verllal equinox, tan- 1 (y/x) 
(3 "- declination measured north from the equator, sin- 1 (z/r) 

3.2.2 Body-Centered Rotating 

Origin: Center of the reference body 
Reference Plane: Equatorial plane of referenca body at epoch 
Principal Direction: Intersection of the prime meridian with the equator 

3-4 RETlRODUC~ OF TUI 
OI~lGtNAL l'A.GE IB POOl 



I ' I
, i

• i '
1

t .)

h _ _

Prime ) "" •

i '
Meridian ._

[ :
3

x b

t
Figure 3-2. Body-Centered Rotating !_

CoordinateSystem '_

Rectangular Cartesian Coordinates (see Figttre 3-2):

Xb-aXis "_ the principal direction ; ;

Yb- axis _- the normal to the x b and zb axes to form a right-handed system ,,

zb -axis _ the normal to the equatorial pbme of epoch in the direction of the /j_.
north celestial pole .>/ ,.

S Spherical Polar Coordinates: i

r _ radial distance from the origin to the point being located

';_ii, /_ -_ longitude angle measured east from the prime meridian, ;,:: tan-1 (yb/X b) _-
' _' _ geocentric latitude angle measured north from tbe equator, ,,

_" Sin- 1 (Z b/r b)

_:i- Geodetic Coordinates _ ""_

_, h _ height measured normal to local body surface to the point i

•_'_ being located

\ _ longitude angle described above ,,
' _ _ geodetic latitude angle measured north from tim equatorial _ "_
_i_- plane to the vector normal to the ellipsoidal body surface

'_,. passing through the point being located (see Figure 3-2) _ ',:
_L_ , -:

3.2.3 Local Plane System

i: Origin: Center of reference body (see Fxgure 3-3)
Reference Plane: Plane containing _, the geocentric position vector

_-- topointP,andthez-axis _,
_. Principal Direction: Geocentme poaition vector to point P _'

"_ 3-5
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Prime 
Meridian 

Figure 3-2. Body-Centered Rotating 
Coordi nljte Sy stem 

Rectangular Cartesian Coordinates (see Figure 3-2): 

X b -axis '"'"' the principal direction 
Yu - axis'"'"' the normal to the Xb and zb rums to form a right-handed system 
Zb -axis '"'"' the normal to the equatorial plane of epoch in the direction of the 

north celestial pole 

Spherical Polar Coordinates: 

r 'V radial distance from the origin to the point being located 
A '"'"' longitude angle measured east from the prime meridian, 

tan- 1 (Yb/XJ 
¢' '"'"' geocentric latitude anglE:! measured north from the equator, 

sin- 1 (zb/rb) 

Geodetic Coordinates 

h '"'"' height measurl3d normal to local body surface to the point 
being located 

A'"'"' longitude angle descrihed above 
¢ '"'"' geodetic latitude angle measured north from the equatorial 

plane to the vector normal to the ellipsoidal body surface 
passing through the point being located (see Figure 3-2) 

3.2.3 Local Plane System 

Origin: 
Reference plane: 

Principal Direction: 

Center of reference body (see Flgure 3-3) 
Plane containing r, the geocentric position vector 
to point P, and the z-axis 
Geocentric pO-':lition vector to point P 
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:_ Figure 3-3. Local Plane System

Rectangular Cartesian Coordinates (see Figure 3-3)

• x 1p-axis _- directed along geocentric position vector to point 1_ .
} YI_ -axis _ the axis displaced from the inertial y-axis by the originWs right :_

ascension and lying in the equatorial plane ,_
i S ;

zip -axis _ the north pointed axis lying in the reference plane normal to -J _
the principal direction.

F

• f

Spherical V_.locity Coordinates:

V _- the velocity vector's magnitude ( I r I>
A _- the azimuth angle measured clockwise from the Z_p-aXis to the "

:- projection of the velocity vector onto the Ylp -z 1_ plane,

_ the flight path angle measured from the xl_ -axis to the '.
velocity vector. :

"\ ?.,2,4 Topocentric Local Tangent (East/North/Up)

Origin: Observer (Lopocentric)
Reference Plane: Plane t_ngent to the ellipsoidal earth m_el at

the observer .T

Principal Direction: Vector in reference plane pointed north

l_ectangular C_rtesian Coordinates (See Figure 3-4):

x it -axis -,_ the axis lying in the reference plane that points east
Y _t -axis _. the principal direction
z it -axt:_ _ th_ apward direction along the geodetic vertical
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Figure 3-3. Local Plane System 

Rectangular Cartesian Coordinates (see Figure 3-3) 

x -axis Ip 
y-axis 

Ip 

'"V directed along geocentl'ic pOFJition vector to point P 
'"V the axis displaced from the inertial y-axis by the origin's right 

ascension and lying in the equatorial plane 
z Ip ~axis '"V the north pointed axis lying in the :r.eference plane normal to 

the principal direction. 

Spherical V p.locity Coordinates: 

V '"V the velocity vector's magnitude ( I r I ) 
A '" the azimuth angle measured clockwise from the ZIp -axis to the 

projection of the velocity vector onto the YIp -Z lp plane. 
f3 "-' the flight path angle measured from the Xl p -axis to the 

velocity vector. 

2.2.4 Topocentric Local Tangent (East/North/Up) 

Origin: 
Reference Plane: 

PrinCipal Direction: 

Observer (topocentric) 
Plane tangent to the ellipsoidal earth mrxlel at 
the observer 
Vector in reference plane pointed north 

Rectangular C~rtesian Coordinates (See Figure 3-4): 

X 1 t -.iXis ,,-, the axis lying in the reference plane that points east 
y 1 t -axis ,,-, the principal dir~ction 
ZIt -axi:; "-' the upward direction along the geodetic vertical 
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Figure3-4. TopocentricCoordinates

1

Spherical Position Coordinates: i

(The origin coincides with the tracking station and p is directed at satellite) i

p _- the station to spacecraft range I
A _ the azimuth angle measured clockwise from the principal direction to t #

to the projection of the position vector in the reference plane }

E _ the elevation angle measuredfromthe reference plane to the station- ito-spacecraft position vector l

3.2,5 Orbit Plane !

Origin: Center of the reference body ?Reference Plane: The plane of the orbit
_ Priucipal Direction: The radius vector from the origin to the satellite

-_ xop-axis _ the principal direction _ ,
vop -axis _ in the orbital plane 90 degrees ahead of the satellite in the sense _

"_r of the motion !

Zop-axis - the direction along the vector ¥ × r _ ,

,' The following two alternative orbit plane systems are defined. Both have the i

!: same origin and reference plane as the basic system described above.

!_< • The geplerian system, denoted by x, y_ and z,,, has its x_-axis
6 _

" (principal direction) directed towards tl_e perifocus of the_satellite
,_ orbit (see Figures 3-5 and 3-6).
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Figure 3-4. Topocentric Coordinates 

Spherical Position Coordinates: 

(The origin coincides with the tracking station and p is directed at satellite) 

p '" the station to spacecraft range 
A '" the azimuth angle measured clockwise frOrl the principal direction to 

to the projection of the position vector in the reference planE' 
E '" the elevation angle measured from the reference plane to the station

to-spacecraft position vector 

3.2.5 Orbit Plane 

Origin: 
Reference Plane: 
Principal Direction: 

Center of the reference body 
The plane of the orbit 
The radius vector from the origin to the satellite 

x -axis '" the principal direction op 

v op -axis '" in the orbital plane 90 degrees ahead of the satellite in the sense 
of the motion . 

z-axis '" the direction along the vector r x r 
op 

The following two alternative orbit plane systems are defined. Both have the 
same origin and reference plane as the basic system described above. 

• The Keplet'lan system, denoted by x , Y p and z", has its ~ -axis 
(principal direction) directed towards tlie perifocus of the satellite 
orbit (see Figures :1-5 and 3-6). 
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Vernal Equinox •

: Xep
Origin of Longitudes

Figure3-5. Orbit Plane Coordinates

':" • The equinoctialsystem, denotedby Xep,Yep , and zep,has itsx_p-axis ,./
: (principaldirection)directedtowardsthe "originoflongitudes."The

"originof longitudes"liesinthe planeof theorbitand isdisplacedby
: theangle f'Lfrom the ascendingnode N, where f_istherightascension - '
' of the ascending node. UnR vectors along the coordinate directions

x _p, y_p and z _p are deno_;ed by f, g and w respectively.

3.2.6 Orbital Elements

Three types of orbital coordinates are presented below wtt_ch can be used to
describe closed orbits. Two sets of equinoctial and Herrick elements are defined

" such thattheelements and thecorrespondingequationso_,motion ar,_ non- '
_!_ " singular for inclinations of both 0 degrees (direct set) and 180 degrees (retro-

grade set).

Keplerian Elements (see Figures 3-5 and 3-6):

a _ the semimajor axis
e _ the eccentricity specifying the elongation of the orbital conic section
i _ _hc i_clination specifying the orientation of the satellitets orbital plane

with respect to the equator of the central body
_ _ the right ascension of the ascending node, i.e., the angle measured

eastward along the equator between the vernal equinox and the point
where the satellite crosses the equator traveling in a northerly
direction
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Equatorial 
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Figure 3-5. Orbit Plane Coordinates 

Orbit PlanE" 

y 

• The equinoctial system, denoted by X ep ' Yo!p' and Zep' has its xep-axis 
(principal direction) directed towards the "origin of longitudes." The 
"origin of longitudes" lies in the plane of the ot'bit and is displaced by 
the angle .0 from the ascending node N, where D is the right ascension 
of the ascending node. Unlt vectors along the coordinate directions 
x ep' Yep and Z ep are denoted by i, g and w respectively. 

3.2.6 Orbital Elements 

Three types of orbital coordinates are presented below wh~ch can be used to 
describe closed orbits. Two sets of equinoctial and Herrick elements are defined 
such that the elements and the corresponding equations of motion ar'J non
sir.gular for inclinations of both 0 degrees (direct set) and 180 degrees (retro
grade set). 

Keplerian Elements (see Figures 3-5 and 3-6): 

a "'v the semimajor axis 
e "'v the eccentricity specifying the elongation of the orbital conic section 
i "'v t~c Licl1nation specifying the orientation of the satellite's orbital plane 

with respect to the equator of the central body 
n '"'"' the right ascension of the ascending node, i.e., the angle measured 

eastward along the equator between the vernal equinox and the point 
where the satellite crosses the equator tl'aveling in a northerly 
direction 
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Figure3"6. OrbitalParameters

_-the argument of perigee, i.e., angle between the ascending node and the
perifocal point measured positive with increasing mean anomaly

M _ the mean anomaly, i.e., the sum of the mean anomaly at epoch and the
product of the mean motion and the elapsed time from epoch. ._

3Equinoctial Elements (see Figure.-5): _,_

a the semimajor axis i

h _- the projection of the vector _ on the y_p -axis : _;
k _ the projection of the vector e on the x -axis _ ._

ep

p _ the projection of the vector N on the y_p -axis
q _ the projection of the vector N on the x p-axis _
;__ the mean longitude

where

_ eccentricity vector pointing in the direction of the Xp-aXis (perifocus) _ ,
and having a magnii_lde equal to the eccentricity, e

_ nodal vector pointing in the direction of the ascending node and having _ ._
a magnitude equal to 1 '":

1

where i denotes the orbital inclination r.nd j = +1 for direct orbits, and _ ,_-
j = -1 for retrograde orbits

Herrick Elements: !

e the eccen, tricity vector (defined above) expressed in inertial Cartesian
coordinates

]
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Figure 3-6. Orbital Parameters 

w "-' the argu.ment of perigee, i.e., angle between the ascending node and the 
perifocal point measured positive with increasing mean anomaly 

M ""' the mean anomaly, i.e., the sum of the m~an anomaly at epoch and the 
product of the mean motioIi and the elapsed time from epoce. 

Equinoctial Elements (see Figure ~l-5): 

a "" the semimajor axis 
h "" the projection of the vector e on the Yep -axis 
k "-' the projection of the vector e on the x -axis _ ep 
p "" the projection of the vector N on the y-axis _ ep 
q "" the projection of the vector N on the x -axis 

ep 
A""' the mean longitude 

where 

e "-' eccentricity vector pointing in the direction of the x -axis (perifocus) 
p 

_ and having a magnitude equal to the eccentricity, e 
N "-' nodal vector pointing in the direction of the ascending node and having 

a magnitude equal to 

where i denotes th~ orbital inclination end j = + 1 for direct orbits, and 
j = -1 for retrograde orbits 

Herrick Elements: 

e"" the eccen.tricity vector (defined above) expressed in inertial Cartesian 
coordinates 
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Figure3-7. Vehicle-FixedCoordinates

_ _ the angular momentum vector divided by J_-_, where _ is the gra'_tational
constant, I.e.

ot

: _ "f×r

,, C
_ The vector _ is expressed in inertial Cartes-:au coordiP_tes.

n _ theKepler mean motion _-_i
_ _ _ themean longitude ._

(Note: Only six of the eight scalar components above are independent. Single .1

components ofthevectors_ and _ are dependentupon theremaining sixelements.)

: 3.2.7 Vehiclc- Fixed

: Origin: Center-of-gravity of the spacecraft
Reference Plane: Plane containingthe longitudinaland verticalaxes

defined by the spacecraft designer
: _- Principal Direction: Longitudinal axis directed toward front of spacecraft

i ,

, RectangularCartesianCoordinates(seeFigure 3-7) _

xcaxis _ thelongitudinal(roll)axisalongprincipaldirection ,:
! y -axls _ the lateral(pitch)axis

z-axis _ the vertical (yaw) axis
J

3.3 SPECIFIC TRANSFORMATIONS

The spacecr_R's state vector at a given time is obtained by integrating the equa-
tions of motion. The equations of motion equate the acceleration of the vehicle
to tl,_ sum of the various accelerations acting on the vehicle, and are valid only
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Figure 3-7. Vehicle-Fixed Coordinates 

:e: ....., the angular momentum vector divided by;-;;, where J.L is the gra7itational 
constant, i.e., 

- rxr 
{,=--

;; 
The vector :r is expressed in inertial Cartesi8D coordinates. 

n ....., the Kepler mean motion 
A '" the mean longitude 

(Note: Only six of the eight scruar components aboVe are independent. Single 
components of the vectors e and :[ are dependent upon the remaining six elements.) 

3.2.7 Vehicle- Fixed 

Origin: 
Reference Plane: 

Principal Direction: 

Center-of-gravity of the spacecraft 
Plane containing the longitudinal and vertical axes 
defined by the spacecraft designer 
Longitudinal. axis directed toward front of spacecraft 

Rectangular Cartesian Coo)('dlnates (see Figure 3-7) 

Xv -axis ....., the longitudinal (roll) axis along principal direction 
y v -axis ....., the lateral (pitch) axis 
z v -axis '" the vertical (yaw) axis 

3.3 SPECIFIC TRANSFORMATIONS 

The spacecr1l:ft's state vector at a given time 1s obtained by integrating the equa
tions of motion. The equadone of motion equate the acceleration of the vehicle 
to the sum of the various accelerations acting on the vehicle, ;md are valid only 
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8 "'in an inertia] reference 5"ame. However, _he principal acceleration sources
which act on the vehicle, i.e., gTavity and aer_'_ynamic drag, are most easily !
expressed in terms of a body-f_[ed system. T_e inertial position and velocity i

must therefore be transformed to body-fixed coordinates for use in computing _
the gravity and drag acceleratzons. These accelerations, expressed in terms of
body-fixed axes, must then be transformed to the inertial coordinate system for _ t
use in the numerical integration process. The tracking measurement computa-

tionB, used in the estimation process, also require body-fixed position and
velocit_ coordinates of the spacecraft. Thus, one of the most basic transforma-

tions in GTDS is that between the inertial coordinate system and the bed-r-fixed
system. The following eoordir_te systems are also used in GTDS to express
spacecraft position, velocity a_./__r acceleration for various purposes.

• _ody-Cen_.red Equatorial Inertial: This system, when "frozen" at
specified da_e, provides the basic coordinates for expressing the equations
of mnfion derived from Newton's laws. In GTDS the 1950.0 reference

date is used to loc._.t_ the planets, moon, and spacecraft.

• Bgdy-Centered Rot_.ting: This system is used to characterize the gravi-
J

tational field and the a_mospheric properties of the body° /

• Local Plane: This system is used to orient the spacecraft velocity

vector.

• Topocentric Local Tangent: This system is ased to characterize ground
based radar tracking observations of the spacecraft.

• Orbit Plane: This system is used to characterize the spacecraft orbital
position and motion.

• Vehicle-Fixed: This system is used to characterize propulsive and "
',, aerodynamic forces acting on the spacecraft.

In the following subsections, the transformation between the mean equator and
equinox of 1950.0 inertial coordinate system and the body-fixed system is pre-
sented. This is followed by descriptions of transformations relating the inertial

coordinates to the various other coordinate systems used in GTDS.

3.3.1 1950.0 Inertial to True of Date

The equinox i_ defined as the intersection of the plane._ of the earth's equator
and the ecliptic, The equator _s defined as being normal! to the earth's polar axis.

, The motion of the equinox is due to the combined motions of the two planes, the

_i _ _quator and the eclipt_c_ thg.t define it. The motion of the celestial pole or of3-11
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in an inertial refe~ence frawe. However', the principal acceleration sources 
which act on the vehicle, i.e., gravity :md aer'XIynamic drag, are most eMily 
expressed. in terms of a body-fl.Xed system. 1'11e inertial position and velocity 
must therefore be transformed to body-fixed coordinates for use in computing 
the gravity and drag acceleratIOns. These accelerations, expressed in terms of 
body-fixed axes, must then be transformed to the inertia1 coordLlate system for 
use in the numerical integration process. The tracking measurement computa
tiollS, used in the estimation process, also require body-fixed position and 
velocity coordinates of the spacecraft. Thus, one of the most basic transforma
tions iII GTDS is that between tIle inertial (.oordinate system and the bod .. r-fixed 
system. The i'oTIl')wing coordir .ite systems are also used in GTDS to express 
spacecraft position, velocity ~..:I/')r acceleration for various purposes. 

• Body-Centered Equatorlal Inertial: This system, when "frozen" at a 
Bpecified date, provides the basic coordinates for expressing the equations 
of motion del'ived from Newton's laws. In GTDS the 1950.0 reference 
date is used to lOGP.tc the planets, moon, and spacecraft. 

• B'Jdy-Centered Rot.ating: This system is used to characterize the gravi
tational field and the atmospheric properties of tbe body. 

• Lecal Plane: This system is used to orient the spacecraft velocity 
vector. 

• Topocentric Local Tangent: This system is used to characterize ground 
based radar tracking ('baervations of the spacecraft. 

• Orbit Plane: This system is used to characterize the spacecraft orbital 
position and motion. 

• Vehicle-Fixed: This system ij:J used to characterize propulsive and 
aerodynamic forces acting on the spacecraft. 

In the following subsections, the transformation between the mean equator and 
eqlJinox of 1950.0 inertial coordinate system and the body-fixed system is pre
sented. This is followed by descriptions of transformations relating the inertial 
coordinates to the various other coordinate systems used in GTDS. 

3.3.1 1950.0 Inertial to True of Date 

The equinox 113 defined as the inte!'section of tUI3 planes of the earth's equator 
and the ecliptic. The eq1.:.ator is defined as being norma.il to the earth's polar axis. 
The motion of thf.l equillox is due to the combined motions of the two planes, the 
"'quator and th€ eclipbc~ tbat define it. The motion of th\~ celestial pole or of 
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the equator is due to the gravitational attraction of the sun and moon on the :__ '
: earth's eqaatorial bulge_ It consist_ of two components: hm2so]ar precession :;

and nntation (References 1, 2, 3). Lunisolar precession is the smooth long-

period westward motion of the _quator:s mean pole aro, md the ecliptic pole and _
• has an amplitude of approximately 23.5 degrees and a period of approxiL_ately "_

26,000 years. Nutation is a relatively short-period motion that carries the _
actual (or true) pole arc_md the me,on pole in a somewhat irregular curve with =,

_ an amplitude of approximately 9 seconds of arc and a period of approximately ;

. 18.6 years. The motion of the ecliptic (Le., themean plane of the earth's orbit)
is due to the plane's t gravitational attraction on the earth and consists of a slow
rotation of the e _ ptic. Thi,q motion is known as planetary precession and :_

: consis*,_ of an _,_t-ward movement of the equinox of approximately 12 seconds
of arc a century an& a decrease of the obliquity of the ecliptic, the angle between
the ecliptic and the earthts equator, of approximately 47 seconds of arc a
century. In astr,Jnomical work the precessional motiol_ of the equator and _

ecliptic, called general precession, is considered separately from the nutational
motion. Thus the "mea_" equator and equinox are determined by neglecting nu-
tation. The "_ue" equator _nd equinox can then be obtained by correcting the
mean equator and equinox for w,ttatie, n. _,:

3.3.1.1 1950.0 lnet_ial to Mean of Dat,s

The 1950.0 inertial coordinates are transformed into the mean equator and '
equinox of date by correcting only for precession. This is done by the following
three rotations (see Figure 3-8).

R, (77/2 - _0) _ the rotation al-mt the Z-axis that rotates the X-ax:s to the
ascending node of the mean equator of date _

R ( 0p ) _ the romtlon of the 1950.0 e_mtoria! plane iuto the mean 'X _

equatorial plane of date about an axis that coincides -_ith ,
', the ascending node of the mean equator of dat_ on the

1950.0 equatorial plane _

R, (_/2 + _p) _ the rotation about the z_-axis that rotates the x_-a.xis to _

the descending node vf the mean equator of 1950.0 _ ,

The orthogonal transformations are defined as follows: _ ,
1

cos a _in a 0 1 0 0

?

R z (a) = s_na cos a (a) = cos a sin (3-1) ,

0 0 - s_n a cos ;
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the equator is due to the gravita.t1onal attra.ction of the sun and moon on the 
earth's eqll8.toriaJ bulge. It consists of two components: lun!so!ar precession 
and nutation (References 1, 2, 3). Lunisolar precession is the smocth long
period westward motion of the ~quator!s mean pole arolillu the ecliptic pole and 
has an amplitude of approxiJYAitely 23.5 degrees and a period of approxiL"lately 
26,000 years. Nutation is CI. relatively short-period motion that carries the 
actual (or true) pole ar~1Uld the mean pole in a somewhat irregular curve with 
an amplitude of appro:.dmately 9 aeconds of arc and a period of approximately 
18.6 years. The motion of the ecliptic (i.e., the mean plane of the earth's orbit) 
is due to the plane' s' gravitational attraction on the earth and consists of a slow 
rotation of the e' tJtic. ThiA motion is known as planetary pre0ession and 
consiste of an L.~.:;tward movement of the equinox of approximately 12 seconds 
of arc a century and a decrease of the obliquity of the ecliptic, the angle between 
the ecliptic and the earth's equator, of approximately 47 seconds of arc a 
century. In astr'Jnornical work the precessional. motion of the equator and 
ecliptic, called general precession, is considered separately from the nutational 
motion. Thus the "meaJl" equator and equinox are determined by neglecting nu
tation. The "W'Ue" equ3.tor ~nd equinox can then be obtained by correcting the 
mean. equator and equinox for llutatjl"n. 

3.3.1.1 1950.0 Inertial to Mean of Da~9 

The 1950.0 inertial coordinates are transformed into the mean equator and 
equinox of date by correcting only for precession. This is done by the following 
three rotations (see Figure 3-8). 

R z (rr /2 - '0) 'v the rotation at- )ut the Z-axis that rotates the X-ax:s to the 
ascending node of the mean equator of date 

"V the rotation of the 1950.0 equatorial plane i'lto the mean 
equatorial plane of date about an axis that coincides ·,lith 
the ascending node of the mean equator of datt; on the 
1950.0 equatorial plane 

R z ~ fT /2 + t p) "V the rotation about the Z E -axis that rotates the x E -1i..~S to 
the descending node uf the mean equatol' of 1950.0 

The orthogonal transformations are defined as follows: 

cos a c; in a 0 

R (a) J: 0 0 

Rz(a) = - s in a cos a 0 cos a sin a (3-1) 

x l!J 0 0 1 - s In a cos a 
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MeanEquator i ]
Z of Date -_

ZE,_

2

VE ,, :

Mean Equator . ___=_=___ Y :

of 1950.0 t .

xE !

! Figure 3-8. Preces_;onA_,,ales ._

The angles _o' 0p, and _p are given by (Reference 4)

_i _o = 2304_'9969T + 0_'302000T 2 + 0_'01808T 3 (3-2a) s_
r,J

..... _ 6_ .: 2004:'2980T - 0_'425936T 2 - 0_'04160T 3 (3-2b)• P U U U

:_ _:p = 2304'.'9969T+ 1'.'092999T 2 + 0_'019200T 3 (3-2c)

_/ where

Tu_ is measured in Julian centuries (of 36525 days) from 1950.0.

i
._ The total rotation matrix may be expressed as

:¢

t

4 A = R,(-90 ° - ¢p_ Rx(Op) R,(90° - _o) = (a_i}" (3-3) '

4

"_ Denoting the 1950.0 coordinst,:,s by R and the mean equator and equtuox of date i

by rE, we have _
.;

4,: 1- = A_ (3-.4) ;

i

:tq'" $ ," 3-13
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M. an Equator 
of 1950.0 

Milan Equator 
of Date 

Figure 3-8. Prl'ces,,:on A .. ,gles 

The angles ~o' e , and c; are given by (Reference 4) 
p p 

~o = 2304~19969T + O!'~02000'f2 + O~I01808T3 
U U U 

e .:: 2004~12980T - O~1425936T2 - O~I04160T3 
p U U U 

c; = 2304~19969T + 1~I092999T2 + O~I019200T3 
p U IJ 1) 

where 

Tu'"'"' is measured in .Julian centuries (of 36525 days) from 1950.0. 

The total rotation matrix may be expressed as 

A = R z(-90° - C;p) R (e ) Rz(90° - ~o) = {a .. }. 
. x P 1 J 

(3-2a) 

(3-2b) 

(3-2c) 

(3-3) 

Denoting the 1950.0 coordina.t.l;'s by Ii and the mean equator and equinox of date 
by rE • we have 

T = AR 
E 
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t +,_,+_ • ++++ + ++i,.... l + + _ _ __ I' r ....

+

+

+

t ';

_: 1 where the elements of A are ./ ]

,? { all = - sin _o sin _p + cos _o cos _p cos Op :

_ ._ =- _os ro._i. _ - ++in_o_os_,+cos_
'" i ':

:: a13 = - cos _p sin Op

)- ..

")i a21 = sin _o cos _.._+ cos _o sin _p cos Op -

: _22: co_ _+o_o_L - sin _osin _,, _os e,_ (3-5)

++ a23 = - sin _p sin 8p
-r

as I = C O S ?20 S [ n _p ,;

_' ? a32 : -- sin _o sill C/ +.
' 2 P ,'t

? _ a33 = cos 0p. j
J r

: The time derivative of A is assumed to be negligible; therefore, the velocity
t

coordinates are transformed as follows

r_. : AR. .. (3-6) ,_

\

3.3.1.9. Mean of Date+to True of Date

"' The transformation from the mean equator and equinox oi date to the true of _

date system involves correcting for the nutation e_fect. Nutation is measured
as cyclic changes in the obliquity+ the angle between the equatorial plane and the '_

ecliptic, and the longitude of the equt_ox. These changes in obliquity. Sc, and . ,'_
longitude,5_J,,are assumed known. They are inputto GTDS by fittingpolynomials

throughthe JPL ephemeris data (Reference5)as describedinSection3,6, .

To compute the tra_formation, the mean obliquity is first determined (Refer-

ence 1)

"_= 23.°452294- .°130125, 10-_T_.- _.lo4× 10-ST_ _ _503x 10-6"1'_ (3-'/)

3-Z4 R_I_,ODUCIB_LITY OP T]-I]_
01tlGINALPAGE ISPOOII
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where the elements of A are 

a
11

=-sin' sin~ +coss ("ost; cose o pop P 

a12 = - cos r sin t= - ~in' cos ~ cos 9 
'0 sp c. p p 

a 13 = - cos ~p sin Bp 

a21 = sin S co s ~ + co s' sin t; co .. e o i' 0 P P 

(3-5) 

cos ~ sin f) o p 

The time derivative of A is assumed to be negligible; therefore, the velocity 
coordinates are transformed as follows 

(3-6) 

3.3 .1. ~ Mean of Date to True of Date 

The transformation from the mean equator and equinox of date to the true of 
date system involves correc~ing for the nutation elfect. Nutation is measured 
as cyclic changes in the obliquity J the angle betweer. the equatorial plan~ and the 
ecliptic, and the longitude of the equinox. These changes in obliquity, S E , and 
longitude, Stil, are assumed known. They are input to GTDS by fitting polynomials 
through the JPL ephemeris data (Reference 5) as described in Section 3.6. 

To compute the transformation, the mean obliquity is first determined (Reff.,.
ence 1) 
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g. where ]

g
Ts _ the time in Julian centuries (36525 Julian days) elapsed from 1900 :Jan 0d 12 h ET (JD 2415020.0) to specified date.

t.
_. Then, defining

SE _ the difference between the true and the mean obliquity

_ _ -- _ • __ -_ the true obliquity measured from the true equator to the ecliptic

__ __ _ the n-:tation in longitude, which is the true longitude of date of
_i: the mean equinox of date
?

_ the rotation from the mean equator and equinox of date to the true equator and
equinox is _ven by the following three rotation: (see Figure 3-9).

R_(_) _ the rotation about the x-axis through the mean obliquity to the
_ _c..v_c of dat_ .

J

R,(- _'5) "- the rotation about the ecliptic pole, through the nutation in "J .::,

, _. lon_tude ..
_' R (-_) _ "he rotation about the x-axis through the true obliquity to the .
_ true equator of date

where It and R are given by Equation (3-1).

z z Ecliptic

k '

/_. _ YE M,e_n Equator

"i
TrueFquator ._ ;

x l_

x E

_'_ t:igure 3-9. Nutation Angles

"_ _ 3-15
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where 

TE '" the time in Julian centuries (36525 Julian days) elap8e\.~ frum 1900 
Jan Od 12h ET (JD 2415020.0) to specified date. 

Then, defining 

S E '" the difference between the true and the mear... obliquity 

E .:: E -I- S E 'v the true obliquity measured from the true equator to the ecliptic 

SOt./; '" the n-.~tation in long!tude, which is the true longitude of date of 
the mean equinox of dat.e 

the rotation from the mean equator and equinox of date to the true equator and 
equinox is given by the following three rotations: (see Figure 3-9). 

Rx ( E) 'V the rotation about the x =- axis through the mean obliquity to the 
"cliptic of dak t.. 

Rz< - S,.0) '" the rCltation about the ecliptic pole, through the nutation in 
longitude 

Rx ( - E) "-' ';he rotation about the x-axis through the true obliquity to the 
true equator of date 

where Rxand R z are given by Equation (3-1). 

~ __ --MC"11 Equator 

True Fquator 

x 

figure 3-9, Nutation Angles 
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The totalrotationmatrix may be expressed as } /

N = Rx(-_) Rz(--8_b) Rx(_) = {nij). (3-8)

#

Denoting the true of date coordinates by ¥, we have

f : r_.,-z (3-9)

where the elements of N are

nll : cos _._v

n12 = - sin 8_b cos

p
1

n13 = - sin /3_,sinT ":I" ::

n21 : sin 8_ cos

: n22 : cos 8g,cos _cos g + sin_sing (3-10)

n2a= cos S_bcos'_sing-sinecosT :,

n31= sin 8_b sin'g ', '\

n39= cos 3_b sin g cos -g - cos "g sin g ,

naa= cos 8_bsin_sing+cos'_cos-&

_ J 2,

The time derivative of N is assumed to be negligible. Therefore the velocity "
i

coordinates axe transformed as fol!ows

-r= Nrz. (3-11) _'

m
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The total rl)tation matrix may be expressed as 

Denoting the true of date coordinates by r, we have 

where the elements of N are 

n -- cos 80. 11 -

r = 1'-. fE 

n12 = - :> in 81/1 co s E 

n13 = - sin jj~, sin 7 

n22 = cos 8'-1' cos E cos E + sin E sin E 

n23 = cos 81/; co~; E sin E - sin E cos E 

n31 = sin 81/; sin E 

n3? = cos 81/; sin E cos E - cos E sin E 

n33 = cos 81/; sin E sin E + cos E cos 'l. 

(3-8) 

(3-9) 

(3-10) 

The time derivative of N is as::iUmed to be negligible. Therefore the velocity 
coordinates are transformed as fellows 

(3-11) 
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3.3.1.3 Summary

The transformation matrix from inertial mean of 1950.0 to true of date co- .:

ordinates is given by

I ;

Y : CR (3-12) .

where

c = o, 0p 13-13) '

i The elements of the precession matrix, A, are given in Equation (3-5), _ad the

elements of the nutation matrix, N, are given in Equation (3-10). In GTDS the
C-matrix is synthesized during preprocessing computations using precession
emgles obtained by means of Equations (3-2), and nutation angles obtained from
an ephemeris tape provided by the Jet Propulsion Laboratory. The elements of
C are stored on the SLP (Solar/Lunar/Planetary) file, _s described in Section

-_ 3.6, for retrieval and use during program execution. /_ i

•_ GTDS has also been provided with the optional capability to solve the equations
._ of motion in a true of "reference date" coordinate system where the reference
!i_ date is specified. The orthogonal transformation in Equation (3-12) involves

_! two times, the date of the true coordinates denoted by t, and the epoch of the

_!. mean inertial system, denoted by 1950.0. Therefor% Equation (3-12) can be
_ written

i_ ¥(t) = C(t, 1950.0) R or R= cT(t, 1950.0) T(t) (3-14)

_: where the superscript T denotes transpose.

,_ Specifying the reference date by t* then i

_ ¥(t °) = C(t °, 1950.0) R or R = Cr(t °, 1950.0") ¥(t °) (3-1s)

_: The transformation from the true of reference date to true of date coordinates

_: is obtained from Equations (3-14) and (3-15) to be

3-17
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3.3.1.3 Summary 

The transformation matrix irom inertial mean of 1950.0 to true of date co
ordinates is given by 

r= CR (3-12) 

where 

(3-13) 

The elements of the precession matrix, A, are given in Equation (3-5), hld the 
elements of the nutation matrix, N, are given in Equation (3-10). In GTDS the 
C-matrix is synthesized during preprocessing computations using precession 
angles obtained by means of Equations (3-2), and nutation angles obtained from 
an ephemeris tape prvvirled by the Jet Propulsion Laboratory. The elements of 
C are stored on the SLP (Solar/Lunar/Planetary) file, as described in Section 
3.6, for retrieval and use during program ex;!cution. 

GTDS bas also been prOVided with the optional capability to solve the equations 
of motion in a true of ''reference date" coordinate system where the reference 
date is 8pecified. The orthogonal transformation in Equation (3-12) involves 
two times, the date of the true coordinates denoted by t, and the epoch of the 
mean inertial system, denoted by 1950.0. Therefor0, Equation (3-12) can be 
written 

ret) = C(t, 1950.0) R or R = CT(t, 1950.0) ret) (3-14) 

where the superscript T denotes transpose. 

Specifying the reference date by t* then 

(3-15) 

The transformation from the true of reference date to true of date coordinates 
is obtained from Equations (3-14) and (3-15) to be 
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•" ¥(t) = C(t, 1950.0) Cr(t *, 1950.0) ¥(t') (3-16)

This equa_on permits problems to be solved using a true of reference date ._
coordinate system as the inertial frame, but requires only the precession/ ,

nutation matrix, C(t, 1950.0), ,_dch is available on the SLP files.

Note 1./rotthe transfor.aation matrix in Equation (3-16) is the identity matrix
when t -- t*. GTDS utilizes this property and neglects precession and nutation
when a true of reference date option is specified. This requires that the problem
t_me, spauned by t_ must be relatively short ,'andin the proximity of the reference

date, t*.

3_.2 True of Date to Body-Fixed

j The transformation that relates the true of d_/_e coordinates to the body-fixed _
coordinates acc_xmts for two separate effects. The first relates the true vernal

equinox to the prime meridian of the rotating ear_h by means of the angle a g,
_. _ the true of date right ascension of Greenwich (see Figure 3-10). The 3econd ../
_. effect_ called polar motion, accounts for the fact that the pole of the body-fixed "

axis, Zb, does not coincide with the bodyts spin axis, z, the pole of the true of
' date geocentric axes. The first of these effects transforms the true of date (

coordinates to pseudo body-fLxed coordinates, x_ 9 Y_, z _. These pseudo co-l
ordinates would be precisely the body-fixed coordinates Xb, Yb' Zb' if Zb = Zb,
that is, ff polar motion were onutted.

3.3.2.1 True of Dar_ to Pseudo i_ody-Fixed

The transformation from the true of date to the pseudo body-fixed coordinates
A?,

cons:sts of a rotation about the true of date z-axis through the true right ascension

of Greenwich _g (see Figure 3-10), yielding

Z

_l Greenwich ' i:

eridia I

J

?:

i .
Xb _

,_ Figure3-10. GreenwichSiderealT;me
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r(t) = C(t, 1950.0) c T (t"', 1950.0) "Fer") (3-16) 

This equation permits problems ~ be solved using :a. true of reference date 
coordinate system as the in~rtin1 frame, but requires only the precession! 
nutation matrix, C(t, 1950.0), which is available 011 the SLP files. 

Note that the transfor...mtion matrix in Equation (3-16) is the icentity matrix 
when t = t·. GTDS utilizes this property and nfJglects precession and nutation 
when a true of refE:'rence date option is specifj.ed. This requires that the problem 
time, spanned by t, must be relatively short and in the proximity of the reference 
date, t·. 

3.3.2 True of Date to Body-Fixed 

The transformation that relates the true of d?:.;e ~oordinates to the body-fixed 
coordinaws accoonts for two separate effects. The first relates the true vernal 
equinox to the prime meridian of the rotating earth by means of the angle a g , 

the true of date right ascension of GreenWich (see Figure 3-10). The 3econd 
effect, called polar motion, accounts for the fact that the pole of the body-fixed 
axis, Zb' does not coincide with the body's spin axis, z, t1.e pole of the true of 
date geocentric axes. The first of these effects transforms the true of date 
coordinates to pseudo body-fixed coordinates, x~ , y b ' ~ b. These pseudo co
ordinates would be precisely the body-fixed coordinates x b' Yb ' Zb' if z: = Zb' 

that is, if polar motion were omitted. 

3.3.2.1 True of Date to Pseudo 1-ody-Fixed 

The transformation from the true of date to the pseudo body-fixed coordinates 
cons:sts of a rotation about the true of date z-axis through the true right ascension 
of Greenwich a g (see Figure 3-10), yielding 

z 

k-+--r-~"Y 

x x' 
b 

Figure 3-10. Creenwich Sidereal Time 
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$
sin a m 0q t

B1 = RT(ag) = sin a m cos a_ 0 (3-17)

0 0 1 _
l

The true of date right ascension of Greenwich, a, is measured easterly from
the true vernal equinox to Greenwich. A related quantity is the Greenwich hour
angle, also called the true Greenwich sidereal time, which is measured westerly
in the plane of the equator from Greenwich to the true "vernal equinox. Thus,

although their definitions differ, the right ascension of Greenwich, a, and the
-_ Greenwich sidereal time and hour angle are equal in magnitude. The true

_, Greenwich sidereal time is obtained from the mean Greenwich sidereal time

(Reference 2)

i C_GM= UT1 + 6h 38 m 45_836 + 8640184_542T + 0_0929T_ (3-18)_ by applying the correction
J

,5

i: a = + AH (3-19)g C_GM
+,

_ _ where
f

5H = S_ cos(-_ + _e) (3-20)

: The nutation in longitude, 5_b, and obliquity, _e, is discussed in Section 3.3.1.2.
The times UT1 and T in Equation (2-18) are

u

UT1 = Greenwich universal time measured from midnight (epoch) to time t.

UT1 is positive for t after midnight and negative for t before midnight.

T _ the number of Julian centuries elapsed from 12 hours UT1 January 0,
1900 (JD = 2415020.0) to the UT1 time of epoch*

' ' The true of date coordinates transform into the pseudo body-fixed coordinates
as follows

Tb , = BI-F' (3-21)

*UTI andhenceT me knownonlybyobservationof thepolarmotionandrotationof the Earth.u

GTDSusesempiricalpolynomialsto computethe differenceA.1-UT1. SinceA.1 is known,UTI
canthenbedetermined.
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cos U g sin u g °l 
B :: RT (u ) = - sin u g cos u g :J 

(3-17) 
1 z g 

° ° 
The true of date right ascension of Grpenwich, ul(' is maasurp-d easterly from 
the true vernal equinox to Greenwich. A related quantity is the Greenwich hour 
angle, also called the true Greenwich sidereal time, which is me8 sured westerly 
in the plane of the equator from Greenwich to the true vernal equinox. Thus, 
although their definitions differ ~ the right ascension of Greenwich, U g' and the 
Greenwich sidereal time and heur angle are equ81 in magnitude. The true 
Greenwich sidereal time is obtained from the mean Greenwich sidereal time 
(Reference 2) 

UGM = un + 6h 38m 45~836 + 8640184~542Tu + 0~0929T~ (3-18) 

by applying the correction 

(3-19) 

where 

6H = 8 V: cos (E + 8 E) . (3-20) 

The nutation in longitude, Sf, and obliquity, ~ E, is discussed in Section 3.3.1.2. 
The times UTI arrl T in Equation (2-18) are 

1I 

UTI = Greenwich universal time measured from midnight (epoch) to time t. 
UTI is positive for t after midnight and negative for t before midnight. 

T 1I "-' the number of Julian centuries elapsed from 12 hours UTI January 0, 
1900 (JD = 2415020.0) to the UTI time of epoch* 

The true of date coordinates transform into the pseudo body-fixed coordinates 
as follows 

(3-21) 

*UTI and hence T ale known only by observation of the polar motion and rotation of the Earth. 
u 

GTDS uses empirical polynomials to compute the difference A.l-UTl. Since A.l is known, UTI 

can then be determined. 

3-19 



Differentiation _ields the velocity tran,gformztion I J

" _b' = _lr + ]3_'r (3-22)

where

l
- sin ag cos c_g O_

: COS CL - sin c_ cL
1 _ g _ (3-23)

• 0 0

and where _ is considered constant.
g

,' 3.3.2.2 Pseudo Body-Fixed to Body-Fixed (Reference 3)

The earthts axis of figure (i.e., principal moment of inertia) is not coincident t
with the spin axis and it moves with respect to the latter causing the polar motion ,,J
effect. The path of the spin axis on the earthts surface is "semi-regular" but
unpredictable due to random shifts in the earthls crust, etc. Therefore, motion

of the spin axis pole is given with respect to the pole at _ome established epoch. [

The pole at the established epoch is referred to as the adopted pole (PA) and
I

corresponds to the pole of the body fixed axes, xb , Yu, Zu, while the present
position of the spin axis pole is referred to as the true pole (PT)"

The adopted pole used in GTDS corresponds to the mean pole of 1903.0 which
is consistent with that used by the International Polar Motion Service. Due to
the small size of the polar motion correction (it takes place in squares of _ 30
meters), the polar region of the earth may be considered a plane. A geocentric

. rectangular coordinate syotem is established with the z b-axis passing through P^,

the x_,-axis parallel to the xb-axis and directed along the Greene.rich meridian,
and the yp -axis parallel to the negatice Yb-axis and directed along the meridian

of 90 ° west (see Figure 3-11). The coordinates of the instan .taneous pole, PT '
are meastLred in terms of x_ and y components using units of seconds of arc.

p p

(The coordinates xp and yp are periodically measured by the International Polar
Motion Service and supplied to interested users by the U. S. Naval Observatory.)

In order to derive the e.xpressions for the effects of xp and yp on a pointts
latitude and longitude, these two quantities are shown in relation to a regular

right-handed orthogonal-rectangular coordinate system whose z i, axis passes
through PA and whose x b - z_ plane passes through Greenwich. In this system,

the adopted longitude of a point _A is measured positive in an eastward direction
from x b. The following notation zs used:

J_
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Differentia.tion yields the velocity transformation 

where 

. .. 
r b I = HI r + Bl r 

- SIn a g 

B = - cos a 1 g 

o 

COS a 
g 

- S in a 
g 

o 

and where a g is considered constant. 

3.3.2.2 Pseudo Body- Fixed to Body-F!xed (Reference 3) 

(3-22) 

(3-23) 

The earth's axis of figure (Le .• principal moment of inertia) is not coincident 
with the spin axis and it moves with respect to the latter causing the polar motion 
effect. The path of the spin axis on the earth's surface is "semi-regular" but 
unpredictable due to random shifts in the earth's crust, etc. Therefore, motion 
of the spin axis pole is given with respect to the pole at eome established epoch. 
The pole at the established epoch is referred to as the adopted pole (~ ) and 
corresponds to the pole of the body fixed axes, "h' Yb' zo' while the present 
position of the spin axis pole is referred to as the true pole (PT ). 

The adopted pole used in GTDS corresponds to the mean pole of 1903.0 which 
is consistent with that used by the International Polar Motion Service. Due to 
the small size of the polar motion correction (it takes place in squares of < 30 
meters). the polar region of the earth may be considered a plane. A geocentric 
rectan!;,ular coordinate syotem is established with the Z b-axis passing through PA ~ 

the x,,-axis parallel to tlIe Xb -axis and directed along the Greenwich meridian, 
and the yp -axis parallel to the negative Yo -axis and directed along the meridian 
of 90° west (see Figure 3-11). The cOOl'dinates of the instantaneous pole, P

T
, 

are measured in ttl!'ms of J\. and y components using units of seconds of arc. p p 
(The coordInates xp and yp are periodically measured by the International Polar 
Motion Service and supplied to interested users by the U. S. Naval Observatory.) 

In order to derive the expressions for the effects of x and y on a pOint's 
• p p 

labtude and longitude, these two quantities are shown in relation to a regular 
right-handed orthogonal-rectangular coordinate system whose z b axis passes 
through PA and whose Xb - Z h plane passes through Greenwich. In this system, 
the adopted longitude of a point A" Is measured positive in an eastward direction 
from xu' The following notation 1S used: 
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Figure 3-11. Polor Motion Schematic

h^ _ the adopted longitude
¢^ _ the adopted latitude j

,/

h T the instantaneous longitude with respect to (Xb, Yb, Zb) '' :"I I

CT _ the instantaneous latitude with respect to (Xb, Yb' Z_)

}i _ A¢ _'_ T -_^, the difference between adopted and true latitude: Ah _ h T - hA, the difference between adopted and true longitude

" Let _v and _T be measured in the pseudo body-fixed coordinate system (x_, y_,

Zb') whose z _ axis passes through PT and whose xu axis lies in the z b - x b
_ meridian, displaced from x b by the angle x,. The vector in the (xb, Yb, Zb) and

_, (_, y_, z_) systems ,nay be written

_ x b cos _^ cos hA

_{ Yb = r b cos ¢,^ sin h (3-24)

}!4' z ' sin CA
J)

_' and

X COS q5T COS _

_,_"' y : r b Cos sin h.f (,,3-25),

:;_r s i n q)T
% -- b - -.

_:,'

4;",'

¢", 3-21
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Figure 3-11. Poi,u Motior. Schl!'matic 

A. A "-- the adopted longitude 
¢ A "-- the adopted latitude 
A.T "-' the instantaneous longitude with rE!Spect to (x~, y:, z~) 
¢T "-' the instantaneous latitude with respect to (X~, y~, z;,) 
6. ¢ ,,-, ¢ T - ¢ A' the difference between adt;>pted and true latitude 
6. A. "-' A. T - A. A' the difference between ad,opted and true longitude 

Let ¢T and Ar be measured in the pseudo body-fixed coordinate system (x~, y~, 
z~) whose Z ~ axis passes through P T and whose x~ axis lies in the Z b - X b 

meridian, displaced from Xb by the angle xpo The vector in the (~, Yb' Zb) and 
(~, Y ~, z~) systems may be written 

Xb feo , fA co, A. 

Yb 
:: (3-24) 

'b leos ¢. sin A. 

zb sin ¢A ,-

and 

x ,l 
b cos ¢r cos '\T 1 

Y' :: rb C:OS<fl sinA. I (.3-25) 
b T T 

z' 
h 

sin (Pr J 
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i

: The two systems are related by

• = Rr(x).RI%) ; , !

; -¢

where R x is given iu Equation (3-1) and R is
; Y

a 0 - sin ,

Ry(a) = 1 0 (3-27) "

Isin a 0 cos ::

The resulting transformation is _

cos x sin xp sin yp sin x cos -

"_b = 0 COS yp - sin yp g'. (3-28) :

-sinxp cos xp sin yp COS Xp COS yp

i

The error made by neglecting the polar moticn transformation defined by Equa-
tion (3-28) increases linearly with I{bt. A worst-case, order-of-magnitude in- i_ ,_

',, dicatton of this error is given in Figure 3-12.

The figure also shows the band of uncertain67 in lr u - r_ I as a result of a :'--2- ;
meter uncert_uty tn the measurement of the polar motion coordinates, x and

p

yp.

Since Xp and yp are small, all cosine terms are equated to unity, all sine terms ;
equated to their angles, and all products neglected. Thus the transformation 0e- , _ '

fined by Equation (3-28) simplifies to

_ _I1 0 x 1

- = B2r b !
rb 0 1 _yp ¥_ -, (3-29)

_Xp Yp I . :.w"

3-22 'r"_
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The two systems are related by 

where Rx is given ju Equation (3-1) and R is y 

cos a 0 - s in a 

I\.(a) = o 1 o 

s in a 0 cos a 

The resulting transformation is 

cos x s in x SIn Yp s in x cos Y l p p p p 

r - 0 cos Yp -siny r'. b -
p 0 

-sin x 
p cosx siny 

p p cos x cos y J p p 

(3-21» 

(3-27) 

(3-28) 

The error made by neglecting the polar moticn transformation defined by Equa
tion (3-28) inc~'eases linearly with I rbl. A worst-case, order-of-magnitude in
dication of this error is given in Figure 3-12. 

The :figure also shows the band of uncertain~y in I i~b - ;~ I as a result of a ~2-
meter uncertainty in the Ir..easurement of the polar motion coordinates, x and 

p 

yp' 

Since xp and yp are small, all cosine terms are equated to unity, all sine terms 
equated to their angles, and all products neglected. Thus the transformati.vn oe
fined by Equation (3-28) simplifies tCl 

'bJ: 
0 

x 1 p 

1 -I -I (3-29) 
-:p rb=B2 r b 

~xp yp 
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2000 Surface Satellites Distance

; 1000 -- , ,_

_ :
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I
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I_b! _ 1000 kilometers

Figure 3-12. Polar Motion Errors i_

_ The worst-case error made by using the simplified transformation matrix is ::•_ insignificant. For example, at lunar distances the error amounts to less than

a centimeter. _ _

In order to obtain the relationships between )_T' )_A' _^' and _r' the follo_g
formulas may be used

_T - _A -- A_ = Xp cos kA - Yp sin ;_ (3-30) _:

_'T- _A : _ : tan _bA(Xpsin_'A _ Yp cc_'_kA). (3-31)

The Goddard Trajectory Determination Program use_ the simplified trz_sforma-

i!I_ _ tion matrix defined in Equation (3-29). The Instantaneous coordinates of the pole, ;

Xp and yp, are ot_atned by ev_luattng predefined cubic polynomials at the given
date.
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Figure 3-12. Polar Motion Errors 

The worst-case error made by using the simplified transformation matrix is 
insignificant. For example, at lunar distances the error amounts to less than 
a centimeter. 

In order to obtain t!1e relationships between 'A '''-A' ¢ , and c:p , the following 
TAT 

formulas may be used 

(3-30) 

(3-31) 

The Goddard Trajectory Determination Program use~ the simplified trt.nsforma
tion matrix defined in Equation (3-29). The instantaneous coordinates of the pole, 
x and y , are obtained by evaluating predefined cubic polynomials at the given 

p p 
date. 
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. Xp = all + ai2T + aiaT2 + ai4T3
2

._ (3-32)
?

• yp = ai5 + ai6T + aiTT2 t ai8T3
: I

where

x -_ x-polar coordinate, seconds of arcJ p

: * yp ~ y-polar coordinate, seconds of arc
T ~ number of d_.ys from the beginning of the time span covered by the

-.
polynomial, e.g., T = ], 2, .... For a given modified Julian date, MJD

T = MJD - MJDi (3-33)

_ where MJDi is the tabular modified Julian date which bounds theinterval from below, i.e.,

J

MJD i _<MJD < MJD i + 1 13-34) ->-"/

The coefficients a ij are given in Table 3-1 next to modified Julian dates (rood
2,430,000) defining the time spans for which the coefficients zre applicable.
These coefficients and associated _ime spans were determined by least-squares
fitting of cubic polynomials to published daily polar motion data. The time spans
were determined by constraining the maximum deviatio,, (between the data and
polynomial) to be less than 0.01 seconds of arc.

The table begins on January 1, 1958, and is updated periodically as current i
data from the U. S., Naval Observatory becomes available. The last row of co-
efficients in the table can be used to obtain extrapolated values of the polar

'" motion coordinates for a short time in the future.

3.3.2.3 Summary

The complete transformation between the true of date coordinate system and the

body-fixed system is given by

i

_b = B2(x' Yp) Bl(ag) T = BY (3-35)

where B = B 2 B_ with B 1given in Equation (3-17) and B2 in Equation (3-29).

m
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(3-32) 

where 

J( "" x-polar coordinate, seconds of arc 
p 

y p - y-polar coordinate, seconds of arc 
T ... number of chws from the beginning of the time span covered by the 

polynomial, e.g.~ T = J, 2, •••• For a given modified Julian date, MJD 

T = MJD - MJD. + 1 
1 

(3-33) 

where MJDi is the tabular modified Julian date which bounds the 
interval from below, i.e., 

MJD; .$ MJD < MJD; + 1 (3-34) 

The coefficients a .. are given in Table 3-1 next to modifbd JuliN} dates (mod 
1 J 

2,430,000) defining the time spans for which the coefficients :lre applicable. 
These coefficients and associated time spans were determined by least-squares 
fitting of cubic polynomials to published daily polar motion data. The time spans 
were determined by constraining the maximum deviatinn (between the data and 
polynomial) to be less than 0.01 seconds of arc. 

The table begins on Janaary 1, 1958, and hi updated periodically as current 
data from the U. S·, Naval Observatory becomes available. The last row of co
efficients in the table can be used to obtain extrapolated values of the polar 
motion coordinates for a short time in the futur~. 

3.3.2.3 Summary 

The complete transformation between the true of date coordinate system and the 
body-fixed system is given by 

(3-35) 

where B::: B2 B, with B 1 given in Equation (3-17) and B2 in Equation (3-2H). 
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Table 3-1

Polar Moticn Coefficients

G,'egorlan Modified [ X- Polar Coordinate Y- Polar Coorchnate o#

Date duliaz_ [ i

Ltat_ I ,1,1 ] a 2 a_ ..t 4 a,, a.t ' ,_,7 ,t _

01-01-58 tJ204 -0.1970_D DO '-0.17397D-02 0.1(,'792D-o4 0.5653711-07 -0.54697D-01 0.19t891)-02 0JJ7555D-04 -0.434441)-06 i

04-08-58 6291 -0.13488D 00 [ 0.35695D-02 0.4786213-05 -0.472,tSD-n7 6.37_01D 00 0.299351)-02 -{).21848[)-04 -0.36390D-07 I

08-28-58 6443 0.32567D O0[ 0.46332D-02 -0._1859D-04 0,177,_/D-0_, 0.27:23D 0{I -0.31136D-02 -0.33444D-04 0.2X654D-06 I

11-27-58 3534 0.22133D 00 r-o.63734D-02 0.1t_865D 04 0,61318D-07 -0.77337111101 -0.70363D-03 (J 17730D-04 0.463711)-08

03-24-59 6651 -0.17C08D 0O fL25367D-03 0.973881)-05 0.27892D-07 0._,1864D-0! 0.41445D-02 -0.47648D-05 -0.75084D-07 _;

99-09-59 6820 0.27773D 00 i 0.2t,658D-02 -0.42458F-04 0.103801)-06 0.284601) 00 -0,14203D-02 -0.10745D-04 0.60890D-07 !.
04-24-60 7048 -0.85171D-0"] 1-0.144591)-02 0.27010D-04 -0.70824D-07 0,12111D 00 0._12t6D-02 0.63648D-05 -0.39237D-07

12-21-60 728 o 0.14300D 00 I 0.15746D-03 -0.36863T)-05 -0.835911)-09 0.223491) 0O -0.60969D-03 -0.10727D-04 0.61740D-07

07-05 • 6! 7485 0.29412D-01 :-0.7262113-03 0.82974_-06 0.97399D-08 0.145271) 06 0.20816D-02 -0. 19450D-04 0.60625D-07

12-31-61 7664 -0.30430D-01 -0.12198D-02, 0.21743l)-04 0.12057D-08 0.23238D 00 0.10180D-02 0.39270D-05 -0.71242I)-07 '!

0_-07-62 7761 0.50266D-01 0.63817D-03 0.1095(D-05 -0.35036D-07 0.28686D 00 0,27306D-03 -0.20762D-04 0.75204D-07

10-23-62 7960 -0.36791D-01 -0.32778D-02 0.1518.LD-04 0.28784D-07 0.10175D 0O 0.15825I)-02 0.159371)-04 -0.85935D-07

04-01-63 8120 -0.63_Q,6D-01 0.28084D-02 0.1487iD.,-04 -0.15351D--06 0.41375D 00 0.17397i)-02 -0.,:.4163D--04 0.12548D-06
09-03-63 8275 0.17377D 00 -0.24358D-02 -0.201_D-04 0.11286D-06 0.10492D 00 -0.35173I)-02 0.39067D-04 -0.73909D-07 •

04-05-64 8490 -0.16637D 00 0.29283D-02 -0.640._911-07 0.36926D-97 0.41S61D 00 q.29369D.-02 -0.3842913-04 0.956761)-07

07-21-64 8597 0.17993D 00 0.2694313-02 -0.326(,0D-04 0.384771)--07 0.39884D 06 -0.25030D-02 -0.17647D-04 0.12983D-06 :_,

12-13-64 8742 0,23795D-01 -0.3828413-02 0.425 }2D-05 0.8629813-07 0 62704D-01 -0.13271D-02 0.39303D-04 -0.10542D-0_ ! _

04-25-65 8875 -0,20109D 00 0.22095D-03 0..t5378D-64 -0.19490[)-06 0.32931D 00 0.389141)-02 -0.293821)-04 0.12412D-07

09-17-65 9020 0.17408D 00 0.20348D-02 -0.37214P-04 0.947911)-07 0.329321) 00 -0.28118D-02 -0.19542D-05 0.564431)-07

03-21-66 9205 -0.10598D 0O -0.29328D-02 O.37LI6D-04 -0.9106tD-07 0.91055D-01 0.230651)-02 0.42261111105 -0.49763D-07

09-29-66 9397 0.49071D-01 0.3]195D-02 -0.'_i_84D-04 0.979131)-07 0.3513ID O0 -0.543441)-03 -0.23239|)-0,. I 0.12731D-06 "_,

02-09-51 9630 0.52058D-01 I-0.18656D-02 0.137071)-04 -0.28021D-07 0.163651) 00 -0.12220I)-03 0.67445D-05 -0.244371)-07

o5-28-67 9761 -0.73559D-02 I-0.40375D-03 'O.5(173D-t_5 -0.12649D-07 0.i9478D OO 0.825811)--03 0.85707D-Off -0.194731)-07

04-10-68 9956 0.13935D-01 II 0.4_635D-04 0.1 t791l)-04 -0.891431)-07 0.26201D O0 -0.21272D-0'1 -0.12867[1-04 [).647640-07 _ i"
09-17-68 10116 0.30342D-01 [ 0.11158D-02 -0.6J582D-0,1 0.3355213-06 0.15523D 00 n0_7_ _

_ _ 7 _ 4 _ l_ _5
6.224421)-66

I

12-25-68 10215 -0.15879D 00 * 0.77670D-03 0.16188D-04 -0.94824D-07 0.230231) 00 0.21761D-02 -0.1156011-04 0.2847811-07 _'J /_¢
04-30-69 10341 0.19964D-01 0.7788fiD-0_" 0.L95541)-04 -0,245011)-06 0.370121) 00 0.11803D-03 '-o.18108D-04 0,669531)-08 _ ,

08-28-69 10461 0.115581) 00 I 0.22065[)-0:: 0.214871)-04 -0.154071)-06 0.136041) 00 -0.103021)-02 0.66636D-05 0.158051)-07
01-02-70 10588 -0.1156H) O0 1_0.411351)-02 0.u{_q5fll)-04 -0.44({7511-60 0.131C71) 00 9.386341)-02 0.9£753D 06 -0.118531)-.0(;

04-21-70 10697 -0.9839011-01 0.168071)-02 0.32544[)-0.t -0.2116111-00 0.40,115I) 00 0.2q255D-02 -0.514601)-04 0.137"_,,D-06 _"

_; 09-02-70 10831 0.20618D 00 -0.102151)-(_3 -0.373731)-05 -6.30_17I)-3{, 0.20856l) 00 -0.2_568D-02 -9..t945_l)--05 0.19[)30l)-0h
11-15-70 10905 0.60462[)-01 -0.22317D-02 -0.12960I)-01 0.10771D-06 0.5127_[)-01 -0.271591)-{{2 0.523851)--04 -0.],197811-06

05-02-71 11073 -0.17706D C,0 0.105421)-02 0.17511|)-04 0.'102571)-06 0.40436I) 00 0.27322D-02 o.146_01)-04 -0.41955l)-06 '_

07-10-71 11112 0.69938D.-0_ 0.464891)-02 -0.122931)-0t -0.103661)-06 0,515:181) 00 -0,1785fi[)-02 -0.231301)-04 6.9806211-07
11-15-71 1.1270 0.171831) 00 -0.1 171 _.02 -0.285{)0I)-01 0.14516D-06 0.119801) 00 -U.I36q�I)-02 -0.1_9161)-04 0.179531)-63 _" -:

03-30-72 11106 -0.181511) 06 ,-0.13425D-62 0.372021)-04 -0.917(,31,-07 0.1642aD 00 _.37311D-62 -0.95525I)-05 -0.240(_3[)-07 ,_

68-21-72 11550 0.120,161) O0 0.107191)-02 _-0.190861)--05 -(L340121)-07 0. t40181) 00 I -O 232981)-O2 0.197331)-05 -0.378831)-68 _
12-24-72 11675 6,160,171) 00 -0 1383411-02 -0.45410l)-06 -0.125311)-07 0.1(.h751) 001-6.,t53t41)-02 6.17651l)-04 -0.152181)-6h

04-26-73 11798 -0.107131) 00 -L'._1736I,,.-03 0.19310l)-04 _-0.,19338l)-07 0.1fi691D 0O I 0.2, t38l)-02 -[}.,1_73711-05 -0. 93690D-08 _¢
01-04-74 12051 0,12471D 00 -0 37'160l)-03 - L1438-tl)-04 0.681511)-07 0.242571) OOJ-0.21067l)-02 0.210961)-04 -0.5963_1)-07

07-25-74 12253 0.140091)- O1 0.23a381)-{13 O 517121)-05 -0.152q2D-06 0.21{)80D 00 0,530q71)-03 -(I.258611)-04 [}.3225,tl)-06 )

09-10--74 12300 -0.22600D-01 0.33157D-16 -6.28_71)-]7 0.32670D-19 0.25641D O0[-0.!197251)-(L_ 0.4h9q2D-64 -0 11840D-05

10-09-74 12329 6.21593[1-01 [-0.15_65l_62 0.12341D-04 -0.196661)-07 0.2J(;391) (H) I 0 _1515l)-f, _l-q ,,_,71,dD-_ 0.2_59!H)-67 , •

12501 0.99919D'02 1 0.19124D-02 -0.24541111101 0.16709D-06 0.311S4D Ot)1 :, ,?10_!l)-!,J-0.4013_1!-04 j " 2371n,,-0,,
03-30-75

I •
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I 
G,cKonan 

Date 

01-01-58 
04-08-58 
0~-28-5R 

11-27-58 
03-24-59 
09-09-59 
04-24-60 
12-21-60 
07-05· 61 
12-31-61 
0;-07-62 
10-23-62 
04-01-63 
09-03-63 
04-05-64 
07-21-64 
12-13-64 
04-25-65 
09-17-65 
03-21-66 
09-~9-66 

02-09-G I 
oG-28-67 
04-10-68 
09-17-68 
12-25-68 
04-30-~9 

08-~8-69 

01-02-70 
04-21-70 
09-02-70 
11-15-70 
05-02-71 
07-10-71 
11-1:;-71 
03-JO-72 
08-21-72 
12-24 ·72 
04-2,;-7:1 
01-0-1-7-1 
07-2<;-7-1 
09-10-7-1 
10-09-7-1 
03-30-75 

TabLe 3-1 
Polar Moticn Coeffici ents 

----------
Modified x- Polar Coordinate ~- Polar Coor(linatc ----J .Julian 

I Date .1 
,I a 

" 
a ." a",~ .1, oJ 

-----f--- -------- ------ -----
b~O.j -0.1971>?0 no i-".17:1!l7D-02 U.lt'792D-'J4 O.56537fJ-07 -0.0-10971)-01 1J.]91HUD-02 O.fj75G5D-04 -0.43-14-11)-06 

6201 -0.13-188D 00, (J.~,j695D-02 OA7862D- "5 -0.H2'IBP- n 7 0.a7~011J 00 0.29935D-021-0.2IH4HD-04 -0.363961)-07 , 
6443 0.325670 01' 1 OAO'j,20-02 -0.81859]), 0-1 O.I7'"ill-O', 1 0.27;231J on -0.:1l1:1CI)-02 ·0.334440-04 O.2H654D-06 
053-1 0.22133D DO I-U.b373-1!)-02 0.18865D 0-1 0,613180-07 -0.773371)-0] -0.703630-03 o 177:!UlJ-04 0.463710-08 
6651 -0.17G08D 00 1 O.25:W7D-03 O.973t-1HD -03 0.27892D-07 O.I<,IH6-1[)-01 0.4IH5D-02 -0.476-180-05 -O.75084D-07 
6820 0.27773D 00 I U.206580-02 -0,4245Sf -0-1 0.103Hon-061 0.28-16011 00 -0.142030-02 -0.107450-04 0.60H90D-07 
7048 -0.85171D-Oll-u.1H50D-02 0.270101>-04 -0.70~240-07 O.12111D 00 0,112160-02 0.6364BD-05 -0.392370-07 
728 0 0.143000 001 0.157460-03 -0.368631)-05 -0.B359JD-09! 0.223491> OV -O.60969D-03 -0.107270-04 0.617400-07 
7485 O.29412D-OI !-0.72621D-03 0.82974 )-00 

~:~~~~~~~~ i ~:~~~~~g ~~ 0.20~lb 0-02 -0. 194500-04 0.6062GO-07 
7664 -0.304300-01 -0.1219~1)-02 0.217431)-1)4 0.10180')-02 0.392700-05 -0.712421)-07 
7761 0.502660-01 0.63817D-03 0.1095( IJ-O;; -0.35036 D-07 0.286860 00 0.27306D-03 -0.207620-04 0.752040-07 
7960 -0.3679ID-OI -0.32778D-02 0.1518!,1)-04 0.28784D-07 0.10175000 0.15H251)-U2 0.159371l-04 -0.B5~:150-07 

8120 -0.63: 'l6D-OI 0.280840· 02 0.14871D-04 -0.15351D-06 0.-I1375D 00 0.173971)-02 -0.';4]630-04 0.12549D-06 
~275 0.17377D 00 -0.2435~D-02 -v.20H<3ll-04 0.112860-06 0.104V20 00 -0.3517311-02 0.3901171)-04 -0.739091>-07 

8490 -0.166370 00 0.29283D-02 -0.640: 91l-07 0.36926D-?7 O.41~tilD 00 ~.29369D-02 -0.38429D-04 0.95676[)-07 
8597 0.179830 00 1 0.26943D-02 -0.326"0D-041 0.38477D-071 O.3'lS84ll 00 -0.25630D-02 -0.176470-04 0.12983D-J6 
8742 0.23795D-OI -0.38284D-02 0.-125 l2D-05 O.86298D-07 0027040-01 -0.13271 D-02 0.39303D-04 -0.10542f)-0~ 

RM75 -0.20109ll 00 0.2209S11-03 0.·153 7~0-r,41-0.194901)-06 , 0.3~9311J 00 0.38914D-02 -0.293821!-O-l 0.12412D-07 
9020 0.1740HO 00 I 0.20348D-02 -0.37::141'-04 0.9-11911)-07 0.32932]) 00 -0.~BI180-02 -0.195420-05 0.564431)-07 
920:; -0.105980 00 -0.29328D-02 0.37:.1 c,D-O-l -0.910610-07 0.91055D-OI 0,23065D-02 0.422611)-05 -0.49763D-07 
9397 0.490710-01 0.31195D-02 -O.O)fi J84D-04 0.97913D-07 0.3:;1 ',J!) 00 -0,543441)-0:1 -0.232391)-0·! 0.127:'W-06 
9630 0.52058D-OI i-0.IH656D-02 0.;37071)-04 -0.28(;21 f)-07 0.lfiJ65Jl 00 -0.122201)-03 O.67-l45~O5 -0.244371)-07 
9761 -0.73559D-021-0.40375D-03 tJ.5( 173D-n5 -0.12649])-07 0.,94780 00 0.82:;811!-03 0.S5707IJ-06 -0.194731)-07 

9956 0.1:19350-01 i O.48H3:;0-04 0.1.7911)-04 -0.891431)-07 0.262010 00 -0.212721'-<"1 -0.128671)-04 0.64764D-07 
10116 0.30342D-OI 0.111580-02 -0.635821)-0·1 0.335520-06 U.155231J 00 -0.I;7-I211!-00 -0.7]48-11l-05 1I.~2H21l-0H 

10215 -0.158790 00 0.77670D-03 0.IHI880-0-' -0.948241)-07 0.230231l 00 0.217610-02 -0.115601)-04 O.2B47HIl-07 
10341 0.199640-01 0.77~~60-0:· o.~.!1r;501 0-001 -0.245011)-06 0.370121l 00 0.11 A03D-03 '-11.181081)-04 0.66U:'31)-08 

10461 0.lI55R£) 00 I- 0.2206(1)-0:, 0.lH871)-04 -0.15~071)-06 0.13604£) 00 -0.10302D-021 O.fifi636[}-05 0.151':10;;I}-07 

1058H -0.115Gj/) 00 -0.411:1;;1)-0:~ O."'IflC)5bD-00l -0.-I-I(751)-Ob 1I.13]1;71l 00 (1.3H(;3-1I)-1l2 O. 9~7530 06 -0.11 H531)-Oli 

10697 -0.98390[)-01 0.168071)-02 0.325.j.jI~O·1 -0.2116U!-Ob O.oIOIi15D 00 f).2·~2!i5r>-02 -U.;;14(;o1!-04 O.137"/d;>-Ofi 

10831 0.2061811 00 -0.1021!)]HI3 -U.373731l-U5 -0.30HI71)-UI> O.2UH5ti J) on -O.2 .... ilfitH>-02 -O.·1U-!5HD-05 ().I~H13hl)-()h 

10905 0.6046~lr 01 -0.223171H)2 -0.1291;01~O , O.I077I1)-OG 0.:'1~7bIHJl -O.27159D-u2 1I.52aH!')D-04 -O.1.Hl7HI>-Uh 

11073 - 0.1770(;0 GO 0.105-12Ir 02 0.17G 111~04 O. '10257D-O(l 0.40-l3,;n 00 0.27J220-02 O.HGMlI>-O·' -0.01 '~;I!jl)-O(j 

11112 ').699380-01 0.-10-1891>'02 -0.122Ubl!-0 I -0.103661)-06 O.515:JHI> 00 '0.17H561)-02 -0'23130I!-041 0.!lHO';2IH)7 
! 1270 0.171831l 00 -0.11171]\-02 -O.2t'(!i()OD-O t O.I·t5lfil}-OH O.lI9ROIJ 00 -O.13U<ltll)· 02 -O.P!J11i1>-U,t U.179531)-(II, 

1II0b -0.IHIG11l 00 -0.13-I25IHI2 0.37202IHl-l -0.917(,:.11,-07 0.](;42"1J 00 tl.373111)-02 -0.9:'5251)-05 -O.2-1fJb3Il-07 

11550 0.1204tiD 00 i O.I"7191~02 -0.19086 1~05 -O.3.JOI2IHl7 0.1401 AI> 00 -02:12(181)-1121 0.1 un:IP-o:; -n.:Jnb3IHlk 
11675 O.HWoI7lJ 00 -0 108341)-02 -0.154Ih 1!-06 -0.125311>-07 U.1IIh7SD (10 -(I..'Shl-lI!-02 0.171;:;IIJ-U-II-0.152181)-(II, 

11798 -0,107131J 00 -l'.~I73GI}-O:l 0.1 !131 OIJ-O-l -0.493:1HI!-07 O.IGG911) 00 0.2.13klJ-02 -O.·I'7371J-OG -0.936900-08 

12051 0.124711l 00 0.242571> no -O,21IJb71J- U2 1 0.2IH9"IJ-U-I 1-0'59""'1!-07 
12253 0.1400!1ll' UI (}'~~3H:HH)-O:1 031712D-0:; -O.lri2'12j)-Oli n.21bHon 00 O.'-,:Jh')/I}-O:J -O.:l;,HOIJ)-{)·1 U.:J22!',41)-(Jh 

12300 -0.22000D-OI 0.3,'.]57D-16 -O.28h171)-17 0.h26701J-1~ O,2:,(jolllJ no -O.!HJ72.H)··O.J I O.-IfJ!Pt21>-04 -(J I1H40f)' (J:> 

12329 U.215H:H.>-Ol -0.1 ;",;GIHI2 O.12J.J IIJ-U41-u. ]!JGG" lJ-U7 U.2.JIi:J~)) 00 o :-o.IGI.')I>-(, ~ I_I! ,,:,';'1:::;_11~, 1J.:.!MG!I~,f)-07 

1250] O.9991!J1J·02 O.~"IK-I1J on 
___ + __ l.........--___ 

-" "''''""1 ,."'"''"~ " ... ,,"'" 
0~~2~~n-02 ~.:..::~4~ I)-u ~1_r::~;711!lIJ~OH " ;~ /~ HJ!JI~-_OJ.l-~:.t~~~k_I~~U4 J II 2:~~!_'~'-O" 
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The time derivative of B 2 is negligible; therefore, the veloczry is transformed as
follows I,

+ •

rb : BaBlr + B2BI¥ (3-36) ":

l

where ]31isgivenhy Equation(3-23).

3.3.3 SelenocentricTrue ofDate to Selenographie(ReferencesI, 3, 4 and 6)

.. The lunar landmarkr, and gravitational potential are referenced to a lunar-centered

:: body-fixed (selenographic) _oordinate system. Similar to the earth's geographic
system, the selenographic system reference plane is Lhv lunar equator which

contains the x t- and Ys-aXes. The Zb-a_ is directed towards the lunar axis of
rotation.

/ The moon's mean rotation is describ_,d by the following three e_irical laws
: of Cassini.

• (1) The mean axis of rotation is "_cl in the moon, perpendic,_lar to the mean , "
' lunar equator; the mea_ period of rotation is equal to the mean sidereal !//

period of revohltJon of the moon around the earth. I

(2i. The mean lunar equator intersects the eclip_,c of date at a constan_ in- I

clination, IM,for which the currently accepted value is 1°32'.1.

(3) The mean lunar equator, the ecliptic, and the lunar orbit plane meet
the line of nodes of the lunar orbit, with the descending node of the
equator at the ascending node of the orbit. The angle i, between the
lunar orbit plane and the ecliptic, is a constant (the currently accepted

value is 5o8') as is the angle i + IMbetween the mean hmar equator
and the lunar orbit plane. The ecliptic is seen to always lie between

\ the mean lunar equator and the lunar orbit plane.

The oscillation of the actual rotational motion about the mean rotation is called

the physical libration. The physical libration consists of small pendulous
oscillations, never exceeding a#pro_mately 0°.04 (in selenographic latitude and
longitude), and are caused by deformations in Lhe moon's figure.

As a result of the first law of Cassini, the principal direction of the selenggraphic
system (x_-axis direction) defines the lunar prime meridian &nd has been
chosen so that it is, on the average, directed towards the center of the earth disc.
The Xb-aXiS passes through the Sinus Medii (Central Bay) on the lunar surface.
Specifically, the xb-axis is defined to be coincident with the vector pointing from
the center of the moon to the center of the earth, if the moo_ were at the mean

ascending node when the node coincided wi+h either mean perigee or mean apogee.

3-26

1976017203-065

The time derivative of 3 2 is negligible; therefo:;.oe, the veloClty is trant3formed as 
follows 

(3-36) 

. 
where Bl is given by Equation (3-23). 

3.3.3 Selenocentric True of Date to Selenographic (References 1, 3, 1: and 6) 

The lunar landmark~ and gravitational potential are referenced to a. lunar-centered 
body-flxP.d (selenographic) 000rdinate system. Similar to the earth's geographic 
system, the selenograpbic systelli :reference piane is tlitl lilliar equator which 
contains the xl, - and Yb -axes. The Zb -8.Jds is directed towards the lunar axis of 
rotation. 

The moon's mean rotation is describf,d by the following three e~!lirical laws 
of Cassini. 

(1) The mean axis of rotation is ~. hLd in the moon, perpendicular to the mean 
lunar equator; the mea:.:t period of rotation is equal to thfl meM sidereal 
periud of revolution of the moon around the earth. 

(2) The mean lanar equator intersects: the ccUPl. .. c of date at a constan~ in
clination, 1M, for VJhich the currently accepted value is ).032'.1. 

(3) The mean lunar equator, the ecliptic, and the lunar orbtt plane meet in 
the line of nodes of the lunar orbit, with the descending node of the 
equator at the ascending node of the orbit. The angle i, between the 
lunar orbit plane and the ecliptic, is a constant (the cu:rrently accepted 
value is 5°8') as is the angle i + 1M between the lllean ltmar equator 
and the lunar orbit plane. The ecliptic is seen to alw&,ys lie between 
the mean lunar equator and the lunar orbit plane. 

The oscillation of the actual !'otational motion about the mean rotation is called 
the physical libration. The physicallibl'ation consists of small pendulous 
oscillations, never exceeding approximately 0°.04 (in selenographic latitude and 
longitude), and are caused by deformations in the moon's figUl:-e. 

As a result (If the first law of Cassini, the principal direction of the selen~graphic 
system (xI> -axis direction) deflnes the lunar prime meridian and has been 
chosen so that it is, on the average, directed towards the center of the earth disc. 
The xb-axis passes through the Sinus Medii (Central Bay) on the lunar surface. 
Specifically, the Xb -axis is defined to be coincident Wlt.'l the vector pointing from 
the center of the moon to the center of the earth, if thE'! moon were at the mean 
ascending node when the node coincided with either mAan peJe"igee or mean apogee. 
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North

' I_ Selenographic Zecliptic z ijPole .

Zb z _ Yb

is
Yb

'_ Lunar :

_/ Lunar equator ; i

.._|;,tor f ..

Xb Tot.,ard
Earth ',

X,Xecliptic orbit :
(a) (b)

Figure 3-13. _=,lenocentric/Selenographic GeomeTry

To transform from the inertial system to the selenographic system, a lunar-

centered (selenocentric) coordinate system is defined which is parallel to the
earth-centered Cartesian true of date system. The selenographic system /

(Xb' Yb' Zb) is oriented relative to the selenocentric system (x, y, z) by the "_

_ Euler angles _', i s, _nd A shownin Figures 3-13a and 3-14. The transformation
•1_ between the selenocentric and selenographic systems is

_ Yb = MT (3-37)

' where M : R=(A) Rx(is) R,(_') (3-38)
i

with R and R= given by Equation (3-1). The elements of M are

J

roll : cos A cos D' - sin A sin D.'cos i s

mz2 = cos A sin _' + sin Acos _' cos i " i

mz3 = sin A sin i
(3-39)

m21 = - sin A cos _}0_ ,_-os A sin D' cos i s

m22 - sin A sin _' + cos A cos _)' cos _ i

cos A sin i i,1_23 :

,_ 3-27
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(a) 

To\,/ard 
Earth 

x/Xecliptic 

(b) 

Figure 3·13, S'llenocentric/$elenogrophic GeomeTrY 

Ecliptic 

xb 

.......... Earth 
orbit 

To transform from the inertial system to the selenographic system, a lunar
centered (selenocentric) coordinate system is defined which is parallel to the 
earth-centered Cartesian true of date system. The selenographic system 
(x b' y b' Zb) is oriented relative to the solenocentric system (x, y, z) by the 
Euler angles D', i , ~nd A shown in Figures 3-13a and 3-14. The tran'3formation 

s 
between the selenocentric and selenographic systems is 

(3-37) 

where 

M = R (A) R (! ) R CD') 
z "''x s z 

(3-~8) 

with Rx and Hz given by Equation (3-1). The elements of Mare 

cos!\ cos 0' - sin A sin 0' cos is 

cos A ~in D' + sin A cos D' c,~s i 
s 

sinl\sini s 
(3-39) 

m21 :c: - sin 1\ cos 0' - '-"as A sin P' cos Is 

- sin A sin Il' + cos A cos \1' cos s 

co s A sill is 
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!- '"31 - :_ill []" :_ill i s J }

, IT132 = - COS _# sil-I i s

-- COS i ,;
, m33 s _

Because of the relationship bet_-een the moon's mean position and the orien¢ation _

of the lunar se!eT,o_raphic coordinates, the deter_dnatiov of _he Euler angles
_', i s , and A necessar_lj involves the moon's mean orbit.

t

Figure 3-13b can be used to relate orbital motion to the lunar centered axes

system. It shows the "ecliptic" plane (Xc 1:p:, _ - Y_I i_ti _ ) which passes
through the center of the moon and is parallel to the e_liptic. The lunar equator

, and orbit planes are shown intersecting m a line on the "ecliptic" plane. The
xb-axis is shown in the lunar equator. In this moon relative coordinate frame,
the earth cmt be considered as orbiting the moon (the origin) in exactly the same

: orbit as the moon orbits the earth except that longitude .angles measured in the
orbit plane must be reduced by 180 degrees, rot example, when the earth is at ,
the descending node and the x b-axis points towards N tm Figure 3-13b, the moon
is, in reality, at it_ ascending node, 180 degrees advanced from N. Thel_fore, the
longitude of the ascending node _ and the mean longitade _ must be reduced

by 180 degrees when used inthemoon relative,frame. The _elenographic_xes
can be orientedtothe selenocentricaxes by mean_ ofthe followingfourangles:

_.,the trueobliqui_;;f_-.1r_0°,theleugitudeofthe descendingnode;I,theincl'n-
a_on ofthelunarequaf_-tothe _,cliptic;and _, theanglemeasured inthe lunar

equatorbetween_.hedescendingnode and the moon's prime meridi,_,n.These
_mglesare sh.,Jwnin Figure3-13b and the trans_ormat'onis

Y_ = M'¥ (_-40)

where

"Z M' : R ((2) N (I) R.(f_-_) Rx(_) _3-41)

The elementsof M' are

; J

3-28
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'''31 -
. , .... , 

S1I1H Slll! 
5 

m
32 

::: - COS D.' sin is 

cos i 
s 

Because of the relationship between the moon's mean position and the orien"ation 
of the lunar seleh{lg'L"aphic coordillat€s~ the determ.ina,tioD. of the Euler angles 
.0' , is' and A necessa:ilJ involves tue lnoon's mean orbit. 

Figure 3-13b can be lised to :"'elate ol.'bital motion to the lunar centered axe& 

system. It shows thfl !lecliptic" plane (X 1 - Y l' . ) v .. hich passes 
ec 'pt.c PC .pt.c 

through the center of the moon and is parallel to the e~1iptic. The lunar equator 
and orbit plRlles are shown intersecting in a line on the "ecliptic" plane. The 
Xb -axis is ~ bown in the lunar equetor. ]n this moon rela.tive coordinate frame, 
the earth Cal \ be considered as orblU.ag the moon (the origin) in exactly the same 
orbit as the moon orbits tile earth except that longitude angles measured in the 
orbit plane must b~ reduced by 180 d(Jgrees. For example, when the earth is at 
the descending node and the xb-axis points towards N ill Figure 3-13b, the moon 
is, in reality, at its ascending node, 180 degrees advanced from N. Therefore, the 
longitude of the ascending node .0 and the mean longitude A. Il'.ust be reduced 
by 180 degrees when used in the moon relative frame. The 3elenographic ~X€S 
can be oriented to the sclenocentric axes by means of the followillg four angles: 
~ , the true obliquity; .o-J ~lJo, the lC'''lgitude of the descending node; I, the inc1'n
ation of the hmar equat"';l' to the ~c1iptic; and (J, tbe angle measured in the lunar 
equator betweeu :he descending node and the moon's prime meridim. These 
angles are sb:Jwn in Figure 3-13b and tr~ translormat:'on is 

where 

T~e elements of M' are 

r :: M'r h 

M' = R (0\) R (I) R (0-77) R (i') z .J('" x 
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I

_..._.-.--- Lunar Prime Meridian

__ liptic

:-' _ Lu-_laxb
r Orbit Plane

x_1__ _'_..q_ -A i I_ Earth's Equator

T=ue Equinox

_ of Date

_ Figure 3-14. Selenographic Transformation Angles

/s

m11'--- cos_ cos _+ _in;_ cos I sin__

' = -cos_ sin f_cos'_- sin_(cos I cos f?cos _ :- sin I sin'S)m12

m13 = - cos :' sin l_ sin c - sin _(cos I cos f_ sin _" - sin I cos "_)

' = sinO cos f_+ cos _ cos I sir fl21

m22 sin_? sinf_cos_ cos,l_(cos I cos._cos'_+ sin I sin'S) (3-49.)

m23' = sin 3 si;_ C: sin _ - cos 9(cos I cos ._2sin _- sin I cos_)_

' --- sin I sin
_q31

t

m32 : sin I cos f_cos _- cos I sin_

' -- sin ! cos f_sin_ + cos I cos _"m33

The Euler angles ?.', i, and A are determined as functions of the orbital
parameters ,:, ;_, I, and _:,_by equating elements of the M and M' matrices.
Equating m_ and m33 yields

--'_ _ 3--29

i
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z..Cllpt'c 
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of Date 

}(b 
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Figure 3-14. S~lenograrhic Transformation Angles 

m~l = - cos e cos D + 3in 0 cos I sin 0 

m~2 = - cos [! sin D cos E - sin 8(cos I cos D cos E ;. SIn I sin E) 

m;3 = - cos ,', sin D sin"E - sin p(cos I cos.o sin E - sin I cos E) 

21 = sin I? cos .0 + cos 8 cos I sir.o 

m~2 - sin f) sir).o cos E - cos (~(cos I cos.o cos E + SIn I sin f) (3-42) 

m~3 = sin fI s iiI fL ~ iii f- - ~ a s fl (c a sIc a s .\ 2 sin E - sin I cos E) 

, 
"1

31 
sinlsinD 

m~2:: sin I cos Deos E - cos I sinE 

m~3 = sin I cos D sin E + cos I cos E 

The Euler anglM f.", is' and A are determined as functions of the orbital 
parameters ~! , .0, I, and 0 by equating elements of the M and M' matrices. 
Equating m33 and m~3 yield.s 

:1-,29 
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cos i : sin I cos _-_sin)'+ cos I cos'¢
s

(3-43)
-;

sin i s :/1 - cos 2 i s /

. Equating mal and ma2 to m3'I and m:_2 , respectively,yields

' sin_' : - sin I sinf2/sin i
s

(3-44)

cos fF : (cos i sin _- sin I cos _ cos _)/sin i ,-

", Equating m,3 and m2a to m_a and m_a, respectively, yields
o:

; A: A+O (3-45)

"%. .l

where the parameter A, shown in Figure 3-14, is obtained from , .-- ,

sin_= - sin f'/ sin cjsln i s

(3-46) ,,
i"

cos /_ : (sin I cos _ - cos I cos .Qsin _),/sin I s .

The _:.gle _, measured along the lunar equator from the descending node to the
hmar prime meridian, must be determined from the orbital motion of the moon• "

,_s a result of Cassini's first law the mean rate of rotation is equated to the
"" mean orbital rate, resulting in

,b"

#M= \M - f?M (3-47)

where _. is the mean longitude of the moon, _ the longitude of the ascending

node, and the subscript M denotes mean values. Correcting Equation (3-47) for :
lunar physical librations gives the true value of _) _:

_ : (\'_ + rM) - (_)M+ %)" (3-48)
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cos is = sin I cos il sin 'E: + cos I cos 'i' 

(3-43) 

sini =/l-cos2 i 
5 s 

Equating m 3I and m.n to m;I and m;2' respectively, yields 

sin fl' = - sin lsi n fl/ sin i s 

(3-44) 

cos fl' = (cos I sin E - sin I cos fl cos E)/sin i 
5 

Equ.ating m I3 and m 23 to m~3 and m~3' respectively, yields 

(3-45) 

where th~ paramE'ter ~, shown in Figure 3-14, is obtained from 

sin ~ = - sin fl sin E/sin is 

(3-46) 

cos [., = (sin I cos E' - cos I cos 12 sin E')/sin I . 
s 

The angle e, measured along the lunar equator from the descending node to the 
lun[J..f prime meridian, must be determined from the orbital motion of the moon. 
As a result of Cassini's first law the mean rate of rotation is equated to the 
mean orbital rate, resulting in 

(3-47) 

where A. is the mean longitude of the moun, n the longitude of the ascending 
node, and the subscript M denotes mean values. Correcting Equation (3-47) for 
lunar physical librations gives the true value of () 

fi = fA. + T ) - (0 1 (J ) 
",f M MM· 

(3-48) 
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_r.! _ Correcting fl and I in Equations (3-43) through (3-46) for nutation and libra_ion

_ yields their true values

"_ _ = _M + _ + _ (3-49)

I = !. + p. (3-50)

k-

The longitude of the mean ascending node of the lunar orbit is (Reference 4)

_ _M =12°'1127902- ?0529539222 d+ ?20795(10 -2) T

(3-51)

"r_ + "O2081(10--2) T2e+ ?2(10--S) T3'e

the inclination of the mean lunar equator to the ecliptic is .."

_ IM: I°32: I, (3-52)

and the geocentric mean longitude of the moon is

k M= 64?37545167 + 1371763965268d e- ?1121575(10-2) Te

(3-53)

_ 7113015(10 -2 ) T 2 + ?19(10 -s) T-_.
e e

The Te-variable and de-variable in the above equations correspond to the number
of Julian centuries of 36525 Julian ephemeris days past 0h January 1, 1950 ET,
and the number of ephemeris days past the same date, respectively.

The nutation in longitude, _@, and the true obliquity, _, are given in Section
3.3.1.2. The physical librations, determined by Hayn, in longitude of the as-

cending node, _, inclination, PM'and mean longitude, "rM, are as follows:

3-31
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Correcting D and I in Equations (3-43) through (3--46) for nutation and libration 
yields their true values 

D = D + a + otj; M M 
(3-49) 

(3-50) 

The longitude of the mean ascending node of the lunar orbit is (Reference 4) 

DM = 1?~1127902- ?0529539222 d + ?20795(10- 2 ) T 
c e 

+ ?2081 (10- 2 ) T2 + ?2 (10- 5 ) T3, 
e e 

the inclination of the mean lunar equator to the ecliptic is 

I = 1 °32: 1, M 

and the geocentric mean longitude of the moon is 

- ? 11301 5 (10- 2) T 2 + ? 19 (1 0- 5) T·'l. 
e e 

{3-51) 

(3-52) 

(3-53) 

The Te -variable and de-variable in the abo·/e equations correspond to the number 
of Julian centuries of 36525 Julian ephemeris days past Oh January 1, 1950 ET, 
and the number of ephemeri~ days past the same date, respectively. 

The nutation in longitude, 0 tj;, and the true obliquity, ?:', are given in Section 
3.3.1.2. The physicall1brations, determined by Hayn, in longitude of the as
cending node, aM' inclination, PM' and mean longitude, TM ' are as follows: 
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_M: [- 0?0302777 sin(g) + 0?0102777 sin(g + 2r,,M)

(3-54)

- 7305555(10 -2) sin(2g + 2o_M)]/sin IM.

,

Pu = - .0297222cos(g) + .0102777cos(g + 2cou)

• (3-55)

- °.305555(10-2) cos(2g + 2oJM).

• TM= - 73333(10-2) sin(g) + ?0163888 sin(g') + .°5(10-2_ sinC2_'M). (3--56)

., where the parameter g is the moon's mean anomaly
/

g = 215754013 + 13.°064992do (3-57) J

the parameter g' is the _un's mean anomaly ]

g' = 3589009067 + 79856005d e (3-58)

and _M is the moon's arguIr _nt of perigee

- _ = 196.745632 + o 1643586d_ (3-59)
_, M "

The variablesabove are substitutedtctoEquations(3-43)through(3-45)to yield

the Ealer anglesf2',i,, and A requh'edinthe selenocentricto selenographic

transformationgivenby Equations(3-37)through (3-39).

The _elocitytransformationfrom selenocentrictoselenographiccoordinatesis

obtm.inedby differentiatingEquation(3-37),yielding

Yb -- MY + MY (3-60)

3-32
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C"M = [- O?0302777 sin(g) + O?Ol02777 sin(g + 2("14) 

(3-54) 

PM = - .0297222cos(-S) + .0102777cos(g + 2cu
M

) 

(3-55) 

where the parameter g is the moon's mean anomaly 

g = 215?54013 + 13?064992de (3-57) 

the parameter g' is the .sun's mean anomaly 

g' = 358 ?009067 + ?985600S de (3-58) 

and w
M 

is the moon'a argurr .... nt of perigee 

CUM = 196.745632 + ~ 1643586de 
(3-59) 

The variables above are substituted illto Equations (3-43) through (3-45) to yield 
the Euler angles 0' , i" and A required in the selenocentric to selenographic 
transformation given by Equations (3-37) through (3-39). 

The \ elocity transformation from selenocentric to selenographic coordinates is 
obt8lned by differentiating Equation (3-37), yielu.1l1g 

(3-60) 
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The time derivative of M is obtained by differentiating its elements in F_lation

(3-39) with f2 and i s assumed zero, i.e.,

j

:( td: A m,, - m,2 - (3-61)

": U 0 0"_,
}

The time derivative of A is obtained by differentiating Equation (3-45) after
substituting Equation (3-48) for _?. The resulting time derivative is

)} A : A + _M + +M - i_M- bM" (3-62)

. where

"_ " _)]/(sin i cos A) (3-63a) i= [- cos(f_ M+ crM+ A_b) sin e(_ M+ ..."

LM= .266170762 (10 -s) - .12499171 (10 -1_) T (3-63b)

_M = - .1069698435 (10-') + .23015329 (10 -13 ) T (3-63C)

and

_-M= - "1535272946(10-9) cos g + .569494067 (10 -j°) cos g'

(3-64a)

+ .579473484(10 -11 ) cos2_) M

:- .520642191"_ "(Iu-7) cos: M

_. + .1811774451 (10 -7) cos(g �2oJM)(3-64b)

- .1064057858(10 -7 ) cos(2-_ M+ 2_)
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The time der}vative of M is obtained by differentiating its elements in Equation 
(3-39) with \2 and is assumed zero, i.e., 

I- m

21 
m

22 23 

M = A - mll - m12 - m13 (3-61) 

L 0 () 0 

The time derivative of A is obtained by differentiating Equation (3-45) after 
substituting Equation (3-48) for r3. The resulting time derivative is 

A = ~ + ~ + T -.\1 - a- . 
M M M M 

(3-62) 

where 

\. = .266170762(10-5 ) - .12499171 (10- 13 ) Te (3-63b) 

DM = - .1069698435(10-') + .23015329(10- 13 ) Te (3-63c) 

and 

TM = - .1535272946(10-9 ) cosg + .569494067(10- 1°) cos g' 

(3-64a) 

(3-64b) 

- .1064057858(10- 7 ) cos(2(')M + 2g) 
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3.3.4 Spherical-Cartesian Transformations (Reference 7)

3.3.4.1 Spherical Position and Velocity to Cartesian Coordinates

Using the spherical position coordinates, r, a, and 8, that are defined in Section ,_)
: 3.2.1, the transformation to Cartesian coordinates is seen from Figure 3-1 to be ,

I:l
• COS S Cos ct "

: - r cos a sin a (3-65)

; LzJ sin8

To transform the spherical velocity coordinates, V,/3, and A, described in
/ Section 3.2.3, it is convenient to transform to the local plane coordinate system
' (seeFigure 3-3)and thentothe.body-centeredinertia]Cartesiancoordinate

: system. If the local plane coordinates, x_p, Ylp, and z l p, are fixed inertially
_ (nonro_ting), rip may be expressed as :/

; I-C1 - - I
t I "

rlp = Ylp I= V sin A sin fl (3-66) "

_ZlpJ cosAsinfl

/:

The transformation between the local plane and the body-centered inertial
Cartesian coordinate systems is ,, "

_Ip : DF 13-67)

where

)

F 1

cos 5 cos a cos 8 sin a sin 8

D = [_ - sin a cos a 0 (3-68) :sin 5 cos a - sin 8 sin a cos 8

"i
' RI,,fPRODUCIBILITY OF THE _. i:
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3.3.4 Spherical-Cartesian Transformations (Reference 7) 

3.3.4.1 Spherical Position and Velocity to Cartesian Coordinates 

Using the spherical position coordinates, r, a, and 8, that are defined in Section 
3.2.1, the transformation to Cartesian coo:::.-dinates is seen from Figure 3-1 to be 

cos 8 cos al 
cos 8 sin a (3-65) 

sin S J 
To transform the spherical velocity coordinates, V, /3 , and A, described in 
Section 3.2.3, it is convenient to transform to the local plane coordinate system 
(see Flgu:re 3-3) and then to the body-centered inertial Cartesian coordinate 
aystem. If t~ local plane coordinates, x I p' Yip' and Zip' are fixed inertially 
(nonru..,l.ting), rip may be expressed as 

Xlp cos /3 

rip = Yip = V sinAsin/3 (3-66) 

Zip Gos A sin Ii 

The transformation between the local plane and the body-center~d inertial 
Cartesian coordinate systems is 

where 

r cos S cos c:.. cos S sin a 

D= I -sina 

~ sin ;S cos a 

cos a 

-sinSsina 

3-34 
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sin S 

o (3-68) 

cos 8 
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!, Since the local plane system is fixed inertially, the velocity vector in Equation
(3-66) may be transformed to the body-centered inertial Cartesian axes by means
of the transformation D as follows

y : Drrlp. (3-69) ' ",<

The partial derivatives of x, y, z, J_ _, and _ with respect to r, a, _, V, A, and/_ "

arcL

_¥ r
- (3-70) :_

_; _r r

da x
' (

L ,j "_0 ./- _:

I --- Z COS

?Y ! (3-72)
_-_=1- zsina

L/_x_ + v

......... 0 (3-73) ,
_V bA b/3 _r _,

0_- _ (3-74)

0
t

8
_ 3-35
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Since the local plane system is fixed inertially, the velocity vector in Equation 
(3-66) may be transformed to the body-centered inertial Cartesian axes by means 
of the transformatio.1 D as follows 

i:: Dri . 
Jp 

(3-69) 

Tbe partial derivatives of x, y, z, X, y, and z with respect to r, a, S, T.", A, and f3 
arc 

err r ----
()r r 

cr ,- :l 
da 

-

L oj 

i-zcosa 
~- I ur I • 
-=j-ZSlna 
c(~ 
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-- Z COS CL

)r z sin a (3-75) --;
?; ,T

V(cos /3 cos _ - cos A sin/3 sin _) , ;:

: ?r -r (3-76)
} v

o ,

sin/3(si.aAsin _ cos a- cos Asin a

_=V sin[3(sin A sin_ sina+ cos Acos a) (3-77)
r-

- sin A cos _ sin/3

and
y -)

; Icos a(cos _ sin/3 + sin S cos /3 cos A) + sin _- cos fi sin A ,.'t_,_

_- _r
?_ V :;ina(cos Ssin/3+ sin _ cos/3cosA)-cos ctcos/Sn;nA (3-78) '."

° sit,/3 sin S - cos /3cos _ cos A "

3.3.4.2 Cartesian Position and Velocity to Spherical Coordinates

The inverse of the preceding transformations is described in the following text.

The spherical radius, r, is given by i ._;

"" r = /x 2 + y2 , z 2. (3-79)

Frora Figure 3-1 the right ascension, a, and declination, _, of r are
t;'

sin _ = Y cos a - 0 < a _<2n. (3-80) ,

and "

sin b __._z_ cos _ _x/_ + y_ 7r _r- ---_ _ :;-- (3-81) '_
r r 2 2

3-36
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- z cos a 

= (3-75) 'Or - z s in a 

V(cos fJ co~ 0 - cos A sin /3 sin 0) 

or r -=-oV v 
(3-'i6) 

ISin /3(Si'1 A sin 0 cos a - cos A sin a) 

'O.!... l' 
'O~ =- V sin /3(sin A sin 0 sin a + cos A cos a) 

-sinAcososin/3 J 

(3-77) 

and 

rces a(cos 0 si n (3 + sin 0 cos /3 cos A) + sin C!. C05 (J sin Al 

o-:=- V I· ( ~. j3 . ~ /3 ~. (3 7S) --0(3 = - ~;!n a cos 0 SIn + SIn 0 COS COS A) - cos a cos p :.'!"! 1\ -

l sinl3,inS-cosacosScosA J 

3.3.4.2 Cartesian Position and Velocity to Spherical Coordinates 

The inverse of the preceding transformations is described in the following text. 
The spherical radius, r, is given by 

(3-79) 

From Figure 3-1 thf"J right ascension, a, and declination, 0, of rare 

;;ina=· Y -
1002 

cos a = o ~ as 2n. (3-S0) 

and 

r 

,~yl 
co s S = --

r 

7T 7T 
--~ o~-

2 2 
(3-S1) sin ~ 

z 

3-36 -
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The right ascension is measured positive east from the inertial x-axis. The
_'_ declination is measured positive norttl from the x-y plane.

The velocity vector_s magnitude is

I

V : _/x 2 + _2 + _2 (3-82)

and the azimuth, A, and Right path angle,/_, are obtained from the local plane
components of velocity

sin A - Ylp zlp (3-83)

I cosA- O_<A_< 2Tr.
and __p+ Z_p

f

- cos/3--- - F--- (3-84) i

V V 2 2 ./

The azimuth and flight path angles may be obtained alternatively from the vector .1
products of ¥ and r as follows

_; sinA U "UN cos A U_'P'(UNX 7): - : (3-85)
t,, ZIP r

, and

_'_{ sin/3- l_x r I cos /_- r" r (3-86)
" _i!" rV rV

where U istheunitvectorinthe ;Llp -axisdirectionand has components ex-

•!i/ pressed'i_"Lhebody-centeredCartesiansystem
.¢
%

_, - sin _ cos c_

_ U :- - sin b sin _ (3-87)
zi p

_' cos b

and Ur_istheunitvectornormal to_ and

3-37
t
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The right ascension is measured positive east from the bertial x-axis. The 
declination is measured positive north irem the x-y plane. 

The velocity vectorts magnitude is 

v = .; x 2 + y2 + z2 (3-82) 

and the azimuth, A, and flight path angle, f3 , are obtained from the local plane 
components of velocity 

and 

sin A = ~;;:Y=l=P:::;:;
;'2 '2 

YIp + ZIp 

ZIp 
cos A = --=:==== 

I ~,2 + z2 
Jlp lp 

. 
xl 

cos f3 = ~ 
V 

o ~ A ~ 277. 
(3-83) 

77 77 
--£[3--

2 2 
(3-84) 

The azimuth and :f.\ight path angJes may be obtained alternatively from the vector 
products of r and r as follows 

and 

U . (UN x r) 
ZI 

cos A = --"p----

. f3 Irxil 
Sln = ---

rV 

r 

r . r 
cos f3 =-

rV 

(3-85) 

(3-86) 

where D is the unit vector in the ;ilp -axis dil'ocUon and bas components ex-
Zip 

pressed iri the body-centered Cartesian syetem 

,-
-sin&cosa 

u -- - sin 0 sin (1 
Zip 

cos 0 

and UN is the unit vector normal to r and r 

3-37 
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U_- _×V (3-88)
IT×Vl

Substituting Equations (3-87) and (3-88) into Equation (3-85) yields
I

sin A = (x_ - y_) , cos A = Y(YZ - z_) + xrx_ - _}z) (3-89)
• rV sin_ cos b r2V sin _ cos

The partial derivatives of r, _, _, Vt A, and fi with respect to xt y, z, x, _, and
are

?r -_T
- (3-90)

¢

!l"_" ?a _ 1 I- (3-91) ""

,j../

?7 (x2 + y2)

- - T

- ZX

- - zy (3-92)

(x 2 + y2)
m

_V _ [0]T (3-93)

'_,(rl- zi')- (xy - yl) (xl - zl +

?_AA= 1 x,(rz-zi')+ (x_,-y_¢)(yz-z_ + Yzrl/r (3-94)
?¥ (V2 _ i.2)(x2 + y2) r//

(x3'- y_()(x2 + y2) {./r2

3-38
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- rxV 
U =---

N Irx vi 
(3-88) 

SUbstituting Equations (3-87) and (3-88) into Equation (3-85) yields 

sinA::: (xy-yx) , 
rV sin (j cos b 

A 
y(yz - zy') + x(x~ - xz) cos ::: ' (3-89) 

r2V sin (j cos 0 

The partial derivatives of r, a, 0, V, A, and f3 with respect to X. y, z, i, y, and 
z are 

oA 1 

or r 
(3-90) 

T 
-y 

oa 1 -- x (3-91) 
or (x2 + y2) 

0 

T 
- zx 

do 1 -- - zy (3-9~~) 
dr r2/x2 + y~ 

(x2 + y2) 

oV 
[OJ T -- (3-93) 

cr 

" . " " "(" " xz r I ")f T y(rz - zr) - (xy - yx) ,xz - zx + -r- r 

x(rz - zr) + (xy - yx) ~z - zy + y;r)/r (3-94) 

3-38 
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?g r2v_ \ r

t

_r ?a ?8 :,
- - - 0 (3-96) ,

)

_v _
- _J-97)

_-_ v •7

z_ - yl

_.:_ ?fl _ 1 yTT 13_99) ;t,' (_ -- -

•: 3.3.5 Body-Centered True of Date to Orbit Plane -:

_> The unitvectorsintheXop,Yop, and Zop directions "_,. (see Figure 3-5), measw:ed :
:*. m the body-centered true of date coordinate system, are_
i:,
T'

!b' T 0 ,_,

;," V = W x U (3-100)
,!

:_ _ TO x ro

"-. !.
where To and r0 are the earth-centered position and velocity vectors used to de-
termtne the orbit plane coordina+,e system. If Equations (3-100) are expanded, -.

" they yield the following transformation relations between the orbit plane co-

ordinatesand the body-centeredinertialCartesiancoordinates

8-39
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and 

or oa 00 
-=-=--- 0 
or or or 

or v 

T 
(zy - yz) 

(xz - zx) 

3.3.5 Body-Centered True of Date to Orbit Plane 

(3-95) 

(3-96) 

(3-98) 

(3-99) 

The unit vectors in the x op ' y op' and zop directions (see Figure 3-5), measw:ed 
in the body-centered true of date coordmate system, are 

w =-
ro x 1'0 

Iro'< -fol 

(3-100) 

where ro and ro are the earth-cent~red position and velocity vectom used to de
termine the orhit plane coordina4:e system. If Equations (3-100) arf", expanded, 
they yield the following transformation relations between the orbit plane co
ordillates and the body-centered inertial Cartesit'n coordinates 

J-39 
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¥ = E7 (3-101)
op

where

-- /

U x Uy U z

E: V, Vy V, (3-102)

W. Wy W,
a..

Regarding the orbit plane system as fixed inertially, the velocity transforms as
follows

r = Er (3-103)
op

and the position and velocity partial derivatives are ,,
/.-

_7 _-
°P - '_P : 1_.. (3-104)

3.3.6 Body-Fixed to Geographic Tr:x'zsformat2ons

The transformaUons between the body-centered rotating coordinate _ystem and
the geographic coordinates are dedcr,'bed in Section :3.2.2. The transformation

involves modeling the body's mean figure. The foilo,_ng sabsections present ',

the equations for an ellipsoidal earth mgd_l as well as the transformations and
partial derivatives relating the geodetic coordinates (h, _, 9) to the body-centered

_: rotati_ coordinates (Xb, Yb' zb)"

3.3.6.1 Earth Figure (Reference 7)

'rhv shape of the earth's surface is very nearly an ellipsoid of revolution. A
satisfactory means for modeling the earth is to ch.'Lracterize it as such and,
where necessary, correct local deflections of the vertical (e.g., correct
local astronomic zenith to ellipsoidal vertical). The polar axis of sym-

metry of the ellipsoid, zb , is nearly colinear with the earth's spin axis. Ths
ellipsoid's radius is greatest in the x b - Yb equatorial plane. Letting R_ denote

the equatorial radius, Rp the polar radius, and x., y_, and z the coordinates of

3-40

i i ............ " ' ...................• F

1976017203-079

"f 
op = E"f (3-101) 

where 

V" U Vz y 

E= Vx Vy Vz (3-102) 

Wx Wy Wz 

Regarding the o:::-bH plane system as fixed inertially, the velocity transforms as 
follows 

. . 
r = Er op 

and the position and velocity partial derivatives are 

or 
op 

3.3.6 Body-Fixed to GeograJ,;hic Tr,1..c~sformatlons 

(3-103) 

(3-104) 

The transformations betVleen the body-centered rotating cGordlnate r,ystem aJ.ld 
the geographic coordinates are des'cr;bed in Section :3.2.2. The transformation 
involves modeling the body's mean fi~ure. The following bubsactions present 
thtl equations for an ellipsoidal eal.'th m~'31 as well as the transformations and 
partial derivatives relatmg the geodetic coordinates (h, 'A , cp) to the body-centered 
rotatln l' coordinates (xb , y b' Z b)' 

3.3.6.1 Earth Figure (Reference 7) 

Tlw shape of the earth's surface is very nearly an ellipsoid of revolution. A 
satisfactory means for modeling the earth is to characterize it as sllch and, 
where necei:Jsary, correct l')cal deflections of the vertical (e.g., correct 
local astronomic zenith to e!11\.lsuidltl. vertlcal). The polar axis of sym-
metry of the ellipsoid, Zb' is nearly colinear with the earth's spin axis. The 
ellljOsoid's radius is greatest in the Xb - Yb equatcdal plane. Letting Re denote 
the ,~quatorial radius, R the polar -radius, and x 'I y , and Z the coordinates of p S 5 S 
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a points on theellipsoidalsurfaceexpressedinthebody-centeredrotating _i :

t,

: _ axis, then the coordinates of s must satisfy the following equation -, =_

2 Z 2 _ _'xs Ys s - ,
+ -- + -- = 1 (3-)q5) , _

Re2 R _ R_ , :e p

,_ Two convenientparameters whicL describetheellipticalcross-sectionare the ,'

flattening coefficient, .:, defined by _ _

Re - I_

i f - > 0 (3-106) _ ;

and the eccentricity, e

e 2 1 _ __.(_)2= = f(2- f). (3-107)
d

_:, _ Sincetheellipso_dis symmetrical aboatl:hezL-axiso,',,hereisno lossof gener-

" _ alityinrestrictingtheanalysisto thex.:- Zb plane,,The two-dimensio_alanaly-sis utilizesthesymboi xC ,,,'_ , to de,,'_,cthattL -_,mpon__tisomitted.

_': The ec_mtion of the cross-section of the ellipsoid is

_, Z2

_',' x_, + _ - R 2. (3-108) _ ,
,", ( 1 - e -_) ,

6 TLc equationforthenormal to theellipsoidis

dxs' (3-109)' ::an _ = - ---r----

iil where ¢ is the geodetic latitude shown in Figure 3-15. Differentiating Equation

,_' (3-108)and substitutingtheresultsintoEquation(3-109)yields

_i_! ---: (1 - e _) tan _,'_. (3-110)
"(s '
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a point s on the ellipsoidal surface expressed in the body-centered rl)tating 
axis, then the coordinateB of s must satisfy the following equation 

(~-J f)5) 

Two convenient param.eters whic\ describe the elliptical cross-section are the 
flattening coefficient, ;, defined by 

R - R 
f = e -'j:: > 0 

Re 
(3-106) 

and the e~centricity, e 

( 
,2 

e 2 = 1 - ~) = f (2 - f). (3-107) 

Since the ellips()~d is symmetrical about the ZL -axis. there is no loss of g~ner
ruity in restricting the analysiF) to the X', - Zb plan.:, The two-c.imensioJlal analy
sis utilizes tL~ symbol x~ I I. t' ;, to de"'"':" t.hat t}. . "')mpOIlE" "It is omitted. 

The equation of the cross-section of the ellillsoid is 

Tt.c equation for the nor mal to the ellipsoid is 

dx , 
:: an ¢ = __ "_ 

d£s 

(3-108) 

(3-109) 

where ¢ is the geodetic latitude shown in Figure 3-i5. DifferentiatIng Equation 
(3-108) and 3ubstituting the results into Equation (3-109) yields 

z • 2 
--= (1- {') tan,!'>-
"s' 

(3-110) 
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F,gure 3-15. Ellipsoid Geometrt

., Solving Equations (3-108) and {3-k10) simultaneously for x , yields
/ "

J

Re cos _b _'
x s , = (3-1.11) ,"

/I - e2 sin 2 _ "' -"

From Figure 3-15t it is evident that [

x s, -- N cos q_ (3-112a)

z s -- r sif_,_'=N(1-e _) sin_ (3-112b)

where N i_ _he distance from the point s to the Zb axis measta'ed a]ong the

normal vector to the. ellipsoid a_ point s. Subst:uting Equation (3-111) into , ._

Equati,_n (3-112a) yields

R e R
: - : ._ (3-113)

_l-e_ sin2_ v_ -(2f- f2) si-_n _b

The ellipsoids2 radius is

3-4o.
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Flgl.re 3-15. Ellipsoid Geometry 

Solviug Equations (3-1u8, and {3-111) silnwtaneously for x s' yields 

(3-111) 

From Figure 3-15, it is evident that 

X s ' = N cos.:p (3-112a) 

z = r s i 11 ,p' -= N (1 - e 2) sin ¢ s ~ 
(3-112b) 

where N iE! the diswnce from the point s to the 'Zb a"Cis measm.·ed along the 
normal vector to t~ ellipsoid at point s. SUbst:uting Equation (3-111) into 
Equatft:m (1-112a) yi.elds 

~ = ___ R_c __________ R~ ____ _ (3-113) 
v'1--:e2 s in2~ r. --~ vl-(2f-f2)sin ¢ 

The ellipsoidal radius is 

3-4~ 
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r = _x2,+----+-_z_ (3-114)
_,f $ S

"L"

_-'- Substituting Equations (3-108) aud (3-11 "'b) into i quation (3-114) yields

:- ?- _(1 - f)
, _ r. = (3-115)

/1 - e2 cos 2 ¢'

where _' is "he geocentric latitude,

3.3.6.2 Geodetic to Eaxth-Fix_d Transformation

Assume _bat pom_ "_ in l; -'re 3-15 has the coordinates xb , v.. and z o _.nthe
[ b.'xly-a.,-s _vstc. _-d is .ocated a dis+ance h from the refere. _e ellipsoid,

. i From Equ" ;,J_ ' _1 0) and Figure 3-15, the xu and z b coordinates are &

./

xb, = x, + h cos _ = (N + h) cos 4_ (3-116)
-&

'__ and

zb = z= +h since= [N(1 - e 2) + h] sing) (3-117)

" Transforming Equations (3-116) 9ud (3-117) to three din,ensions yields

"u

-x b ,'N + h) cos _bcos L _

Yb = (N +., cos@sink (3-118)

% fl_(1- e2) + h] s i,_

/

The paxti,_l derivatives of xt, , fib' and z b with respect to h, X, and _ axe

3-43
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r =N~ s s' s 
(3-114) 

Substituting Equations (3-108) and (3-11';!,» into ~ -illation (3-114) yields 

r s :.: -/:=1=_==e:;;:2 =C=u=s:;;:2 =rj;=' 
(3-115) 

where .:p' IS "he geocelltric latitude. 

3.3.S.2 Geodetic to Earth-Fix~d Transfor'TI.ation 

Assume t!Jat po ... r.t T) in F "re 3-15 has th~ coordinates ~ , v" and z ... in the 
b~y-a.'-'.s ~vstt _ ,1"1 is .IJcated a dist.ance h from the refer-e. -::e ellipsoid. 
From Equ: ;'J1.I I .. , 0) and Figure 3-15, the Xu and Zb coordinates are 

'\" :.: "5 I + h cos if; = (N + h) co~ if; (3-116) 

and 

(3-117) 

Travsforming Equations (3-116) 'md (3-117) to three din.ensions ,fieldd 

I '\, 1 r'N + h) cos rj; cos A.. l 
I 

' I 
Y1, I = I (N + .1) cos rj; sin A.. I 
l 'b J UN (\ - .') + hJ s l" '" J 

(3-116) 

The partiflJ derivL.tives of xb ' j'b' and zb with respect to h, A.. , dDd +' are 
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I jF- ,_-'l I-- "m

. o,<.<>/<'hI _o__co,x.j
" cos ¢ sin

I Byb,/Bh I = (3-119)

L_zb/?hl L sine

b _ m

?Xb/?_ - (N + h) cos _ sin k

• dyb/b_ = (N + h) cos ¢ cos _ (3-120)

Zb/_)k 0

Xb/_ sine cos ki

]
-. + h - Ne2 c°s2 ¢ (3-121a)

<" 1 - e2 s i n2 _]

: I -dYb/bqbJ sin cpsin )_ #

ano

• (, e _ s . (3-121b) !
[c-')Zb/?qb] -- 4 r'l'(l - e 2) + : ;; [COS N-

1

3.3.6.3 Earth-Fixed to Geodetic

In transforming geodetic coordinates (h, ¢, X.) _o earth-fixed coordinates

(Xb' Yb' Zb)' the point of intersection of the height normal vector and the ellipsoid
(i.e., point s) is given. In transforming from earth-fixed to geodetic coordinates,

- _is poh_t is not known a priori, complicating the transformation.

Two solutionsare presented. The firstsolutionisiterativeand can yieldany

requireddegree ofaccuracy. The second solutionis a truncatedbinomialex-
pansionthatmay be used when accuracy requirementsaxe not so stringent,

The iterativetechniqueisused primarilyto determinegeodetictrackingstation

positions wl_ere high accuracy is required. For t,ld_ use (ana for near earth
satellites), the approximation h < < N is satisfied, and since the earth's figure is

nearly spherical, e 2 < < 1. Therefore, from Equation (3-118), the following
approximation can be made:
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ana 

r~ '-hi 
0"hl d 

OYb/ oh = 

-a z.;OhJ 

3.3.6.3 Earth-Fixed to Geodetic 

r-cos r:p cos I\. 

cos¢sin>... 

sin ¢ 

- (N + h) cos ¢ sin >... 

(N + h) cos ¢ cos >... 

o 

fSin¢cos1 

l Sin¢SinJ 

(3-119) 

(3-120) 

(3-121a) 

In traLsforming geodetic coordinates (h, ¢, >...) ';0 earth-fixed coordinates 
(xb • Yb , Zb)' the point of intersection of the height normal vector and the ellipso~d 
(i.e., point s) is given. In transforming from earth-fixed to geodetic coordinates, 
this poiut is not known a priori, complicating the transformation. 

Two solutions are presented. The first solution is ite.l'ative and can yield any 
required degree of accuracy. The second solution is a truncated binomial ex
pansion that may be 'lsed when accuracy requirements are not so stringent. 

The iterative technique is used primarily to determine geodetic tracking station 
positions where bigh accuracy is required. For till.; use (ana for near earth 
satellites), the approxirlation h < < N is satisfied, and since the earth's figure iEl 
nearly spherical, e2 < < 1. Therefore, from Equation (3-118), the following 
approximation can be made: 
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N s i n q_= zb. (3-122) ]

Introducing z i , the z b intercept of the normal vector, it is apparent from
:_ Figure 3-15 that

z. : - Ne 2 s in _b. (3-123)

i•_-_ Combining Equation.q (3-122) and (3-123), the following apvroximation for z_ is

obtained

__ z i : _ e 2Zb. (3-124)

Using Equation (3-124) as an initi_ estimate for z i , the follo_ing sequence of
:: equations may be solved iteratively to yield a solution for h and ¢ ,

il ,
z = zu zi (3-125) ,_° I b -- ,..,i"/

_p N + h : /Xb2 + yb2 + z2 (3-126)"" ib

t

: sin _- Zib (3-127) i
N+h !-

R _
_ e _3-]28_N

_2 sin 2 q5 :.

,_ z i = - Ne 2 s in 4;. (3-129)

Upon convergence of z_, the a!tttude, h, and latitzdet ¢, are obtained from Equa-
tions (3-126) and (3-127). The longitude _, is

)

• _, = tan- 1 Yu . 0s_. _<2rr (3-130)

,i
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Introducing Zi" the Zb intercept of the normal vector, it is apparent from 
Figure 3-15 that 

z.=-Ne2 sin¢. 
1 

(3-122) 

(3-123) 

Combining Equations (3-122) and (3-123), tlte following approximation for Zi is 
obtained 

(3-124) 

Using Bquation (3-124) as an initial estimate for Zi , the foll.:n~iJlg sequence of 
equations may be solved iteratively to yield a solution for h and ¢ 

Nth=/x~ty~tZ~b 

. zib 
sln¢=-

Nth 

Z. = - Ne2 sin q). 
1 

(3-125) 

(3-126) 

(3-127) 

(3-128) 

(3-129) 

Upon conve~gence of Z i' the al.titude, h, and latitJ.de, ..p, are obtained from Equa
dons (3-120) and (3-127). The longitude fe, is 

(3-130) 

~',-45 



i

A second, computationally simpler, procedure for computing the values of ¢

and h to a _pecified point, P, is useful when accuracy requirements are less
stringent. The latitude, _, is solved for from Equation (3-110) as follows :"

Z Z t .

tan q_: s : s (3-131) -

(i- e2) xs, (I - e2)__

i where xb,Yb'and Z b ofpoin_. P are used to approximatethe subvehiclepointon
: the ellipsoid, (xs, ys, z ), req,ired in Equation (3-131).

This approximation yields the geodetic latitude to the normal vector of an ex-
panded e]lipse through point P. For h << N and e 2 < <1, it is a good approxi-
mation for the geodetic latitude.

• : Applying the Binomial Theorem to Equation (3-115) yields

' _ 3 _, 3 f? (3-132)r : R - + _ f2 sin 2 + -- sin 4 _bs 2 2
!

where terms of f higher than second order are nvglected. The geodetic height I

is nearly

h = r b - r s. (3-133)

Substituting Equation (3-132) into Equation (._-)33)yields

 Rf )sin3f2 ,3134,h=/x 2 + y2 + zb2_R e + ef + 2 e -_Re sin4"Y"

The geocentric latitude requireo in Equation (3-134) is approximated by

Iz, '_ (3-1_5)
¢' :- sin-'/1-_, ). ,;
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A second, computationally simpier, procedure for computing the values of <t 
and h to a 8pecified point, P, is useful when accuracy requirements are less 
stringent. The latitude, ¢, is solved for from Equation (3-110) as follows 

z 
tan ¢ = ___ 5 __ 

z s 
(3-131) 

where ~, Yb' and Zb of point P are used to approximate the subvehicle point on 
the ellipsoid, (x , y , z ), requ.ired in Equation (3-131). 

5 S 5 

This approximation yields the geodetic latitude to the normal vector of an ex
panded ellipse through point P. For h« Nand e 2 < <1, it is a good approxi
mation for the geodetic latitude. 

Apillying the Binomial Theorem to Equation (3-115) yields 

(3-132) 

where terms of f higher than second Ol'del' are ll<'glected. The geodetic height 
is nearly 

h = r - r . b s 

SUbstituting Equation (3-132) into Equation r~-J 33) yi(lllds 

h=/xb2tYb2tZb2_R t(R ft~R f2) sin¢'-~R f 2 sin4 ;f/. " ,I e 2 e 2 c 

The geocentric latitude required. in Equation (3-134) is approximated by 

.-1-.' • _I/ZI» 
'/' ::. SIn \ ~ . 
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O
•. The partial derivatives of h, _ and _ with respect to Xb, Yb' and z ar_ obtained%" ) b

: by differentiating Equations (3-126), (3-130), and (3-127) to yield

_ x b _

_';:. 2 a (1 - e2) sin c_cos 4 zb co

h/3Yb --- (1 e2 sin2 4)3/2 + _/_Yb (3-136)

• L_ h/? zb 4/? zb

_ _'/'_ Yb = 1 (3-137)

(x_ _) t
;,-/'_ zb

] _ -
L - Xb Zb t

4/_ xb

4/_ Yb = (1 - c2) . (3-138) " "

"I _--_ + y_ [(1 - e 2'2 (x_ + y_) + zC] - Yb Zb
'_ ? 4/'D zu (4 + Yb)

3.3.7 Earth-Fixed to Topocentric Local Tangent (East, North, Up)

The topocentric local tangent system, described in Section 3.2.4, is used in
processing ground based observation data. The transformation from geocentric

earth-fixed coozdinates (Xb, Yb' zb) to local tangent coordinates (x l t, Ylt' Zl t )
requires a translation along the geocentric radius vector to the station and a
rotation of the axis through the stationWs longitude and latitude angles. The

st2,tion parameters are defined as follows

¥_ _ the body-fixed coordinates of the station
_ _ the geodetic latitude of the station (posiUve north)

_,_ _ the geocentric latitude of the station
_ the longitude of the station (positive east)

s

h _ the height of the station above tbe reference ellipsoid.
s

The magnitude of the normal vector to the reference spheroidWs surface at the

station is given by Equation (3-]13) to be

'_ 3-47
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The partial derivatives of h, ;.. , and ~ with respect to x , y , and z ar:) obtained 
by differentiating Equations ,3-126), (3-130), and (3-127) to

b 
yield t-

(3-136) 

r t-.ld xb - Yh 

1 
~VaYb = xb 

(~ + Y~) 
c ;,/e zb 0 

(3-137) 

and 

(3-138) 

1.3.7 Earth-Fixed to Topocentric Local Tangent ("East, North, Up) 

The topocentric local tangent system, dlJscribed ili Section 3.2.4, i.s used in 
processing ground based observation a.ata. The transformation from geocentric 
earth-fixed cooldinates (xb' Yb' Zb) to local tangent coordinates (x It' Y 1 t' Zl t ) 

requires a translation along the geocp.ntric radius vector to the station and a 
rotation of the axis through the station's longitude and latitude angles. The 
st,a,tion parameters are defined as follows 

r s "" the body-fixed coordinates of the station 
¢ "" the geodetic latitude of the station (p(lsitJve north) s 
,/-" "" the geoctlntric latitude of the station 

s 
t-. "" the longitude of the station (positive east) 

s 
h '" the height of the station above tbe reference ellipsoid. 

s 

The magnitude of the normal vector to the reference spheroid's surface at the 
station is given by Equation (3-113) to be 
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R
" (3-:] 39)N --

'_ v"l - C2f - f2) sin2 ¢_

The component,_ of the geocentric radius vector to the station alono the xo , Yb,

and z b axes are given by Equation (3-118) to be , :

Iixs Ns + hs) cos _b cos k-_

Ys = [(Ns + hs) cos _s sin ks (3-140)
l

_Zs_ _[Ns(1-e2) +hsi sine s

To bring the Xb, Yb, and zb axes parallel to the xlt, Ylt , and _:lt axes, a rota-
tion is made about the zu axis by the _ngle (_/2 + k) and about the new x u axis

/ by the angle (rr/2 - _). The resulting transformation matrix M1t may be writ ..q
as

Q

/

- sin k s cos ks 0

Mlt = - sin _bs cos k s - sin q_s sin k s co _. (3-141)

cos,_ s cos_ cosCs sink_ sin

The local tangent coordinates ofapointin space, xb, Yb' and z b, may be written
as _'

71t = Mlt (-rb - 7s)" (3-142)

This translates the system from the earth's center to tke station and rotates it /

to the local tangent system,

The earth-fixed velocity in the !ocal tangent system is given by

: Mt (3-143) ,'.r l t t rl)

since Mit = 0andrs = 0.
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(3-139) 

The component/:; of the geocentric racius vector to the station alono the ~, Yb' 
and Zb axes are given by Equation (3-118) to be 

(3-140) 

To bring the xt" Yb' and Zb axes parallel to the XI t , YI t , and .~ I t axes, a r Jta
tion is made about the Zb axis by the :.".ngle (TT/2 + >--,j and about the new Xb axis 
by the angle (7T /2 - cp). The resulting transformation matrix M :nay be writ ,J1 
sit 

as 

I - sin >-- cos >--
o l s s 

Mit = 1- sin ¢ cos >-- -sincp sin>-- (3-141) 
S s S s co', ~J 

L cos.p cos 'A ('as ·t s sin >--s s s .;In CPs 

The local tangent coordinates of a pointin space, xb' Y h' f.nd Z b' may be written 
as 

(3-142) 

This translates the sYRtem from the earth's center to the station and rotates it 
to the local tangent system. 

The earth-fixed velocity in the local taligent system is giyan by 

since M't = 0 anr. rs -=- O. 

TI t :: M r It b 
(3-143) 
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The partial derivatives of the local tangent components with respect to the

earth-fixed components are the respective elements of the M 1t matrix given by

_¥1 t _rl t
- - M1t" (3-144)

3.3.8 Keplerian-Cartesian Transformations (References 7 and 8)

3.3.8.1 Keplerian Elements to Body-Centered True of Date Coordinates

: Consider the orbit geometry illustrated in Figure 3-5. The origin is the center
of the reference body, the x-axis points to the vernal equinox, and the z-axis

lies along the reference body's rotation axis. The satellite orbital plane inter-
sects the equator at the nodes. The angle ;_ is the right ascension of the ascend-

t_ ing node. The axis Zop is normal to the orbital plane defining the orbit's inclin-
:_ ation. The angle _, is the argument of perifocus. In Figure 3-6, the eccentricity,

:: e, and semimajor axis, a, specify the orbit's shape and size. The final element

necessary to predict a body's position and velocity is the mean anomaly M. How-
ever, the eccentric anomaly, E, or true anomaly, f, can be used instead of M to t •
define the satellite's position in its orbit. !

[i _ First, consider the transformation from the orbital elements (a, e, i, ._, _', m) to

the orbital_-ectangular coordinates (x,, y,, Zp, _p, :_p, ip). The Xp axis is directed
toward perifocus, L:_e yp axis is in the plane of motion ad ced n/2 from the

xp-axis in the direction of motion, and the z p axis is normal to the orbit plane and
completes a right-handed system. The transformations for elliptic, hyperbolic

and parabolic orbits are given below.

• Ellipse: 0 _e < 1

yp = n in E _ e2

Lp__

and

- ._ln E

t
P

_' LZ ,"1

_]' = (1 -,, cos E) cos E_ 1 - e2 (3-146)

3-49

[

?

1976017203-088

The partial derivatives of the local tangent components with respect to the 
earth-fix'ld components are the respective elements of the MIt matrix given hy 

(3-144) 

3.3.8 Keplerian-Cartesia.n Transformations (References 7 and 8) 

3.3.8.1 Keplerian Elements to Body-Centered True of Date Coordinates 

Consider the orbit geometry illustrated in Figure 3-5. The origin is the center 
of the reference body, the x-axis points to the vernal equinox, and the z-axis 
lies alcng the reference body's rotation axis. The satellite orbital plane inter
sects the equator at the nodE'S. The angle D is the right ascension of the ascend
ing node. The axis zop is normal to the orbital plane defining the orbit's inclin
atiop... The angle UI is the argument of perifocus. In Figure 3-6, the eccentricity, 
e, and semimajor axis, a, specify the orbit's shape and size. The final ele~nent 
necessary to predict a oody's position and velocity is the mean anomaly M. How
ever, the eccentric anomaly, E, or true anomaly, f, can be l.fled instead of M to 
define t.."":Ie satellite's pOSition in its orbit. 

First, consider the tr~sformation from the orbital elements (a, e, i,~), uJ, m) to 
the orbital rectangular coordinates (x , y , z , *- ,y , z ). The x axis is directed p p p pp p p 
toward perifocus, t:le yp axis is in the plane of mution ad ced TT /2 from the 
~ -axis in thA direction of motion, and the z p axis is normal to the orLit plane and 
completes a right-handed system. The transformations for elliptic, hyperbolic 
and parabolic orbits are given below. 

• Ellipse: 0 ~ e < 1 

fx; 
Yp -:- a (3-145) 

LZ 
I p-, 

ann 

Ixp \-:;tnE 

lY.
1
) :- _I'~ 'n_t,os E\ ~ 

(1 - " cos E) 

z 0 I p 

(~-146) 
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where
"L

E-,, the eccentric anomaly
: /__ the gravitational parameter of the reference body.

I

The eccentric anom:dy, _, is computed by Keplerts equation

--: M = E- e sinE (3-J47)

where M is the mean anomaly defined in Section 3.2.6. This equation is solved

by the following iteration scheme

_(%) = E - e s it, E - M (3-148)
.J

/

D = 1- e cos[E - .53(E)] (3-149)
L' ""

En+ I = En Dn n = 0, 1, 2, 3,... (3-150) [

where

Eo = M+ e sinM (3-151)

• Hyperbola: e > 1

lyp! : a _'_-- i sinh (3-152)

p 0 .3

• "J-I_'n _--I cosh F (3-153)
YP :-'(ecosh F - I)

zp 0

, m_.

.%50
(
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wher,~ 

E 'v the eccentric anomaly 
IJ- 'V the gravitational parameter of the reference body. 

The eccentric anomaly, E, is computed by Kepler's equ.ation 

M=E-esinE (3-147) 

where M is the mean anomaly defined in Section 3.2.6. This equation is solved 
by the following iteratio!l scheme 

3 (1:. ) = E - e sir. E - M 
n £I n 

D = 1 - e cos [E - . 5 3 (E \/) 
n n n 

;) (E ) 
E ::.E __ '_l 
ntt n :) n = 0, 1, 2, 3, '" 

n 

where 

• Hyperbola: e > 1 

rxpl 
cosh F - ;:-

~ \y I = a -~i 

x p 

lz:J 

,j - p '[I 

Yp ~ ----
'(e cosh F - 1) 

z 
p 

~-50 

0 

sinh 

I 
.J 

sinh F 

- ~1 co~h F 

o 

(3-148) 

(3-149) 

(3-150) 

(3-151) 

(3-152) 

(3-153) 
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I

I

:

'7

4_
" _: "-_ wher e

I- F _ the hyperbolic anomaly computed using Kepler's equation for a

hyperbola, M = e sin F - F. -t. "%

_' The hyperbolic Kepler equ_±ion may be solved by a Newton-Raphson iteration of
,_ the following form

_"_ (e sinh F - Fn - M)

F+I -- F - e coshF_ -- 1
_ (3-154)

[: n-- 0, 1, 2, 3,...
2%

_ where F0 = M/2. (Note: The preceding equation is singular for orbits with

[ "
e = 1.) ::

• i Parabola: e = 1

-- _ -- _ ,_j" /#
a

x q - D=/2

;1
• y, : 2/_-DqD (3-155)

zi 0

Tcp D

• _ 1 _ (3-156) %
YP (q + D2/2) ' 4

_ 0
t a

where

q _ pericen_ric distance (3-157) i..

J
i

and D is computed from Barker's equation, that is
q

;', D3 + 6qD = 6M, (3-158)

) $ ',;
3-51
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where 

F '" the hyperbolic anomaly compllted using Kepler's equation for a 
hyperbola, M = e sin F - F. 

The hyperbolic Kepler equation may be solved by a Newton-Raphson iteration of 
the following form 

(e sinh F - F - M) 
F = F _ n n 

n+ 1 n e co s h F .- 1 
n 

(3-154) 

n = 0, 1, 2, 3, ... 

where Fu = M/2. (Note: The preceding equation is singular fm.' orbits with 
e'" 1.) 

• Parabola: e == 1 

~3-155) 

(3-156) 

where 

q ~ pp.ricentric distance (3-157) 

and D is computed from Barker's equation, that is 

D3 t 6qD :c. 6M. (3-158) 

3-51 
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The orbital rectangvlar coordinates are transformed to inertial Cartesian posi-

: tion and velocity coordinates as follows

t

: = y, (3-159)

Zp-

and
r'

; ,e

(3-160)
=p p

., L ,,j ..
s

The elements, Pij , of the rotation matrix, P, are t ,

Pll = COS _ COS a_= sin _ cos i sin oJ

P12 = - "os _ sin _ - sin f) cos i cos cz i

P13 = sin _ sin i. :,

P21 = sinf2cos a)+ cos _cos i sinc_

P22 = - s in f/ s in c_ + cos f2 cos i cos c,_ (3-161) ":

¢

" P23 = cos f) sin i

P31 :- sin ; sin w

P32 : sin ; cos co ,"
._,:z

-- P33 = COS i "
i

m

3-52
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The orbital rectang1'l ar cQordinates are transformed to inertial Cartesian posi
tion and ve locity coordinates as follows 

x rx 
y c p y: (3-159) 

z LZpJ 

and 

I: x p 

=p Yp (3-160) 

lz z p 

The elements, Pi j # of the rotation matrix, P, are 

Pll = cos D cos ClJ- sin D cos i SIn w 

P12 = - 'as D sin w- sin D cos I cos (.lJ 

P 13 = sinDsinl. 

P21 ::: sinDcoswtcosDcos sine') 

P22 ::: - sin D sin (.u t cos D cos i cos Cl) (3-161) 

P23 
:: cos 12 sin i 

P31 
:: sin sin u.' 

P32 
:: SIn cos w 

P33 
:: cos i 

3-52 
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: 3.3.8.2 Keplerian to Cartesian Partial Derivatives

' The functional relatiorships expressed in Equations (3-159) and (3-160) are

t,

,?

"C -f=P(_' _'' i)'Fp (a, e, M) i
and (3-162)

r :P(n, _, i)_ (a, e, M).

- The partial derivatives of Y with respect to the orbital elements may be written

- p ____P

' "t_/_ and (3-163)
T' r

_¥ p p

_ for _ = a, e, and M, and

_T _.p _
F

and (3-164)
or _.r-

- r

for _,= g2,_6,and i.

The par'tiN derivatives of _ and _ for elliptical orbits "re

Xp - a - YP

_ (a, e, M) a ] r'--m r (1 - e 2) :

0 0 0 :

and

,lit, 3-53

}

1'

...........'_ _ .":.......k--.'_. "-: 7;.......::2;............ iT ............_-', "----,,,,*- •

] 9760] 7203--092

3.3.8.2 Keplerian to Cartesian Partial Df>rivatives 

The functional relatiorships expressed in Equations (3-159) and (3-160) are 

r = P (D, u), i) rp (a, f:, M) 

and (3-162) 
r = P (D, u.:, i) r (a, p e, M) • 

The partial derivatives of r with respect to the orbi~al el~ments may be written 

and 

for ~ = a, e, and M, and 

and 

for Z, =12,(,;, a.'1d i. 

,- or 
~=p-p 
d ~ 0 ~ 

or (1p_ 
-=-f fi' ~i~ p 

The partial derivatives of l'p and z,p fo~ elliptical orbits r re 

7lr 
---,P 
(~ (n. l" M) 

and 

x 
p 

y 
p 

a 

o 

3-53 
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J

I ==
t

, i i

; + -n
2a p 1 - e2 \r/ x ..

/

• o rp _ .._ n (_) _ YP_ a 3 (3-166)0 (a, e, _d) 2a ,]-_ a (1 - e 2") - n r YP

• }
J

2

o o o

2

/

where the mean motion, n, is

{

1 _ (3-167)
n z _

"N_ _ tJ

The partial de,-:ivatives of P with respect to 9, c,, and i are i

-P_ -e_. 2 0-[ ?

°l
3P 13_168)
3--_= P11 P12 0

0 0

'i ':

"" [°12 - Pll 0"1 '

• 3P 0 13-169) ,..
_--_= P22 P2_

sin C sin i since sinl_sin i cos oJ 0

f 3P
= - cos [2sin i s,in , - cos f/sin i ccz,,., 0 (3-170)

: 3i

cos i sin a, cos i cos (, 0

3-54
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= 
'0 (a, e, i-.!) 

x 
p 

2a 
• ape p ( )2( (x) (Y)2\ 
Xp ~ 2 -a- + 1 _ e 2 -;- ) 

o 

wherfJ the mean -motion, n, is 

The partial de:::ivatives of P with respect to ~2, CJ, and i are 

-1' , 'J ~ - 1-' 22 01 
OP - Pll P12 

:J 
- -
00 

0 0 

P
12 - Pll 01 

'OP P22 - P21 0 ';:)w -

P
32 - P31 ~J 

I . (' ... 

ap l S> n i Sl n : s: n w 

sinOsin co'S w 

- cos 0 s i 11 i tli =- - cos IS111 1 !',111, C~:; ~IJ 

:.:osisinc.Il cos i cos C' 

3-54 

o 

(3-16'1) 

(3-168) 

(3-169) 

--, 

0 I 

0 (3-170) 

0 
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_ _ 3.3.8.3 Body-Centered True of Date Coordinates to KeF]erian Elements ] ,

Given the position, r, and velocity, r, at time t, the standard Keplerian elements
(_ e, i, f}, _, 1V0 are calculated as follows. Let the magnituJe of the position,
velocity, and angular momentum vectors be denoted by

r = ]YI (3-171)

V = Irj (3-172)

_! h : Ihi (3-173)

where
_t:

h= rx r.

q

_ The equations for the orbital elements and related parameters are then

I, 4J, Semimajor Axis

#r,, a -- 13-174_
;' (2_- rV2_

Ig

. Semilatus Rectum

, p =--[(rV) 2 - (¥' r) 2] 13-175)

r

Eccentricity

o - ]/_ - 2 (3-1',e),fl

1976017203-094

:1.3.8.3 Body-'Centel'e~ True of Date Coordinates to KepJerian EleJ:l1ents 

Given the position, r, and velocity, ~, at time t, the standard Keplerirul elements 
(ap a, i,D, w, M) are calculated as followo5. Let the magnituie of the position., 
velocity, and angular momentum vectors be denoted by 

r = I rl (3-171) 

V = Iii (3 -172) 

h = I hi (3-1 '('3) 

where 

11 = r x i=. 

The equations for tha orbital elf:'ments and related parameters are then 

Semimajor Axis 

a == 
p.,r 

(3-174) 

Semilatus Rectum 

1 [ 2 - ':--)2] P = - (rV) - ( r' r (3-175) 
f-L 

Eccentricity 

{3-1'iG} 
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Inclination

L

Id:._h>,%i _ +n;sini=-- -

[rxri h

"r' (3-177) '

(¥x "_) -U h
< COS i = z_ z

.,. I-r-×_ I h

" where u , u ) and u axe unit vectors in the body-centered true of date Cartesianx y z - -

coordinate system and h,, by, and h axe components of ".he angular momentum
vector, h.

. j Elliptic Mohon Hype.rbolic Motion
/

a>0 a_<0

Eccentric Anomaly Hyperbolic Ancln_y "

=-- sinh F < - ._r]

e \q-_--7-_a /
(3-1_8)

c°sE-- I (I r/ ' 0 r'e -a/ cosh F : _ -

Mean Anomaly

__ .¶

."k.= E _ __.r"r M _r" r F (3-179)
&-,4 !-. a

Period

P - 2,7 _ (3-I_0)

m

J-56

1

1976017203-095

Inclination 

I (~.-)<"i=) >; U i ~h2 + h2 
sin i = ___ .,-':'" =_x _Y 

!r x rl h 
(3-,177) 

cos 
(rxr)·u h z _ • 

=----- --
I-r x t I h 

where u ,u , and u are unit vectors in the body-centered true of dai0 Cartesi:tn x y z 
coordinate syst~m and h , b , and h are components of the angular mOm6!\tum 

x y z 
vector, h. 

a > 0 

Eccentric Anomaly 

_ 1 (r.-· \ 
slnE=e- .~) 

., a 

cos E = ~ (1 - ~) 
e a I 

Mean Anomaly 

Period 

M 

J-56 

Hyperbolic Motion 

as 0 

Hyperbolic AnCl!I&ly 

I _ ~ \ 

l~r.r ) sinh F.~ 
~ ~ - 11.. R 

{3-1 7 8) 

cC'sh F :- ~ (1 - ..:_\, 
(l' 3

j 

r' r __ -F 
r--
• - ,L. a 

(3-179) 

~3-PW) 
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_*'_ _ Elliptic Motion Hyperbolic Motion

° a>0 a_<0 :

_-,' Energy (per unit mass) L ;
i

_" i r"

w .,, = _ Ene r gy - /_ (3-181) i.::. ,-,ne rsj -
-_< 2a 2a !

a

_i Longitude of Ascending Node "_

g h
_' sin .q = x ::_

hsini
-,.' (3-182)

• Y _,
: cos _)= h sin i :

"%- _./J

_. ,, _ True Anomaly

', sin f = _ (T'__r) ;o"' re m-l_._'= '

'< (p- r) :
: cos f -
_, re

._ Argumen*. of Perifocus

5. Z

_'" sinUc + f) - _ si-_ '
(3-184)

cos(w+ f) =_----Yh-xh,_ ; _
hr si,. i

%

: Perifocal and Apofocal Radius .,

r : a(1 - e) (3-185)
P

_, r = a(1 + e) (3-186)

,.'.,' 3-57
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Elliptic Motion 

a > 0 

Energy (per unit mass) 

Energy = -~ 
2 a 

Hyperbolic Motion 

a~O 

E - f-1-nergy -_ 
2 a 

Longitude of Ascending Node 

True Anomaly 

Argument of Perifocus 

h 
sin .:J '" .,--_x,---, 

h sin i 

-h 
cos n = ---Y

h sin i 

cos f = (p - r) 
re 

z 
sin(wt f) - --

.. s i"1 

yh - xh 
f x v cos(w t .) = ----:--~ 

hrsll.l 

Perifocal and Apofocal Radius 

rp = a(1 - e) 

r n = a(1 t e) 

3-57 
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r

Perifocal and Apofocal Height i

h -- r -r s (3-187)

' ha = r a -r (3-188)

The partial derivatives of the Keplerian coordinates with respect to the Cartesian
' coordinates are given by the inverse of the Keplerian to Cartesian partial
,. derivatives in Equations (3-163) and (3-164), i.e.)

: -_ a/_ x 3 a/_y... _ a/_ _" _ x,/b a 3 x/_ e "_x/3 i . . . _ x/_-M =1

_ ,J _ e/_x _ e/_y.. • _ y/_ a by,/_ e _y/3 i"

, bi/_x _ i/3y. • • (3-189)

#

_M/_ x _M/_y. • • _M,/_ z _ _/_ a _ z/_ e _ z,"_ i . . . _-/-_M l

3.3.9 Equinoctial-Cartesian Transformations (References 9 and 10)

The following sections present the transformations between the equinoctial ele-
ments) described in Section 3.2.6) and the inertinl Cartesian system. The

equinoctial elements are used only to describe closed orbits.

; ,, 3.3.9.1 Equinoctial Elements to Cartesian Coordinates

'- Conversion from equinoctial elements) a) h) k) p) q) k ) to inertial Cartesian
coordinates) _ and _) is performed in the following manner. First) the
generalized Kepler equation for equinoctial elements)

k = F+ h cosF-k sinF (3-190)

is fteratively solved for the eccentric lo_.gitude F) which is the sum of the ':
e_centric anomaly) argument of perigee) and right ascension of the ascending

i node. _:

3-58 RI_RODUgl_ILITY OP THE
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Perifocal and Apofocal Height 

h ::: r - r 
p p s (3-187) 

h::r-r 
B B S 

(3-188) 

The partial derivatives of the Keplerian coordinates with respect to the Cartesian 
coordinates are given by the inverse of the Keplerian to Cartesian partial 
derivatives in Equations (3-163) and (3-161), i.e., 

a aid x "3 aid y . Cl a/Cl z d X/d a Cl X/d e Cl x/(j i . ~ x/a 

d e/d x 0 e/d y. dy/"(\a oy/ae oy/oi· 

(3-189) = Oi/dX diloy· 

oM/ox oM/oy. o M/d Z o z/Cl a (\ z/o e (; i,"o i .. , az/(jM 

3.3.9 Equinoctial-Cartesian Transformations (References 9 and 10) 

The following sections present the transformations between the equinoctial ele
ments, described in Section 3.2.6, and the inertial Cartesian system. The 
equinoctial elements are used only to describe closed orbits. 

3.3.9.1 Equinoctial Elements to Cartesian Coordinates 

Conversion from equinoctial elements, a, h, k, p, q, >-. , to inertial Cartesian 
coordinates, rand r, is performed in the following manner. First, the 
generalized Kepler equation for equinoctial elements, 

>-. :..: F + h cos F - k sin F (3-190) 

is iteratively solved for the eccentric IOIagitude F, which is the sum of the 
et;centric anomaly, argument of perigee, and right a.scQ.nsion of the ascending 
node. 
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_ _ Next, the position and velocity coordLuates in the equlnectial coordinate system

_? (Xep , yep Zep ) are obtained as follows for both the direct and retrograde cases
rl

X1 = a[(l-h2fl) c, s F+ hkfl sinF-k]

(3-191)

Y1 = a[(1-k2/3) sinF+hkflcos F-hi "
L

_ na 2
,, : _ [hkfl cos 17- (1 - h2fl) sin F]

' (3-192)

;_' "_I = na--_2[(1 - k2fl_ cos F - hkfl sin F]
r

where

t •

, /_ _- 1 (3-193)<_ 1 */1-h 2- k 2 ;"

_ The transformation from the equinoctial system to the inertial Cartesian sys- ;

,,_" tem is given by

_: 7 f _ (3-194)

v,.,, '1

_7 r = X1f + )1_ (3-195) , _:

g_, *':

; where f and _ are unit vectors directed along the x_p and Y,v axes, respectively
'> (see Figure 3-5). These vectors are computed in the inertial Cartesian co- ,,

" ordinates as follows _:

1 - p2 + q2 2pqj 2p ' :
_, '2

{,!;: [_, _, _] _ 1 2pq (1 + p2 _ q2) j - 2q (3-196)
_c 1 + p2 + (12

- 2pj 2q (1 - p2 _ q2) j

' ;r 3-59
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Next, the position and velocity coordinates in the equiT!0ctial coordinate system 
\'t ep ' Yep' zep) are obtained as follows for both the direct and retrograde cases 

where 

Xl:: a[(l - h2,B) C, sF + hk,B sin F - k] 

YI :: a[(l - k2,B) sin F + hk,B cos F - h] 

. na2 
Xl :: -- [hk,B cos ::- - (1 - h2,B) sin F] 

r 

• na2 
"il :: - [(1 - k2,B) cos F - hk,B sin F] 

r 

{3:: 1 

1 + 11 - h2 _ k2 

(3-191) 

(3-192) 

(3-193) 

The transformation from the equinoctial system to the inertial Cartesi8.!l sys
tem is given by 

(3-194) 

(3-195) 

where rand g are unit vec;tors directed along the '}( ep and y",p axes, respectively 
(see Figure 3-5). These vectors are computed in the inertial Cartesian co
o~dinates as follows 

2pqj 2p 

[f. g. w] =- __ 1_ 2pq - 2q (3-196) 

L - 2pj lq (1 _ p2 _ q2) j 

3-59 



where
\

_ j = 1 for direct orbits (0 _ i < 180 °)

_: j = -1 for retrograde orbits (0 < i _ 180 °)
i

In GTDS the operational choice of dL_ect elemen+.s was made for 0 < i _<90° and
_: of retrograde elements for (90°< i .< 180°).

3J.9.2 Cartesian Coordinates to Equinoctial Elements

The equinoctial orbit elements_ a, h, k, p, q, _, are calculated from the

Cartesian position, r, and velocity, }% The sem%major axis is computed as
follows:

, ) .: (3-19v)

'C .l

The eccentricity vector is given by ":....

, °

_- __ 7 (Tx_) x7 (3-198)
r ¢z

The unit vector {v is defined a,] follows (see Section 3.2.5) !

t - -
, _ _ r x r (3-199)

i \\, °

2. ,

:, The unit, vectors f and g can then be computed as follows i
3

: w_ w w i
=1 x f _ x y f =-WJ i -"

fx I + wJ Y • _ (3-200) { ._z l+w j
.j

i

lwhere j is defined following Equation (3-196).

3-60
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where 

j ::: 1 for direct orbits (0 ::; i < 180°) 

j ::: -1 for retrograde orbits (0 < i ::; 180°) 

In GTDS the operational choice of direct elemen~s was made for 0 ::; i ::; 90° and 
of retrograde elements for (90°< i ~ 180°). 

3.3.9.2 Cartesiar. Coordinates to Equinoctial Elements 

The equinoctial orbit elements, a, h, k, p, q, A., are calculated from the 
Cartesian position, r, and velocity, t. The sem;,-major axis is computed as 
follows: 

The eccentricity vector is given by 

. . 
_ r (rxr) xr e = --_ ~ __ _ 

r fJ. 

The unit vector w is defined an follows (see Section 3.2.5) 

.. 
W=---

The unit vectors f and g can then be computed as follows 

w2 
f = 1 ___ x_. 

x 1 + wJ 
z 

w w f = __ x_y 
y 

1 t w~ 
f z = - w~ 

where j is defined following Equation (3-196). 
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I

!

i °

: _ × _ (3-201) i _"_'

The equinoctial elements ht k, p, and q are giwan by i

- ?

h = _. i (3-202) ,_

I'P _ w (3-204) )
I + wJ

Z

! ,W

q y (3-205) 1
l+wJ z ¢ :"

The mean longitude is computed using the generalized Kepler equation I

I "
:F +h cos F-k sinF (3-206) i

|

_, where J -

with i ':

!" (1 - k2fl) X1 - hk/3Y1

cos F = k + I ":

a/i - h2 - k2 _!2

(3-208) ;

(1 - h2fl) Yt -" hk/3Xl
sinP=h av/1 - h 2_ k 2 ,/'_:,

i

The parameter _ in Equation C3-208) is given by Equation (3-193).

1976017203-100

g = w x f 

The equinoctial elements h, k, p, and q are glvon Ly 

k::e·'f 

w 
x 

p=--
1 + wi z 

w 
q=-_Y-

1 + wi z 

The mean longitude is computed using the generalized Kepler equation 

A. = F + h co s F - k sin F 

where 

F - t -1 (~i 1'1 F) - an ---
cos F 

with 

(1 - k2 J3) Xl - hkJ3Y 
co~ F = k + I 

all - hl _ k2 -

(1 - h2J3) Y .. hk,BX 
sinJi'=ht 1 I 

all - h 2 _ k 2 

The paramete:- !3 in Equation (3-20~) is given by Equation (3-193). 
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! Finally, the positior coordinates Xep and Yep relative to the equinoctial coordinate :"[_
_ system are given by
/

X1=¥'?

(3-209)

Y1=¥"

_ 3.3.10 Herrick-Cartesian Transformations (References 11 s_d 12)

_ 3.3.10.1 Herrick Elements to Cartesian Coordinates

The following method is used for conversion from Herrick elements, e, _, n,

_'i and _, to inertial Cartesian coordinates. The trait vectors _, _ and _- along the
: equinoctial orbit plane coordinate directions (see Section 3.2.5) must first be

_: ' determined. The unit vector fv is _tven by

: _ : _ 13-210)
; IZl L}

" The unit vectors f and g are determined from Equations (3-200) and 13-201) as i
, functions of fv. :.

The Kepler equation for Herrtck elements is solved by Iteration for the eccentric
' longitude F,
,7

k : F _ n cos F - k sin F (3-211)

where h and k are calculated from Equations (3-202) and (3-203) as functions of !

the known vectors _-, f and _.

The coordinates of position and velocity in the direct equinoctial system, /

X l' Yi ' k l, _l ' are given by Equations 13-191) and (3-192), with _ ,

a: _ _1f3 (3-212) :

i

3-62
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Finally, the positior. coordinates xep and yep relative to the equinoctial coordinate 
system are given by 

XI ="f 0 f 

y _."fog" 
I -

3.3.10 Herrick-Cartesian Transformations (References 11 8:D.J 12) 

3.3.1\>.1 Herrick Elements to Cartesian Coordinates 

(3-209) 

The following method is used for conversion from Herrick elements, e,:[ , n, 
and~, to inertial Cartesian coordinates. The unit vectors r, g and w along the 
equinoctial orbit plane coordinate directions (see Section 3.2.5) must first be 
determined. The unit vector VI is giiven by 

'" :[ w=-
I {, I 

(3-210) 

The unit vectors f and g are determined frolL Equations (3-200) and (3-201) as 
functions of it. 

The Kepler equation for Herrick elements is solved by iteration for the eccentric 
longitude F, 

~ = F -+ t1 cos F - k sin F (3-211) 

where h and k are calculated from Equations (3-202) and (3-203) 8.S functions of 
the known vectors a, f and g. 

The coordinates of position and velocity in the direct equinoctial system, 
X l' Yl' X l' Y1 , are given by Equations (3-191) and (3-192), with 
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1
' Finally, the position ana velocity in the inertial Cartesian system are computed

via the following transformations

¥ : Xl f + Y1_ (3-213)
I
t

- (3-214)

3.3.10.2 Cartesian Coordinates to Herrtck Elements

Given the Cartesian position and velocity vectors, r and r, the Herrick variables
e, _, n and k are computed as follows:

-e- ¥ ('f × r) xr (3-215)
r

J
the angular momentum vector is _, /

_r_' _ _ r x r (3-216) ,

and the Kepler mean motion is

f_ (3-217)
n = t

i

where the semimajor axis, a, is given by

_1

2 Ir i2_ (3-218)/z _J

t e

The mean longitude, X, is computed from the generalized Kepler equation, given
in Equation (3-206) to be

3-63

L

1976017203-102

Finally, the position ana velocity in the inertial cartesian system are computed 
via the following transformations 

(3-213) 

(3-214) 

3.3.10.2 Cartesian Coordinates to Her .d.ck Elements 

Given the Cartesian position and velocity vectors, r and r, the Herrick variables 
e, { , n and A. are computed as follows: 

- _ r (F x -f) xi 
e - - - - -'--_-'-_ (3-215) 

r fL 

the angular momentum vector is 

(3-216) 

and the KepleI' mean motion is 

(3-217) 

where the semimajor axis, a, is given by 

(3-218) 

The mean longitude, A. , 1s computed from the generalized Kepler equatlo~ given 
in Equation (3-206) to be 
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)
"' )_=F+hcosF-k sinF £

where the variables h and k are determined from Equations (3-202) and (3-203),

with vectors @, _ and _ calculated from Equations (3-210), (3-200), and (3-201). i __ae eccentrtc longitude F is determined from Equations (3-207) and (3-208) with :.

_' fl from Equation (3-193) and X 1 and Y1 from Equation (3-209).

:" 3.3.11 Keplerian to Equinoctial and Herrtck Transformations

_:- 3.3.11.1 Keplerian to EquinoctialElements

; The conversion from Keplerian elements (a, e, i, f2, a), 1VOto equinoctial
elements is performed via the following equations.

! _, DirectSet(0°a I< 180°) RetrogradeSet(0°< I_<180°) _,

,- h = e sin(a)+ f/) h r = e sin(a)- f_) .2.../ t.
i

k = e cos(a)+ f)) k , ...
(3-219) "'

, p = tan(i/2) sin f/ Pr = cot(i/2) sinf_

q = tan(i/2) cos 13 qr = cot(i/2) cos f_

_, "_
•

:' _=M+a),f_ X =M+a)-fl _:
r i'

: 3,3.11.2 Keplertan to Herrick Elements _',

,i ConversionfromKeplerlautoHerrickelsmentsleperformedusingtheequations _
¢

'e = e cos 0 cos a)- e sin fl sin a) sin i
x

e - e sin f_cos c_+ ecos (_sLn a)cos i (3-220)

?
! e = e sina) sin i

I
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A :: F + h cos F - k sin F 

where the variables h and k are determined from Equations (3-202) and (3-203), 
with vectors w, f and g calculated from Equations (3-210), (3-200), and (3-201). 
T'.4e eccentric longitude F is determined from 'Equations (3-207) and (3-208) with 
f3 from Equation (3-193) and Xl and Y

1 
from Equation (3-209). 

3.3.11 Keplel"ian to Equinoctial and Herrick Transformations 

3.3.11.1 Keplerian to Equinoctial Elements 

The conversion from Keplerian elements (a, e, i, 0, w, M) to equinoctial 
elements is performed via the following equations. 

a :: a a = a 

h = e s i n( w + .0) hr=esin(w-.I2) 

k = e co!>(w + .0) kr = e cos(w - .0) 

p = tan ( i /2) sin .0 P r = cot(i/2) sin.12 

q = tan(i/2) cos D. q,. ::: cot (i/2) cos .0 

A =-M+w-.12 r 

3.:1.11.2 Keplerian to Herrick Elemeuts 

(3-219) 

Conversion from Keplerian to Herrick elsments ie performed using the equations 

. ex = e cos 0 cos w - e !"> in .0 sin w sin i 

ey -: e sin 0 cos U" + e cos 12 s tn w cos i (3-220) 

e z = (' sin(.usin i 
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I_f : eTr,1 - e2) (3-2zl) •

"_x= i_l sin_sini .. •

=- [e I cos D. sin i (3-222) _;Y

_== I_l cos ;. :_
2

n =//a/a s (3-223)

a : !_+ ao_ _. (3-224) :

where j is defined foUow_ Equation (3-196).
¢

3.3.12 Vehicle-Fixed to Body-Centered True of Date Transformations ,,:

The propulsive and aerodynamic accelerations are modeled in the vehicle-fixed

i _ coordinate system described in Section 3.2.7. These vehicle oriented acceler-
ations must be transformed to the inertial Cartesian system to be consistent

:{ with other terms in the dynamical equations of motion.

_ The follnwing three angular _'ansformations are required to orient the vehicle-
r_ fixed coordinates with respect to the ine_,tial Cartesian axes:

,_ R, (_) the rotation about the inertial z-axis, through the right ascension,
%, of thc._vehicle's (longitudinal) Xv-aXls. ,

; I_ (-_v) the negative rotation about the new y-axin, t'hrough the declination, ,?
°:_ 8 , of the vehicle's (longtW.dinal) x_-axis, v,

_ I_ (_v) the rotation about the new x-axis (which is aligned with the x -ads), ,_
._ through the roU angle, _, to the vehicle-f_ed axes.

_i._ where I_ and R, are given by Equation (3-1), and Ry is ' '

Ry(a) : 1 0 (3-225)
i

._ [sin _ 0 cos ]

,i

] 9760] 7203-] 04

(3-221) 

-Ex = j-EI sin.Qsin i 

-E =-I-EI cos Dsin i y (3-222) 

(3-223) 

A :: M + W r .Q. (3-224) 

where j is defined followfug Equation. (3-196). 

3.3.12 Vehicle-Fixed to Body-Centered True of Date Transformations 

The propulsive and aerodynamic accelerations are modeled in the vehicle-fixed 
coordinate system described in Sectf.on 3.2.7. These vehicle oriented acceler
ations must be transformed to the inertial Cartesian system to be consistent 
with other terms in the dynamical equations of motion. 

Th~ following three angular u'ansformations are required to orient the vehicle
fixed coordinates with respect to the ino:;"'tial Cartesian axes: 

R
z 

(a y ) the rotation about the inertial z-axis, through the right ascension, 
a y , of th(~ vehkle's (longitudinal) xv-axis. 

1\ (-Sy) the negative rotation about the new y-axis, through the declination, 
Sy , of the vehicle's (longitv.dinal) xv-axis. 

"A (¢ ) the rotation about the new x-axis (which is aligned with the x -~'da), 
A~ y y 

through the roll angle, ¢ , to the vehicle-fixed axes. 
y 

where 1\ and Rz are given by Equation (3-1), and Ry is 

cosa 0 -sina 

1 o (3-225) 

sin a 0 cos a 
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::: Denote an P.rbitrlv:y vector by _ when expressed in the vehicle-fixed coordinates,
': and T when expressed in inertial Cartesian coordinates. Then the transformation :
_ between coordinatescan be written il

¢

/ =%, R (- R (%)T
j Y

_ (3-226) '_

_ where the elements o_ _ are ;'_

qll : COS _v COS a v

q1_ : - sin _v sin _. cos % - cos qb, sin c% o

, ; qis : - cos ¢v sin 8v cos av + sin _bv sin av ,

*_"4 qzi : cos 8v sin a v ., i,,_//#,_

.. q22: - sin q5v sin 8v sin av + cos _ cos a_ (3-227) _d ) <

' q_s : - cos Cv sin 8v sin av - sin #bv cos a v

" q31 : sin 8

<: q3i: sin q5v cos _v

q33 : COS _v COS Sv

3.4 TIME SYSTEMS _

The GTDS orbit determination program uses the atomic time system, A.1, in the
integration of the equations of motion. However, the program must interfsce with
external input-output data set. which are referenced ix) other thee systems, such
as ephemeris time (ET) for the solar/lunar/planetary ephemerfdes, universal /_'.
time (UT1) for computing Greenwich sidereal time, and universal time coordi- . ' :'
nated (UTC) for input-output epochs and tracking data. A brief descrlt_.lon of
the relevant time systems and their tnterrelationshlp_ foUow_ (R_ferences 1,

13, and 14). '_
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Denote an p.rbitrru:y vector by 1:v when expressed in the vehicle-fixed coordinates, 
and r when expressed in inertial Cartesian coordinates. Then the transformation 
between coor~s can be written 

(3-2~6) 

where the elements or 1 are 

cos S cos a v v 

Q12=-sin¢ sinS Cosa -cos¢ sina v \' v V V 

Q13=-COSq., sinS cc.sa +sin¢ sina 
v v v v v 

cosS sina v v 

Q22=-sin¢ sinS sina +cos¢ ct)sa. v v v v v (3-227) 

q23 = - cos ¢ sin S sin a - sin ¢ cos a v v v v v 

sin S 
v 

sin¢ cos S 
v v 

cos ¢ cos S 
v v 

3.4 TIME SYSTEMS 

The GTDS orbit determination program uses the atomiC! time sy~tem, A.1, in the 
integration of the equations of motion. However, the Pl.'ogr&m must interface with 
external input-output data lIIet,q which are referenced to other tir.l e systems, such 
l:Lo:! ephemeris time (ET) for the solar/lunar/planetary ephemerides, universal 
time (UT1) for computing Greenwich ~idereal time, alld universal tin.e coordi
nated (UTC/ for input-output epochs and tracking data. A briAf descl'i~lon of 
the relevant time systems and Ulelr interrelationship::! followR {r..~!~r~mces 1, 
13, and 14). 
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v 3.4.1 Ephemeris Time, ET

This _.s the uniform measure of time, which is the independent variable of the
equations of motion, and the ar_. u,ent for the ephemeridcs of the planets, the
moon, and the satellite. The um_ of ET is the ephemeris second, which is
defined as the fraction 1/31,556,925.9747 of the tropical year for _2 h ET of _
Jan 0d, 1900. Ephemeris time is determined from the instant near the beginning
of the calendar year 1900 v41en the geometric mean longitude of the sun referred
to the mean equinox of dat_ was 279 h 41'48704, at which instant the measure of
ephemeris time was 1900 Jan 0 d 12h •

3.4.2 Atomic Time, A.1

A.1 time is one of several types of atomic time. It is obtained from oscfllatt9ns
of the US Cesmm Frequency Standard located at Boulder, Colorado. In 1958, the
US Naval Observatory established the A.1 system based on an assumed frequency
of 9,192,631,770 oscillations of the isotope 133 of cesium atom per A.1 second.
The reference epoch of A.1 was established so that on Jan 1, 1958, 0h0m0 s UT2
the value of A.1 was 0h0m0s , Jan 1, 1958.

3.4.3 Universal Time, UT ._/_

This is the measure of time that is the theoretical basis for all civil time keep-
tug. UT is related to the rotation of the earth on its axis. Compared to ephem-
eris time, which is uniform time, UT does not take into account the irregularities
of the earthVs rate of rotation.

f

The quantity UT is defined as 12 hours plus the Greenwich hour angle (GHA) of ,
a point (representing the fictitious mean sun) on the mean equator of date whose

right agcension measured from the mean equinox of date is _I

R : 18h38m45:836 + 8,640,184._542T + :0929T_ (3-228)

where T is defined following Equation (3-20).

The Greenwich _".ur angle of this point, denoted by S in Figure 3-1f, :sU t

s

(3-229)
GHAo f S _c__ P_,= - i
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3.4.1 Ephemeris Time, ET 

This is the uniform measure of time, which is the independent variable of the 
equations of motion, and the argl' nent for the ephemerides of the planets, the 
moon, and the satellite. The umt of ET is the ephemeds second, which is 
defined as the fraction 1/31,556,925.9747 of the tropical year for ~_2h ET of 
Jan Od, 1900. Ephemeris time is determined from the instant near the beginning 
of the calendaryear 1900 vnen the geometric mean longitude of the sun referred 
to the mean equmox of dat\. was 279 h 41 '48'.'04, at which instant the measure of 
ephemeris time was 1900 Jan 0 d 12h. 

3.4.2 Awmic Time, A.1 

A.1 time is one of several types of atomic time. It is obtained from oscUlati.ons 
of the US Cesium Frequency standard located at Boulder, Colorado. In 1958, the 
US Naval Observatory estabURhed the A.1 system based on an assumed frequency 
of 9,192,631,770 oscillations of the isotope 133 of cesium atom per A.1 second. 
The reference epoch of A.I was established so that on Jan 1, 1958, OhOmOB UT2 
the value of A.1 was 0" an 08

, Jan 1, 1958. 

3.4.3 Universal Time, UT 

This is the measure of time that is the theoretical basis for all civil time keep
ing. UT is rela~d to the rotation of the earth on its axis. Compared to ephem
eris time, which is uniforlT.L time, UT does not take lnto account the irregularities 
of the earth's rate of rotation. 

The quantity UT is defined as 12 hours plus the Greenwich hour angle (GHA) of 
a point (representing the fictitious mean sun) on the mean equator of nate whose 
right ascension measured from the mean equinox of date is 

Ru = 18h 38m45~836 + 8,640, 184~542 T + ~0929 T2 
u u 

(3-228) 

where Tu is defined following Equation (3-20). 

The Greenwich ~"ur angle of this point, denoted by S in Figure 3-1f, is 
u 

GHA of S = a" .. - 1) 
1I UIII ·'1 

(3-229) 
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=

where _CM'ISthe Greenwichmean sidereal time; hence,

f d
/

UT -- 12h + _GM- P_" (3-230)

Adding 12 hours to both sides of _he above equation yields

,' UT + 12h : _GM- R (3-231)

-' and solving for %M

_\
"" _G. : t2h + UT+ _. (3-232) '

In practice, the point whose right ascension is R cannot be observed. Conse-
quently, the practical determinations of UT are obtained, through the intermediary
of sidereal time, from observations of the diurnal motion of the stars. Sidereal
time is a measure of the rotation of the earth .'elative to the stars, and is ,
defined an the hour angle of the vernal equinox. Therefore, the meridian transit
of a star occurs at a sidereal time equal to its right ascension.

Universal time varies from uniform time due to variations of the meridian, arising
principally from polar motion, and variations in the rotational rate of the earth

! consisting of secular, irregular, periodic seasonal, and periodic tidal terms, t
: t
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where aa,.'-Is the Greenwich mean sidereal time; hence, 

ur = 12t: + a OM -~. 

Adc:Ung 1~ hours to both sides of the above equation yields 

ur + 1i' = a - R OM u 

and solving for aCJ.I 

"'-(],I = 1 i' + UT + ~. 

(3-230) 

(3-231) 

(3-232) 

In practice, the point whose right ascension 113 .do u cannot be observed, Conse
que!ltly, thl' practical determinations of UT arE) obtalned, through the intermediary 
of sidereal tlme, from observations of the diurnal motion of the stars. Sidereal 
time is a m~asure of the rotation of the earth L'elative to the stars, and is 
defined aD the hour angle of the vernal equinox. Therefore, the meridian transit 
of a star occurs at a sidereal time equal to lts right ascension, 

Universal time variAB from uniform time due to variations of the meridian, arising 
principally from polar motion, and variations in the rotational rate of the earth 
consisting of secular, irregular, periNllc sess'lllal, and periodic tidal terms. 
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The tidr.l variations are ,rery small, the secular variation is .-:ignificant o_y over
iar_e time intervals, and the irregular vari_ions, while they may be relatively
large, are highly erratic. The periodic seasonal variation 8upears stable enough
to be l_"e_ictab 1_

There are three measures of UT in common usage: (1) UT0, which is determined
from observations of local mean sidereal time, (2) UT1, obtained by correcting
UT0 for polar motion, and (3) UT2, which results from the removal of the seasonal
inequality from UT1.

3.4.4 Uncorrected Universal Time, UT0 _ i

This measure of time is obtained by assuming an adopted conventional value hA
of the l,_ngitude of each observing station (se¢ Section 3.3.2.2). _.e local mean
sidereal time a_ transit is generally determined through observation of meridian
:ransits of stars, omitting from the apparent right ascension the nutation terms
that are independent of the coordinates of the star (the equation of the equir._xes).
.¢Ju_,_t.ractingthe east longitude of the observing station gives GM'thc Greenwich
mean sidereal time or Greenwich hour angle of the mean equinox of date. UT0

is then obtained from Equation (3-230_ by adding 12 h and subtracting R from
J

this value. Since the rr.,otion of t.he pole causes v_riations in the meridian, UT0 . /

is depender.t on the location of the observi_ station.

_4:._ Universal Time, UT1

This rxeasure of time is obtained from UT0 by _pply_ng al, _.ppropriate
correction in longitude due to the_motion of the pole and i_ the form of universal

time used in GTDS. UT] reflects the actual orientation ol the earth w_h respect
to the vernal equinox at that instant. UTI will be the same for _.11observatories.

In contrast, UT0 time, as determinea by different observatories using their
adop_d IoLgitade In calculations, results in a different value of UT0 for each

\ observatory.

Then

UT1 : UTO - _ (3-234)

where _ is given in Equation (._-31).

UT1 time is used by GTDS to compute the _ as given in _qu,_t_on (3-19).
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The tidal variations are ,rery small, the secular variation is dgnificant only over 
hn'ge time intervals, and the irragulhl' vat'idions, whae they may be relativf'!ly 
large, are highly erratic. The periodic seasonal variation anpears stable enough 
to be p'erltctab'..; 

There are three measures of UT in common usage: (1) UTO, which is determined 
from observations of local mean sidereal time, (2) UTl, obtained by correcting 
UTO for polar motion, and (3) UT2, which results from the removal of t~e seasonal 
inequality from UT1. 

3.4.4 Uncorre(:ted Universal Time, UTO 

This measure of twe is obtained by assuming an arlopted conventi('Aal value AA 

of the longitude of each observing station (sw Section 3.3.2.2). The loca! mean 
sidereal time at tr:msit is generally determined through observation of meridian 
~ranstts of stars, omitting from the apparent right ascension the nutation terms 
that are independent of the cool'dinates of the star (the equation of the eqllir...>xes). 
9.lbtracting the east longitude of the observing station gives 'GM' thc Greenwich 
mean sidereal time or Greenwich hour angle of the mean equinox of date. UTO 
is then obtained from Equation (3-230) by adding 12h and subtracting Ru from 
this value. Since the rr.otioll of +.he pole causes variations in the meridian, UTO 
is dependent on the location of the observing ~tation. 

~A.!l Univers&l Time, UTl --- -
This neah"Ure of time is obtained f:r<'m UTO by aVlJlY tOg aI. appropriate 
correction in longitude due to the motion of the pole and is the form of universal 
time used in GTDS. UTl reflects the actual orientation 01 the earth wit.h respect 
to the vernal equinox at that instant. UTi will be the same for ~11 o!Jservatories. 
In contrast, UTO Ume, as determined by dIfferent obser-vatoriAs using their 
adopted 10l:lgitude In calculations, rAsults in a different value of UTO for each 
observatory. 

Then 

un = UTO - M (3-234) 

where M is given in EquatioJ: (:l-31). 

UTt time Is used by GTDS to compute the aCJ,l as given in '8quat~on (3-19). 
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3.4.6 Universal Time, UT2

If the extrapolated value of UT1 time is ,_orrected for periodic seasonal varia-

tions, SV, in the earth's speed of rotation, the resulting time is UT2. UT2 does
not represent the actua' orientation of the earth with respect to the vernal equi-
nox. UT1 should always be used when the actual orientrotion of the earth is
required. UT2 is often referred to as GMT, Greenwich Mqen Time, and ZULU
time. The equations for UT2 are

UT2 = UTI + SV (3-235)

where

SV = :022 sin 2_t - _017 cos 2_t - so07 sin4_t + :006 4_t (3-236)

]

SV = ._022sin 2_zt- .s012cos 27zt- Y006 sin 4_t + Y007 cos 4_t. (3-267)

Equation(3-236)was used priorto 1962 -_clEquation(3-237)has been inuse
since 1962. The quantity t equals the fraction of the tropical year elapsed from ] !

thebeginningofthe Besselianyear forwhich thecalculationis made. (One
tropicalyear= 365.2422days.)Sinceseasonalvariationscanbe knownprecisely
onlyaftertheiroccurrence,UT2 itselfisrarelyused. The BureauInternational
dePHeurealsoissuescorrectionsfor̂ X andSV.

3.4.7 Universal Time Coordinated, UTC -

This is the standard time _cale to which tracking stations are synchronized. _,.
%

UTC time isderivedfrom atomic time,A.I,ina manner which makes italmost
synchronot',swithUT2.

Up to January 1, 1972, the UTC time .,_cateoperated at a frequency offset from '_,
the atomic time scale. The value of the offset was periodically changed by intez-

national agreement so that the UTC scale would correspond more closely to *_,
UT2,

r

On January 1, 1972, a new improved UTC system, adopted by the International
RadioConsultativeCommittee(CCIR),was internationallyimplementedby the i
time-keeping laboratories and time-broadcast stations, i

,=_ I
3-70

1976017203-109

3.4.6 Universal Time, UT2 

If the extrapolated value of UTI time is iort'ected fQr periodic seasonal varia
tions, SV, in the earth's speed of rotation, tbe resulting time is UT2. UT2 does 
not represent the actual orientation of the earth with respect to the vernal equi
nox. UTI should always be used whe!l the actual. oden1?.tion of the earth is 
required. UT2 is often refer~ed to as GMT, Greenwi-:.:h Mf",'3.D. Time, and ZULU 
time. The equations for UT2 are 

UT2 = UTI + SV (3-235} 

where 

sv = ~022 sin 271 t - ~017 cos 271t - ~007 sin 477t + ~006 477t (3-236) 

or 

SV = ~022 sin 277t - ~012 cos 277t - ~006 sin 477t + ;;007 cos 477t. (3-2:'7) 

Equation (3-236) was used prior to 1962 r....ld Equation (3-237) has been in use 
since 1962. The quantity t equals the fraction of the tropical year elapsed from 
the beginning of tha Bes~e1ian year for which the calculation is made. (One 
tropical year ::; 365.2422 days.) Since Reasonal variations can be known precisely 
only af"..er their occurrence, UT2 itself is rarely used. The Bureau International 
de 1 'HeUl'e also 1seues corrections for II>... and SV. 

3.4.7 !Iniversal Time Coordinated, UTe 

This is the st.roldard time scale to which tracking stations are synchronized. 
UTC tilne is derived from atomic time, A.l, in a manner which makes it almost 
synchrono\~s with UT2. 

Up to January 1, 1972, the UTC time l~ca1.e operated at a frequency offset from 
the atomic time scale. The value of the offset was geriodically changed by intar
national agreement so that the UTC scale would correspond more closely to 
UT2. 

On January 1 ~ 1972, a new improved UTC system, adopted by the International 
Raclio Consultatlve Committee (Cern), was internationally implemented by the 
time-keeping laboratories and time-broadcast stations. 
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The new UTC system eliminates the frequency offset from atomic time, thus
making the UTC second constant and equal in duration to the A.1 second (Refer-

ences 15 and 16). The new UTC time scale is now kept in synchronism with the
rotation of the earth to within _0.7 seconds by step-time adjustments of exactly
one second, when needed.

I

3.4.8 Station Time, ST

This measure of time is obtained at each station by counting cycles of a rubidium
atomic frequency standard. The difference between ST and UTC is tabulated by
each station. The observables are recorded in ST and then transformed to UTC.

3.5 TRANSFORMATIONS BETWEEN TIME SYSTEMS

Desired transformations between the time systems, ET, A.1, UTC, and UT1 are
carried out in the GTDS orbit determination program by evaluating either a stan-
dard formula or an appropriate time polynomial.

3.5.1 Transformations by Standard Formula /

_:_ _ For most purposes, the difference between A.1 and ET may be considered a
•_ _t_ constant. The suspected di.-'erepancy is roughly two parts in 109. The actual
?

- transformation between A.1 and ET time is given by

._ (JD- 2,436,204.5) (86,400)
_- (ET - A.1) : ATxgs8 - 9,192,631,770 × Af_*u'"

: (3-238) _
• _ 2e(pa) 1/2 sin E

: -_j, + c2

_: where

¢,

_ 3oTtgss _ the ET - UT2 on 1 January 1958, 0h0m0 _ UT2 minus the
_i periodic tern_ in Equation (3-238) evaluated at this same epoch

.ID _ the Julian date
_:¢_. 2,436,204.5 _ the Julian date on 1 January 1958, 0h0m0_

_: Af c_i_ _ the correction _,o f_,,_ : 9,192,631,770 cycles c,f cesium per
_ ephemeris second
" /__ the gravitational constant of the sun,

8

_ 1.327,154,45 x 101. kma/sec 2
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The new UTe system eliminates the frequency offset from atomic time, thus 
making the UTe second constant and equal in duration to the A.1 second (Refer
ences 15 anJ 16). The new UTe time scale is now kept in synchronism with the 
rotation of the earth to within ±0.7 seconds by step-time adjustments of exactly 
one second, when needed. 

3.4.8 Station Time, ST 

This measure of time is obtained at each station by counting cycles of a rubidium 
atomic frequency standard. The difference between ST and UTe is tabulated by 
each station. The observables are recorded in ST and then transformed to UTe. 

3.5 TRANSFORMATIONS BETWEEN TIME SYSTEMS 

Desired transformations between the time systems, ET, A.I, UTe, and UTI are 
carried out in the GTDS orbit determination program by evaluating either 3. E;;tan
darci formula or an appropriate time polynomial. 

3.5.1 Transformations by standarrJ. Formula 

For most purposes, the difference between A.I and ET may be considered a 
constant. The suspected dit:crepancy is roughly two parts in 10 9

• The actual 
transformation between A.1 and ET time is given by 

where 

(ET _ A.1)=:6T _ (JD - 2,436,204.5) (86,400) x 6f 
1958 9,192,631,770 ceS1U,,1 

2 e (f1B) 1/2 sin E 
+ . 

(3-238) 

LlT1958 'V the ET - UT2 on 1 January 1958, ohomo s U1'2 minus the 
periodic term. in Equation (3-238) evaluated at i;hiEI same epoch 

.T D '" the Julian date 
2,436,204.5", the Julian date on 1 January 1958, Ohomos 

6 f . "- the correction to fc e urn ~- 9,192,631,770 cycles of cesium per cesium Sl 

ephemeris second 
/-1 '" tlle gravitational constant of the SWl, 

1.327,154,45 x lOll km 3/sec 2 
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i
a -the semimajor axis of the heliocentric orbit of the earth-moon "

: barycenter, 149,599,000 km

e _ the eccentricity of the heliocentric orbit of the earth-moon
barycenter .01672

c - the speed of lightat an infinitedistancefi-omthe sun,

299,792.5 km/sec
E _ the eccentric anomaly of the heliocentric orbit of the earth-

moon barycenter.

The first term of Equation (3-238) arises because A.1 was set equal to UT2 at the
i beginning of 1958. The second term accounts for the difference between the

lengthsof ET and A.I seconds (ifAfcesi,m isnonzero). The periodicterm
arisesfrom generalrelativity.Itaccountsforthe factt.hatA.1,UTC, and ST
times are measures of propertime observed on earth,and thatET is a measure
ofcoordinatetime intheheliocentric(strictlybarycentric)space-timeframe

ofreference._fhecontributionofthelasttwo terms in Equation13-238)is

_,_ negligible for the range of applications currently contemplated for GTDS.
: Hence,the transformationbetween ET and A.I isaccomplishedusingthe

approximateformula,
-\ +#

+.
/

ET - A. 1 -_32.sI_ (3-239)

.1
3.5.2 Transformations by Time Polynomials

The remaining transformations between the time systems A.I_ UTC, and UT1
are accomplished using the time difference data A.1-UTC, and A.1-UT1, supplied
by the U. S. Naval Observatory. These data have been conveniently reduced by t
quadratic poiynomial fits in order to improve the efficiency of the transformation +

procedure. The time difference polynomials derived for use by the GTDS program
have the form

(A.1 - UTC)I : air + ai2T + ai3T2 (3-240)

(A. 1 - UT1) i--- a,+ + ai5T + a 6T 2 (3-241)

where
t

A.1-UTC _ the difference between A.1 and UTC time, in seconds.
A.I-UT1 - the difference between A.1 and UT1 time, in seconds.

i' - the number of days from the beginning of the time span covered
by the polynomial, T = 1, 2, . . . For the given date, MJD,
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a '"V the semimajor axis of the heliocentric orbit of the earth-moon 
barycenter, 149,599,000 km 

e '"V the eccentricity of the heliocentric orbit of the earth-moon 
barye enter .01672 

c '"V the speed of light at an infinite distance from the sun, 
299,792.5 km/sec 

E '" the eccentr:c anomaly of the heliocentric orbit of the earth
moon barycenter. 

The first term of Equation (3-238) arises because A.l was set equa:. to UT2 at the 
beginning of 1958. The second term accounts for the difference between the 
len.gths of ET and A.l seconds (if L1f . is nonzero). The periodic term 

ceSium 
arises from general relativity. It accounts for the fact t.hat A.l, UTe, and ST 
times are measures of proper time observed on earth, and that ET is a measure 
of coo):dinate time in the heliocentric (strictly barycentric) spa<'6-time frame 
of reference. The contribution of the last two terms in E~ation (3-238) is 
negligible for the range of applications currently contemplated for GTDS. 
Hence, the transformaticn between ET and A.l is accomplished using the 
approximate formula, 

ET - A. 1 = 32;; 1 c:; 

3.5.2 Transformations by Time Polynomials 

(3-239) 

The remaining transformations between the time systems A.I. UTe, and UTI 
are accomplished using the time difference data A.I-UTe, and A.I-UTI, supplied 
by the U. S. Naval Observatory. These data have been conveniently reduced by 
quadratic polynumial fits in order to improve the efficiency of the transformation 
procedure. The time difference polynomials derived for use by the GTDS program 
have the form 

(A . 1 - UTC) i = ail + a i 2 T + a i 3 T 2 

(A.l - UT1) i =- a 14 + a is T + a. 6 T2 

where 

A.I-UTe "-, th.p. difference between A.I and UTe time, in seconds. 
A.i-UTI "-' the difference betwe(>n A.1 and UTI time, in seconds. 

(3-240) 

(3-241) 

j' ""' the number of days from the beginning of the time span covered 
by the polynomial, T = 1, 2, ••• For the given date, MJD, 
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t

T - MiD - MJD: + 1 (3-242) i

where MJD_ is the tabular modified Julian date which bounds the interval from
below,i.e.,

MJDi _<MJD < MJDI+I (3-z43)

The coefficients a.. are given in Table 3-2 next to modified Jtdian dates (rood
11

2, 430, 000) defining the time interval for which the coefficients are applicable.
These coefficients and associated time spans were determined by least-squares
fitting second order polynomials to published time difference data. The time spans
were determined by constraining the maximum deviation (between the data and poly-

nomial) to be less than. 0005 seconds for (A. 1-UTC), and less than, 005 seconds

for (A. 1-UT1). The table covers the time span from January 1, 1958, and is up-
dated periodically. Provision is made for inserting futu:e A. 1-UTC offsets (leap
seconds) as predicted by the U.S. Naval Observatory. Extrapolation of A. 1-UT1

is achieved by performing a linear least squares fit on the data for tbe last six

months to obtain als, the A. 1-UT1 rate. The second order coefficient, ai5 , is"
set equal to zero. This extrapolation is used for one year from the date of the _,

/
last available observation; after this, both a is and a i6 are set equal to zero. .:t-

3.6 POL'.rNOMIAL REPRESENTATION OF EPHEMERIS DATA

In GTDS, planetary and lunar positions and velocities, as well as the earth's
nutation, are determined by evaluating mt_ltiple-day-arc Chebyshev polynomials
whose coefficients are derived from ephemeris data corttained on tapes supplied

by the Jet Propulsion Laboratory (JPL) (References 5, 17, and 18). These
Chebyshev polynomial representations maintain the accuracy of the original data . i

" _ while increasing efficiency by eliminating the need to interpolate on the JPL '
ephemeris data. The data contained on the JPL tapes are the positions and veloc-

ities of the planets Mercury, Venus, Earth-Moon baT.Tcenter, Mars, Jupiter,
Saturn, Uranus, Neptune, and Pluto, the Earth's Moon, plus the nutation rates in '
longitude and obliquity. These data are generated by weighted least-squares

estimation of the appropriate orbital models using source positions obtained on

,. the basis of current planetary theories. Positions and velocities on the tapes

,. are referred to the rectangular equatorial system of the mean equator and equinox ,'
of 1950.0, with planetary data being heliocentric and lunar data geocentric. ,

The data needed to determine the lunar ephemeris and nutations were obtained
by evaluating the Improved Brown Lunar Theory with corrections suggested

} by Dr. W. J. Eckert usingvaluesof astronomicalconstantsadoptedby the IAU in

J
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T - MJ D - MJD; + 1 (3-242) 

where MJD 1 is the tabular modified Julian date which bounds the interval from 
below, i.e., 

(3-~43) 

The coefficients a .. are given in Table 3-2 next to modified Julian dates (mod 
1) 

2, 430, 000) defining the time interval for which the coefficients are applicable. 
These coefficients and associated time spans were determined by least-squares 
fitting sec.:>nd order polynomials to published time difference data. The time spans 
were determined by constraining the maximum deviation (between the data and poly
nomial) to be less than. 0005 seconds for (A. l-UTC), and less than" 005 seconds 
for (A. 1-UTl). The table covers th~ time span from January 1, 1958, aud is up
dated periodically. Provision is made for inserting futu .. -e A. l-UTC offsets (leap 
seconds) as predicted by the U. S. Naval Observatory. Extrapolation of A. I-UTI 
is achieved by performing a linear least squares fit on the data for the last six 
months to obtain a is' the A.1-UTI rate. The second order coefficient, a i6' is· 
set ~qu~l to zero. This extrapolation is used for one year from the date of the 
last available observation; after this, both a is and a i6 are set equal to zero. 

3.6 POL'lNOMIAL REPRESENTATION OF EPHEMERIS DATA 

In GTDS, planetary and lunar positions and velocities, as well as the earth's 
nutation, are determined by evaluating mul tiple-day-arc Chebyshev polynomials 
whose coefficients are derived from ephemeris data contained on tapes supplied 
by the Jet Propulsion La.boratory (JPL) (References 5, 17, and 18). These 
Chebyshev polynomial representations maintain the accuracy of the original data 
while increasing efficiency by eliminating the need to interpolate on the JPL 
ephemeris data. The data contained on the JPL tapes are the positions and veloc
ities of the planets Mercury, Venus, Earth-Moon baloycenter, Mars, Jupiter, 
Saturn, Uranus, Neptune, and Pluto, tIle Earth's Moon, plus the nutation rates in 
longitude and obliquity. These data are generated by weighted least-squares 
estimation of the appropriate orbital models using source positions obtained on 
the basis of current planetary theories. POSitions and velocities on the tapes 
are referred to the rectangular equatorial system of the mean equator and equinox 
of 1950.0, with planetary data being heliocentric and lunar data geocentric. 

The data needed to deteLmine the lunar ephemeris and natations were obtained 
by evaluating the Improved Bl-own Lunar Theory with corrections sl'ggested 
by Dr. W. J. Eckert using values of astronomical constants adopted by the IAU in 
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,, Table 3-2 (1 of 2) I
Time Difference Coefficients

Modlfied A.1-UTC A.1-UT1 ?

Gregorian Julian -_

Date Date ail ai2 ai3 ai4 ai5 al6 _
01-01-58 6204 -0.1618000D-01 0.9745798D-03 -0.3991597D-05 0.!858875D-0II0.2017377D-02 -0.I-_09314D-04

01-16-58 6219 0.1758511D-01 0.9402134D-03 -0.2288330D-05 0.4548636D-01 _[0.1618852D-02 0.1799831D-05 I

02-06-58 6240 0.5616044D-01 0.8366484D-03 -0.1373626D-05 0.8011670D-31 0.1662466D-02 -0.2698712D-05
02-20-58 6254 0._754361D-01 0.8397126D-03 0.4555439D-06 0.1028026D 00 0.1625878D-02 0.2606312D-05

04-10-58 6303 0.1496110D 00 0.9429822D-03 -0.2131837D-05 0.18745_J3D 00 0.1994024D-02 -0.6054242D-05

05-31-58 6354 0.1926477D 00 0.8642607D-03 0.2022977D-05 0.2728259D 00 0.1228771D-02 -0.6293706D-05

06-12-58 6366 0.22_"3144D 00 0.9408642D-03 -0.1432435D-05 0.2866422D 00 0.1092088D-02 -0.102o374D-04
07-03-58 6387 0.2626176D 00 0.8881868D-03 0.1373626D-05 0.3050101D 00 0,6156755D-03 0,3038138D-05 _"

97-17-58 6401 0.2952014D 00 0.9007882D-03 -0.1810101D-06 0.3165780D 00 0,2966259D-03 (,°6605071D-05

10-23-58 6499 0.4016215D 00 0.8420982D-03 -0.2598091D-06 0.4096507D 00 0,1671038D-02 -0,1379641D-06

11-27-58 6534 0.4508753D 00 0.76_8908D-03 0.2232538D-05 0.4681985D 00 0.1664009D-02 -0.818369oD-06

12-25-58 6562 0.4940484D 00 0.8903961D-03 0.4597416D-06 0.5142490D 00 0.1485226D-02 0.3096075D-05

01-29-59 6597 0.5458328D 00 0,9169140D-03 0.4557703D-06 0.5700569D 00 0.1393824D-02 -0.:39480_D-05

02-26-59 6625 0.5918885D 00 0,9479880D-03 -0.2074632D-06 0.6028216D 00 0.1705016D-0Z -0.3217583D-05 _!

; 08-02-59 6782 0.7350500D 00 0.1110000D-02 I-0.5000000D-04 0.7885600D O0 0.8714286D-03 -0.2857143D-04

08-06-59 6786 0.7587371D 00 0.8704235D-03-0.2258611D-06 0.7918877D 00 0.5915514D-03 0.7643986D-_5

08-27-59 6807 0.7969748D 00 0.8567179D-03 0.4459769D-06 0.8076672D 00 0.9517989D-03 0.6897709D-05

•j!_ 10-01-59 6842 0.8472612D 00 0.8507324D-03 0.1213704D-05 0.8492754D 00 0.1595855D-02 0.2668635D-05

{, 11-05-59 6877 0.89_°3352D 00 0.9424176D-03 -0.3296703D-u_ 6.9081024D 00 0.1771395D-02 0.2658371D-05

; , 11-19-59 6891 0.9309792D 00 0.86_8708D-03 0.4694539D-06 0.9_34968D 00 0.1775083D-02 -0.4566803D-05 :

i 12-17-59 6919 0.9762.195D 00 0.6729432D-03 0.1359837D-04 0.979_032D 00 0.1469490D-02 -0.3076611D-05
01-14-60 6947 0.10n5776D 01 0.1276327D-02 -0.2546813D-07 0.I015154D 01 0.1431175D-02 0.6904889D-0C _J

06-30-60 7084 0.1179992D 01 0.1276583D-02 -0.7058271D-07 0.12237_3D 01 0.6918611D-03 -0.1706175D-05 •/"

09-07-60 7184 0.1306970D 01 0.1251737D-02 0.2006400D-06 0.1t778,¢5D 01 0.1272192D-02 0.10630G2D-05

01-01-61 7300 0.1459942D 01 0.1290565D-02 -0.1259551D-07 0.1442413D 01 0.7002162D-03 0.5207392D-05

04-20-61 7409 0.1600435D 01 0.1288668D-02 -0.4508204D-07 0.1572890D 01 0.1431424D-02 -0.4865981D-05

08-01-61 7512 0.1682730D 01 0.1297609D-02 -0.1611287D-07 0.1666425D 01 0.6024381D-03 0.4223422D-05

12-17-61 7650 0.1861600D 01 0.1300000D-02 -0.1262726D-15 0.1826452D 01 0.5920023D-03 0.6458468D-04

, 01-01-62 7665 0,1881260D 01 0.I121344D-02 0,9459211D-08 0.1843717D 01 0.1287215D-02 0.1332452D-05 :"

06-02-62 I 7817 0.2051849D ul,0.1116318D-02 0£776893D-07 0.2070910D 01 0.4724146D-03 0.1963054D-05 :;
09-12-62 7919 0.2165931D 01[0.I120481D-02 0.5828122D-09 0.2141475D 01 0.1490751D-02 0.1756295D-05

01-05-63 (034 0.229476_D 011r'10.111ol82D-02 0.6620223D-07 0.2336928D 01 0.5611055D-03 0.7101327D-05 :'

04-13-63 8132 0.240460oD 01 0.11..198D-021-0.4265743D-08 0.2460437D 01 0.2022677D-02 -0.6346917D-05

08-14-63 8255 0.2542758D 01 0.II18567D-02 0.I036236D-07 0.2618246D 01 0.I139977D-02 0.6860039D-05 (

11-01-63 8334 0.2731246D 0110.iil1958D-021 0.1542096D-06 0.2750605D 01 0.2253339D-02 -0.1975578D-05
l

01-06-64 I 8400 0.2805812D 01 0,1298018D-02 -0.1044524D-07 0.2891822D 01 0.1992589D-02 0,7474964D-06 '_

04-01-64 I 8486 0.3017345D 01 0.1293842D-02 0.13_4168D-08 0.3963530D 01 0.2684157D-02 -0.6935132D-05 _ ,
07-07-64 ! 8583 0.3142858D 01 0.1294845D-02 -0.4926524D-07 0,3254806D 01 0.9664385D-03 0.4236349D-05 ,

09-01-64 1 8639 0.3315311D 01 0.1287598D-02 0.3103647D-06 0.3321821D 0110.1515276D-02 0.I055086D-04

10-01-64 I 8669 0.3355178D 01 0.1295054D-02 -0.1298027D-C8 0.3379279D 01 _0.2285529D-02 -0.4295243D-06 i

01-01-65 1 8761 0.35742671 _ Ol 0.1294804D-02 0.45888931;-08 0.3587570D 01 0.2039134D-02 0.5294157D-06

03-01-65 I H820 0.3750694D 01 0.1297441D-02 -0.I153898D-07 0.3705315D 01 0.29024361)-02 -0.4622248D-05

07-01-65 I 8942 0.400883,11) 01 0.1296214D-02 -0.8656292D-08 0.3991956D 01 0.1542490D-02 0.1237396D-65

09-01-65 I 9004 0,4189151D 01 0,1296106D-02 -0.1562328D-08 0.4089639D 01 0.2405161D-02 0.2545870D-05

12-09-651 9103 0.4317425D 01 0.1298000D-02 -0.1337040D-16 0.4347453D 01 0.2446044D-02 -0.1489223D-04 {

01-02-66 I 9127 0.434852£D 01 0.2591633D-02 0.1658375D-08 0.4396586D 01 0.2342899D-02 0.1221517D-05

06-14-661 9290 0.4770985D 01 0.2594067D-02 -0.1855570D-07 0.4811298D 01 0.1594668D-02 0.3251986D-05

09-25-66 I 9393 0.5038040D 01 0.25_0933D-62 0.19486571)-07 0.5012240D 01 0.2862011D-02 0.5936044D-06 ;_

12-01-661 9460 0.5210963D 01!0.2592218D-02 -0.42962871)-08 0.5211300D 01 0.20905211)--02 0.2751869D-05 "_

04-23-671 9603 0._581668D 0110.2593321D-02 -0.8806318D-08 0,5570056D 01 0.2681584D-02 -0.6356829D-05

08-11-67 I 9713 0.5866922D 01[0.25853_6D-02 0.34" {871D-07 0.57937861) 01 0.1666173D-02 0.7240946D-05

?

11-30-671 9824 0.6154340D 01]02590120D-02 0.3398956D-07 0.6063976D 01 0.24729661)-02 0.9022560D-06
02-01-681 9887 0.6217630D 0110.2592005D-02 -0.3637691D-10 0,6227322D 01 0.2259530D-02 0.2955707D-05

I

06-01-681 10008 0.6531262D 0110.2591999D-02 0.6570560D-ll 0.6539410D 01 0.1846400D-02 0.2752718D-05

12-26-68 I 10216 0.7070398D 01 0.2592008D--02 -i).6112177D-10 0.703')145D 01 0.2375908D-02 0.3412215D-05 i [

05-18-69[,. 10359 0.74-I1054D Ol 0.2591984D-02 0.12925.161)o09 0.7448662D 01 0.23188771)-02 -0.17309471)-05
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Modified 
Gregorian 

Julian 
Date 

Date ail 

01-01-58 &204 -0.16180000-01 
01-16-58 6219 0.17G85110-0l 
02-06-58 6240 0.56160440-01 
02-20-58 6254 0.t!754361D-01 
04-10-58 6303 0.1496110D 00 
05-31-58 6354 0.19264770 00 I 06-12-58 6366 0.22~JI44D 00 
07-03-58 6387 0.2626176D 00 
07-17-58 6401 0.2952014D 00 
10-23-58 6499 0.4016215D 00 
11-27-58 6534 0.4508753D 00 
12-25-58 6562 0.4!1404840 00 
01-29-59 1)597 0.5458328D 00 
02-26-59 6625 0.59188850 00 
08-02-59 6782 0.7350500D 00 
08-06-59 6786 0.7587371D 00 
08-27-59 6807 0.7969748D 00 
10-01-59 6842 0.84726120 00 
11-05-59 6877 0.89833520 00 
11-19-59 6891 0.9309792D 00 
12-17-59 6919 0.9762-1950 00 
01-14-60 6947 0.1 nOS776D 01 
06-30-60 'i084 O.lJ 79992D 01 
09-07-60 7184 O. 1306970D 01 
01-01-61 7300 0.14599420 01 
04-20-61 7409 0.1600435D 01 
08-01-61 7512 0.1682730D 01 
12-17-61 7650 0.IR61600D 01 
01-01-62 7665 0.1881260D 01 
1)6-02-62 7817 0.2051849D 01 
09-12-62 7919 0.21659310 01 
01-05-63 ,'034 0.22947!iRD 01 
04-13-63 8132 0.24046U,)D 01 
08-14-63 8255 0.25~2758D 01 
11-01-63 8334 0.27312460 01 
01-06-64 8400 0.2805M12D 01 
04-01-64 8486 0.3017345D 01 
07-07-64 8583 0.3142858D 01 
09-01-64 8639 0.3315311 D 01 
10-01-64 8669 0.3355178iJ 01 
01-01-65 8761 0.:15742671' 01 
03-01-65 8820 0.3750694D 01 
07-01-65 8942 0.40088:14!l 01 
Oil-01-65 9004 0.4189151D 01 
!2-09-65 9103 0.431742,,0 01 
01-02-66 9127 0.434852l:D 01 
0(;-14-66 9290 0.47709850 01 
09-25-66 9393 0.5038040D 01 
12-01-66 9460 0.52109631l 01 
04-23-67 9603 0.[581668D 01 
08-11-67 9713 0.5866922 D 01 
11-30-67 9824 0.!l1543400 01 
02-01-68 9887 0.62176300 01 
06-01-68 10008 0.65:11262D 01 
12-26-68 10216 0.70703!)R[) 01 
05-1~-69 10359 0.74-11054D 01 

Table 3-2 (1 of 2) 
Time Difference Coefficients 

A.I-UTe A.I-UTI 

ai2 ai3 ai4 aiS a:6 

0.97457980-03 -0.39915970-05 o.! 8588750-0: 0.20173770-02 -0.!·1093HO-04 
0.940213411-03 -0.22883300-05 0.4 548636D-Ol 0.16188520-02 0.17998310-05 
0.83664840-03 -0.13736260-05 0.80116700-,)1 0.16624660-02 -0.2698712.0-05 
0.8397126.0-03 0.45554390-06 0.102e0260 0010.1625B78D-02 0.2606312D-05 
0.9429822D-03 -0.21318370-05 0.187451J30 00 0.1994024D-02 -0.6054242 D-05 
0.8642(;070-03 0.20229770-05 0.2728259D 00 0.12287710-02 -0.62937060-05 
0.9408642D-03 -0.1432435D-05 0.2866422D 00 0.1092088D-02 -0.10203740-04 
0.88818680-03 0.13736260-05 0.3050101 D 00 0.61567550-03 0.30381380-05 
0.900788:>0-03 -0.18101010-06 0.3165780D 00 0.2966259D-03 ( •• 6605071 0-05 
0.84209820-03 -0.25980910-06 0.40965070 00 0.1671038D-02 -0.13796410-06 
0.76R8!l08.o-03 0.22325380-05 0.4681985D 00 0.lt'64009D-02 -0.8U!369o'o-06 
0.89039610-03 0.45974160-06 0.51424900 00 0.1485226D-02 0.30960750-05 
0.91691400-03 0.45577030-06 0.5700569D 00 (\.1393824D-02 -0. ~ 3()480', 0-05 
0.94798800-03 -0.20746320-06 0.6028216.0 00 0.1705016.0-02 -0.32175830-05 
0.11100000-02 -0.5000000D-04 0.78856(J00 00 0.87142860-03 -0.2857143D-04 
0.87042350-03 -0.22586110-06 0.7918877D 00 0.59155140-03 0.76439860-05 
0.85671790-03 0.44597690-06 0.80766720 00 0.9517989D-03 0.68977090-05 
0.850'13240-03 (J.12137040-05 0.8492754 D 00 0.15958550-02 0.26686350-05 
0.94241760-03 -0.32967030-u:> v.<)081024D 00 0.1771395D-02 0.26583710-05 
0.8fiR87080-03 0.46945390-06 0.9:'349680 00 0.1775083D-02 -0.456680:10-05 
0.67294320-03 0.1359837D-04 0.979~0320 00 0.14694900-02 -0.307&6110-05 
0.12763270-02 -0.25468130-07 0.1015154D 01 0.1431175D-02 0.69048890-0f 
o. I 276583 .0-02 -0.70582710-07 0.1223?;3v 0) 0.6918611 D-03 -0.17061750-05 
O. 125173 7D-02 0.20064000-06 0.1::778015.0 01 0.12721920-02 0.10630620-05 
0.1290('{i5.o-02 -0.1259551 D-07 0.1442413D 01 0.70021620-03 0.52073920-05 
0.1288668D-02 -0.45082040-07 0.15728900 01 0.14314240-02 -0.4865981 D-05 
0.12976090-02 -0.161 !287D-07 0.16664250 01 0.6024381 D-03 0.42234220-05 
0.1300000D-02 -0.1262726D-15 0.1!l26452D 01 0.5920023D-03 0.6450468D-04 
0.11213440-02 0.9459211D-08 0.1843717D 01 0.12872150-02 0.13324520-05 
0.1116318D-02 0.:'i76893D-07 0.2070910D 01 0.4724146D-03 0.19630540-05 
0.11204810-02 0.58~8122D-09 0.21414750 01 0.1490751 D-02 0.17562950-0;; 
0.1 115182D-02 0.66202230-07 0.2336928D 01 0.56110550-03 0.7101:1270-05 
0.11. _198D-02 -0.426570/3D-08 0.24604370 01 0.2022677D-02 1-0.63469170-05 
0.1118567D-02 0.1036236D-07 0.26182460 01 0.113997711-02 0.6860039 D-05 
0.1111958D-02 0.1542096D-06 0.27506050 01 0.225:l3390-02 -0.1975578D-05 
0.12980180-02 -O.l 044524 D-07 0.2891822D 01 0.1992589D-02 0.7474964D-06 
0.1293842D-02 0.1:;~4168D-08 0.331'35:10D 01 0.21i841570-02 -0.6935132D-05 
0.1294845D-02 -0.41)26524 D-07 0.3254806D 01 0.91>64385D-03 0.4236349D-05 
0.12R75980-02 0.31031i47D-06 0.3321 ~21 D 01 0.15152760-02 0.1055086 D-04 
0.1295054.0-02 -0.12980270- r ,d 0.3379279D 01 0.22HS5290-02 -0.4295243D-06 
0.1294804D-02\ 0.45888931'-08 
0.12\)7-1-1ID-02 -0.lJ53898f)-07 
0.1296214f)-02 -0.86562920-08 
0.1296106D-02 -0.1562328D-08 
0.1298000D-02 -0.1337040D-16 
0.2591633D-0~ 0.1658375D-08 
0.2594067D-02 -0.18555700-07 
0.2;'10933D-02 0.19486"7D-07 
0.259221HD-02 -0.4296287D-08 
0.259332IlJ-02 -0.880631 !Hl-08 
O.25R53H6D-02 0.34--i871D-07 
o 25901201l-02 0.3398956D-0'1 
0.25Q2005D-02 -O.:lfl:176911l-10 
O.2591999D-02 O.!i5705bOD-1I 
O.2592008D-02 -().GI121770-10 
0.25919840-02 0.1 ~925,\fill-09 
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0.3587570D 01 0.2039134.0-02 0.5294157D-06 
0.3705315D 01 0.29024361J-02 -0.4622248D-05 
0.3991956D 01 0.1542490D-02 0.1237396D-05 
0.40896390 01 O.<l405161D-02 0.2545870D-05 
0.43474:;3D 01 0.24460440-02 -0.1489223D-04 
0.43965R6D 01 0.2:142899D-02 0.1221517D-05 
0.4811298001 0.159~668D-02 0.32519860-05 
0.5012240.0 01 0.28!l20110-02 0.593604411-06 
0.52113000 01 0.20905;)1 [HI:! 0.275186I)D-05 
O.5570056D 01 0.26815840-U2 -0.631>68290-05 
0.(7937861) 01 0.1666173[l-(12 0.72,109460-05 
0.60639761) 01 0.2472966 [H12 0.9022',liOD-06 
0.6227322 DOl O.22595:10D-02 0.2955707 D-05 
0.6539410D 01 0.1 H4(i4000-02 O.27527!~I;-u:; 

0.703!1I45D 01 0.23i590RO-02 0.3412215 D-05 
O. H48Gr,211 01 0.231~877[l-02 -fJ.17309471J-05 
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Table 3-2 (2 of 2)

Time Difference Coefficients

Gregorian Modified A,I-UTC A.I-UTIJulian
Date

Date all ai2 ai3 ai4 a i$ ai6

09-07-69 10471 0.7731358D 01 0.2592001D-021-0..5477020D-11 0.7693900D 01 0.2938450D-02 -0.72184561>-07 i

04-14-70 10690 0.6299006D 01 0.2592000D-02 0.2950026D-11 0.8339493D 01 0.3331022D-02 -0.75470161)-05

06-17-70 10_15 0.8623006D 01 0.2592000D-021 -0.6895982D-16 0.8639866D 011 0.2150943D-02 0.56553411>-05

12-08-70 1C_28 0.8915902D 01 0.2592000D-02 -0.2521662D-11 0.8955715D 01 _ 0.2377667D-02 0.2_34677D-05

04-17-71 11058 0.9252862D 01 0.2592000D-021 0.2260392D-16 0,9318675D 01! 0.3177070D-02 -0.4467255D-05
06-27-71 11190 0.9595006D 01 0.2591993D-02 0.8745209D-10 0.9663368D 01 0.2525044D-02 0.6834257D-05

11-26-71 11281 0.9830878D 01 0.2592018D-02!-0.5629834D-16 0.9961526D 01! 0.3439084D-02 -0.1127429D-04

01-01-72 11317 0.1003436D 02 0.0 0.0 0.1006682D 02 0.3204370D-02 0.1683766D-05

05-25-72 11462 0..1003438D 02 0.0 0.0 0.1056214D 02! 0.3100347D-02 -0.7556443D-05

07-01-72 11499 0.1103438D 02 0.0 0.0 0.1066897D 021 0.2153567D-02 0.50683411)-05
12-01-72 11652 0.:,103436D 02 0.0 0.0 0.1U1230D 02! 0.3029462D-02 0.8200901D-05

01-01-73 11663 !0.1203438D 02 0.0 0.0 0.1121122D 021 0.3275744D-02 0.12681161)-05
05-22-73 11624 0.1203438D 02 0.0 0.0 0.1169615D 02 0.2739495D-02 -0.1989802D-05

09-12-73 11937 0.1203438D 02 0.0 0.0 0.1198002D 02 u 0.3151757D-02 B.7251402D-06

12-23-73 12039 0.1203438D 02 0.0 0.0 0.1230448D 02 0.3394470D-02 -0.7916667D-04

01-01-74 12046 0.1303438D 02 0.0 0.0 0.1232661D 02 _ 0.2490510D-02 0.4120220D-05

05-10-74 12177 0.1303438D 02 0.0 0.0 0.12707_',D 02 0,3751944D-02 -0.2040723Do04

07-12-74 12240 0.1303438D 02 0.0 0.0 0.1286793D 02 0,1846049D-02 -0.16154311)-05

06-12-74 12271 0.1303438D 02 0.0 0.0 0.12_6430D 02 -0,4005000D-01 0.10350001)-01I

06-15-74 12274 0.1303438D 02 0.0 [ 0.0 0.1292856D 02 0.5957143D-02 -0.3214286D-03
08-22-74 12281 0.1303438D 02 0.0 0.0 0.1294253D 02 0.1314643D-02 0.5946429D-03

08-28-74 12267 0.1303438D 02 0.0 0.0 0.1296817D 02 -0.3707143D-02 0.6738095D-03 ,.1,,"
09-05-74 12295 0.1303438D 02 0.0 0.0 0.1297733D 02 -0.I032143D-03 0.6053571D-03

09-11-74 12301 0.1303438D 02 0.0 0.0 0.1299306D 02 0.2219481D-02 0.5864136D-04

09-23-74 12313 0.1303438D 02 0.0 0.0 10.1307627D 02 -0.4386500D-01 0.8875000D-0209-27-7,1 12_17 0.1303438D 02 0.0 0.0 0.1307670D 02 -0.4800000D-01 0.1290000D-01

09-30-74 12320 0. 1303438D 02 0.0 0.0 10.1306024D 02 -0.1315714D.-01 0.2742857D-02

10-05-74 12325 0.1303438D 02 0.0 0.0 0.1305110D 02 0.4583001D-13 -0.888178413-14
10-09-74 12329 0.1303438D 02 0,0 0.0 0.1307236D 02 0.3154490D-02 -0.1800921D-05

01-01-75 12413 0.1403438D 02 0.0 0.0 0.1331909D 02 0.3057353D-02 -0.6523143D-06

04-08-75 12510 0.1403438D 02 0.0 0.0 0.1361908D 02 0.2120486D-02 0,3011148D-04

05-03-75 12535 0. 1403488D 02 0.0 0.0 0.1366022D 02 0.2498500D-n_ -0.4375000D-02

05-07-75 12539 0.1403438D 02 0.0 0.0 0.1388984D 02 0.4292143D-02 -0.3535714D-03

05-13-75 12545 0.1403438D 02 0.0 0.0 0.1371077D 02 0.2625874D-03 0.2807692D-03

05-24-75 12556 0.1403438D 02 0.0 0.0 10.1374876D 02 -0.2339286D-02 0.4821429D-03

05-31-75 12563 0.1403438D 62 0.0 0.0 0.1375854D 02 -0.4590000D-02 0.]850000D-02

06-05-75 12568 0.1403438D 02 0.0 0.0 0.1376146D 02 0.8219048D-02 -0.8952381D-03

06-12-75 12575 0.1403438D 02 0.0 0.0 0.1377704D 02 0.1030643D-01 -0.1253571D-02

06-18-75 12581 0.1403438D 02 0.0 0.0 0.1379992D 02 0.3318864D-02 -0.1541667D-03

06-28-75 12591 0.1403438D 02 0.0 0.0 0.1384005D 02 9.2864403D-02 0.0
I

07-01-75 12594 [0.1403438D 02 0.20_0000D-07 0.0 0.1384864D 02 0.2864403D-02 0.0

07-03-75 12596 /_0.1403439D 02 0.2000000D-07 0.0 0.1488556D 02 0.0 0.0
........J

!
r

3-75

1976017203-114

Gregorian 
Modified 

Oate 
Julian 
Oate ail 

09-07-69 10471 0.77313580 01 
04-14-70 10690 0.82990060 01 
08-17-70 10d15 0.86230060 01 
12-08-70 IG928 0.89159020 01 
04-17-71 11058 0.92528620 01 
08-27-71 11190 0.9595006D 01 
11-26-71 11281 0.98308780 01 
01-01-72 11317 0.10034380 02 
05-25-72 11462 I 0.) 0034380 02 
07-01-72 11499 0.11034380 02 
12-01-72 11652 0.nO'l-l38D 02 
01-01-73 11683 ! 0.1203438D 02 
05-22-73 11824 iJ.12034380 02 
09-12-73 11937 0.12034380 02 
12-23-73 12039 0.12034380 02 
01-01-74 12048 0.13034380 02 
05-10-74 12177 0.13034380 02 
07-12-74 12240 0.1303438D 02 
08-12-74 12271 0.13034380 02 
08-15-74 12274 0.13034380 02 
08-22-74 12281 0.13034380 02 
08-28-74 12287 0.13034380 02 
09-05-74 12295 0.1303438D 02 
09-11-74 12:iOl 1).13034380 02 
09-23-74 12313 0.13034380 02 
09-27-'(-1 12:'17 0.13034380 02 
09-30-74 12320 O. 13034380 02 
10-05-74 12321" 0.13034380 02 
10-1)9-74 12329 0.130343W 02 
01-01-75 12413 0.1403438D 02 
04-08-75 12510 0.1403438D 02 
05-03-75 12535 O. 14034380 02 
05-07-75 12539 0.14034380 02 
05-13-75 12545 0.14034380 02 
05-24-75 12556 0.14034380 02 

05-31-75112563 0.14034380 ()2 
06-05-75 12568 0.1403438D 02 
06-12-75 12575 0.14034380 02 
06-18-75 12581 0.1403438D 02 
06-28-75 12591 10.1403438D 02 
07-01-75 12594 0.141134380 02 
07-03-75 1259~0.1403439D 02 

Table 3-2 (2 of 2) 
Time Difference Coefficients 

A.I-UTe 

ai2 ai3 a i4 

0.2511200lD-02 -0.54770200-11 0.76939000 01 
0.25920000-02 0.2951)0260-11 0.83394930 01 
0.25920000-02 -0.68959820-16 0.86398660 01 
0.25920000-02 -0.25216620-11 0.89557150 01 
0.25920000-02 0.22603920-16 0,93186750 01 
0.2591993D-02 0.87452090-10 0.96633680 01 
0.25920180-02 -0.56298340-16 0.99615260 01 
'l.0 0.0 0.10066820 02 
0.0 0.0 0.10562140 02 
0.0 0.0 0.10668970 02 
0.0 0.0 0.1111230D 02 
0.0 0.0 0.11211220 02 
0.0 0.0 0.11696150 02 
0.0 0.0 0.11980020 02 
0.0 0.0 0.1230448D 02 
0.0 0.0 0.1232661D 02 
0.0 0.0 O. 12707;".0 02 
0.0 0.0 0.1286'i93D 02 
0.0 

! 
0.0 0.1Z!l6430D 02 

0.0 0.0 0.1292856D 02 
0.0 0.0 0.12942530 02 
0.0 0.0 0.12968170 02 
0.0 0.0 0.12977330 02 
0.0 0.0 - 0.1299306D 02 
0.0 0.0 0.13076210 02 
0.0 0.0 0.13076700 02 
0.0 0.0 0.13060240 02 
0.0 0.0 0.13051100 OZ 
0.0 0.0 0.13072360 02 
0.0 0.0 0.1331909D 02 
0.0 0.0 0.13619080 02 
0.0 0.0 0.1366022D 02 
0.0 0.0 0.1368984D 02 
0.0 0.0 0.13710770 02 
0.0 0.0 0.1374876D 02 
0.0 0.0 0.13758540 02 
0.0 0.0 0.1376146D 02 
0.0 0.0 0.13777040 02 
0.0 0.0 0.13799920 02 
0.0 0.0 0.13840050 02 
0.20~00000-01 0.0 0.1384864 D 02 
0.2000000D-07 0.0 0.1488G560 02 

3-75 

A.I-un 

a is ai6 

0.29384500-02 -(1.72184560-07 
0.33310220-02 -0.75470160-05 
0.21509430-02 0.56553410-05 
0.23771>670-02 0.2J346770-05 
0.31770700-02 -0.44672550-05 
0.25250440-02 0.88342570-05 
0.34396840-02 -0.11274290-04 
0.3204370D-02 0.16837660-05 
0.31003470-02 -0.75564430-05 
0.21535670-02 0.50683410-05 
0.30294620-02 0.82009010-05 
0.3275744D-02 0.12681160-05 
0.2739495D-02 -0.19898020-05 
0.31517570- 02 ~.7251402D-06 

0.3394470D-02 -~.79166670-04 
0.24905100-02 ,1.41202200-05 
0.3751944D-02 -0.2040723[,-04 
0.184604110-02 -0.16154310-05 

-0.40050000-01 0.10350000-01 
0.5957143D-02 -0.3214286D-03 
0.13146430-02 0.5946429n-03 

-0.37071430-02 0.6738095D-03 
-0.10321430-03 0.6053571 0-03 
0.22194810-02 0.5864136D-04 

-0.43865000-01 0.88750000-02 
-0.48000000-01 0.12900000-01 I 
-0.13157140"01 0.27428570-02 
0.45830010-13 -0.8881784n-14 
0.31544900-02 -0.~80092ID-0~ 
0.30573530-02 -0.6523143D-06 
0.2120486D-02 0.30111480-04 
0.24985000-0 I -0.43750000-02 
0.42921430-02 -0.35357140-03 
0.26258740-03 0.28076920-03 

-0.23392860-02 0.48214290-u3 
-0.45900000-02 0.18500000-02 
0.82190480-02 -0.89523810-03 
0.10306430-01 ~0.1253571 D-02 
0.33188640-02 ~O.15416ti70-03 
1).28644030-02 0.0 
0.2R644030-02 0.0 
0.0 0.0 
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1964. However, spacecraft trajectory data obtained more recently indicate that
some of the constants still require significant corrections. The uncertainty in /

,: the geocentric position of the moon's center of mass at the data points of the
ephemeris is estimated at 150 meters and the uncertainty in the distance is about
60 meters.

:_ The evaluation of the orbital models of the planets needed in the least-squares
} fitting process was carried out by numerical integration of their differential

equations of motion using a 1/2-day step-size for Mercury, a 2-day steI_-size for
: Venus and the Earth-Moon barycenter, and a 4-day step-size for Mars and the ir

outer planets. A second-sum predictor-corrector integrator was used with
fourteenth differences of the accelerations retained. The tabular ephemeris data

i obtained in this manner can be used directly by interpolating for intermediate
• values or they can be reduced by cur_ e-fitting techniques at the sacrifice of
i additional accuracy.

The JPL software used to retrieve data from a JPL ephemeris tape provides
interpolated values of positio_ and velocity vectors of any requested set of bodies
relative to any requested central body. Bounds for the truncation error associ-
ated with the fifth-order Everett interpolation formula _re given in Table 3-3.

/##,Table 3-3 ,_

Bounds for Trmacation Vrror When Using Fifth-Order
Everett Interpolation Formula

Body Position Velocity

Mercury 8890.00 x 1) "12 AU 4420.00 × 10 -12 AU/day

Venus 4.73 x I0"12AU 0.62 × 10 -12 AU/day

E_xth-Moonbarycenter 5.19 x 10 -12 AU 2.50 x I0 -12 AU/day i

\ Mars 6.47 × 10 "1_ AU 5.77 ;" 10 -12 AU/day

Jupiter 6.64 × 10 -_2 AU 5.72 _ 10 "12 AU/day

Saturn 6.64 × 10"12 AU 5.72 × 10 12 AU/day

Uranus 6.64 × 10 -_2 AU 5.72 × 10 _2 AU/day

Neptune 6.64 _ 10 -_2 AU 5.72 × 10 _2 AU/day

Pluto 6.64 × 10 12 AU 5.72 × 10"12 AU/day

Moon 1.0100 × 10- _ earth radii 1.4500 _ 10 _ earth radii/day

Nutation in Longitude 0.46 × 10 -_2 radians 1.16 • 10 _ radians/day

Nutation in .............Obliquity _ 0.23 > 10 -_ rad_ans _0.5_ > 10 '_ radians/day |
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1964. However, spacecraft trajectory data obtained more recently indicate that 
some of the constants still require significant corrections. The uncertainty in 
the geocentric position of the moon's center of mass at the data points of the 
ephemeris is estimated at 150 meters and the uncertainty in the distance is about 
60 meters. 

The evaluation of the orbital models of the planets needed in the least-squares 
fitting process was carried out by numerical integration of their different.i.al 
equations of motion using a 1/2-day step-size for Mercury, a 2-day stel--slze for 
Venus and the Earth-Moon barycenter, and a 4-day step-size for Mars and the 
outer planets. A aecond-&um predictor-corrector integrator was used with 
fourteenth differences of the accelerations retained. The tabular ephemeris data 
obtatned in this manner can be used directly by interpolating for intermoo.iate 
values or they can be reduced by cur\'e-fitting techniques at the sacrifice of 
additional accuracy. 

The JPL software used to retrievC! data from a JPL ephemeris tape provides 
Interpolated values of position dlld velocity vectors of any requested set of bodies 
relative to any requested ce:ntral body. Bounds for the truncation error associ
ated with the fifth-order Everett interpolation formula lU'e given in Table 3-3. 

:l\Iercury 

Venus 

Table 3-3 

Bounds for Truncation F.:rror When Using Fifth-Order 
Ev,erett Interpolation Formula 

Body I Position ~- Velocity 

---+~90.00 x 1<)-" AU I 4420.00 X 10-" '-A-U-/-da-y--t 

4.73 x 10- 12 AU I 0.62 X 10- 12 AU/day 
I 

Ep.xth-Moon barye enter i 5.19 x 10- 12 AU I 2.50 X 10- 12 AU/day 
I 

Mars 6.47 X 10 .. 12 AU 5.77 >' 10- 12 AU/day 

: Jupiter 6.64 X 10- 12 AU 

6.64 X 10. 12 AU 

6.64 X 10- 12 AU 

6.64 >< 10- 12 AU 

6.64 x 10. 12 AU 

5.72 7. 10- 12 AU/day 
, 
, Saturn 

Uranus 

, Neptune 

, Pluto 

Moon 

5.72 x 10. 12 AU/day 

5.72>-10. 12 AU/day 

5.72 y 10 12 AU/day 

5.72y:i0- 12 AU/day 

1.0100 x 10- f:< earth radii 1.4500" 10' ~ earth radii/day 

i Nutation in Longitude 0.46 Y 10. 12 radians 1.16 -' 10 12 radians/day 
, 

I 

L!':~tatio~._~_~.~l.i~~~y. ~ 0.23 >' 10-
12 

radians 0.513 > 10 12 radians/dny.J 
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The Chebyshev polynomial coefficients are obtained from the JPL ephemeris
data in the following manner. Let the function value_ provided by the JPL

software at requested times ti, i = 1, 2, ... , m + 1, for a single component of !
position, velocity, or nutation, be designated Yi • An m th order interpolating I

function in the interval [t i , tin+1] can be obtained as a linear combination of i

basic functions Fj (t) i

m+l

Ym(t) = ___ cj Fj (t) (3-244)
j=l

by requiring that the differences between the data and the function vanish, i.e.,

The choice of the functions, F (_,), j = 1, 2, ..., m + 1, in Equation (3-244) hasJ
important ramifications both on the obtainable accuracy of Y_ (t) for t / t and

the ease of determining the c j.. /t_

The interval It 1, tin+1] is transformed to [1, -1] by the linear transformation of
variables

2t-(tm+ ! • t 1)
x -- (3-246)

tin+1 -t 1

The functions F are then chosen as the orthegonal Chebyshev polynomials of

degree j - 1, i,e.,

T (x) cos ,:j - 1) cos i x] (3-247) _ "
, where J 1
\

TI (x) 1 _¢':

"12(x) x

T3fx) 2x 2 ]
(3-24_) !

s

l'j_lix) - 2xl'j(x) "[, I (x,

:{-77
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The Chebyshev polynomial coefficients are obtained from the JPL ephemeris 
data in the following malL'ler. Let the function valueD provided by the JPL 
software at requested times ti' i = 1,2, ••• , m + 1, for a single component of 
position, velocity, or nutation, be designated y i. An mth order interpolating 
function in the interval [t i , t m+1] can be obtained as a linear combination of 
basic functions F j (t) 

mtl 
Y (t) = )' c. F. (t) 

m L J J 
(3-244) 

j = 1 

by requiring that the differences between the data ana the function vanish, i.e., 

(3-245) 

The choice of the functions, F, (t), j = 1, 2, .00 , m + 1, in Equation (3-244) has 
important ramifications both ~n the obt81nable accuracy of Y

m 
(t) for t ., t 1 and 

the ease of determining the c J 0 

The interval [t l' tmt 1 J is transformed to [1, -1 J by the linear transformation of 
variables 

2 t - ( t mt , T t 1 ) 
X -- -----

t mt1 -t 1 
(3-246) 

The functions F are then c.:hosen as the orthC'gonal Chebyshev polynomials of 
degree j - 1, i.e., 

(3-247) 
where 

T
H1

\X) - 2xT
j
(x) T

j 
I (x. 
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! Under thes_ conditions Equations (3-244) and (3-245) can be reformulated as
; I

m+l /

Ym(x) : _ cjTj(x) (3-249) •

; and 2

,-7_: :o ,
i=l j;1

Data reductto_ can be achieved by selecting the largest possible interval

[t 1, tin+1] for which

Max y- ci Tj (x) < e (3-251)
x j;l

for x iv [1, -1]. This is satisfied if the coefficient of the truncated term

c, 2 ,: _, because of the min max property of Chebyshev polynomials. For a
/ gtve,_ interval It 1, tin+ 1 ] , the discrepancy between y and Y (x) is minimizedIn

! and the amount of work required to determine the c i substantial'y r _duced by ,, :
selecting the base points x as the roots of the CYnebyshev polynomial _f degree / .,

: m+l.

x. : cos (2i - 1) i = 1, 2, . . . , m + 1 (3-252) ..
" 2(m + I)

At thesepointsthe polynomialshave thefollowingoz_._hogonalitypr,;pertywith
respectto summation as wellas integration,

m,l

E 'Tj (x_) Tk (Xa) --0 j _/k : "',
a=| '

';\ (3-253) :
"" m+l

m+ 1 j : k, j, k <m + 1Tj (Xa) Tk (xa) - 2 "'"

a=l ,,

This propertyisderivedirom thecorrespondingorthogonalitypropertyofthe

cosine functions andmakes itpossible to determine the c ) from , ,

m+l

'2Cl :: _ Yi T1 (Xs) (3-254a)m+l
i_-I

W ,

3-78
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Under thes~ conditions Equations (3-244) and (3-245) can be reformulated as 

and 

m+l 

y (x) = )' c.T.(x) 
m L J J 

j"'\ 

Dd.ta reduction can be achieved by selecting the largest possible interval 
[t 1, t m+l ] for which 

for x it' [1, -1]. This is satisfied if the coefficIent of the truncated term 

(3-249) 

(3-2GO) 

(3-251) 

c
m

+2 <: €, because of the min max property of Chebyshev polyno.:nirus. For a 
givell interval [t1' tm+l ] , the discrepancy between ~. and Y

m 
(x) is minimized 

and the amount of work required to determine th9 c j substantiaty r ~duced by 
selecting the bw;e points x as the roots of the Chebyshev polyno mial "If degree 

1 

m+1. 

(2i - 1) x. = cos -0.-_....,..-"-

1 2(m + 1) 
i = 1. 2 •.... m + 1 (3-252) 

At these points the polynomials have the following orthogonality pr\'perty with 
respect to su::nmation as well as integration, 

m+l 
~ L Tj (x a ) Tk (xa ) = 0 j i k 

a=l 

o k. J. k ~ m + 1 

(3-253) 

This property is derived irom the corresponding orthogonality p:operty of the 
cosine functions and makes it possible to determine the c j from 

(3-254:a) 
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1
m+l

-cj m + 1 Yi Tj(xi)' j : 2, 3 ..... m + ] (3-254b)
if 1 .:

Once the coefficients, c j, of the linear combination of Tj have been determined, ,
Y (x) may be conveniently transformed into the equivalent Chebyshev interpolating
polynomialin [1, -1]

m+!

Yr"(x) : ZI bi x i-1 (3=255) ,

as follows.

Let '_'

: (-1) i+1 - - (3-256a) ' ,'.alj c2i.l j - I, 2, , (2j I)<m , ,
i..>..)

a 1 : 2i=2 ci i : 2, 3, , m + 1 13-256b)

{and

i '
aij = C[i+2 (j-l)] [2ai-l,j -ai,j-1] i : 2, 3..... [i+2(j-1)]<m+l (3-256c)

_ °.'
J

j : 2, 3..... [i+2(j-l)]<m+1 I

i '
Then, the coefficients, b: oi the interpolating polynomial can be determined from

bi : ? i aij i : I, 2, .... m + I

j : I, 2.... , [i+2(j-l)]<m+ I (3-257)
f

Finally, the polynomial so determined car, be used to interpolate in _he interval

:, ItI,t+ I] by means ofthetransfor_,atlor,ofvariablesdefinedby Equation
(s-2,t.6).

O 3-79
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m+l 

C. = _2_ )' Y
i 

TJ.(x), 
J m+ 1 L j = 2, 3, . . . , m + 1 (3-254b) 

i .. 1 

Once the cop-fficients, c j' of the linear combinatiC!l of T j have been dcte1."mined, 
Y (x) may be conveniently transformed into the equ.lval.ent Chebyshev interpolating 
p~lynomial in [1, -1] 

b. x i - 1 
1 (3-255) 

as follows. 

Let 

j - 1, 2, ... , (2j - 1) ~ m (3-256a) 

i = 2, 3, . . . , m + 1 (3-256b) 

and 

i .:: 2, 3, .... (3-256c) 

j = 2, 3, ... , 

Then, the coefficients, b., of the interpolating polynomial can be determined from 
1 

i = 1, 2, .... m + 1 

= 1,2, ... , [i+2(j-1)]~m + 1 (3-257) 

Finally, the polynomial so determined car. be used to interpolate in .:he interval 
[t.1 ' im+ 1] by means of the transformatior. of variables defined by Equlltlon 
(8-246). 
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_ The present version of GTD8 can handle any of 10 bodies, one of which is the I

central body. A solar/lunar/planet,_ry file by Cbeby:_hev approximating poly-
nomials is generated covering the entire time intercal of interest. The file

:i contains volynomials for each component of position and velocitT and for each
element of the matrices which transform from the selenocentric true of date to

the selenographic coordinate system and from the mean equator and equinox
of date to the true of date coordinate system, as required by the application.
The file also contains coefficients for the equation of the equinoxes, _H, used

to correct the mean Greenwich sideral time as given in Equation (3-19).
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The present v~rsion of GTDS can handle any of 10 bodies, one of which is the 
central body. A solar/lunar/planetary file by ChebJ'l5hev approximating poly
nomials is generated covering the er.~ire time intE:!Nal of interest. The file 
contains polynomials for each component of positic"n and velocity and for each 
element of ih6 matrices which transform from the s€'lenocentric true of date to 
the selenographic coordinate system and from the mean equator and equinox 
of date to the true of date coordinate system, as required by the application. 
The file also contains coefficients for the equation of the equinoxes, ~H, used 
to correct the mean Greenwich sideral time as given in Equation (3-19). 
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CHAPTER 4 _,

PERTURBATION MODELS AND VARIATIONAL EQUATIONS }

For orbital prediction using the method oi sp- !al perturbations, the equations c,f
motion of the satellite are in'.egrated m_merlcally. The perturbing acceleration
vector is required to construct these equations, which are presented in Chapter 5.

The sources of these r)erturbations are identified and the appropriate perturbatiop _
models presented in this chapter. The perturbations discussed include: :'

• the gravitational acceleration due to n-point masses, Rp. _.

• the gravitational acceleration due to nonspheric!ty of the

gravitatiotm_potential,RN_"

• the acceleration cue to the mutua|.nonspherical gravitational _:

attraction of the earth and moon, R xo //i

,_} • the acceleration due to aervdynamic forces, R v :_

l "' !
• the acceleration due to sclar radiation pressure, Rs_ .{

• the acceleration due to thrusting of the spacecraft engines, tlT '
:..t' ;

. • the acceleration due to attitude contro_ system corrections, RT_c .,

_ • model r4:placement accele,'a_ions, R A ..*.

\ _i All or any subset of these effects can be included :n the perturbing acceleration ,
vector which is used in the construction of the equations of motion using either
tk _ Cowell or Variation of Parameters formu!ations. _ _

E; The partial derivatives of the current state vector with respect to the initial _ ,
state vector are required in the differential correction process. The._ partial _ _i

_ derivati,-es, whic. c..,s_imte the _a_ _.... sit.on matrix, can be _t)tained by f /"'
numerically integrating a system of variational equations in conjunction with the
Cowell orbit generator. The construction ol these variational equations is dis- ]
cussed in detail for each of the perturbing accelerations, Accelerations which °

are included in the equations of motion, but for which the e_imation process is _

iinsensitive, can be omitted in the constructiJn of the variational equations.

9760 7203- 2

C~APTER 4 

P:EETURBATION MODELS AND VARIATIONAL EQUATIONS 

For orbitaL prediction using the method 01 sP' tal perturb&.tions, the eCtuations c,1 
motion of the satell.it~ are in~e&rated numerh;ally. The! perturbing acceleradon 
vector is reqltired to construct these equations, which are presented in Chapter 5. 
The sources of these oerturbations are identified and the appropriate perturbatiol' 
models presented in this chapter. Thf' pertarbaUons discussed include: 

.. 
• the gravitational accelt'ra~ion due to n-point masses, RpM 

• the gravit~tional acceler.ation due to nonAphericity of the 
gravitational potential, RN!: 

• the aeceleration c.ue to the mutual.nonspherical gravitational 
attraction of 'he earth and muon, RIO 

• the acceleration due to aerodynamic forces, Rn 
.. 

• the acceleration due to sclar radhtion pressure, RSR 

• the acceieration due to thlUsting of the sr>acecraft engines, Rr 

• the acceleration dlle to attitude conLrOA system corrections, Rl'&.C 

• model r-t:placeme:J.t accelcradons, RA 

All OJ' allY subset of these effects can be included :n the perturbing £.ccelerr.tion 
vector which is used in the construction of the t:qu~tions of motion using either 
tt: ... Cowell or Variation of Parameters formu.lations. 

The partial derivatives of the current state vector with l:espect to the initial 
state vector are required in the differential correction process. Thebf' part! al 
derivatives, whi;:;, c, ,1t:i~iLUl~ t.nt! ::.tClt.a t:-ansit!on matrix, can be "'btaineLi by 
numerically integrating a system of variational eql.!ations in conjunction with the 
Cowell orbit generator. The construction ot these variational equations is dis
cussed in detail for each of the perturbing accelerations. Accelerations which 
are included in the equations of motion, but for which the e[~imation process is 
hlsensitive, can he omitted in the cm,st~uctL>n of the variational equations. 
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_i A method of computing the partial dem_-at_ves analytically is discussed in Section

: 4.10. This analytical approach is alway_ used in the differential correction pro-

cess in GTr.d when the Variation of Parameters or Brouwer orbit generators are

: .reed, and is optional in the Cowell differential correction process. !

t

4.1 TOTAL PERTURBATION MODEL AND VARIATIONAL EQUATIONS

" The total acccleration vector is the sum of the accelerations induced by each of

the sources listed above (expressed in an inertial Cartesian coordinate system,C

i.e., mean equator and eq_finox of 1950.0 or true of reference date.)

:- R = RpM + RNS+ RIO + R D + RsR + RTA c , R T. (4-1)

, The total perturbing accelera+ion vector is usuglly defined as the total accelera-

tion excluding the poir, t mass gravitational acceleration caused by the central

: body.

d

*"_ The Cowell equations of motion of the satellite may be written in the form .y/ ,_

"' (4-2) lR = f(R, R, t,_)

where

_ column vector of vehicle position coordinates

_ "- vector of dynamic parameters of dimension _

J
and "'_

i,

2-

= (_(t0) ' R(t0), _*)T (4-3)

where

15" _ constant model parameters pertainin_ to drag, gravitational
harmonic coefficients, etc.

t

, '. The model parameters p, which may be include3 in thc variational equations, i

are as follows: !

4-2
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A method of cornpudne the partial derh'abves analytically is discusseJ in Section 
4.10. This analytical approach is aiwaY13 used in the differential correction pru
cess in GTU3 when the Variation of Paramete.rs or Brouwer orbit generators are 
J.sed, aud is optional in the Co~·ell diffel;'ential correction p:ocess. 

4.1 TOTAL PERTURBATION MODEL AND VARIATIONAL EQUATIONS 

'I'he total acceleration vector is tIle sum of the accelerations induced by each of 
the sources listed above (expressed in an inertial Cartesian coordinate system, 
i.e., mean equator and equil~ox of 1950.0 or true of reference date.) 

.. . . . .. .. ~ .. .. . ... .. .. . .. 
R=R +R +-R +R 'R "'-R -R 

PM NS 10 D or SR' TAC T T' 
(4 -1) 

The total pert ... :-bing acceleration vector is usually defined as the total accelera
tion excluding the poid mass gravitational acceleration caused by the central 
body. 

The Cowell equations of motion of thr satellite may be written in the form 

R = f CR, R, t, p) 

where 

and 

R '" column vector of vehicle position coordinates 
p '" vector of dynamic parameters of dimension t 

where 

P ¥ "" c0nstant model parameters pertainioj 1.0 drag, gravitational 
harmonic coefficients. etc. 

(4-2) 

(4-3) 

The model parameters p, which may be iilcludeJ in the: variational equation&, 
are as follows: 
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V • Position and velocity of the spacecraft in mean of 1950.0 coordinates,true of date coordinates, classical orbital elements at epoch,

spherical coordinates, or DODS variables

• Gravitational parameter of the central body

• Harmonics of the central body
• Gravitational parameters of perh_rbing bodies

• Aerodynamic drag parameter

• Solar radiation pressure parameter

• Powered flight parameters

• Attitude control parameters.

;, These parameters are determined in such a way as to reduce the differences

between a computed and an observed orbit. This orbit detecmination process
_:
[ requires the computation oE variations in the s_ate variabJes, R(t) and R(t), as:r

functions of variations in this parameter set.

_:_ If Equation (4-2) is differentiated with respect to I5, the matrix equation

l

L
_:- " is obtained. If time t and the parameter set p are independent, the differentiation

_: with respect to t and p may be interchanged to give

Defining the matrices

!' A(t) = _(t C(t) : '

_,_i: B(t) = (t Y(t) -- _.-, LTJ k_,', 3x 3 3× _', "

_:

: 41o
5;' 4-3
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• Position and velocity of the spacecraft in mean of 1950.0 coordinates, 
Coue of date coordinates, classical orbital elements at epoch, 
epilerical coordinates, or DODS variables 

• Gravitational parameter of the central body 
• Harmonics of the central body 
• Gravitational parameters of pertt;rbing bodies 
• Aerodynamic drag parameter 
• Solar radiation pressure parameter 
• Powered flight parameters 
• Attitude control parameters. 

These parameters are detf;:rmined in SIler. a way as to reduce the differences 
between a computed and an observed orbit. This orbit detet'Il'~nation process 
requires the computation of variations in the svate variabJes, R(t) and R(t), as 
functions of variations in this parameter set. 

If Equation (4-2) is differentiated with respect to .p, the matrix equation 

(4-4) 

is obt2.in'Sd. If time t and the parameter set p are independent, the differentiation 
with respect to t and p may be interchanged to give 

(4-5) 

Defining the matrices 

A(t) = I..JR~t ;1 C(t) :: 

L CJR J 3x J 

rt(C<RCt») ] 
~ Op explicit 

B ( t) = I-a ~ l t ~ Y ( t) = 
l dR JJX J 

(4-6) 
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Equation (4-5) takes th_ form of a system of linear differential equations

= A(t) Y + 3(t) Y + C(t) (4-7)

called the variational equations.

Just as the basic Equation (4-1) is numerically integrated to obtain the position
(t) and velocity 1_ (t) of the satellite, the variational equations are integrated to

obtain the matrices Y(t) and Y(t), which yield the required partial derivatives.
These partial derivatives are used to form the observation partial derivatives

required for differential correction oi the orbit. This application is discussed in
Chapter 7.

The matrices A, B, and C are formulated for the ca,-;e where R is of the form

given in Equation (4-1)

. i _RI_: _RNs _R D _R SR °RTAC ORT
, A- +_+_ +---+_ +-- (a)

"-2"

_RD
.x. B = ---r- (b) (4-8) i

F [o '= ' - = 3' 03' -- (c) '
c =,,75/._x_,_ L_ _._ _-Wp'_lo_,,c,, ;_'J

where

03" 3× 3nui1 matrix

_R
columns of explicit partial derivatives oi acceleration with respect

P to model parameters:
" Z..t" "...t" "_.t"

"-. -_r_ _RpM _RNs'-'_'PM

?_ ' b_k ' ?_C_ .. etc.

4.2 POINT MASS EFFECTS

To first ordcr, the gravitational attraction of a perturbing body of mass m can
be approximated as that arising from a dimensionless particle of mass m located

at, the center of mass of the body. An expresston for the perturbing acceleration
_xlstng from n-point masses is developed in _is section.

t
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Equation (4-5) takes tht: f.)rm of a system of linear dift:erential equations 

.. . 
Y =A(t)Y+J(t)Y+C(t) (4-7) 

called the variational equations. 

~ust as the basic ~quation (4-1) is numerically integrl:tted to obtain th~ position 
R ~t) and velocity R (t) of the c.;atellite, the variational equations are integrated to 
obtain the matrices Y(t) and y(t), which yield the required partial derivatives. 
These partial d'arivatives are used to form the observation partial derivatives 
requi>:-cd for differential correction of the orbit. This application is discussed in 
Chapter 7. 

The matl'ic€s A, B, and C are formulated for the case where H is of the form 
gi.ven in Equaticn (4-1) 

where 

,,-* cp 

" ., .. 
oR Ph' oRNS oRo oR SR aRTAC aRT 

A = --' + --+ -- + -- + -- +-
oR cR ;JR oR oR oR 

(a) 

oRo 
B=-. 

2R 
(b) (4-8) 

03 ,"" 3 x 3 nu 11 rna t r i x 

columns of explicit partial derivatives 01 accelert'.tion with respect 
to model parameters: 

... etc. 

4.:2 POINT MASS EFFECTS 

To first order, the gravitational at~raction of a pertl.!rbing body of mass m can 
be apprOximated as that arising from a dimensionless particle of mass m located 
at. the ('enter of mass of the body. An expressf.on for the perturbing ar,celer.ation 
a:l'ising from n-point masses is developed in this section. 
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4.2.1 N-Point Masses Perturbation Model )
}

In the development of the perturbation model for the gravitational effect of n-

I massive bodies, the startingpoint is Newton's second law of motion and law of

gravitation(References 1, 2, 3).

The second law of motion for a body of mass m, acted upon by a force F, is

_: given by

(
-_ _ i

dt d-t-) (4-9)

i which reduces to
_ d2R
F = m- (4-10)

_::, d t 2

t when m is constant. Here R iu e vector from the center of an inertial coordinate
i

system to the satellite. .,'

The gravitational force acting on a satellite of mass m due to the attraction of
4

a body of mass m k , which is assumed to act as a point mass, is giwm by

Gmm _

Fk- _p (4-11)
• R3

kp

where G is the universal gravitational constant and Rk the vector from theP

body k to the satellite (see Figur_ 1-1).

In order to obtain the _ota! contribution from all perturbing bodies, a summation

over k is performed

fl

• R 3 Rkp" (4-12)
k=l kp

.' When this expression is substituted into Equation (4-10), the acceleration exper-

_ ienced by a satellite attracted by n-point masses is obtained in an inertial
coordinate system

,,L d"_ _-_ G% _
:.....// (4-13)(it 2 R3 RkP"

k=l kp

: _ 4-5
_g}.
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4.2.1 N-Point Masses Perturbation Model 

In the development of the perturbation model for the gravitational effect of n
massive bodies, the starting point is Newton's second law of motion and law of 
gravitation (References 1, 2, 3). 

The second law of motion for a body of mass m, acted upon by a force F, is 
e;iven by 

(4-9) 

which reduces to 

(4-10) 

when m is constant. Here R i~ 3 vector from the center of an inertial coordin.utA 
system to the satellite. 

The gravitational force acting on a satellite of mass m due to the attraction of 
a body of mass m k , which is assumed to act as a point mass, is given by 

where G is the universal gravitational constant and Rk p 

body k to tIle satelli.te (see Fig'.!:r~ i-I). 

(4-11) 

the vector from the 

In order to obtain thp ~otal contribution from all perturbing bodies, a summation 
over k is performerj 

(4-12) 

Whf'n this expression is f'ubstituted into Eq:.lation (4-10), the acceleration exper
ienced hy a satellite attracted by n-point masses is obtained in an inertial 
coordinate system 

(·1-13) 

4-5 



l

c I
1

For convenier, ce and ease in the interpretation of results, it is advantageous to

: refer the motion of the satellite to one of the perturbing bodies. The force on
body j, the refer_.nce or central body, is given by

_-_Gm P'_ (4-14)

r_ i

Fj =
k=l Rk3
k_i

where m R is a vector from the reference jth body to tile k th body. The accel-
• eration of the reference body with respect to the inertial coordinate system is

• given by

d2R _ _ G_ R (4-15)_J dt 2 Rk3

m (SATELLITE)

mk,.._--_-_J _ m, (REFERENCE I

i NF_:RTI,_ k
C,3ORDINATE

,. s_,'STEM

Figure4-1. Schematicof Paint Mass Gravitational Bodies

A sttbtractior, of Equation (4-15) from Equation (4-13) yields

' - - _ (4-](_)
dt 2 dt 2 R3 _p _ kkp = R3

f

4 -6
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For convenience and ease in the interpretation of results, it is advantageous to 
refer the motion of the satellite to one of the perturhlng bodies. The force on 
body j, the refel.·~nce or central body. is given by 

(4-14) 

WherE! Rk is a vector from the reference jth body to the kth body. The accel
eration of the reference body with respect to the inertial coordinate system is 
given by 

(4-15) 

m
J 
(HEFE~ENCE BODY) 

I'\IERTIPL 
C,jORDINAYE 
S'r '5T[M 

Figure 4·1. Schematic of Point Mass Gravitational Bodie!> 

A subtrnctivI: of Equation (4-15) from Equation (4-13) yields 

1-6 

(4-16) 
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Substituting R - Ri = _ = R'p and Rk, = R - Rk into Equation (4-16) yields the
acceleration due to n-point masses

"-" d2R _" E (P'k - R) P'k (4-17) _RPM=_= - --R + /_k - --
dt 2 2 3 II 3

kSj

RPu ' fi' and Rk are expressed in mean of 1950.0 coordinates or true ofwhere

reference dake coordinate whichever is the basic coordinate frame. The gravi-
tational parar eter _ is the product of the mass of a given body and the tmiversal

gravitat!ona, constant. In particular, _k =Gm k for the k th body, and/_ = Gmj
for the central body.

When only the effects of _he central body are included in Equation (4-17), an
analytic solution can be obtained. This solution is the basis for construction

of the Variation of Parameters methods which are discussed in Chapter 5.

Special perturbation methods arc raquired for orbit propagation only when

additional perturbation effects are considered. Consequently, the perturbing ,,
acceleration vector does not include the first term on the right hand side of ,_-""
Equation (4-17).

,_ _. When the satellite is in a close orbit around the reference body, significant round-
off errors may occur in the computation of Equation (4-17) due to the differencing

of nearly equal numbers. When the earth is the central body, this error has not
been found to be significant. However, it may be important in the computation

_,, of third body effects due to the earth when the moon is the central body. This
difficulty can be removed by rewriting the equations of motion in a different,

_ but equivalent, form.

Designate iRkp I by rkp, IRkl by r k, [RI by r, ond the included angle between

i R R k by ;
and then

rk_p= r 2 + r_ - 2rr k cos e_ (4-18)

The ratioI/rkp can be expanded interms of Legendre functionsas i

_,
_': 1 1 1 _B
_'_,. _ =__ {P0(cos ::) + P1(cos _'_ h _ P2(cos,_) h_ _..._ ": ._ (4-]9)

:,' rkp r k r k

4-7
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Substituting Ii - Ii i = R = R 'p and Rkp = R - Rk into Equation (4-16) yields the 
accelergtion due to n-point masses 

(4-17) 

-
where RPM ' R, and Rk arf' expressed in mean of 1950.0 coordinates or true of 
refertlnce date coordinate whichever is the basic coordinate frame. The gravi
tational parar eter ~ is the product of the mass of a given body and the udversal 
gravitat.:!.~nal constant. Inparticular, f-L

k
= Gm k for the kth body.andf-L = Gm

J 
for the central body. 

When only the effects of the central body are included in Equation (4-17). an 
analytic solution can be obtained. This solution is the basis for construction 
of the Variation of Parameters methods which are discussed in Chapter 5. 
Special perturbation methods arc r .:quired for orbit propagation only when 
additional perturbation effects are considered. Consequently. the perturbing 
acceleration vector does not include the first term on th,; right hand side of 
Equation (4-17). 

When the satellite is in a close orbit arouncl the reference body, significant round
off errors may occur in the computation of Equat.ion (4-17) due to the differencing 
of near ly equal numbers. When the earth is the central body, this error has not 
heen found to be Significant. However. it may be important in the computation 
of third body effects due to the earth when the moon is the centr al body. Thi8 
difficulty can be removed by rewritir.g the equations of motion in a different, 
but equivalent, form. 

DeSignate i Rkp I by r kp' I Rk I by r k' I R I by r. and the included angle between 
R al1d Rk by (' ; then 

(4-18) 

The ratio 1/r kp can be expanded in terms of Legendre functions as 

1 1 .; B (4-J 9) 
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" where
r

h--_

r k
2

B=_ Pj(cos 8)h j :"
• ' j,'l
' w

_ Substitutionof the exp_ansionof the numerator I/iRk - R t3 = i/rk3p= (i+B)3/r

. • _ and the rel_ior_b.ip It k = R - _kp into Equation (4-17) yields

• "-" d2R /_ (4 -20) ;• rPM - _ _ + _, .-£_p
.: dt 2 r 3 . IRkl 3 -:

k-_j

? i This procedure eliminates the numerical diffculty.The series in h is truncated

:_ i by terminating the series when h_ =<eh, where eh is a predetermined tolerance.

_. _,_ ! 4.2.2 Associated Partial Derivatives .."_- .I

The associated partial derivatives are given by

"" ( _ " ) I/'_R_ _I, _k - _ -RTI) "_["8RPM - _---+ -- I + 3 + _ _--_; (4-21) :?R R3 IRk RI3 \ Rs k'.l
,_ k a 1

?Rp u
_ = 03 (4-22) ::

t 7

: , where _' is the Identity matrix of dimension three. -.
\,

The associated C-matr_'_ columns fcr the model parameters :-,and _. are .,::.
given by ,

?RpM

b_ I_ (4-23)

IA gA __ _ _ ,_-._,

?
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where 

IX) 

B = ,[ Pi(cos 9) hi 

i • 1 

Substitution of the eXI>ansi~n o!. the numerator 1/ i Rk - R 13 
:: 1/ r ~p = (1 + B) 

3 
/ r ~ 

and the. relatiol1ship Rk = R - R kp into Equation (4-17) yields 

(4-20) 

This procedure eliminates the numerical diffculty. The series in h is truncated 
by terminating the series when hn ~ t

h
, where th is a predetermined tolerance. 

4.2.2 Associated Partial Derivatives 

The associated partial derivatives are given by 

dR ( n 
_PM = _ fJ-

3 
+ ,[ 

dR R k "I 

~ ') (fJ-RRT f't (~- R) (~ - RT~) - -1 3 I + 3 -5- + L ~ 1- -15 (4-21) 
IRk - R R k. 1 _ ~ - R 

(4-22) 

where l' is the identity matrix of dimension th:-ee. 

The associated C-matr;'( columns fc:: the model parameters ,!.!. and f1" are 
given by 

jR PM <1\ - F' 
--=--
01-\ !~ _ RI3 

4-8 
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4.3 NONSPHERICAL GRAVITATIONAL EFFECTS

Most solar system bodies are known to have figures which depart from the
spherical model of the particle. The nonsphericity of the gravita*.ional potential

may give rise to a significant perturbation of satellite trajectories. Therefore, i
accurate orbit determination may require the inclusion of nonspherical terms, i
The gravitational potentials of the earth and moon are the best known of all so_ar

system bodies, because of extensive tracking and analysis of close earth and
lunar satellites. The figures of p}anets with natural satellites are known, although

less accurately, through study of the motion of their natural satellites.

4.3.1 Nonspherical Gravitational Perturbation Model
i

The next perturbation considered is that due to the nonsphericity of a massive

body. The metbod of representing its potential is classical and may be found in

numerous publications (References 3, 4, 5). The gravitation_l field of the body
is derived from a scalar potential _/ that satisfies Poisson's equation

V2_(r, ¢, )_)-- 4_kp(r. _, ;k) (4-25)

where r _ the magnitude of the vector from the bodyVs center of mass

_) to the satellite

"- ".he g_ncentrie, se!enocentric, or planetocentric latitude

;__ the geocentric, selenocentric, or planetocentric longitude (measuzed
east from the prime meridian) i

Above the surface of the perturbing body, the mass density, _,, is zero; i
consequently, Equation (4-25) reduces to the Laplacian, _'2_, = 0. Standard

_ separation of variables technique yields the solution ; ,

n---!
(4-26)

+--r P:(s in 4) [Smnsinm& + __, cos ,
n_l m=l

4-9
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4.3 NONSPHERICAL GRAVITATIONAL EFFECTS 

Most solar system bodies are known to have figures which depart from the 
spherical modal of the particle. The nonsphericity of the gravita:ional potential 
may give rise to a significant perturbation of satellite trajectories. Therefore, 
accurate orbit determination may require the inclusion of nonspherical terms. 
The gravitational potentials of the earth and moon are the best known of all so!:!r 
system bodies, because of extensive tracking and analysis of close earth and 
lunar satellites. The figures of pJanets with natural satellites are known, although 
less accurately, through study of the motion ot their natural satellites. 

4.3.1 Nonspherical Gravitational Perturbation Model 

The next perturbation considered is that due to the nonsphericity of a massive 
body. The method of representing its potential is classical and may be found in 
numerous publica.tions (References 3, 4, 5). The gravitation~l field of the body 
is derived from a scalar potential y; that satisfies Poisson's equation 

where r"" the magnitude of the vector from the body's center of mass 
to the satellite 

cp '" ~he gf'ocentric, selenucentric, or planetocentric latitude 

(4-25) 

A. '" the geocentric, selenocentric, or planetocentric longitude (measul ed 
east from the prime meridian) 

Above the surface of the perturbing body, the mass density, f' , is zero; 
consequently, Equation (4-25) reduces to the Laplacian, \}2'-f1:::: O. standard 
separation of variables technique yields the solution 

OJ (R jn 
tf;(r, cp, 1\) = fL + fL )' C°.-:. pO(sin </-') 

r rL n r n 

n'" 1 

4-9 
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_vherethefirstterm is thepointmass potentialfor Keplerianmotion and the

second and thirdterms are thenonsphericalpotentialdue tothe sum ofzonal
and tesseral harmonics respectively.

_ _ the gravitational parameter of the central body _
I

?

! Re _ the radiusof thebody (usuallytakenas theequatorialradius) :.

pm _ the associated Legendre functionn f

Snm,C_ _ harmonic coefficients, i.e.,
rl _.

• zonal harmonics for m = 0

• sectorial harmonics for m = n

_ • tesseral harmonics for n > m ¢ 0
L

(note: J =-C O)

J _
The term n = I isusuallynotpresentwhen the originofthe coordinatesystem

: is placed at the center of mass.

The total gravitational force is the gradient of _; therefore, the noncentral
; force actingon thespacecraftdue tothe attractingbody Js thegradientofthe _

1' nonsphericalterms inthepotentialfunction_. _ _
)

i Expressing the gradient in body-fixed coordinates (Figure 4-2), the following form
forthe inertialaccelerationvectoris obtainad(seediscussionfollowing'Equation

(4-38)). ._

: ax b

-- ] _b _._r_ T _D [_,_ _T _ (____. _T (4-27, '

[j .
The partialderivativesof thenonsphericalportionof thepotentialwithrespect "._
to r, _, and L are given by

2 o '3_k_ 1 g (n_l) (Cnm cos mL+ S_ sinmX)P"(sin_) (a)
_r r r :_

n"2 m_'O

_q: - _ (CnCOSm_ inm\) [Pn_+_ (s inc)-mtan_l_n(S in_,)] (b)(4-28)_'t r n
n=2 m=O

?

2¢)23_ .. _ m(S_ cos m,_ - Cm sin m\) Phi(sin ;). (c),)_ r '_
n=2 m_O

4-!0
!
1
t

2
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where the first term is the point mass potential for Keplerian motion and the 
second and third terms are the nonspherical potential due to the sum of zonal 
and tesseral harmonics respectively. 

f.L"- the gravitational parameter of 1;he central body 

Re "- the radius of the body (usually taken as the equatorial radiuEl) 

p~ '" the associated Legendre function 

S~. C~ '" harmonic coefficients, i.e., 

• zonal harmonics for m = 0 

• sectorial harmonics for m = n 

• tesseral harmonics for n > m t 0 

(note: J = - CO ) 
n n 

The term n -.= 1 is usually not present when the origin of the coordinate system 
is placed at the center of mass. 

The totaJ gravitational force is the gradient of lj;; therefore, the noncentral 
force acting on the spacecraft due to the attracting body is the gradient of the 
nonspherical terms in the potential function lj;. 

Expressing the gradient in body-fixed coordinates (Figure 4-2), the following form 
for the inertial acceleration vector is obtained (see discussion following Equation 
(4-38». 

(4-27) 

The partial derivatives of the nonspherical portion of the potential with respect 
to r, cp, and'll. are given by 

~t:': _!. 1!:... )' ---! (n + 1) )' (em cos rn'A + Sin sin rnA) prn(s in f) 
00 (R)n n 

Jr r r L r L n n n 
n-2 m"'O 

(a) 

4-10 



l
f i ....... I' 11

]
S }z

I - iYb

f

x b

Figure 4-2. Body-Fixed System

The Legendre functions and the terms cos m,% sin m },, and m tan 4; are computed
ria recursior, formulae:

P°(sin¢) = [(2n- 1) s in vP°_l(s in ¢) - (n- 1)P ° (sin¢)]/n (4-29)n- 2 ,,,'P

Pm-l(sin¢) m£O, m<n (4-30)
:_..), P_(s in 4;) -':-Pmn-2(s in 4;) + (2n - 1) cos _ n-I

,'_-l_(sin;c) mY0, m=n (4-81)P_(sin ¢) = (2n - 1) cos _, n"

where

pO(sin qO -- 1, p°(sin _) = sin ¢, P_(s In ¢)= cos ,;r, (4-32)

I sin m)_ = 2 cos ,\ sin(m - 1) .'. - sin(m - 2) _, (a)

(4-33) _
", cos m\ = 2 cos _ co._(m - 1) L - cos(m - 2) \ (b) ,

m tanq',= [(m- 1) tan J.)_ + tan ;t, (4-34)

The recursion relationships above are the most efficient method of computing

the complete set of associated Legendre polynomials and spherical harmonics

up to a certain order and degree. However, higher degree harmonic terms can

cause satellites with repeating ground tracks to undergo large perturbations s

when _e trajectory and the harmonic frequency are synchronized (resonant).

The synchronization causes the satelliteto sample the gravitationalfieldin such

a way that large cumulative perturbations result. Individual resonant harmonics i

can be computed in GTDS without using the recursivc algorithm described above. I'

!
A

I m ,'
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----yb 

x y 

Figure 4-2. Body-Fixed System 

The Legendre functions and the terms cos m,\, sin m A, ftnd m tan 1- are computed 
via recursion formulae: 

where 

f'~(s in q;) = [(2n - 1) s in (tP~-l(s in -t) - (n - 1) P~-2(s in ~)l 'n (4-29) 

m i 0, m<n (4-30) 

P~(s in '1') == (2n - 1) cos :j-r~~~ (s in:t) m -+ 0, m::. n (4-31) 

P~(sin cp) == sin-t, pi(s 111 q;) == cos 'J (4-32) 

sin mr.. = 2 cos ,\ sin(m - 1) ", - sin(m - 2) 1\ 

('os m\ == 2 cos 1\ co",(m - 1) '. - cos(m - 2) \ 

m tan <1, == [(m - 1) tan J.); + tan t-

(a) (4-33) 

(b) 

(4-34) 

The recursion relationships above are the most efficient method of computing 
the complete set of associated Legendre polynomials and spherical harmonics 
up to a certain order and degree. However, higher degree harmonic terms can 
cause satellites with repeating ground tracks to undergo large perturbations 
when the trajectory and the harmonic frequency are synchronized (resonant). 
The synchronization causes the sat\2llite to sample the gravitational field in such 
a way that large cumulative perturbations result. Individua! resonant harmonics 
can be computed in GTDS without using the recursive. algonthm described ahol'e. 

4-11 
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Use of a low order recursive harmonic model with nonrecursive computation of t ,

higb order resonant terms is considerably more efficient than carrying out

: recursive computation of the total high order harmonic model. :

(
The partial derivatives of r, 9, and k with respect to Xb, Yb ' and zb are computen .- _

- from the expressions , *

,: - - (4-35',
.,: b'_b r
C

_k _ 1 [Xb _Y___b_ byb3: 2 b-Fb Yb (4-37)_}-b (Xb2 + Yb )

where

• ' _Xb _Yb dZb

, . , -_, and _ t

are the row vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively.
1

: Substituting Equations (4-35) through (4-37) into Equation (4-.27) yields

= _ !, (a)

'\ /" 2

" " : + <°>'b 5r r2 <J_

where a_ b, ay b and a,b are the components of the inertial acceleration of the
spacecraft expressed in the body-fixed coordinate system, and not the accelera-
tion withrespecttothebody-fixed coordinatesystem. Thus, itisnecessary ;.
to transformthesecomponents intoan inertialfrmne beforeintegratingthe

equationsofmotion.

Sincethenumericalcomputationsoftheprogram are calculatedinthe inertial
mean equatorand equinoxof 1950.0coordinatesystem, a serieso[ transforma-

tionsare made to representthe srcelerationvectorinthissystem. For the

N
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Use of a low order recursive harmonic model with nonrecursive computation of 
high order resonant terms is considerably more efficient than carrying out 
recursive computation of the total high order harmonic model. 

The partial derivatives of r, cp, and 'I\. with respect tu x b ' Y b ' and ~ are computec'1 
from the expressions 

dr 

(4-3fi) 

(4-37) 

\~'here 

oXb °Yb 
and 

dZb 

01\ orb irb 
are the row vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively. 

Substituting EquatioDF) (4-3G) through (4-J7) into Equation (4~'27) yields 

_ (' 1 at);) /x~ + Y~ dli! a - --- Z + ____ ::..I. 

~b r d r b r2 d..{ 
(c) 

where a Xb ' a
Yb 

and a Zb are the components of the inertial accele~tion of the 
spacecraft expresAed in the body-fixed coordinate sysLQrn, and not the accelera
tion with respect to the body-fixed coordinate Systtlnl. Thus, it is necessary 
to transform these components into an inertial frame b'~fore integrating the 
equations of motion. 

Since the numerical computations of the program 'lre calculatt;d in the inertial 
mean equator and equinox of 1950.0 coordinate s~'stem, a series of transforma
tions are made to represent thlC' ~"celeration vectt}r in this syst.em. For the 
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case of theearth,_ere are two optionsavailableto accomplishthis:thefirst

isthe more accurate,whereas the secondis computationallyfaster.

For themore accurateoption,theinertialaccelerationELbexpressed in body-
fixedcoordinatesistransformedto theine_._almean of 1950.0axes by means
of the transformatlov i

RNS : CTBTa b (4-39)

where B T transforms from body-fixed to true of date coordinates and C T from
true of date to inertial mean of 1950.0 coordinates as discussed in Sections 3.3.]

and 3.3.2. The matrix BT accounts for polar motion and Greenwich sidereal
time.

The simpler optionneglectspolar motionby assuming the geographicpolezb
to be aligned with the spin axis z in the true of date system. 'this allows the
nonspherical gravity components to be expressed directly in true of date co-

ordinates. Thus. by r_plac_g (r_, Xb, Yb, Zb) in Equations (4-27) and (4-35)
through (4-_,8) by (r, x, y, z) the true c.f da_e components are calculated directly.
The longitude and latitude are calculated as follows

= _ - _ (4-: 0) "_'/_"'
g

.L.,
_ ; s in -1 _r) (4-41)

where

a _ the right ascension of the spacecraft, a = tan -1 fy/x)
l

a _ the rigb* ascension of Greenwich. ig

Computation of the accelerat'mn due to the nonsphcrical moon in 1950.0 coordi-

"- nates requires some different operations than those used for the earth. The 1
right ascension of the Greenwich meridian has no meani_ff, so t}',at the etep of

going from body-fixed coordinates to the true of date system cannot be implemented. "_

|
The lunar body-fixed coordinates (also known as selenographic coordinates) are
coincident with the principal axes of inertia and are defined in the following way:
the x' axis lies along a direction nearly colinear with the moon to earth vectnr;

the z t axis lies along the axis of rotation, or polac axis, of the moon; and the y'
axis lies in the effaatorial plane of the moon and completes a right-handed coor- :i.
.dinate system°
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case of the earth, !here are two options available to accomplish this: the first 
is the more accurate, whereas the second is computationally faster. 

For the more accurate option, the inertial acceleration ~ expressed in body
fixed coordinates is transformed to the inel tlal mean of 1950.0 axes by meal'l.8 
of the transformatioD 

(4-39) 

where B T transforms from body-fixed to true of date coordinates and CT from 
true of datt: to inertial mean of 1950.0 coordinates as discuss€~d in Sections 3.3.] 
and 3.3.2. The matrix BT accounts for polar motion and Greenwich sidereal 
time. 

The simpler option neglect;:, polar moti.)n by assuming the geographic pole Zb 

to be aligned with the spin axis Z in the true of date system. This allows the 
nonspherical gravity components to be expl:essEl\! directly in true of date co
ordinates. Thus. hy replacing {r!: • xb • Yb' Zb) in Equations (4-27) and (4-35) 
throu6h (4-38) by (r, x, y, z) the true ~f da~ components are calculated directly. 
The longitude and latitude are calculated W:i follows 

(4--:0) 

(4-41) 

where 
a '" the right ascension of the spacecraft, a = tan -1 {y/x) 

c. '" the right ascension of Greenwich. 
II 

Computation of the acceleration due to the nonspherical m0011 in 1950.0 coordi
nates requires some different operations than those used fol' the earth. The 
right ascension of the GrcP-Hwich mUidian has no meanl~g', so &.at the f,tep of 
going from body-fixed coordinat-es to th~ true of dnte system cannot be implemented. 

The lunar body-fixed coordinates (also known as selenographic coordinates) are 
coincident with th~ prmcipal axes of iner~ia and are defined in the following- way: 
the x' axis lies along a direction nearly colinear with the moon to earth vector; 
the z, axis lies along the axis of rotation, or polar axis, of the moon; and the y' 
axis lies in t.he eq-..latorial plane of the moon and completes a :right-handed coor
~ii'1ate system. 
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_ Three rotations are necessary to transform the selenographtc acceleration
• vector to a vector referred to the mean earth equator and equinox of 1950.0
{

system. The first rotation takes the acceleration vector to the true earth

=+: equator and equinox of date coordinate system centered at the moon (selenc_

_+ centric). The other two rotations involve the precession and nutatlon effe_s
that are included to _xpress the acceleration in the 1950.0 system. These rota- s
tions are discussed tn Sections 3.3.1 and 3.3.3.

_. 4.3.2 Associated Partial Derivatives
f

_! Th_ partial derivatives of g_ with respect to _ are obtained by differentiatLng
: Eqaatlon (4-27) yielding

' i

The required parttal derivatives of _/br, 0_/?_ and ?J?% with respect to l"b _ ,} ,
are obtained by dtfferentl_'_ing Equation (4.-9.8) as follows '- _,

_" -+'+v _:+q.,_q_- _I._l

• _r _r--'2" _r_¢ _r_. l

+" __...+_ = ___'q_ __-_:+q"_:% __+",_-- (4-.4.":J) +

+' _7b k?,l ?g_?r ?,y>2 ?+?)_ l_---_b]l +Tb i'+'
" -- i

In order to minimize computations, the symmetry property of the second partial I

derivatives of _ is utilized as indicated below i

' t _

I

. +p,.r--..... +, "a_. " + ' ........... 3wT_ _ _ II mmm m_ r
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Three rotations are necessary to transform the selenographic acceleration 
vector to a vector referred to the mean earth equator and equinox of 1950.0 
8yst~m. The first rotation takes the acceleration vector to the true earth 
equator and equinox of date coordinate system centered at the moon (seleno
centric). The other two rotations involve the precession aLd nutation effects 
that are included to dxpress the acceleration in the 1950.0 system. These rota
tions are discussed in Sections 3.3.1 and 3.3.3. 

4.3.2 Associated Partial Derivatives 

Th~ partial derivativeEi of at. with res~ct to r;, are 0btained by differentiatL,g 
Equ.atlon (4-21) yielding 

(4-42) 

The required partial derivatives of otj;/Or, atj;/o¢, and atj;/oA with respect to l'b 
are obtained by differentis:cing Equation (4-28) as follows 

r"l 
021.J1 02y; (fly; " l or or2 orr,¢ orOA orb 

o -jy; 
= 

o2tj; )2tj; 02 ..;; _0.:: (4-43) - - o¢or C.:j)aA 

"'[::j 0.1>2 arb 

02ljJ 02
1./1 021jJ OA 

(lA oAor dA-2kb 0,2 orb I, 

In order to minimize computations, the symmetry property of the second partial 
derivatiVf':s of tj> is utilized as indicl:.ted below 



1 "
k

21.'-')nL?20/ /_ (n+ 2) (n+ I) (Cm cos mk 4 Sm :in._l P_(sin_) '{- i
?r 2 ra n n -_n " 2 m'O

2?2SO- "Saga= -/_ (n + 1) (C_ _os m:<+ S m sin re)v) i
?r ?_ ?_r r a n='2 mffiO

#

x [Pm+l(sin _) - m tan CP_(sin _)] ,,1

co n -}
e'

Eaag' - a2q - Y" E (n+ 1) m(S2cosma-C2sinmZ)P_tsinq., )?r_% B)vBr r 3 \r Inffi2 m=O

?2_P-_E (Cmcosm), +am sinma){tanCpm+l(sinqb3 (4-44)
_(_2 n'2 m'O

+ [m2 sec 2 q_ - m tan 2 qb - n(n + 1)] P[,uin q_)}

2 '
n _.,,. '_

b2qa _ 3a_O _b_ m(Snm cos m_.-C m '_inm)v) (Pnm+t(sinc_)n

._ nm2 m=O

- m tan 4)Fnm(sin _))

_2_o _ _* 2 m S m P_(sin,_)..... m (C cos mk + sin m)v)
-Ok2 r " !

n'2 rnIO ,_'

The partial derivatives of r, _, and k with respect to r b are given in Ecraations
(4-35) through (4-_,7). The required second partial derivatives of r, ¢_, and x

with respect to F b are obtained by differentiating Equations (4-35)through (4-37) a (

with respect to Y , yielding _ ib

_2 r 1 7b-f °'"

= - (4-45)

._ _ 7] ' :

!

i! . J

• .)
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'0
2

1/; =~ ~('Re)n (n + 2) (n + 1) f; (c~ cos rnA 4 s~ dnrrA) P~(sincp) 
~r2 r3 L r ~ 

J n - 2 maO 

<J) (R)n n 
rPl/J = 'JI/; = _!::.. ~....: (n + 1) )' (Cm L03 rn,\. ~ s~ sin rnlc) 

'Or o¢ 'o¢ '0 r r3 L r L n 
n~2 maO 

00 ( )n n 02 , 02 R 
_'f_ = _l/J_ = _.!!:.... )' \-!. (11 + 1) ~ rn(Sm cos rnA _ Cm s in rnA) pm ,s in ¢) 
or'OA oA'Or 3 L \ r L n n n 

r n"2 maO 

(4-44) 

- rn tan ¢F~(s in <p)) 

The partia] derivatives ofr, <P. and A with respect to fb a.re given in Zq'.1aUons 
(4-35) through (4-~7). The required second partial derivatives of r, 1:1 • and ,\ 
with respect to rb E.re ohtained by differentiating Equations (4-35) through (";'-37) 
with rsspect to r , yielding 

b 

(4-45) 
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r _ r 2

72_ 2 ?Xb 3Yb _ 1 0 0 (4-47)

- + Yb * (Xb2+ yb2)
0 0 '

where _,:_b,/kYb, _-yb/brb, and _Zb/0_, are (1, 0, 0), (0, 1, 0), and (0, 0, 1),.#
respectively.Y

• The symmetry properties of the second partial derivatives of r, ¢, and k yield
"_ ,,P ."

_2 _2 _2 32 A _2
- , - , = _. (4-48) ,.

"dXb:'Yb CYb _Xb ('_Xb I')Zb OZb _)Xb "Yb aZb "_Zb 7Vb !

As noted previously, the lcotential function _, satisfies Laplace's equation, ._2...._ 0.
Therefore,

_2V' + (4-49)

2 \3y_ _'_z_ _ _'__)x b
i'

- In view of this and the symmetry of the matrix in Equation (4-43), it is necessary ,:

to compute only the three elements above the principal diagonal and two el::ments

on the principal diagonal.

The equations for computing the elements of the C-matrix appearing m the i
variational equations (Equation (4-7)) are obtained by differentiation of Equation

(4-27) with respect to C_ and Smn

'% _,,- , ,_/ , 4X (4-50)

_Cm ,_Cm \ ._r,, -- ;.,C m .,C m \#\] dr bn n rb n rl, n

T

_,i_O_UCIBILIrY OF TIlE i==I _
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(l2..;: 1 ~':b J _ Zb'~ [ ex.) (Yb)] --- - ~ - +Yb -
- -2 (x ~ + y;)3 '2 orb \ arb (4-46) cr b ~::rb r

2J 

C C \ 2 ~ 1 _ JZb \ zb - -T 
- r -'+7 I--r r 

2 2 b ,_ b 2 b b 
r \ Xb T ~ ,:' r b) r 

-Yb l 0 -1 0 

"('2,\ 2 l ('x.) CYb)l 1 1 0 0 (4-47) 
~--- ~ ~ - + Yb - + 

0- 2 (l{2 + v 2 \ o.J "b O'b ~ Cx; + Y;) rb b J b I 

0 0 0 

where (1x/cr
b

, ,"y/e:r
b

, and cz/2r;) are (1, 0, 0), (0, 1, 0), and (0, 0, 1), 
respectively. 

The symmetry properties of the second partial derivatives of r, 0:, and !I. yield 

::---
2~ :'Yb cYb .'-<xb 

(4-48) 

As not3d previously, the ~otential function if! satisfies Laplace's equation, ,"'.,2 '';' = 0. 
ThClrel.0re, 

(4-49) 

In view of this and the symmetry of the matrix in Equa.ion (4-43), it ib necessary 
to compute only the three elements above the principal -:iiagonal and two ebments 
on the principal diagonal. 

The equations for computing the elements of the C-matrix appearing In the 
variational equations (Equation (4-7» are obtained by differentiation of Equation 
(4-27) with re5pect to C~ and S~ 

(4-50) 
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g

i ° :where the second partial derivatives of W are obtained by differentiating Equation !
¢_ (4-28) with respect to C" and S _ - t• n rl

i 1

_/_r - " (n + 1) cos mkP_(sin_)

r3_b,/?(_ [= bL e [P:+I(s in _) m tan ,;_P:(s in _)] (4-52)_ cos mk -
;: _C m .

,_" n

: _, ?,_/?,\_ - m s i n mhP:(s i n q.)

r" - -

•;° I_V_/?r _1(n + 1) sinm,\P_(sin(_)

r

., b 15V_/_¢- = (_) sinm)_[P:+l(sin_)-m tancP_(sin¢)] (4-53)

_b/Sk m cos m,_P:(s in _) ,"
,&J

• " As in the case of the accelerations due to nonsphericity that were developed in

. " " Section 4.3.1, the partial derivatives for use in the variational equations must be

} transformed from the body-fixed axes to the iner_.ial mean of 1950.0 coordinates.
, As discussed previously, these transformations can be determined to high pre-
:. cision, or by a simpler and faster method in which polar motion is neglected. ,:

: In the mor_ .accurate option, where polar motion is accounted for the transfor-
i: ".:2." '

mations of the partial derivatives of RNS with respect to R ave determined by
taking partial derivatives of Equation (4-39) as: follows i

k ._.
_ _ - (BC)T _ BC (4-54)

The matrices C and B are presented in Sections 3.3.1 and 3.3.2, respectively.

i
: In the simpler option, polar motion is neglected and :a_,, as well as its partial
: derivatives, are calculated with respect to the true of date coordinates. This ,

is accomplished by replacing (r b , Xb, YU, ZU) it, Equations (4-39), (4-42), (4-43),
and (4-45) through (4-49)' by (r, >., y, z), the true of date coordinates, and by

replacing tim matrix B with the identity matrix I in Equations (4-39) and (4-54).

t
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(4-51) 

where the second partial derivatives of 'P are obtained by differentiating Equation 
(4-28) with respect to C~ and S ~ 

1 

cos m'\ [pm+l(s in rp) - m tan (ppm(s in c,b)] 
n n 

(4-52) 

ct.J.;/or 

0 
Jt/J/ocp = (~1(:er oem 

- ~ (n + 1) cos m,\pm(s in cp) 
r n 

n 

0'./;/0,\ - m s in m'\P~(s in '1') 

-!. (n + 1) sin m,\pm(s in rp) 
r n l 
sin m'\ [pm+l(s in cp) - m tan ctpr.l(s in ct)]J 

n n 

m cos m,\P~(s in cp) 

(4-53) 

As in the case of the accelerations due to nonsphericity that were developed in 
Section 4.3.1, the partial derivative!:: for use in the variational eq'lations must be 
transformed from the body-fixed axes to the inertial mean of 1950.0 coordinates. 
As discussed previously, these transformations can be determined to high pre
cision, or by a simpler and faster method in. whieh polar motion is neglected. 

In the mort: Rccurate option, where P9.lar motion is accounted for, the transfor
mations of the partlal derivatives of RNS with respect to R are determined by 
taking partial derivatives of Equation (4-39) af' follows 

(4-54) 

The matrices C and B are presented in Sections 3.3.1 and 3.3.2, respectively. 

In the simpler option, pola)' motion is neglected and a
h 

' as well as its partial 
derivatives, are calculated with respect to the true of date coordinates. This 
is aC00mplished by replacing (rb ' x b ' Yb' zb) it. Equations (4-39), (4-42), (4-43), 
and (4-45) through (4-49)' by (r, >., y, z), the true of date coordinates, and by 
replacing the matrix B with the identity matrix I in Equations (4-39) and (4- 54). 
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The partial derivatives of R_s with respect to model parameters C: and S:
are obtained for the more accurate option as follows •

. cab (4-55)
_RN¢ _ (BC,_T __

:

_RNs _b
= (BC)T (4-56)

For the simpler option, (r b , Xb, Yb' Zb) is replaced by (r, x, y, z) in Equations
(4-50)and(4-51),and the matrix B isreplacedby theidentitymatrix I in Equa-
tions(4-55)and (4-56).

: _ 4.4 INDIRECT OBLATION PERTURBATION MODEL _

i
/

Up to this point two types of gravitational accelerations acting on the space-
crafthave been considered:theaccelerationdue ton-pointmasses, measured •

relative to one of the point masses, called the reference body; and the acceler- "
• ationarisingfrom thenonsphericalportio_of thegravitationalpotentialsof one

or more cfthen bodieswhich directlyinfluencethe spacecraftmotion. These

nonspher:_alattractionsalsoaffectthe inertialaccelerationofthe reference
body,re,,:uiti,agm an indirectaccelerationofthespacecraftrelativetothe ref-

erence body (Reference6). The two bodiesofmos_ concern are theearthand
m oo}L

_ Inspectionof Equation(4-26)revealsthe rapidattenuationof thegravitational "

attraction with increasing order of the spherical harmonics and increasing

distance from the body. For the earth, C° (or -J2 ) is of order 10 -3 of the
Keplerian term, while all the other harmonic coefficients are of order 10 -6 or

less. In the moon's gravitationalpotential,thesizeof thehigheror_lerterm_

relativetothecentralterm islargerthaninthecase oftheearth,but the co
isdominant. Consequently,theonlynonsphericalpotentialterms considered
for the mutual interaction of the earth and moon are the second zonal harmonics

of each, and the resulting effects are referred to as indirect oblation effects.

The complex motions of the earth-moon s:y3tem, including lunisolar precession

and nutation, phymca, libration of the moon, and perturbations in the lunar orbit,
are accounted for in GTDS. Thus, any significant indirect oblateness effects are
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The partial derivatives of -q.s with respect to model parameters C~ and S~ 
are obtained for the more accurate option as follows 

oR
NS (BC ,T o~ = 

(4-55) 

ClC m cC r 
n .1 

ClRNs 
Cl-

= (BC? _ '\ (4-56) 

ClS m ClSr.· 
n " 

For the simpler option, (rb , xb ' Yb' Zb) is replaced by (r, x, y, z) in Equation5 
(4-50) and (4-51), and the matrix B is replaced by the identity matrix lin Equa
tions (4-55) and (4-56). 

4.4 INDIRECT OBLATION PERTURBATION MODEL 

Up to this point two types of gravitational accelerations acting on the space
craft have been considered: the acceleration due to n-point masses, measured 
relative to one of the point masses, called the reference body; and the acceler
ation arising from the nonspherical portion of the gravitational potentials of one 
or mot"e cf the 11 bodies which directly influence the spacecraft motion. These 
nonspher' .... al attractions also affect the inertial acceleration of the reference 
body, re~;ulti !lg in an indirect acceleration of the spacecraft relative to the ref
erence bony (Reference 6). The two bodies of mos~ concern are the earth and 
mOOH. 

Inspection of Equation (4-26) reveals the rapid attenuation of the graVitational 
attraction with increasing order ()f the spherical harmonics and increasing 
distance from the body. For the earth, C

2
0 (or -J

2 
) is of order 10-3 of the 

Keplerian term, while all the other harmonic coefficients are of orc ~er 10-1) or 
less. In the moon's gravitational potential, the size of the higher orier term~i 
relative to the central term is larger than in the case of the earth, 0ut the c~ 
is dominant. Consequently, the only nonspherical potential terms considered 
for the mutual interaction of the earth and moon are the second zonal harmonics 
of each, and the resulting effects are referred to as indirect oblation effect~. 

The complex motions of the earth-moon sY.3tem, including lunisolar precession 
and nutation, physic~'.~ libration of the moon, and perturbations in the luns.r orbit, 
are accounted for in GTDS. Thus, any Significant indirect oblatcncss effects arc 
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due to the use of a relative coordinate system (Equation (4-16)) in place of an {
inertial coordinate system, and not to errors in the lunar ephemeris.

Considering the moon to be the spacecraft, the force acting on the point mass

moon due to the nonsphericity of the earth is (Section 4.3)

pMP_(E) = f(C i , S J,, --rEM,t) (4-57)

where C! and S! are the harmonic coefficients of the earth's nonspherical

potential', rEM is the moon's position vector in geocentric coordinates, and t is
.*he time argument used to determine the orientation of the inertial and geocentric

_. axes.

i_ Similarly, th_ force acting on the point mass earth due to tile nor 2hericity of

the moon is

:f<c! - t) (4-5s) •' i ' rME' i #

where cJ and s J are the harmonic coefficients of the moon's nonspherical
• _ potential, _ME is the earth's pnsition vector in selenocentric coordinates, and t

_ . r is the time argument used to dete_ mine the orientation 06 the inertial and seleno-

_. graphic axes.

? .. :
: The force ac_i-_ on the point mass moon due to the earth's oblateness, _MRM(E),

i produces an equal and opposite force acting on the earth. Therefore, the inertial :
acceleration of the earth due to the force of attraction between the earth ana i

moon due to the oblateness of the earth and the point mass moon is _

: i E(E)= --- RM(E) (4-59)
. _IE

_ Similarly, the force of attraction between t_e e_rth and moon due to the oblate-
_ ness of _',e moon and the point mass earth produces an inertial acceleration of

the moon given by

f _M(M ) _E "': - _ RE(M) (4-@0)
?. /_ M

/

' "_ 4-19

:

9760 7203- 39

due to the use of a relative coordinate system (Eqm.tion (4-16» in place of an 
inertial coordinate systt:m, and not to errors in the lunar ephemeris. 

Considering the moon to b~ the spacecraft, the force acting on the point mass 
moon due to the nonspheridty of the earth is (Section 4.3) 

(4-57) 

where CJ and S j are the harmonic coefficients of the e&.rth I s nonspherical 
1 _ 1 

potential, r EM is the moon I s position vector in geocentric coordi!lates, and t is 
the time argumel1t used to determine the orientation of the inertial and geocentric 
axe.,. 

Similarly, the force acting on the point mass earth due to tile nor .Jhericity of 
the moon is 

-
i-'-t:~(M) = f(c~, st, [ME' t) (4-58) 

where c J and s J are the harmonic coefficients of the moon IS nonspherical 
1 _ 1 

pot~ntial, r ME is the earth I s pl)sition vector in selenocentric coordinates, and t 
is the time argument used to detel. mine the orientation o( the inertial and seleno
graphic axes. 

The force aC1~""; on the point mass moon due to the earth's oblateness, fLMRM(E), 

produc~c;: an equal and opposite force acting on the earth. Therefore, the inertial 
acceleration of the earth due to the force of attraction between the earth ana 
moon due to the oblateness of t.he earth and the point mass moon is 

(4-59) 

Simil&.rly, the force of attraction between He e'lrth ann moon Jue to the oblate
ness of ~'.e moon and the point mass earth p!'oduces an ill!:~rtial acceleration of 
the moon given by 

(4-60) 
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Therefore, the inertial acceleration of the earth due to the oblateness of the
" earth and moon is

Rz =R_3 M) +Rz (E) =-_M M(E)-m E(M , l
#m

., and the inertial acceleration of the moon due to the oblateness of the earth and

moon is _.

RM= _M(E) • R.(M) = P'E _ _E(M (4-62)

The resulting indirect acceleration of the spacecraft is equal and opposite to the

j acceleration of the reference body; consequently, -

_'_ - Rz = _u _M(E) _ _ _E(M when the earth is /t '
_ _M the reference body _-"

-" IR.to _--_ (4-63) i

-RM'"= -_ [_'_E_M(E) _ 1__RE(M)7 when the moon is iI_ _M J the reference body

The method for determ!ning the inertial acceleration of the point-mass moon _.

due to an oblate earth, RM(E)uand the inertial acceleration of the point-mass

earth due to an oblate moon, R z(M), are presented in Section 4.3. However, ,,
since the effects of the higher harmonic terms can be neglected for this appli- : ,_

\ cation and only _he second zonal harmonics considered, the gravitational potential

in Equation (4-26) reduces to "

0 (4-64)
qa(r, ¢1 = _._ C_ (3 sin a _ - 1)

<
The partial derivatives of 7' with respect to r and 4: are

¢,/J_ 3 _ , ReC_(3 sin _ __ l)

?r 2 r4 (4-65) _

_b_ ; R C_3 sin_/ cosct,
_¢' r x _,.
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Therefore. the inertial acceleration of the earih due to the oblateness of the 
earth and moon is 

(4-61 ) 

and the inertial acceleration of the moon due to the oblateness of the earth and 
moon is 

(4-62) 

The resulting indirect acceleration of the spacecraft is equal and opposite to the 
acceleration of the reference body; consequently, 

when the earth is 
the referciic~ body 

when the mO(\n is 
the reference body 

(4-63) 

The methorl for determ!p.ing the inertial acceleration of the point-mass m(lon 
due to an oblate earth, RM (E),. and the inertial acceleration of the point-mass 
earth due to an oblate moon. R E (M). are presented in Section 4.3. However. 
since the effects of the higher harmonic terms can be neglected for this appli
cation and only the second :t;onal harmonics considered, the gravitational potential 
in Equation (4-26) reduces to 

tj;(r, ¢) =.!:!:.. C~ (Re)2 (3 sin2 <p _ 1) 
2r r 

(4-64) 

The partial derivativ(>s of V) with respect to r and 1; are 

(4-65) 

j-'RC03 . _ ? SIr. ,{ cos cf' 
3 e . 

r 
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and the partial derivatives of r and ¢ with respect to _ are_ i
- sin ¢ cos _-- I

r TT 8¢ 1 (4 -66)
- - -sin_sink

_ r _¥ r cos _ i

_ cos 2 _

Since the oblate potential model is symmetric about the pole, and neglecting
polar motion, the inertial acceleration of the point mass moon due to the earth's
oblateness can be expressed in geocentric true of date coordinates

T(Z)

_'rM/ k _'rM /

a T. ° i
=-'2 4 Rec°(asin2_M- I)--+ sin¢_; sinA (4-67) : /#

4 COS c_M " _.-rM r M
rM o .,

COS- _LM
!

where _E "_the gravitational constant of the earth

i R _ the equatorial radius of the earth

C° _ the second zonal harmonic coefficient for the earth
#

"_: YM_ the lunar position vector in true of date coordinates

,, _: CM"_ the geocentric latitude of the moon .

_ k. "_ the right ascension of the moon i_: true of date coordinates '

_, The acceleration vector _ is transformed to inertial mean of 1950.0 coordi-(E)
nates via _he transformation matrix CT of Section 3.3.1.3, i.e.,

R M(E) = CT aM(E) (4-68)

rhe inertial acceleration of the point mass earth due to the moon's oblateness

is expressed in selenographic coordinates as

_ _
2

_' _E(M) : 3 t:M 3"M R.,c°
r-_R_c,O(3sin2 1) r_ t sin sink '4 cos /E (4-69)E IE rE

c°s_ '/E

$
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and thc partial dcr~vatives of rand 1; with respcct to rare 

- sin ¢ cos A 

r 

o¢ 1 
or - r cos ¢ 

-sin¢sinA (4-66) 

Since the oblate potential model is symmetric about the pole, and neglecting 
polar motion, the inertial acceleration of the point mass moon due to the earth's 
oblateness can be expressed in geocentric true of date c(;ordinates 

~(E) = ~ (arM) + ~ (o~)T 
arM or o~ cr 

M M 

where f.LE ""' the gravitational const~.nt of the earth 

R e ""' the equatorial radius of the earth 

c~ ""' the second zonal harmonic coefficient for the earth 

fM ""' the lunar position vector in true of date coordinates 

cP M '" the geocentric latitude of the moon 

AM ""' the right ascension of the moon in. true of date coordinates 

(4-67) 

The acceleration vecto.:' a (E) is transformed to inertial mean of 1950.0 coordi
nates via the transformatf'on matrix CT of Section 3.3.1.3, i.e., 

.. 
RM (E) :: C T aM (E) (4-68) 

rhe inertial acceleration of the point mass earth due to the moon's oblateness 
Is expressed in selenographic coordinates as 

t 
sin ,IF.. cos '~ 

R cO ~ "' 2 --- - sin' sin'\ 
cos i E E E (4-69) 

cos~ " , IE 
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where _- the gravit,_,tional constant of the moon/x M

_- Rm_ the eq,mtorial radius of the moon

c ° "_ the second zonal harmonic coefficient for the moor :

•: _- _ the position vector of the earth in selenographic coordinates ,
_ E i

. ¢_: "_ the selenographie latitude of the earth

_. " h E _ the se!enographic longitude of the earth

Transformation of g._(M) to inertial mean of 1950.0 coordinates yield_
t

RE(M) - CTMT_E(M) (4-70) .,

i ,_ i where the M T matrix transforms from selenograph_c to selenocentric true of i :
_ i 1 date coordinates (Section 3.3.3), and the C T matrix ;ransforms from true of I

_ : j date to mean of 1950.0 coordinates. If a true of re_erence date inertial system ' /,; is being utilized, then the C T matrix in Equations (4-C,8) and (4-70) is set equal I " "
to the identity matrix. '

4.5 AERODYNAMIC FORCES AND ATMOSPHERIC MODELS

4.5.1 _ntroduction

The modeling of the aerodynamic force acting on a spacecraft in a near-
ear'.h orbit is difficult from two standpoints. First, the characterization of the
deL,sity at very high altitudes above the surface is extremely complex. Although "}

\ the exact natures of the phenomena are not well understood, there is experi- :
:' \ mental evidence that diurnal and seasonal variations, as well as effect_ due to

changes in solar flux and geomagnetic activity, can be modeled with some degree ._'=
of success.

Atmospheric density models can be divided into two types. Models of the first
type are characterized by their dependence on altitudc and their independence _:'

of any other parameters. Those of the second type are characterized by their : !_
_ dependence not only on altitude, but also on the position of the sun relative to ' :

the earth and the amount of energy emitted from the sun. :i
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where J1-M '" the gravitrttional constant of the moon 

R '" the eCl'.latorial radius of the moon m 

c ~ '" the second zonal harmonic coefficient for the mooI' 

r
E 

'" the position vector of the earth in selenographic coordinates 

¢ .. '" the selenographic latitude of the earth ... 
.\E '" the selenographic longitude of the earth 

Transformation of ~ (M) to inertiaJ mean of 1950.0 coordinates yieldf 

(4-70) 

W;lere the M T matrix transforms from selenographi c to selenocentric true of 
date coordinates (Section 3.3.3), and the CT matrix ~ransforms from true of 
date to mean of 1950.0 coordinates. If a true of reference date inertial system 
is being utilized, then the C T matrix in Equations (4-E.8) and (4-70) is set equal 
to the identity matrix. 

4.5 AERODYNAMIC FORCES AND ATMOSPHERIC MODELS 

4.5.1 Tntroduction 

The modeling of the aerodynamic force acting on a spacecraft in a near
ear~h orbit is difficult from two standpoints. First, the characterization of the 
density at very high altitudes above the surface is extremE"ly complex. Although 
the t;xact natures of the phenomena are not well understood, there is experi
mental evidence that diurnal and seasonal variations, as well as effects due to 
changes in solar flux and geomagnetic activity, can be modeled with some degree 
of success. 

Atmospheric density models can be divided into two types. Models of the first 
type are characterized by their dependence on altitude and their independence 
of any other parameters. Those of the second type are characte:oized by their 
dependence not only on altitude, but also on the position of the sun relative to 
t!le earth and the amount of energy emitted from the sun. 
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Several atmospheric models have been constructed over the past se,,er_l years

(References 7-14) to account for various geomagnetic and solar activities. There

are three main types of sohr radiatign known to affect the atmospheric density.
The first type, which is the most important in terms of the effec_ on the structure

of the atmosphere, results from solar ultraviolet radiation impinging on the {
atmosphere; its effect on temperature and dez,_ity is maximum two to three hours : ,

after loca._, noon. This r_diation heats the atmosphere by conduction and theceby
increases the density at higher altitudes. The process is known as the diurnal

(or day-night) effect and causes a redistribution of density, resulting in a diurnal

bulge in the atmosphere. The second type of solar activity affecting the atmos-
phere results from extreme ultraviolet radiati(m. The atmospheric oscillations
that are in phase with this solar flux are often referred to as the erratic or 27-

day variations, since the oscillations sometimes exhibit a semiregular character
fcy intervals of several months, during which a period of 27 days is easily

recognizable:. It has been found that the decimetric flux from the sun apparently
varies in the. same manner as the extreme ultraviolet emission, and can therefore

be used as a fairly reliable index of short-term solar activity. The decimetric

flux, specifically the 10.7 cm radiation, is expressed in units of 10 -2` watt/m2/

cps bandwidth and is denoted by the symbol F10" 7 • The third type of radiation
is corpuscular in nature and is referred to as the solar wind. It is responsible ,_
for the changes in intensity and energy spectrum observed in the cosmic radi- _1

:_ ation and is the largest single factor affecting short-term fluctuations m theatmospheric density. Experiments on board Pioneer V were the first to establish
that the ll-yeaz" solar (sun spot) cycle is a phenomenon that is not localized near
the earth or its immediate environment but rather affects large volumes of I:he

inner solar system. The solar wind is modeled as an interplanetary plasma
streaming radially and irregularly outv'ard from the sun, compressing the earth's

Ca$ '

_:: magnetic field on the sunward side and extending it on the night side.

_ Atmospheric oscillations connected with geomagnetic storms are of significant _,
\, _! amplitude but of very short duration (one or two days). Present-day studies '

indicate a correlation of atmospheric density with geomagnetic activity.
i:

Apart from the difficulty of accurately representing the environment (density) '

at the spacecraft location, _he second aspect of the problem l'c_ in _he complica-

•.ionofrigorouslymodelingtheforceitselfas a functionof spacecr_t configura-
tionand atti' _e.

_. GTDS provides the user with the choice of two atmospheric density nmdels and

i three types of force representation. The atmospheric density models availab'e
are the Modified Harris-Pries_er and the Roberts analytic formulation of the

Jacchia 1971 model. The Harris-Priester model is the simpler of the two and

permits the most rapid computation of density. It does not include effects due
to seasonal variations or to changes in solar flux or geomagnetic activity, as

_; _ does i,_._ Jacchia-Roberts model.
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Several atmospheric models have been constructed over the past se"er::.l years 
(References 7 -14) to account for various geomagnetic and solar activities. There 
are three main types of sohr radiation known to affect the atmoRpheric denSity. 
The first type, which is the most important in terms of th~ effect on the structure 
of the atmosphere, results from solar ultraviolet radiation Lnpinging on the 
atmosphere; its effect on temperature and dehsity is maximl..tm two to three hours 
after loca1. noon. This ,'loiation heats the atmosphne by conduction and thel'coy 
increases the density at higher altitudes. The process is known as the diurnal 
(or day-night) effect and causes a redistribution of density, resulting in a diurnal 
bulge in the atmosphere. The second type of solar activity affecting the atmos
phere results from extreme ultraviolet radiation. The atmospheric oscillations 
that are in phase with this solar flux are often referred to as the erratic or 27-
day .. ariations, sinct> the oscillations sometimes exhibit a semiregular character 
fc:" intervals of several months, during which a period of 27 days is easil~r 
recognizablf:. It has been found that the decimetric flux from the sun apparently 
varies in th£, same manner as the extreme ultraviolet emission, and. can therefore 
be used as a fairly reliable index of short-term solar acti'/ltV. The decimetric 
flux, specifically the 10.7 cm radiation, is expressed in units of 10- 22 watt/m2

/ 

cps bandwidth and is denoted by the :::;ymbol FlO. 7 • The third type of radiation 
is corpuscular in nature and is referred to as the solar wll1d. It is responsible 
for the changes in intensity and energy spectrum observed in the c08mi~ radi
ation and is the largest single factor affectmg short-term fluctuations 10 the 
atmospheric density. Experiments on board Pioneer V were the first to establish 
that the ll-year solar (sun spot) cycle is a phenomenon that is not localiLed near 
the earth or its immediate environment but rather affects large volumes of the 
inner solar system. T~e s'llar wind ~s modeled as an interplanetary plasma 
streaming radially and irregularly out\"ard from the sun, compressing the earth's 
magnetic field on the sunward side and extending it on the night side. 

Atmospheric oscillations connected with geomagnetic storms ~re of si~nificant 
amplitude but of very short duration (one or two days). Present-day studies 
indicate a cor re lation of atmospheric density with geomagnetic acti vi ty . 

Apart from the difficulty of accurately representing the environment (density) 
at the spacecraft locatio:l, the second aspect of the proHem l:.c:::: in the complica
tion oi rigorously modeling the force itself as a fmiCtion of spacecraft configura
tion and atti' ':I.e. 

GTDS provides the user with the choice of two atmospheric density nwdels and 
three types of force representation. The atmosphet'ic density models available 
are the Modified Harris-Priester and the Roberts ana!ytic formulation of the 
Jacchia 1971 model. The Harris-PrieBter model is the simpler of the two and 
permits the most. rapid computation of density. It ooes not include effects due 
to ~easonal variations or to changes in solar flux or geomagnetic activity, as 
does ~te Jacchia-Roberts model. 
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The aer_lynamic force ,.an be represented, at t'ae specification of the user, as ]

• a simple drag force acting along the relative wind vector on a spherical
_ spacecraft

" _ a force with components normal to and along the axis of a cylindrical i
: spacecraft

• a force with components along each of the three spacecraft body axes for
a configuration consisting of a cylinder with solar paddles oriented at
some ,angle to the axis of the cylinder.

These modeling options are described in det dl in the following sections. The

: aerody,amic force modeling is discussed in Section 4.5.2, the J_cchia-Roberts
atmospheric model in Section 4.5,,4, and the Modified Harris-Priester atmos-

" pheric model in Section 4.5.6.

4.5.2 Aerodynamic Force Modeling

•_ Rigorous treatment of the aerodynamics of free molecular flow involves the

_' representation of the compiex interaction of the atmospheric molecules with
• the surface molecul.es of the spacecraft. Under certain conditions, this inter-

action is characterized as a specular or perfectly elastic reflection of the
impinging molecules. The reflection is termed diffuse when the impinging

: molecules penetrate the surface, experience multiple collisions with the body

:: molecules, and are re-.emitted randomly with no memory of their prior history.
In the case of specular reflection, there is no momentum transfer, and hence

no force, tangential to a local surface element. Diffuse reflection does result
in such a component of force, although it is small. In general, both types of
phenomena are involved to varying degrees, depending upon the details of su,'face '

', reflectivity and emi.ssivity, temperature, free-stream constituents and their• -_.

, mean molecular motion. Conditionstypicalof most actualsituationsresultin

forceswhich can be adequatelyrepresentedinterms ofthespecularreflecti_m
equaLions.Therefore,theforcemodelingin GTDS rr kes thissimplifying
assumption,and computes theforceactingon a localsurfaceelement as the
momentum transfernormal to thatelement.

The forces on all elements of the spacecraft surfaces exposed to the free-
stream must be resolved in some coordinate frame and summed in order to

' obtain the total aerodynamic force acting on the spacecraft. This resolution has
',', been performed for a number of elemental ohapes at various orientations. GTDS
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The aer.x:lynamic force e~Ln be represented, at the specification of the user, as 

• a simple drag force acting along the ffJlative wind vector on a spherical 
spacecraft 

... a force with compc'nents normal to and along the ciXis of a cylindrical 
spacecraft 

• a force with componen~s along each of the three spacecraft body axes for 
a configuration consisting of a. cylinder with solar paddles oriented at 
some angle to the axis of the cylinder. 

These modeling options are described in det til in the following sections. The 
aerody lamic force modeling is discussed in Section 4.5.2, the J!lcchia-Roberts 
atmospheric model in Section 4.5,A, and the Modified Harris-Priester atmos
pheric model in Section 4.5.6. 

4.5.2 Aerodynamic Force Modeling 

Rigorous treatment of the aerodynamics of free molecular flO\l1 involves the 
representation of the complex interaction of the atmospheric molecules with 
the surface molecules of the spacecraft. Under cerLin conditions, tl-ds inter
action is characterized a3 a specular or perfectly elastic reflection of the 
impinging molecules. The reflection is termed diffuse when the impinging 
molecules penetrate the surface J experience multiple collisions with the body 
molecules, and are re-·emitted randomly with ao memory of their prior history. 
In the case of specular reflection, there is no mom0ntum transfer, and hence 
no force, tangential to a local surface element. Diffuse reflection does result 
in such a component of force, although it is small. In general, both types of 
phenomena are involved to varying degrees, depending upon the details of sud ace 
reflectivity and emIssivity, temperature, free-stream C()Ostituents and their 
mean molecular motion. Conditions typical of most actual situations result in 
forces which can be adequately represented in terms of the specular reflecti;~il 
equaUons. Therefore, the force modeling in GTDS IT kes this simplifying 
assumption, and computes the force acting on a local surface element as the 
momentum transfer normal to that element. 

The forces on all elements of the spacecraft surfaces exposed to the free
I:!tream m1.~st be resolved in some coordinate frame and summed in order to 
obtain the total aerodynamic force acting OD the spacecraft. This resolution has 
bf>en performed for a number of elemental c-hapes at various orientations. GTDS 
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I w makes use of the force coefficients defined in Table 4-I for spheres, cylinders,

and flat plates. A force coefficient, C F , is defined as the nondimensional

quantity "i

F (4-71)

CF -__I ) '
2 pV2A i.

where !

F = the magnitude of the force acting on the object

/) = the density of the medium through which the object is moving i

V = the magnitude of the velocity of the object with respect to the medium i

producing the force

A = an arbitrary reference area !

The velocity of the spacecraft relative to the atmosphece is determined in the _ /tinertial coordinate system by subtracting the motion of the atmosphere, assumed _

to rotate with the earth, from that of the spacecraft

.j - i
V_, = R- =× _ (4-72) ,l

The earth rotation vector _ must be apI)ropriately defined in the inertial frame

(mean equator and equinox of 1950.0 or true equator and equinox of reference _I

date). )
l

For the ease of a spherical spacecrafL the drag accelm ation is computed simply i

\. using the general form of Equation (4-71) and C D = 1.0 from Table 4-1 ' ,

RD = _ Ss_,_ret l_rell (4-73)

where

#

4-25

1976017203-145

makes use of the force coefficients defined in Table 4-1 for spheres, cylinders, 
and fJat plates. A force coefficient, C F' is defined as the nondimensional 
quantity 

where 

F 
C :::--

F 1 
-pV2 A 
2 

F the magnitude of the f'')rce acting on the object 

p ::: the density of the medium through which the object is moving 

(4-71) 

V the magnitude of the velocity of the ohject with respect to the medium 
producing the furce 

A ::: an arbitl.'ary reference area 

The vdocity of the spacecraft relative to the atmosphel'e is determined in the 
in0rtial coordinate system by subtracting the motion of the atmosphere, dssumed 
to rotate witt. the earth, from that of the spacecraft 

(4-72) 

The earth rotation vector w must r)e appropriately defmed in the inertial frame 
(mean equator and equinox of 1950.0 or true equator and equinox of reference 
date). 

For the c&.se of a spherical spacecraft., the drag accelel ation is computed simply 
using the general form of Equation (4-71) and CD ::: 1.0 frum Table 4-1 

.. 
R = - s -V I V I D sf-' rei I rei 

(4-73) 

where 

1 (A) 1 ("02
) S--C -----

s .0 2 D m - 2 4m 
(4 -'j 4) 
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Table 4-1 

Aerodynamic Force Coefficients for Elementary S.1rfaces 

,.....-
Reference Direction for 

Force Coefn~ient(s) Direction of 
.,urface Shape Measurement of Angle a Reference Area 

to f<elative Velocity Vector 
as Functions of a Force Component 

.: 

Sphere Relative wind velocity Cross -sectional Co = 1.0 Along relative 
area of sphere wind vector 

f-
Circular Cy linder axis Length times 

C 
4 

sin2 a 
Nm:mal to cylinder 

= 
Cylinder diameter of NC 3 axis in the plane of 
(exterior sur- the cylinder the axis and the 

face only) relative vdocity 

! -
CA = 0 Alol1g cylinder 

c axis 
---

Flat Plate Normal to plate Area of plate CN 
= 2.0 cos2 u. Normal to the plate 

p 

CT = 0 Tangent to the plate 
p 
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d is the spacecraft diameter, and m is the mass. If there is propulsive thrust

acting, the mass m is variable and is represented as a polynomial in the burn
time. The polynomial coefficients are assumud to be known inputs.

When the spacecraft configuration is more complicated than a sphere, it is

necessary to know the attitude, in addition to the orbit, in order to model the i
aerodynamic force.

It is not necessary to compute the entire direction cosine matrix Q when the ; .;
spacecraft is a cylinder (v_ith enclosing end plates). Due to the axial symmetry, ,L-

it i_ onlynecessaryto know thedirectioncosinesq11,q21,q31 ofthecylinder '_

axis.

l The unit vector ',

= qll T + q21]- + q31 _ (4-75)

then gives the axis orientation in the inertial coordinate frame. As indicated in ';;

Table 4--, the force component along the axis is p, oportional to the square of /
the velocity component normal to the end plates. The normal force compo- -/

. . nent is proportional to the square of the velocity _omponent normal to the

, ,. cylinder.* Therefore, the velocity relatbre to the atmosphere is resolved into
normal and axial components in order to obtaip the total acceleration for the _

cylindrical spacecraft as

ii
]

,}

• A=-SeXB(Y'_'Vre l) IXB'Vre i {4-76) _'
5

4

R D = ;(N + A) --
\

• This is analogous to the solar radiation case, where the force ms proportional tn the effective area
normal to the incident radiation (Section 4.6), and the determination of this effective area is

directly analogous to the determination of the effective, area normal to the relative velocity vector.

,j
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d is the spacecraft diameter, and m is the mass. If there ilS propulsive thrust 
acting, the mass m is variable and is represented as a polynomial in the burn 
time. The polynomIal coefficients are assumed to be known inputs. 

When the spacecraft configuration is more complicated than a sphpre, it is 
ne~essary to know the attitude, in addition to the orbit, in order to model the 
aerodynamic force. 

It is not necessary to compute the entire direction cosine matrix Q when the 
spacecraft is a cylinder ("ith enclosing end plates). Due to the axial symmetry, 
it i3 only necessary to know the direction cosines ql1' q21 • q31 of the cylinder 
axis. 

The unit vector 

(4-75) 

then gives the axis orientation in the inertial coordinate trame. As indicated in 
Table 4- - , the force component along the axis is p~ op.:>rtional to the square of 
the velocity component normal to the end plates. The normal for~e compo
nent is proportional to the square of the velocity ~omponent normal to the 
cylinder. * Therefore, the velocity relaFve to the atmosphere is resolved into 
normal and axial compone.lts in order to obtaip. the total acceleration for the 
cylindrical spacecraft as 

{4-76) 

'This is analogous to the solar radiation case, where the force IS proportional tn the offective area 
normal to the incident radiatio:" (Section 4.6), and the determination of this effective area is 
directly analo;ous to the determination of the effectivt! area normal to the relative velocity vector. 
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! In these equgtions . ]

;, 1 CNC 1 4 2LD

_ Sc 2" sin 2 3m

(4-77)

1 CN, 1 (_d2 / _d 2 :_se-7 - 7<27_-/- V
j- ,.

: where L is the length of the cylinder and d ts the diameter. As before, m is

the spacecraft mass, which may be variable. !,

The third type of spacecraft configuration option;ally available in GTDS is a
cylinder with solar paddles, mounted on trunnion pivots which are orthogonal to
the cyl'_'nder axis. The incidence angle i defines the angle between the axis and _ip
the paddle surface. The spacecraft axis system is chosen so the x-axis corres- _,_

ponds with the cylinder axis, y is the trunnion axis, and z is orthogonal to x and y. ,_ ,'

The y axisisdirectedso _hatpositiveip correspondswithpositiverotation ,
abcat y, according to the r_gh_-hand rule. . :

This configuration is not axisymmetric and therefore requires the calculation i "
e of _i_=complete transformation matrix Q (from body to inertial axes). It is most

convenient to trans[orm the relative wind velocity into spacecraft body axes,
c,Jmpute the force components in this frame, and then transform the result back
into the inertial coordinate frame. This leads to the following equations for the -:-

aerodynamic acceleration: _ _:

VN--_¢_sini +_, ros i ._

L

: F,s --- se_.)_l -s_vN%i si. i_
: (4-78) t _"

5,,- - so_ <_g;_._ ! ,

ZB P i
.. 1

4 -'.'8
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In these equ3tionR 

Sc = !. ( ~c ) (A) ::: .!. (i) (LD) ::: 2LD 
2 s i n2 a m 23m 3m 

(4-77) 

s = 1.( <;p )(A) = ! (2' (7Td
2

)::: 7Td
2 

e 2 cos 2 u, m 2 '4m 4m 

where L is the length of the cylinder and dis thl'! diameter. As before, m is 
the spacecraft mass, which may be variable. 

The third tyt>e of spaceC'raft configuration optionally available in GTDS is a 
cylinde~: with solar phddleR, mounted on trunnion pivots which are orthog~nal to 
the cyEnder axis. The incidence an~l~ i defines the angle between thE; axis and 

p 
the paddle surface. The spacecraft axis system is chosen so the x-axis corres-
ponds with the cylinder axis, y is the trunnion axts, and z is orthogonal to x and y. 
The y axis i5 directed so iJlat positive ip corresponds with positive l'otation 
abcut y, according to the r16lH-hand rule. 

This configuration is not axisymmetric and therefore requires the calculation 
of tilt .:;,)mplete transformation matrix Q (from body to inertiR..i axes). It is most 
co~venitmt to tran~form the relative wind velocity into spaceeraft body axes, 
c1)mpute the force components in this frame, and then transform the result back 
into the inertial coordinate frame. This leads to the follOWing equations for the 
aerodynamic accelelation: 

V
N 

= x_ sin i +; ('0!; i 
"""R .. is P 

(4-78) 
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jv
• ,,v __.,..._._'-_"-'*_......... _f .q. and S. are the same as in Equations (4-77). The solar
paddle contribution is

1 C_p . 1 A Ap ':

S 2 c_s2 a. --" (4-79)\_s ;n

where the paddle area A is an input constant. '-
p ,-

The representation of the aerodynamic forces in Equations (4-79) does not con-
sider the effect of mutual shadowing or shielding from the free-stream flow _
between the cylindrical and solar paddle surfaces.* Such effects are geometri-

cally very complex, particularly if multiple interference reflections between
cyhnder and paddles are considered. The simplifications resulting from the

neglect of this phenomenon in Equation (4-78) are thought to ue consistent with .=

the original assumption of purely specular reflection in the specification of the
individual surface, type coefficients.

The factor p in the three expressions for R D is not simply the atmospheric ,,

dersity p. It also includes a scale factor
.t

_ (4-8o)
_,,; p = D (! _,/:,1)

to permit an adjustment of the _ C F product. A default value of /,_ = 0 is set

in the program. However, this value can be modified by user input, or it can be :,

estima:ed in ule differential correction process. Adju._tment of !'1 does _Lot

alter the instanta, eo_s dirv tion of RD ; it simply c;mnges :he magnitude.

"'" 4.5.3 Associated Partial Derivatives !

When the aerodynamic force op.tion is exercised in GTDS, it is necessary to

1

compare partial derivatives of RD w_th respect to vml.qtions in the spacecraft
local inertial state for use in the variati,)nal equatioi_s. For all configurations,

the portion, of the partial derivative which accounts for the effects of densityvariation is

_R D RD ,:..
- ,,4-81)

)

"Shadowingof thecylinderendplatesby thecylindrico',surface)tse:f is consldered.
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Tin;: .:1;:,fi;;-.it!(;~~ I)f H ... and Sa are tile same as in Equations (4-77). The solar 
paddle contribution is 

where the paddle area A is an input constant. 
p 

(4-79) 

The representation of the aerodynamic forces in Equations (4-70) does not con
sider the effet:!t of mutual shadowing or shielding from the free-stream flow 
between the cylindrical and solar paddle surh.\Ces.* Such effects are geometri
cally very complex, particularly if multiple iuterference reflections betwp.en 
cyhnder and paddles are considered. The simplifications resulting from tr.e 
ne~~lect of this phenomenon in Equation (4-78) are thought to I.)e consistent with 
the original assumption of purely speculal' reflection in the specificativn of the 
individual surface. type coefficients. 

The factor p in the three expressions for Ro is not si~ply the atmospheric 
deJ''3ity p. It also includes a scale fe.ctor a 

(4-80) 

to permit an adjustmeht of the f-' C F prochlct. A uefault value of /'1 = (j is Ret 
in the prllgram. However, this value can be modified by user input, or it can be 
estima~ed in 1..1i~ differenti~! correctJ.on process. Adjustr.1ent of /'1 does Hot 
alter the instantan~",\.i.~ din, tion of Ro ; it simply C;la:lbeS the magnib.de. 

4.5.3 Associated Partial Derivatives 

When the aerodynamic force op'~ion 1S exercised jn GTDS, it is necese,ary to 
compllte partial derivatives of RD w}th J:pspect to Val i!ttions in the spacecraft 
local inertial sthte for use in th~ variati'Jnal equatiolls. For all confi~rations, 
the portion of the partial derivative \,lhiJh accoul1ts for the effects of density 
v~.riation is 

.. 
ClR Rn \} f' H 0 .,4-81 ) -=-
JR I a ;,IR 

·Shadowing of the cylinder end plates b}' the cylindrico: surface Its,,:1 is con!;idered. 
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... since density depends only upon spacecraft iocal position and not upon local

._ velocity. The forms for ?p.!?P.. will be presented in Sections 4.5.5 anct 4.5.7 '
for the Jacchia-Roberts and Harris-Priester models, respectively.

All three forms for riD are expressed in terms of --V-el, which can be written
" in a slightly different form from that in Equation (4-72) t

(

VreI = R - _R (4-82)

where the matrix

=

Vr ' "PThus, the partial derivatives can be computed with respect to _1 and these ./
can then be used to compute

I
t_t" ,.

_RD_ ?R D

3R _Vre!
(4-84)

%

The partial derivatives of the three configuration forms with respect to V1 .

(xl' x2' x3) are "

Sphere: _ :

.. _ J ,

_RD = SsP Vre° VTe I + lYreII (4-85)

"d'Vre I _. IVrel I

Z
: ;

, RF RooUC mrr OZ i.i '
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since density depends only upon sp~.ct:!craft iocal position and not upon local 
velocity. The forms for op/oR will be presented in Sections 4.5.5 and 4.5.7 
for the Jacchia-Roberts and Harris-Priester models, respectively. 

All three forms for RD are expressed in terms of V
re1 

' which can be written 
in a slightly different form from that in Equation (4-72) 

VI:: R - DR re 
(4-82) 

where the matrix 

D:: (4-83) 

Thus, the partial derivatives can be computed with respect to Vre1 ' and tht:;:se 
can then be used to compute 

oRD eRD --
ClR oVrel 

(4-84 ) 

dRD ("Rn ) :: -- n 
'OR oVre 1 

The partial derivatives of the three configuration forms with respect to V 1 
re 

(Xl' X2 ' X3 ) are 

&'phere: 

(4-85) 
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Cylinder: , ,
4

• i -i

M 2 = ( x V el) " ( x Vrel) _ .

i: WI : (ql_l - 1) "_ + q]lq21"J- + qllq3lk ,

! ,(4-86) _

," W2 : q21qll T + <q2al - I) _- + q21q31k _

Wo = q31qllI + q31q21J + (q_1- I) k

4" 3R0 p ScMW i (W 'Vrei) + q, -Y_ '"

- " (i= 1, 2, 3) I •

} i :

_ '
: ¢

: ,)_

: F

f

•! ,[!
,, 4-31 ,,
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Cylinder: 

M2 :: (Y X -y ). (Y x -y ) 
-"B .el -"B rei 

0":: X .-y 
""B re 1 

(4-86) 

oR [- - ] D - N - - 2A 
-:: p S MW. - - (W • V ) + - q 
"",' c . 1 2 1 rei 0" 11 
OX. M 

1 

(i :: 1, 2, 3) 
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J' , A I.... | ............ _ i | _ ' ""

: !

Cylinder + Paddles:
3F

_ - 2 soI,_i * SpIvNisin2 ip

$ "

?Fx8
_ = 0

" _gB

" 5F

XB - 2Sp!VN] cos i sin i
_B P P

: 3F z
J YB

_ ?F F • 2 //
ScY BYB YB ._ ./

_" ° °2

OYB YB _Yg+ ZB (4-87) ]

_F
YB S _>B:_B

_F _F
zB xB

_Fzs ?.Fy_ _

?§B _iB .:

- S _ + . - 2Sp' ' "_v ,VNt cos 2 ip :

t:

3,Ro bWB
_ /,Q_ Q-I

)Vr eI 3VB

I

.,_.
,, 4-32
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Cylinder + Paddles: 

dF 
X

B [I· , -.- = - 2 Se "TIl 
?"a 

= o 

of 
xB I' -- = - 2S ,v I 

• P' N' 
cZB 

-aF 
YB 0 = 

d~ 

C3F F S ·2 
YB "B cYB 

--

dYB YB 
~ ·2 YB + 

·i 
ZB 

2F 
SCYBZB YB 

- -
ciB ' y2 + i2 B B 

cF 7)F 
zB x R = 

oXB 
~ . 
ClZB 

(jF cF 
zB Ys 

= 
;)YB (lzB 

dF 
zB 

= - S [ . , • 2 
v Ys zB c 

cliB 

?OV 1 re 

+ 
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_ 4.5.4 Jacchia-Roberts Atmospheric Model

In Reference 13, L. G. Jacchia defined two empirical profiles to represent
temperature as a function oi altitude 9nd exospheric temperature. One profile

is defined for the altitude range _rom 90 to 125 km and the other for the region

above 125 km. Jacchia used these temperature functions in the appropriate ,
thermodynamic differential equations to determine density as a function of alti-

tude and exospheric temperature. He assumed that mixing is predominant
. between 90 and 100 km, and substituted the low altitude temperature profile into

the barometric differential equation for this regime. Diffusive equilibrium was
assumed above 100 kin, leading to the use of the low altitude temperatu:e profile?
in the diffusion differential equation for altitudes between 100 and 125 km and

the high altitude temperature profile for altitudes above 125 km.

Jacchia solved these differential equations by integrating them numerically over
the altitude regions for various constant values of exospheric temperature, as-

_ _ suming fixed boundary conditions at the 90 km lower altitude limit. He then

"i; tabulated these numerical results for use in the simulation of aerodynamic drag
: effects upon satellites. Most mechanizations of this model atmosphere in com-

puter programs have involved some means for storing the tabular data and for t
z**

interpolating values at altitudes computed by the trajectory integration and at -"

exospheric temperatures calculated by the Jacchia formulas. Although the
. . densities determined by this model are a_curate, these mechanizations are gen-

erally slow running and/or require large blocks of core storage. In addition,

the absence of explicit analytic expressions means that the drag partial deriva-
tives must be calculated numerically. :_

C. E. Roberts, Jr. presented a method for evaluating the Jacchia m)del analyti-
caily in Reference 14, and this formulation is used in the mechanization in GTDS.
Roberts found that the barometric and diffusion differential equations could be f

integrated by partial fractions, using Jacchia's low altitude temperature profile
for the range from 90 to 125 km. Above 125 kin, Roberts used a different as-

ymptotic function than _he one introduced empirically by Jacchia in order to
obtain an integrable form. Apart from difficulties of numerical computations

with finite numbers of digits, the Roberts analytic expressions match the Jacchia
results exactly from 90 to 125 km and to a close approximation above 125 kin.
The existence of these analytic expressions makes possible the computation of

analytic forms for the drag partial derivatives. Since the Roberts formulas
were derived for the Jacchia 1970 model, his constants have been adjusted for
the later 1971 model. In addition, an error has been corrected m the function

W(v) given by Roberts in Equations (12) of Reference 14.
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4.5.4 Jacchia-Roberts Atmospheric Model 

In Reference 13, L. G. Jacchia defined two empirkal profiles to represent 
temperature as a function oi altitude and exospheric temperature. One profile 
is defined for the altitude range trom 90 to 125 km and the other for the region 
above 125 km. Jacchia used these temperature functions in the appropriate 
thermodynamic differential equations to determine density as a func~~on of alti
tude and exospheric temperature. He assumed that mixing is predominant 
between 90 and 100 km, and substttuted the low altitude temperature profile into 
the barometric differential equat;on for this regime. Diffusive equilibrium was 
assumed above 100 km, leading to the use of the low altitude temperatu'.e profile 
in the diffuqion differential equation for altitudes between 100 and 125 km and 
tht high altitude temperature profile for altitudes above 125 km. 

Jacchia solved these differential equations by integrating them numerically over 
the altitude regions for various constant values of exospheric temperature, as
suming fixed boundary conditions at the 90 km lower altitude limit. He then 
tabulated these numerical results for use in the simulation of aerodynamic drag 
effects upon satellites. Most mechanizations of this model atmosphere in com
puter prugrams have involved some means for storing the tabular data and for 
interpolatbg values at altitudes computed by the trajectory integration 111d at 
exospheric temperatures calculated by the Jacchia formulas. Although the 
densities determined by this model ar~ ~ccurate, these mechanizations are gen
erally slow running and/or require large blocks of core storage. In addition, 
the absence of explicit analytic expressions means that the drag partial deriva
tives must be calculated numerically. 

C. E. Roberts, Jr. presented a method for evaluating the J&.cchia m >del analyti
cally in Reference 14, and this formulation is ·used in the mechanization in GTDS. 
Roberts found that the barometric and diffusion differential equations could be 
integrated by partial fractions, using Jacchia's low altitude temperature profile 
for the range from 90 to 125 km. Above 125 km, Roberts used a different as
ymptotic function than i.he one introduced empirically by Jacchia in order to 
obtain an integrable form. Apart froln difficulties of numerical computations 
with finite numbers of digits, the Robel·ts analytic expressions Match the Jacchia 
results exactly from 90 to 125 km and to a close approximation above 125 km. 
The existence of these analytic expressions makes possible thp computation of 
analytic forms for the drag partial derivaTives. Since the Roberts formulas 
were derived for the Jacchia 1970 model, his constants have been Rd.iusted for 
the later 1971 model. In addition, an error has been correcter. ill the fll"l.ction 
W(v) given by Roberts in Equations (12) ::>f Heference 14. 
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The computations bcgin _th cquations given in the Jacchia report to determine
the exospheric temperature and corrections to the standard density due to various
effects.

Before execution of a trajectory generation, GTDS determines the total 'ime span
of interest. Then, from a permanent data file, one set of values of geomagnetic
activity data and two sets of solar flux data are retrieved. The geomagnetic data
set is the 3-hour _eomagnetic planetgry index Kp. One set of the solar flux data

is the daily average 10.7 cm. solar flux, F10" _ , as observed at the solar observ-
atory at Ottawa, Canada; the other set is the 81-day running average (centered

at the day of interest), F1o._, of Fi0.7. the solar flux data are substituted into
the equation

Tc = 379 ° + 3?24_1o. 7 _ 1,:3[Flo.7 _ _1o.7] (4-88)

I

' for determining the nighttime minimum global exospheric temperature for zero
geomagnetic activity. The preprocessing computation of Equation (4-88) is done

_. for each day of the time span of interest, beginning one day prior to the start of s
/P

the trajectory. The daily values c_ Tc and the 3-hourly values of Kp (beginning .:j
6.a7 prior to trajectory start) are stored i_ a worldng file for use in the com- l

putation of the trajectory. I

At each trajectory integration time poim, the value of T¢ is retrieved from Jae
working file for the day before the current time. _ ,is accounts for the fact that
there is a one-day lag in the temperature variatio" with respect to _.,olar flux

change. This value of T is used to compute the uncorrected exospheric tem-
perature T 1 from the formula

.. T, =T¢ (1+ 0.3[sin2"2 _Y+ (cos2"2 v-sin2"2_)cos3"°21 ) (4-89)

whefc

1

t

2

= H - 37?0 _ 6?0 sin(H _ 43?0) (-._(..r<Tr)
l

. RFPRODUCIBILITY OF THI_,
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The COly.putations begin \\ith cquations givcn in the Jacchiu report to determine 
the exospheric temperature and corrections to the standard density due to various 
effects. 

Before execution of a trajectory generation, GTDS determines the tl)tal 'ime span 
of interest. Then, from a permanent data file, 'Jne set of values of geomagnetic 
activity data and two sets of solar flux data are retrieved. The geomagnetic data 
set is the 3-hour ~eomRgnetic planetary index Kp. One set of the solar flux data 
is the daily average 10.7 cm. solar flux, F IO . 7 ' as observed at the solar observ
atory at Ottawa, Canada; the other set is the 81-day running average (centered 
at the day of interest), F'tO.7' of F IO • 7 • The solar flux data are substituted into 
the equation 

(4-88) 

for determining the nighttime minimum global exospheric temperature for zero 
geomagnetic activity. The preprocessing computation of Equation (4-88) is done 
for each day of the time span of interest, beginning one day prior to the start of 
the trajectory. The daily values c~ Tc and t.he 3-hour Iy values of Kp (beginning 
6~7 .prior to trajectory start) are stored i" a working file for use in the com
putation of the trajectory. 

At each trajectory integration time point, the value of T c is retrieved from "he 
working file for the day before the current time. r ,ia accounts for the fac\. that 
there is a one-day lag in the temperature variatio' with resPect to solar flux 
change. This value of T is used to compl.lte the uncorrected exospheric tem-

c 
perature T I from the formula 

whel"c 

1 
r; =.- Icp - t, I 2 s 

T = H - 3 7 ~ 0 + 6 ~ 0 sin (H -t 4 3 ~ 0) 

4-34 
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5s is the sun's declination, and i _

,1

(1 -f)2 (X21 : Xg),/ (4-90) i" ; _

is the geodetic latitude. The constant f is the geodetic flattening and X _, X2, X 3
are the components of the unit position vector of the spacecraft in true of date
coordinates. The -arameter i'.

. co -,
"-la°0.°L_Is,._-s_x,I sl+s__ (x_+x_)" ,

is the localhour angle of the sun (counted from upper culmination). The com- ! "_ponents $1, S2 , S3 comprise the unit vector to the sun in true of date coordinates.
t

The effect of geomagnetic activity upon atmospheric temperature and density

shows a lag behind the geomagnetic disturbance. Thus, the value of K is ,':
p 7 _,

retrieved from the working file for a time 6.h7 earlier than the current inte- , -_

_; -) gration time point. The correction to exospheric temperature is given by ' ..:
?

K _

_'_ AToo= 28?0 Kp + 0?03 e p (Z _>200 krn)

_- 14-92) "

K

_ AT== 14?0Kp +0702e P (Z<200km)) ,'

_{:_ The corrected exospheric temperature is 'i .,

_ "I_ = TI + AT® (4-93) >,

,_ and the inflection point temperature is ._

i, ?
f_

t _ -0.00216222 T_ (4-94) ',t_' Tx = 371°"6678 + 0.0518806 T_ - 294?3505 e

These two temperatures together with the _pacecraft altitude,are used in the _,Roberts equations to compute the standard density value. Howe_'er, a number ' !

_' of corrections must be applied to the standard density values in order to account "

'_' 4 -35 ,"

/
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8 is the sun's decliI'.ation, and 
$ 

{
. 1 [ X3 l} <P- tan- 1 J 

- (1 - £)2 (X~ + X;)1/2 
(4-90) 

is the geodetic latitude. The constant f is the geodetic flattening and Xl' X2 , X 3 

are the components of the unit position vector of the spacecraft in true of date 
coordinates. The narameter 

is the local hour angle of the sun (counted from upper culmination}. The com
ponents 81' 82 , 8 3 comprise the unit vector to the Slm in true of date coordinates. 

The effect of geomagnetic activity upon atmospheric temperature and deasity 
shows a lag behind the geomagnetic disturbance. Thus, the value of K is 
retrieved from the working file for a time 6. h7 earlier than the curreri .. inte
gration time point. The correction to exospheric temperature is given by 

K 
[, Too = 28? 0 K + O? 03 e P 

p 

K 
[, Too = 14 ': 0 I\ + O? 02 e P 

The corrected exospheric temperature is 

and the inflection point temperature is 

(Z ~ 200 km) 1 
(Z < 200 km) , ... 

Tx = 371~6678 + 0.0518806 Too _ 294~3505 e-O.00216222 T(X' 

(4-92) 

(4-93) 

(4-94) 

These two temperatures together with the c;pacecraft altitude, are used in the 
Roberts equations to compute the standard density value. However, a number 
of corrections must be applied to the standard denSity values in order to account 
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"; forvariousphys_ca!effects.These correctionsare givenby formulas from_ .
" JacehiaTs paper (Referenc_ 13), and will be presented before proceeding to the
' Roberts equations.

In addition to the correction to the exospheric temperature, there is another '_i

direct geomagnetic effect on the atandard density below 200 km

? K

• (13Iog10 P)G = 0.012 Kp + 1.2 x I0-s '."p (4-95)

; The semi-annual density variation is given by the following relationships (for
,: altitudeZ inkin):
.:

;, (A log,0 p )SA = f (Z) g(t) (4-96)

where

: "x. f(Z) = (5.876 x 10-7 Z 2"331 + 0.06328) e-'°°2s68:: t
, L_'

g(t) = 0.02835 + [0.3817 + 0.17829 sin(2_SA + 4.137)]

x s in(47r'rSA T 4.259) (4-97)

_SA =@+ 0.09544 + _-sin(27r¢ + 6.035 -2-

*\

JDIg58

365.2422

In the last equation JDlgss is the number ef Julian Days from January 1, 1958.

The correction for the seasonal latitudinal variation of the lower thermosphere
is

i
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for various phy!'l; cal effects. These corrections are given by formulas from 
Jacehia's paper (Reference: 13), and will be presented before proceeding to the 
Roberts equations. 

In addition to the correction to the ey...,spheric temperature, there is another 
direct geomagnetic effect on the standard density below 200 km 

-5 K 
~,0. log10 p)G = 0.012 Kp + 1.2 x 10 ',' p (4-95) 

The semi-annup.l density variation is given by the following relationships (for 
altitude Z in kIn): 

where 

(6. lO!:';lo P)SA = £(Z) g(t) (4-96) 

£(Z) = (5.876 x 10-7 Z2.331 + 0.06328) e-·002!l68·~ 

g(t) = 0.02835 + [0.3817 + 0.17829 sin (21TTSA + 4.137)J 

x s in(47TTsA T 4.259) (4-97) 

TSA = «I> + 0.09544{[~ +~ sin(27T«I> + 6.035~1.65 -~} 

JD1958 
«1>= 

365,2422 

In the last equation JD1958 is the number cf .Julian Days from January 1, 1958. 

The (;orrection for the se'lsonal latitudinal variation of the lower thermosphere 
is 
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(A lOglo P)LT = 0.014(Z- 90)e [-°'°°la(z-9°)_

(4-98)

x sin(2rr_+ 1.72) sinq_ I sinqbl ,

Finally, the correction for the seasonal latitudinal variation of helium is

-: - 0.3535 (4-99)

: _- where e is tile obliquity of the ecliptic.

As mentioned earlier, for altitudes below 125 km Roberts used the same tem-

perature profile that Jacehia used, i.e.,

4

T(Z) = T x + -- CnZ n (4-100)
354 //

n = 0 ,.,-J

il where

_" _ d 1 To

TO= 18370 K ,

2"

ix Co = - 89284375.0

?: C 1 = 3542400.0 km -1 (4-101) '

7'

C2 :: 52687.5 km-2

•_ C3 - 340.5 km-3

_, C4 : - 0,8 I':t;y4

2'

_.i and where Tx is the inflection point temperatt- (at Z_ : 125 km) given by _'
¢ Equation (4-94). Roberts substituted the terr' , ature profile, given by Equation

_ (4-100), in the barometric differential equal" ,.nd integrat."d by partial fractions ..

to ol)tain

i 4-a7

_, _ ,,_ ,,

"19760"17203-'157

r 2 I 
(6 log10 P)LT = 0.014(Z - 90) e -0.0013(Z-90) j 

~4-98) 

;( sin (271111 + 1.72) sin <p \ sin ¢\ 

Finally, the correction for the seasonal latitudinal variation of helium is 

(6 1 oglO plH. c 0.65 1 :' 1 [s i n' (; -2~:J 0.35355J 
(4-99) 

where f: is the obliquity of the ecliptic. 

As mentioned earlier, for altitudes below 125 km Roberts used the same tem
perature profile that Jacchia used, i.e., 

where 

d 4 
T(Z) = T + _1_ ) C zn 

x 4 ~ n 
35 n = 0 

(4-100) 

To = 183?0 K 

Co = - 8928437 S.O 

C1 = 3542400.0 (4-101) 

C2 :: - 52687.5 

C3 = 340.5 

C4 = - 0.8 

and where Tx is the inflection poirlt temperatt- . (at Zx = 125 km) given by 
Equation (4-91). Roberts substituted the tell' i 'lture profilf', given by Equation 
(4-100), in the barometric diff:!rential equal' I.nd ir.tegrat~'d by partial fractio'1s 
to obtain 
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M(Z) (4-102)

\ T(Z---5e p(kF )

as the expression for density for 90 < Z _< 100 kin, where the subscript "0"

refers to conditions at 90 kin. The mean molecular weight is given as

6

. M(Z) = _ AnZ" (4-103)
n=0

where

A0 = -435093.363387

A 1 = 28275.5646391 krn -1

: A2 = -765.33466108 km -2
/
: A 3 11.043387545 km -3

A4 = -0.08958790995 km -4 /
J

A s = 0.0C038737586 km -s <t

A 6 = -0.005900697444 km -6

These constants give a value of M(90) = M 0 = 28.82678, which is not too different

from the sea-level mean molecular mass Ms of 28.960.

The value of density at the lower limit is assumed to be constant at P0 =
3.46 x 10-9 gm/cm 3. The constant k in Equation (4-102) is

t

3S4gsRa2
k =

Rd1C4

where

gs = 9.80665 m/sec 2 = sea level acceleration due to gravity

R_ = 6356.766 km

R = 8.31432 Joules/°K - mole (universal gas constant)
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(
Po TO) M(Z) k 

P. (Z) = -- -- F 1 exp(kF2 ) 
S MO T(Z) 

(4-102) 

as tlte expression for density for 90 < Z ~ 100 km, where the subscript "0" 
refers to conditions at 90 krn. The mean molecular weight is given as 

6 

M(Z) = [ A zn (4-103) 
n 

n=O 

where 

Ao -435093.363387 

Al 28275.5646391 km- I 

A2 -765.33466108 km-2 

A3 11.043387545 km-3 

A4 = -0.08958790995 km-4 

As = o .O('.O~8737 586 km-s 

A6 = -0.000')00697444 km-6 

These constants give a value of M(90) = M:) = 28.82678, which is not too different 
from the sea-level mean molecular mass Ms of 28.960. 

The value of density at the lower limit is assumed to be constant at Po 
3.46 x 10-9 gm/cm 3 • The constant k in Equation (4-102) is 

where 

354g R2 
5 a 

k=----

gs = 9.80665 m/sec 2 = sea level accelerat.ion due to gravity 

R a 6356.766 km 

R = 8.31432 Joules;oK - mole (universal gas constant) 
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The functions F1 , F_ in Equation (4-10z) are /

F1 = \76 +'_] \90- rJ \90"-r2] 8i5o- 18ox ; x_+y_
, ¢

(4-I04)

[, ] J ,Ps P6 F Y(Z- 90)

F2 : (Z- 90) + (Z+R) (90+R) + ¥ tan-' [.y_+ (Z- X)'ig0- X
/

In these functions r, and r 2 are the two real roots and X and Y are the real and i
imaginary parts (Y > 0), respectively, of the complex conjugate roots of the quadratic

4

P(Z) =Z C.'Z" (4-105) !I
n'O i

J

with coefficients ._/

354TX Co

J

i C. ,

) C::-- l<n<_4
C4

'_. for values of C,, given by Equations 14-101). The parameters p_ in the functions ' 'F are

i:",. S(r, ) :

P2 - U(rl) :

Ii -S(r_) ,
-- ¢

P3 U(r2 )

.... 4-39

1976017203-159

The functions Fl ,F2 in Equation (4-10~) are 

(4-104) 

r Y(Z - 90) J 
Ly 2 + (Z - X)(90 - X 

In these functions rl and r 2 are the two real roots and X and Yare the real and 
imaginary parts (Y > 0), respectively, of the complex conjugate roots of the quadratic 

4 

P(Z):::L c~zn (4-105) 

n-O 

with coefficients 

for values of en given by Equations (4 -1 01). The parameters Pi in the functions 
Fl are 

4-39 



I i ',.

I

?

p
]

¢

P5 = V

_ P4 = {B0 - rlr2 R2a[B4 + Bs(2X + rl + r2 - Ra)] + W(rl) P2 ,

_ rlr2 BsRa(X2 + y2)+ W(r2 ) P3

+ rlr2 (R 2 _ X2 _ y2) P5 }/X*

_ P6 = 134+ Bs(2X+ rl + r2 - R ) - Ps - 2(X + R.) P4

, - (r 2 +R )pa- (r: +R )p2 !

' Pl = B5 - 2P4 - P= - P2 -_
:i s# a

Intheseparameters -:

X* = - 2r I r2 Ra (R2a + 2XR a + X2 + y2)
,:

V = (R. + rl) (R + r2) (R2 + 2XR 4 X 2 + y2)
(4-106)

U(r ) = (r + Ra)2 (r2 2Xri + X2 y2 ) ,_i - + ) (rl - '2- i :.

, ¢"

W(ri) = rlr2R (R * + r) a + - •
1"1 _

t

The functionW (r) iscorrectedfrom an erroneousexpressiongivenin Refer-

ence 14. Finally, the coefficients B n and the function S(Z) are given by .

TX

B =a +_n T -T O
(n = o, 1 ..... 5)s

Z "S(Z) = BnZn
1

n=O

' 4-40
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In these parameters 

(4-106) 

W (r.) = r
1 

r ~R (R t r ) (R + _X_2_t_y_2 ) 
1 .:. a 8 1 a 

r 
1 

The function W (r 1 ) is corrected from an erroneous expression given in R~fer
ence 14. Finally. the coeffi..-ients :3

n 
and the function S(Z) are given by 

5 

S(Z) = )' B zn L n 
n-O 

4-40 
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• _.._ .,,..v Wtl_;.'t:

a 0 = 3144902516.672729 /_0 = -52864482.17910969

_ a I = -123774885.4832917 Pl = -16632.50847336828 _-'

a 2 = 1816141.096520398 92 = -1.308252378125
a3 = -11403,31079489267 t_3 = 0.0

a4 = 24.36498612105595 _4 = 0.0

_ a s = 0.0089575028".39707995 _s = 0.0

_ As noted above, Equation (4-102) is valid below Z 100 km. whcre mixing is i

I assuraed to be predominant. However, diffusive equilibrium is assumed above :

, Z = 100 kin; h_nce, the profile given by Equation (4-100) was substituted into
,*,he diffusion differential equations (one for each constituent of the atmosphere)

• and integrated by partial fractions by Roberts to yield for 100 < Z < 125 km

2
5

_= (Z) , (Z) (4-107)

• _, 1--1
-_-

,' Rigorously, the density at 100 km, /_(100), should be evaluated by means of

:_ " ") Equation (4-102) for the particular exospheric temperature T_ of interest.
" However, since the evaluation of that equation is ,_,omputationally expensive, it

:: is preferable to avoid adding that expense to that already necessary to compute

, Equation (4-107). This is avoided in GTDS by precomputing values of _ (1001.

: using Equation (4-102), for a series of values of T_. These values have been
least-squares curve fitted by the polynomial

:' 6 _i

;' /,(100)M, " _F _nTn (I-108) ,'
where n --o _,

; 7

: ';n 0.1985549 x 10 -1°=

_ _1 = -0.183349 x 10 -14_D

i' _2 = 0.1711735 x 10 "17 !

_'a = -0.1021474 x 10-_o
,_}:
L
(: : = 0.372"894 x 10 -_ !

'4 j

_; _-s = -0.773t110x)0 -_s _

_£ = 0.7026942 x 10 -a2 '
" i:i _6 {

; ,i_!_, and M_ = the _ea level mean molecular mass = 28,9u gm/mole.

4-41
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wht!u:; 

11.0 = 3144902516.672729 Po -52864482.17910969 

Ltl -123774885.4832917 ,-)1 -16632.50847336828 

a
2 

= 1816141.096520398 tJ 2 = -1.308252378125 

11.3 -11403.31079489267 1)3 0.0 

11.
4 = 24.36498612105595 1)4 0.0 

:L5 0.008957502R09707995 ;55 0.0 

As noted above, Equation (4-102) is valid below Z = 100 km. wh~re mixing is 
assur.led to be predominant. However, diffusive equilibrium is assumed above 
Z = 1(10 km; h~nce, the profile given by Equation (4-100) was substituted into 
~.he diffusion differential equations (one f~r each constituent of the atmosphere) 
and integrated by partial fractions by Rob~rts to yi'3ld for 100 < Z ~ 125 km 

5 

/-' (Z) = )' , (Z) 
s L I 

I '" 1 

(4-107) 

Rigorously, the density at 100 km, ,L (100), should be evalu~ted by means of 
Equation (4-102) for the particular exospheric temperature Trr of interest. 
However, since the evaluation of that equation is '~omputationally expensive, it 
is preferable to avoid adding that expense to ti1&.t already necessary to r:ompute 
Equation (4-107). This is avoided in GTDS by precomputing valu3s of f (100). 

using Equation (4-102), for a series of values of Ten' These value~ have been 
least-squares curve fitted by the polynomial 

where 

~1 

4 

Ii 

1)(100) =- L r Tn 
M ~n en 

S 
n"'O 

0.1985549 X 10- 10 

-0.183349 X 10- 14 

0.1711735 X 10- 17 

-0.1021474 X 10-20 

0.372':"894 X 10- 24 

-0.773+110 X JO- 2R 

-32 0.7()26942 X 10 

and Ms = the dea level mean molecular mass = 2A.9v gm/mole. 
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?

, This approximation is used in Equation (4--t07).

.: The constituent mass densities for altitudes between 100 and 125 _:m are given by ,:

I

! '/., _,,,_,_,M. FT(lOO)t+ai _i k exo(M_kF4) (4--i09)_,,_,_ _,vv,_ L_ .j :_ - -

The identification of the eonsti_dents and the values of the corresponding constants
i in Equat:on (4-109) are given in Table 4-2.

; Table 4-2

Atmospheric Constituents and Related ConstanCs

i - ' ' Molecular Thermat #i, consti_ number

: _ Index i .density .) (MJp(lO0))
: i ' Constituent mass M, diffusion divided by Avogadro's

(grams/mole) coefficient ai -_
,: number

'_ 1 [ N2 28.0134 0 0.781 tO "_"
2 Ar 39.948 0 0.93432 X !0 -2
3 He 4.0026 -0.38 0.61471 X 10-5 }

4 02 31.9988 0 0.16177
5 0 15.9994 0 0.95544X 10-1

1.00797 0
6 I "

Hydrogen is an insignificant constit,aent at altitudes below 125 km; hence, it is
not included in Equations (4-107) and (4-109). The temperature at 100 km is

given by Equation (4-100) i the form !
x.%.

T ,100) = Tx + x-_dI (4-110)

where :, "

4 i r

_' Q = 35-4 C (100) _ = - 0.94585589 { ,

nmO I ' '
i

is the precomputed value of the polynomial fcr i00 km. The parameter k in

Equation (4-109) is the same as deflnedpreviously, and the functions F3 and F 4 ]
a_egivenas ]

4-42
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This approximation is used in Equation (4:-,107). 

The constituent mass densities for altitudes between 100 and 125 Km are given by 

(4--109) 

The jdent~fication of the constitu6nto and the values of the corresponding constants 
in Equaron (4-109) are given in Table 4 -2. 

Table 4-2 

Atmospheric Constituents and Related Constants 

, 
, 

Molecular , 
IndeX! . mass M, 

! 
Constlturnt 

I 
(grams/mole) 

1 I N2 28.0134 
2 I Ar 39.948 
3 He 4.0026 
4 °2 31.9988 
5 0 15.9994 
fl u 1.00797 L- A! I 

Thermal 
diffusion 

coefficient a i 

0 
0 

-0.38 

Ili' (,. 
,dens 

onstituent number 
lty X \Ms/p(lOO» 
ed by Avogadro's divid 

number 

0.7 81lU 
0.9 3432 X 10-2 

0.61 471 X 10-5 

0 0.1 
0 0.9 
0 ~

61778 

5544 X 10-1 

._--------' 

Hydrogen is an insignificant constitueYlt at altitudes below 125 km; hence, it is 
not included in Equations (4-1u1) and (4-109). The temperature at 100 km is 
given by Equation (4-100) i . the form 

(4-11 0) 

where 

4 

n:: 35""4 L Cn(l Oot ::' . 0.94585589 

n-O 

is the precomputed value of the polynomial fer 100 km. The parameter k in 
Equation (4-109) is the sam;::; as defined previously, and the functions F3 and F4 
are given as 

4-42 



The parameters q, are dell, ..... z

-I

1

_ q4 = {I -'- rlr2(R2 a - X 2 - y2) q5 + W('rl) q2 + W(r2) q3 } /X*

i q6 : - q5 - 2 (X + R ) q4 - (r, + Ra) q3 - (rl + R ) q2ql = - 2q4 - q3 -q2
$

_i and X, Y, r 1 , r2 , X*, V, U(¢), and W(v) are the same as detined previously.
g_

i' Finally, diffusive equilibrium is still assumed for the re_:ion above 125 kh:, but

the temperature profile giver, by Eqt, ation (4-190) is no !c)nger valid. Jacchi_deEned the temperature for '.he upper region by the empirical asymptJt;c funch'm

1) ,

t
m i z

1976017203-163

(4-111) 

F4 = • + - tan 
qs(Z - 100) q6 -1 r. Y(Z - 100) J 

(Z + Ra> (Ra + 100) Y Ly 2 + (Z _ X) (100 - X) 

The parameters q are r!cfl1l.~r1. ~:.; 
1 

1 
q2 ="iif::' 

"-, 1) 

and X, Y, r1 , r2 , X*, V, U; ... ), and W(v) are the same as detined prbviously. 

Finally, diftusive ~qui1ibrium is still assumed fo!' the re~;ion above 125 krl~. but 
the temperature profile giverl by Eql'ation (4-100) is no longer valici. ~Tacchi .. 
deHned the temperature for !he upper region by the empirical asymrivt;(: funct,l'ln 

111 
U-1 ) 

I 



• t
t,

-" i [ | l ml ]. J" | F | _ - [_ e-"

= i
I ¢

2 r >T(Z) = Tx +-- (T¢-T) tan -1 0.95_:-: "_

(4-112)

-- L1 + 4.5× 10-6(Z- 125) 2"s t

In order to be able to integrate the diffusion differe'.tial equations in closed form,

Roberts replaced Jacchia's Equation (4-112) with i .m function

Tx - Z- !2 (4-113)
T(Z) = T_ - (T_ - T) exp 3g 5 ,"

This temperature profile is continuous at Z = 125 km regardless of the choicex

) of the parameter {. The slope is continuous at Z if* X

_ = 1.9 (R + Z,_) = 12315.3554 km

The value of _ is n,_t set equal to this constant in GTDS, but is computed by a ./.

procedure to be described later.

Integrationof the diffusiondifferentialequations for the temperature profile

given by Fquation (4-113)yields,for the firstfiveconstituents(i= i, 2..... 5)
in Table 4-2

/T_'l+a'+_' (_._-T) _'' (4-i14), (Z)= _,(125) _f) : T

wh ere

M, g0R_ "_) 35 (i-115)z,- _: (T_ ___ (6481:766)

The constituent mass densities at 125 km can be obtained rigorously from Equation

(4-109). However, as in the case of the density at 100 kin, GTDS makes a curve-

fitting approximation to give (for i = .1, 2 ..... 5):

6

l°gl°di(125) = S :'J T"J (4-116)
j=O

4-44
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2 (IT - T ') IZ 125) T,Z)=T +-(TG'-T)tan-l~0095~;1 x U 1.-
x -; x L \Toc-Tx \ 35 

(4-112) 

In order to be able b integrate the diffusion differe' otial equations in closed form, 
Roberts replaced Jacchia's Equation (4-112) with: ole function 

T(Z) = T - (T - T ) ex t (Tx - To)(z - ~25\(_~)"'~ (4-113) 
, :r 0: x P T,-T 35 o,'l;. +Z 

x a 

This temperature profile lS continuous at Z = 125 km regardless of the choice 
x 

of the parameter {. The slope is continuous at Z if 
x 

{ = 1.9 (Ra + Z,,) -= 12315.3554 km 

The value of {, is not set equal to this constant in GTDS, but is computf.d by a 
proce(iure to be Jescribed later. 

Integration of the diffusion differential equations for the temperature profile 
given by Fquation (4-113) yields, for the first five constituents (i = 1, 2, ... , 5) 
in Table 4-2 

/T) 1+(1, +Y, (T _ T)"}O, 
c (Z) = f (125) 12 _m __ 

, '\T T -T cr x 

(4-114) 

where 

(1-115) 

The constituent mass densities at 125 km can be obtained rigorously from Equation 
(4-109). However, as in the case of the density at 100 km, GTDS makes a curve
fitting approximation to give (for i = }, 2, ... , 5): 

6 

!og lO dj (12S) = L " ) T ~ 
J = 0 

4-44 
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I

:' as a function of exospheric temperature, where di is the constituent number J

:-_ density divided by Avogadro's number (Pi = Midi )" Th_ polynomial ccefficients

" 5ij in Equation {4-116) have been determined for best fits to the values corre-
_ sponding to Equation (4-109), and are given in Table 4-3.

_i _he value of the belium density computed by Equation (4-114) must be corrected
:) for the seasonal latitudinal variation as given by Equation (4-99). The specific

form is

_ (._ 1og 10P)l.le

:_ [/33(Z)Jcorrecte d = ;3(Z) 10

Above 506 km the concentration of hydrogen (i = 6 in Table 4-2) becomes suf-

) ficiently large that it also must be taken into account
L

.o( oo
[_ T(Z) J - T(500).j (4-117)

I

where the hydrogen density at 500 km is

M6 ['I_'I3-(39"4-5"5l°gl0T500)l°gl0Ts00] (4 -118)

-_*, Ao (500) = A

For exospheric temperatures lower than approximately 600°K, the relative con-
centration of hydrogen is significant at altitudes lower than 500 km; however,

the resulting density error is partially compensated for by the least squares
fitting of Roberts' parameter .C (Equation 4-122).

In Equation (4-117), _6 is computed by means of Equation (4-115). The quantity
A in Equation {4-118) is Avogg:rc's number (A = 6.02257 × 10a3). The temper-

ature at 500 km is computed in Equation (4-113). Finally, the constituent_ are
summed to yield

6 ._

;_ (z) : _ ,_(z)
(4-119)

1:1

as the standard density for the region Z > 125 km.

The standard density, as computed by Equations (4-102), (4-107), or (4-119) must

be corrected for geomagnetic activity (by Equation (4-95)), the semi-annual vari-
ation (by Equation (4-96)), and the seasonal latitudinal variation of the lower

thermosphere (by Equation (4-98)). These effects are summed logarithmically
to obtain

4-45
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as a function of exospheric temperat'lre, where d j is the constituent number 
density divided by Avogadro's number (p. = M.d. ). The polynomial ccefficients 

1 1 1 

0ij in Equation (4-116) have been determined for best fits to the values corre-
sponding to Equation (4-109), and are given in Table 4-3. 

The value of the helium density computed by Equation (4-114} must be corrected 
for the seasonal latitudinal variation as given by Equation (4-99). The specific 
form is 

Above 50G km the concentration of hydrogen (i = 6 in Table 4-2) becomes suf
ficiently large that it also must be taken into account 

,:' (Z) = ' (500) [T(500)J( 1+ <16 ~·'Y6) 
'6 f6 T(Z) 

where the hydrogen density at 500 km is 

r Tev - T(Z) T6 
LTo: - T(500) J 

(4-117) 

(4-118) 

For exospheric temperatures lower than approximately GOOoK, the relativf' con
centration of hydrogen is significant at altitudes lower than 500 km; however, 
the resulting density error is partially compensated for by the least Rquares 
fitting of Roberts' parameter { (Equation 4-122). 

In Equation (4-117), "6 is computed by means of Equation (4-115). The quantity 
A in Equation (4-118) is Avol?'~rI!:,:::'s !lumber (A = 6.02257 '>( 10L3

). The temper
ature at 500 km is computed in Equation (4-113). Finally, the l:onstituent:> are 
summed to yield 

6 

,(, (Z) = [ '; (Z) (4-119) 

, = 1 

as the standard density for the region Z > 125 km. 

The standard denSity, as computed by Equations (4-102), (4-107), or (4-119) must 
be corrected for geomagnetic activity (by Equation (4-95», the semi-annual vari
ation (by Equation (4-96», and the seasonal latitudinal variation of the lower 
thermosphere (by Equation (4-98». These effects are summed logarithmically 
to obtain 
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Table 4-3 

Polynomial Coefficients for Constituent Densities at 125 km 

I Degree of Constituent (i) 
polynomial I 

I term (j) (1) N2 (2) Ar (3) He (4) O2 (5) 0 
1--

0 0.109~155 X 102 0.8049405 x 10 1 0.7()46886 x 101 0.9924237 X 101 0.10£t7083 X 102 

0.1186783/_1C- 2 0.2382822 x 10- 2 -0.4383486 X 10- 3 0.1600311 x 10-2 -4 
1 I 0.6118742 x 10 

-0.1677241 X 10-5 -0.3391366 x 10-5 0.469431J '( 10-6 -5 
2 -0.2274761 x 10 -0.1165003 x 10-

6 

3 0.1420228 X 10-8 0.2909714 x 10-8 -0.2894886 xl 0- 9 0.1938454 X 10-8 0.9239354 XIO-
1o 

-0.7139785x10- 12 -0.1481702 X 10-11 0.9451989 x 10 -13 -0.9782133 X 10-
12 -13 

4 -0.3490739 x 10 

5 0.1969715 X 10- 15 0.4127600x10- 15 -0.1270838 ><10- 16 0.2698450 x 10- 15 0.5116238 x 10 -17 

6 -0.2296182 X 10- 19 1-0 .4837461 X 10- 19 0.0 -0.3131808 X 1019 0.0 
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t_

(4-120)
(_ l°gl0 _)_o,, = (A 1o_, e P)G + (_ l°glo /:)SA + ('_ l°glo 'D)LT

t Thus, the final corrected density is ."

[ (,'_ logloP)corr

i /_(Z) : ;s (Z) 10 (4-121)

_' The standard densities, as computed by Equations (4-102) and (4-107) for thee

region 90 < Z < 125 kin, agree e :actly with values published by Jacchia in
_; Reference 13. Above 125 km however, the values given by Equat,on (4-119) do

(' not agree exactly with the Jacchia data, due to Roberts' introductionof a differ-

_ ent form I_N,._ti(,- a _• _ ....... -...,j for the temperature profile at the higher altitudes.

Values of the parameter _ in Roberts' temperature profile were determined for
,_. a series of exospheric temperatures, such that the resulting density profiles

'_ versus altitude (from 125 km to 2500 kin) gave the best least squares fit to the
| Jaechia tabulated data. Three sample fits are shown in Figure 4-3 for low,

I_ medium, and high values of the exospheric temperature. Note that the maximum

l deviation from the Jacchia values is less than 6.7%. The best-fit values of , ."

are shown in Figure 4-4 as a function of exospheric temperature T®. The curve "

in the figure is the polynomial

:}
4

7",;, _: = _ T_ (4-122)J

" I-'0

with coeffieients

{0 = 0.10,'.q445 × l0 s

_ = 0.2341230 × 101'1

_ {'2 = 0.1579202 × 10 -2

_'3 = -0.1252487 × 10 -s

_J
_4 :: 0.2462708 × 10 -9

computed to best fit the optimum _, values. Equation (4-122) is programmed in

GTDS to provide the means for selecting _, in Equation (4-113). In general, the

values of _ are such thac the slope of the temperature profile is discontinuous

at Z_ = 125 km, but this is not thought to be of any serious eonsP, quence.

'"_ 4 -47
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Thus, the final corrected density is 

(!\log p) 
peZ) -= ,os (Z) 10 10 Corr (4-121) 

The standard densities, as computed by Equations (4-102) and (4-107) for the 
region 90 < Z ~ 125 kIn, agi ee e. :actJy with values published by Jacchia in 
Reierence 13. Above 125 kIn however, the values given by Equation (4-119) do 
not agree exactly wi.th the J acchia data, due to Roherts I introduction of a differ
ent form {F.'!.1i.l'l!i0!! 1-113) for the temperature profile at the higher altitudes. 
Values of the parameter {, in Roberts I temperature prufile were determined for 
a series of exospheric temperatures, 5uch that the resultillg density profiles 
versus altitude (from 125 ~m to 2500 km) gave the best least squares fit to the 
Jacchia tabulHted data. Three sample fits are shown in Figure 4-3 for low, 
medium, and high values of the exospheric temperature. Note that the maximum 
deviation from the Jacchia values is less than 6.7%. The best-fit values of '. 
are shown in Figure 4-4 as a function of exospheric temperature T (D' The curve 
in the figure is the polynomial 

(4-122) 

with coefficients 

f 0.10~~1445 x 105 ·0 

f' 0.2341230 X 10 1 
. 1 

t2 = 0.1579202 X 10- 2 

{,3 :::. -0.12;)2487 x 10-5 

,1' 0.2462708 X 10- 9 
'4 

computed to best fit the optimum " values. Equation (4-122) is programmed in 
GTDS to provide the means for selecting {, in Equatton (4-113). In general, the 
values of t are such th3.t the slope of the temperature prufile is discontinuous 
at Zx = 125 km, but this is not thought to be of any serious conSAquence. 
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4.5.5 Associated Partial Derivatives

The equations for compu_ng the partial deri ative bp/_ R, which appears in
Equation (4-_±j, are presented in this section for the Jacchia-Roberts model.

Equation (4-.12i) for the density is written in the form
I

p(Z) _.-p, (z) A,%
o

and the desired partial derivative becomes

3F' )(APt) 3Ps (4-123) :

.,' The variation of the correction factor is derived frcm Equations (4-120) and
/ (4-95) through (4-98)

_i _ (LPc) /5Pc ( b Z /t

h l _ J"b_ .4342944819 g(t) f'(Z)

I

+ .014 sin(2_¢+ 1.72) e-'°°la(z-9°)2

F
__Z_ZI(1 - .0026{Z- 90) 2) sinq Isin4i (4-124)X

L

where

f' (Z) : - .007£68 f(Z)

�2.331(5.876-.10-7) ZI.331 ,,-.002_6_z

M
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4.5.5 Associated Partial DerivativeR 

The equations for computiDg the partial deri' ative cp /d R, which appears in 
Equation (4-~.l" are presented in this section for the Jacchia-Roberts model. 
Equation (4··12 .... ) for the density is written in the form 

and the desired partial derivative becomes 

op ?J(6Pr) op 
_=p ___ +6p _s 

oR S oR C oR 
(4-123) 

The variation of the correction factor is deri':ed frem Equations (4-120) and 
(4-95) through (4-98) 

where 

f' (2) 

2 
+ .014 sin(277<J> + 1.72)c-· 0013 (Z-90) 

x 1c1 - .0026 {Z - 90}2) sin cf.. Isin <./1 ('~ 
~ r4R 

+ 2(Z - 90) s l£l ell cos '1'-= I ·' ?/l} 
rRJ 

.00'>808 f (Z) 

+ 2.331(5.876" 10- 7 ) Z1.331 (,-.002RIi AZ 
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J

The cariation of altitude with position, 5 Z./b R, is computed as shown in Equation ]

• _ (4-150) in Section 4.5.7. Differentiation of Equation (4-90) yields

, ]
• XI

2_' x, +xl ,

be, s in 2,; X2 (4,-125)

i -_R 2 x_+x_
f

i.= 1

i -'_ X3

The variation of the standard density is computed directly from the barometric
differential equation (Refere_ce 13) for altitudes below 100 km

{Eiz j ,t "_% 6 - _ ,:

: dR _ nA. Z "-1 RTMg _RSZ T_ bet (4-126) .,1
* " n=l ;

and from the diffusion differentialequation (Reference 13) for altitudes above i00 km "2

{rI_ _ _+ 5T (4-127)

_ L LR(Z + R) ,_R _3_'3_

where _ +t

'Z/- _ ?JI M| <

I -": I I
_4

The partial derivatives of the temperature are computed by differentiating

Equation (4-100} for altitudes below 125 km

.,_ ,1_ \-_) _,_+\3s _ , .c _ ,,
n-- I

or Equation (,t-113) for altitudes above 125 km :_

_,. L!
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The Ifariatiol1 of altitude with pORition, (J z,la R, is computed as shown in Equation 
(4-150) in Section 4.5.7. Differentiation of Equation (4-90) yields 

c<j; _ sin '2f 
'dR - 2 

(4·-125) 

The variation of the standard density is computed directly from the barometric 
differential e'1uaticn (Reference 13) for altitudes below 100 krn 

al,j~ _ ~~.L [6 A zn-l Mgj dZ 1. dT} _ -~ n -- -=----=-
oR S M n RTClR T jR 

n = 1 

(4-126) 

and from the diffusion differential equation (Heference 13) for altitudes above 100 km 

where 

6 

,,'= [ I', M 
,,, 1 

(4-127) 

The partial derivatives of the temperature ltre computed by differentiating 
Equation (4-100) for altitudes below 125 km 

n C ZI1-1) .~ 
fl AR 

(4-12R) 

or Equ<.l,tion (,1-113) for altitudes above 125 km 
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' (Tx - T°) +_)2J

Finally, the derivatives of Tx and To are computed by differentiating Equations
(4-94) and (4-89), respectively

?
" _L -. 0021622Tco

,, - 0.0518806 + (294.3505) (.0021622) e
_. bT
• _ i/

{2 ( I--= 0.3T .2 sin i'2 O cos 0 1 - c,,_ 3.°-'r ___00

(4-130)

_.0 7- b,_
- 2.2cos 1"277,sin _ co_

3 (cos2. 2 n2 2 ) 2 T 7 _'r
, --_ _,- si • 0 cos -_ sin 2 fi_

In the latter expression (from Equations (4-90) and (4-91))

R_RO9IJCIBILrP/OFTlill
' 4-52 ORIGINM-'pAGII]_POOlll _.

.L'

1976017203-172

CiT 

(4-129) 

Finally, the derivatives of Tx and Tro are computed by differentiating Equations 
(4-94) and (4-89), respectively 

()T~ -.0021622Tro 
-~- = 0.0518806 + (294.3505) (.0021622) e 
ClT 

(4-130) 

1 2 · • 0 T di' - 2.2 COS· T) SIll TJ C(F . --' 

2 dR 

In the latter expression (from Equations (4-90) and (4-91)) 
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{ "rr V'n'(H + 43.0)I} 3H (i = 1,2) (4-131)
3_" - 77 1 + _ cos _
3Xi 180 30 L 180. 3x i

f

3H 180 (S_X2-S2X t '_j" 1 l

(S_X1 - S2X2) Xi XlX2. 1 - X
× -2 R_ X1 + X2

_' ,,I f

._ - 0 f
; 3X3
z*

!,

It might be argued that the term in Equation (4-129) involving the derivative

: __/_T should not be included, since Roberts considered C as a constant in ,,
his integration. However, T= and T -- F(T_ ) were also held constant for thc

% integration over altitude. Therefore, if variations in T_ are taken into account,
and ! is a function of T_, then the derivative of 4; should also be included, and
is computed by differentiating Equation (4-122), the best-fitting polynomial to

the optimum values of f. .;_

4.5.6 Modified Harris-Priester Atmospheric Model , 4

'tarris and Priester determined the physical properties of the upper atmosphere

theoretically by solwng the hea, e_nduction equation under quasi-hydrostatic
conditions (References 10-12). Approximations for fluxes from the extreme
ultraviolet and corpuscular heat sources were included, but the model averaged

?,

4-53 ,
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(07) =..!... ¢ - 85 o¢ 

'OR 2 I¢ - 85 I 'OR 

'Ofj _.!.. ¢ + 85 o¢ 

'OR 2 I¢ + 8 s I 'OR 

~:!.. = ~ {I !!.... cos [77(H + 43.0 )]} oH 
oX. 180 + 30 180. oX. 

1 1 

'ch = 0 
"dX 3 

(i=I,2) 
(4-131) 

(i = 1. 2) 

It might be argued that the term in Equation (4-129) involving the derivative 
a {, / a T", should not be included, since Roberts consideredt as a constant h 
his integration. However, 1;" and T x ::: F(Tm ) were also held constant for the 
integration over altitude. Therefore, if variations in Too are taken into account, 
and 1. is a function of Too , ~hen the derivative of {. should ~.lso be included, and 
is computed by differentiatir~g Equation (4-] 22), the best-fitting polynomial to 
the optimum values of t. 

4.5.6 Modified Harris-Priester Atmospheric Model 

'farris and Priester determined tne physical properties of the upper atmosphere 
theoretically by SOlVlllg the hea. cGnduction equation under quasi-hydrostatic 
conditions (References 10-12). Appro . .dmations for fluxes from the extreme 
ultraviolet and corpuscular heat sourc<'s were included, but the model averaged 



the semia,_xlual and seasonal-latitudinal variations _nd d'd not attempt to account ]
for the extreme ultraviolet 27-day effect. The atmospheric model presently
included in GTDS is a modification of tile Harris-Priester concept. The modifi-
catiou attempts to account for the diurnal bulge by including a cosine variation

-, between a maximum density profile at the apex of the diurnal bulge (which is
located approximately 30 ° east of the subsolar point) and a minimum density
profile at the antapex of the diurnal bulge. Discrete values of the maximum and

_ minimum density-altitude profiles, shown in Table 4-4, correspond to mean solar

activity and are stored in tabular form as PM(hi) and ,om(hi), respectively.
t _

t Different maximum and minimum profiles can be retrieved from disk storage for
different levels of solar activity. Exponential interpolation is used between

"_ entries, i.e., the minimum and maximum densities, Pmand PM, are given by
/

p_h) = p_,(h i ) exp (a)

h. "_-h < (4-132)- hi �1

PM(h) = PM(hi) exp . ./ :
\ -'M /

and the respective scale heights, Hm and H M, by

h -h. �' ' (a)

fn [Fm(hi+l)//_ (h)]

(4-133)

h - hi+ I (b) '

'"',,_ HM = _n _M(hi+,) <FM(h,)]

A good approximation (neglecting polar motion) for the height, h, is _. scr hv

h=r-r
$

where r, _s the radius of the earth given by Equationa (3-107) ,nd (.;-1 5) aS

: Re(1- f) (_ .135)
r s -- ¢

_'1 - (2f - f2) cos 2 _ ' .
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the semia"'lIlual and seasonal-Iatitudin~l variations pnd did not attempt to account 
for the extreme ultraviolet 27-day effect. The atmospheric model presently 
included in GTDS is a modification of the Harris-Priester concept. The modifi
cation attempts to account for the diurnal bulge by including a cosine variation 
between a maximum density profile at the apex of the diuri.lal bulge (which is 
located approximately 30° east of the subsolar pOint) and a minimum density 
profile at the antapex of the diurnal bulge. Discrete values of the maximum and 
minimum density-altitude profiles, shown in Table 4-4, correspond to mean solar 
activity and are stored in tabular form as PM (hi) and .om (hi ), respectively. 
Different maximum and minimum profiles can be retrieved from disk storage for 
different levelf'l of solar activity. Exponential interpolation is used between 
entries, i.e., the minimum and maximum densities, Pm and PM' are given by 

(h' -h) pJh) ::: Pm (hi) exp ~ (a) 

(4-132) 

(b) 

and the respective scale haights, Hm and HM, by 

(a) 

(4-133) 

(b) 

A good approximation (neglecting polar motion) for the ileight, h, is re' '.'n; }-,V 

h ::: r - r 
5 

where rs ~s the radius of the earth given by EquationG (3-107) "nd '.;-.1 5) as 

r =-
5 

R(l- f) e 

• 2 2 
d - (2 f - f ) cos ;-, 
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I and _,

r "_, the magnitude of the satellite position vector

Re _ the equatorial radius of the earth _ _

f _ the eprth's flatter_ing coefficient ,

5 _ the declination of the satellite. It is assumed that _ equals _
the geocentric latitude of t_ subsatellite pchlt, i

Table 4-4 _'! 'i

Density Altitude Tables i

1 Density Height ! :_y Max. ..... _ '_

I" (km) (gm/km 3) I (gm/km 3) (kin) (gm/km 3) (gm/km 3) _ _:

$ ':

100 49'1400. 497400. 420 1.558 5._84 ._
120 24900. 24900. 440 1.091 4.355

130 8377. 8710. 460 .7701 3.362 4
140 3899. 4059. 480 .5474 2.612 ..--'"

,{
150 2122. 2215. 500 .3916 2.042

:_ 160 1263. 1344. 520 .2819 1.605 ,!
_; 170 800.8 875.8 540 .2042 1.267•

lt'0 528,3 601.0 560 .1488 1.005
190 361.7 429.7 580 .1092 .7997

_ 200 25_,7 316.2 _00 .08070 .6390 _

• _ 210 183.9 239.6 620 .06012 .5123 _
220 134.1 185.3 640 .04519 .4i21

_ 230 99.49 145.5 660 .03430 .3325 {"

_ 240 74.88 115.7 680 .02632 .2891 _
_ 250 57.09 93.08 i 700 .02043 .2185 '
_ 260 i4.03 75.55 720 .01607 .1779

,_ 270 34.30 61.82 740 .01281 .1452 ,
• 280 26.97 50.95 760 .01036 .1190

_} 290 21.39 42.26 780 .008496 .0_776 _
_" 300 17.08 35.26 800 .007069 .08059

_, 320 10.99 25.11 840 .004680 .05741 _ _:

: _: 340 7.214 18.19 880 .003200 .04210
t 360 4.824 13.37 920 .002210 .03130 '

_ 380 3.274 9.955 [ 960 .001560 .02360 ,:

_ 400 2,.249 7.492 ] 1000 .001150 .0] 810

_,,,, a-55 '
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and 

r '"'-, the magnitude of the satellite position vector 

Re '" the equatorial radius of the earth 

f '" the e:>rth's flatterJng coefficient 

6 'V the declination of the satellite. It is assumed that 8 equals 
the gel)centric latitude of thp subsatellite POltlt. 

Table 4-4 

Density Altitude Tables 

Height Min. Density i Max. Density Height Min. Dens '.ty Max. Density I 
(gm/kmJ) (gm/km J} (km) (km) (gm/kmJ) (gm/kmJ) 

, 4~·1400. ~97400' 100 420 1.558 5.084 
120 24900. 24900. 440 1.091 4.355 
130 8377. 8710. 460 .7701 3.362 
140 3899. 4059. 

'I 
480 .5474 2.612 

150 2122. 2215. 500 .3915 2.042 
160 1263. 1344. 520 .2819 1.605 
170 800.8 875.8 J40 .2042 1.267 
It'O 528.3 601.0 560 .1488 1.005 
190 361.7 429.7 580 .1092 

I 
.7997 

200 25~.7 316.2 t;00 .08070 .6390 
210 183.9 239.6 620 .06012 .5123 

I 

220 134.1 185.3 640 .04519 .4i21 
230 99.49 145.5 660 .03430 .2~2~ 
240 74.88 115.7 680 .02632 .2691 
250 57.09 93.08 700 .02043 

I 
.2185 

260 ·14.03 75.55 720 .01607 .1770 
270 34.30 61.82 740 .01281 .1452 
280 26.97 50.95 760 .01036 .1190 
29v 21.39 42.26 780 .008496 .O~776 

300 17.08 35.26 800 .007069 .08059 
320 10.99 25.11 840 .OU4680 .05741. 
340 7.214 lS.lV 880 .003200 .04210 
360 4.824 13.37 920 .002210 .03130 
380 3.274 9.955 960 .001560 .02360 
400 2 .. 249 7.492 1000 .001150 .01810 I 
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I

If the density is assumed to be maximum at the. apex of the bulge, then the

cosine variation between ruaximum and minimum density profiles is

,_. Po(h) = pro(h) + [pM(h) - p_(h)] cos" - , .

; where ¢ "s the angle between the satellite position vector and the apex of the
diurnal bulge, The angle _ is given by

cos _b= sin b sin _ + cos _ cos _ cos (a- a -_) (4-137)
:, s s s .

where
i

b "_ the declination of the sun ';
$

) J a "_ the right a,_cension of the satellite

, a _ the right ascension of the sun

'i _ _ "_ _he I.ag angle between the sun line and the apex of the diurnal bulge , .
__ (approximately 30 °) ._/ ....

" It can be cal, mlated in vector notation as } '

q_: c°s-I (4-138) _

or the cosine fuimtion in Equation (4-136) can be detemnined directly as

cosn _ = -_ COS '_ n/2 "_. n /2 , '.'_ = _ (4-139) i
2 2 5 °

where

_.. ¥ "_the satellite position vectol expressed in inertial geocentric .)
coordinates

Us "_the unit vector directea toward the apex of the diurnal bulge ex-
pressed in inertial geocentric coordinates.

,.2
4 -50,
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If the density is assumed to b~ maximum at thp. apex of the bulge, then the 
cosine variation between rClaximum and minimum de'1sity profiles is 

(4-136) 

where If; :s the angle between the satellite position vector and the apex of the 
cliurnal bulge. The angle tj; is given by 

where 

cos If; = sin b sin 8 + cos b cos b cos (a - a -~) s s s 

b s '" the declination of the sun 

a "" the right ..ldC'ensiun of the satellite 

as '" the right ascension of the sun 

(4-137) 

~ '" :he I.ag angle bptween the sun line and the apex of the diurnal bulge 
(approximately 30°) 

It can be cal,!ulated in vector notation as 

or the cosine fUllction in Equation (4-136) can be deterrained jirc(;tly as 

where 

n '-P _ [1 teo s v.'J n 12 _ [1 r' UBJ n 12 
CO'i __ -- - -""" 

2 2 2 2r 

r "" the satellite position vectol expl.'essed in inertial geocentric 
coordinates 

(4-138) 

(4-139) 

fiB '~the unit vector directed towaru the apcx of the diurnal bu.lge ex
pressed jn inertial geocentric coordinates. 
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"4_ "_ '_ _ 2c__ _ _.._. _ *,_,_ •_.__. , _ _ ...... _., ,,, .... _ _ ±_,_*,

i
?

The vect( r haz t:,e fJllowing components ,:

UB =cos _; cos (% +_)
X ":

I = cos _ sin (a + °

y '-

1) : s in _
B z s i

l In the modeling of accelerations in GTDS, the drag coefficient Co and atmospheric ;

:ensity p (h) always occur together as a product. The following error model
is introduced in order to account for systematic errors in either CD or/_ '

1 "
CD'p: CD (1 _pl) [1 +/)2 (t - to)] 1 + _3 c°s_ p001) (4-140) :_

a:here ,"

CD -, a priori syce_fied drag coefficient " _,

_- p_ ,_ scale factor error coefficieat on CD/3

• ! P2 _ error coefficient of time variation of C Dp _,

: _. P3 error coefficient accounting fox deviatior., in the diurnalvariation of ;) (h)
" }; i,

" _ t -. the time of the instantaneous satellite position -' ,:

",_. t -_ the epoch time ._.
• _ 0

' i _ The altitude density fur _ion, ,-0(h), is determined from Equation _4-1_23). The -,quahdties _ t' '_2 ' _a ' and n are adjustable parameters for the error model.

4.5.7 Associated Partial Deri:atives

Equation (4-14c) for the product of the r'-.ag coefficient and thc densit-," can ue

i partitioned as follows !
0( 11 (4 - 1,t'• CD=C o I +,,_)_.I , ,2(t -t o

]9760]720:3-]77

The vectc!" lk ha:: t!.e f Jllowing components 

= cos~: cos (rL + A) 
s s 

UB = cos i'! s sin (a s + ,\) 
y 

JT ~sin;' 
B s 

z 

In the modeling of accelerations in GTDS, the drag coeff~cient Co and atmospheric 
:ensity P (h) always occur together as a product. The following error model 
is introduced in order to account for systematic errors in ei~her Co or r; 

v.:here 

~ 'V a priori s!-,c::!lfied drag ('oefficient 
o 

PI 'V scale factor error coefficie.lt on CD P 

P2 rv error coefficient of time variation of CD p 

P3 "-' error coefficient accoWlting fOl deviatior') in the diurnal 
variation of p (h) 

t ,,-. the time of the instantaneous satellite position 

t 'V the epoch time 
o 

The altitude density fur li.on; :-I)(h), is determined from Equation t4-12j). Th~ 

qual.dties f I' '~2 ' 1-'3 ' and n are adjustable parameters for thc er. or mndd. 

4.5.7 Associated Partial DerLoatives - . 

Equation (4-14t,) for the product of the r"ag coefficient and the densit:: can ue 
partitioneC: as follows 

Co=Cu (1 t.'l) ~1 t '2(t - to)' I) 
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Making use of Equations (4-132) and (4-133), the partial derivative cf density

with respect to position is ther, given by

Dp {'_p DPm DF DPM_ Dh ?p D'_,' (4-143)
DF \_Pm Dh +_zM Dh] D_ D_ DR

where

_p- (l _ cosn 2) (1 +p3 cosn2) (4-14a)D_:m

°

_. - cos" cos" (4-145) t

i
DPm Pm (4-146)

DPM P.u.
- (4-147)

?h I-_ :-.:
},

.k

The partia 1 derivative of density with respect to ,_ and the partial derivative

of _ wid, respect to H are obtPined from Equations (4-138} and (4-142) ' "(

D,) n , _9 i n _.._.},fCo, l1 p3 __)
- COS n- --S -- _m ) , CON n _

_W 2 2 2

(4-14 _ s

) ' 3 _ (PM-*_,n _' COS"

"L

4-5
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(4-142) 

Making use of Equations (4-132) and (4-133), the partial derivative cf density 
with respe.::t to p')sitior. is th"'l~ ~iven by 

(4-143) 

where 

(1-144) 

(4-145) 

op p m m ---- (4-146) 
oh II m 

OPM PM 
-=-- (4-147) 
Clh 1\ 

The partial derivativ~ of density with respect to I/J and thB partial derivative 
of I./J witl". respect to Rare obt?ined f>:'om Equations (4-138) and (4-142) 

4-::' 

(4-14 \ 
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L

%

- LL_-P R--_-_ (4-149):_ s i n ,
.,_ x

The partial derivative of the height _dth respect to R is obtained by differentiating

• Equation (4-134), yielding
t$

. - {_1-f' (2f-f2)i_a72t _
; _ _h R Re , cos _" ::(cos c) (4-150)

where

[xzit c(cos z) _ 1 yz 2 (4-151)

J
/

Substitution of Equations (4-144) through (4:151) into Equagion (4-143) determines
the partial derivative of _. with respect to I'_, as required in Equation (4-81).

1
The err or coefficients _1, _2, and _a contribute the following partial derivatives
to the C matrix appearing in the variational equations

:-" '_.t ""

"_'RD_ R____DD _ P'V Ca)

b,_1 -C D Cmo[l + /'2(t - t0)_ (1 + , 1) t

(4-152)

• . ..

3RD _ RD , Rn(t - to) (b)

_A,2 Cm C-'Oo(1+ "'l) (t - to)= [1 + ,, 2(t - to)J

•_. -_, RD COSn 't

- + O'M- t'_) cos" cos" __2'= " (e)
'%'a 'c(h) = ' 2 /1-_ :acos"'_"_\ 21

_ 4-59
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(4-149) 

The partial derivative of the height with respect to R is obtained by differentiating 
Equation (4-134), yielding 

(4-150) 

where 

c(cos c') 1 
=---- (4-151) 

Substitution of Equations (4-144) through (4.=151) into EquaHon (4-143) determines 
the partial derivative of f' with respect to !~, as required in Equation (4-81). 

The enor coefficients t1' !-2' and! 3 contribute the following partial derivatives 
to the C matrix appeari ng in the variational equations 

(a) 

(4-152) 

(b) 

~~ - ~ ~ + <t -I' )cosn.f] 
('1-3 t:(h) Lm 

M '" 2 
cos" .::..:.:: 

2 (1 -j. 3 l' 0 s" ~) 
2/ 

(c) 
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4.5.8 Comparison of Atmospheric Models l

Only a limited number of comparisons have been made at this time between the

results obtained using the Harris-Priester and the Jacchia models. One such

comparison evaluated the standard deviation of the weighted residuals in differ-

entia] correction runs made using data from the San Marco-3 satellite, with a

perigee altitude of 213 km and an inclination of 3 degrees. A one day differential

correction was performed around the epoch of the elernent set selected in order t_

to determine the elements at DC epoch. When the density parameter _1 (see
Equation (4-80))was not adjusted, both models converged to the same standard

deviation, but different elements. When PI was adjusted, the Jacchia model gave
a somewh2t lower standard deviation than the Harris-Priester model. If the

atmospheric bulge angle used in the Jacchia model was included in the Harris-
q

Pries_e _ model, the standard deviation decreased slightly, but was still larger
than that for the Jacchia model.

:, A second compa_'ison was made by generating an ephemeris forward 3 days from

the elements obtained in the original differential correction and comparing the

sateUite'spositionand velocitywith a statevector obtained in a differential ,,

correction about the new epoch. The position difference_ resulting from this / ";

procedure were approximately twi_e as large for the Jacchia model compared "

with the Harris-Priester model (55 kilometers versus 30 kilometers). Thus, I
thes _ comparisons were inconclusive since some indicated better results with

the Jacchia model, while others indicated better results with the Harris-Priester
model.

Clearly, more exhaustive testing is desirable, particularly in light of the fact

that the Jacchia-Roberts model is significantly more expensive computationally

than the Ha_ ris-Priester model. The Atmosphere Explorer satellite series

should provide a good opportunity for such .esting.

t
.!

4.6 SOLAR RADIATION PRESSURE

4.6.1 Solar Radiation Pressure Perturbation Model "

The force due to solar radiationpressure on a vehicle'ssurface is proportional

to the effectivearea A of the surface normal to the incidentradiation,'.hesurface

reflectivityrj,and the luminosity L of the sun, and is inversely proportional to

the square of the distance Rv _ from the sun and the speed of lightc. !

(.
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4.5.8 Comparison of Atmospheric Models 

Only a limited number of comparisons have been made at this time between the 
results obtained using the Harris-Priester and the Jacchia models. One such 
comparison evaluated the standard de\"iation of the weighted residuals in differ
ential correction runs made using data from the San Marco-3 satellite, with a 
perigee altitude of 213 km and an inclination of 3 degrees. A one day djfferential 
correction was per(or1ned arOl~nd the epoch of the elem.ent set selected in order 
to determine the elements at DC epoch. When the density parameter !-1 (see 
Equation (4-ch») was not adjusted, both models eonverged to the same standard 
deviation, but different elements. When PI was adjusted, the Jacchia model gave 
a !Somewhat lower standard deviation than the Harris-Priester model. If the 
atmospheric bulge .mgle used in the Jacchia model ',Vas included in the Harris
Pries~~!' model, the standard deviation decreased slightly, but was still larger 
than that fOl the Jacchia model. 

A second comparison was made by generating an ephemeris forward 3 days from 
the elements obtd.ined in the original differential correction and comparing the 
satellite's position and velocity with a state vector obtained in a differential 
correction about the new epoch. The position differencea resulting from this 
procedure were approximately twi~e ar:; large for the Jacchia model compared 
with the Harris-Priester model (55 kilometers versus 30 kilometers). T:as, 
thes:3 comparisons were inconclusive since some indicated better results with 
the Jacchia model, while others indicated better results with the Harris-Priester 
model. 

Clearly, more exhaustive testing is desirable, parttcularly in light of the fac~ 
that the Jacchia-Roberts model is significantly more expensive computationally 
tha11 the Hal ris-Pdester model. The Atmosphere Explorer satellite series 
should provide a good opportunity for such .2sting. 

4.6 SOLAR RADIATION PHESSURE 

4.6.1 Solar Radiation Pressure Perturbation Model 

The force due to solar radiation pressure on a vehicle's surface is proportional 
to the effective :lrea A of the surface normal to the incident radiation, ~he surfl.\ce 
reflectivity r;, and the luminosity Ls of the sun, and IS inversely proportional to 
the square of the distance R from the sun and the speed of light c. 

vs 
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'i The magnitude of the force due to direct solar radiation pressure on an area A ]

is therefore given by*

L CRA
r - _ (4-153)

4vR 2 c
VS

where

C R = 1 + _(e.g.,C_ = 1.95 for aluhlinum) (4-154)

Tile magnitude of the acceleration acting on a spacecraft of mass m and area A,

due to direct solar radiation pressure at one astronomical unit from the sun, is

F S %A (4-155)
m c m

#

where S denotes the mean solar fluxat one astronomical unit. The quantitiesCR,

A and m are grouped together since they are spacecraft properties and can be

• " determined prior to flight. The magnitude uf the acceleration on a spacecraft

" due to diroct solar radl.:tion at the actual distance R,_ from the sun is given by

F S R2 CRA
_ _.... (4-156)

m c R2 m
vs

where It designates one astronomical unit, i.e., the semimajor axis of the
earthVs orbit.

%

All of the above factors except R -Lreconstant for a given spacecraft and
mission. For computational convenience, P replaces S/c. p, is defined as
the force on a perfectly absorbing surface (_ :- 0) due to solm" r_diation pressure
at one astronomical unit.

The acceleration due to dicect solar radiation is away from the sun, that is, in
the direc'.ion of

R R - R (4-157) :

*The determination of the effective area _ of the surface normal to the incident radiation is directly .,
analogous to, the determinmion of the effecti..',_ area normal to the relative velocity vector for
modeling aerodynamic forces, which i_ discus._ed in de,_all in Section 4.,5.2.
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The magnitude of the force due to direct solar rad:ation pressure on all area A 
is therefore given by* 

where 

L~ CR A 
F -----

CR = 1 +7)(e.g.,C = 1.95 foe aluillinum) 
~ 

(4-153) 

(4-154~ 

The magnitude of the acceleration acting on a spac8craft of mass m and area A, 
due to direct solar radiation pressure at one astronomical unit from the sun, is 

F S ~A (4-155) 
m c m 

where S denotas the mean solar flux at one astronomical unit. The quantities CR , 

A and m are grouped together siJ1ce they are spacecraft properties and can be 
determined prior to flight. The magnitude uf the acceleration on a spacecraft 
due to dirf'ct sohr radl.:tion at the actual distance Rvs from the sun is given by 

F (4-156) 

where H designatEs one astronomical uP.it, i.e., t.he semimaJ'or axis of the Cj;un 

earth's orbit. 

All of the above factors except R", 'lre constant for a given spacecraft and 
mission. For computational convenience, P rtplaces Sic. P is defined as 

s s 
the force on a p~rfectly abso:t'lJing surface ( r; 0- 0) due to sola .. ndiation pressure 
at one astronomical unit. 

The acceleration due to di recto solar radiation is away from the sun, that is, in 
the di reeion of 

* 

R R-R 
\ , (4-157) 

The determination of the effective area f.>.. ~f the surface normal to the incident radiation is directly 

analogous te. the determinntion "f the effecti·:::: area nor;nal to the relative velocity vector for 

modeling aerodynami: force~. which i~ discus~ed in delad in Section 4.5.2. 
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where

_ the position vector of the vehicle in the inertial mean of 1950.0 coordi-

nate system

I

Rs "_the position vector of the sun in the inertial mean of 1950.0 coordinate
_ystem.

The model for the acceleration RsR due to diroct solar radiation is

"-" CRA Rvs (4-158)RsR = vpsR2sun
m R3

v s

where v is an eclipsefactorsuch that

: v = 0 if the satellite is in shadow (umbra)
= 1 if the satellite is in sunlight

, 0 < > < 1 if the satellite is in penumbr ,,

A simple cylindricalshadow model isused todetermine theechpse factor.
More sophisticatedmodels accountingfor penumbral regionsand reflected I
radiationeffectsmay be consideredin laterversionsoftheprogram, as re-

quired. From Figure4-5 itis apparentthatthesatelliteisin sunlight(;,= I)if

D =R' "Us > 0 (4-159)

where

R*_. the satellite position vector relative to the shadowing body

U, _ the solar position unit vector relative to the shadowing LcdV.

IfD< O and thevector

Sc - _° - DU (4-160)

has a magnitude less than the body radit, s a,., then the spacecraft is in shadow
(i.e., _ = 0); otherwise, it is assumed that the satellite is in sunlight and : = 1.
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where 

R ""' the position vector of the vehicle in the inertial mean of 1950.0 coordi
nate system 

R s '"" the position ':\,;ctor of the S'ln in the inertial mean of 1950.0 coordinate 
'::j$tem. 

The model for the acceleration RSR due to diroct solar radiation is 

R =vPR 2 
SR s sun 

l~A R 
~ vs 

wrtere IJ is an eclipse factor such that 

I' = 0 if the satellite is in shadow (ambra) 
v = 1 if the sutellite is in sunlight 

o < v < 1 if tre satellite is in penumor 

(4-158) 

A simple cy lindricn.l shadow model is used to determine the ed..lpse factor. 
More sophisticated models accounting for penumbral regions and reflected 
radiation effects may be considered in later versions of th~ program, as re
(luired. From Figure 4-5 it is apparent that the satellite is in sunlight (;) = 1) if 

(4-159) 

where 

R' '"" the satellite position vector relative to the shadowing body 

Us ~,the solar pcsition unit vector relative to the shadowing :"vrly. 

If D < 0 and the vector 

S - R' - DU 
(' 5 

(4-160) 

has a magnitude less than the body radius a", then the spacecraft is in shadow 
(i.e., !' := 0); otherwise, it is assumed that the satellite is in sunlight and ; -= 1. 
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: Figure 4-5. Cylindrical ShadowModel

J
s

4.6.2 Associated Partial Derivatives ...

The partial derivative of RSR with respect to position is

_SR PsR_unCRA _ 3 [R - Rs] iR - RsiT 1

_._ ...... (4-161)

_ ml_ _I _ }_ _I;

-SR 03 (4-162) ":,(

and for the solar pressure model parameter _ ;

PsA (4-163) ,;
k = --- .:

m

RsR = ;_R2 C, [R - Rs! (4-164) :

{ 4 -"2 ,,_-
£ )

e _
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I SUNLIGHT 

I 

0<0 D = R' coscS>O 

Figure 4-5. Cylindrical Shadow Model 

4.6.2 Associated Partial Derivatives 

The partial ut:i"lvative of RSR with respect to position is 

- 2 
oRSR __ PsRsunCRA 
--_1/ ___ _ 

ClR m I'R_R 1
3 

I s ~ 
3 [R - R J [R - R J TJ I _ s s 

1- - 12 R-R 
I s 

and for the solil.r pressure model parameter 

PA k = _s __ 

m 

(4-161 ) 

(4-162) 

(4-1G3) 

(4-164 ) 
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4.7 ATTITUDE CONTROL EFFECTS

The function of the attitude control system is related to two modes of operation.

During the first mode, commonly known as the acquisition and cruise mode, the

attitude control system is used to establish and maintain three-axis stable orien-

tation of the satellite. Such an orientation is obtained during an interplanetary

flight, for example, by fixing two directions in space. One direction is always

such that the sensitive surface of the solar panels faces the sun and the other

direction is determined by pointing an on-board sensor toward a predetermined

star. Usually another requirement that must be satisfied during the latter portion

•_ of the flight is that the high-gain antenna used for communicatior._ should point
toward the earth.

In the second mode of operation, applicable during midcourse maneuvers, the

attitude control system orients the satellite so that the thrust vector of the vehicle-

fixed rocket motor is aligned along a predetermined direction in space. This

i; orientation is maintained by controlling the thrust vector to pass through the
center of mass of the s_tellite. After the maneuver, the attitude control system
re-establishes the cruise orientation.

t t

The low-thrust forces, generated by the nt.rmal functions of the attitude control

system, can produce accelerations of 1 × 10 -7 cm/sec2 to 3 × 10-7 cm/sec 2. "*

This can result m a target miss of 100 to 300 km at Mars, for example. The

translational forces producing the acceleration are ,'he result of thrusters not

acting in couples, thruster misalignment and unbalance, or the result of gas

leaks through the valves during times th :he thrusters ace not firing.

4.7.1 Attitude Control Perturbation Model

The model used to account for such accelerations has been constructed from

,. the application of curve-fitting techniques to telemetered data and is defined
as follows: _:

t

a x + bx(t -T 1) _ Cx(t- T,,cl
,. [

)2 [t](t - T ) - u(t T 2)1. (4-165) "

-rTAC ay _ byl, t Tel) + Cy(t "lac 1 .el - ac

"-a _ b (t Tn_l) �c,(tT ,1)2 "_J,
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4.7 ATTITUDE CONTROL EFFECTS 

The function of the attitude control system is related to two modes of operatiun. 
lliril1g the first mode, commonly known as the acquisition and cruise mode, the 
attitude c0ntrol system is used to establish and maintain three-axis stable orien
tation of the satellite. Su-:-:h an orientation is obtained during an interplanetary 
flight, for example, by fixing two directions in spac"l. One direction is always 
such that t.he sensitive surface of the !)olar panels faces the sun and the other 
direction is determined by pointing an on-board bensor toward a predetermined 
star. UsuaUy another requirement that must be satisfied during the latter portion 
of the flight is that the high-gain antenna used for communicatior.~ should point 
toward the earth. 

In the secl)nd mode of operation, applicable during midcourse maneuvers, the 
attitude control system orients the satellite so that the thrust vector of the vehiclc -
fixed rockp.t motor is aligned along a predetermined direction in space. This 
orientation is maintained by controlling the t:lrust vector to pass thr .:;::gh the 
center of mass of the satellite. :\fter the maneuver, the attitude control system 
re-establishes the cruise orientation. 

The low-thrust forces, generated by the n(,."mal functions of the attitude control 
system, can produce accelerations of 1 x 10- 7 cm/sec 2 to 3 x 10-7 cm/sec 2. 

This can result m a target miss of 100 to 300 km at Mars, for example. The 
translational forces producing the acceleration are the result of thrustel's not 
acting in couples, thruster misalignment ~nd unbalance, or the result of gas 
l{''tks t:lrough the valves during times th :he thrusters al'e not firing. 

4.7.1 Attitude Control Perturbatbn Model 

The model used to account for stJ~i1 accelerations has been constructed from 
the appIi cation of cltrve-fiWng techniques to telemetered data and is defined 
as follows: 

r 
t bx (t - Tnc! ) <C,(t_T"d)'} 

-
t b (t - T ne I) + ('y(t - \d)2 iu(t -T 1)-II(t-1' 2)]' (4-165) r TAC a 

y y , 11(' lIC 

a t h,<t - T ael ) + c, < t - Tod)2 
l 
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_.. The coefficients (ax, ay, a z . . . cx , ey , c z ) are low-thrust polynomial coefficients
to be determineo. The terms T¢I and Tac 2 are input epochs at which the attitude

= control acceler_tio_ polynomials are turned on and off, rcspective!y. The function

u is defined by

; fl, t > To:

, u(t - Tacl) = _ (4-166)• 0, t < Tac 1

_" ll. t > Tac 2 (4-167)
i u(t - Tat2) :

L0, t < Tac 2

The subscript x denotes the acceleration component along the spacecraft's x v :
(roll) axis; the sub,_;cript y denotes the acceleration component along the space- /

craft's Yv (pitch) axis; and the subscript z denotes the acceleration component " "

I,, along the spacecraft's z, (:law) axis.

Two transformations are necessary in order to represent this acceleration in

the mean of 1950.0 coordinate system: (1) a transformation from the vehicle-

fixed coordinatc system (x, y_, z ) to the true of date coordinate system and
(2) a transfnrmation from. the true of date coordinate system to the mean of

1950.0 coordinate system.

The transformation from the vehicle-fixed coordinate system tG the true of date

coordinate system is de:_rmed in Section 3.3.12, and is given by 1

= Q_ (4-168) ,

where the transformation matrix Q is defined in Section 3.3.12. The matrix C T ,

which transforms from the true of date aystem to the mean of "95c.0 system is

described in Section 3.3.1. Thus, the total transformation is given by

'-' ::- (4-169)
RTAC --:CTQrTAC ',

4-65
,._

-1
[

1976017203-185

The coefficients (a , a ,a ... c , c , c ) are low-thrust polynomial coefficients x y z x y z 
to be determined. The terms T 1 and T 2 are input epochs at which the attitu.de 

Be ae 
control accelerM.ioll poiynomials are turned on and off. rcspectivE;!Y. The function 
u is defined by 

{

I. 
u(t - Tact) = 

0. 
(4-166) 

t < T ael 

{

l. t~T 2 ae 

u(t - Tad) = 

0, t < T " ac .. 

(4-167) 

The subscript x denotes the acceleration component along the spacecraft's x 
v 

(roll) axis; the sub.;;cript y denotes the acceleration component along the space-
craft's Yv (pitch) axis; and the subscript z denotes the acceleration component 
p.long the spacecraft's Zv (yaw) axis. 

Two transformations are llecessary in order to represent this acceleration in 
the mean of 1950.0 coordinate system: (1) a trallsformation from the vehicle
fixed coordinate system (x ,y , z ) to the trne of date coordinate system and v v v 
(2) a transformation from the true of date coordinate system to thE:' mean of 
1950.0 coordinate system. 

The transformation from the vehicle-fixed coordinate system to the true of date 
coordinr.te system is de3~ribed in Section 3.3.12, and is given by 

r = Qr v 
(4-168) 

where the transformation matnx Q is defined in Section 3.3.12. The matrix C T , 

which transforms from the true of date .3ystem to the mean of . <)5r.O system is 
described in Sectivn 3.3.1. Thus, the total transformation is given by 

-ROO _ CTQ:":' 
TAC _. r TAC 

(<I-Hi!) 
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: 4.7.2 Associated Partial Derivatives

; Since C, Q, and rTAc are functions of time only, and not of the satellite position

or velocity, then

j .. ..

:" 3RTAc 3RTAc '
-_--Z---=03. (4-170)

DE _R

The contributionstothe variationalequations (Equation (4-7))of the control system

: acceleration parameters a x, ay, a Z , . . . , c z are

DR

TAC_ cT Q [u (t - Tel) - t, (t - T¢2)] (4-171)
3K

.J

/ ._. ._.
DR TAC _R TAC

_: (t - TRcl) -_ (4-172)

•_. ,, 1

3RTAc (t T i) 2 bR'Ac (4-173)

where a, b, and c denote the vectorq

" 5 - g: ,)[ _-: cy (4-174)

[..a b z [ C z

4.8 THRUST EFFECTS

There are map y forces acting on a spacecraft during the transfer phase and

during the orbiting phase of its trajectory. Even though such forces have been
modeled, the state o_ the vehicle is still uncert_in, primarily because of the im-

precision associated with the injection conditions and the physical parameters

W

4 -(;6
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4.7.2 Associated Partial Derivatives 

.. 
Since C, Q, and r TAc are functions of time only, ~ld not of the satelJite position 
or velocity, then 

(4-170) 

The contributions to the variational equatiuns (Equation (4-7» of the control system 
acce '.eration parameters ax' a y ' a z ' ••• , c z are 

(4-171) 

OR
TAC 

!iR
TAC -_-= (t - T )--

ob ael Cla 
(4-172) 

,4-R ~R-
, TAC T 2 () .AC 

=- (t ) --d'C - ael r)a' (4-173) 

where a, b, and c denote the vector'> 

raxl b 

,:"1 
x 

G= a -

:'J 
h c :-: 

y 

b lc:J 
L • 

l 

(4-174) 

4.8 THRUST EFFECTS 

There are many force~ acting on a spacecraft during the transfer phase and 
during the orbiting phase of its trajectory. Even though such forces have teen 
modelerl, t;lC state of the vehicle' is 8tiJ.l uncertain, primarily oecausl' of the im
precision associated with the injection conditions and the physic:}l parameters 
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-- v appearing in the mathematical models. Very small errors in the thrust mag- ]
nitude and/or thrust direction at injection magnify into very large errors in

._ position and velocity near the target body. In order to avoid such errors and

attain pre-assigned terminal conditions, spacecraft are designed with the
capability co perform multiple propulsive maneuvers during the interplanetary , _

.___i phase of a mission. Furthermore, ifthe spacecraft is to orbit a distant planet, _ i

• _ maneuvering capability must be available to inject into orbit.

: 4.8.1 Thrust Accei_ration Model

: I- The model describing the acceleration during such cor_ctb'e maneuvers is
_ based on the reduction of data taken during the motor burn testing procedures

?_ _; and is represented in an inertial trite of date system by

_,, o,

}t r T = a{u(t - To) - u(t - Tf)} UT (4-175)

d

• _ where .,i'""

a -.magnitude of the thrust acceleration
_" ",L Jr

UT _ unit vector in the direction of the thrust acceleration

TO _ effective initiation time of the motor burn (ET)

Tf _ effective termination time of _he motor burn (ET)

and u is defined as in Equations (4-166) and (4-167).

_,e _,oi,'.,r's effective burn time is

Tb = Tf - To. (4-176)

!

The propulsive acceleration is modeled as follows

a =- a 0 -F a I "y 4 a 2 7 2 4 a 3 .r 3 + a4 74 (4-177)

,Pl _'
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appearing in the mathematical models. Very small errors in the thrust mag
nitude and/or thrust direction at injection magnify into very large errors in 
position and velocity near the target body. In order to avoid such errors and 
attain pre-assigned terminal conditions, spacecraft are designed with the 
capability to perform multiple propulsive maneuvers during th~ interplanetary 
phase of a mission. Furthermore, if"the spacecraft is to orbit a dist.ant planet, 
maneuvering capability must be available to inject into orbit. 

4.8.1 Thrust Accei~,~tion Model 

The model describing the acceleration during such ccr!'ecti"e maneuvers is 
based on the reduction of data taken during the motor burn testing procedures 
and is represented in an inertial true of date system by 

(4-175) 

where 

a '"v magnitude of the thrust acceleration 

UT '" unit vector in the direction of the thrust acceleration 

To '" effective initiation time of the motor burn (ET) 

Tf "'v effective termination time of Lhe motor burn (ET) 

and u is defined as in Equations (4-166) and (4-167). 

'!'I.e ltlobr's effective burn time is 

(4-176) 

'I'he propulsi':e acceleration is modeled as follows 

(4-177) 
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where ] _

._ T=t-T 0

J Equation (4-177) characterizes the thrust acceleration as a fourth degree poly- ,

nomial in _-, the time from effective thrust initiation. The polynomial coefficients _

a 0 , a,, a 2' a a' and a 4 are dynamic model parameters which can optionally be
= specified or estimated and represent the effective thrust-mass ratio as a function '

of time.

"_ The unit vector UT is directed :,long ,he spacecraft's thrust axis (assumed L)

be coincident with the x -axis). Tbe true of date components of the vector UT
- are

[,

cos a T cos b T

14-17q)
UT : sin ,:l T COS b T I ':

5 sin 5 -:
"-" T

where 0;

• a T _ the right ascension of the spacecraft's thrust axis relative to the
true equator and equinox of date

c_T "_ the declination of the spacecraft's thrust axis relative to the true
equator and equinox of da_e.

'.. The thrust axis orientation is represented by the fourth-degree polynomials in r '

f

CJW - '_0 _ '117 f z272 _ (J373 _ '14"r4 (4-179a)

212' T O0 * :'1'- _ ;_ '_ :;_3T3 '_ 'b4r4 (4-179b) s

',vhere %, oh: . . . , _ , ,- are dy-.mmic parameters which can optionally :"
b_estimmted. 4 %'" "'' 4
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where 

Equation (4-177) characterizes the thrust accelen-tion as a fourth degree poly
nomial in T, the time from effective thrust initiat:.on. The polynomial coefficients 
a o ' ai' a 2' a 3' and a 4 are dynamic model parameters which can optionally be 
specified or estimated and represent the effective thrust-mass ratio as a function 
of time. 

The unit vector i\ is directed :,lol!ii .he spacecraft's thrust axis (assumed ~ 
be coincident with the x -axiS). T~!e true of date com:,!onents of the vector U 

v T 
are 

where 

(4-17~) 

sin 2> T 

aT 'V the right asct:nRion of the spacecraft's thrust axis relative to the 
true equator and equinox of date 

D T '"V the declination of the spacecraft's thrust axis relative to the true 
equator and equinox of date. 

The thrust axis orientation is represented by the fourth-degree polynomials in T 

()T '10 + II 1 7 I L 7 2 
2 t () 1 3 

J t 1 T 4 ' 4 

T 
0

0 I -
I' I 1 7 2 

( 2 
' 3 
:) 3 T '14 r 4 (4-179b) 

:vhere (1 0 , (1.
1 
~ ••• ,(1

4
, ~o' ••• , 4 are dy.!.:l.mic parameters which can optionally 

b~ estilllllted. 
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qt_ _ t
_, The unit vector UT can also be expressed in the orbital frame system, which is

_ i: obtained from the orbit plane system (Section 3.2.5) by a translation of the origin
,_ to the center of mass of the spacecraft and a redesignation of axes such that

--: r-of = E1?op (4-180) :"

where

: Ii E1 = 0
_" 0

? _,,:

: !i The thrust direction is defined by a rotation of Y_ (the yaw angle) about the Zof
_ axis, followed by_a rotation of PT (the, pitch angle) about the new x axis. The

_" compoxmnts of U T in the orbital frame system are of the same form as Eq-ation

(4-178), with 6T replaced by YT and "T replaced by PT" The true of d_te c_mpo-

nents of UT are then given by

= T_ _,:
• ,, U. = (EIE)T_To f EofUTof 14-181) / .

: . "_ where E is the transformation matrix from the inertial true of date system to the

: orbit ptane _yst_m (see Section 3.3.5}.

: Fne thrust acceleration it _xpressed in the true equator and equinox of date

coordinate system via the unit vec or UT • The transformation to the mean
eqaetor and equinox of 195'0.0 system is accomplished as followb

Rw - Crl (4-182) _
]

where the transfarmacmn matri× C" _ des=- ibed in Section 3.3.1.
q

4.8?- Associated Oartia: De:ivatives

When the acceleration R r_is modeled in the direction U r given by Equaho _4-178)
it is independeat of both R and R; therefore

.. ,,

: :'_RT _Rw (4-183)- 0

4-(if)

\
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The unit vector UT can also be expressed in the orbital frame system, which is 
obtained from the orbit plane system (Section 3.2.5) by a translatiol1 of the origin 
to the center of mass of the spacecraft and a redesignat.ion of axes such th~t 

Tof = Elfop (4-180) 

where 

= [~ 
1 

!J E} 0 

0 

The thrust direction is defined by :! rotation of Y,. (the yaw angle) about the. zof 

axis, fol;owed ~ a rotation of PT (the pitch angle) about the new x axis. The 
components of Ur in the orbital frame system are of the same form as Eql:.8.tion 
(4-178), ~th 0T replaced by Y

T 
and lLT replac~d by PT. The true of dpte compo

nents of UT are then given by 

(4-181) 

where E is the transformation matrix frcm the inertial true of date system to the 
orbit p}an~ r.;?stP.~ (see Section 3.3.5). 

The thrust a{.t;eleration i[ 3xpressed in the true equator and equinox of date 
(.oordinate system via the unit ve(' or UT • The trarrsformation to the mean 
eq..l2tor and equinox of 195~\.O system is accomplished as followb 

(4-182) 

",here the transformanon matrix C .. :" dt:s,: iben in Section :L3.1. 

(L8.~ Associated ;:)~rtia: Duivrttiv('s 

.. 
Wher~ the acceleration Hr is m90eled in tne direction U r givcn by EquatlO \4-178) 
it, is inoepcnde.lt of both H and ~; therefore 

(4-183 ) 
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when the direction of the acceleration UT is expressed as in EquationHowever,

: (4-181), the following partial de, ivatives are used. ',

Using Equations (4-175), (4-181) and (4-182), the thrust acceleration drring a ,:

thrusting interval cap. be expressed as , ,

; RT = a (E1EC)T UT (4-184)
. oI

_. Since only the matrix E __sa function of position and velocity, ;

?,

:: ,-)R w _
": _ (4-185)

= aCT bET E1TUTo?R 8R f

.J

/ and

_,- _ = a CT ?ET - 14-18_) / "-"7- ElT • .-"
bR _ UTof

i !|

The rows of the matrix E are defined in Section 3.3.5 _o be the ,,.nit vectors _, l

V, and V¢. The necessary partial derivatives then may be expressed, using '_
subscript notation, as

)U i
--r" - 0 (4-187) :_x.

j

})Ui Sij x i • x.
" _ = J (4-188) :

3x. r r 3J

_Wi I _Li Li ,3L
-- (4-189)

_xj L ,_x. L2 _x.J J

?_, L _x. L2 c_ (4-190)l l 1

!
4-70

}
,)

I

1976017203-190

However, when the direction of the acceleration UT is expressect as in Equation 
(4-181), the following partial delivatives are used. 

Using Equations (4-175), (4-181) :md (4-182), the thrust acceleration dl'ring a. 
thrusting interval can b€ expressed as 

(4-1(14) 

Since only the matrix E ~s a function I)f position and velocity, 

(4-185) 

and 

(4-18(::) 

The rows of the matrix E are defined in Section 3.3.5 t.~.' be the IJ:tit vectors U, 
V, and W. The necess~ry partial d9rivatives then may be expn!ssed, using 
subscript notation, as 

dU. 8 .. 
1 Il 

(Ix. = -r
l 

ClW j 1 (\L
i -::--

iix. L ,'Ix. 
l l 

4-70 
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,_p I. /__., Li _,_p (4-194)
i=I

/

r
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anri 

r-OU1l 

0 -\\. W2 ;~: I '-U 

U3 oJ 

dV. 
1 

dp W3 0 -WI 0 

-W2 WI 0 I U. 
';J .: I-U, 

l:~' L" 
\]1 

0.. is the Kronecker clclta cpcrator 
1 J 

Ll is the angular momentum vector (R x R) 

L is the ma,'~ni.tude of the angular momentum vector 

p is anyone ot the parameters xl' X 2' X 3 ' Xl' X" XJ 

0 
. -x-l X

J 2 I 
(jl. I I . 

0 
. 

I 
;jx. 

- -X3 Xl 
\ 

J oj . 
x -Xl ~ 

I: 
-X3 x2 

ilL. 
I . :: 0 -Xl ,4X. lx: J 

'Xl 0 

.l ,'L. ,1L 1 
,--, 

\ L. 
I - :"':- L "p L I 

"p 
i-1 
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C'
_. _,e C matrix components resulting trgm the accelera,'2on model parameters " !!

ao, . . . , a 4 al-e

: 3K T R T -

" c)5 a rl (4-195) i. _

,: ?R T , i :

7 D: - a {u(t - To) -u(t - Tf ) CVU_F: (4-196) *i ,
J :

w__?

. )R ]

- a fu(t - To) - u(t -- Tf)} CT'J--_P: (4-197)

; _ wnere

an i :3o1 ._// '_

" a_ 811 ,

• • • ¢,

, g = , _-= , g= (4-198)

c • •

; a 4 c_3 °3 A

- _ ..

_T= [I,_, _ T"] (4-199) ' ;,_ p ! • , • ) ) ',,

" U_ = _ = L cos a r :os 8T (4-200) ,0 ' "

,, U_ : -_T --L s incos_TS;Tin_T-[ (4-201) :_ '_2_,,:

! i _' _'"

, 4-72 )
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/ 

TI'e C matrix components resulting from the accelel'at;on mildel parameters 
ao' ... ,a4 aie 

(4-195) 

(4-196) 

(4-197) 

wnere 

a ::: , Q = 8 ::: (4-198) 

a~ J 
fiT ::: [1, 7, 

I' 
.. , (4-199 ) 

(4-200) 

(4-201) 
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4.9 RFPLAC]:MENT ACCELERATION !

_ 4.9.1 Replacement Acceleration Model

When accelerometer data is available from a spacecraft, this data, when properly _
" converted, may be used to replace the mode], of all nonpotential accelerations ,

(i. e., atmospheric drag, solar radiation pressure, thrust, and attitude control
system accelerations). Letting R_ represent the total acceleration as measured - .

i by an on-board accelerometer, and letting

',

RA =R D + RSR + RTAc + R T (4-202)

then Equation (4-1) reduces to

R = RpM + RNS + RIo + RA (4-293) }

It is u_derstood, ol course, that '.he acc_crations measured by the accelerometers _

at any instant of time need not represent all of the accelerations on the right hand _ /s.:
side of Equation (4-202). , .1

i) "-'The acceleration R A is comput_.:d from the following relationship _i

RA = Q _KA _ B] (4-204) ':

where Q is a 3 x 3 transformationmatrixfrom theaccelerometeraxes tothe o

Ii coordinatesystem ofintegration,K is a d:_gonalmatrix ofaccelerometerscale i
factor corrections (in addition to those scale factors used during the pre-processing
of the telemetered accelerometer data), B is a 3 × 1 vector of bias corrections i

"\ _ _.
(in addition to those biases, such _s zero sets, employed in the pre-processing),
and A is the 3 × 1 vector of external accelerations expressed in the accelerometec

coordinate system. , i_':

The matrix Q is comprised of a number of rotations: QA' the _ransformation

matrix from the accelerometer axes to the vehicle-fixed axes; QB' the transfor- 4

mation matrix from the vehicle-fixed axes to the inertial true of data system;

and, if necessary, Qc, the transformation matrix from the inertial true of date
_:_ system to the user selected coordinate system el integration. Thus, Q is de-

i termined by Q = Qc QB Q,, (4-205) ,'

i''
4-73 :
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4.9 RFPLAC[l\!ENT ACCELERATION 

4.9.1 Replacement Acceleration Model 

When accelerometer data is available from a spacecraft, this data, when properly 
converted, may be used to replace the model of all nonpotential accelerations 
(i. e., atmospheric drag, solar r:~diation pressure, thrust, and attitude control 
system accelerations). Lettillg Ra, represent the total acceleration as measured 
by an on-board accelerometer, and letting 

(4-202) 

then Equation (4 -1) reduces to 

.. ..... . 
R = RpM + RN5 + RIO + RA (4-233) 

It is understood, 01 course, that ~he acct.~~rations measured by the accelerometers 
at any instant of time need not r(!present all of the accelerations on the right hand 
side of Equation (4-202) . 

.. 
The acceleration RA 1S comput'.:d from the following relationship 

(4-204) 

where Q is a 3 x 3 trallsformation matrix from the accelerometer axes to th€ 
coordinate system of integration. K is a d~~gonal matrix of accelerometer scale 
factor corrections (in addition to those scale factors used during the pre-processing 
of the telemetered accelerometer data), B is a 3 x 1 vector of bias corrections 
(in addition to those biases, such ,s zero sets, employed in the pre-processing), 
ane! A is the 3 x 1 ve.:::tor of external accelerations expressed in the accelerometer 
coordinate system. 

The matrix Q i~ comprised of a number of rotations: QA' the transformation 
matrix from the accelerometer axes to t.he vehicle-fixed axes; QB' the transfor
mation matrix from the vehicle-fixed axes to the inertial true of data systAm; 
and, if necessary, ~. tht: transfonnation matrix from the inertial true of date 
system to the user selecl.ed coordinate systt~m at integration. Thus, Q is de
termined by 

~4-205) 
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1 .
i- where Q^ is a constant matrix, and QB is determined from

_ Q_ = f (_I'02' _3) (4-206) :

,f

: and _?t' _2 ' and 83 are the attitude orientation angles which relate the spacecraft
vehicle-fixed coordinate system to the true of date coordinate system, as described '
in Section 3.3.12.

4.9.2 Associated Partial Derivatives

:

, 3R A

5--_-. = Q _, [Ki+B] where i = 1, 2, 3

' ,' _=t. q(i,l) al f

:' // }:

_ :

".: ?R A

?k2----2= q(,, 2) a2 '_

SR A -

3ka3 q(, 31 a3 (4-207)

t •

-.. A
_-q(
_)bI i,I) ,,

_=q(
• ?b2 ,,2) )

?R^

?b a q(,, 31

..:.,!,{{'-i'_TL'_}t_T''-fifty{,)FT_

: 4-74
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where Q
A 

is a constant matrix, and Q
B 

is determined from 

(4-206) 

and 01 ' i92 ' and e3 are the attitude orientation angles which relate the spacecraft 
vehicle-fixed coordinate system to the true of date coordinate system, as described 
in Section 3.3.12. 

4.9.2 Associated Partial Derivatives 

.. 
"dR A (, 
-_-= Q - [KA + B] where i = I, 2, 3 
6&. oe. 

1 1 

.. 
ClR A 
-- = q(. 1) a. ;')k 1. • 

II 
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?

where q (i,j)is the element in the i th row and jth column of [Q], and _ i and b i I
are the elements in the i th row of the vectors _, a_d B, respectively.

4.10 ANALYTIC PARTIAL DERIVATIVES

The differential correction process requires the develop, nent of a set of partia! i
a_riva_ives called the matrizant, or state transition matrix. These partial

d_rivatives give the relationships between perturbations in the spacecraft state
at observation times to perturbations in the slate at the epoch. Analytic expres-

sions for the_e partial derivatives which were developed ortginally for the_rouwer-L:;ddane method (References 15 and 16) are available for use with all

of the orbiL generators utilized in GTDS. The perturbation wriables utilized
I in the analytic partial derivatives are defined in such a way as to couple the

perturbation propagation process with the differential correction process. These
variables are referred to as the DODS variables.

4.10.1 Definition of the Perturbation Variables

In ,*he statistical estimation process, the spacecraft dynamic state variables in _ /"
are normally expressed in an inertial Cartesian coordinate system. As a result, ":J

_._ _ ) the estimator algorithm solves for the differential correction, _xi �œbe added
._ to the epoch state on the ith iteration, _i, to yield an improved estimate E_ L�_: Note that the unknowns that are solved for are corrections to the Cartesian state

variables. The variables for the Brouwer-Lyddane theory are also state correc-
t! tions, but are defined as follows: , _

- \

_a

x1 =--- (semimajor axis) ' -_
a

x2 = _e (eccentricity) ,

_,_.,x3 = eSf (true anomaly) _ :
(4-208)

x4 = 5a (rotation ;about 6) !

*_ x s = _fl (rotat ion about _) i

• _,_ x 6 = ST (rotation about _) !:
I

, _- x 7 =_r (radial distance) "
I

;_ 4-75
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where q (iii )is the element in the i th row and f:<,co~mn of [QJ, and a i and b i 
are the elements in the ith row of the vedors A and B, respectively. 

4.10 ANALYTIC PARTIAL DERIVA'1'IVES 

The differential correction process requires the develor ,. nent of a set of partial 
derivatives called the matrizant, or state transition matrix. These partial 
derivatives give the relationshJ:>s between perturbations in the spacecraft state 
F .. t observation timf'!s to perturbadous in the state at the epoch. Analytic expres
sions for these partial derivatives which were developed Originally for the 
.8rouwl:r-Lyddane method (References 15 and 16) are available for use with all 
01 the orbh g'enerators utilized in GTDS. The perturbation variables utilized 
in the analytic partial derivatives are defined in such a way as to couple the 
p{:rturoation propagation process with the differential correction process. These 
variables are referred to as the DODS variables. 

4.10.1 Definition of the Perturbation Variables 

In the statistical estimation process, the spacecraft dynamic state variables in x 
are normally expressed in an inertial Cartesian coordinate system. As a result, 
the estimator algorithm solves for the differential correction, 8;( i +j' to be added 
to the epoch state on the ith iteration, x it to yield an improved estimate Xi +l • 

NOt'd that the unknowns t.hat are solved for are corrections to the Cartesian state 
variables. The variables for the Brouwer-Lyddane theory are also stat.e correc
tions, but are defined as follows: 

8a 
Xl =-a 

(sl'mimajor axis) 

(eccenl.ricity) 

(true anomaly) 

(rotation about~) 

(rotat ion about j3) 

(rotation about y) 

(I'adial distance) 
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;' xs = 8v (velocity)

na )_"- e2 cos E (4-208)

x9 = 88 (t ligPt path angle) (eont'd)

,: x19 = _i_ + 8_ (longitude of periapsis) ,

• Variables x1 , x 2, and x 3 account for in-plane perturbations of the orbit, i.e.,
• per_rbations in the semimajor axis a, the eecentric._ty e, and the true anomaly

f, respectively. The variable x 3 can also be related to a perturbation in the
mean anomaly M as follows

e¢'_ - e 2 (4-209)x3 = _M
(1 .. ecosE) 2

/

Variables x4 , x s andx 6 account for angular rotations of the orbit plane. Figure
__ 4-6 illustrates an orbit around a planet. The unit vector _ is normal to the orbit ,,

plane; the unit vector /_ lies in the orbit plane and is displaced from the ascend- ..'"

ing node by the angle 5. The uni*, vector _, torms a right hand system with

and _, i.e., _ = _ x/_. Variable x4 accounts.for the rotational perturbation _ [
sbout £, x s accounts for the rotational perturbation bZ about ;_, and x 6 accounts

Figure4-6. OrbitalGeometry

t
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2 ov Xs :: 

na ;'1 - e 2 cos E 

X9 :: 0 e 

(velocity) 

( t Ii gH pa than g Ie) 

(longitude of periapsis) 

(4-208) 

(cont'd) 

Va.'ito.bles X ,.< , and X accoum for in-plane pertUl'bations of the orbit, i.e., 
1 2 3 

perturbations in the semimajor axis a, the eccentric.1ty e, and the true anomaly 
f, respi~ctively. The variable X3 can also be related to a perturbation in the 
mean anomaly M as follows 

(4-209) 

Variables x
4

' Xs andx6 account for angular rotations of the orbit plane. Figure 
4-6 illustrates an orbit around a planet. The unit vector a is normal to the orbit 
plane; the unit vector;; lies in the orbit plane and is displaced from the ascend
ing node by the angle 0 a' The uni'; vector y forms a right hand system with a 
and;;, i.e .. , y = a x;;. Variable x 4 accounts .for the rotational perturbation (3 a 

about .i, Xs accounts for the rotational perturbation 'oj.) about;~, and X6 accounts 

x 

Figure 4·6. Orbital Geometry 
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i

_ for the rotational perturbation _7 about _. Variables x4, x s and x 6 can be re- )l

lated to the orbit incDnation i. the right ascension of the ascending node _, and i
the argument of periapsis _, as follows !

_i = xs cos _ - x6 sin _a '
a

x s sin 8 + x 6 cos_, = a a (4-210) i
sin i

x 3

b_= x4 ---- (x s sin S + x 6 cos _ ) cot i

,: The angle _ between the line of nodes and the _ vector defines the ;_ and _

" _i directions. This angle can be_0, _0 + fo, _+ f, or some other specified angle.

In the equations that follow, _ is assumed to be oJ + f, i.e., /_ is directed towards s
¢, a /_ ,,

the spacecraft. ,1 _

: _,_ _' Only six of the ten variables in Equations (4-208) are independent. Therefore, z

_ any six can be selected to be solved for in any o;'bit determination problem. The _
,.I selection criteria are dependent upon the sensitivity of the variables to pertinent

" _ characteristics of the orbit being determined. Experience has shown that vari- _
_ ables xl, x2, x3, xs, x 6 and xl_ are usually a reliable 3et of variables to use in

_: a variety of earth orbital missions. The dependence of the variables on orbital
characteristics is shown in Table 4-5.

¢

i

'" 4-77 :
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for the rotational perturbation by about j. Variables x 4 ' Xs and X6 can be re
lated to the orbit inclination i. the right ascension of the ascending node n, and 
the argument of periapsis 0.' as follows 

8 i = Xs cos (, a - X6 sin 8 a 

(4-210) 

x 
Dw = x4 ---!- - (xs sin 8a + x6 cos 8a ) cot i 

Th.e angle 8 between the line of nodes and the iJ vector defines the ;J and 5, 
a 

directions. This angle can be w 0' Wo + fo' (j) + f, or £ome other specified angle. 
In the equations that follow, 0 is assumed to be w + f, i.e., E is directed towards 

a 
the spacecraft. 

Only six of the ten variables in Equations (4-208) are independent. Therefore, 
any six can be selected to be solved for in any o):bit determination problem. The 
selection criteria are dependent upon the sensitivity of the variables to pertinent 
characteristics of the orbit being dett::rmined. Experience has shown that vari
ables Xl' x 2 ' x 3 ' x s ' X6 and xlCJ are usually 11 reliable set of variables to USE" in 
a variety of earth orbital missions. The dependence of the variables on orbital 
characteristics is shown in Table 4-5. 

4-77 



5

I . : l 4_

2

'2

Table 4-5 - [ *j,,
e

" DODS Variable Dependency
.7

k I ,r
: a e i 17 _ M E f r 6 _ V .:a

X v/ "f

! x 2 V •

! <x3 v/ V V V
A

? x4 ¢ ¢

x 5 ;/ _/ ¢ ¢

X 6 t / V' V/ v" :
;,

_ .... 1 I "_':
: x 7 ¢ I ¢ ,/ ,/ V V ¢ ,,:

J /P 'i
_ 2

•, X 8 ¢ ¢' V' ¢ v' ¢ _/ .
_T

x 9 C V ¢ V ¢ .... !'

= xl9 v/ ¢ v _ ,

The Brouwer-Lyddane theory was developed for use with drag-free orbits. _
However, for high altitude, small eeeentricity orbits the primary efteet of drag i .,
is a secular ehange in the mean anomaly. This effect is relatively small and is ' _:.

.: "_ noticeable only ove_ a long period of time. Consequently, an optional first order
correction to the mere _,anomaly is inc=aded of the form

2 _'_ (4-211)
AI_r_G = / , NpqCt- t )p ;_

qU0 p22 _ ,

m=0, 1.2 .... 19 ' _

where

N ", the Brouwer drag parameters )
Pq _

i 4-78
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Table 4-5 

DODS Variable Dependency 

a e i f2 w M E f r G 8 V 
8 

r-----' 

Xl 
/ v 

X2 I 

X3 I I I I I 

X4 
,I V 

Xs / ,I v I v' 
" '. -

X6 II ,I ,I , 

X 7 I V -t- v ,I I 1 V v 

Xg I 
, 

v v 
, 

v' I / " 
X9 ,I / v vi I 

Xl9 vi I / 

I i v • 

The Bl'Cluwer-Lyddane th£Jory was developed for use with drag-free orbits. 
However. for high altitude, small eccentricity orbits the primary effect of drag 
is a secular change in the mean anomaly. This effect is relatively small and is 
noticeable only over a long period of time. Consequently, an optional first ordf-:r 
correction to the me8J1 anomaly is inc~"ded of the form 

(4 -211) 

m = 0, 1. ::", , 19 

where 

Npq ,"" the Brouwer drag parameters 
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,a

tq _ the reference time associated with the ._ "
Brouwer drag parameters

The correction is applied to the mean motion as follows ,,,

• (4-212) : :
M"= n0At + MAt + M0 + AMD_ G

Forty DODS variables which account for the forty drag parameters N inpq
Equation (4-211) are defined P_ _:

N2 'q ?
x20+q =_

n 2 _.

,!

q = 0, 1..... 19 (4-213) -

N3q

X40+q- n2 ./t'

.. These variables are ectimated by means of the differential correction process _
in order ;o determine _he secular corrections to the mean anomaly. _ _,

4.10.2 State Transition Matrix Elements

F The statistical estimation algorithm requires the matrix of partial derivatives :'

of the observations f(t ) at time t_ with respect to the solve-for state variable_ )
x at the epoch time t 0. These partial derivatives are computed as follows '°

"_ _f(ti) _f(t ) _7(ti) (4-214) ' ,_
i - _ j=l, 2 ..... 19

!_ The partial derivative of the observation model f(t i ) with respec_ to the oscu-

! lating Cartesian state vector r(t ) is modeled as described in Chapter 7. ttow-
_! ever, the partial der_.vatives of the osculating Cartesian stat_ with respect to _-.=4

_,: the DODS variables must be determined. Whe. _he Brouwer or Brouwer-!,yddane

! theor) is being utilized, _ (t,)/_ x j is ob:_ained analytically, where the solve- ' :
for wriables x are the DODS variables. When one of the other GTDS orbit

, genera,'ors is used, requiring numerical integration of tb.e orbital equations, two
:: options are available: (1) the reqmred partial derivatives can t_ obtained from _

':' numerical solution of the variational equations or (2) the above analytic partial ,

" 4-79
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t '" the reference time associated with the 
q 

Brouwer drag parameters 

The correction is applied to the mean motion as follows 

Forty DODS variables which account for the forty drag parameters N in 
pq 

Equation (4-211) are defined p.s 

N2 
X - q 

20+ --
q n2 

q = 0, 1, ... , 19 
(4-213) 

These variables are estimated by means of the differential correction process 
in order ~o determine the secular corrections to the mean anomaly. 

4.10.2 State Transition Matrix Elements 

The statistical estimation algorithm requires the matrix of partial derivatives 
of the observations f(t ) at time t. with respect to the solve-for state "ariabl~E , , 
x

J 
at the epoch time to' These partial uerivatives are computE'd as follows 

d(t ) Jr(t.) , , 
;rr (t ) 

I 

(IX 

J 

=1,2, ... ,19 
(4-214) 

The partial derivative of the observation model f(ti ) with respect to the oscu
lating Cr.rtesian state vector r(t, ) is modeled as described in Chapl~r 7. How
ever, the partial derivatives of the osculating ('artesian stat~ with respect to 
the DOT'S variables must be determined. Whell the Brouwer or Brouwer-Lyddane 
theor) is being utili2-c~, rl"f (t, )/c x J is obtained analytically, where the solv0-
for vHiablp.s x I are the DODS variables. When one of the other GTDS orbit 
generators is used, rp.quiring lUlmeric:al integration of the orbital equations, two 
options are ava i lable: (1) the reqUlred partial derivatives can he obtained from 
numerical solution of the variational equations or (2) the above analytic partial 
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derivativescan be used by replacing,via the chain rule,the required partial \- } f

derivativein Equation (4-214) with

.: _-f(t i) aT(t i ) _x k

?xJ ?Xk ?xi (I-215)"" - i

i

where, in thiscase, the x k's are the DODS variables,the firstterm on the right

: represents the analyticpartialderivativesof the osculating Cartesian statewith

respect to the DODS variables, and the second term represents the partialderiv-

:. ativesof the DODS variables with respect to the appropriate solve-for variables,

:' depending on the orbitgenerator being used.

The analyticpartialderivativesof the osculating Cartesian statewith respect

to the DODS variables are approximated by two-body Keplerian partialderivatives

:: evaluated using the osculating Keplerian elements at ti and to. This approach

.. j neglects the higher oroer effects of the Brouwer secular variation, as well as

_ the partialderivativesof the osculatingpositionand velocitywith respect to the

il Brouwer mean rositionand velocity. These par6ialdemvatives, which are de-

_. _ veloped in Reference 17, are presented below.
:' ,DJ •

:J]: 3 ' i :,
=7---(t- to)7 --_

?xI 2

(4-216a)

Dr -r 3 /_7(t- to)
- +

_xI 2 2 r3

": ?7 1 1
-- _ cos E0 + e) 7--(2- e 2 - e cos E) sine

-_, ?x 2 (1 e 2) n ¢!

(4-216b)

_r _ 1 loosEr /_sinE (1+ecosE_e2_e2 cos2E) 7]', _x_ (1 - e2) nr 2 #_

i
.,

t
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derivatives can be used by replacing, via the chain rule, the required partial 
derivative in Equatjon (4-214) with 

(4-215) 

where, in this case, the x k 's are the DODS variables, the first term on the right 
represents the analytic partial derivatives of the osculating Cartesian state with 
respect to the DODS variables, and the second term represents the partial cleriv
atives of the DODS variables with respect to the appropriate solve-for variables, 
depending on thp. orbit generator being used. 

The analytic partial derivatives of the osculating Cartesian state with respect 
to the DODS variables are approximated by two-body Keplerian partial derivatives 
evaluated using the osculating Keplerian elements at ti and to' This approach 
neglects the higher oraer effects of the Brouwer secular variation, as well as 
the partial derivatives of the osculating position and velocity with respect to the 
Brouwer mean rosition and velocity. These partial derIvatives, which are de
veloped in Reference 17, are presented below. 

dr _ 3 ( ).!.. 
- = r - -2 t - to r 
oX l 

or t 3 j..Lr(l - to) 
oX

l 
= - 2" +"2 r3 

(4-2160.) 

__ 1 fccosEo+e)-i-~(2_e2-ecOSE)SinEtJ 
(1 - e2 ) ~ 

or" 1 
oX2 - (1 _ e2 ) 
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i

" 5___._= __a2 sinE [2 cos E0 + e sin 2 g 0 - 2e - (l - e2) cos E] _ .,.:
ax3 r _ 5 !:

}+ [I (2 cosE o +e sin 2E 0 cos E) cosE] ¢_ '

?_ ha4 {[1 + 2 cos _(cos g 0 m CeS E) '"

(4i216c) _

- e(cos E(sin 2 E + cos 2 E0_ 2 cos E0)
7

+ e2(2 cos 2 E + cos 2 Eo) - e 3 cos 3 E]

- _ sin E{(cos E0 - cos E) [e(cos E + cos E0) - 2]} (_ ._

°--Lr= _ × 7 /¢:
?X 4

(4-216d)

-Ctx r

. _, _x 4

- = - [2 cos Eo + e s In Eo - 2e - (1- e ) cos E P ('fj= a2 {S in E . 2 2] A 

"Ox3 r ~ 

+ [1 - (2 cos Eo + e s in2 Eo - cos E) cos E] q} 

- e(cos E(s in2 E + cos 2 Eo ~ 2 cos Eo) 

- /1 - e2 sin E{(cos Eo - cos E) [e(~os E + cos Eo) - 2j} q 

-:fr- ... _ 
== I x r 

dX6 
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_' bY - 2 ?? e2 07 ?7 "
_x 2

_ 14-216g)

_. _-, _ +(I-_)co_Z_- ,/T-J .,,i_Zo_ j. -- : ,_x2

?7

)_ ?7 _ (1 - e cos E0) _ + (1 - e2) COS E0 _2 - ¢_sin E0 ?-_-_; ?x 8 )x s
? 14-216h)

<_ _r _ (1 - e_,o_Eo) _¢ _¢ _?
_x8 _ + (1-e2) c°sE0 v_-_sinE 0

bx a

:.. (4-216i) "_1/

i %
_r;

i' a(1 - e cos E0)i
- [-,/1"-:'_s in Z_ + (I - ei)cos Eq]

: _X19 (I - e2) (I - e cos E)
"_ (4-216j) I

-_: _r a4n(1., e cos E)_ [(e- cosE)_-_sinEc_]

where _ and 4 are unit vectors in the orbit plane, with _ d._rected toward peruse,
and _t advanced 90 degrees in the direction of motion from perigee, i.e., q = a × p.
The parameter n is the mean mcti Jn.

: The B_ouwer mean eleme,,_sare utilizedwhen theabove equationsare used for

determiningthepartialderivativesattime t. Althoughthe Brouwer mean ele-
ments attime tare notdeterminedfrom two-body relationships,theabove equa-

l tions still provide a good approximaticn for the state transition mazrix elements
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or or ., dr r.----->r. or - = 2 - + (1 - e~ 'I cos E - - v1 - e· s in Eo -
oX7 oX t 'ox2 oXa 

Or I 2' or ( or - = - v1 - e Sin Eo - - e + cos Eo) -
a~ o~ O~ 

".!. ~.!. ".!. or ,r.;---;;1 • J;' .. Ll r, ) or - = - VI - e· ~ 1 n &1) - - t e + cos E -'1"" OX2 0 OX3 

or _ a4
n(1 .. ecosE)2 (e- cosE)p-~sinECi] 

OX!9 r3~ 

(4-216g) 

(4-216h) 

(4-2161) 

(4-216j) 

where p and q are unit vectors In the orbit plane, with p djrected toward perigee 
and ({ advanct,d 90 degrees in the direction of motion from perigee, i.e., q = a x p. 
The paramete.t' n is the mean mt..,tj In. 

The B:. ouwcr mean elemeI.~s ar~ utilized when the above equations are used for 
determining the partial derivatives at time t. Although the Brouwer mean ele
ments at time t are not determined from two-body relationshIps, the above equa
tions still provide a good apprc,ximaticn for the state transition matrix elements 
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@
fm the mean motion.

The par_:'al derivatives of the position and velocity with respect to the DODS

drag parameters x20, ....... , x59 are

t '_
_ __ n0r(t - q)'"

_X20+ q

(4-217)

-- (t - tq):: {(csc E- %) _ + _l--'_e 0 sin E_I]
dr _

_x20 +q _ r 3

q=0, I,. 19

and

3T
_T - n0(t - t ) '._

• q

i_ _X40 + q _X20+ q '_

(4-218)

- no(t - tq)
_-X4o+q _x_o, q _}

J

q=0 1 i_ ',• , .o't

4.10.3 Conversion ,'f Differential Corrections

Use of the preceding partial derivative_ results in the expression of the state
perh:rbations at epocb time in terms of DODS variables. Consequently, the
weighted least-squares estimator algorithm yields the differential corrections
in terms of DODS variables,These correctionsmust then be conv,-=rted into

more meanlr_ful variables, such as Kepleman elements or Cartesian compo-

nents. Specifically, GTDS converts the DODS corrections x t , x._ ..... , x_.
into corrections of the Brouwer mean elements, i.e., gevl,=ri.%_ _l_wents. The

reference mean elements at epoch are _cli upaated to begin the next iteration.
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fOl tbe mean motion. 

The partial derivatives of the position and velocity with respect to the DODS 
drag l>arameters x20 ' • • • • • • • '}';S9 are 

(4-217) 

( t - t );: ,.,-d_f_ ::: ___ ....:;q_ 

ox20 + q ;;;; r3 

q=fJ. 1 ...... 19 

&.nd 

(4-218) 

q = (l . . .• .i.:1 

4.10.3 Convc)":ion ,..f Differential CQrrections 

Use of the preceding partial derivativt's results in the expression of th~ state 
pertnrbatiol'.s at epocb time in terms of DODS variables. Consequently, the 
weighted least-squares estimator algorithm yields the differential corrections 
in terms of DODS variables. Th,ese corrections must then be cn'lY,:!rted into 
more meanir.gful variables, such as Keplerlan E'lements or Cartesiah c"mpo
nents. Specifically, GTDS converts the 0008 correctiol'.S Xl' ;''2' ••••• , XI Q 

into corrections of the Brouwer mean elements, i.e., Ke!>lpr!~~ .. ,,,It:JPents. The 
reference mean elements at epoch Are then upaated to begin the next iteration. 

4-83 



._ "
l

3
I I l t III I II

7

'[

As described in Section 4.10.2, when analyt e partial derivatl,tes are ueed in / ,.
GTDS with orbit generators other than the _rouwer or Brouwer-Lydd_ae tech-

_i niques, the statisticai _stimation algorithm is modified by introducing the paL'tial
derivatives of the DOD8 variabl; _ with respec" to the solve-for state variables

,_ appropriate for the o_'bit generator in ,_se. The estimation algorithm then yields

the differenti_J corrections in terms of these solve-for state variables, i

Only six of the DODS variables described in Section 4.10.1 are independent. :
The user has the option of selecting which elements are to be corrected. The _

_ following conversion equations show the dependency of the mean Keplorian

i element corrections on all the DODS variables; however, only the six independent :._
variables selected for inclusion in the differential correction process should be

? included. All the other DODS variables 3hould be set equal to zero. The follow- :i
ing equations also include the conversion relationships for the related variables

_ E,f,r, 8, _ andV. _.

ii Aa = ax 1 + 2ax 7 + a3_sx 8 ):

Ai = xs cos _e - x5 sin b
- i • =

_,T

'
i

A_- (xs sin b + x5 cos _a)sini " _
(4--219) i

\_" 1 !
A_ = ---x 3 + x4 - _z2Xs - _3x_ - (ax7 - _ '_

e _7x8 - _9x9 _ _,,,

AM ":-1 "e _xa +_3r'_x_+_7_'_x_+_x_ +_x_o _ , ":
t

5z: z

t
1 "
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As described in Section 4.10.2, when analyt :: putial derivati';es ar~ used in 
GTDS with orbit ger.erators other than the l;rouwer or Brollwer-Lyd~p.J1e tech-· 
niques, the statistical ~atimation dgorh!1m is modifierl by introducing the pal'tial 
derivatives of the DODb vP.:.'iabIF, ~ with respec· to the solve-for state variables 
appropriate for the ot'bit generator in 'H~e. The estimation algorithm then yields 
the differential corrections in terms of these solve-for state variables. 

Only six of the OODS variables described in Section 4.10.1 are independent. 
The user haa the option of selt:cting which elements are to bE correctt!d. The 
following conversion equations show the dependency of the mean Kepl"'i-ian 
element corrections on all the DODS variables; however, only the six independent 
variables selected for inclusion in the differential correction process should be 
included. All the other DODS varhbles should be set t!qual to zero. The follow
ing equations also include the conversion relationships for the related variables 
E, f, r,e, Sa and V. 

1 
6D = -- (xs sin b + x, co", II ) 

sini 8 U 8 

(4,,219) 
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where 

1 - e 2 - rlV3 cos 9 
" = ----:----

f1.&.2 eo 

r2 
~2 -a 

Sl (2a~ + r cos f) + '2(1 + e cos f) - 2st. - e 2) 
~3 = -----

re sin f 

v 
~ = -, 

5 f1. 4 

4-"5 

(4-219) 
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(1- e 2) a 2 r 2 COS: O :
-_6 " -- ?2e _-

_s _5 (2ae + re + r cos f) - a 3 (1 - e2) i :

re sin f

¢. .-:

k

rV 2
_r8 =_sir, 0 cos 0

- /zae 'i

2,

_9 = _s(2ae + r cos f) ::
e s i n f (4-2201 ._

_" (cont'd)

': 1 - e cos E "' r -
'_: = 10

; ?

_' _11 = (1 - e cos E) 2 ;_
!: vT-EWz"
y, _

:2 ., ;

t

: \ cos i sin _ ,,,, _.

.. ",,. {12 = sin i i,

" cos i cos _ a

: sin i 4
,: _r'

i
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, , (2ae + re + r cos f) - a3 (1 _ e2 ) , =~S~6~ __________ ~ ________ ___ 

7 . re sin f 

r rV2. e e 
~s :--Slr, cos 

J.l.ae 

's (2ae + r cos f) 
, == -----;---;:--

9 esinf 

, ::. .1 - e cos E 
10 11 _ e2 

'1 E' 2 , = \ - e cos .J 
11 /1 _ e2 

cos i ~ in S 
r = a 
"12 sin i 

cos i cos Sa 
~ =---

13 sin i 
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t

FORMULATION OF THE ORBITAL EQUATIONS OF MOTION

5.1 INTRODUCTION ,

Direct analytical solution of the differential equations describing the motion of

a satellite perturbed by the total acceleration vector (Equation (4-1)) is not "=

_ possible. Historically, solutions tc this problem have been obtained using two :

i principal approaches. In one approach, known as the General Perturbation :
Method, the perturbation model is limited such that an analytical solution is i:
possible. Brouwer theory is a well known orbit generation technique which falls ;

in this category. Brouwer formulated the problem of an earth satellite, perturbed

by point mass and zonal gravitational effects, in terms of canonical variables

: and analytically solved the resulting Hamilton-Jacobi differential equations to :

first order in a small parameter, using the Von Zeipel method. The resulting t _:
orbit generation method is extremely efficient, but its accuracy is limited by .i-,

the restricted perturbation model and the truncated small-parameter expansions :

, L (Reference I).

_ In a second approach, known as the Special Perturbation Method, me entire :]"

_ perturbation model can be included in the differential equations (also known as the :

equations of motion). The differential equations are solved by the numerical _ i

integration techniques described in Chapter 6. The Cowell method is the best __

[ known orbit generation technique which falls in this category. In the Cowell ,'
: _, approach, the equations of motion are expressed in terms of the total accelera- :

_ tion vector (i.e., point mass central body effects plus perturbing accelerations) 4 ._

"'"_i'_ and solved directly for the position and velocity vectors. _ ,

Recently, considerable research has focused on improving the accuracy and _ _efficiency of orbit generation methods. This research indicates that there is '-_ i

no best orbit generation procedure for allorbittypes. For thisreason, several 1 _

• _ orbit generation formulations are included in GTDS; taken together, these _ ,rformulations are suited to a broad range of accuracy and efficiency requirements

• _,_% for the various classes of satellite orbits supported by GSFC. 1 ": _:
_,,_, In generai, development of optimum methods for orbit prediction consists of ;

_, reformulat!ng the equations of motion in terms of a new set uf variables such

: i_,? that the rest, Ring equations are more amenable to solution. The principal guide- _:
: _, lines used in these reformulations are the following:
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CHAPTER 5 

FORMULA TION OF THE ORBITAL EQUATIONS OF MOTION 

!5.1 INTRODUCTION 

Direct analytical solution of the differential equations descr:bing the motion of 
a. satellite perturbed by the total acceleration vector (Equation (4-1» is not 
possible. Historically, solutions to this problem have been obtained using two 
principal approaches. In one approach, known as the General Perturbation 
Method, the perturbation model is limited such that an analytical solution is 
possible. Brouwer theory is a well known orbit generation technique which falls 
in this category. Brouwer formulated the problem of an earth satellite, perturbed 
by point mass and zonal gravitational effects. in terms of canonical variables 
and analytically solved the resulting Hamilton-Jacobi differential equations to 
first order in a small parameter, using the Von Zeipel method. The resulting 
orbit generati'Jn method is extremely efficient, but its accuracy is limited by 
the restricted perturbation model and the truncated small-parameter expansions 
(Reference 1). 

In a second approach, known as the Special Perturbation Method, the entire 
perturbation model can be included in the differrntial equations (also known as the 
equations of motion). The differential equations are solved bj- the numerical 
interration techniqued described in Chapttlr 6. The Cowell method is the best 
known orbit generation technique which falls in this category. In the Cowell 
approach, the equations of motion are expressed in terms of the total accelera
tion vector (Le., point mass central body effects plus perturbing accelerations) 
a.nd solved directly for the position and velocity vectors. 

Rel~ently, coasiderable research has focused on improving the accuracy and 
efficiency of orbit generation methods. This research indicates that there is 
no best orbit generation procedure for all orbit types. For this reason, several 
orbit ~~eneration formulations are included in GTDS; taken together. these 
formulations are suited to a broad range of accuracy and efficiency requirements 
for the various classes of satellite orbits supported by GSFC. 

In general. development of optimum methods for orbit prediction consists of 
reformulal~ng the equations of motion in terms of a new set of variahles such 
that the resl'lting equations are more amenable to solution. The principal guide -
lines used in t.hese reformulations arf: t.he following: 
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_ 1. Choose a dependent variable set which is appropriate for the numerical - )
: method of solution.

General Per_._rbation Methods usually require the use of canonical vaI ables,
which are amenable to the use of averaging transformation techniques _uch as _.

the Von Zeipel method; similarly, in the Special Perturbatior Methods selection _" I

of appropriate variables may be dictated by the numerical methc'd of solution.
For example, the accuracy of numerical integration formula_ increases with

, order. However, each integration formula has a numerical stability region,
_ outside of which the error growth is expcnential (see References 2 and 3 for a

more complete discussion of numerical stability). For a given set of differential
' equati,ms, this stability region dictates the allowable stepsizes. As a result,

changing dependent variables may affect the stability characteristics of _e i
• process.

Reformulations of the Class II equations of motion* in terms of other dependent

variables usually results in a set of Class I equations of motion*, e.g., the

Variation of Parameters equations (Section 5.7). In general, Class I multistep

numerical integration formulas (Equations (6-21) and (6-26))_ave smaller regions (

of nr_merical stability than the Class II multistep metheds (Equations (6-22) and /,_
(6-27)). Consequently, the numerical stability characteristics ._f the transformed ._
equations of motion are a very important consideration.

"Well-behaved" equations of motion, i.e., those which change only slightly due to

-_ a small change in the elements, will yield large regions of numerical stability '_"

in terms of stepsize, thus allowing the use of the accurate high order formulas.
• For example, element sets which are constants, or vary linearly with time in the :

unperturbed problem, yield equations of motion which are more numerically stable _',i
than the corresponding set of equations expressed in terms of the position

and velocity coordinates.

2. Choose an independent variable so as to achieve uniformization of local error

• over the entire orbit. _i"
; ::

Efficient numerical integration can be achtcced by adjusting the stepsize to obtain
uniformization of the local error over the entire orbit. For near-circular orbits,

_ fixed step integration produces uniformization when time is the independent <
. variable. To achieve uniformization for eccentric orbits, a mechanism is /

required for using a small time step in the region of large perturbations, and ,

a large time step in the region of small perturbations. A variable stepsize

Class I differential equations are of the form dy/dx -- f(x, y); Class IIdifferential equations

are of the form d2y/dx _ - f(x, y).
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1. Choose a dependent van able set which is appropriate for the numerical 
method of solution. 

General Perturbation Methods usually require the use of canonical val ables, 
which are amenable to the use of averaging transformation techniques ~;u('h as 
the Von Zeipel method; similarly, in the Special PerturbatioIl. Methods selection 
of appropriate variables may be dictated by the numerical method of solution. 
For example, the accuracy of numerical int~gration formula~ mcreases with 
orn~r. However, each integration formula has a numerical stability region, 
outsiri"! of which the error growth is expcnential (see References 2 and 3 for a 
more complete discussion of numerical stability). For a giv4:ln set of differential 
equati,.lDs, this stability regior. dictates the allowable stepsiz4:ls. As a result, 
changing dependent variables may affect the stability characteristics of tl1e 
process. 

Reformulations of the Class II equations of motion* in terms of other dependent 
variables usually results in a set of Class I equations of motion*, e.g., the 
Variation of Parameters equations (Section 5.7). In general, Class I multistep 
numerical integration formulas (Equations (6-21) and (6-26» t.ave smaller regions 
of nt~merical stability than the Class II multistep methods (Equations (6-22) and 
(6-27». Consequently, the numerical stability char.acteristics of the transformed 
equations of motion. are a very important consi.deration. 

"Well-behaved" equations of motion, i.e., those which change only slightly due to 
a small change in the elements, will yield large regions of numerical stability 
in terms of stepsize, thus allowing the use of the aCCt1rate high order formulas. 
For example, element sets which are constants, or vary linearly with time in the 
unperturbed problem, yield equations of motion which are more numerically stable 
than the corresponding set of equations expressed in terms of the position 
and velocity coordinates. 

2. Choose an independent variable so as to achieve uniformization of local error 
over the entire orbit. --

Efficient numerical integration can be achicV'ed by adjusting the stepsize to obtain 
uniformization of the local error over the entire orbit. For near-circular orbits, 
fixed step integration produces uniformization when time is the wd.ependent 
variable. To achieve uniformization for eccentric ()rbits, a mechanism is 
required for using a small time step in the region of large perturbations, and 
a large time step in the region of small perturbations. A variable stepsize 

* Class I differential equations are of the form dy/dx = f(x, y); Class II differential equations 
are of the form d2y/d~' = f(x, y). 
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integration algorithm's available in GTDS (see Section 6.9); however: frequent ,_ _
stepsize changes are costly and usually introduce error. For this reason,
formulations have been developed which achieve uniformization through analytic _ _:
stepsize regulation, accomplished through the use of an independent variable _

other than time. A new independent variable s, related to the time t by _

i
ds = _/_ dt (5-1) .i

is available in GTDS, where r is the mag'_2tude of the satelliteTs position vector
and n is known as the uniformization constant. The effect of such a transforma-

tion is that fixed steps in s yield smaller steps in time for small r (where the i
perturbations are usually larger) than for large r.

The appropriate choice for the uniformization constant depends on both the de-

pendent variable set and the local error source. In the Cowell method the primary _ ;,
source of local error is inaccurate integration of the point mass and J2 grave-- -: :;
tationaleffects of the earth. A uniformization constant of 3/2 is appropriate for _ _"

these perturbations and is used in the Time Regularized Cowell orbit generator _

(Section 5.3). The Delaunay-Similar (DS) equations of motion (Section 5.5) are I

_J uniformized for the J2 oblateness perturbation through the choice of a uniformi- _
zation constant of 2. The Kustaanheimo-Stiefel (KS) iormulation (Section 5.4) _ "_

uses a uniformization constant of 1, v,hich removes the singularity at collision

from the equations of motion. In the Intermediate Orbit formulation (Section 5.11), _,
the uniformization constant can be adjusted to p_'oduce uniformizatio_ with _;

respect to the dominant source of local error. It should be noted that uniformiza- i ::
k

tion of local error cannot be achieved through analytic stepsize regulation alone ! ,
for highly elliptic, long period orbits, for which both the nonspherical effects _ ._

'_'_. of the earth and lunar effects are equally important. In suchcases, a variable i' _"
stepsize algorithm is also needed.

3. Choose a dependent variable set in terms of which the solutions to the un-
perturbed problem are closed, explicit expressions in the independent "°
vari able.

_i In General Perturbation applications, the need for such dependent variable sets ._
_ is clear. However, such variable sets also are advantageous for use in Special ,

i: Perturbation Methods. Differential equations for quantities which vary slowly :_
t"

_' and smoothly withtime are known tobe more amenable tonumericalintegra- "'

tion methods (i.e., more numerically stable) than those for quantities which vary ,_

rapidly. In the case of satellite motion, the acceleration caused by the attraction _.
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integration algorithm ;s available in GTOS (see Section 6.9); however, frequent 
stepsize changes are costly and usually introduce error. For this reason, 
formulations have been developed which achieve uniformization through analytic 
stepsize regulation, accomplished through the use of an independent variable 
other than time. A new independent variable s, related to the time t by 

(5-1) 

is available in (!TOS, where J~ is the magr..itude of the satellite's position vector 
and n is known as the uniformization constant. The effect of such a transforma
tion is that fixed steps in s yield smaller steps in time for small r (where the 
perturbations are usually larger) than for large r. 

The appropriate choice for the uniformization constant depends on both the de
pendent variable set and the local error source. In the Cowell method the primary 
st)urce of local error is inaccurate integration of the point mass and J2 grav:'
tational effects of the earth. A uniformization constant of 3/2 is appropriate for 
these perturbations and is used in the Time Regularized -=:owell orbit generator 
(Section 5.3). The Oelaunay-Similar (OS) equations of motion (Section 5.5) are 
uniformized for the J 2 oblateness perturbation through the choice of a uniformi
zation constant of 2. The Kustaanheimo-Stiefel (KS) formulation (Section 5.4) 
uses a uniformization constant of I, v/hich removes the singularity at collision 
from the equations of motion. In the Intermediate Orbit formulation (Section 5.11), 
the uniformization constant can be adjusted to Th'oduce uniformizatioll with 
respect to the dominant source of local error. It should be noted that uniformiza
tion of local error cannot be achieved through analytic stepsize regulation alone 
for highly elliptic, long period orbits, for which both the nonspherical effects 
of the earth and lunar effects are equally Important. In such cases, a var\able 
stepsize algorithm is also needed. 

:1. Choose a dependent variable set in terms of which the solutions to the un
perturbed problem arc closed, explicit expressions in the independent 
variable. 

In General Perturbation applications, the need for such dependent variable s{'ts 
is clear. However, such variable sets also are advantageous for use in Special 
Perturbation Methods. Differential equations for quantities which vary slowly 
and smoothly with time are known to be more amenable to numerical integra
tion methods (Le., more numerically str.ble) than those for quantities which vary 
rapidly. In the case of satellite motion, the acceleration caused by the attraction 
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of the primary body is usually much greater than the perturbing accelerations .1. "

arishig f_r.m other bodies, nonspherical effects, etc. Since dependent variable
sets exis_ which yield closed, explicit solutions to the unperturbed problean_ i_ is
logical to remove the poin_ mass effects of the primary body from the differential
equatio, hv considering the relative ell._ptic orbit described about the primar:v

: as a first approximation to the motion. Thus, the equations of motion oi such '
dependent variables include motion arising only from the perturbi.w_ acceleration i

: vector Methcds which employ this approach are known as Variation of Param- :
_ . eters(VOP) methods (Section5.7).GTDS includesVOP orbitgeneratorswhich i

° use Keplerian, equinoctial, rectangular, Delaunay-Similar (DS), and Kustaanheimo- _i _.

Stiefel (KS) element sets. The resultant formulations vary with respect to ! =

• regularity of the dependent variables and the choice of independent variables, i
•- ( -.T-_ also includes the Intermediate Orbit formulation, it, which the equations

of ,ration represent the variation, arising from other perturbations, about the

solution to the point mass earth plus J2 problem.

. J!
)

: _ 4. Choose a completely regular dependent variable set.

It is desirable, from the standpoint of generality, to use a set of dependent _
: variables which is well defined, or regular, for the ful! range of possible orbital .J
: conditions. For example, the Keplerian an2 Dclaunay variables are not well ;
,. defined for small eccentricities or for small or near 180-degree inclinations. !

Unfortunately, regularity and the requirement for tractable canonical formula- }
tions of General Perturbation Methods appear to be mutually exclusive. For this

reason, the Brouwer-Lyddane formulation was developed in terms of Poincar_ ,__
rather than Delaunay variables for use with small eccentricity and small inclina- _

tion satellites. For Special Perturbation applications, the KS and rectangular .!
variables are completely regular. The equinoctial elements consist of two

: variable sets which together yield a completely regular set except at collision, i ._.
: I

: -, 5. Choose a dependent variable set for which the equations of motion are
completely regular.

The practical effect of singular,.ties in the equations of motion is to cause rapid
oscillations in some of the orbital elements when the orbit is in a near-singular

condition. This condition is not desirable from the standpoint of efficiency in _:

numerical integration. Accurate integration of such equations requires extremely
small stepsizes in the near-singular region. The rectangular variables and

equinoctial elements yield completely regular equations of motion except at
• co?,llsion. The KS equations of motion are completely regular, while the VOP
. equations of motion are singular for the Kepler and Delaunay elements at small

eccentricities and at small and near 180-degree inclinations.
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of the primary body is usually much greater than the peri;urbing accelerations 
aris~t1g frr'TIl other bodies, Donspherical effects, etc. Since dependent variabll~ 
sets exi~:t which yield closed, explicit solutions to thc unperturbed problem, it is 
logical to remove the point mass effects of the primary body from the differential 
equatio.. ~v considering the relative elliptic orbit described about the primar)' 
as a first approximation to the motion. Thus, the equations of motion of such 
dependent variables include motion arising only from the perturbing acceleration 
vector - Methcds which employ this approach are known as Variation of Param
eters (VOP) methods (Section 5.7). GTOS includes VOP orbit generators which 
use Keplerian, equinoctial, rectangular, Oelaunay-Similar (OS), and Kustaanheimo
Stiefel (KS) element sets. The resultant formulations vary with respect to 
r.egulanty of the de?endent variables and the choice of independent variables. 
c.-'T'C;: aiE:.o includes the Intermediate Orbit formulation, ir, which the equations 
of 1l1Otlon represent the variation, arising from other perturbations, about the 
solution to the point mass earth plus J2 problem. 

4. Choos(=> a completely regular dependent variable set. 

It is desirable, from the standpoint of gcmerality, to use a set of dependent 
variables whicl: is well defined, or regular, for the ful! range of possible orbital 
conditions. For example, the Keplerian ar..~ D:::launay variables are not well 
defined for small eccentricities or for small or near lBO-degree inclinations. 
Unfortunately, regularity and the requirement for tractable canonical formula
tions of General Perturbation Methods appear to be mutually exclusive. For this 
reason, the Brouwer-Lyddane formulation was developed in terms of Poincare 
rather than Delaunay variables for use with small eccentricity and small inclina
tion satellites. For Special Perturbation applications, the KS and rectangular 
variables are completely regular. The equinoctial elements consist of two 
variable sets which together yield a completely regular set except at collision. 

5. Choose:t dependent variable set for which the equations of motion are 
complete ly regular. 

The practical effect of singularities in the equations of motion is to cause rapiri 
oscillations in some of the orbital eleOl"lnts when the orbit is in a near-singular 
cc.ndition. This condition is not desirable from the standpoint of efficiency in 
numerical integration. Accurate integratj.:m of such equations requires extremely 
small stepsizes in the near-singular region. The rectangular variables and 
equinoctial elements yield completely regular equations of motion except at 
co1.lision. The KS equations of motion are complE'tely regular, while the VOP 
equations of motion are singular for the Kepler and Delaunay elements at small 
eccen~ricities and at small and near lBO-degree inclinations. 
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£. Choose a dependent variable set such that the equations of motion have
dynamically stable solutions for the unpcrturb,_d probtem.

A solution is dynamically stable if small ,,,ariatior_s _,i the initial values produce :;

a variation of the solution whici_ rp_,r.ains small for any value of the independent i*variable greater than zero.. Dynamic stability is one of the primary motivations _ i i

I foltheKS transformation.This characteristicshouldbe particula-lyadvantageous i

when t,-_ sel,_,t!on is obtained via numerical integration.
i

7. Choose an element set for which the equations of motion do not contain short
periodic effects. _

i As mentioned previously, the efficiency of numerical integration is or)timal for

the integratio.n of variabies which vary smoothly and slowly, Elimination of !
short periodic effects from the equations of motion significantly smooths the i

_ dependent variable motion, thus allowing the use of very large stepsizes. The i
Intermediate Orbit elements and the Method of Averages (Section 5.8) use this
approach. The equations o_ motion of an averaged element set are integrated.

The resulting orbit generation method is extremely efficient, but is limited to J_

average element accuracy rather than the osculatipg element accuracy achieved </. .
in high precision methods.

:. _. . Itshouldbe notedthatseveraloftheguidelinesstatedabove are mutuallyexclu- i,
: _:: sive. The requirements of the specific application dictate which of the guidulines :

I are most important. The characteristics of the orbit generation methods available :: ,_- in GTDS are summarized in l'ables5.1 and 5.2.

The choice of an optimum orbit generation method is dependent on orbit type, ,
accuracy, and efficiem,y requirements. In general, the reformulated high pre- i

cisio_ methods are more accurate than the Cowell method. However, the tram,- _
i fSrmations required in these formulations im.:ease computational time; there-

_, fore, these methods should be used only for orbits for which they yield improved

_ accuracy at larger stepsize_ as compared with the Cowell method, or where these , ,_
methods have a more appropmate methocl of analytic stepsize control than does

Time Regula,'ized Cowell. ;:

._ For circutar orbits, analytic stepsize regulation is not necessary. In fact, inte- .
h, b

_ gration of the time equation increases computational time and may introduce .

._ errors into the solution. For orbits with eccentricity greater than 0.1, analytic _ ,
stepsize regulation is usually beneficial. The independent variable is therefore

_1' an important consideration in the choice of the orbit _eneration formulation,
_ As the uniformization constant is increased, the si:.e of the time step at perigee _!

:: decreases and that at apogee increases. T:,is constant should be chosen so that
_j the localerror isuniformizedover theentire_rbit. i
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f. Choos€ a dependent \:ariable set such that the equations of motion have 
dynamically stable soiations for the unputurhed probJ.em. 

A solution is dynamically stable if small Tt'ariatior..s :.i the initial values produce 
;1. variation of the solution which rp~d.ins small for a .. 1Y value of the independent 
variable greater tha.n Zt:~':·. Dlmamic stability is one of the primary motivations 
fOI the KS transformation. This charactel'istic should be particula"ly advantageous 
when the soh.!ti"n is obtained via numerical integration. 

7. Choose an element set for which the equations of motion do not contain short 
periodic effects. 

As mentioned previously, the efficiency of numerical integration is ootimal for 
the integraUo!1 of variables which vary smoothly and slowly. Elimination of 
short periodic effects from the equations of motion significantly &mooths the 
dependent variable motion, thus allowing the use of very large stepsizes. Tb~~ 

Intermediate Orbit elements and the Method of Averages (Section 5.8) use thiG 
approach. The equations of motion of an averaged element set are integrated. 
The resulting orbit generation method is extremely efficient, but is limited til 
average element accuracy rather than the otsculatill6 element accuracy achieved 
in high precision methods. 

It should be noted that several of the guidelines stated above are mutually exclu
sive. The requirements of the c:,pecifit:! apvlication dictate which of the guiddi'les 
are most important. The charactenstics of the orbit generation methods available 
in GTDS are summarized in T<tbles 5.1 and 5.2. 

The choice of an optir.111m orbit generation method is dependent on orbit type, 
accuracy, and efficienl'Y requirements. In general, the reformulated high pre
cision methods are :nore accurate than the Cowell method. However, the tran::.
f6rnlations required in these lormulations in(..~·ease computFtional time; there
fore, these methoJs should be used only for orbits for which they yield improveJ 
accuracy at larger stepsizP!:1 as comparer with the Cowell method, or where the$e 
methods hav~ R more appropr .. 'ite method of unalytic stepsize control than does 
Time Regulat'! ~ed Cowell. 

For cirCUlar orbits, analytic stepsize regulation is not necessary. In fact, inte
gration of the time equation increases computational tim~ and may introduce 
errors into the solution. POl' orbits with eccentricity greater than 0.1, analytic 
stepsize regulation is usually beneficial. The independent variable is therefore 
an important consideration in the choice of the orbit !;eneration formulation. 
As the uniformization constant is increased, the si~e of the time step at perigee 
decreases J.nd that at apogee increases. T:,is constant should be chosen so that 
the local error is uniformized over the entire ('rbit. 
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, ORBIT GENERATOkT 

Table 5-1 
Characteristics of High Precision Oroit Ge:lerators 

.. ;~THOD or 
S(-'LUTION 

--C-- " 1 ANALYTIC T TIME I 
COMPUTAT.ONAL STEPSIZE I REGULARIZATION LIMITATIONS 

SPEED CONTROL I CONSTANT 
COMMENTS 

~---- .--+-----------+----------- ----r-------I------------i 
C .... ell 

MultiAep Numer:c~: Integration 
Medlll.- "0 NonE 

UsiD& stOrmer-<::""ell Formulas 

, 
Time Reg. Cowell 

Multistep Numerical Integration 
M~'<Iil>.m YlS 3/2 None I l:slng S- -ner-Cowell Formula~ 

I Multistep Numerical Int"!,."'!'aUo_. 
Singularities for Provides closed form 

VO P - Keplert8l' 
.-sing Adams ForMulas 

~Iedlum No e 0; 1=0, 180' solution to unperturbed 
, Elliptic IT. otlon only problem 

Provl·~"s closed (orm 
Multistep Numerical integration 

VOP - ~iDOctiaJ ['Sing Adams Formulas 
lIIedium So EllIp<.1c motion on!y solution to unperw.rbed 

problem 

Multistep Numerical integration l Provides closed form 
VOP-Re..~ :\Ie<llum No !':one solution to unperturbed 

Using A.JamS Formulas 
;>roblem 

! !-~;.:.!!!:'...cr ~:a:ne!"~e-s-.! !n~~atiOD 
Singularities for Provides closed forlD 

Intermediate Orbit 
lsing Adams Formulas 

M:-Giunl , y.,s 2 e=O; i=O, 63.-1' solution w J? Ihrwgh 

."'.ml--Y~ 
Elliptic Jr_otion only J s problem 

Multistep Numeric3l Integr atlon 
Provides closed form, 

KS 
I:slng AdaT!.s Formulas 

1 Elliptic motion only stable oscillator, solution 

I to unperturbed problem 
t----- -, ---

SingIl1:!.I'itl es for Provides closed forr". 
, 

Mult1etep Numerical Int :.gration 

b I!sing Arbm .. F"~mul"" 
Meclium Yes 2 e-O; 10 0, 1 ~O· dynamically sta.r,le, 8'o~"tion 

Ell1ptic ;notion only to unpel1urbed pr<Jbler • 
--- . -

C! .. ,b}'SheV Series Picard Iteration Low N'\ NO'le 
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ORBIT GENERA-TOH 

Br""wer Analytic 

I 

Table 5-2 
Characteristics of Approximate Orbit Generators 

METHOD OF 
SOLUTION 

COI\I PL'TA T:ONAL 
SPEED 

High 

ANALYTIC 
STEPSIZE 
CONTHOL 

N/A 

Tn.IE 
REGULARIZA TION 

CONSTANT 
LIMITATIONS 

Slngularltie~ fOl 

e"O, I~O, 63.4' 
Elliptic motion only 

~-ou-.. -er---L-yddane--- ~'''< . I' High I H/A I ~!f.!~i!i..s for 

. Elliptic motion only 

I : veraged Kepler 

lA~""'-

COMMENTS 

:;"luUon Includes only J, 
through J, e(("rta 

Solution includes OW) .I, 
through J, ~fiect. 

--
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For applioafl._as _ich re_;L_: "lE._ (_fftclency, it is important to consider the "- ,_
• number of outlast poists which _ r_ired. Using analytic methods such as
: Brouwer theory, th_ co_,tat_vKt _c_ is directly proportional to the number
,: of output points. H,_w'_.':er, wh,_ aume_'ical integration is used, the cost is

_ainly dependent on the _rc !@_glh aud not the number of intermediate outVut
points. For DC applications, the computational cost of the averaged orbit gen-
eration methods is often competitive with tha_ of Brouwer theory and offers

• conslderably greater flexibility with respect to the perturbation model.

5.2 COWELL METHOD
-i

i The Cowell equations of motion of a satellite are expressed by the general ,:
: formula ?

_: _,._ where Y -_ t.he position vector in an inertial Cartesian coordinat_ system #::
-_ t -,., the physical time r"t

" the gravitational constant '[ 1 i_:
:: P the total perturbing acceleration :'

, P can include any of the perturbing accelerations discussed in Chap_r 4. <

, This set of three CLss H differential equations is so1_ed directly for the position

vector using the St_rmer-Cowell num_rical integration formulas (Equations °'
(6-22) and (6-27)). The three Clas._ I equations for the velocity vector _ ,i

- +_ (5-3)

"4,?._,

are integrated using the Adams numerical integration fcl ;u¢lar (Fquatlons
,: (6-21) and (6-26)) in the case of velocity dependent perturbations, such as

atmospheric drag. , _

The Cartesian coordinates ,.-.d the equations of motion are regular, except at / _
collisiou. Thismethod can be used for elliptic, parabolic aria hyperbolic orbits. ' _"

The point mass gravitational attraction of the primary body appears explicitly ',

the equations of motion, and is usually the dominant acceleration which must i
be integrated.

REPRODUCI_ILITY " __-s OF THE
0RI_AL PAGE IS POOR
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For appli()a!i~.as tVl.ll.ch reQl~lH\-'lt~ f!fi1clency, it is important to consider the 
number of o\;.tpt.1: poillts whicb. tn-:- r.K?.J.lred. Using analytic methods such as 
Brouwer theory I the cO:nlputatjor.ft:~ ..:.lO~ is directly proportional to the number 
of output points. Hr)w'':··!e;.:', WA,;J) aUD.i.i! . ..-1cal integration is used, the cost is 
r.'I.a1nly dependent on the ~c !~r.gih ~ud not the number of intermediate output 
points. For DC applications, the computationni cost of the averaged orbit gen
eration me+.hods is often competitive with that of Brouwer theory and offers 
consJderably greater fle,db1l1ty with respect to the ?erturbation n:odel. 

5.2 COWELL METHOD 

The Cowell equations of motion of a satellite arc expI'essed by the general 
formula 

where r "" t.h~ position vector in an inertial Cartesian coordinata system 
t "" the physical time 
I-'- '" the gravitational constant 
p '" the total perturbing acceleration 

p c~ include any of the perturbing accelerations discussed in Chapror 4. 

(;:i- 20) 

This set of three CL..ss I! differential equations is solved directly for the positio.n 
vector using the stormer-Cowell num,)ricalintegr~tion fo.rmulas (Equations 
(6-22} and (6-27». The three ClasEl I equations for the velocity vector t 

(5-3) 

are integrated using the Adams numerical integration fel ~ul:lR.f (f'quations 
(6-21) and (6-26» in the case of velocf.ty dependent perturbations, such as 
atmospheric drag. 

The Cartesian coordinates ~.nd the equations of motion are regular, except at 
r.:olllslol!. This method can be used for elllptic, parabollc and hyperboHc orbits. 
The polot mass gravitational attraction of the prlmary body appears expllcitly 
in the equations of motion, and Is usually the dom1n3nt acceleration which must 
be integrated. 
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il _,_ For cL .'_ar orbits, the choice of time aa the independent variable produces

_. uniformizadon of the local error with r_pect to the integration of the two-body
;: acceleration. The Time Regularized CoweU formulation (Section 5.3) was 1 J

developed to achieve unKormization of local error in the case of noncircular ._
orbits. ._,_ _'v

5.3 TIME REGULARIZED COWEI,L _ ".'

Efficient numerical integration is aided by untformization of the local error at _-

each integration step. To achieve un!formizatlon of )ocal error using the CoweU !• method, the equations of motion (5-2) and (5-3) must be uniformized with respect
t

to the dominant local error source, which is generally the point mass and J_ _ ;

_ol gravitational accelerations. These equations are already uniformized fnr circular ! i"
orbits. For noncircular orbits, however, uniformization is achieved by reform- _ :

_ ulating the Cowell equations in terms of a new independent variable s, deftned by i
the relationship _

d t r_ i_,i" "_
,

where n is the uniformlzatlon constant. The resulting equatiens of motion are

i called the Time Regularized Cowell equations. The choice of 3/2 for n uniform- _,
izes the local ez ror with respect to the point mass and J2 gravitational effects. ..

Under this general transformation, the Time Regularized Cowell equations of ' '._.

, motion become ,.

\ "r" --" n _ - r (2n'3) 7 + _P , 7, --7' 15-_; ,:
_,: _ r / /_ r n _ _

O,

where the prime notation refers to differentiation with respect to Ü�¤;
variable s. This equation involve_ derivatives with respect to the variable s only. _ ,_

The position vector is obtained by integrating Equation (5-5) using the Class i._ i
_ St_rmer-Cowell formulas (Equatt _s (6-72) and 16-27)). The velocity vector is ! _

obtained by h_tegrating Ec_ation (5-5) u_h_g the Class I Adams formulas (Equa- _ -_
_ ___ tions (6-21) and 16-26)). Since the voiocity appears explicifly in the equations i

! of motion, the velocity equatlo_ must be integrated even in the case of velocit_ i i_
free perturbations, In add!tion, the following Class II equation is integrated for } :,

the timu _

t" nr_n'l /" (5-6) _ i
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For cL:~ar orbits, the choice of time as the indepAndent varl&.ble produces 
uniformiZ&.~lon of the local error with r";3pect to the integration of the two-body 
acceleration. The Time Regularized Cowell formulation (Section 5.3) was 
developed to achieve un1lormization of local error in the case of noncircular 
orbits. 

5.3 TIME REGULA fUZED COWEI.L 

Efficient numerical integration is aided by uniformlzation of the local error at 
each llltegration step. To achieve un!formization of local error using the Cowell 
method, the equations of motion (5-2) I'\..ud {5-3) must be uniformized with respect 
to the dominant local error source, which is generally the point mass and J 2 

gravitational aocelerations. These equations are already uniformized ff'lr circular 
orbits. For noncircular orbits, however, uniformization is achieved by reform
ulating thP Cowell equations in terms of a new independent variable s, deffJled by 
the relationship 

ds _ .;;; 
dt - ~ 

(5-<1) 

where n 1s the uniformization constant. The resu!ting equations of motion are 
called t1:J.e Time Regularized Cowell equations. The choice .)f 3/2 for n uniform
izes the local eIror with respect to the point mr..ss and J~ gravitational effects. 

Under this general transformation, the Time Regul&.!'ized Cowell equations of 
motion become 

-11._ (r' r') (2n-J) - r.ln -P (t -: v;' -') r -n -- -T T+- ,l,-r 
\ r jJ. rn 

(5-E~ 

where the prime notation refers to differentiation with respect to t.hs independent 
variable s. This equation involves derivatives with respect to the variable s only. 
The position vector is obtained by integrating Equation (5-5) using the Class i! 
Stormer-Cowell fo:omulas (Equati .jS (6-~2) and (6-27». The velo'city vector is 
obtained by integrating E~.lation (5-5) UFl111g the Class I Adams formulas (Equa
tions (6-21) and (6-26». Slllce the vo:"ocity appears expliCitly in the equation.8 
of motion, the velnc1t-y equatioll must be integrated even in the case of velocity 
free perturbations. In addition, the lullowlng Class II equation is integrated for 
the tim\; 

(5-6) 
/1 
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Comparison of the Time Regularized Cowell and the Cowell integration schemes
indicates that the favorable properties of simplicity, precision and adaptabilityr
are shared by both methods, while for highly eccentric or drag perturbed orbits _.
the analytic stepsize reguJation afforded by the Time Re_iarized Cowell is

sub_rior. _
f

._
T
3

• 5.4 KUSTAANHEIMO- STEIFEL (KS) FOBMULATION _

By means oftheKS trarL_forma_ion,thenonlinearequationsoftwo-body motion _

_ are transformed to a _et of linear, dynamically stable differential equations, :
/ similar to those of an unperturbed harmonic oscillator (see Reference 4 for a
_ complete derivation). This trausformation consists of choosing a set of regular -:

dependent, variables such that the resulting differential equations are regular,
i.e.,have uo singularities.Regularizationof hhedifferentialequationsrequires

•_ theextensionofthepositionand velocityvectorsfrom flxreedimensionalto four
#
' dimensionalvectors. The singulacityat collisionis removed by choosingthe :.
: generalized eccenfric anomaly E as the independent variable such that

7

dE_ 2_ (5-7) _

-°.- dt r L.) _ :"

where the frem!cncy _ is related to the negative of the total energy _ -- ,/h/2.
InaGaA_ton,thistransfccmationproducesanalyticstepsizeregulationwitha
aniformization constant of 1..herefore, a time equation must also be integrated. ,;
A time element r isintro_.Icedsuch that _ _il

- 1 (5-8) _t =_r---(_, _') ,,

where _ _nd u' ar_ thetransformedposition_nd velocityvectors(u" du,/dE), ,.i_
and the notation (E, _') denotes the scalar product of the two vectors. This time :
element varies linearly with the independent variable for unperturbed motion _

and is therefore more amenable to numerical integration than the time equation.

(See Appendix B for a more detailed discussion of time elements.)

Regularized equations of motion behave _onsiderably bet,er with respect to
numerical integration than the corresponding nonregularized equations. For

unperturbed two-body motion, every solution to the regularized differential

equations is dynamically stable. Thi_ means that small variations of the initial
values produce a variation of the solution which remains small for any positive
value of the independent variable. Dynamic stabilization of the, KS equations of

!

5-10
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Comparison of the Tir'le Regularized Cowell and the Cowell integration schemes 
indicates that the favo~'abla properties of simplicity, precision and adapUbility 
are shared by both methods, while for highly eccentric or drP..g perturbed orbit& 
the analytic stepsize reguJation &fforded by the Time Heg'.liaA.'ized Cowell is 
suplJrior. 

5.4 KUSTAANHEIMO - STEIF'EL (KS) FOI-<.M:ULATION 

By means of the KS tran~forma\ion, the nonlinear equations of two-body motion 
are transformed to a set of linear, dynamically stable differential equations, 
similar to those of an unperturbed harmonic oscillator (see Reference 4 for a 
complete deriv~t1on). This transformation consists of choosing a set of regular 
dependent var"iables such that the resulting differential equations are regular, 
i.e., have r:to singularities. Regularization of ihe differential equations requires 
the ext~~TlBion of the position and velocity vectors from t.hree dimensional to four 
dimensional vectors. The singula.;.·ity at collision is removed by choosing the 
generalized eccentl'ic anomaly E as the independent variable such that 

dE 2w 
dt - r (5-7) 

whf=.t'e the freqtlcilcy w is related to the negative of the total energy w :::: lh/2. 
In aa1ition, this transf(.L"mation produces analytic stepsize regulation with a 
uniformization constant of 1. '~llerefore, a time equation must also be integrated. 
A time elem'='.nt T is introduced such that 

1 __ ') 
t = T - - (lI, U 

U. 

(5-8) 

where U ~nd ii' art.. the transformed position Jnd veluc;ty vectors (il'== dil/dE). 
and the not .... tion (ii. u') denotes the scalar product of the two vectors, This timp. 
ekment varil.'s linearly with the independent variable for unperturbed motion 
and is therefore more am,mable to nume,rical integration than the time equation. 
(See Appendix B for a mf)re detailed discussion of time .:-lements.) 

Regularized equations of motion behave f'onsiderably beher with respect to 
numerical integration than the corresponding nonregularized equations. For 
unpertm'bed two-body motion, every solution to the regularized differential 
equations is dynamically stable. Thib means that small variations of the initial 
values produce a variation of the solution which remains small for any positive 
value of the independent variable, Dynamic stabilization of thR KS equationR of 
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motion is accomplished by using a time element and by including as a dependent
variable the frequency _, which is related to the t_l energy, and taking advantage

Iof the fact that it is a constant of the motion fcr conservative forces. Consequently,
a total of ten equations of motion are integrated.

The KS equations of motion axe formulated as VOP equations in terms of regular
elements: The frequency co, the time element r, and the two 4-vectors E and _.
Elements are quantities which, during unperturbed two-body motion, are con-

stants or linear functions of the independent variable. The advantage of intro-
ducing elements is that they vary almost linearly if the motion is subjected to
weak perturbations.

5.4.1 The I_S Variation of Parameters (VOP) Equations of Motion

The KS equations of motion axe VOP equations in Lagra_gian form. The equations
for the 4-vector elements E and _ are

{_ Iv (_u P)I 2rico t "E_J (a) ._/_'

dE 1 r _V _ 2LT +- _ sln
=

(5-9)

____ (_ IV (___ _)1 2 doo t E (b)
r dV 2LT +- -- _' cos-

d__ I _+ d- - 2dE co dE

while the equations of motion for the time element T and the frequency _ are

d_ 1 r I_bV _I 2dec
-- = _ (_- 2rV)-_ ,--- 2LT (U, W) (a)

",_ dE 8o_ 16cc3 ?_ co2dE

1
(5-10)

t

d" _ r bV 1 (b)

!

Inthe above equations ,

_ V _ perturbing potential function

I_ P -_ additional perturbing accelerations
tx ,,- gravitational constant

• I! _ L KS transformation matrix defined by Equation (5-21)

5-ii
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motion is accomplished by using a time element and by including as a dependent 
variable the frequency w, which is related to the totpl energy, and taking advantage 
of the fact that it is a constant of the motion ie1' conservative forces. Consequently, 
a total of ten equations of motion are integrateci. 

The KS equations of motion are formulated as VOP equations in terms of regular 
elements: The frequency w, the time element T, and the two 4-vectors a and ~ • 
Elements are quantities which, during unperturbed two-body motion, are con
stants or linear functions of the independent variable. The advantage of intro
ducing elements is that they vary almost linearly if the motion is subjected to 
weak perturbations. 

5.4.1 The KS Variation of Parameters (VOP) Equations of Motion 

The KS equations of motion are VOP equations in Lagra"lgian form. The equations 
for the 4-vector elements a and f; are 

. E 
S1 r. '2 

E 
cos -

2 

(a) 

(5-9) 

(b) 

while the equations of motion for the time element T and the frequency w are 

1 (" 2 V) r ~- oV 2LT-P) 2 de.; ~ -') - \J-" - r - -- u, - - - - - ,li, U 
8uf 16uf oil w2 dE 

In the above equations 

V '" perturbing potential function 

P '" additional perturbing accelerations 

fL '" gravitational constant 

L '" KS transformation matrix defined by Equation (5-21) 
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In GTDS, the perturbing potential V which is -_ed is the potential arising from

the J2 nonspherical effects

- v = _3 z2 1 15-n) °,
: 2 3

where R is the radius .Jf the central body. The quantity _ represents the per- _*
e

_ turbing accelerations due to higher harmonics, drag, radiation pressure, etc.

The components ofU_ the transformed position vector, andU', the transformed "'
/ velocity vector, are obtained from the elements as follows

?

E - E
fi:: E cos - + flsin-- (5-12) :i

?

_'] I E sin E 1 g (5-13) _':;
4 U' : 2 2 + 2_c°s 2 ._

I 'The magnitude of the position vector is

s

The position vector F of the satellite is computed for use in the evalue_ion of the :.
perturbing accelerations using Equatio1_s (5-37) through (5-39). The velocity ¥ ,_

: is also computed in the case of velocity dependent accelerations, using Equations .::
,, (5-40)through(5-42).The physicaltime iscomputed from

t : _ _ _1(U, U') (5-15) ,
OJ

f,

The notation (u, u') denotes the scalar product of the two vectors.

_: The transtor;ned components of the perturbing accelerations are computed as :.
t

(LTP)I: ulp1+ u:tp2 + u3p3 {5-16) :
A

5-12 ;_
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In GTDS, the perturbing potentiai V which is :'sed is the potential arising from 
the J2 nonspherlcal effects 

(5-11) 

where R e is the radius ;jf the central body. The quantity P represents the per
turbing accelerations due to higher harmOnics, drag, racliation preJsure, etc. 

The components ofu _ the traasformed position vector, andu', the transformed 
velocity vl'lctor, are obtained from the elements as follows 

-- E-j3.E 
1I:: a. cos - + S1n-

2 2 

-, 1._. E 17 E 
U = - '2 a. S 1n '2 + 2" p cos"2 

The magnitude of the position vector is 

r = u~ + u~ + ~ + u~ 

(5-12) 

(5-13) 

(5-14) 

The position vector r of the satellite is computed for use in the evalua~tion of t!1e 
perturbing acceleration~ using EquatiollS (5-37) through (5-39). The veloclty r
is also computed in the case of velocity dependent accelerations, using- Equations 
(5-40) through (5-42). The p:lyslca! time is computed from 

1 r.: -, t = r - _ ,U , U ) 
W 

The notation (li, \1') denotes the scalar product of the two vectors. 

(5-15) 

The trans t or;11ed components of the perturbing accelerations are computed as 

{5-16) 

5-12 



i _ /

t

t
(L:p)2=_ u2p1 + alp2 + u4P3 (5-17) t

' (LTP)3 = - u3P 1 - u4P 2 + UlP 3 (5-18)

i

(LTP)4 = u4p I _ u3P2 + u2P3 (5-19)

5.4.2 Transformation from Cartesian Position and Velocity to KS Parametric
Values

The KS transformation is defined as

k- : L(u) • _ (.5-20)

where _ is a vector whose first three componentz are the Cax_esian position
coordinates and the fourth component x4 is aDcays zero, i.e., x = (x, y, z, 0).

• The matrix L(u) is the KS matrix with components given by "_"/_

u_ -u2 -u 3 u4

I U2 U 1 "4-I4 --L!3L = _ (5-21)

Ll U4 U 1 U2u 4 -u 3 u 2 -u 1
\

The elements of this matrix are computed as follows.

Assuming Chat _ and r are given at the instant t = t o , the radial distance is
computed from

e

and the frequency from

2w2 _ # 1 i_12_ v (5-23)r 2

_,. 5-13i
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(5-17) 

(5-18) 

(5-1~) 

5.4.2 Transformation from Cartesian Position and Velocity to K~ Parametric 
Values 

Thr.! KS transformation is defined as 

x = L(u) . U (!)-20) 

where x is a vector whose first three component~ are the C::.r~sia!1 positlon 
coordinaws and the fourth component x4 is always zero, i.e., i = (x, y, z, 0). 

The matrix L(u) is t"e KS matrix with c'Jlll!Jonents given oy 

I u, -uz -1.13 u4 

L = { 
u2 u l -1.14 -1.13 

~ 

\'" 
u4 u l u2 

u4 -1.13 u2 -1.11 

The elements of this matrix are computed as follows. 

Assuming "hat r and F are given at t.l}e instant t = to, the radial distance is 
computed from 

and the frequency from 

5-13 
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_I.
where V represents the perturbing potential, which is the J2 potential in GTDS
{see Equation (5-11)).

If x > 0, the parametric state vector is found from

1 (r + x) (5-24) !- �,,.'-

-" t

.,4 I "

": u2 - YUl + zu4 .. (5-25_. 'r+x , :

zul - YU4 (5-26) ' +' U3 -
: , r+x

i
a

": "-_ or, if x .<. O, from i, / I._

1 (r - x) 15-27) ]

YU 2 + zu 3

u 1 - (5-28)F _ _'- "_,
,_"

\

zu2 - YU3 (5-29)UA -
r - x

The derivatives of the transformed position vector with respect to E are "

, 1 (ul_ + " + u31 ) (5-30)
'- U I = _ U2Y _ ' )

• L
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:.. 
where V represents the perturbing potential, which is the J2 potentia;! in GTDS 
(see Equation (5-11». 

If x ~ 0, the parametric state vector is found from 

or, if x ~ 0, from 

2 2 1 ( u 1 + u4 = 2 r + x) 

YU1 + ZU4 
U2 =---

r + x 

lJ3 = ---
r + x 

1 
u2 ; u 2 = - (r - x) 23 2 

YU2 + ZU3 
u 1 =---r - ,.. 

ZU2 - YU3 
U4 =---

r - x 

.' . 
. .f 

(5-24) 

(5-25~ 

(5-26) 

(5-27) 

(5-28) 

(5-29) 

The derivatives of the transformed position vector with respect to E are 
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?

, !1 15-31)
tl'2 = _ (-- U2X "{"ulY + U4Z)

, I (5-32) _-!
%=_ (-u3_-u4}+u,__)

u4 = _ (I,4__ uSY + U2_) (5-33)

The initiM value of flxe time element is

1 (5-34) "_
w

If E = 0 is adopted as the initial value of the eecen_ie anomaly, then _ /

a.--U ',

_' and

: 36)_ - (5-

i!_ !
!: 5.4.3 Transformation from KS Parametric Variables to Cartesian Position _i
T: i

., _. and Velocity. _ .

4 Using Equation (5-20), the Cartesian components of position are calculated from !

": 15-3s) i
_ 2 (u 1u2 •_:,, Y = - '.13U4) #

_, i ,

i '
,_} 5-15
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(5-31) 

U' :: -.!... (- U
3
X - U

4
Y + U t Z) 

3 46' 

(5-32) 

(5-33) 

The initial value of tIlt) time element is 

T :: !. (U, U') (5-34) 

If E = 0 is adopted as the initial value of the eccent':ic anomaly, then 

a:o:u (5-35) 

and 

/i :: 2u' 
(5-36) 

5.4.3 Transformation from KS Parametric Variables to Cartesian Position 
and Velocity. 

Using Equation (5-20), the Cartesian components of position are calculated from 

(5-37) 

(5-38) 

(5-39) 
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_nd the Cartesian velocity components are determined from - J +

,+,

r .;
/

L

t

I 0

_. _, = --_ (u2u; + u,u 2 - u+u3 _ UaU_) (5-41) ,_.r i

{

?

= __4_(,J,u; + u4u _ + u,u; + u2,J_) (5-42) -+
- r _

: j 5.5 DELAUNAY-SIMILAR (DS) ELEMENTS
:1

• _ The DS method i_ ._ vOP formulation which was developed using the generalized ,,
: true anomaly as the independent variable, such that ._../ ,

i dt r 2 (5-43) "_}--" i

'[°:_. ds G _- ';

• where L, G and _ are defined later in this section (see References 5, 6, aud 7
for a more complete discussion). +

This choice for the independent variable is particularly appropriate for numerical -_

' inte_'ation of the oblateness perturbation. The dependent variables are a gen- +
erallzaUon of the classical Delaunay elements and are singular for e = 0, i = 0 ":
and at collision. The transformation of the equations of motion is carried out ;

in terms of canonical variables. This approach leads to the requirement for a
canonical variable, conjugate to the physical time, which is the negative of the
tota! energy. The resulting set of equations of motion is unitormized with respect
to integration of the J2 nonspherical perturbation.

The geometricaland physicalinterpretationsoftheeightDS elements forthe , +_
unperturbed problem are:

7_ _ thetrueanomaly ,,

g _ the argument of pertcenter r i '
5--16
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~nd the Cartesian velocity components are determined from 

(f-40) 

(5-41) 

(5-42) 

5.5 DELAUNAY - SIMILAR (DS) ELEMENTS 

The DS method i~ ? Y uP formulation which was developed using the generalized 
true anomaly as the independent variable, such that 

dt 
ds -

(5-43) 

where L, G and <I> are defined later in this section (see Refel'ences 5, 6, we: 7 
for a more complete discussion). 

This choice for the independent variable is particularly appropriate for num~rical 
integration of the oblateness perturbation. The dependent variables are a gen
eralization of the classical Delaunay elements and are singular for e = 0, i = 0 
and at collision. The tran5 formation of the equations of motion is carried out 
in terms of canonical variables. This approach leads to the requirement for a 
canonical variable, conjugate to the physfcal time, which is the negative of the 
total energy. The resulting set of equations of motion is unitormized with respect 
to integr :ltion of the J2 nonspherical perturbation. 

The geometrical and physical interpretations of the eight DS elements for the 
unperturbed problem are: 

'.fi '" the true anomaly 

g '" the a'l'gument of pericenter 
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h _ the longitude of the ascending node !
_ the "mean" meananomaly

_ a measure of the perturbing energy, which vanishes in unperturbed motion

G _ the total angular momentum i

H _ the z-coml_nent of the angular momentum

L _ the total energy I

1where L_ is the initial value of the total energy.

This set ot DS elements contains one fast variable, the generalized true anomaly _.
The element _ has been defined such that it is a constant in the case of unper-
turbed motion.

For the two-body problem, the DS elements yield closed and explicit solutions
in terms of the independent variable. Not all of the DS elements are osculating.

The reason is that the orbits are situated on the energy surface .:...,,I#_

F = F0 + r2V = 0 (5-4_)

i where F0 is the unperturbed Hamiltonian.This energy manifold depends on the perturbing potential V. To comFute the

i osculating elements at a certain time, the potential V must be set equal to zerosince, by definition, osculating eleme_:ts represent the Keplcrian position and :_

, _ velocity with respect to the moving coordinate system inherent in the VOP

\ _ equations of motion.

"" I The DS elements vector is denoted by _,'" (_i' _2' °'3' %, _s' _6' "_7' %) : 6/, I_, h, *, 4_, G, H, L) (5-45)

in the sections.
following

5.5.1 The DS Variation of Parameters (VOP) Equations of Motion /

The DS equations of motion, which are VOP equations in canonical form, are as
follows

,_ +v_ds _:ti+ 4 _'_x+4 _ j • i

i=l .... 4

. 5-17
_,
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h ""' the longitude of the ascending node 

-t ""' the "mean" mean anomaly 

!J) ""' a measure of tt.e perturbing energy, which vanishes in unperturbed motion 

G '" the total angular momentum 

H ""' the z-component of the angular momentum 

L ""' the total energy 

where L(i is the initial value of the total energy. 

This set ot DS elements contains one fast variable, the generalized true anomaly tj; • 
The element {, has been defined sueh that it is a constant in the case of unper
turbed motion. 

For the two-body problem, the DS elements yield closed and explicit solutions 
in terms of the independent variable. Not all of the DS elements are osculating. 
The reason is that tht:' orbits are situated on the energy surface 

(5-4~) 

where Fo is the unperturbed Hamiltonian. 

This energy manifold depends 011 the perturbing potential V. To comr'lte the 
osculating elements at a certain time, the potential V must be set equal to zero 
since, by definition, osculating eleme'lts represent the Keplcrian position and 
velocity with respect to the moving coo."dinate system inherent in the vap 
equations of motion. 

The DS elements vector is denoted by 

(5-45) 

in the following sections. 

5.5.1 The DS Variation of Parameters (VOP) Equations of Motion 

The DS equations of motion, which are VOP equations in canonical form, are as 
follows 

(r2) r2 L4 ([IV \ 
- + - (D'+4) -, - - p ) q q I d Clx , 

j • : ' 

(5-46) 

= 1. ... 4 
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da +a _ V --3 _ DiJ _ p_ -• ds _a.
;, t j'l "',

i=l .....4

, where x t , x 2 , and x 3 are the three components of r and x4 is the time. V is the '
perturbingpotentialgivenin Equation(5-II),and thescalingfactorq defining

i the time transformation in Equation (5-43) is given by

: q=a5 -_" s -

: The unperturbed Hamiltonian Fo is given by

-; I _ (5-49) ,

_' _ '/2a s
t /

. _-. i and its derivatives by _""

3Fo (5-50)
: - 1
; bas

,)
.?

_Fo (5-51)

:" _a 6 ',.

_Fo (5-52) _

0:) 7

?Fo
- 15=53) :_

(2%)J/: '

is theadditionalperearblngaccelerationvectorexpressedinrectangularco-

ordinates.The e_enslon ofphase space by _e inclusionoftime and totalenergy .}
: as variables results in the introduction of an additional canonical force ;

5-_8

/

d4_

1976017203-226

da'+4 <1 
--=-v-
ds oa. 

1 

(r2) _ :: ~ D .. (<1V _ p.) 
q q L 1J OX. J 

j • I J 

(5-47) 

i = 1, '" , 4 

where Xl' x2 ' and X 3 are the three components of r and x4 is the time. V is the 
perturbing potential given in Equation (5-11). and the scaling factor q defining 
the time transformai;ion in Equation (5-43) is given by 

(5-48) 

The unperturbed Hamiltonian Fo is given by 

(5-49) 

and its derivatives by 

(5-50) 

(5-51) 

(5-52) 

(5-53) 

P is the additional perf:..i.rbing acceleration vector expressed in rectangular co
ordinates. 1b(~ p~enslon of phase space by the inclusion of time and total energy 
as variables ("'3SUltS in the introduction of an additional canonical force 
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- -,_ I I I .. I ................ 4 ...........

i

:e

f

_F o _
P4 - " P (5-54)

_r

The elements of the 8 x t matrix D, _r

_(x I, x2, x3, x4)
D = (5-55) 4

_(a 1 , a 2 ..... a8)

are computed by the following relationship ._

_-:. "Sx. 8r i

_ _a. -- ?a. ri + r _a. (5-56)
• _ _ J J i:l .... 8 :

where

(5-57)_ rj : cos(% + %) cos % - sin(% + %) sip a3 cos I

_: (5-58) ""• . r 2 = "os(a I + a2) sin a3 + sin(a I + a2) cos a 3 cos ! ._"

• " r_ : sin(% + _2 ) sin I (5-59)

and

cos I - (5-60)
a 6

sin I = sign (aT) a_ (5-61)

4
t,

:_ pr : _._-a_
1 + e cos _ '---' (!,

?

_ p : _ _ as + _ (5-63) :..

i, _]_ 2'-,s p ': :e : -_ (5-64) ,:

, 5-19
?

}
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The elements of the 8 x 1: matrix D~ 

are comlXlted by the following relationship 

where 

and 

OX j 'Or <hj 
- -=- T. + r-oa. ca. 1 du.. 

J J J 

i = 1 ... , 3 

i = I, .. , 8 

fT2 

sin I = sign (.).7) 1 __ 7 
a 2 

6 

r = p 

1+ecos a 1 

F
---
~"8P 

p= I--
fl
-
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(5-54) 

(5-55) 

(5-56) 

(0-57) 

(5-58) 

(5-59) 

(5-60) 

(5-61) 

(5-62) 

(5-63) 

(5-64) 



The p_s'tial derivatives of -r1 , r2 , r3 , and x 4 art.. Oven lu Table 5.3. The "- I
_ parzlal derivatives of r, p, q_ and e are give5 iv Table 5.4. The vector ?(r2/q)/_a

.:

: is evaluated using the relationship

? (_)_2r ?r r2 _q 15-65)q b,zi q2 ba i

" The conservative accelerations present tn V give _ise to a differential equation
for L, the total energy of the orbit,

dsdL-r2 (orp:)q _']4- (5-66) :

where

• ?
: ?V (5-67) _

; Therefore, L is a const'mt in tlas case. This fact is exploited in GTDS by not ,_.../_
integrating, the equatio:_ fo _ L numerically when only conservative forces are _
present. This a_ c,.us c_mulative magnified errors in other elements which are

: driven by siaa_.i numerical errors in L. _ . t _

5.5.2 Transformation from Ca, tssian Position and Velocity to DS Elements ::

It is assumed that r, r, a_d t ar_ given. '_norder to numerically integrate the _ :
: DS equ_ttions of mo_ion, the initial values of the DS variables are computed. _

The total angular mementtm_ G is computed from t -_

G = _/ + + G (5-68) i ,
;

where 1

-- r × r 15-69_ ,

The z-compvnent of the angular momentum G is given by i :'

H = G_ 15-70) I :
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The parcial derivatives of 7"1' 7"2' 7"3 ' and x4 arfJ giV(ln in Table 5.3. The 
partial derivatives of r, p, q, and e are given ir. Taol£. 5.4. The vector o(r 2/q)/Oa 
1s evaluated using the relationship 

(5-65) 

The conservative accelerations present in V give)" tse to a differential equation 
for L, the total energy of the orbit, 

(5-66) 

where 

(5-67) 

Therefore, L is a constant in t!i.lS case. This fact is exploited in GTDS by not 
integrating the equatio~l fo'" L numerically when only conservative forces are 
present. This a":Jiut) C'"..lmulative magnified errors in other elements which are 
(h:ivei' by $il1al.i num~rical errors in L. 

5.5.2 Transforn:~atton from Ca... tesian Position and Velocity to OS Elements 
. 

It 113 assumed that :, r, and t are given. '11 order to numerically integrate the 
DS equations of mo/ion, the initial values .of the OS variables are computed. 
The total angular ml'mentun.\ G is computed from 

(5-68) 

where 

(5-69) 

The 7.-component of the angular momenru."l1 G is given by 
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Table 5-3 
Partial Derivatives of the Auxiliary Parameters T l' T

2
, T

3
, X .. 

-, -", 
~ ~ 

• ..!!o I 
I 

-=OT
I 

- s. n(:.1, .,. :1z ) cos /;1] -::'"1". --
- (",OS\:1, ... .lz. sin .I J cos I -', 

CTI 
I 

0 

~ 
tv - sui::, • '.2

1
) SI'.:%,J I "7, .... ~~T 2 • 

, ~" -,,"",'." 1-" 
~ ----2f"" ',' UO' 

·~T 1 

", 

". I_~ r~ (1-.')" -1] I 0 
(LI )" i" 

I 
I 

Ll ____ i 
I 

o 

0 

--
° 

~ 
I-~-·------~--: 

__ ~_ ,~.: -(t
c 

-x.) ____ _ 

_

______ -'-_-1-____ 

0 

_____ --'-__ O-'-_(_2_,._"_' ____ p-'-- _____ -::: _ . ___ O ___ -..l.1_

2

'!1Io f.l:l

ll

)32 t' 
• SIn" (.!: + 1) ~. ,.1-7 .. ", f-

p
' + 1\ . ., I 

P 'lS I "(18 

o 



,
"

I
I

L
j.1

'3
"

t
;L_

)

L
.,

_.I_
•

Li
_

_.

:,:
_

<
o

o
o

o
*
:

0
:-

N
_

I1_
......

'
-
-
l
i
D
.

"J

Z
-£

:
r_

=
'

5-_.

O
aI_A

L
P

A
O

_
I_

_
i

_
d_

1976017203-230
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dpi 0 0 

del o 0 
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Table 5-4 
Partial Derivatives of the Auxiliary Parameters q, p, e, r 
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_-_ The total energ3" L is computed as
v i

i i,= lv2+__V (5-71)
:_ 2 r

where
j_

r = vx_"+ y2 + z 2 (5-72) _

I i t

= " _2 i2 (5-73) :V _/X 2 + +

and V is given by Equation (5-11).

:: The perturbing energy ¢ is _5

i • = G - >/O2 + 2r2V + _ (5-74)
2L

The generalized true anomaly is computed as _"

I _b= tan -I (sin C/cos _b) (5-75) !where ,,

i : " cos_b=z_l (p-l) (5-7C) "_"

p_ F. 4rV Lcos _ -1 (5-77) '

sin¢=e-' r + ,o

I ; _ (_'r) (5-78)

r _ ._,
• ' i

p =- + (5-79)
, _ V2L- / .

e .... p (5-80) ':

and

r 2 _.""77"g"--_J

I "• _It-This last derivative, given by _Tvati, ons 15-48) and (5- .), depends only on L, G,
.', and ¢ given above.

}
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The total energy L ia computed as 

. 1 2 fJ. 
J, ::: - - v + _ - V 

') r 

where 

r = vx 1 + y~2 

and V is given by Equation (5-11). 

The perturbi."lg energy cJ> is 

The generalized true anomaly iF! computed as 

where 

and 

..p = tan- 1 (sin ..p/eos..p) 

sin..p = ePrr2 r~ t 4rV (.! + L cos *\)~-l L \'MP r fie ~ 

. 
. (r'r) r = __ 

1 
p =

fl 

r 

(5-71) 

(5-72) 

(5-7::1) 

(5-74) 

(5-75) 

(5-7C) 

(5-77) 

(5-78) 

(5-79) 

(5-80) 

(5-81 ) 

This last derivhtive, given by ~1lJati.cms (5-48) and (5-f!:), depends only on L, G, 
and <II given above. 
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t

d

%- The longitude of the ascending node h is given by I

h = tan "l { Gi \ (5-82) :

I

and the argument of pericenter g by

g=u-_ (_77<g<_) (5-83) :

where :"

Ez '1(G_ + Gg) -G 3(xG I + yG 2

u -- tan -I " G(yGI_--- _ x-_2 ) • (5-84)

J
"4' i',

<-, The eccentric anomaly E is computed as

/

E = 2 tan -I I]/_--_ tan (- ,_ < E < _) (5-85) ..>i- ,,
i

and the variable _ is given by ¥

7 :J_;---t - u ...._ e_] _rsin (5-86)
(2L)3'_ P ._,

5.5.3 Trmusforn,ation from DS Elements to Cartesian Position and Velocity , "}-

Predicted values of the DS variables obtained from the numerical integration

must be transforme_t to physical Cartesian position, velocity and th_e in order ":
to evaluate the perturbing forces and for computation of obscrvations. The ,,

following equations yield the Carte._an state,

}-= 5"x, -_dx 2 (5-87) /

• o ".2..

}- : c_:l + dx2 _ c-xl + dx2 (5-88) :l-

where _ and d are the vectors

J
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The lor.gitude of th~ aSL'ending node h is given by 

(5-82) 

and the argument of peri center g by 

g=U-lf (-17 S. g.::; 77) (5-83) 

where 

{5-8·1 ) 

The eccentric anomaly E is computed as 

E = tan -- tan-2 -1 [18-e 'P] 
1 + c 2 

(-77'::;E5 77 ) (5-85) 

and the variable -{ is given by 

(5-86) 

5.5.3 TraIlsforn.ation from DS Elements to Cartesian Position and Velocity 

Predicted values of the DS variables obtained from the numerical integration 
must be transfoi'me1 to physical Cartesian position, velocity and time in order 
to evaluate the perturbing forces and for computation of observations. The 
following equations yield the Cartes;an state. 

(5-87) 

(5-88) 

where c and d are the vectors 
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,7. i

i
= Ices g sin h + sin g cos h cos (5-89)sin g sin I

J.

f_ sin g cos h-cos g sinhcos I) 2

= sin g sin h + cos g cos h cos I (5-90) ),

2

cos g sin I ,

and :_

X 1 : r cos @

x 2 -- r s i.n tb (5-91) )

The required derivatives for the velocities are given by , /5

c di (5-92a) .:.

d : -_g (5-92b) .:

_'I: _ cos _ - r_ sin _ (5-93a)

x2 = _ sin _ + r_ cos _ (5-93b) ";,

,_, The quantity_ can be expresseddirectlyinterms ofDS elements as i, ;_

_ er2 sin _ + 4rV L cos _ (5-94_ _,_i
t:(

f and _ is givenby Equation15-81).
#

The physical time is computed from

t =_ + _ -_0- r- ¢'!_"Z sin (5-95) ,_

:_' _ (2L)S"2 P ! '"'-t I

1976017203-233

(COS g COS h - sin g sin h cos I) 

C = I cos g sin h+ sing cos h co s I 

\ slngslnI 

(

- sin g cos h - cos g sin h cos I) 

d = - sin g sin h + cos g cos h cos I 

\ cos g sin I 

Xl = r cos I/J 

The required derivatives for the velocities are given by 

. 
d = -cg 

Xl = ;. co s .J; - r~ sin I/J 

x2 = r Sln I/J + rf cos I/J 

The quantity r can be expressed directly in terms of DS elements as 

• _ e r2 sin I/J [,j, 4rV (1 L cos I/J)~ 
r - 't' +-- - +---

P ~VP r I-'-e 

and f is given by Equation (5-81). 

The physical time is computed from 

t =,f, + _1-'-_. (E _ y'; _ r _pe d _ e 2 sin y';\ 
(2L)3/2 j 
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(5-92a) 

(5-92b) 

(5-93a) 

(5-93b) 

(5-94) 

(5-95) 



where

E = 2 tan -1 (_ tan (5-96)

i

5.6 PIC_RD ITERATION USING CHEBYSHEV SERIES

_ " Tl_e Picard iteration method used in GTDS (derived m Reference 8) can be used
,, to integrate the Class I Cowell equations of motion

:' dr -_7- _ = _+p (5-97)
, dt r3

_.

" _ --=rd_"- (5-98)
_ i dt
_ J
•e js

• "_ using the foUowing iterative process (Reference 9) _/

; A

- " (5-99)
• rn+l(t)=7(t o) + r(t', r n, rn)dt'

0

ft ._ (5-100) :i
• _'n+l(t) = F(t 0) + rn+ 1 dt' ,

\ t o

The sLqxting values r0 (t), r0 (t) are arbitrary continuous vector ffmctions on the
interval [to, t ] which satisfy the given initial conditions

7o(to) : 7(to ) (5-101)

.r0(to) = ?(to ) (5-102)

'_ 5-26
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where 

E = 2 tan- 1 (-.11 - ~ tan t)\ 
1 + e 2 , (5-96) 

5.6 PICARD ITEM TION USING CHEBYSHEV SERIE~ 

The Picard iteration Llethod used in GTDS (derived in Reference 8) can be used 
to integrate the Class I Cowell p-quations of motion 

d-r 
dt 

-/-I-r -
--+P 

dF .!... 

- = r 
dt 

r3 

using the following iterative process (Reference 9) 

t nt1(t) = t(to) + It ¥(t', Tn' t
n

) dt' 

to 

(5-97) 

(5-98) 

(5-99) 

(5-100) 

The st9.rtlng values ro (t), ro (t) are arbitrary continuous vector functions 011 the 
interval [t 0' t) which satisfy the given initial conditions 

(5-101) 

. . 
"fO(tO) = T(tO) 

(5-102) 
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i8 In the present version of GTDS, r0 (t) and r0 (t) are solutions to the unperturbed
problem (__ = 0 in Equation 5-97)). Since the sequence converges to a close |
appr_nnatien of the exact soft, ion, the method can be used to generate very J
accurate solutions. Except at collision, the Cartesian coordinates and equations
of motion are regular, which means that the method can be used for elliptic,

parabolic and hyperbolic orbits. _

In order to solve Equations (5-97) and (5-98) for a given value of n (i.e., to

accomplish one iteration), the Chebysbev series is used as follows.. The position
and velocity vectors available from the (n-l_ t iteration, r-__1 and _-1, are _
evaluated at the Chebyshev points in time. (The precise location of the Chebyshev

points are given in the n_xt section.) The forces (per unit mass) are then. _

evaluated at each of these points in time (using the values of r-o 1 and _-i )" _
These _pecial values of the acceleration vector are then used to determine tha
interpolating polynomt21 in time in the form of a Chebyshev series. The coef-
ficients of the Chebyshev series are determined directly from the special :alues
in a rather simple way due to the orthogonality of the Chebyshev polynomials (as

described later in this section). The Chebyshev series representation of the
acceleration is then integrated in order to obtain the Chebyshev s_ries repre-

sentation of the velocity to within an arbitrary constant, of integration. The !.__/J_constant of integration is determined by requiring that the initial velocity ; (t0) , .
agree with the series for the velocity evaluated at t o. The result is an approxi- _

___ mation to _. Si_milarly, the series representation of the velocity is then inte-
grated in order to obtain the series representation of the position, where now the

initial position _:(t0) is used to determine the constant of integration. The result
is an approximation to _, thus completing one step of the Picard Iteration
procedure.

The preceding set of operations are repeated until two successive approximate
solutions agree to wi_in a tolerance that may be specified by the user. This

completes one step of the integration and the process is continued stepwtse _

\_. until the final time is attained.

?
A finite Chebyshev series fitted to a function has the significant property of _

making the least possible maximum error of all the common int3rpolating ,_
orthogonal poly.nomtal series. The maximum error committed, as well as the
overall truncation error, diminishes as the number of points used in the fitting
increases. Since the _rror in the fitting of the accelerations oscillates with an
amplituae less _an or e_nal to the maximum error, the errors partially cancel / _"

each other during integrattm,.

The Chebyshev _eries sok_tion is derived in the following manner. The interval

of time (to, tf) is mapped linear!y onto the interval (-1, 1) by means of the
expression ,,
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In the pre~ent version of GTDS, ro (t) and ro (t) are solutions to the unperturbed 
problem (:!> = 0 in Equation 5-97». Since the sequence converges to a close 
appr('l:A1mation .,f the exact sol1tioD, the method can be used to generate very 
accurate solutions. Except at collision, the Cartesian coordinates and eql2.tloDS 
of motion are regular, which means that the method can bs used for elliptic, 
parabolic and hyperbolic orbib3. 

In order to solve Equations (5-97) and (5-98) for a given value of n. (Le., to 
accompUsh one iteration), the Chebysbev series is used as follows •. The position 
and ,relocity vectors available from the (n-1r t iteration, I:n - 1 and rn - 1 , are 
evalua.t.ed at tb.e Chebyshev points in time. (The preCise location of the Chebyshev 
points are giv£ln in the n&xt sectioD.) The forces (per unit mass) are then 
evaluated at each of these points in time (using the values of r

n
-

1 
and i="n-l ). 

These 9pecial values of the acceleration ve{;tor are then used to determine tha 
interpolating pcllynomi2.l in time in the form of a Chebyshev series. The coef
ficients of the Chebyshev series are determined directly from the special '"ralues 
in a rather simple way due to the orthogonality of the Chebys!lev polynomials (as 
described later in this section). The Chebyshev series representation uf the 
acceleration is then integrated in order to obtain the Chebyshev st;:ries repre
sentation of the velocity to within an arbitrary constant of integration. The 
constant of integration is determined by requiring that Ule initial velocity r (to) 
agree with the series for the velocity evaluated at to. The result is all approxi
mation to l'n' SEmilarly, the series representation of the velocity is then inte
grated in order to obtain the series representation of the p~sition, where now the 
initial position -r:(to) is used to determine the constant of intugration. The 't'esult 
is an approximation to r , thus completing onr;; step of the Picard Iteration 

n 
procedure. 

The preceding set of operations are repeated until two successive approximate 
solutions agree to within a tolerance that may be specified by the user. This 
completes one step of the integration and the process is continued stepwise 
until the final time is attained. 

A finite Chebyshev series fitied to a functlon has the Significant property of 
making the least possible maximum error of all the common int3rpolating 
orthogonal polynomil\l series. The maximum error committed, as well as the 
overall truncation error I diminishes as the number of points used in the fitting 
increases. Since the t. 't'ror in the fitting of the accelerations osclilates with an 
aznplltuae less than or e",~lal to the Maximum error, the errors partially cancel 
each other during integratioll. 

The Chebyshev series soh.'tlon is derived in the following manner. The interval 
of time (tol t

f
) is mapped IlnearJy onto the inter'Jal (-1, 1) by means of the 

expression 
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t -

: I

/,_t0/_ = I - 2 (5-103)
- to/

" whe_'e _,

_ ", the normalized time

: t o "_ the initial time _:

:"_ the finaltime

. tf - t o -_ the interval of time forwhich the orbit is to be integrated by
Chebyshev series

The normalized time _ = 1 corresponds to t = t o . The time points for which
the Chebyshev series is to be fitted are the zeroes of the (N + 1) "t Chebyshev
polynomial. At these points, the Cheby_hev polynomials have an orthogonality

L

_-; property with respect to summation. The Chebyshev polynomial3 Tj are defined
i

_,-i Tj(_) = cos j (cos "1 _) - 1 _<_ < 1 (5-104) ,/J" ,,i

and the N + 1 Chebyshev points are given by

_:k= cos _-_-) for k = 0, 1 ..... N (N < 48) (5-105)

' An interpolating polynomial PM(_), representing the i th component of acceleration :_
._ as a function of the normalized time £, is expressed as a finite series in _

Chebyshev polynomials

2'PM(_) = CjTj(_) (5-106) '
j=O

where M is the degree of the polynomial (M _<N) and the prime denotes that the _ '_
: first _e,rm is factored by one-half (if M = N, the last term should also be factored

by one--half). The c i _s are numerical coefficients which are determined from _
the I th accelera_on c¢_mponents _'_ {£_) at the Chebyshev points by means of _ ._ "

,: the relationship '_

X
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whe:;e 
e'" the normalized time 

to'" the initial time 

:' f '" the final time 

t f - to '" the interval of time for which the orbit is to be integrated by 
Chebyshev series 

(5-103) 

The normalized time e = 1 corresponds to t = to' The time points for which 
the Chebyshev series is to be fitted are the zeroes of the (N + l)st Chebyshev 
polynomial. At these points, the Chebyshev polynomials have an orthogonality 
property with respect to summation. The Chebyshev polynomial a Tj are defined 
as 

T/~) = cos j (c<,s-l e) 

and the N + 1 ChebY8hev points are given by 

(5-104) 

(
k7T\ ek = cos "N) for k::: 0, 1, ... ,N (N ~ 48) (5-105) 

An interpolating polynomial PM (e), representing the i th component of acceleration 
as a. function of the normalized timt: e t J,s expressed as a finite series in 
Chebyshev polynomials 

(5-106) 

where M is the degree of the polyn<imial (M ~ N) and the prime denotes that the 
first term is factored by one-half (if M = N, the last term should also be factored 
by one-haID,. The c j IS are numeric~ coefficients which arE' determined from 
the ith acceleration components r i (el<) at the Chebyshev points by means of 
the relationship 
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N

cj =._ t:i(_k) Tj(_k) (5-!07)
k=O

)
where the double prime indicates that the first and last terms (for J = 0 and .,
j = M) are factored by one-half. _

The integration with respect to time is carried out using the foll_ing formula .:

l{(j--_)Ti+l(_)- (j__)Ti_l(_) _ j >1 (5-108)

Special ca_es hold for j = 0 and j = I, i.e.,

fTo(_ ) d_ = TI(_ ) (5-109)

1
JT I (_) d_: = _-(To(_) + T 2 (_)) (5-110) :"

The coefficients for the integral of the series for PM(_) are represented t_y bj, .LJ/_
i.e., ._

f i_l(x)dx=_-_bjTi(_ ) (5-111)
I j=O

At _ = 1, this expression for the I th velocity component is set equal to the initial _

value of that component of velocity Dy adjusting the constant b0 to satisfy this t "!
", condition. A similar adJusbnent is made after the integration of velocity ,

components in order to match the series evaluated at _ = 1 with the initial
component of position. ,.,

The tnteg_catlon formula_ lead to a simple relationship between the b j's and c i t% •
given by

bi = "_I [cj_l -ci'l] I j <(M+I) (5-i12) , /_!_,
{

where cM+I = CM+2 = 0 by definition,and b0 ts obtainedas describedabove.

?

,#
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(5-107) 

where the doublt~ prime Indicates that the first and last terms (for j = 0 and 
j = M) are factored by one-half. 

The integration with respect to time is carried out using the foll..1Wing formula 

JTj<~) de ;:: ~ {j ! 1) Tj+1<e) - C ~ 1) Tj_1<e)} j > 1 (5-108) 

Special c&~es hold for j = 0 and j = 1, i.e., 

(5-109) 

(5-110) 

The coefficients for the integral of the series for PM (e) are represented l'V b j • 

i.e., 

(5-111 ) 

At e = 1, this expression for the i th velocity component is set equal to the initial 
value of that component of velocity oy adjusting the constant bo to satisfy this 
condition. A simUar adjustment is made after the integration of velocity 
compOlients in order to match the series evaluated at ~; = 1 with the Initial 
component of positlon. 

The lntef,'Taiion formul8l:l iead to a simple relationship between the b j 's and Cj 'FI~ 
gi.ven by 

1 j ~ (M+ 1) (5-112) 

where Cr.+l = CM+2 = 0 by definition, and bo is obtained as described above. 
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:: Once the cj's are known, the summations required to evaluate Ps(_ ) for any value
: of time can be done more efficiently by use ofa backward recurrence relationship, ]

_: Intermediate quantities d axe computed using the algorithmj -_

t J

dj(_) - 2{:dj+l(_) - dj+2(_:) + c. (5-113) _• ) ""

forj = M, M-I .... 0,startingwith dM+I(_)= dM+2 (_)= 0. The valuepM(_)is
then computed from

:_ 1 rd0(_)_ d2(_)] {5-114)

L
" 5.7 GAUSSIAN VARIATION OF PARAMETERS FORMULATIONS

' : In real space, the unperturbed satellite orbit is a conic section lying in a plane
! which has a constant orientatior_, shape, and size relative to an inertial frame.

: ; For a perturbing acceleration which is small compared with the central attrac-

" _ tion,thecharacteristic3ofthe conicsection(e.g.:s_mlmajor axis,eccentricity) /,
. vary slowly with time. To a lesser exte_.t, me attitude of the orbital plane with .J

respect to the inertial frame is a continuous function of time. However, t_

: satellitCs position along its orbit changes raptcuy with time. . !#

The numerical integration process is improved by lntrc::ucing state variables _;
which take advantage of this disparith- of effect. Tl_e introduction of such

variables allows comparison of the motion within the pla_e to a reference orbit
and treatment of the motion of the plane as a slight correction. The method of
Variation of Parameters (VOP) uses this approach.

(

in this section, three orbit generators are discussed which are based on the ,

•,,, Gaussian form of the VOP equations j

._" _a _ _a _ (5-115). ,_'

where ,__a slow element _
• e

-_thevelocityvector ' _

_ the perturbing acceleration vector !i

and _

o_ = i_' + P (5-116)

5-_0 "_

1976017203-238

Once the cj 's are known, the summations required to evaluate PM(';) for any value 
of time (;an be done more efficiently by use of a backward recurrence relationship. 
Intermediate quantities d. are computed using the algorithm 

J 

d.(.;) = 2';d.+ 1 (';) - d.+2(.;) + c. 
J J J J 

(5-113) 

for j = M, M-l •..• 0, starting with dM+1 (.;) = dM+2 (.;) = O. The value PM(';) is 
then complted from 

(5-114) 

5.7 GAUSSIAN VARIATION OF PARAMETERS FORMULATIONS 

In real space, the unperturbed satellite orbit is a conic section lying in a plane 
which has a constant orientation, shape, and size relative to an inertial frame. 
For a perturbing acceleratlOn which is small compared with the central attrac
tion, the characteristic3 of the ~onic section (e.~.: ~animajor axis, eccentricity) 
vary slowly with time. To a lesser ext'3~~, l11e attitude of the orbital planE: with 
respect to the inertial frame is a continuoul3 function of time. However, t'1~ 
satellite's position along its orbit ohanges raplwy with time. 

The numerical integration process is improved by intrr.:::ucing state variables 
which take advantage of this disparity of effect. The introduction of such 
variables allows comparison of the motion WIthin the plaDe to a reference orbit 
and treatment of the motion of the plane as a slight correction. The method of 
Variation of Parameters (VOP) uses this approach. 

In this section, three orbit generators are discussed which are based on the 
Gaussian form of the VOP equations 

oa aa-
--=--p 
at n'F 

(5-115) 

where .'1 "" a slow element 

r "" the velocity vector 

p "" the perturbing acceleration vector 

and 

(5-116) 
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where _ _ a fast element :_

I fi' _ the derivative of _ for unperturbed two-body motion :

These three orbit generators differ in the choice of dependent variables, i.e., i

either Keplerian, equinoctial, or rectangular elements. Some of the Keplerian
elements become undefined when the inclination is zero or near 180 °, when the i

eccertricity is zero, and at collision. The equinoctial elements (discussed in
Section 3.2.6) and rectangular elements are selected to eliminate all singularities
except for collision. All three _en_r_+or3 _ise tiiile as the independent variable
and _re _ere£ore well suited to the accurate integration of cL cular orbits. The _:
Keplerian, equinoctial, and rvctrngular VOP formulations are discussed in
Sections 5.7.1_ 5.7.2, and 5.7.3, respectively, ii

5.7.1 Keplerian Elements

The input initial conditions for an orbit in GTDS may be expressed as rectangular •

components of position and velocity at a given time t. The equations used in
GTDS for the conversion of rectangular position and velocity components to
Kep]erian elements are discussed in Section 3.3.8.3. For calculation of disturb- jr
ing Jbrces and for printout, GTDS converts instantaneous values of the Keplerian ._
elements to rectang_ar components of position and velocity. The formulation

;_ usec! for these conversions is discussed in Se_ion 3.3.8.1. Although all tin ee

classes of Keplerian orbits (elliptic, parabolic, and hyperbolic) are treated in _,
the conversions, the VOP methods of GTDS apply only to the elliptic case.

The VOP equations of motion for Keplerian elements are taken in the form of :_

the ,_aussian planetary equations _
• ,i

fi

- ! _
\, d t n 2a _

. >1 - e-_ . p (5-117b) _
de _ v_ rpXp --Xpyp + -.,,,,.,-n_dt na2e

di - yp_p - Xpyp) cos i + • P _ "__ = (5-117c) ' :
dt na _ _ s in i

t
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where f3 '" a fast elern ent 

/3' '" the derivative of;3 for unperturbed two-body motion 

TIlesEI three orbit generators differ in the choice of dependent variables, i.e., 
either Keplerian, equinoctial, or rectangular elements. Some of the Keplerian 
elemEmts become Wldefi.!led when tile inclination is zero or near 180~, when the 
ecceJ1,trieity is zero, and at collision. The equjn)ctial elements (discussed in 
Section il.2.6) and rel:tangular elements are selected to eliminate all singularities 
except for coJ1ision. All three gp.nerators uSe t1nlt: as th,e independent variable 
and are thai" t:for e, well suited to tile accurate integration of c1. cular orbits. The 
Keplerian, equinoctial, and rt.;ct:-ngular VOP formulations are discussed in 
Sections 5.7.1,5.7.2, and 5.7.3, respectively. 

5.7.1 Keplerian Elements 

The input initial conditions for an orbit in GTDS may be expressed as rectangullU' 
components of position and velocity at a given time t. The equations used in 
GTDS for the conversion of rectangular position and velocity components to 
Kep~erian elements are discussed in Section 3.3.8.3. For calculation of disturb
ing forces and {or printout, GTDS converts instantaneous values of the Keplerian 
elements to rectangular components of position and velocity. The formulation 
uaee! for these conversions is discussed in Se~ion 3.3.8.1. Altilough all three 
classes of Keplerian orbits (elliptic, parabolic, and hyperbolic) are treated in 
the eonversions, the VOP methods of GTDS apply only to the elliptic case. 

The VOP equations of motion for Keplerian elements are taken in the form of 
the Gaussian planetary equations 

. 
da = 2r . p (5-117a) 
dt n2a 

---->j~ ~ -'J de v1 - e .. .. ~ 1 " e .!. .-p -= yx-xyt r 
dt 2 P P P P n na e 

(5-117b) 

di - = ~ A ~ ) • or] -p - (y x - x y COS 1 t - . 
p P P P 0[1 

na 2 '. 1-? sin i 
(5-117c) 

dt 
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; __dTL= 1 __b_:.p (5-117d)
• dt na 2 ¢1--'-[-_e sin i ?i

I- - ^ cot i _:_I "_ (5-117e) t -:dw_ i ¢_ (LXp + Nyp) + 5 --e--2 :dt na 2 e
?

dM 1 L- 1 - e 2= n + _ 27 (L_p + Ngp ._ (5-117f)dt e -
4 ha2

, where Xp and yp are the orbit plane coordinates given in Equation (3-145), ip
and _p are Keplerian unit vectors defined in Section 3.2.5 and given by the

• - _ inverse o i Equation (3-159), and P is the perturbing acceleration vector. The

following auxiliary quantities are also defined
: i

n = FP]_-,a_ (5-118a) ...." "

! ?:: \ 0 i :
Y

?7 ,
-- = z cos [: (5-I18c)

",\ (xp s in _ + yp cos a)) cos i }

a2 :
L = -- [e cos E- 1 - s in 2 E] (5-118d) , ':

r

/

N = a2 s ill E (cos E - e) (5-118e) ,:

t
%

,: The eccentric anomaly is obtained by solving Kepler's equation according to the )

method described in Section 3.3.8.1. i '_
2
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dD 1 
cit - --1-::l---

na2 v1 - e sin i 

dr -
-' P 
'Oi 

dw 1 ~- It : e
2 (L~ NA

) cot i or] . p 
-d t - - - Xp + Y p + ~ I' 

na2 v~ (J 

(5-117d) 

(5-117e) 

(5-117f) 

where x and y. are the orbit plane coordinates given in Equation (3-145), xp 
p p 

and YP are Keplerian Wlit vectors defined in Section 3.2.5 and given by the 
inverse of Equation (3-159), and P is the perturbing acceleration vector. The 
following auxiliary quantities are also defined 

n= (5-118a) 

(-:) 
\ 0 

(5-118b) 

ai 
(5-118c) or 

a2 
L = - [£> cos E _ 1 - sin 2 E) 

r 
(5-118d) 

2 ' £ 
N a Sin ( E ) = cos - e 
r.~ 

(5-118e) 

Th.:.> eccentric anomaly is obtained by solving Kepler's equation according to the 
method deb..:'t'ibed in Section 3.3.8.1. 
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i 5.7.2 Equinoctial Elements

'Since disturbing forces are calculated as rectangular components, and initia!
values may be rectangular components of position and velocity, GTDS has a _,

capacity for converting Cartesian coordinates to equinoctial elements (see .}
,#

Section 3.3.9.2). The transformation from equinoctial elements to Cartesian I '
i

coordinates is discussed in Section 3.3.9.1. The Gaussian equations in equh_octial
elements are given by the following expressions (References 10 _nd 11)

da _ 2r . _ (5-119a) !

dt n2a !

d|____= [(2XIY 1 -- XIY 1) f - XlXl_ +_ (qIY 1 - PXI) w "P (5-119b)dt i
'i

i-dk 1 • h (qiy 1 _ pX._) • p (5-119c)
d-_ = _ [YI_I? - (2X1YI - X1YI) _ - G

! _2_J /

ii ,, _dt = ....na 2 \ ?,_ + na2_ (qlY1 - l='xl) , _i (5-119d) _;_ ,

_iI: dp fl + p2 +q2 1 i _:d'-_ = 26 YI "_ (_-l19e) _

_ dq _ [- i + p2 + q2) i (5-119f) ,0 ,_

',,, d-'_- L_ 2G Xl "p ' "

where i

G = na _ _1 - h 2 - k2 (5-119g) i :

The f, _, and _ unit vectors are defined in Sections 3.2.5 and 3.3.9.1, while the i

_ component_ of the uosttion, and velocity vectors in the orbit pirate X_, Y: , _ i, Y,., ! ' ,
_ and ;_ are defined in Section 3.3.9.1. i ' :

2_
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5.7.2 Equinoctial Elements 

Since disturbing forces are calculated as rectangul&r components, and initia.l 
values may be rectangular components of position and velocl~y, GTDS has 3. 

capacity for converting Cartesian coordinates to equinocttal elements (see 
Section 3.3.9.2). The transfornlatton from equinoctial elements to Cartesian 
coordinates is discussed in Section 3.3.~.1. 'The Gaussian equations in equlll'Jctial 
elements are given by the following expressions (References 10 ~nd 11) 

da 
dt"-

2r .p (5-119a) 

dh = [~ 
d t /J 

[(2X1Y1 - X1Yl) f - X1X1gJ k J + G (qIY I - pXt ) W .p (5-1l9b) 

dk t 1 . ~ .. 
- ~ (o.IY1 - pXt ) W] .p (5-119c) = -~ [Y1Y/ -(2X1Y1 -Xt Y1)gJ 

dt 

(5-1l9d) 

dp = [1 + p2 + q2 Y W] . P 
dt 2G 1 

(5-1lge) 

,;)-1l9f) 

where 

(5-] 199) 

The i, g, and Vi unit vectors are defined in Sections 3.2.5 and 3.3.9.1, while the 
componeni:s of the position and velocity vectors in the orbit plane Xl' Y:" '* p y l' 
and ~i are defined in Section 3.3.9.1. 

5-33 



¢

J

.?

I

5.7.3 Rectangul_ Formulation ['

_i. initial Cartesian components of po31tlon and velocity e.ompletely define any
qorbit whether it be elhi.o_c, parabolic, hyperbolic, or any degenerate recti!'me_._r

orbit. From the initial position and velocity a completely general closed-form
solution of the two-body problem is syllable for determining coordinates and i
velocities at any other time (Reference 12). The closed form solution avoids
the singularities associated with aifferent types of two-,body motion. In the

• rectangular VOP formulation, the dependent variables ?_ and _0 are the initial
: conditions at the t;ime t o on an osculating two-body trajectory which yields the

same state _ and _ at tLne t as tha+ of the perturbed trajectory. The dependent
variable is the thne. The osculating position and velocity at time t are obtained ,_

i_ by inserting the perturbed initial conditions for the time of interest in the
(.

standard closed formulas for two-body motion.

The dependent variables, or perturbed initial conditions, are all slow v_riables,
_' i.e., their time derivatives are all zero when the perturbing accelerations are
! _et to zero. Therefore, all the equatior:s of motion are in the form g._ven in

, i Ecf_ation (5-1!5).
1

_- -- = (5-120a)
i dt d# J

_ d7 0 '3¥"o -
p (5-120b) ,_

dt dr ":

where the partial derivative matrices are as follows _,
/,

--, IllVXo/ Oy _Xo,/_z g 0 O- 0

• ' ' ' ' " _ , ' - [_ 9 ;3 ';3yo,/3x 3yo,3y 3 o 3z = 0 g + U o ,_;

(5-121a) :
_ _
_o _o

{ I :1' fs 2 -(f - 1) s2 '._ X y •
: + Yo Yo

, (_- I) s2 - gs2 X Y i '
i

,t
' z o z0 !I
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5.7.3 RectanguLu For}l?-ulation 

l.~. initial Cartesiar.. componellts of po:dtion and velociiy r.ompletely define any 
orbit whether it be- elhi-t!c. parabolic, hyperbolic, or any cJ.egenerate :oeC'tiline!1.Y' 
orbit. From the initial position and veloci.ty a completely general closed-form 
solution of the twc-body problem is available for determ.ining coordinates and 
velocities at any other time (Reference 12). The closed form solution avoids 
the singular itie~ associated with different types of two-·body motion. In the 
rectangular VOP formulation, the c'ependent variables l'" and ~ are the initial 
conditions at the time to on an osrulatiIlg two·-body trajectf)ry which yields the 
same state rand rat t:...ne t as tha~·. of the perturbed trajectory. The dependent 
variable is the time. The osculating position and velocity at time t are obtained 
by inserting the perturbed initial conditions for the time of inter.est in the 
standard closed formulas for two-body motion. 

The dependent variables, or perturbed initial conditions, arc all slow va.dables, 
i.e., their time derivatives are all zero when the perturbing accelerations are 
:set to zero. ThElrefore, all the equations of motion are in the form g;ven in 
Eqv.ation (5-11.5). 

\ \ 

dro dfo _ 
-:. --p 
dt d-:'" r 

whert! the partial derivative mat.rices are as follows 

Cl \ I '\ • -, " /-"'. a~o/az-l I g 0 0 
~ 

xo: ,-x cJxo / dy Xo 

0\ '0' oYo /oy ~~Odlt 0 + U [x y,/ x g Yo y 

a~ 'ex 0\ /0' 0 
~ 

0 Zo y ClZ O' ~z 0 g Zo 

- (f - 1) S21 [ ] 
- .', J : : : 
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1 ]
- F:! '

_o,,,_ ,_,o/_, _,'o/_ = o f o +u l_o, [,_,,]
_->_/_;,_/_ _'o,'_ o o _ LZo j

(5-121b)

l 'l iS I ,' 0. xo xo + (f- l'_/v' (f- 1) s t

I"t

,, z_) z 0

!i. The position and velocity are compute.d as follows

? T = fY_)+ gr; (5-122a) _ :_
i" 1

.2-" "..--_ • '--t '_ :"_

_, r=rro+gro (5-122b) {//,,:

_ where

i g = (t - to) - #s 3 (5-123b)

.! _ = I -. !ts2/r (5-123d) ,_ i,!

.: In fiw ._bove formulas, _ is the gravitational constant and _l

, _)x/_ (5-124a) ..r 0 = (x_2 + yo2 + z0 ,..

, (5-124b)

_i r = r_s o + OoS 1 +/_s 2

: /
" . (5-124e) ,
,, so = I _ _V,_,'2!+__'2_b4/4:: _'_5,/6! +...

i _'¢.3/',, a,2_s '5, o?a_7 ' (5-124d)
Sl =V_+ , o..t. , . + '7_ + ...

1976017203-243

'\ ' dxo / ex QX~ / ely cx~ / CZ f 0 0 X~l 
d ,\ I" dy~/cy cy~/dz 0 f 0 tU 'j [' , 'J Yo, ox = x y 2 

oz' lox oz~/dY o '\ 1-' 0 0 r ", 
0 Zo I dz L.. Zo 

(5-121b) 

rx

' "l 
r- 1'1 + (I - 1)/,-\ (I - I) '1 1 

+ y; 
Xo 

r' r' 

r~ zl ' , 0 0 Y 
Yr 

zJ , 

Lzo 
- f sl (f - 1) s? 1...11. y 

" J 7:0 - .... 

The posf.tlon and velocity are computGJ. as follows 

(S-122a) 

(S-122b) 

where 

(S-123a) 

(5-123b) 

(5-123c) 

(S-123d) 

In ili(' flbove formulas, f.l is the gravitational constant and 

(S-12.J:a) 

(S-124b) 

(S-124c) 

(5-124d) 
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s2 = ,_/'2! + o' ?.,4/4! + _' 2_p6/6! + a_ 3_8/8!�... (5-124e)

ii s3 -__3/3! + _bs/5! + _ 2_b7/7! + a_3_9/9! + ... (5-124f)

< -' where the parameter _b satisfies the following modified form of Keplerts equation J'"

_" (5-125)
--_, t -- t o + roS 1 + a o _2 + /zs3

_ °

The equation is solved for _./Jus_ug a Newton-Raphson iteration process. In this

:: equation j

, , , ,., ,., (:)-lzt_a)
• _o = XoXo + YoYo _ ZoZo

_ "' 2 "2 ",2 2/_ (5-126b) :_): _ = Xo + Yo + Zo -

!.

: ' The parmneter U is evaluated as follows

•; U = p-(_bs4 - 3s_) (5-127) ":""

) where .... '

s,. = ;4/4! + _b6/5! +a_2_bS/'8! + a'3_lO/lO! + .,. (5-128a)

'," s __5/5! + _7 /7! + _2_b9/9 ! + a_3_b_/ll! + ... (5-128b)

i The following accelerations at time to on the osculating trajectory are als(, ._sed J_

15 )
\, .._ • o_ -129a .

• x X0 = - /_X 0 / r }

•,% w,z _3
- Yo = -/ZYo/ro (5-129b) _ ,

"'• _ ,/ ' -_ (5-129c) lz = /_z_ _r^

Initial conditions are specified by the value_ Xo, Yo, Zo, Xo, Yo, _-0 of the co- _

ordinates at a given referen,.'e time to. At time to ,

l,

_ -
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(5-124e) 

(5-124f) 

where the parameter If; satisfies the following modifi.ed form of Kepler's equation 

(5-125) 

The equa1ion is solved for ~/) uemg a Newton-Raphson iteratl.on process. In this 
equation 

(5-126a) 

, "2 "2 ·'2_2f.L 
a = Xo + Yo + Zo (5-126b) 

r 

The parameter U is evaluated as follows 

u = f.Le1f;S4 - 3s~) (5-127) 

where 

(5-128a) 

(5-12~b) 

Th.~ .followln~ accelerations at time to on the osculating trajectory are alsti ~ls~d 

(5-129a) 

(5-129b) 

(5-129c) 

Inlttal cO'ldlt1ons are specifif;d by the value~ xo. Y(\' zo' Xo, Yo' Zo of the co
ordinates at a given refereD'.~e time to' At time to' 
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5.8 NUMERICAL AVERAGING FORMULATIONS

The efficiency of numerical in*.egration methods can be increased by eliminating

short period effects (i.e., those with a period less than or equal to the satellite's

period) from the equations of motion• The Method of Averages uses tLis approach,

wherein the equations of motion for an average element set are integcated. The
sd ,resulting orbit generation method is extremely efficient, but is limited to average . _'

element accuracy rather than the osculating element accuracy achieved in high
¢.
_ precision methods.

4

_:!,: The averaging methods are particularly u_eful fo- nrbit detern:ination probl.ms

l for which the cost of precision orbit calculations is prohibitively expensive, or

i,_ where high accuracy is not essential. Mission design, for example, is based on '
:, the consideration of both the scientific objectives of the mission and the engineer-
_ tag constraints. Optimum mission aesig usually requires a lar':e number of

_'-_ orbit caiculations to determine t characteristics of the proposed orbits. An
averaging orbit prediction process is well suite_ to the prelimiPary stages of ',

_ mission plannb:g where long-term trends, not local fluctuations are of primary . '.

_ interest. The a_,eraging methods may also be useful for differential correction

; problems involving large qua',tities of data. The only assumption required for
i. application of the averaging method is that the orbital elements remain reason-
k_
_ ably constant throughout one period.
L"

__ The averaging process can be handled either analytically or t.,umeric, ly (Reference

.=_ 13). The analytic method averages the effect of each perturLation (drag, oblate-
_,,

hess, third-body effects, etc.) separately. The resutting closed-term expressions

for the averaged rates can be _,,od to constr,-., a very efficient orbit generator.

_:,' The numerical averaging _echniquc cr,mL'.'_.,_manv uf the advantages o._ analytic ;

_; averaging with the ablilty _.o simulate t,_,e effect of an), small perturbations which
can be deterministically modeled. These effects are included by averaging out
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5.8 NUMERICAL AVERAGING FORMULATIONS 

The efficiency of numerical in~egra.tion methods can be ,ncr eased by eli!"dinating 
short period effects (Le., those with a period less than or equal to the ~atellite's 
~eriod) from the equations uf motion. The Method of Averages uses ttis approach, 
wherein the equations of motion fClr an average element set are integrated. '!'he 
resulting orbit generation method is extremely efficient, but is limited to average 
element accuracy rather than the oscuiating e~ement accuracy achieved in high 
precision methods. 

The averaging methods are particularly u,,?ful fo" orbit deterll!i&1ation probl..;ms 
for which the cost of precision orbit calculations is prohibitively expensive, or 
where high accuracy is not ess(>ntial. Mission design, for example, is based on 
the consideration of hoth the scientific objectives of the missiun and the engineer
i.ng constraints. Optimum mission CiE'sig usually requires a lar:~e number l,f 
orbit ca!culations to determine l' chal'1.cteristics of the proposed orbits. An 
averaging orbit pred.iction process is well suite':! to the prelimil'ary st&ges of 
mission plannil~g wh~re long-term trends, not local fluctuations, are of primary 
interest. Th~ averaging methods may also be l!seful for differential correction 
problems involving lal'ge ql..a--tities of data. The only assumption required for 
application of the averaging method is that the orbital ele:nents l"emain reason
ably constant throughout one period. 

The averaging process can be handled either analytically or lmm,:;:ric:. ly (Ref(:rencc 
13). The analytIc method averages the effect of each perturLatioll (drag, ublate
ness, third-body l'ffects, etc.) separ3.tely. The reSUlting closed-form expressions 
for the averaged rates can ~'e p"pd to com'lll"!_~ a very efficient orbit generator. 
The numerical aver~ginlr, technique Cf'm!.;::oH'''' !,113 .. nv uf the advltntu~~ps C/~ :.nalytic 
averaging with the ability tn simulate tr.e effect or' any small perturbations which 
can be deterministically modeled. These effects are includt:>d by averaging out 
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' .[.
: the short-period oscillations m the perturbations by me_n:, of a mechanical

quadrature technique. By using the Gaussian form of the Variation of Param-

eters equations in conjunction with the GTDS force model, the long-term effect

_ any combination of perturbations can be computed. Consequently, the nu-
merical technique is more flexible than the analytic method.

!

5.8.1 The Averaged Fquations of Motion

The averaging methods in GTDS use either the equinoctial or the Keplerian

formulation (Section 5.7) of the Variation of Parameters equations of motion.

The precision Variation of Parameters equations can be written in the form

x : c f("x, y)

(5-131)

# = h(-x)+ _g(_, y)
J

z /

where _ _ the vector of slow osculatingorbitalelements

¢.
j ,

_- y _ the fa_t osculating orbital element (e.g., mean or eccentric anomaly) /

E _ a small parameter which is proportional to the perturbing

acceleration ] !
i

and f. g, and h are sufficiently smooth functions which are periodic in y with

period 2_,. The averaged solution to these equations is defined by (Reference 14)

f= 277 _(t') dYA(t') _

(5-132) _'

1 _yA (t) +_r

YA(t) = -9-'_-_jyA(t)__ri Y(t#) dYA(t')

DifferentiatingEquations (5-132) and suustitutingthe results into Equations

_5-.131)yieldsthe averaged equations of motion
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the short-peri od oscillations in the perturbations by meCli&~ of a mechanical 
quadrature technique. :!3y v.sing the Gaussian form of the Variation of Param
eters equat~ons in conjunction with the GTDS force model, the long-term effect 
u: any combination of perturbations can be computed. Consequently, the nu
merical technique is more flexible than the analytic method. 

5.8.1 The Averaged Equations of Mot~on 

The averaging methods in GTDS use either the equinoctial or the Keplerian 
formulation (Sectiol1 J.7) of the Variation of Paramete!'s equations of motion. 
The precision Variation of Parametf>rs equations can be written in the form 

'i = d(X, y) 
(5-131) 

y = h(X) + Eg(X. y) 

where x '" the vector of slow osculating orbital elements 

y '" the fast osculating orbital elem"nt (e.g., mean or eccentric anomaly) 

€ ~v a small parameter which is proportional to the perturbing 
acceleration 

and f. 6, and h are sufficiently smooth functions which are periodic in y with 
peri.-Jd 21T. The averaged solution to these equations is defined by (Reference 14) 

(5-132) 

Differentiating Equations (5-132) and suustituting the rest:.lts into Equations 
(;j··131) yields the averaged equations of motion 
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i

-- ' _ f t, .kt'), y(t')] dYA(t' ) '. •
: XA(t ) : _ */YA ( t ) - rr

_- (5-133) ;

l _ yA(t) + "r " '

•f 5)6(t) = _ ihN' '_] + _g['ff(t'), y(t')]t dYA(t') -: _
_;_ A(t)-?T

_. Whenx.,,(t') and YA(t') are used in the evaluation of the arguments of the f, g, and " :
_- h functions,thestandardfirstorder averaged equationsof motion are obtained : "

" _, (Refero.-.ce 15). In GTDS, the integrals in Equation (5-133) are evaluated nu- .
: mericaily using a Gaussian quadrature method. _- -_

?

5.8.2 Numerical EvaluationoftheAveraged Equationsof Motion

Four different approxim_,tions are currentl) available for evaluation of the

arguments of the f, g, and h functions in Equations (5-133): :"
J

fP

1 Traditional mean element behavior "/

" " _(t') = XA(t) (5-134) ;

_(t') = yh(t')
,?

2. Traditional mean element behavior plus mean long-period effects

: x(t') =gA(t) +#A(t) It' - t] ':
(5-135)

Y(t°) = YA(t') i

where "_A is the averaged rate computed in the previous evaluation , .ii.

3. Traditional mean element beha_-ior plus short-period effects arising from J2 :

_(t') : gA(t) + (5-136) : :

y(t') = yA(t') + AYJ2

The short-period corrections are obtained using Bro,,wer theory. ,,

$' " 5-39
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(5-133) 

. 1 i YA 
(t) + 'T . r:- , ) ~, , )]} (' ) 

yA(t) = - th L,.' ) + o:gLX(t ), yet dYA t 
27T 

YA(t)-1T 

\Vilen x!,(t') and Y
A 

(t') are used in the evaluation of the arguments of the f, g, and 
h functions, the standard first order averaged equations of motion are obt.ained 
(Referpnc~ 15). In STDS, the integrals in Equation (5-133) are evaluated nu
merically using a Gaussian quadrature method. 

5.8.2 Numerical Evalu:ltion of the Averaged Equations of Motion 

Four different approxim"tions are current!} available for evaluation of the 
arguments of the f, g, and h functions in Equations (5-133): 

1. Traditional mean element behavior 

x(t')=x/t) 
(5-134) 

yet') = Y,\(t') 

2. Traditional mean element behavior plus mean long·-period effects 

(5-135) 

where iA is the average~ rate computed in the previous evaluation 

3. Traditional mean element b8I-J.a\"ior plus shori··period effects arising from J2 

x(t') = xA(t) + 6xJ~ 
... (5-136) 

y( t ') :: Y A ( t ') + !:I Y J l 

The short-period corrections are obtained using Bro'lwer theory. 
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i 4 Traditional mean element, mean long-period and short-period effects = " ]• !

x A ' A_j2_(t') = _A(t) + (t) It - t] +
: (5-137) i

"- y(t') = YA(t') + Ayj2 il I

. Currently, only Equation (5-134) is available for evaluation of tile argument
: in Equations(5-137).

5.8.3 Averaged EquinoctialVamation ofParameters Formulation i,

; The averaged equinoctial formulation (Section 5.7.2) uses a slow element

• vector x = (a, h, k, p, q) and a fast variable equal to the mean longitude ,\. To 1
unilormize the mtegrand in Equation (5-133) and to reduce computational time,
the integration variable is transformed from mean to eccentric ]gngitude F,

; using the relationship

: !i

'i dF A
1 (5-138) /---= [I- ,_ cos FA - hA sin FA]-I ! _'

dk^ ^ : -_"

: 5.8.4 Averaged Kepierian Variation of Parameters Formulation

The averaged Keplerian formulation uses a slow element vector:_ = (a, e, i, _q, _)
and a fast variable equal to the mean anomaly M. All four methods outlined in
Section5.8.2are availablefor evaluationoftheequationsof motion. When
methods 3 and 4 are used,theintegrationvariableistransformedtothetrue

anomaly f, using the rel_ionsbip
' i

\ dfA a2 v/i-'-Z'_A (5-139)

d
!
, where rA is the magnitude of the position vector computed using the averaged
• elements.

5.8.5 Transformation from Osculating Orbital Elements to Averaged Elements
t

The accuracy of predictions obtained using the averaged orbit generator are
improved if initial average elements are used instead of osculating elements.
In GTDS, this traneformation is accomplished by solving the integral equation

for the average semimajor axis
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4. Traditional mean element, mean long-period and short-period eff~cts 

,,(t') :: "A(t) + "it) [t' - tJ + L)X
J2 

y(t')::: YA(t') + 6 YJ2 

(5-137) 

Currently, only Equation (5-134) is available for evaluation of the argument 
in Equations (5-137). 

5.8.3 Averaged Equinrctial Variation of Parallleters Formulation 

The averaged equinoctial formulation (Section 5.7.2) uses a slow element 
vector x = (a, h, k, p, q) and a fast variable equal to the mean longitude ,\. To 
uniiormize the mtegrand in Equation (5-133) and to reduce computatiollal time, 
the integration variable is transformed from mean to eccentric bngitude F, 
using the relationship 

(5-138) 

5.8.4 Averaged Kepierian Variation of Parameters Formulation 

The averaged Keplerian formulation uses a slow ele,ment vector x = (a, e, i, D, u') 

and a fast variable equal t\J the mean anOI!1aly M. All four methods outlined in 
Section 5.8.2 are available for evaluation of the equatioDf, of motion. When 
methods 3 and 4 are used, the integration variable is transformed to the true 
anomaly f, using tll.e rel:rl:ionsbip 

(5-139) 

where r A is the magnitude of the position vector computed using the averaged 
elements. 

5.8.5 Transformation from Osculating Orbital Elements to Averaged Elements 

The accuracy of predictions obtained using the averaged orbit generator are 
improved if initial averaoe elements are used instead of osculating elements. 
In GTDS, this tranE'formation is accomplished by solving the integral equation 
for the average semimajor axis 
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(

ti

It +TA/2aA(t ) = ._ a(t') dt' (5-140) _i
"t "TA/ 2 J

_- using the following Newton-Raphson xterative procedure } ,
)

_ 1 _ t+(TA/2)n "' F = [aA(t)]" (T^)n a(t') dt' (5-141a) ;
st-(TA/2)n !i

_" - dFn (5-141b) i
D d [aA(t)] n _:

g

• [aA(t)]_ [aA(t)]" - _ (5-141C)

where •

; : ) [aA(t)] o = a _ the osculating semimajor axis

and where TA, the average period, is

TA = 27z_,_ (5-142)

,i
The average equinoctial element set is then computed by averaging the osculating

'-. elements over the average period, i.e., ,

1 f t+TA/2
= _(t' ) dt' (5-14"_d)

xA(t) _ "t-TA,2
f

i YA(t) = 1 ji t +TA/2 '• _ y(t' ) dt' (5-143b) '
!':. -T A '2 o
f

,f
J

• The average equinoctial elements are transformcO to average positior, and velocity ;

' vectors, Keplerian elements, and spherical coordinates, i

F -4!
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using the following Newton-Raphson Iterative procedure 

where 

F 
[aA(t)jn+l == [aA(t)J n - nn 

n 

[aA(t)JO = a '" the osculating semimajor axis 

and where TA, the average period, is 

(5-140) 

(5-141a) 

(5-141b) 

(5-141c) 

(5-142) 

The average equinoctial element set is then computed by averaging the osculating 
elements over the average period, i.e., 

X(t)==..!... 
A T 

A f.
t +TA/ 2 

x(t') nt' 

t - T A/2 

(5-14~ <1) 

~5-143b) 

The average equinoctial elements are transformc~ to average position and velocity 
vectors, Keplerian elements, and spherical cor:t"dinates. 
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5.9 BROUWER THEORY " ]

: GTDS includes two analytical solutions of satellite motion for a simplified dis- ,.
turbing potential field limited to zonal harmonic cocffmients for J2 through Js "
(see Section 4.3). Brouwerts first order solu_zon of this problem is obtained ..

: by applying the Von Zeipel method in oelaunay canonical variables (Reference i ).
The resultingsolutioncontp.lnssingularitiesforsmall inclinationsand eccentrici-

"." tiesand ata criticalinclinationof63°26'.

_ Tt was shown in Reference 15 that the first order Brouwer solutioz: for secular and

long period effects is identical to that obtained using first order numerical averag-
.: ing (Section 5.8) with the same perturbing force m,_del. Thus, Brouwer theory

is equivalent to the first order averaging solu0on plus short period effects for the -,

32 through Js perturbing acceleration. For applications which require more
c-omplete perturbation models, averaging methods are more accurate than
Brouwer theory.

Brouwer theory provides a rap':.l means of determining a satellite ephemeris, i :
Its precision is related to the error committeu iv omitting all perturbations

except the low order zonal harmonics. The orbit from the Brouwer theory can /_'('
als,)be used as an intermediateorbitinthesemianalytictechniquesdiscussed "_
in Section5.11.

_

For applicationswhich requirehighefficiency,iLisimportanttoconsiderthe
number of output points which are requireo. For Brouwer theo, v, the compu- :"
rational cost is directly proportional to the number of output poll _. However,

when averaged numerical integration is used, the cost is mainly dependent on
: the arc length instead of the number of intermediate output points. For differen=

tial correction applications, the eomputaAonal cost of the averaged orbit genera-

tion methods is often competitive with that of Brouwer theory and offers con- _ _:
, siderably greater flexibility with respect to the perturbation model. ,
\

ff

Computationally, the Brouwer solution is divided into secular, long period, and
shortperiodterms. The solutionconsistsofa secularmotion,upon which is ,"

• superimposed a number of long period terms. Superimposed on the sum of the
secular and long period terms are a number of more rapid oscillations or short

period terms. The periodic terms of both long and short period are developed

" to order (J2), while secular terms are developed to order (J2)2. The harmonic
coefficients J3, J4, and Js are considered to be of order (Ja)2 in the derivations. / _t

,J
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5.9 BROUWER THEORY 

GTDS includes two analytical solutions of satellite motion for a simplified dis
turbing potential field limited to 1-onal harmonic coefflCients for J2 through Js 
(see Section 4.3). Brouwer's first order S(\!ui;lOn of this problem is obtained 
by applying the Von Zeipel method in lJelaunay canonical variablefi (Reference 1). 
The resulting solution conte-ins singularities for small inclinations and eccentrici
ties and at a criti~~l inclination of 63 °26' . 

It '~as shown in Reference 15 that the first order BrouwfOL' solutiol~ for secular and 
long period effects is identical to that ubtained using first order numerical averag
ing (Section 5.8) with the same perturbing force ffi.jdel. Thus, Brouwer theory 
is equivalent to the first order averaging soluti.Jn plus short period effects for the 
J 2 through J s perturbing acceleration. F01' applications which require more 
ef)mplete perturbation models, averaging methods are more accurate than 
Brouwer th20ry. 

Brouwer theory provides a rap!j means of d~termining a satellite ephemeris. 
Its preciSion is related to the error committeu in omitting all perturbations 
except the low order zonal harmonics. The orbit from the Brouwer theory can 
als') be used as an intermediate orbit in the semianalytic techniques discussed 
in Section 5.11. 

For applications which require high efficiency, it is important to consider the 
number of output points which are requirea. For Brouwer theo, v, the compu
tational cost is directly proportional to thE" fill!llber of output poil " However, 
when averaged numerical integration ig us",d, the cost is mair.ly dependent on 
the arc length instead of the number of intermediate output points. For differen
tial correction applications, the computa~ional cost of thE' averaged orbit genera
tion methods is often competitive with that of Brouwer theory 'lnd offers con
siderably greater flexibility with respect to the perturbation model. 

Computationally, the Brouwer solution is divided into secular, long period. and 
short period terms. The solution consists of a secular motion, upon which is 
superimposed a number of long period terms. Superimposed on the sum of the 
secular and long period terms a:-e a number of more rapid oscillations or short 
period terms. The periodic terms of both long and short period are developed 
to order (J2 ), while secular terms are developed to order (J2 )2. The harmonic 
coefficients J3 , J 4 , and Js are considered to be of order (J2 )2 in the derivations. 
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Tbe Delaunay elements are related to the classical elements in the fcllcwing
way

L = (_a) 1'2 _ = the mean anomaly = M

G = L (1 - e 2)'/2 g = the argumeet of pericenter = _ . ,

H = G cos i h = the longitude of the ascending node = _ '

However, the solution is written here in terms of classical elements (a, e, i, _,
g, h) = (a, e, i, M,_, l_). In the formulas that follow, double primed variables _'

refer to secular or mean motion, single primed variables refer to secular plus
long period terms, and unprimed variables refer to secular plus long and short
period terms. The re)primed variables are osculating elements.

Only the elements _, g, and h undergo secular motions. Mean elemeuts at epoch _
are denoted by a subscript "0" a:]d the time elapsed from epoch by At. Mean
elements are usually obtained from osculating elements by the procedure outlined !

z

in Section 5.9.1. The first order solutions to the mean element equations of i

motion are _ :
8

a II hae#

= ao + (5-144a)

e" = " (5-144b)• " " e o + 5ei

ill • II

: _. = lo + /_i (5-144c) ;

_" _" = n0At + )_At + "0 + A_ + A_D_G (0 <_.";}"< 277) (5-144d)

g" _At + " + /_g (0 < g" " 2._) (5-144e) i ': ; "-: I_0 - -

'. 2 = hat + h0 + Ah (0 < h" < 2v) (5-144f) ! ;

where 5a, Ae, Ai,A_, 5 g, and Ah are user-providedperturbationsnotaccounted _ ,'
$,

_ for in the Brouwer-Lyddane model, and

'_: _'_'DP.AG : ,L--I'_ E Np,q(| - tq) p (5-145) i ,'k

i, where Np,q are the Brouwer drag coeff'.cients, and tq iS the reference time of

,_i theqth N_,q. This model isbased on thepremise thatdrag isa minor component _ ;
• of the total perturbation force.

il
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ThE) Delaunay elements are related to the classical elements in the fcllewing 
way 

L := (ua) 
1,'2 {, = the mean anomaly = M 

g = the argument of peri center = u; 

H = G cos i h = the longitude of the ascending node = D 

However, the solution is written here in terms of cla5sical elements (a, e, i, (, , 
g, h) = (a, e, i, M,u;, Ii). In the formulas that follow, double primed variables 
refer to secular or mean motion, single primed variables refer to secular plus 
long period terms, and unprimed variables refer to secular plus long and short 
period terms. The unprimed variables are osculating elements. 

Only the elements {, , g, and h undergo secular motions. Mean elemeuts at epoeh 
are denoted by a subscript "0" a:ld the time elapsed from epoch by 6. t. Mean 
elements are usually obtained fom osculating elements by the procedure outlined 
in Section 5.9.1. The first order solutions to the mean element equations of 
motion are 

al/ = a~ + ~a 

• /I • II /\ • 

1 = 10 + Lll 

"'f II g :: g ~ t + go + 6g 

I " : 1\ h" :'h 1 :: .1_ t + 0 + . (0 ~ h" < 271) 

(5-144a) 

(5-144b) 

(5-144c) 

(5-144d) 

(5-144e) 

(5-144f) 

where .6a, 6e, 6i, 6.{" 6. ft;, and 6h are user-prl)vided perturbations not al:counted 
for in the Brouwer-Lyddane model, and 

N (t - t )P 
I',q q 

(5-145) 

where Np,q are the Brouwer drag coefEcients, and tq is the reference time of 
the q t h Np , q' This model is based on the premise that drag is a minor component 
of the total perturbation force. 
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The restricted perturbation model and fir,qt order approximation, which are usec, _ ,
in the derivation of these equatious, may lead to errors which increase with time. _- /%

The element rates of change are given by

"_=non_),_ [3(382-1)+3_7_(2S_2 + 167- 15+ (30-96_-90_2)_ 2

+ (105 + 144,) + 25-? 2) 84 + i'6 74e"2(3 - 3082 �35_;_)(5-146)

/_=no _'_ (SO2 1)+ )

, (90- 192_, - 126_. 2) ,92 + (385 + 360,-3 * 45r_2) _4

, S ' [21 972 + (126772 270) 82 + (385 18972) 84]} (5-147)! +[_7_ - _ _

b no 3,_((9_ 2 + 127 5) 0 (35 + 36-,_ + 572 ) ;:3) 3 .

75'"_( 5 3_2). (3 752)) (5-148) '+_>4 - -

The following sub_,titutions have been made in order to abbreviate the preceding
expressions.

_" n o - _ = v'_ t/ - cos i"

k_ J2R2 k_- e = ---- ., V2

2 ?2 a": )2 =--_4

k3 73

_, a" 3 _6

3J4R2 k4 )'4
k4 74 ?4

,, 8 8.4 _8
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The restricted peratrbation model and firl~t order approximation, which are usee, in the derivation of these equatiolls, may lead to errors which increase with time. The element rates of change are given by 

(5-146) 

(5-147) 

(5-148) 

The following subf,titutions have been made in order to abbreviate the preceding 
expressions. 

n -~-0- --
aN3 tJ = cos ii' 

k = - J ~ J 3 ~ 
1'3 \,1 _ 

'3 --
1)6 
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The secularterms depend onlyon theeven zonalharmonic co,efficientsJ_ and J4-

The mean valueoftheeccentricanomaly E" isobtainediterativelyfrom Kepler's i
equation

E" - e" s in E" = _" (5-149)

The mean true anomaly f" and mean radial distance r" are

L--cosI'V_-e"2sinE""I_ - e" (5-150) ]

f._-_ tan'l

r" = a'(1 - e" cos E') (5-151) !

, ,,I _2

5.9.1 Transformation from Osculating, Orbital Elements to Brouwer

:_ Mean Elements i !'

The itcrativealgorithmused forconversionofosculatingKeplerianelements to

Brouwer _nean elements is described here (see References 16 and 17). This
algorithm is useful in two situations. Since Brouwer or Brouwer-Lyddar, e }
theories require E,rouwer mean elements as an initial state, the first application __ :

consists of converting osculating elements to mean elements for use with the !
Brouwer ard Brouwer-Lyddane orbitgenerators. Secondly,osculatingelements _ _
may be cor.vertedto Brouwer mean elements forreportingpurposeP. Such |

\\ mean elementsare alsousefulas initmldata fortheintegrationoforbitsby _

the Method of Averaging and for other purposes. _

Singular points for zero eccentricity, zero inclinatio:_, and at inclinatmn 63026 '
do not permit calculation of mean elements there. Oni:, Keplerian elliptic motiol,
can be treated, which requires 0 < e < 1.

l --
Theiterativeprocess isexecutedaccordingtotheequation

s

x"(s+t)= x'(S) _ V!s_
i * + (Yl -, ) (5-152)

i=1,2 ..... 6
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7]10 

The secular terms depend only on the even zonal harmonic co'efficients J.z and J 4 • 

The mean value of the eccentric anomaly E" is obtained iteratively from Kepler's 
equation 

E" - e" sin E- = {II 

The mean true anomaly fll and mean radial distance r" are 

~ t 112' E" J f " - t -1 Ii - e Sin -- an -
cos E" _ e" 

r" = a"(1 - e" cos Elf) 

5.9.1 Transformation from Osculating Orbital Elements to Brouwer 
Mean Elements 

(5-149) 

(5-150) 

(5-151) 

The iterative algorithm used for conversion of osculating Keplerian elements to 
Brouwer mean elements is described here (se€ References 16 and 17). This 
algorithm is lI.seful in two situations. Since Brouwe.r or Brouwer - Lyddane 
theories require Brouwer mean elements as an inithl state, the first application 
consists of converting osculating elements to mean elements for use with the 
Brouwer ar.d Brouwer-Lyddane orbit generators. Secondly, osculating elements 
may be cOl:verted to Brouwer mean elements for reporting purposep. Such 
mean elements are also useful as initial data for the integration of orbits by 
the Method of Averaging and for other purposes. 

Singular points for zero eccentricity, zero inclinatio;1, and at inclinatIOn 63°26' 
do not permit calculation of mean elements there. Oni.! Keplerian elliptic moliO!. 
can be tres:lted, whIch requires 0 .::: e !S 1. 

The iterative process is executed according to the equation 

X~(s+l) = x"(s) + (y. _ y~s)) 
I 1 1 1 (5-15:'.) 

i=l,2 .... ,6 
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. I I , , _ -- a_

< where x'.'(s) _ the i th mean classical Keplerian element obtained from the
. s th iteration .

Yi _ the initial osculating Keplerian element

= y_') _ the osculating Keplerian element estimated from the S th iteration

_ Double primes denote mean elements at the time of conversion. This algorithm :
• ignores correlations between the elements of the order of 10-3 which are of no ,
: . practical importance in the calculations.

A convergence criteria limits the number of iterations. The sum of the squares
: of the differences between estimated and initially given osculating elements are

compared with a prescribed tolerance; when the sum is less than the tolerance,
,: the calculation is terminated.

The following method for obtaining mean elements at a given time is more exact

than those methods which propagate mean elements from some previous time
: using Equations (5--144) and (5-145), since the propagated mean elements deteri-

• orate with time due to perturbations not included in the solution. The values of

_x. the mean elements on the S th iteration are used to compute estimate_ of the /_osculating elements. As shown by Equation (5-152), the difference bet',veen the ,_
s th estimated value and the initial known value of tke ._sculating elements is used
to correct the S th estimate of the mean elements. 'rh_ starting approxin:ation _
for the mean elements is the set of initially known o_culating elements.

5.9.2 Transformation from Brouwer Mean Elements to Osculatin_ Keplerian
:. Elements i

; The oscul_tingelements includethesecular,longperiod,and shortperiod terms

-i _he osculatingelements are expressed by !

= ___ _- a"3 (5-153)- + 3(1 - _2) _ cos(2g' , 2f'
\r'3 r,3 _

c = e" + ,le + 2e" Y2 -1 + 3d 2) - _,"\r '3 /
t

- -rl"4 cos(2g' + 2f')] (5-154)
\r'3 J

),2( I :.2) :3n. . e" 1,, - - ,, cos(2_' _ f') + cos(2g' + 3f')]
./
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where Xl.' (S) '" the i th mean classical Keplerian element obtained from the 
1 

sth iteration 

Yi '" the initial osculating Keplerian element 

Y ~ ~) '" the osculating Keplerian element estimated from the s t h iter ation 

Double primes denote mean elements at the time of conversion. This algorithm 
ignores correlations between the elements of the order I)f 10-3 , which are of no 
practical importance in the calculations. 

A convergence criteria limits the number of iterations. The sum of the squares 
of the differences between estimated and initially given osculating elements are 
compared with a prescribed tolerance; when the sum is less than the tolerance, 
the calculation is terminated. 

The following method for obtaining mean elements at a given tfm~\ is more exa(~t 
than those methods which propagate mean elements from seme previous time 
using Equations (5--144) and (5-145), since the propagated mean elements deteri
orate with time due to perturbations not included in the solution. The value8 of 
the mean elements on the sth iteration are used to compute estimates of the 
osculating elerllents. As sho~ by Equation (5-152), the difference between the 
s t h estimated value and the ini~.ial known value of tt.e =,sculating elements is used 
to correct the sth estimate of the: mean elements. 'r-h.3 starting approximation 
for the mean elements is the set of initially known o.:l.:ulating elements. 

5.9.2 Transformation from Brouwer Mean Elements to Osculating Keplerian 
Elements 

Thp asc;.;.l"Ling elements include the secular, long period, and short period terms, 
'1 he osculating elements are expressed by 

+ 3(1 - "~'I (::: -ryo,) eos(2.' + 2£' I] (5-154) 

- !~(1 - ~.2) :.3{''' cos(2g' f') + (>" cos(2g' + 3f')j} 
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' + (3 - 5U2) [3 sin(2g' + 2f') + 3e" sin(2g' + f') ' <

+ e" sin(2g' + 3f')]) , :

i

1 '"i6(f' _' e" f'h=h" +clh-_y 2, - _ + sin )- 3sin(2g' + 2f') /:
i- 4

_: (5-158) _
- 3e" sin(2g ° + f')- e sit_(2g' + 3f')] ' :

}:
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i = i" + Sit ! y'G(1 - G2)1/2 [3 cos(2g' + 2f') 
122 

+ 3e" cos(2g' + £') + e" cos(2g' + 3f')J 

+ _T/2 + - ~ _ sin(2g' + 3£") 
(
a

ll2 
a" 1) ~} 

r'2 r' 3 

2 
g = g" + b g + ~ ) I 1 ... 2 

,+e 

+ (a ll2 
rT + a" +~) s in(2g' + 3f' )]1 

r,2 r' 3 J 

+ (3 - 5['2) [3 s in(2g' + 2f') + 3,," s in(2g' + f') 

+ f'" sin(2g' + 3f')]) 

h =h" + 0 h -~Y'2i'[6(f' - t/ + e" sin f') - 3 sin(2g' + 2f') 
1 2 

- 3('" sin(2g' + t") -l' Sill(2g1 + 3f')] 
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where the Ion K period effects (denoted by b1) affect, the element_ e, i, _, g, and J
h, but not the seDima_or axis a, and are given by the following equations

_le = T_e"q2[1 - _I_ 2 _ 40d4(1 - 502) -1]

, e"_?2 [1 - 3d 2 - 8d)4(1 - Sd2) -1] cos 2g"
12 y2

/a 5 Ts r72 i"+ __ _2 sin i" + w -'7 sin (4 + 3e":) (5-159)
:- y_ 64 3,2

f;, x [1 - 902 - 24c)4(1 - 5d2)-J]) sin g"

" I

_ ' 3 g" i'; _ 35 )/5, e,,2._ 2 sin i" [1 - 5(_2 - 16_)4(1 - 5"72) -1] sin /
' _ 384 Y2 ->"

¢,

e"ble \ I
8_ i = - (5-160)

_72tan i"

bl _ = ?'2r73[1 - 1162 _ 40r74(1 - 5_2) -1]
. 1

, }, ".. 5 Y4 r?a_1 362 8_4(1 5,_)-1_ sin 2g" ;' ':
12 '_2 ','

I • f

i 1 Y3 -,13sin i" 5 zs _3 9e.2 (5-161) '_,
- sin i"(4 + )

' " 54 _ ' e"+ 4 _2 e /_,

x [1- 98 a- 24e._1(1-SOa)'_]} cos g"
J

t

35 Ys i"!l - 1504(1 5U2)"1] cos+ r?3e" s i n 5i/_ - - 3g"
384 .'

?2
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where the long period effects (denoted by Dl ) affect. the elements e, i, -f" g, and 
h, but not the 8e.&:lim.a~or axis a, and are given by the following equations 

1 3 2 •. " 5 5 2 "4 3 I~ 
{

,' y' 
+ - - r; SIn 1 + - - .,., sin i ( + e'·) 

4 y~ 64 y~ 

e"a e 1 
81 i = - ----

7]2 tan i" 

5 1'4 3 - -2 4 )2 -11 . II I } - - _ Tj (1 _ 3(;' - 8e; (1 - 5" ) J sin 2g 
12 I 

,f 2 

r -v' 3 ' , 

~ 1 /3 -'I . . " 5 is 1')3 + , - - __ sin 1 - _ . __ sin i"(4 + ge" 2) 
4 'I.' e" 64 .,1 e" 

'. 12 i .. 

35 
+ 384 

.... ' 
. 5 3" 

- 71 (' 
')1' , 
. 2 

(5-159) 

(5-160) 

(5-161) 
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{_,4_(:in_,,o._-__5_;+ -.-7_' _T_,'i'/+aY2

b,g = {- \16 y; [(2 + eO') - 11 (~ T 3e") g' - 40(2 + Se"') 11'(\ - Se')-: 

) 

- 8(2 + SeH2 ) 174(1_ S82fl - 80('112,86 (1_ 582f2]]Sin 2g" 

{
1 '1'~ (Sini" e"f!'!) S Y~ +------+-
4 '1'; e" sin i" 64 y; 

~(2 . . " "Ll2) ~ x 1\7) s~/n 1 __ ~-[7-. (4 + 3e" 2) + e" sin i"(26 + ge" 2) 
L: {; sin I", 

y' 
+ 35 ....: (,,,L2 sin i" r.s t 221,2(1 _ SU2 )-1 

S76 'V' , 2 
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i ''

i_" ........ " I - I I I" _ _li l I III mlllll I '_

: I
t

2

_I h ={_ 1 3/;e.26_ [| j + 80_2(I _ 5(_2)-i + 20054(1 _ 5_2)-2]
i

:,: +_'__-'_/5'4 e":d [3 + la_)2(l. - 502) -I + 406_4(I - 5(92) "2 s in 2g"
(

') + 73 e'_ 5 TS e"_ (4 +_,-_e":_
, _ i 64 ! i It

L4 72 sin i" 3/2 sin

3'

× [1 - 982 - 240"_tl - 5J2) "1]

: 15 3/5 e"6 sin i"(4 . ._e "2) [3 + 1682(1 5_2) "1 (5-163)-'7 -
':; + _ 3/2

: 2' 1), , i + 4004(1 - 5¢_2)°2 COS g" !

I ,,,t

"_ {, 35 3/s e"aO -.,/ "__'- + ' 1152 7,2 sin i" [1- 5_ 2- 16_;4(1- 5_2) "1]

i 35 3's e"3_ sin i" IS + 3202(1 5_':) -I
I

.: 576 3/2

,: _ ; t
,_' + 80U4(1 - 582) -2 COS 3g" _ ' ".i

"i

In these formulas, f' and r' are computed fro rt

E' - e" s in g' = _' (5-!64) ';

and '.,"

tan_ f' = _ tan 1E' ;:'\1 -
(5-_65)

a" I + e" cos f'

r' 1 - e "2
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01 h :: {- ~ y;eN2 e [) 1 + 80612 (1 - se2r 1 + 200e4 (1 _ se2f2] 

+ ~ Y~ e"':CI[3 + !"f)2(1 _ se2r1 + 40e\1 - Se2 r2]L sin 2g" 
12 y; 'J 
1'1 y; e't3 5 y~ e"e (4 3 II:;:) 

+~_ _ + _ _ + e 
L4 y; sini" 64 y; sin i" 

In these formulas, f' and r' are computed fre. n 

and 

[' -e" sinE' ::JI,' 

1 '2 

tall~f':: (1 + PN) 
2 1 _ ('" 

1 E' tan 2' 

nil Itp"cosf' 

r ' 1 112 - (' 
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> f ,

or _ :
£_ r I

_in f' = (1 - e"2) '''2 sin E'• a" ":! i
£(: 5

r i f # tt"cos = cos E' - (5-166) ,;
a" ': i

r t

=1- e" cosE' '
a II

""

For the calculation of the coordinates at *.ny time, the complete values of e and ,_
should be used for the solution nf Kepler's equaticn _

E- e sine = _ (5-167) '

The conversion of osculating Keplerian elements to rectangular cemponents of
position and velocity is discussed in Section 3.3.8.

5.10 BROUWER--LYDDANE 2'HEORY

Lyddane modified Brouwer's formulation to obtain algorithms applicable for zero _,
eccentricity ard zero inclination (Reference 18). He reformulated the orbital

equations in terms o" Pozncar_ variables rather than the Delaunay variables ,_
used by Brouwer. The solution, carried out by the Von Zcipel method, accounts
for up to fifth order zonal harmonica of thp, gravitational potential. The results

are written here in classical elements rather than Pozncare element_:. _ ;J

• The Brouwer formulas are suitable tot the, computation of the ciassical elements

with one exception. In computing short period terms Lyddane uses _'' and g" _ ;

,_: instead of _' a,d g'. Brouwer remarked that eithe," is satisfactory, lint in the :

i Lyddane theory, _' and g' may be ill defined. In r,ddition, the relationships ,

(1 'e") [(a"/r') 3- ?;-3] = _)-6 ,,,. r, + e" (1 + _)'_ (5.-168a)

_' -_3cos f" + 3o" cos 2 f" + e "2 cos 3 f"] .: .-"

and

_i _ [,,,, f,, _ ,, f,, ,,,,2 f"] (5-16Sb) : ;.

(1 e") [(a".'r") 3 r?'4; = b-6 + 3 cos , _,e cos 2 + cos 3

_2_ are used Ln Lhe computation of _e to avoid roundoff probiems, where ,. is (le- <

fined following Ecuation (5-1t8). ,_ -
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or 
r' . "' _ <; li1 r 
a" 

r' 
_ cos f' = cos E' - e" 
a" 

r' 
- = 1 - e" cos E' 
a" 

(5-166) 

For the calculation of the coordinates at ~ny time, the cOrr!p1ete values of e and 
,{ should be used for the solution of l(clpler' s equaticn 

E-esinE={, (5-167) 

The conversion of osculating Keplerian elements to rectangular c:>mponents of 
position and velocity is di"cussed in Section J.3.8. 

5.10 BROUWER··LYDDANE THEORY 

Lyddane modified Brouwer's formulation to obtain al"{orithms applicable for zer.) 
eccentricity al"d zero inclination (Ref~rence 18). He i'eformulater:l the orbital 
equations in terms 0" POInCare variables rather thau the Delaunay variables 
used hy Brouwer. The solution, carried out by the Von Z,)ipel method, accounts 
for up to fifth order zonal harmonic~ of thp. gravitatior.aJ potential. The result.s 
art! written here in classical elements rather than Poincare element.~;. 

Tht: Brouwer formulas are suitable 101' thP. computation of the ciassical elements 
~ith one exception. In computing short period terms, Lyddane uses 1," and g" 
mstead of'" add g'. Brou'~er remarked that €'ithe,' is satisfactory, but in the 
Lyddane theory. {' and g' may be ill defined. In r.ddition, the relation"hips 

(5'-168a) 

and 

are used in the computation of ;, e to F.void roundoff problems, where ' is de
fined following Ecuation (5-1 tH). 
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5.10.1 Transformation from Osculating Orbital Elements to Brouwer Mean 1 ,,
Elements

The mean motions due to secular terms are calculated by Equations (5-1,14)

through (5-148)of Section 5.9. ,;

I

5.10.2 Transformation from Brouwer Mean Elements to Osculating Keplerian
Elements

The osculatingelements are computed using Equations (5-169_through (5-185) :
(Reference 19). Since the periodic ternm are somewhat lengthy,_ number oi

substitutions have been made m these equations. :

Semimajor Axis

{r e< oJ a" (3d 2 1) "_ + + cos cos/ a= I+> 2 - -- +
L _6 _

Y

"_ (5-169)

Eccentmcity

e = (e" + _e) 2 + (e"_,_) 2 (5-170)

where

(_C = _I_--_{_';(I - ,:2)[3 cos(2_# L f#) + cos(3f- _ 2_')] _,

, :

1 c"2) (2g" f") f" f" , :,- 3)_ __(l - cos + 2 (3e" cos 2 + 3cos

(5-171)

1 (3c: 2 - 1) :"
+e "2 cos 3 f" + e") -'X2 7?6

,, e" 3e" f" f" e" 2 ' "
x ,_ + _+ cos 2 + 3 cos + cos a f :

--
{ 01_I(_hI"r _ --
i

]9760]7203-260

5.10.1 Transformation from Osculating Orbital Elements to Brouwer Mean 
Elements 

The mean motions due to secular terms are cdC'ulated by Equations (5-1·14) 
thruugh (5-148) of Section 5.9. 

5.10.2 Transformation from B:rouwer Mem Elements to Osculating Keplerian 
Elements 

The osculating elements are computed using Equations (5-169; through (5-1b5) 
(Reference 19). Since the periodic terms are somewhat lengthy. a number oi 
substitutions have been ml'lce In these equations. 

Semimajor Axis 

e Tj + __ + cos f (3 + 3e cos f 
(: 

II eli II II " 

1 + 77 

EccentrlCity 

woere 

- 3!~ ~ (1- :..,2) cos (2g" + 2 f") (3e" cos2 f" + 3 cos f" 
Tj6 

[ 

/I 

X e" TJ + _f.'_ + 3£''' cos 2 f" + 3 cos f" + e" 2 ccs J 

1 + 1/ 
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--- +-- + sin(3f" + 2g"
\r"] r"

BlS sin 3g (5-173) _ !and _le = B13 cos 2g" + B14 sin g" - "

Inclination

(Is (_') ]2[ 1 (_--_*) _]J (5-174)
i ; 2 s in -1 in _h + b i cos + s in/i"'_']2

_ where

i _ . i t
: 1 :_ ' i"_e" i .:

"_-" _i = _c., 2 sin , cos(3f" + 2g")

t
L

+ 3[e" cos(2g" + f") + cos(2 f" + 2g")]} (5-175) _

, L

A2°(I _ cos2g" +B8 sing" B9 sin3g" ) _ .:_
"k "r?2 '

and g.

s i n _h - I 2g" g" 3g" '

li ' 10 ':in + BII cos 4 BI2 cos - ,_

2 cos(i"/2)"
, £

1 ,, " s _n - + ) (5-17_) 0 ,
_' 2:26i sin i [6(e" f,, /,, f,, t

- 3(sin(2g" + 2f") + e" sin(2g" + f"))

_. - e" s in(af" + 2g")] : '

t

, /

]9760]7203--26]

e" ,,-{; = B4 sin 2g" - B5 Cos g" + B6 cos 3g" 

sin fIt 

+ 3(1 - B') [f V (-::)' - :: + 1) sin(2g" + fO) 

and 

Inclination 

where 

and 

i 0 2 s in-
1 

{[s in m ,h J' + [~ bi cos (~") +S in(';)]' r 
oi = ~ch~ sin i"{e" cos(3f" + 2g") 

+ 3[e" cos(2g" + fIt) + cos(2 fIt + 2g")]} 

A 
- --.:!: (ll, cos 2 F:" + B8 sin g" - 89 sin 3 g" ) 

TJ2 

, (ill) 1 1, '"" II " sIn " "h -:: lBl 0 ~. 1 n "g t Bll COS g -t B12 cos 3 ~ 
- 2 cos(i" /2) 

-k )'~t) sin itt [6(c" s.n fit - ,~" + fIt) 

- 3(sin(2g" + 2f") + (''' sin(2g" + f")) 

- <," s i n(3f" + 2 g")J} 
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1 .... ,_ s ................. m................ m _-.,.

Mean Anomaly_, Argument of Perigee g. and Right Ascension of Ascendin_ _ }
Node h -

t _

; _= tan-I L(e,, s4_7-_e._&sin_. J if e;_O (5-177) -

4;= 0 if e= 0 (5-178)

in i 5hccs +sin _.i cos + s.n_]j if i _'0 (5-179) ih=t an-l<..... i

L ( 11 ./os h" _i cos + sin sin/i"
v'/a \_] 5hsinh ;

h 0 if i = 0 (5-180)

_._'

I_ = (._ + g + h) - _ - h (5_181)

/.
' where -

+ g + h = (4' �g'+ h') + £1 \_ + 1/e,,w_ (1 - _2) in(af" + 2g")

/'+ 2 sin f"(3_') 2 - 1) + +

1

3 , f,, f,, £,, ',
+ _ _,.2[(5'P - 2_; - 1) (e" sin + - )J + (3 + ... - 502 )

I '[e" (2f" 2g", 2f" . g" f"))]x 72 .sin + _ + 3(sin(2g" . ) c'" sin(2 +

i mlil
5-54 " '
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Mean Anomaly-t, Argument of Perigee g. and Right Ascension of Ascendint; 
Node h -

) _ t _1{eu ?>-t cos {" + (elf + lie) sin -tu
} ,,_ an 

(e" + oe) cos -t" - e"S-t sin (," 
if e;iO (5-177) 

-t=O (5-178) 

is in(r) Sh Cc.s h" + sin hlll
r
! Ci cos (~) + S in(!..),ll 

h -1 2 2 2 \2 j 'f" 0 (5-179) = tan r lit. 1 -/I" -II· ell 

cosh" r_Si cos (1,\ + s~n(~)l- Sin(~)ShSinh· L2 2J \""'..J \2 

h = 0 if i = 0 (5-180) 

g = cr + g + h) - .-:, - h (5-181) 

where 

( 1 (all'::: ") ( (")2 ")\ x -3 + ._) TJ" + ~ + sin (2 gil + f ") 1 - !.. TJ2 _ ~ 
r" r" II" ) r r I 

t 2 sin f"(30' - 1) (1 + (::y ~' + ::m (5-182) 

x {~)~[(''' sin(:'f" + 211.") t 3(sin(2g" ~ 2f") , e" Sin(2gll tf ll »]} 
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where 

( f' , • + g h ') (J" " h") B 3" B . ')" B " ::: • + g + + 3 COS g + 1 SIn -g + 2 COS g (5-183) 

The quantity tJ is defined following Eq'lation (5-148). The following abbrevia
tions are introduced to shorten the written formulas. 

5 )'~ 2 
A~ = - - Tj (1 - A') 
~ 12' 2 

/2 

y' 
A4 - ~ (1 - 3A') _ , 2 

) 2 

1 " .J 
A6 =-4 -, , 

, 2 

A - e"2..c6A,2 
14 - v 1 

A17 ::: e" sin i' 

(5-184) 

A
19 

::: (1 + u) sin i /I 
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[ I

r l

imnl .1" II •'_ .... I I I F- i 3 __ i _ ""

; i

"'
As =/-2-se"2(1,,- 5d2- 16FaA;) A22: A2otan kT] - ]

'_ )'2

A9 _2 sin i" = ,= A23 _.2AI 7

1

AlO = 2 + e "2 A2 i = A11 + 2 (5-184)
cont'd

' All = .ae "2 + 2 A2s = 16Als + 40A16 + 3

1 A
> AI2 = Alld? 2 A:6 =_" 21(11 + 200A16 +80AIs)

and

i Bl =,_(A I -A2)- (A1o - 400A_4 - 40A13 - IIA12) + _A21(II + 200A16

J
' f

J [- ol ", 5 _4 ./
< + 80AIs ,'2 + _'_ 80A14 - 8A1a - 3A12 + 2A2sA21+ AI -7,

/2

B2 = A6Al_(2 + _- e"2) + AsA18_2 - 3-2A4A17 ' + A2° tan

x As+A +_-_ A4A17: +26] + _-_2A3A20A2ssin i"(l-i_) (5-185)

x

3 5 /5
- e" i"(:' - 180Ats + 5 + 32Als _B3 576 -, sin 1) A_1 .

"2

1152 e" I tan + [2e "2 + 3(1 7ja)] sin i'

a

D4 rtc" != (Al - A 2) _

.i

5-56 " "
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and 

~=TJ2sini" 

A - 2 "2 10 - + e 

B - A A (2 " 2 ) 5 A A 2 1 5 A A ,3 A ~ ( i ") 2 - 6 1R + TJ - e + - 5 181) - - 4 17 r + 20 l an -64 32' 2 

(5-184) 
cont'd 

r5 A AJ S A A '9 112 261 15 A A A sin i"(l _ (I) (5-185) 
x L64 S + 6 + 64 4 17 l e + I + 32 3 20 25 
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B6 = 3"--8-435773A8s in i"

, 5 )'4 (I- 7_ 2 '

B7 = 772A17A1 "y_(1- 1582) 12 _2"

B8 = _64 A3_32(1- 9_2 - 24_:r4A'l)+ _2A_'

. _. B9 _ 35384 r72As -i

j

_':. , (5-185) _, ...1 _" ',

Blo = s in i" _Y4 _ , eonttd ,

- • ) I

BII:A2_ A_+A6+_A3A 2s

Bt2 = _ 80A;6 + 32/_1s + 5) 35 Ys., e" sin 2 i" A2 + 115"-"-2 _i
72

B13 = e"(A 1 -A 2)

5 i"
B14 = _A5_2 sin + A7

:35 .... :
=-_ Asr1" sin tBls 384 i '

., I_

" _ 5-57 '_:,

,21
2'

] 9760] 7203-265

35 
B6 = 384 TJ3 As sin i" 

35 2 
Bi! = - TJ AS 

384 

(5-185) 
cont'd 

~80A.6 + 32/\5 + 5) (~ Y~ e" s i n 2 i" A21) + ~ AsA20J L • 576 y; 1152 

B 35 A 'l • ." 

1 5 = 3 84 Il 'T)" S 1 n 1 
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: The mean value of the eccentric anomaly E" is obtained tteratively from Kepler's
equation ]

; E" - e" s in E" :: _" (5-186)

g

The mean true anomaly i", the mean radial distance r", and the ratio of the ,
:. mean semimajor axis and the mean radial distance are given by

F 7.it f, I"I- e"2 si._nE". (5-187)

: = tan-1 L cos E"- e" J ,

_ r" = a"(l - e" cos E") (5-188)

:' _ a" 1 (5-189)if __--
: " r" (1 -. e" cos E") _"

i- _ 7t
,'. 5.11 INTERMEDIATE ORBIT

The Intermediate Orbit methods used in GTDS (Reference 20) are semianalytic

methods which combine analytic theory and numerical ihtegration. The solution
to a simpler uroblem obtained by means of an anal_¢ic theory is used as a ref- !
erence solution, and the difference in the time rate of change between the true
solution and this reference solution is integrated to obtain the true soiution.

Either a Variation of Parameters or an Encke approach can be used in the '
development of these metilods. Using Intermediate Orbit me.hods causes the

quantities on ,*he right hand side of the resulting differential equations to vary :,

slowly and smoothly with time, m_king them more amenable to numerical inte- _
'-. grationmethods (i.e.,more numericallystable)thanthe originaldifferential ",

equations.

Intermediate Orbit methods can be developed for any analytical theory; however,

only two intermediate orbits have been considered for implementation in GTDS.
The first is an orbit in which short period effects due to J2 have been eliminated

using the Brouwer theory. The second is the orbit resulting from J2 perturba-
tions using the complete Brouwer theory for secular, long period, and short
period perturbations. The equations of motion are better conditioned for ntunerical
integration when they are smoothed by removal of fast varying short period J2 ::
effects or when made slower und smoother varying by using the complete
Brouwer theory to remove secular, long period, and short period perturbations
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Tne mean value of the eccentric anomaly E" is obtamed lteratively from Kepler's 
equation 

E" - e" sin E":: {" (5-186) 

The mean true anomaly i". the mean radial distance r". and the ratio of the 
mean semimajor axis and the mean radial distance are given by 

[

11 112' Elf] f"=tan- 1 v -e SIn 
COS E" - elf 

(5-187) 

r" = a" (1 - e" l~OS E") 
(5-188) 

a" 1 (5-189) --------
r" (1 •. e" cos E") 

5.11 INTERMEDIATE ORBIT 

The Intermediate Orbit methods used in GTDS (Reference 20) are semianalytic 
methods which combine analytic theory and numerh!al illtegration. The solution 
to a simpler problem obtained by means of an analytic theory is used as a ref
erence solution, and the difference in the time rate of change between the true 
solution and this reference solution is integrated 10 obtain the true soiution. 
Either a Variation of Parameters or an Encke approach can be used in the 
development of these methods. Using Intermediate Orbit mLilOdn causes the 
quantities on the right hand side of the resulting differential equations to vary 
slowly and smoothly with time, m'lking them more amenable to numerical inte
gration methods (i.e., more numerically stahle) than the original differential 
equations. 

Intermediate Orbit methods can be developed for an~' analytical theory; however, 
o!1iy two intermediate orbits have been considered for implementation in GTDS. 
The first is an orbit in which short period effects due to J 2 have been eliminated 
using the Brouwer theory. The second is the orbit resulting from J 2 perturba
tlons using the complete Brouwer theory for secular, long period, and short 
period perturbations. The equations of motion are better conditioned for nwnerioE'J 
iJltegration when they are smoothed by removal of fast varring short period J 2 

effects or when made slower ~nd smoother varying by using the complete 
Brouwe.r theory to remove secular, long period, and short period perturbations 
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iJ_ arising from J2 • Orbits of small eccentricity ana low inclination can be con- _
sidered by an option, which uses the same intermediary orbita as above, but
which are expressed in Poincar_ rather than Delaunay variables.

Efficient numerical integration is achieved through minimizing local error by an
appropriate choice of a uniformizatlon constant n. This involves selection of a
new independent variable s, related te the thne t by

,m

ds = v_ dt
r n

_e

where r is the magnitude of the satellite's position vector, _ is the gravitatio,'al 1

r _

constant, and n is known as the uniformization constant. To a cor, siderable extent, _ _
the optimum choice of n depends on the dominant perturbation _Zfecting the orbit _
under consideration. Thus, for the Intermediate Orbit method based on short
period J2 perturbations, the main portion of J2 must be modeled, leading to a i_

,_

choice of n = 2; however, the Intermediate Orbit method using the full Brouwer

theory may still require a selection of n = 2 (or higher for an elliptic orbit) if _ /,,
the orbit is significantly perturbed by drag. If the intermediary orbit is out of
the high drag region, then the choice of n depends upon the ellipticity of the orbit

_: :r and whether or not third body perturbation,,_ are significant. :_

[ GTDS's full Brouwer intermediary is an osculating Keplerian orbit which changes

,:_' due to J2 , the coefficient of the second zonal harmonic. Perturbations due to ,l2 f.
!: dominate those caused by other gravitational harmonics, third bodies, drag, etc.,
_ for many close earth satellites. While other secular perturbations eventually

_ cause the intermediary and true orbit to become widely separated, the GTDS !

_ intermediary stays near the true orbit much longer than the two-body solution. J

5.12 VINTI THEORY _ _

Vinti theory is a General Perturbation Method. In an approach similar to that of
Brouwer, the dependent variable set is chosen such that the Hamilton-Jacobi ! '_;

equations of motion are separable. Of the eleven coordinate systems which l_

have this property, oblate spheroidal coordinates _, _,, 5 are chosen since they :_ _
are most appropriate for describing motion about an oblate earth. These _ : _

coordinates are related to the rectangular position coordinates as follows _

x + iy = (£2 + c 2) (1 -T;2) _'2 e,¢ (5-190)

z = £_1 (5-191) _;! _
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arising from J 2 • Orbits of small eccentricity and low indination can be con
sidered by an optio ... which uses the same intermediary or.bits as above, but 
which are expressed in Poincare rather than iJelaunay variables. 

Efficient numerical integration is achieved through minimizidg local errol' by an 
appropriate choice of a uniformization constant n. This involves selection of a 
new independent variable s, related to the time t by 

where r is the magnitude of the satellite's position vector, J.1. is the gr-avitatio1"al 
constant, and n is known as the uniformization constant. To a considerable extent, 
the optimum choice of n depends on the dominant perturbation Ufecting the orbit 
under consideration. Thus, for the Intermediate Orbit method based on short 
period J 2 perturbations, the main portion of J2 must be modeled, leading to a 
choice of n = 2; however, the Intermediate Orbit method using the full Brouwer 
theory may still require a selection of n = 2 (or higher for an elliptic orbit) if 
the orbit is signifir.antly perturbed by drag. If the inter:nediary orbit is out of 
the high drag region, then the choice of n depends upon the ellipticity of the orbit 
and whether or not third body perturbatiollfl are significant. 

GTDS's full Brouwer intermediary is an osculating Keplerian orbit which changes 
due to J2 ' the coefficient of the second zonal harmonic. Perturbations due to ,J2 
dominate those caused by other graVitational harmonics, third bodies, drag, etc., 
for many close earth satellites. While other secular perturbations eventually 
cause the intermediary and true orbit to become widely separated, the GTDS 
intermediary stays near the true orbit much longer than the two-body solution. 

5.12 VINTI THEORY 

Vinti theory is a General Perturbation Method. In an approach similar to that of 
Brouwer, the dependent variable set is chosen such that the Hamilton-Jacobi 
equations of motion are separable. Of the eleven coordinate systems which 
have this property, oblate spheroidal coordinates jJ, T) , t7, are chosen since they 
are most appropriate for describing, motion about an oblate earth. These 
coordinates are related tv the rectangular position coordinates as follows 

(5-190) 

Z = ;''1'/ 
(5-191 ) 
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:, where ,/

;3)=ReJ 2 1-]J2J

I

and where _ is the mean equatorial radius of the earth and J2 and J3 are co-

} efficients of the zonal harmonics (see Section 4.3.i). On the other hand, Brouwer
theory was developed in terms of elliptic coordinates, which ._ce most ,_pproprial;e
for describing motion about a point mass body.

"., Vinti obtains an analytic solution for perturbed satellite motion arising from a '

: potential of the form
Y

_, V = - /.z(p 2 + C27"}2) -1 (p + ,_b) (5-193)

where

'._ 1 j_ (5-194) "

The above potential leads to a fit of the gravitational potential

v --- K - (5-19,_)
- r /.._j L\ r / Jn sin:
:_ n=2 ;

exactly for the second zonal harmonic and about two-thirds of the fourth zonal

',% ¢,
; . The resulting solution gives the periodic terms correctly to order J _ and the
: secular terms for the intermediate orbit to arbitrarily high order. The math-
' ematical details are given in Reference 21. This method/or treating the effects

of J3 eliminates singularities for small eccentricities and for small or 18( degree
: inclinations which usually occur in perturbation theories. Thus, Vinti theory .,

is particularly appropriate for computation of polar and circular equatorial ;_
orbits. '

I
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{ /
5

} : :
} i,

" ",--'W .... ._ _,_,,_ ......... :----:--:- ---_._w.,_,,w._,--_-._ ,_, , ,,,
,, o.,- , -

1976017203-268

where 

(5-192) 

p.nd where Re is the mean equatorial r&.dius of the earth and J2 and J3 are co
efficients of the zonal harmonics (see Section 4.3.1). On the other hand, Brouwer 
theory was developed in terms of elliptic coordinates, which:' ,oe most appropriate 
for describing motion about a point mass body 0 

Vinti obtains an analyt~c solution for perturbed satellite motion arising from a 
potential of the form 

(5-193) 

",here 

(5-194) 

The above potential leads to a fit of the gravitational potential 

v -= _ fL ~ _ ~ ~(Re)n J P (s in::')] 
r L-J l r n n 

n"'2 

(5-195) 

exactly for tha second zonal harmonic and about two-thirds of the fourth zonal 
harmonic. 

The resulting solution gives the periodic terms correctly to order J ~ and the 
secular terms for the intermediate orbit to arbitrarily hibh order. The math
ematical details are given in Reference 21. This method for treating the effects 
of J 3 eliminates Singularities for small eccentricities and for small or 18( degree 
inclinations which usually occur in perturbation theories. Thus, Vinti theory 
is particularly appropriate for computation of polar and circular equatorial 
orbits. 
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CHAPTEF_ 6 "

'¢ NUMERICAL INTEGRATION OF THE EQUATIONS OFi

MOTION AND VARIATIONAL EQUATIONS

This chapter describes the St_rmer-Cowell/Adams inte3"ration processes i :__

; available in GTDS for the integration of the Cowell and various VOP (Chapter 5) _ ,_

formulations of the equations of motion. These processes were selected on the _
" basis of several efficiency studies (References 1, 2) comparing various classes _ L

of popular integration alborithms as applied to special perturbation techniques.
This chapter also describes a single step integration method, the Runge-Kutta _
method, which is used in GTDS in connection with sequential estimation a_d as _

, a starter for certain multi-step processes, i

.,_ Multi-step methods of the type described below were found to minimiz_ the I !
_ number of derivative evaluations required to produce a given accuracy at the 4

end of the requested interval of integration. Since, in general, the major cost
in computing an orbit is the evaluation of the .....

,.omplexforcefunction(Chapter4), ,_,_
this implies multi-step algorithms are most efficient. ._

! " Within the class of multiste_ methods one must still select optiors such as:

(1) Type of formulation - i.e., methods may be used which solve second

order systems directly (Class II), such as StSrmer*s method, or which normalize ! •
_: the second order system into a higher dimensional first order system ard use a

_:_ Class I formula such as Adams-Bashtorth: _

(2) Type of algorithm - several algorithms may be selected within the ,
_, _uitistep predictor-corrector schemes ranging from PE (prediction only) to

_" P(EC)", PE(CE) _ and PECE*, where P = predict, E = evaluate derivative, t '
" ! C ---correct, and E* = pseudo-evaluate, i.e., correct or re-correct only part of _ _

the t,_t:tl derivative; _ _.'i;

(3) Order of process - various order formulas may be selected to use in _

the algorithm, recognizing the fact that higher order formulas are more _ _
_' accurate but less stable; i

i o ;'-(4) Stepsize control - since the orbit dynamics may undergo large variations
duriug a revolution, e.g., high eccentricity orbits, an algorithm must be selected _

to aliow stepsize variations. This can be done either by numerical monitoring i _
" , of local errors or by analytic transformations of the independent variable _Time- _i

regularisation), i '

; 1+ 6-1
i

•

i

1976017203-271

N76-?42ge 

CHAPTER 6 

NUMERICAL INTEGRATION OF THE EQUATIONS OF 
MOTION AND VARIATIONAL EQUATIONS 

This chapter describes the stormer-Cowell! Adams !nte~ation processes 
available in Gl'DS for t2e integration of the Cowell and various VOP (Chapter 5) 
formulations of tlJ.e equations of motion. These processes were selected on the 
basis of several efficiency studies (References 1, 2) comparinr, vat'ious classes 
of popular integration alf;,orithms as applied to special perturbation techniques. 
This chapter also describes a sing'le step integration method, the RUllge-Kutta 
method, which is used in GTDS in connection with sequential estimation a!1d as 
a starter for certain mUlti-step processes. 

Multi-step methods of the type desl ribed below were found to minimiz~ the 
number of derivative evaluations required to produce a given accuracy at the 
end of the requested interval of integration. Since, in general, the major cost 
in computing an orbit is the evaluation of the complex force function (Chapter 4), 
this implies multj·-step algorit!"lms are most efficient. 

Within the class of multiste.,> methods one must still select optior.s such as: 

(1) Type of formulation - i.e. I metholis may be u30d which solve second 
order systems directly (Class II), such as Stormer's method, or which normalize 
the stlcond order systen. into a higher dimensional first order system ard USE' a 
Class I formula such as Adams-Bashf0rth: 

(2) Type of algorithm - sev~ral algorithms may be selected within the 
T.~itistep predictor-corrector schemes ranging from pr. (prediction only) to 
p(EC)n, PE(CE)n and PECE*, where P = predict, E = evaluate derivative, 
C = correct, an.d r:~' = pseudo-evaluate, Le., correct or re-correct only part of 
the tohl derivative; 

(3) Order of process - various order formulas may be selected to use in 
the algorithm, recognizing the fact that higher order formulas are more 
accurate but less stable; 

(4) Stepsize ('ontrol - since the orbit dynamics may undergo large variations 
during a ~'evolution, e.g., high eccentricity orbits, an algorithm must be selected 
to aliow stepsize variations. This can be done either by numerical monitor'ing 
of local errors or by analytic transformations of the independent variable (Time
regu lar i lation). 
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_'- Most oftheabove mentioned degrees offreedom are availableinthe GTDS Is
., system and have been studiedforvariousproblems _References3, 4). Some

general conclusions reached are:

r (1) For formulationsinw.wing second-orderequations,Class IIintegrators
_ shouldbe used to solvethesystem directly,utilizinga Class I method toobtain i
_ first oerivatives if required;

•_ (2) The highest possible order formula, s_.bject only to the constraints of

numericals,;ability,shouldbe used; _,

; 13) Pseudo-ev_,_ate algorithms significantly increase the stability regions _
ofpredictor-correctorschemes at littleor no costinefficiency; '

_ (4) Efficiency dictates the use of stepsize control for moderate and high
eccentricity orbits; analytic steps_ze control is more efficient and reliable tb._u _.

"_i numerical stepsize control; _

_ (5) The choiceofthe "_.est"integratorand Independentvariableishighly _'
_ dependenton thechoiceofformulationofthe equa*ionbof motion. Formvlatim, _ .. ,_

characteristics such as regularity, or "smoothness" of depend_nt variables, • /

_ and dynamic stability influence parameters such as numerical stability r_,gions, \ ,
_ choice of order, etc. As new formulations are introduced, ca_'eful "match_g"

of approprivte numerical schemes is required.

In the following _ections the multi-step methods based on Newtonts interpolating _.
polynomial are derived and the basic algorithms for iteration, starting, int_ r-

polation and stepsize control are discussed.

\ 6.1 ADAMS-COWELL ORDINATE SECOND SUM FORi_'TLAS -

The formulas fortheintegrationand interp_,la_ionofth¢ equatiensof motion a_,d _'

the variational equations are basically of tb. Newtonian type derivable from '

standard difference operator techniques. For the integration, these formulas
definethcwell-knownpredictor-correctorAdams method ,_orfirst-orderequa-

' tions and CoweU method for second-order systems. Formulas of the same
classmay be used to perform the requiredinterpcationsto determine values . ._

! _ not_ven intheintegrationprocesv and to form thestartingsetofsolutionvalues "

requiredby thepredictor-correcto_process.

Inthe_ollowiz_discussion,an outlineof thederivationsof _herequired_o_-mulas

isgiven. In addition,a detaileddescriptionof*.hecomputationalalgorithms
i necessarytoperform theintegrationsis presented.
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Most of the above mentioned degreeg of freedom are available in the GTDS 
system and have been studied for various problems (References 3, 4). Some 
general (;onclusions reached are: 

(1) For formlllations invdving second-order equations, Class II integrators 
sh~t! ld be used to solve the system directly, utilizing a Class I method to obtain 
first aerivatives if required: 

(2) Th~ highest possible order formula, s-;..bject only to the rrlOstr:lints of 
numerical stability, should be used: 

(3) Psel1do-evlOl.J. .. ate algorithms significantly increase the stability regions 
of predictor-corrector schemes at little or no cost in efficiency; 

(4) Efficiency c1ictates the use of stepsize control for moderate and 'ligh 
eccentricity orbits: analytic stepsize (.ontrol is more efficient ",nd reliable than 
numerical stepsize control: 

(5) The choice of the "test" integrator and ir..dependent variable is highlY 
dependent on the choice of formulation of the equationb of moticn. Formulatioh 
characteristics such as regularity, or "smoothness" of dependtmt variables, 
and dynamic stability influence paramettll's such as numerical stability rl1gions, 
choice of order, etc. As new formula.tions are introduced, ca. ... ·eful "matching" 
of appropriate numerical scheme~ is reql'.ired. 

In the following ~ections tht. multi -step methods based on Newton's interpolating 
polynomial are derived and the basic algorithms for iteration, stLLrGing, int" r
polation and stepsiz~ control are discussed. 

6.1 ADAMS-COWELL ORDINATE SEC():~D SUM FORiv!:~TLAS 

The formulas for the integration and interpc,lation of thE. eq1latiC'ns of motio'l al,d 
the variational equations are basically of tl', Newtonian type derivable from 
standard difference operator techniques. For the integration, these formulas 
define the weH-known predictor-corrector Adams m~thod f"r first-order equa
tions and Cowell method for second-order systems. Formulas of the same 
class may be used to perform the required interp<,ationEl to determine valueEi 
not given in the integration procesE' and to form th(. starting set of solution values 
required by the predictor-·correctvl process. 

In the Iollowing discussion, an outline of the derivations of the required ~oi"mulas 
is given. In addition, a detailed description of ~~le ccmputational algorithms 
necessary to perform the integrations is presented. 
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Let s and h denctc realnumbers, and consider the linear operators V, E s, D,
and I. which arc defined as

..,-

."_ fBockward"1
V f (t) = f (t) - f (t - h) _Difference? (6-1) '

• , LOperator J

.k Es ' (t) : f (t + s h) IShifting l t6-2)
_.OperctorJ

IDifferen:iat;on l
d f (t) = ; (t) LOperator J (6-31Dt (t) : ___

.(. Ilde.nt,ly l
._- I f (t) = f (t). JOperatorJ (6-4)

• _-

_'_-" Two well-knowr "_lations among these operators are /
0, J"

F._= (i - _-_ (6-5) '

an_.

h D= - In (I - V) (6-6)

Utilizing Equat!:ns (6-5) and (6-6), the following operator idel_tities _an be
derived

[= 1E_ =h (I-V) -_ . D
In (I - V)j

?

ES = h2 [[ (I-U)-s 21D21ni I __')] ''

Expanding the brackeged ter _s in ,__Yseries yields _-

! ,)
I

E" - h -1 + )i+1 (S, V D (6-7)
i=o

RF2RO_3UCIBILITYOF
/ ORIGr _' _.L PAGI_ _ POOR :
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Let sand h denote real numbers, and consider the linear operators \i, E s, n, 
and I. which arc defined as 

V f (t) = f (t) - f (t - h) 

ES 
f (t) = f (t + s h) 

{

Bockward1 Difference 
cperator 

{
Shifting 1.. 
OperC'torJ 

D . d f j- {Differen~iat;on} 
t (t) = -- (t) = . (t) 0 d t perator 

I f (t) = f (t). {Id~nt.ry } 
Operator 

Two well-knowr '''lations among these operators are 

an .... 
hD=-ln(l-V) 

Utilizing E'1uati .... ns (6-5) and (6-6), the following operator identities -::an be 
derived 

EX;landing the brac~~eted tel" 1S in fI ,\i series yields 

(6-1) 

(6-2) 

(6-3\ 

(6-4) 

(6-5) 

(G··6 ) 

(6-7) 
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- 1.
E" : h2 -+"+ (s - 1) V-1 + 9,i+ 2 (s) V D2 (6-8)

i--0

s#

where the T'i (s) and 7i(s) are given by the following recursive formulas in s
(see Reference 5)

te

3'o (s) = 7o (s) -- 70 (s) = 1 (6-9)

i

y[ (s) =E T; (0) 7i_ i (s) (6-10)
i=O

, , st tt

: i )i (s) : _'j (0) +Yi-j (s) i = O, 1, 2, . • • k (6-11)
• ' jffiO

t

"x-i t
,/

where _

7i (s) - s + i - 1 i "i 7i_ 1 (s) (6-12) i

and
i-I

' E 1 ,7i (0) = - i - j + 1 7j (0) (6-13)
J=O

i _ _
% _ *' :

It _ I I
. 7i (0)= 7, (0)3'i_ j (0) (6-14)

j=)

Applying the o:erators (6-7) and (6--8) to the funetiovs _(t) and x(t), respectively,
and truncating after k terms, gives

i+ z ,
k ,

I +

t + s h) -- h -1 "_ (t) , ")'i+1(s) VL _ (t (6-15)
i-'O

", 6-4
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(6-8) 

where they~ (5) and 1"; (s) are given by the following recursive formulas in 5 
(see Reference 5) 

Yo (5) = y~ (5) :: '1~ (s) :: 1 (6-9) 

i 

y~ (5) = )' y~ (0) y. . (5) 
1 ~) ,-) 

(6-10) 

i=O 

1 

'Y~' (5) = )' 1''' (0) Y (5) 
, ~) 1-) 

i = 0, 1, 2, ... k (6-11 ) 

i=O 

where 

5 + i - 1 
'1 i (s) :: --i - '1 i - 1 (5) (6-12) 

and 
j- , 

Y{(O)=_)I, ~ 1'1)~(0) 
L 1 - J + 

(6-13) 

)=0 

i 

'1~' (0) :: )' '1 I (0) '1 ~ (0) , L) 1-) 
(6-14) 

i=1 

Applying the o.'erators (6-7) and (6--8) to the functiol'3 *(t) and x(t), respectively, 
and truncating after k terms, gives 

X t + , h) .C h t-' x 
k 

(t) + L 1':+1 (s) V' X 
i=O 

(6-15) 

6-4 



1: 1

L

x (t + s h) = h2 -2 _ (t) + (s- 1) V-] x (t) + 7i'+2 (s) V ix (t (6-16)
" ':5 L ,.-o

',-_ The quantities V-1 x'(t) and V-2 Bt) are called the first and second sums of _(t),

-: " ar.d satisfy the relationships

t :- V-t _ (t) - _/-l _ (t - h) = _ (t) (6-17)

: and !

V-2 _ (t'j - V-2 _ (t -h) = V-t _ (t). (6-18)

; By varying the value for s, Equations (6-15) and (6-16) define the Adams-Cnwell

:_ predictor-corrector formulas, as well as the Ne_¢oniaI_ interpolation and starting

formulas (Reference 6). For example, the Adams-Co, eli predictor formulas

are obtained by setting s = 1 and x= x(t.) = x(t o + nh) to gi,,e ;"

J

_¢.+1 = h -t _n */ .) _Yi àV i x (6-19) ;
i=0 ,.

and [- k !
Xn+l = h 2 -2 Xn + 7i+2" (1) V i x (6-20)

The preceding equati3ns may be expressed in ordinate form as

" F" k t;on �-h iSn + _,__ofi, _.. (6-21) _'_, ;'

_I an _ ?

x +t = h_ _ a _ (6-22) :•

t-'0

' •
i 6-5
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x (t + s h) 0 h' t-, x It) + (s - 1) V-I X (t; + $.7~ y:" (s) Vi X (t)] (6-16) 

The quantities \,7-1 X(t) and \,7-2 x(t) are called the first and second sums of x(t), 
ar.d satisfy the relationships 

\,7-1 X (t) - V-I X ,t - h) = x (t) (6-17) 

and 
\,7- 2 x (t) - \,7- 2 x (t - h) = V-I X (t). (6-18) 

By varying the value for s, Equations (6-15) and (6-16) define the Adams-Cnwell 
predictor-corrector formulas, as well as the Newtonian interpolation and starting 
formulas (Reference 6). For example, the Adams-Co\\eli predictor formulas 
are obtained by setti.ng s = 1 and xn = x(t n) = x(to + 00) to gi,re 

(6-19) 

and 

xJ 
J 

(6-20) 

TIle preceding equati()ns may be expressed in ordinate form as 

(6-21) 

(G-22) 

6-5 
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J

whe re

IS. = V-I _ (6-23)

ZIS = V-2 _ (6-24) ,n n

I tl

The coefficients ai and fli can be expressed as functions of Yi and _i from the
recursive relations given by Equations (6-9)through (6-14), e. g.,

k

m-- i

). i =0, 1, 2, ...k

1

The Adams.-Cowell corrector formulas are obtained from Equations (6-15) and .. ,"
(6-16) by setting s = 0 and t = t,+ 1 yielding

! t

X. 4�=h , , _* _ (6-26)i n+l-

i-.O

and
i

._ : h 2 _'"--I .. '
\ Xn+ I ISn . a_ xr,,1 - (6--27) :

if0

'$ • II I

where ct*i and/5_ are computed analogously to a_ and "i but using /_ (0) and /_ (0).
The fli and/3 i are called the summed ordinate Adams-Moulton predictor-corrector

coefficients and _i and a_ the. corresponding StSrmer-Cowell coeffic'ents.

These coefficients are tabulated in rational form in Reference 5 for formulas of

order 4 through 15.

REPRODUCIBILITYOF TIU."
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where 

(6-23) 

(6-24) 

The coefficients a.. and p. can be expressed as functions of l and y': from the 
1 1 1 1 

recursive relations given by Equations (6-9) through (6-14), e. g., 

(6-25) 

i = 0, 1, 2, ... k 

The Adams··Cowell corrector formulas are obtained from Equations (6-15) and 
(6-16) by setting s = 0 and t = tnt 1 yielding 

(6-26) 

and 

(6--27) 

where a~ and p~ are computed analogously to a.. and ". but using l (0) and "/ (0). 
1 1 I ' 1 1 1 

The j3. and;3~ are called the summed ordinate Adams-Moulton predictor-corrector 
I I 

coefficients and Cl.. and a~ th~ corresponding Stormer-Cowell coefficients. 
I I 

These coefficients are tabulated in rational form in Reference 5 (or formulas uf 
order 4 through 15. 
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6.2 PR_'DICT-PSEUDO CORRECT ALGORITHM FOR EQUATIONS OF MOTION

• ) The concept of pseudo-evaluation is introduced as a device which helps stabilize -,
the numerical integrationat littleor no cost in computation. Itis recognized .,.

i that

(1) In a predic'.or-corrector scheme, the numerical stability region is ,
_, proportional to the number of derivative evaluations within a given step :

,. (Reference 7);

(2) For sy_,tems of the form _

--f(x)+ eg(x_,

' where • is a small parameter, the stability region is mainly influenced by the

f(x) term. : '

_.: The idea, th,_n, is to introduce into a predictor-corrector algorithm designed m ,,
/S -_

solve the above system a "pseudo-evaluation", i.e., a partial evaluation _ _, where _ .

: ; f(x) is recomputed using the latest corrected value of x, and glx) is re-u ._d bazod ,

• _ on a previous value of x. For example, assume that the equations to be __tegrated \
have the form _;

Ra

?

where the first term represents the primary attracting body acting on the satel-

lite. Assuming the accelerations and sams _ •._

R (tn_i), IS,, V-I "-" (@-29)= Rn' I ISn = V-2Rn' i = 0, 1, 2, • • • k

are kamwn, then the iteralive algorithm to advance to time t is
n+l

(A) Predict: Using Equations (6-21) and (6.-22), predict values (denoted by i':
superscript p)

R(P) (t +,)= [X(nP+_ Y(P) Z (p)] (6-30) ' ;' n+|' n+l e
r

I)((p))(P) 7-(P)] (6-31) _R(_) (tn+I) = L n+l' r,+l'-n+l

: 6-7
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6.2 PREDICT-PSEUDO CORRECT ALGORITHM FOR EQUATIONS OF MOTION 

The concept of pseudo-evaluation is introduced as a devke which :lelps stabilize 
the numerical integration at little or no cost in computation. It is recognized 
that 

(1) In a predic~or-corrector scheme, the numeric:?l stability region is 
proportional to the number of derivative evaluations within a given step 
(Reference 7); 

(2) For sy~ terns of the form 

X=f(X)+Eg(X~ 

where E is a small parameter, the stability re6ion is mainly influenced by the 
f(x) term. 

The idea, th'~n, is to introduce into a predictor-corrector algorithm designed to 

solve the above system a "pseudo-evaluation", i.e., a partial evaluation ( X, where 
f(x) is recomputed using the latest corrected value of x, and g(x) is re-v ~d b~sprl 

on a previous value of x. For example, assume that the equR.tions to be _c~tegrated 
have the form 

!.! -~R - -.!.. 
R = _ + P (t, R. R) «(~-28) 

R3 

where the first term represents the primary attracting body acting on the satel
lite. Assuming the accelerations and Solms 

i = 0, 1. 2, ... k «()"29) 

are v.llown, then the itel.'ative algorithm to advance to time t is 
n+ I 

(A) Predict: USi,lg Equations (6-21) and (6··22). predict values (denoied by 
superscript p) 

R(P) (t .J = [X(P) yep) Z(P)] 
, ·n+l ntl' ntl' n+l (G-30) 

-R(P)(t) IX'(P) y'(p) Z'(P)] 
ntl = ~ nfl' r.tl' ntl (6-31) 

6-7 



(B) Evaluate: Using Equation (6-28), evaluate

L

_(p)
_(p) --(p).

"" -- _ Kn+l + P (tn+l, Kn �1,Xn+l) (6-32) -

: R (tn+1)--.Rip)3
'_ n+ I j

i
(C) Correct" Using Equations (6-26) and (6-27), obtalp, improved values,

. (de_ by the superscrip_c)_(c) and _(c!. -fl+ I n+ _t

. (D) Test: Compare the magnitudeofthevector [R (p) (tn+,)-R (c) (tn+t)]
• against a prescribed tolerance. If this quantity is sufficiently small,
: --(p) --(p) . ?

proceed to Step (T£);otherwise, replace the values R and R with
R(¢) and _(c) and repeatSteps(B),(C),and (D).

(E) Pseudo Correct: Compute the acceleration s

" "" _ n+1 _(P) _(P).
R (tn+l) - + P (t_ Œ�¤n+1) (e-33) •

", _, n(c)3 /
K-
n+ I _/

1where the P term is obtained from Step B.

(F) Update Sums: Compute theupdatedsums

'Sn+, = ISn�_ (t +l) (6-34) _ ;.

llSn+ I : IIs_ + ISn+I _6-35) ...t

\ The computational cycle (A) -- (F) may then be repe_tcd with n = n : I.

In n-bc_ty or earth-moon trajectory computations, the equations of motion will
frequentlybe independentofthevelocityterm R, i.e.,theaccelerationis ofthe

: form _
r

R =_ 4 P (t, R) ((;-36) _ ,,
R 3 _

I

m__.

6-8 .
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(B) Evaluate: Usinp: Equation (6-28), evaluate 

•• - Ii- R(p) 

R (t ) = n+1 + P (tn+1' R(P) R(P») 
n+1 R (p)3 n+1' n+1 

n+ 1 

(6-32) 

(C) Correct· Using Equations (6-26) and (6-?'l), obtaiv improved values, 
(denoted by the superscript c) f (C)1 and R (c )1' 

n+ n+ 

(D) Test: Compare the magnitude of the -,ector (ji(p) (t 1) - a(c) (t 1)] __ n+ n+ 
against a prescri.hed tolerance. If this quantity is sufficiently sm&.ll, 
proceed tq Step (E); otherwise, replace the values R(p) and R(P) with 
Ii(c) and Ii(c) and repeat Steps (B), (C), and (D). 

(E) Ps(;:udo Corre\!t: Compute the acceleration 

.• -li-R(c) .() 
R (t ) '" n+1 + P (tn+1' R~:l)' Rn~1) 

n+1 R(c)3 

n+ 1 

(6-3:J) 

where the P term is obtained from Step B. 

(F) Update Sums: Compute the updated sums 

(6-34) 

;6-35) 

The computational cycle (A) ..... (F) may then be repe3.t(d with n ::; n , 1 
, 1.. 

In n-body or earth-moon trajectory computat.ton'3, the equations of motion will . 
frequently be independent of the velocity term R, i. e., the acceleration is of the 
form 

~ - /L R -H = __ tP(t, R) 
R3 

(G-36) 

6-8 
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i _ For trajectory segments possessing this characteristic, the preceding compu-tational cycle may be simplified. Particularly in Step (A), the predicted R(P)

! _ need not be computed, and in Step (C), the provisional.corrected values R(¢) arenot req)dred. After the test in Step (D) is satisfied, _(c ) may be obtained by
0

: one application of the corrector formula in Equation (6-26).
t

_. For the case of the integration of VOP type formulations, the concept of pseudo- :

evaluation should be extended to include the major perturbation beyond the
_ central force, in particular, J2 for near-earth satellites (Reference 7). Thib

_. _ is due to the fact chat in these formulations the stability is governed by the
. principal perturbations; the central force contribution is analytically integrated ' s
_ and hence does not influence numerical stability.

F,

_. 6.3 CORRECTOR-ONLkr COWELL INTEGRATION FOR LINEAR EYSTEMS

l From the Adams-Co_ell corrector equations
_'_ Yn+l = h2 (6-37) _"=.: + ./
._ i=O

and

_ F" k ]

_, ).+I= h ZS_+ /3i_;.+I-i "
, t-'O

' : closed form equations can be derived when _.he equatf, on being integrated is t -_,,
linear. Such a linear equation is

_; : a(t) y . b(t) y + f tt) (6-39) , :

(

where a(t), b(t) and flt) are know:'., time var_ng funct.lons.

Equations (6-37) and (6-38j can be wr%ten as

' fYn_l : ha S + a 0 Yn+_ + a Yn+l (O-40) ;'
1 _ t ,)"

_ 6-9 '
i
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For trajectory segments possessing this characteristic, thf! preceding compu
tational cycle may be Simplified. Particularly in Step (A), the predicted R(P) 

need not be computed, and in Siep (C), the provisional.corrected values R(C) are 
not reqnired. After the test in Step (D) is satisfied, f{(C) may be obtained by 
one ap?licaLion of the corrector formula in Equation (6-26). 

For the case of the integration of VOP type formulations, the concept of pseudo
evaluation should be extended to include the major perturbation beyond the 
central force, in particular, J 2 for near-earth satellites (Reference 7). Thit. 
is due to the fact that 1n these formulations the stability is governed by the 
principal perturbations; the central force contribution is analytically integrated 
and hence does not influence numerical stability. 

6.3 CORRECTOR-ONLi COWELL INTEGRATION FOR LINEAR SYSTEMS 

From the Adams-Cowell corrector equations 

[ 
k J _ 2 II ... 

Yn +1 - h Sn + L a. i Y n+l-i 

i=O 

(6-37) 

and 

(6-38) 

closed form equations can be derived when i.he equaUon being integrated is 
linear. Such a linear equation is 

Y = a (t) Y ... b (t) Y + f ~ t) (6-39) 

where a(t), b(t) and f(t~ are Mow;, t.ime va~ying functions. 

Equations (6-37) and (6-38) can be wri.~ten as 

[I~ ••. 
::Sn + 0. 0 Y n+ I 

... 
k J' + ~; a. i Y n+l-i 

(6-40) 
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" 1 '! i J" ,,, r I A III....... J 1 i " 1- m _ i.P

.f

] '

; 2"

,': k !.

"* (6-4!) '.:, Yn h ." + MO Yn Yn+l- i

i=l

• ,.\

L

• By expa, lding the derivative _;+ 1 ' we obtain

7

'_ Yn+1 = h2 ISn + _0 a,+1 Yn+1 + aO b.+l Y_+, + ao fn+l + a*i Y_+I- (6-42)
i=l

, = " * 2" " (6-43)}" _ _tn+ 1 h + /_0 fln+l Yn+l + /_0 bn+l _'n+l + ' 0 fn+l + fii Yn+l-

i=l

"_ .: /s /

Defining the known quantities I

x : h 2 ISn + _o fn+x + a* Yn+l- (6-44)n

• i=I

:.. Y --h S n + + fl*_ (6-45)" "',, ,1 /5o f,,+l i n+l i

"_ i=l A _

and the matrix _,

, bn+l2 a L-- | aoL - --

H - (6-46)

h :* h "* l)n+"'0 an+l :'0 I
ii

¢

• I

6-1o RWROIIUCV3I_,.Iq%'0_'_" -'
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[ 
k J . - I '* .. • .. 

Yn+l - h S., + /5 0 Y n +1 +L.Pi Y n+ 1- i 

t'" 1 

(6-41) 

By expatlding the derivative y n+ 1 ' we obtain 

(6-42) 

(6-43) 

Defining the lmown quantities 

f"" + t a; y""J 
i"'l j (6-44) 

v = h Irs 
n L n 

k l , 
f·" 

,,+1 + I Pi Yn+l-i 
.. :.-.I J i "1 

(6-45)' 

and the matrix 

h2 ao _~L-_h2 a~_l...1) l.:!:+-4------

H· (6-46) 

• 
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I

j;then Equations (6-42) and (6-43) may be written as
/

Y,,.i I n* Fxn ._

= H (6-47) ? ,

L i '::?°+,JB+ -_ ,:!
The solution to Equation (6-47) is ;

;

Yn_.1 Xn :_

•: )

t = [I - Hi-( (6-48) ; f

I 2° �:
L,

It should be noted that the inverse in the preceding equation will always exist if , ,, _

; _. h is sufficiently small. The inverse depends only on the coefficients a and b, , .j :;

) and need be computed only once when solving equations o2 the form of Eqaation ;
• {

• (6-39)withdifferentnonhomogeneous terms f(t). :_

6.4 CORRECTOR-ONLY ALGORITHM FOR VARIATIONAL EQUATIONS

[ ':
In the Cowell formulation, the position and velocity p_rttal derivatives of the ,

':_ satellite motion with respect to any parameter appearing in the acceleration _ !_

_! model in Equation (6-28) or state (dynamic parameters) may be obtained by the ;_ ,:
_: numerical integration of a system of equations of the form _ "_

"I ! Y = A (t) Y _ B (_ Y _ C (t) (6-49) _ (

• from initial conditions at t o given by *

_: o) 0) {
_{ Y(to) = 0P }it°) = 0_ (6-50) ; :
t.;'

e •

i? where }

; ,_ 6-_1

j ,/?,
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then Equqtions {6-42) and (6-43) may be written as 

,6-47) 

yn+,l r Xnl 
= H +1 I 

yo"J lvoJ 
The solution to Equation (6-47) is 

YO'l 
x n 

:1 - H]-l (6-48) 

Yn+d v n 

It should be noted that the inverse in the preceding equation will always exist if 
h is sufficiently small. The inverse depends only on the coefficients a and b, 
8l'.d need be computed only once when solving equations o{ the form of Equation 
(6-39) with different nonhomogeneous terms f(t). 

6.4 CORRECTOR-ONLY ALGORITHM FOR VARIATIONAL EQUATIONS 

In the Cowell formulation, the position and velocity partial derivatives of the 
satellite motion with respect to any parameter appearing in the acceleration 
model in Equation (6-28) or state (dynamic parameters) may be obtainea by the 
numerical integration of a system of equat1one, of the form 

.. . 
Y = A (t) Y t B (\) Y ~ C (t) 

from initial conru tions at to given by 

where 

oR(t
o

) 

y(to) = ail 

. 
afi(t ) 

• 0 

Y (to) = -a~il--

(6-49) 

(6-50) 



I ] J-

I

[,, . x •

I7

_- J | • / _I -I I I I ........ I..... ,

r ]8_(t) (6-51) ";
ACt)=L-E-J3x3

B(t) = (6-52) :,
" L OR J3x3

: C(t) =[ 8_(t) ] { 3x 4:matrix of }: L a_ J acceleration partial derivatives (6-53)

' -' 1 i 3x 7matrix °f } (6-54) 7": .( Y(t) L 8P .] [position partial derivatives .'

• "x. s# _"
/ <.

,f, )i

and
;.

Ial_(t) ] [3x _ matrix of } (6-55) , ()(t)= [velocitypartial derivatives 7

-i
The vector _ contains the parameters in the acceleration model to be estimated.

The components of the matrices A, B, and C were developed in Chapter 4. ..,
t

'. Optionally, the components of _"correspond to the spacecraft's positio_ and

velocity at epoch and can _c expressed in mean of 1950.0 Cartesian coordinates,
true of date Cartesian coordinates, classical Keplertan orbital element,Q, ,..,:,
spherical coordinates, or DODS variables. Tho initial conditions for the varia-

tional equations,Equation(6-49),aredependent upon thecoordinatesystems 'i
selected. The partial derivatives of R and R with respect to Keplerian elements
and spherical coordinates can be obtained from Sections 3.3.8 and 3.3.4, re- *

spectively.Sincethefirstsixelements _f_ are thestatevector,thefirstsix

columns of C are zero. Most modelparameters such as thrust, drag, harmonic , .
coefficients, etc. enter into Pit, R, r_) of Equation (6-28) linearly, so that the
computation of C(t) may be simplified by retaining many of the quantities used

in the computation of l_(t). :_

• 6-12 _.
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A(t) = r aR(t) ] 
l aR .3x3 

(6-51) 

B(t) ==[aR.ttl 1 
aR J

3X3 

(6-52) 

{ 
3 x ,{ matrix of } 
acceleration partial derivatives (6-53) 

y(t) = [a~¥) ] 
{

1X t matrix of } 
position partial derivatives (6-54) 

and 

{ 
3 x { matrix of } 
velocity partial derivatives 

(6-55) 

The vector p contains the parameters in the acceleration model to be estimated. 

The components of the matrices A. B. and C were developed in Chaptet:' 4. 

Optionally, the components of p corre!:lpond to the spacecraft's positi()!'. and 
velocity at epoch and can >:e; expressed in mean of 1950,0 Cartesian coordinates I 
true of date Cartesia.a coordmates, claSSical Keplerian orbital elp.mfmt~, 
spherical coordinates, or DODS variables. The: initial conditions for the varia
tional equations, Equation (6-49), are depend.ent upon the coordinate systems 
selected. The partial derivatives of Rand i{ with respect to Keplerian elemc.1ts 
and spherical coordinates ~an be obtained from Sections 3.3.8 and 3.3.4, re
spect;vely. Since the first six elements 3fp are the state vector, the first six 
columns of Care zel'O. Most model, parameters such as thrust, drag, harmonic 
coefficients, etc. enter into P(t, R, R) of Equation (0-28) linearly. so that the 
computation of C(t) may be simplified by retaining many of the quantities used 

I.L 

in the computation of R(t), 

6-12 -



•
:: The integration of system Equation (6-49) may be performed by the utilization. 'i

of the corrector-only fornmla Equation (6-48) as follows° Assuming that the ,_
satellite position and veloci_.y, R(t and R(t 1)' the matrices _ i = 0, 1, ,,

-_ 2, . . . k and summation matrices ip and iIp_ (3 x _) are known, then the _ ,
algorithm to advance Y to _:tme t.+ 1 ia: !

: _ (A) Compute the matrices A(t,+ 1) , B(t,.l) , and Clt, à�ˆ�whichdepend only !_' on t +i,R.+I' and R-.+I.
i'

(B) Compute the 6 x 6 matrix [I - H]-1 where ;_

* * f,
: ,., _'h2 a o A+I b:; a o .,,,. 1

_ H = 16-56)

' _"l -h_° An+' hfl° Bn+I'-
ao andflo are the correctorcoefficientso[ Equations(6-26)and (6-27),
and h is the stepsize. /t,_,

', _i (C) Form the 3 x _ matrices, X and V

C 2": _ Xn = h2 IPn+ ai Yn+l-i + a; Cn+ (6-57) ;

"'" _i V = h Pn + fl_ + fl:Cn+, (6-58) "_',, i=l

_ (D) Compute the required position and velocity partial derh, atives, Y \�.t.ill: and _',; �8�,b _thematrix equation i
_'_ _,

_. :- [I-HI L -] (6-59)

/

!_, 6-13 ,
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The integration of system Eq'Jation (6-49) may be performed by the utilization. 
of the corrector-only formula Equation (6-48) as follows. A~suming that the 
satellite position and velo<li1.y, R(t 1) and R(t 1)' the matrices Y 1 i = 0, 1. 

n+ n+ n+ 
2, ..• k and summation matrices Ip and IIp (3 x,{) are known, then the 

n n 
algorithm to advance Y to time t n + 1 ie.: 

(A) Compute the matricfls A(tntl ). B(t n + 1). and C(t n+ 1 ), ','!hich depend only 

c.n tn+1' Rn+1' and Rn+1' 

(B) Compute the 6 x 6 matrix r:r - HJ -1 where. 

H= (6-56) 

hj3~ A., + 1 

a~ auf p~ are the corrs('tor coefficients o,~ Equatior.~ (6-26) and (6-27). 
and h is the stepsize. 

(C) Form the 3 x,£ matrices. X and V 
!1 r· 

(6-57) 

(6-58) 

(D) Compute th .. ~ requirerl position and vel.ocity partial derivatives, Yn +1 

and Yn+ 1 ' b { the matrix equation 

{6-59) 
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{E) Update acceleration and sums by
i_o ,4

:" :_'n+1-- "_++.Y-+£ ""_+l Y.+t + C-+I (6-60) _.
t+ +,

:+ Ipn+l = Ip., + Yn++.. (6-61) + ,
+.+ ++

:+ . +Ip,+t = IIpn + I_n �¤�(6-62)++

completing the cycle. After computing Rn+ 2 and Rn+ 2' Steps (A) -- (E) may be
repeated with n = n + 1. )

At points along the traectory where the equations of motion are velocity-free, :_
i. e., of the form of Equation (6-36), the matrix B in Ec ,ation (6-49) is zero, so :

)_ that it is necessary to solve a system of the form

;¢ = A (t) g + C (t) (6-63) _,:+

, As in the case of the equations of motion, the c,_mputational algorithm can then :"
be eimplified. I_ particular, in Step (A) only Lhe matrices A and C are required, I ++i_

' • and in Step B, t! becomes the 3 x 3 matrix _._

H : h2 ao*An+1 (6-64) ?

The required partial derivatives are then given by '_:.

i

Y.+I = [I - H]-' X. (6-65) , _,

- h A+,v..,+,+v° (6-t+6> ,',,
+, ,,',

++ ¢ +,

The order and stepsize us(d in the integration of the variational equations may

differ from that used in the integration of the equations of motion without any : "
significant difficulty. +' /' _

1
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(E) Update accE'leration and sums by 

(6-60~ 

Ip +1 = Ip + Y ~ 1 n n n (6-61) 

IIp = IIp + Ip 
n+1 n n+1 (6-62) 

completing the cycle. After computing R 2 and R 2' E:eps (A) -(E) may be 
n+ n+ 

repeated with n = n + 1. 

At points along the tra~ ectory where the equations of motion are velocity-free, 
i. e., of the form of Equation (5-36), the matrix B in Ec 'ation (6-49) is zero, so 
that it is ne~essary to solve a system of the form 

Y = A (t) Y + C (t) (6-63) 

As in the case of the equations of motion, the c,')mputational algorithm can then 
he eimplified. In particular, in Step (A) only the matrices A a.i1d C are required, 
and in Step B, II becomes the 3 x 3 matrix 

'J - 1.2 • A 11·-:1 ao n+l (6-64) 

The required partial derivatives are then given by 

(6-65) 

(6-66j 

The order and stepsize US( d in the integration of the variational equations may 
differ from that used in the integration of the equations of motion without any 
Significant diffi~ulty. 
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6.5 MAPPING OF POSITION PARTIAL DERIVATIVE_

It is well known from the theory of linear differential equations that +he solution _ i

of the h-dimensional linear system ;, _:

.2" t ?

x = D (t) E (6-67) :

)
satisfying the initial condition

t

(to) -- Xo (6-68) _ :_"

t

is given by

(t) = _ (t, to) _0 (6-69) _

¢

where ¢ is a fundamental m_J_rix solution of Equation (6-67), i. e., an n × n
matrix satisfying

': i _ = D (t) q) (6-.70) - _' _)

:l; with init:al con(litton

$(t o, to) = I (6-71) _

_: In our context, _(t, t o) is called the state transition matrix. The properties of
¢ can be used to enhance the computational algorithm for position and velocity i

_ partial derivatives as follows: during the integration of a trajectory, s colunm ,;

"- _i of Clt) corresponding to a dynamic parameter m=y become zero. For example,
when leaving the sphere of influence of the earth, the acceleration partial _

._ derivative with respect to a gcopotential coefficient of the earth will become
_ effectively _ero, If we denote this time by T, then the poMtion partial derivative '

,_-' with respect to _his parameter which we denote by x (t), will satisfy an equation
;_ '_ j ,,,
_; of the form of Equation 16-67) for t > T where

j
,_:, 0 i

_ D (t) =

'," 6-15
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6.5 MAPPING OF POSITION PARTIAL DERIVATIVES 

It is well known from the theory of linear differential equations thp-,t the solution 
of the I.-dimensional linear system 

x = D (t) x (6-67) 

satisfying the initial condition 

(6-68) 

is given by 

(6-69) 

where <II is a fundamental mRirix solution C'f Equation (6-67), 1. e., an n x 71 

matrix satisfying 

1l=D(t)ct> (0··70) 

with init:al con<1iti,..>n 

(6-71) 

In our context, tIl(t, to) is called the state transition matr~x. The properties of 
til can be used to enhance the computational algorithm for pvsition and velocity 
partial derivatives as follows: durir..g the integration of a trajectory, ~ column 
of C(t) corresponrli'1g to a dynamic parameter m~y become zero. For example, 
when leaving the sphere of lnfluence of the earth, the accelera.t!on partial 
derivative with respect to a gcopotential coefficient (If the earth will become 
effectively ~ero. If we denote this time by T, then the pObition partial derivath,e 
with respect to '~!lis parameter, which we denote by x J (t), will satisfy an equation 
of the form I)f Equation (6-67) ~or t > T where 

r 0 I 

D (t) ::: I 
~ (t) 

(G-'72) 

B (t) (,,, 6 
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j
i with an initialcondition_(T). Let 4)(t,T) be the statetransitionmatrix satisfy-

!ng q_(T,T) ; I. Then, the required position partial derivative may be -btained

for anyt > Tby

i

i

; _ (t) = 4) (t, T) _(T) (6-73)

• The overall state transition matrix 4) (t, to) for t > T may be computed L_,

4)(t, to) = 4)(t, T) # (T, to) (6-74) :

where the £1ements of the matrix 4) (% to) are

d

' _ 4)(T, to) : (6-75) _ ./" ',

_, ? R (T) ? R (T)

a _

whlch are contained in the Y and ) m_.triceswhen t = "f(assuming _ cm:tains

the state)• The computational strategy for the computa),ion of the par_i_, deriva-

tive of -"' ;" to ase the method of Section 6 3 up to t = 'r• At that point the matrix

4) (T, to) is stored, 4) (T, T) is initialized, and for any t > T, _(t) is computed _-

using Equatiop. (6-73), and 4)(t, to)is computed using Equation (6-74). A similar

process may be used for mul*,iple event times ,i- , T2 ..... T at w'_ich various ,
columns of C(t) become zero. Assuming T 1 < _2 < < T, <' t, Equatioa (6-741

-. becomes

4) (t, t 0) = 4) (t, Tr) 4) (r r, T._I ) . . . ¢b(T 1, to) (6-761 .:,

6.6 THE RUNGE-KUTTA _NTEGRATION METHOD :

The Runge-Kutta metkod is a numerical integratio_ technique by means of which

the value of the dependent var!abh, at some future tame can 'be calcalated from a

,_ weighted sum_atior. 2ormula, similar to a numeric a! quadratv"e. TW._ method

is equivalent _o a Taylor series solution of the equations .ff motion, ) to .t certain

power el the integrationst,pslTe in the independent variable, _aylor s.:ies

' 6-_b
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with an initial condition x(T). Let <Il(t, T) be the state transition matrix satisfy
ing Ii> (T, T; = I. Then, the requirec position partial derivative may be -.btain6d 
for any t > T by 

X (t) = 4> (t, T) xCT) 

The overall state transition matrix <Il (t, to) for t > T may be computed L,;' 

whCl'e the dements of the matrix til (T, t ) are o 

. 

oK (T) 

()'Ro 

;4 R (T) 

oR o 

(6-73) 

(&-74) 

(6-75) 

Whl~h are containe(~ in the Y and Y mp.triceR when t = T (assuming p cOl~t?ins 
the state). The computationa! strategy for th~ computal-ion of the pard::ll d€!'iva
tivE: uf ~~:) i~ to use the method of Section 6 3 up to t = T. At that point thC'! matrix 
<Il (T, to) is stored, <Il (T, T) is initialized, 8ud for any t > T, x(t) is comput\~1 
using Equation (6-73), and <Il (t, to) is COli1puted u'3ing Equation (6-74). A similar 
process may be used for mul~iple event times 'T' , T

2
, •••• To' at w~ich various 

columns of C(t) become zero. Assuming Tl S .12 .::; ••• S Tr s; t, I.:quatiod (6-74) 
becomes 

(6-76) 

6.6 :'HE RUNGE-KUTTA ~NTEGRATIUN ME'l'HOD 

The Runge-Kutta method iq a numerica! intl;:lgratio'tl technique by means of which 
the value of the de}Jender.t var~abk at somu future time can be cdcJ.lated from a 
weight.ed sumnatior: :ormllla, E,:;milar to n numeri( a~ quadratu"e. T"l!o method 
is equivp.lent to 11 Tay lor series soiution of the equations Jf 1I10t;on I ) to .1 certain 
power ot the integr&ti('n st. psi7e in thE" independent variable. 1c.ylor S" ies 
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'i i 4_ solutions require differentiation of a given function a number.of times, followed

: I by evaluation of these derivatives at the point of interest. However, the Runge-

Kutta method bypasses these differentiations by evaluating the derivative on the

: right hand side of the first order equation at a number of sel_cted points. For

. example, in the equations of motion the acceleration per unit; mass is evaluated
a number of times at each integration step in order to prooeed to the next inte-

:+ gration step. i

Runge-Kutta methcds have the advantage that the inter-¢al of integration can be
_: readily changed. The formulas are single step; thus., they do not require any

past history of valaes, l" common with other special perturbation methods,
: the Runge-Kutta method is extremely flexible• The acceleration models in

GTDS may be changed without affecting the implementation of the Runge-Kutta
formulation.

|
i The Runge-Kuttaformulauseo in GTDS is an ,Mghthorder formulationrequiring "

/ ten function evaluations (Reference 8). The expression f(x, y) is the derivative on
: therighthand sideofthefirstorder differentialequationdx/dy = f(x,y)which is

: to be evaluated. This fuL_tion arises from the equations of motion or from the +
, : variational equations. The Shanks e_ghth order Runge-Kutta algorithm is com-

puted inthefollowingmanner. The followingformulasapplytoa singlecompo-

+
' nent of the vector of the quantities beinf_ integrated where the vector of depeDdent ]',

_ ._o_+ variables is denoted by R and the independent variable is denoted by y. j
• _"

fo = f(_o,Yo)

fl = f_o + kl'Y0 + alh )

#

f9--f(x0+ k9'Y0 + agh ) "'

. where

': k_ = ath bl.o fo

k2 = a2h LI b2jfi
i

+,+

_' j

, £k9 = a_ b_jfj

:+ _ l=O

6-17
_o

1976017203-287

solutions require differentiation of a given function a number .of Urnes, followed 
by evaluation of these derivatives at the point of interest. However. the Runge
Kutta method bypasses these differentiations by evaluating the derivative on the 
right hand side of the first order equation at a number of selected points. For 
example, in the equations of motion the acceleration per unit mass is evaluated 
a number of times at each integration step in order to proceed to the next inte
gration step. 

Runge-Kutta methcds have the advantage that the interval of integration can be 
readily changed. The formulas are single step; thus., they do not requjre any 
past history of values. l' common with other special perturbation methods, 
the Runge-Kutta method is extremely flexible. Th(.! acceleration models in 
GTDS may be changed without affecting the implementation of the Runge-Kutta 
formulation. 

The Runge-Kutta formula usea in GTDS is an 'dighth order formulation requiring 
ten function evaluations (Reference 8). The fJlcpression f(x, y) i8 the derivat,ve on 
the right hand side of U.e fl.ret order differential equatiun dx/dy =- f(x, y) which if» 
to be evaluated. This fUL'ltion ariseEJ from the equations of motion or from the 
variational equations. The Shanks eighth order Runge-Kutta algorithm is com
puted in the following manner. The following formulas apply to a single compo
nent of the vector of the quantities bein.r; integrated where the vector of dependent 
variables is denoted by i and the independent variable is denoted by y. 

where 

6-17 
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_- -. L_

' The next value of the component x is corn_ ated from the present value x o and the

S.hankscoefficients a _, b _i ' c

_ x = x0 + E cifi /
i=O

In these formulas, the ttunge-Ku_a stepsize in the independent variable is _.enoted
_ • by h, and the subscript "0" designates current values. Table 6-1 contains the

coefficients for the eighth urder ttunge-Kutta scheme; the coefficients are pre-
_._- sented in a form convenient for calculating the summations required to determine

the ki)s. _'.r

TABLE 6-1 -:
_#. •

;.,:_ --_ i s i a i bij ._..

2"3 27 _" -

2 1
(1 + 3) _ "I

"_ 1 1 (1 +0+3)• 3 _ 1-_

1 1 (I+0+0+3)

.L
2 1

_' 5 ,,- -- (13 +0-27 +42 +8) _ -,, o 54 -"
_r

_"_..__ 6 _-1 432"-'-'01(389 �0- q4 + 966 - 824 �243)_;

1 (-231 + 0 - 1164 �656- _22 + 800) '__,.. _ 1 _

5 1

-_ 8 _ 28"-8(- 127 + 0 + 18 - 67_ + 456 - 9 + 576 + 4) _.

9 1 .1_ (1481 + 0 - 81 �7104- 3376�72 - 5040 - 50 + 720) ' '_
820

_'_ 1 (41 0 0 27 272 27 216 0 216 41_(Co+Ci+C2+C_+C4+Cs+C6+C?+Cs+C_)= _ + + + + + ��++

• 6-18 ;
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The next value of the component x is com~ ated from the present value Xo and the 
Shanks coefficients a., b .. , c. 

1 1 J 1 

c.f. 
1 1 

In these formulas, the Runge-Kutta stepsize in the independent variable is ~enoted 
by h, and the subscript "0" designates current values. Table 6-1 contains the 
coefficients for the eighth order Runge-Kutta scheme; the coefficients are pre
sented in a form convenient for calculatj.ng the summations required to determine 
the ki's. 

8 i 

1 4 
27 

2 2 
9 

3 1 
:1 

4 1 
2 

5 I .~ 
~ 

6 1 
6" 

7 

8 5 
6 

9 

TABLE 6-1 

4 
27 

1 
18 (1 + 3) 

1 
12 (1 +0+3) 

1 "8 (1 + 0 + 0 + 3) 

1 
54 (13 + 0 - 27 + 42 + 8) 

43
1
20 (389 + 0 - 0;4 + 966 - 824 + 243) 

1 20 (-231 + 0 + 81 - 1164 + 656 - tl2 + 800) 

1 
-- (-127 + 0 + 18 - 6711 + 456 - 9 + 576 + 4) 
288 

1 -- (1481 + 0 - 81 + 7104 - 3376 + 72 - 5040 - 60 + 720) 
820 

(;-18 
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6.7 THE STARTING PROCEDURE

Two starting procedures are available in GTDS, an iterative method and a Runge-
Kutta method. The iterative starter is generally used; hot "ever, the Runge-Kutta
method may optionally be used as a starter for multi-step integration methods.

6.7.1 Iterative Starter '

The starting arrays
"..t"

Rn-i' Yn-i' i =0, 1, 2,-.. k (6-77) :o

and the associated first and second sums required by the integration process
i

may be computed by an iterative process based on Equations (6-15) and (6-16)
using varying values for s. Let m = [(k + .1.)/2], where the brackets indicate the :.

greatest integer function, and Ro, R0, and R o be the given initial values at
t = t o of Equation (6-28) (the process is analogous for Equation (6-49)). The
values :

Ri' Ri' Ri' i = ±I, +2, .. • +m

can then be computed by _uccessive approximations, yielding the required

_ starti.g values.

Let _' "i (s) and _ i (s) be the coefficients of the ordinate forms of Equations (6-15)
and (6-16) with k = 2m

, (6-.,'8)_¢(t n + s h) =h + _i (s) ,,.
L

i -- 0 I '.:!"

2m :"

x (t n + s h) : h2 IS. + (s - I) Is n + _ i" (S) __ (6-79) -i;::"

i=O .
-f

Then letting R( J> denote the j th approximation, the (j + 1) _t approximation is

given by the following procedure ,_;

(A) Compute the sums IS and IxS using ' "
m m

" 2m

ISm - - Si (- m) _ (j) (6-80) :"
m- i (_

iu0

di_ 6-19 ,_:

_ _- =_ In , I ,...... Po mgm ........ iiiiq m _ _ m _ m1_m iir n lallal mlIgm lit '_,, ,
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6.7 THE STARTING PROCEDURE 

Two starting procedures are available in GTDS, an iterative method and a Runge
Kutta method. The iterative starter is generally used; hm 'ever, the Runge-Kutta 
method may optionally be used as a starter for multi-step integration methods. 

6.7.1 Iterative Starter 

The starting arrays 
.. 

Rn- i , y n-i' i = 0, 1, 2, .•. k (6-77) 

and the associated first and second sums required by the integration process 
may be computed by an iterative process based on Equations (6-15) and (6-16) 
u8ing varying values for s. Let m = [(k + 1 )/2], wher~ the brackets indicate the 
gr.eatest integer function, and Ro' Ro' and Robe the given initial values at 
t = to of Equation (6-28) (the process is analogous for Equation (6-49». The 
values 

~ -
R R R i = ± 1, ± 2, ... ± m 

i ' i' i • 

can then be computed by successive approxill"ations, yielding the required 
startidg va lues. 

Let bi ' (s) and 8 ~ (s) be th~ coefftcients of the ordinate forms of Equations (6-15) 
and (6-16) with k = 2m 

x (to ts h) = h ~o + i>: (s) xo_] (6-'/8) 

(6-79) 

Then letting H( i) denote the j th approximation, the (j + 1)8 t approximation is 
given by the following procedure 

(A) Compute the sums IS and I IS using 
m m 

.!. 2 m 
R L "(') IS = -2 _ 8 ~ (_ m) R J. 

m him-I 
(6-80) 

i-O 
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2m _ " /

. (J) (6-81),,so +(m+l),s.- (m)
hm

{=0

(I) Compute the correctedpositionand velocityvectorsusing Equations
(6-79)and (6-78)withn : m and s --(l-m)

2_o _(i m)_CJ_ (6-80)

_(j+1) ".• =h + 8 (i -m) (6-81)I

i = ±I, ±2, ...±m

i (C) Compute the acceleration _(J+ 1 )i using the force model. This completes
the iteration. Steps (A) - (C) are repeated until the successive values _._/

of R_ and R{ converge.

AS in the process described in Section 6.2, if the accelerations are velocity-free, _--)
simplifications in the computational algorithm may be made. In particular, in
Step (B) the computation of 1_!J_t) may be omitted until convergence on the

1

positions R i.

The first approximation (j = 1) may be obtained by a variety of methods: Near

a primary, two-body analysis m,_.y be used effectively, either in the form of . +_
orbital elements or f and g series; between two prim=tries, either a single step

low-order method or the use of a prestored ephemeris should be used.

6.7.2 Runge-Kutta Starter

The multi-step methods avoid the multiple function evaluati.m_s at each integration
step which are characteristic of the Runge-Kutta method, but they are not self-
starting. Starting from an initial position and velocity, the Runge-Kutta method

i can be used to build the required starting array for the Cowell and Time Regu-
_ lartzed Cowell equations of motion and variational equations.
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- 2m 
Ro [:":'(j) liS = - + (m + 1) IS - S ~' (- m) R . 

m 2 m 1 m-l 

h i"O 

(6-81) 

(D) Compute the corrected position and veloctty vectors using Equations 
(6-79) and (6-78) with n = m and s = (i-m) 

(6-80) 

{6-81) 

i = ± I, ± 2, ... ± m 

(C) 
:":'(j+l) 

Compute the acceleration R i using the force model. This completes 
the iteratiqn. steps (A) ..... (C) are repeated until the successive values 
of R. and R. converge. 

1 1 

As in the process described in Section 6.2, if the accelerations are velocity-free, 
simplifications in the computational algorithm may be made. In particular, in 
step (B) the computation of R~ j i 1) may be omitted untll convergence on the 

- 1 

positions R i' 

The first approximation (j = 1) may be obtaIned by a variety of methods: Near 
a primary, two-body analysis m~y be used effectively, either in the form of 
orbital elements or f and g series; between two primaries, either a single step 
low-order method or the use of a prestored ephemeris should be used. 

6.7.2 Runge-Kutta Starter 

The multi -step methods avoid the multiple funotion evaluati{,:ltl at each integration 
step which are characteristic of the Runge-Kutta method, but they are not self
starting. Starting from an initial poSition and velOCity, the Runge-Kutta method 
can be used to build the required starting array for the Cowell and Time Regu
lari.zed Cowell equations of motion and variational equations. 
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6.8 INTERPOLATION

Interpolation for values of R(t) and R(t) for t_ 1 < t < t may be obtained from
Equations (6-79) and (6-78) using s = it - tn)/h. The accuracy of this interpolation
is consistent with that of the integration.

6.9 LOCAL ERROR CO._H'ROL ,_

Local error control is performed by a variable stepstze process automa'.'_ally
and semiautomatically (see References 9 and 10). In the automatic mode, step-

sizes are selected based on the magnitude of the local error, __, computed on ,
a step-by-step basis by the Mflne formula :'

C IR(np) - R(nC)I (6-84) :E = " ,;_

,"a '1 2%
i:
?.

where C is a constant depending o_Lthe order of Equations (6-22) and (6-27).
R(P) and R(_ ) are the predicted ant, finally accepted position vectors, respec- _/'$_n n ' '_

tively, computed at time t = t. The stepsizes are selected so that e at each .

O step satisfies the constraint equation ,%

T2 "_ _n _ TI (C-85)

where T1 and T_ are specified upper and lower bounds on the local error. ' :,

The variable stepsize integration algorithm is as follows: at each step n, the 1
test in Equation (6-85) is performed. There are three cases: _, _

(A) E > T 1 ; the stepstze is decreased, and the n th computed point is re-
Jected nnd recomputed with the new stepsize, where the required back "!"

values are obtained by interpolation, i

(h) _n < T2 | the stepslze is increased, the n t_ computed point is accepted
and the integration proceeds with the new stepsize, where the required _,

back values are ob_tned by usLug every other point from a saved array _i
< 2h. A maximum

ofpointsifhnow = 2h or by interpolationif h < h ,,_
increase of 2h is allowed, i_

'i
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6.8 INTERPOLATION 

Interpolation for values of R(t) and R(t) for t n- 1 < t < tn may be obtained from 
Equations (6-79) and (6-78) using s = (t - t )/h. The accuracy of this interpolation 

n 
is consistent with that of the integration. 

6.9 LOCAL ERROR CONTROL 

Local error control is performed by a variable stepsize process automat:~al1y 
and semiautomatically (see References 9 and 10). Tn the automatic mode, step
sizes are selected basr.;Q \.In the magnitude of the local error, En' computed on 
a step-by-step basis by the MUne formula 

c IR~P) - R~C) I 
En ::. --,-.... -, _-,--

I~n -) 
(6-84) 

where C is a constant depending 011 the order of Equations (6-22) and (6-27). 
R~P) and R~C) are the predicted ane. finally accepted position vectors, respec
tively, computed at time t = tn' The stepsizes are selected so that En at each 
step satisfies the constraint equation 

(e-85) 

where Tl and T 2 are specified upper and lower bounds on the local error. 

The variable step~ize integration algorithm is as follows: at each step n, the 
test in Equation (6-85) is performed. There are three cases: 

(A) En > T 1 i the stepsize is decreased, and the nth computed point is re
jected Rnd recomputed with the new stepsize, where the required back 
values are obtained by interpolation. 

(D) En < T2 ; the stepsize is increased, the nth computed point is Rccepted 
and the integration proceeds with the new stepsize, where the required 
bllck values are obtained by using every other point from a saved array 
of points if b = 2h or by interpolation if h < h < 2h. A maximum 

new new 
increase of 2h is allowed. 
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_ (C) c satisfies Equation (6-85); the integration proceeds uninterrupted. (,_
_ I In either case (A) or (B), h is computed by the formula ,_
_" I new i ._£

Le J i I,.

where T3 is a specified 'Lallowable" local error satisfying T2 -< T a -<TI .

In the semiautomatic mode, stepsizes are specified as a function of radial distances ;_

from the primary (Reference 10). The required stepsizes and radial distances _
may be determined by an integration calibration process using the automatic

• variable stepsize integrator. Since the stepsize distribution over the orbit
generally depends on the orbital elements, particularly the semimajor axis and
eccentricity, such a calibration would be repeated only if these elements changed _
co_Jderably. This model of integration is generally less sensitive to the nu-
mertcal difficulties associated with variable stepsize integration. The use of a _.,

regularizedtime variablealsoproves usefulforthisproblem. This technique _
isdescribedinthenextsection.

J!
The same stepstzes are used for integration of the variational equations and the

equationsof motion. O :

_ 6.10 TIME REGULARIZATION ::

For orbits that are highly eccentric or that connect regions with significantly ',__
5 different gravitational force magnitudes, accurate direct integration of Equation _
;_ 16-28)or 16-4£),withtime as the independentvariable,usuallyrequireseither

a very small fixed stepsize, or many stepsize changes in a variable stepsize ! _

_i_ scheme. Frequent stepsizechanges are costlyand resultinerrors propagating \
_" due tothe interpolationprocedureused torestart. ' !

_,' To improve this situation, the classical approach is to transform the independent '
variable to a new variable, denoted by r, defined by the relatlon (Reference 11) "

%

..,, _ =}r_= 1 :; n =;2 (6-87)5

: I

4' I
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(C) E satisfies Equation (6-85); the integration proceeds uninterrupted. 
~ either case (A) or (B), h is computed by the formula 

new 

[
T3]1/k 

h =h_ 
new E 

n 

(6-86) 

where T is a specified "allowable" local error satisfying T2 ~ T3 ~ T1 • 
3 

In the semiautomatic mode, stepsizes are specified as a function of radial distances 
from the primary (Reference 10). The required stepsizes and radial distances 
may be determined by an integration calibration process using the automatic 
variable stepsize integrator. Since the stepsize distribution over the orbit 
generally depends on the orbital elements, particularly the semimajor axis and 
eccentricity, such a calibration would be repeated only if these elements changed 
considerably. This model of integration is generally less sensitive to the nu
merical difficulties associated with variable stepsize integration. The use Qf a 
regularized time variable also proves useful for this problem. This technique 
is described in the next section. 

The same stepsizes are used for integration of the variational equations and the 
equations of motion. 

6.10 TIME REGULARIZATION 

For orbits that are highly eccentric or that connect regions with significantly 
different gravitational force magnitudes, accurate direct integration of Equation 
(6-28) or (6-4~), with time as the independ~nt variable, usually requires either 
a very small fixed stepsize, or many stepsize changes in a variable stepsize 
scheme. Frequent stepsize changes are costly and result in errors propagating 
due to the interpolation procedure used to restart. 

To improve this situation, the classical approach is to transform the independent 
variable to a new variable, denoted by T , defined by the relation (Reference 11) 

dt R" 
d T =(/r 
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l Forn= 1 or 2, this variable corresponds to ghe use of eccentric anomaly or true
anomaly as the independent variable in the integration of elliptic raotion. The
use of regularization in the computation of free-flight earth-moon trajectories is
investigated in Reference 12. This study indicates increased computational
accuracy and a significant reduction in computation time due to regularization.

To express Equation (6-28) or (6-49) in terms of the new independent variable r,
the following notation is employed

dR_ R_
D g - _ (6-88)

aT

d2 g RnD2_-- = InR_-__ _+R_"_] (6-89)
d_2 fl-

where

=__R"R (6-90)
R

O and g(t) is any arbitrary vector-valued function in the t system. Similarly,

D_1 g = _ v"_'_ g, (6-91)
R _

D-2 R = "_= _ IR'. R. r' R' i
.... g (6-92)
Rn Rn+l

where the prime indicates differentiation with respect to r, and

Rn-|
R' = _ (R ' _) (6-93)

v#

The transformed Equation (6-28) may then be expressed as 0

R" : D2 R (t) (6-94)
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For n= 1 or 2, this variable corresponds to ,he use of eccentric anomaly or true 
anomaly as the independent variable in the integration of elliptic motion. The 
use of regularization in the comput~tion of free-flight earth-moon trajectories is 
investigated in Reference 12. This study indicates increased computational 
accuracy and a Significant reduction in computation time due to regularization. 

To express Equation (6-28) or (6-49) in terms of the new independent v~riable T. 

the following notation is employed 

where 

d g Rn 

Dg=-=-g 
d 'T /i7 

. R'R R= __ 
R 

(6-88) 

(6-89) 

(6-90) 

and g(t) is any arbitrary vector-valued function lli the t system. Similarly t 

n- 1 g = g = .;; g' 
R'l 

where the prime indicates differentiation with respect to T, and 

The transformed Equation (6-28) may then be expressed as 
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¢ 2

_ t" - (6-95) #

2

The integration of Equation (6-95) is required to compute the time t as a function .,
of the new independent variable _-. i _;

The integration of Equations 16-94) and 16-95) may be carried out with essentially }
the same procedures outlined in the previous sections. The additional remarks ;:
required are: _

(A) Given t@), R(r), and 1_'(_), a corresponding R"(r) is computed by first _

computing the time derivatives

- _ - (6-96)R (r) = D-l R' =_ R' (_) :

R" (r)

R (r)-- '_R(_') +P It (_'), R(_'), R(T)] 16-97)
R3 (r) '_

yielding ,:

= R2n ( _r_ ') (6-98) ,
R" ('r) nR'R' R2n'3 R+_-P t, R .- R'R _ R" _"

(B) The value of the independent variable _ corresponding to an output

requesttimeorobservationtimet_may beo_tainedby inverseinter- .""
polation in the t i array obtained by the integration of Equation (6-95).
This value of _ may then be used to compute the required R and R by ,_ .;

,\ the usua I interpolation procedure indicated in Section _.8. ,,

Analogous regul_rtzation procedures may be used for Equation (6-49). The
regularized variational equations are of the form _.

/,

[R_ ] R__"[B ni_I l R 2_Y" = A(t) Y + _" (t)+--f-jr+_/_ c(t) 16-99)

':, An additional advantage of using regularized time is that the initial (fixed) step- '
size may be conveniently selected as a f_ctlon of the regularized period S,

i where, if T is the satellite period,

. i_C_,t)'JCl_I].I'FY OF Till
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/I n R2n-l R t = ___ _ (6-95) 
J.L 

The integration of Equation (6-95) is required to compute the time t as a function 
of the new independent variable r • 

The integration of Equations (6-94) and (6-95) may be carried out with essentially 
the same procedures outlined in the previous sections. The additional remarks 
required are: 

and 

(A) Given t(r), R(r), and R'(r), a corresponding R"(r) is computed by first 
computing the time derivatives 

R (r) = n-1 R' = v;. R' (r) 
Rn (7) 

(6-96) 

(6-97) 

yielding 

(6-98) 

(B) The value of the independent variable 7 corresponding to an output 
request time or observation time tr may be obtained by inverse inter
polation in the ti array obtained by the integration of E~ation (6.-95). 
This value of r may then be used to compute the required Rand R by 
the usua I interpolation procedure indicated in Section &.8. 

Analogous regularization procedures may be used for Equation (6-49). The 
regularized variational equations are of the form 

Y" = fR2n A(t)] Y + R
n 

[B(t) + nRIly, + R2n C(t) 
[J-L vJ.L RJ J.L 

(6-9\J) 

An additional advantage of using regularized time is that the initial (fixed) step
size may be conveniently selected as a fraction of the regularized period S, 
where, if T is the satellite period, 
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r,

• i!

S = ___"d t (6-100)
R n _:,

i .i

The integral may be evaluated by quadrature for the two-body problem by a ,

change of variable from t to true anomaly, f, res, tlting in the formula i_

S = 1 (_ \(1 + e cos f) n-2 d f

p (n-2+ 1/2) "]0 (6-101) '

where p is the semilatus rectum of the ellipse. Frequently, a fraction of this
period (of the order 1/100) will _erve as an adequate stepsize for the integration
of Equations (6-92) and (6-93).

A drawback of the method is that the equations of motion in the • system (Equa- _
tion (6-94)) always contain explicit first derivatives, regardless of *_hesitu- J¢:
ation in the t system, (see Equation (6-92)); thus, the computational simplifica-

tions possible for velocity-free accelerations do not apply. Hence, the trade- ;_

off between the advant_.ges and disadvantages of the regularized time integration
depend upon the stepsize, length of arc, efficiency requirements, and eccentricity
magnitude.

Experience has shown that regularized time integration considerably improves
the efficiency of variable stepsize integration _or moderate to high eccentricities
(e Z .2). For the Cowell formulation, the value n = 3/2 seems !o give best results,
whereas, for orbital element formulations, the optimum value c:n appears to be t .
2 (Reference 13). Improvements in the accuracy of the integration of the time '
equation (Equation (6-95)) may also be obtained through use of a time element
(see Appendix B). ,_

F

,
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iT .;-
s= _.tdt 

o Rn 
(6-100) 

The integral ruay be evaluated by quadrature for the two-body problem by a 
change of variable from t to true anomaly, f, res11lting in the formula 

s- 1 [27T(1+eCOSf)n-2 df 
p(n-2+1/2) '0 (6-101) 

where p is the semi latus rectum of the ellipse. Frequently, a fraction of this 
period (of the order 1/100) will ~.drve as an adequ~te stepsize for the integration 
of Equations (6-92) and (6-93). 

A drawback of the method is that the equations of motion in the T system (Equa
tion (6-94» always contain explicit first derivatives, regardless of ~he situ
ation in the t system, (see Equation (6-92»; thus, the computational Simplifica
tions possible for velocity-free accelerations do not apply. Hence, the trade-
off between the advan.tages and disadvantages of the regularized time integration 
depend upon the stepsize, length of arc, efficiency requirements, and eccentricity 
magnitude. 

Experience has shown that regularized. time integration considerably improves 
the efficiency of variable stepsize integration (or moderate to high eccentricit:es 
(e ~ .2). For the Cowell formulation, the value n = 3/2 seems to give best results, 
whereas, for orbital element formulations, the optimum value 0; n appears to be 
2 (Reference 13). Improvements in the accuracy of the integrati.:>n of the time 
equation (Equation (6-95» may also be obtained through use of a time element 
(see Appendix B). 
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•: OBSERVATION MODELS

Spacecraft tracking observations involve the measurement of some physicalf

-i_ property of electromagnetic wave propagation between the tracking station and
the spacecrait. The process of analytically relating the measurement quantities

__" tc the spacecraft state vector is referred to as observation modeling. This
_ ohapter prese,_ts the models and associated equations for computing obscrvations

within GTDS. The models consist of kinematic equations which yield the. 'tideal" •

_ values of the observations in traject,_ry-related units (e.g., rang_., range rate,
._,

azimuth, and e]ev_tiozl). Therefore, the mod61ed observations are functions of
the _pacecraft's _st estimated position and velocity, as well as specified model
parameters (e.g., tracking station location and timing errors). "Actual" data

_ are usually preprocessed in a separate computer program which calibrates, time-

"i_,_ j- corrects, smoothes, compact a and converts _he raw trackin[r dat_ into units ,

_ .( compatible with the calculated observa*Aons. Howe'. _r, the preprocessor program i_
_:, ' does not correct for the _ifects of atmospheric refraction and may not _?crrect
: for propagation times, transponder delays, or antenna mount errors. As a result, _

"" corrections for th_se systematic ,.rrors are computed in GTDS and applied to / _,
the "actual" data. Systematic errc:rs may still be present, bowever, due _o the

_ preprocessor smoothing and compactio._. "_

_ The procedures and formulations presented in this chapter describe all d _t_
• types which are implemented in GTD_. Section 7.1 presents a general de,_cription

of the forms of the computed observations and their partial derivatives. ,_ction
; 7.2 presents equations and transformations _or modeling ideal observa_o_ _ and

their partial derivatives for ground-based tracking systems. Sections 7._, 7.4,
ah_ 7.5 discuss satellite-to-satellite tr_ kirg, radar altimeter tracking, a xi very

_ long baseline interferometer tracking, re._ctively. Atmospheric effects are

-i,\_ d_scussed in Section 7.6, and ._ther corrections (light time delay, transponder
•.o delay, and antenna mount c_rrections) are presented in Se,'.'tiou7.7. Finally, the
. interrelationshipbetween theobs_r,,-+_onmodels and the'estimst.ionprocess is
_ summariz, _d in Section 7.8.

_ 7.I GENEt_AL DESCRIPTION

The basic orbit determination process consists of dlfferentJ_Uy correcting esti-
mates for a set of parameters from an observational model to mlntmize the sum
of squares of the weighted differences between the measured observations a_d the
correspondingquantitiescomputed from the model. In GTDS, thls,nodelis
assumed to be of the form

:" 7-I
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Spacecraft tracking observations involve the measurement of some physical 
property of electromagnetic wave propagation between the tracking station and 
the spacecraft. The process of analytically relating the measurement quantities 
tr the spacecraft RtatE: vector is referred to as observation modeling. This 
ohapter preseaJ.ts the models and associat£d equations for computing observations 
within GTDS. The models consist of kinematic equations which yield th~ ''ideal'' 
values of the observations in traject,)ry-related units (e.g., rangti, range rate, 
azimuth, anti '?l,?vRtiol1). Therefore, the modeled observations are f\lIlctions of 
the spacecraft's best estimated position and velocity, as well ns specified model 
parameters (e.g., tracking station IClcation and timing errors). "Actual" data 
are usually preprocessed in a separate corr..puter progtam which calibrat£s, time
corrects, smoothes, compach and converts the raw tracking' data into units 
compatible with the calculat/~d observations. Howe .. ~r, the preproc~ssor progrnlll 
does not correct for tb~ .::ifects of atmospheric refraction and may not ecrrect 
for propagation times, transponder delays, or antenna mCl' .. nt errors. As a result, 
cort'ections for these sy~tematic '-,:uors are computed in GTDS and applied to 
the "actual" data. Sjstematic errL~rs may still be present, however, due to the 
preprocessor smoothing and compactio.l. 

The procedures and formulati(}ns presented in this chapter describe all d 1t2. 
types which are implemented in GTDS. Section 7.1 presents a general de, icription 
of the forms of the computed observations and their partial derivativE'S. ,)ection 
7.2 presents equations and transformations tor modeling ideal observaUf)lS and 
their partial derivatives for ground-based tracking systems. Sections'(.2, 7.4., 
al1~ 7.5 discuss satellite-to-satellite tr2.< kil'g, radar altimeter trackinp;, a 1d very 
long bao~line interferometer tracking. reFl~c:ctively. AtmospherJc effects are 
discussed hi Section 7.6, and other corrections (light time delay, transponder 
delay, and antenna mount c<iaections) are presented in Se",ltiCll'l 7.7. }<~in&.ilYt the 
interrelatit)nship between the obs .. :"V!1tion modals and the estimation process is 
summal'iZlld in Section 7.8. 

7.1 GENEllAL DESCRIPTION 

The basic orbit determination process consists of d~fferen(.jd.lly correcting esti
mat.es for a set of varameters from an observational motlel to rnin1:ni~e the sum 
of squares of t.'le weighted differences between the measured ohserv&t!ons and the 
corresponding quantlties computed from the model. In GT:lS, thts Anodel Is 
assumed to be of the form 
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° t3
Oo = fo[F,t (t + _t, p, r ),rlt(t + St, _, _)] + b + RFc (7-1),v

L"

,_ where

, t -_ time tag of the observation. _

S t "_ timing bias.
¢

4

' . 0 c _ computed observation at corrected time t + _ t.. :.

' - - _- vehicle position and velocity at an appropriate tiw.e related to_- tit' rl t

t = t + _ t. For most obser_ ations modeled in G_ DS, the position

and velocity are expressed in local tangent coordinates with

_" respect to a station posit:'on r-_. Other observations are modeled
; in terms of the vehicle inertial state vector. In either case, the

' state vector is de,v.endent on the dynamic 9ar_meter vector P.

b _- measurement bias or offset.

:" f0 _" geometric relationship defined by the observation type at time ,_../

t+_t.

;._ RFc _ correction to the observation due to atmospheric refraction,
light time, transponder delay, antenna mount errors, etc.

e

_ The observational model parameters which may be estimated are:

¢-

_. _ _. dynamic parameters in the equations of motior, which can be
; estimated. These include variables related to the position and

_- velocity_ gravitational harmonic coefficients, drag parameters,

etc. [_;

"X,,.
° "fs _ station location in earth-fixed coordinates.
>

: b _- measurement bias, which depends on the measurement type and ,

the tracking station.

_ t _-timing bias, which is both station ,_nd pass depende _t. _i
_ w

The observation models simulate the following tracking system data types:

;- • Goddard Range and Range i_ate (GRARR) System, Applications Technology

;- Satellite Range and Range Rate (ATSR) System, and Unified S-Band
I (USB) System

": 7 -2
i
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where 

t '" time tag of the observation. 

S t '" timing bias. 

Oc '" computed observation at corre~ted time t + St. 

fl t' i l t '" vehic1e position and velocity at an appropriate time related to 
t = t + St. For most obsen ations modeled in G1.uS, the position 
and velocity are expressed in local tangent coordinates with 
respect to a station posit',on r.. other observations are modeled 
in terms of the vehiclE'! inE::~t.ial state vector. In either case, the 
state vector is de~ndent on the dynamic ~ar!lmeter vector p. 

b'" measurement bias or offset. 

f 0 '" geometric relationship defined by the observation type at tire~ 
t + St. 

RFc "" correction to the observation due to atmospheric refraction, 
light time, transponder delay, antenna mount errors, etc. 

The observational model parameters which may be estimated are: 

P '" dynamic parametei.·s in the equations of motior. whioh can be 
estimated. These include variables related to the position and 
velocity, gravitational harmonic coefficients, drag parameters, 
etc. 

rs '" station location in earth-fixf!d coordinates. 

b '" measurement bias, which depends on the measurement type and 
the tracking station. 

S t ". tIming bias, which is both station and pass depende 1t. 

The observation models simulate the follOWing tracking system data types: 

• Goddard Range and Range Rate (GRARR) System, Applications Technology 
Satellite Range and Range Rate (ATSR) System, and Unified S-Band 
(USB) System 
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'_ 117, Range

(2) Range rate or range difference

13) X angleor azimuth
(4) Y angle or elevation

• C-Band Radar

(1) Range
. (2) Azimuth
,._- (3) Elevati3n

qJ MiifitrackInterferometerSystem

"_ (1) Dire,_tioncosine

(2) Directioncosinem

• Satellite-to-Satellite Tracking (SST)

_ (1) Round trip light time _ /t,_: (2) Round Lrip light time difference

• Radar Altimeter(RA)

(1) Altitude

:" • Very Long BaselineInterferometer (VLBI) System

(1) Time difference

:; (2) Time-rate difference

\'_ After preprocessing, some observations are converted to metric form while
others are in the form of time intervals. In general, the time _ag on each obser-
vation is converted to Universal Time Coordinated (UTC), which is derived from
Atomic Time A.1 so as to be a close approximation to UT2 (Chapter 3).

The differential correction process requires the computation of the "computed"

measurements and the systematicerror correctionswhich are appliedto the -_

. [ actualobservationdata. The process alsorequirescomputationofpartial _*
,-

derivativesof themeasurements withrespectto the model parameters p, r-,b,
and _t. These partialderivativescan be expressed as follows

7-3
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(1) Range 
(2) Range rate or range difference 
(:1) X angle or azimuth 
(4) Y angle or elevation 

• C-Band Radar 

(1) Range 
(2) Azimuth 
(3) Elevation 

" Minitrack Interferometer System 

(1) Dire,'!tion cosine ,e, 
(2) Direction cosine m 

• Satellite-to-Satellite Tracking (SST) 

(1) Round trip light time 
(2) Round trip light time difference 

• Radar Altimf'ter (RA) 

(1) Altitude 

• Very Long Baseline Interferometer (VLBI) System 

(1) Time difference 
(2) Time-rate difference 

After preprocessing, some observations are converted to metric form while 
others are in the form of time intervals. In general, the time tag on each obser
vation is converted to Universal Time Coordinated (UTC), which is derived from 
Atomic Time A.1 so as to be a clos~ approximation to UT2 (Chapter 3). 

The differential correction process requires the cornputation of the "computed" 
measurements and the systematic error corrections which are applied to the 
actual observation data. The process also require3 computation of partial 
derivatives of the measurements with respect to the model parameters p, r , b, • and S t. These partial derivatives can be expressed as follows 
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_, It is assumed that the partial derivatives of the systematic error correction terms .

, RFc with respect to _, "rs, b and _t are either zero or negligible.

7.2 GROUlgD BASED TRACKER MODELS

f This sectton presents the tranr.formations and equations for computing the ideal
. measurements (i.e., no systematic errors b, RFc , or _ t present). The measure-
:. ments correspond to those from the GRARR, ATSR, USB, C-Band, and Mint*.rack [

Systems. Since many of the measurements are ,-.ommon to more than one of
_ these systems (e.g., range rate _ is common to GRARR, ATSR, and USB), the

section is organized by measurement type rather than by measurement system.
!

{ 7.2.1 Tracking Process

For all systems except the Minitrack system, the eleotromagnetic signal is trans-

_ mired from the ground station at tilTLe t.r and is received at the satellite at time
_. t,. The signal is retransmitted by the _a_.ellite transponder a_ time t v + A% '
_ where A_ is the transponder delay. The return signal is receive_ at the ground _'

station at time t x. Thus, precise modeling requires that the tracking system f_
: be treated as a dynami_ process, since bo*.h the satellite and the tr_king station "?_

'_ are moving relative to inertial space _uring the time it takes t_¢ signal to traverse ' *_

the round trip from the ground _tation to the satellite ai_d return.

_ The _.racking instr,.n,..cr, t_ measure three basic quantities: The time interval _

_; required for the signal to traverse the path from the ground transmitter to the

'* 7-4 ,_
2

:;2
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oOc ofo ---op oj) 

00 ofo _c=_ 
·dr. or, 

(7-2) 

00 ofo • __ c_= __ = f 
o(St) o(St) 0 

It is assumed that the partial derivatives of the systematic error correction terms 
RFc with respect to P. fa • b and Stare either zero or negligible. 

7.2 GROUND BASED TRACKER MODELS 

This section presents the tranr.formations and equations for computing the ideal 
measurements (I.e., no systematic erro,-"s b, RFe, or st present). The measur~
menta correspond to those from the GRARR, ATSR, USB, C-Band, and Minitrack 
Systems. Since many of the measurements are I'~ommon to more than one of 
these systems (e.g., range rate p is common to GRARR, ATSR, and USB), the 
section is organized by measurement type rather than by measurement system. 

7.2.1 Tracking Process 

For all systems f',xcept the Minitrack system. the eler.tromagnetic signal is trans
mitted from thE' ground station at time t '( and is received at the satellite at time 
tv' The signal is :r:'«::t.t"ansmitted by the "n'.ellite transponder a~ time t y + 6:,.. 
where b...,. is the transponder delay. The return signal is recelve~ at the ground 
station at time t R• Thus, precise modeling requires that the tracking syatem 
be treated as a dynamh. process, since both the satellite and the tr9~idng station 
are moving relative to inertial space during the time it takes tt.e signal to traverse 
the round trip from the ground dip-tion to the satelllt.~ ~lld return. 

The tra.cking instrluncntil measure three basic quantities: The time interval 
requirerl for the signal to traverse the path from the ground transmitter to the 
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satellite and back to the ground receiver, the direction of the received signal at
_ the ground station as measured by the receiver antenna g_mbal angles, and the
: Doppler frequency shift of the received signal compared with the transmitted
_ signal. Preprocessor programs multiply the round-trip time interval by the
" signal propagation speed, thereby converting it to the geome*.ric distance. Ther
• GTDS measurement model then relates the station-to-spacecraft range vector

to the geometric distance and its direction angles at the receiver. The Doppler i
frequency shift data is related to the station--to-spacecraft range rate as described

!_ in Appendix A, Sections A.1.2.3 and A.3.2, and in Appendix C.

7.2.2 Local Tangent Plane Coordinates

The ground based tracking measurement models are most convenien+Ay expressed
! in station-centered local tangent plane coordinates except for the USB and SST

range and range-rate measurements. At the time of the measurement computa-

i -i tion, the spacecraft state vector is available in either mean of 1950.0 or true of
( reference date inertial coordinates. The inertial state vector must first be

• -" transformed to body-fixed coordinates using the appropriate transformation
_ _ matrices from Section 3.3. The transformation from mean of 1950.0 coordinates
_ to body-fixed coordinates is expressed as

Yb(t) --BCt) C(t) RCt) (7-3)

.. rb(t) --]3(t)C(t) R(t) + B(t)C(t)R(t)

_, where C and B are the transformation matrices from mean of 1950.0 to true of
_ date coordinates (Section 3.3.1) and from true of date to body-fixed coordinates

(Section 3.3.2), respectively; R and rb are the spacecraft position vectors in
mean of 1950.0 and body-fixed coordinates, respectively; and R and r b are the

;+\ spacecraft velocity vectors Ln mean of 1950.0 and body-fixed coordinates,
"_ respectively. The tracking statLon position vector _',, expressed in body-fixed

: coordinates, is given in Section 3.3.7 as

_N,+ h,) cos _, cos _,-

_ -r = (N, +h)cos_, sin_., (7 -4)

'_ [N(1 - e 2) + hi sin _=_
c

where e2 = 2f - f =, f is the flattening coefficient of the earth, and

_, N, - (7-5)
++ _1 - (2f - f2) sin 2 _+

REPRODUCIBILITYOF THF,
OEI(]_AL PAGE• IK_t
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satellite ane back to the ground receiver, the direction of the received signal at 
the ground station as measured by the receiver antenna gimbal angles, and the 
Doppler frequency shift of tbe .received signal compared with the transmitted 
signal. Preprocessor programs multiply the round-trip time interval by the 
signal propagation speed, thereby converting it to the geometric distance. The 
GTDS measurement model then relates the station-to-spacecraft range vector 
to the geometric distal1CE' and its direction angles at the receiver. The Doppler 
frequency shift data is related to the station··to-spacecraft range rate as described 
in Appendix A, Sections A.1.2.3 and A.3.2, and in Appendix C. 

7.2.2 Local Tangent Plane Coordinates 

The ground based tracking measurement models are most convenien~ly expressed 
in station-centered local tangent plane coordinates except for the USB and SST 
range and range-rate measurements. At the time of the measurement computa
tion, the spacecraft state vector is available in either mean of 1950.0 or true of 
reference date inertial coordinates. The inertial state vector must first be 
transformed to body-fixed coordinates using the appropriate transformation 
matrices from Section 3.3. The transformation from mean of 1950.0 coordinatf!s 
to body-fixed coordinates is expressed as 

rb(t) = B(t) C(t) R(t) 
(7-3) 

tb(t) = B(t) C(t) R(t) + B(t) C(t) R(t) 

where C and B are the transformation matrices from mean of 1950.0 to true of 
da.te coordinates (Section 3.3.1) and from tru.e of date to body-fixed coordinates 
(Section 3.3.2), respectively; Ii and rb are the spacecraft pOSition vectors in 

.&.. .&.. 
m.ean of 1950.0 and body-fixed coordinates, respectively; and Rand rb are the 
spacecraft velocity vectors in mean of 1950.0 and body-fixed coordinates, 
respectively. The tracking station pOSition vector r s ' e:A-pressed in body-fixed 
coordinates, is given in Section 3.3.7 as 

(N. + hs ) cos ¢. cos A.l 
f.= (Ns+hS)COS¢8Sin\J 

[Ns(l - e2) + hI) sin ¢s 

where e2 = 2f - f 2, f is the flattening coefficient of the earth, and 

(7-4) 

(7-5) 
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The spacecr_t position and velocity vectors, expressed in local tangent plane _-_
, coordinates, are given in Section 3.3.7 as

:" _lt (t) -- MI t ('rb (t) - "r's) (7-6)

! rlt(t ) = Mltrb(t )

{

Substituting Equations (7-3) into Equations (7-6) relies the local tangent coordi- _!Q

nares to the inertial coordinates

_" rlt= Mlt[BCR(t)- _l

{: - [13CR(t)+ BC_(t)] (7-7)rlt - Mlt

_: _- The vectors -r'It and rlt are used to model the tracking measurements.
i

t.

,_ t The partial derivatives of the calculated measurement are computed using local
tangent coordinates as the intermediate system (except for the USB and SST

;: _-'_" ranges and range rates) as follows /

,_ "_O¢_p_ _f0_p _f0__r..tt _'rlt_R _bR + -7--_f°przt _ + _rlt-" b_PPl (7-8) (-_}' ?Tzt L_?R ?P ?R

. From Equations (7-7)

}/ "O}'zt ?rz t (7-9)
= Mlt BC, 13C, ?Tt t = MjtBC

8R _ " Mtt _-'-_

Substituting Equations (7-9)into Equation (7-8)yields

_0_ _f° _R _f° IM _R _'_Pl (7-10)
= _ MI t BC + "-7-- I t ]3C + MI tBC

The matrices _R/b_ and _/_ are obtained from the variational equations
described in Chapter 4. The partial derivatives of the vacuum measurements,
_)fJS_lt and _f0/_t, are presented in the following subsections.

r
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The spacecr~t position and velocity vectors, expresslld in local tangent plane 
coordinates, are given in Section 3.3.7 as 

rtt(t) = Mlt(rb(t) - rs) 

"Flt(t) = Mlt "Fb(t) 

(7-6) 

Substituting Equations (7-3) into Equations (7-6) r~la.;es the local tangent coordi
nates to the inertial ~oordinates 

. 
"Fit = Mit [BCR(t) + BCR(t)J 

(7-7) 

. 
The vectors r 1 t and r 1 t are used to model the tracking measurements. 

The partial derivatives of the calculated measurement are computed using local 
tangent coordinates as the intermediate system (except for the USB and SST 
ranges and range rates) as follows 

oOc "" ofo ofo orlt oR ofo It,, aR at" !!] - - --+-- --+------op op or1t oR op ot oR op oR It 

From Equations (7-7) 

orlt oi-It . oi-It 
--=- = MI t BC, --=- = Ml t BC, -:::- = M) tBC oR oR oR 

Substituting Equationl3 (7-9) into Equation (7-8) yields 

oOc "" Of 0 oR 0 f 0 ~ • oR oR] 
-:;= = -:;=- MI t BC -::,_ + ~ MI t BC -::,- + Ml t BC -::,
op or lt op or op op 

It 

(7-8) 

(7-9) 

(7-10) 

The matrices oR/Op and oR/Op are obtained from the variational equations 
described in Chapter 4. The partial derivatives of the vacuum measurements, 
of/Clrlt and ofo/Clrlt , are presented in the following subsections. 
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7.2.3 Measurement Equations and Partial Derivatives

In the absence of an atmosphere, electromagnetic signals follow a straight line
path between the station and the spacecraft, traveling st the vacuum speed of

light. Equations describing vacuum signal propagation are presented below
along with pertinent partial derivatives required for the orbit determination
and error analysis processes. Corrections for atmospheric effects are presented
in Section 7.6. A functional description of each trajectory sensor system, as
well as a description of the data preprocessing, can be found in Appendix A.

7.2.3.1 Gimbal Angles

The gimbal angles provide the direction of the r,_ceived downL._k signal at the
ground station. For rotatable dish antennas the direction angles a_-9 measured
from the antenna gimbaling system. For the fixed antennas in the Minitrack
system, however, the signal direction is determined from principles of
tnterferometry.

Assuming no atmospheric refraction, the signal direction at the ground receiver
is determined from the straight line propagation path from the spacecraft at

time tv to the receiving station antenna at time t_. GTDS approximates this
direction by the instantaneous straight line path from the spacecraft to the station

O at time This approximation introduces negligible error in the signal directiontv •
angles because of the relatively small distance (relative to inertial space) tra-
versed by the station during the downlink propagation time interval.

The following sections describe the various gimbal angle models included in GTDS.

7.2.3.1.1 Gimbal Angles Xs0 and Y30 (GRARR, ATSR, USB)

The gimbal angles for the 30-foot antennas in the GRARR, ATSR, and USB systems
are denoted X30 and Y30. The Xa0-axis is aligned north-south in the local horizon
(tangent) plane at the tracking station. The reference plane for the angular
measurements is the vertical plane which is aligned east-west and includes the

tracking station zenith. The angle Xs0 is measured from the vertical axis
(zenith) to the projection of the station-to-spacecraft vector onto the reference
plane. This angle is positive when the spacecraft is east of the station, i.e.,

xlt_ __._< < _r (7-11)-t'-1 x3°-

|Z ,_,
|
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7.2.3 Measurement Equations and Partial Derivatives 

In the absence of an atmosphere, electromagnetic signals follow a straight line 
path between the station and the spacecraft, traveling at the vacuum speed of 
light. Equations describing vacuum signal propagation are presented below 
along with pertinent partial derivatives required for the orbit determination 
and error analysis procel:Jses. Corrections for atmospheric effects are presented 
in Section 7.6. A functional description of each trajectory sensor system, as 
well as a description of the data preprocessing, can be found in Appendix A. 

7.2.3.1 Gimbal Angles 

The gimbal angles provide the direction of the r')ceived downL:tk signal at the 
ground station. For rotatable dish antennas the direction angles aLe rdeasured 
from the antenna gimbaling system. For the fixed antennas in the Minitrack 
syste::.a, however, the signal direction is determined from principles of 
interferometry. 

Assuming no atmospheric r.efraction, the signal direction at the ground receiver 
is determined from the straight line propagation path from thfl spacecraft at 
time tv to the receiving station antenna at time ~. GTDS approximates this 
direction by the instantaneous straight line path from the spacecraft to the station 
at time tv' This approximation introduces negligible error in the signal direction 
angles because of the relatively small distance (relative to inertial space) tra
versed by the station during the downlink propagation time interval. 

The following sections describe the various gimbal angle models included in GTDS. 

7.2.3.1.1 Gimbal Angles X 30 and Y30 (GRARR, ATSR, USB) 

The gimbal angles for the 30-foot antennas in the GRARR, ATSR, and USB systems 
are denoted X30 and Y30 • The X 30 -axis is aligned north-south in the local horizon 
(tangent) plane at the tracking station. The reference plane for the angular 
measurements is the vertical plane which is aligned east-west and includes the 
tracking station zenith. The angle X30 is measured from the vertical axts 
(zenith) to the projection of the staUon-to-"spacecraft vector onto the reference 
plane. This angle is positive when the spacecraft is east of the station, i.e., 

(
X ) -1 it X30 = tan -
Zit 
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_:'" The angle Y._o is measured from the projection of the station-to-spacecraft vector (__ ,:"
.... onto the reference plane to the vector itself. This angle is positive when the

": spacecraft is north of the station, i.e., _

_, --- 7r (7-121Y3o = tan-1 7r_ Y3o
• \Jx),+zL 2 -<'_

,& The partial derivatives of X3o and Y3o with respect to the local tangent )dane
:_ - coordinates are

_ ?Xso 1

_ ?L, (x_,+z_,) [_'''o, -x,,]

_i _x/°=o (7-13)
_Lt

and

_ - 1 F--XltYlt V_I t + Z_t , --YltZlt 7

/x,,+z,d d)

_Y3o (7-14)=0

_?'tt
where

p=vx?,+yL+"),

" 7.2.3.1.2 Glmbal Angles Xss and Yas (USB)

_, _ The gimbal angles associated with the USB 85-foot antennas are denoted Xss and
L : Yss" The X ss-axis is aligned east-west in the local horizon (tangent) plane at

the tracking station. The reference plane for the angular measurements is the
vertical plane which is aligned north-south and includes the tracking station

zenith. The angle Xss is measured from the vertical axis (zenith) to the pro- •
: jection of the station-to-spacecraft vector onto the reference plane. This angle

is positive when the spacecraft is south of the station, i.e.,

: _ 7-8 RF_£ROI')UCIBILITY OF THE
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The angle Y ~o is measured from the projection of the station-to-spacecraft vector 
onto the reference plane to the vector itself. This angle is positive when the 
spacecraft is north of the station, i.e., 

(7-12) 

The partial derivatives of X30 and Y 30 With respect to the local tangent l,lane 
coordinates are 

(7-13) 

and 

(7-14) 

where 

7.2.3.1.2 Gimbal Angles Xss and Yss (USB) 

T~e gimbal angles associated with the USB 85-foot antennas are denoted XS5 and 
y 85' The X ss-axis is aligned east-west in the local horizon (tangent) plane at 
the tracking atation. The reference plane for the angular measurements is the 
vertical plane which is aligned north-south and includes the tracking station 
zenith. The angle X8S is measured from the vertical axis (zenith) to the pro
jection of the station-to-spacecraft vector onto the reference plane. This angle 
is positive when the spacecraft is south of the station, i.e., 
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_'es= ten'l --_ -_Xss_<-17 (7-15) :
zlt / 2 2 _-

The angle Yss is measure_ from the projection of the station-to-spacecraft
vector onto the reference plane to the vector itself. This angle is positive when _ _
the spacecraft is east of the station, i.e.,

Xl t 7r _
¥8S = taN'l " --" _

\v/yft + zl t 2 - Yss <7 (7-16) "i"

The partial derivatives of Xss and Yss with respect to the local tangent plane _.:
coordinates are _:

c

J

_Xss_ 1 [0, -Zlt, Ylt ] ='"

(7-17)
_Xes ;,-0

Q

O '771 t ":"

and _i

_Yss= 1 _t + zx2t -xltYlt -xltzxt _ +'_

?Y8s 17-18 ) '-0 '_

?r_t "

7.2.3.1.3 Glmbal Angles A and E (ATSR, C-Band) i

The azimuth angle A is measured in the localtangent (horizon) plane, clockwise j_
from north to the projection of the station-to-spacecraft vector onto the local "_'e ' ,'

tangent plane. This angle is positive when measured eastward (clockwise) from _
north, i.e., :'

7-9 _
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-1 ( Ylt) ~es = tan --
ZIt 

(7-15) 

The angle Yes is measured from the projection of the station-to-spacecraft 
vector onto the reference plane to the vector itself. This angle is positive when 
the spacecraft is east of the station, i.e., 

(7-16) 

The partial derivatives of Xes and Yes ',yith respect to the local tangent plane 
coordinates are 

(7-17) 

and 

aYes _ 1 ---c:rr-
it 

p2 

(7-18) 

7.2.3.1.3 Gimbal Angles A and E (ATSR, C-Band) 

The azimuth angle A is measured in the local tangent (horizon) plane, clockwise 
from north to the projection of the station-to-spacecraft vector onto the local 
tangent plane. This angle is positive when measured eastward (clockwise) from 
!lorth, i.e., 
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-_ t + yt2t

; 0 <_A _<27z (7-19) '-

_. A = cos "1 "

- _ :X +Yt

_ The elevation angle E is measured from the projection of the station-to-spacecraft

i_.... vector onto the local tangent plane to the vector itself. This angle is positive
whenever the spacecraft is above the horizon, i.e., _:

z=t.n" f. -_'-_ t 17-20) _:

; The partialderivativesofA and E withrespectto the localtangentplaneco- _.
ordinates are

-- [Ylt'-xlt' Ol I, _ ._
-_'_. (x,_,.yL) !

17-21)
!,

• "1 t

_' and ,t _,_

?E _ 1 _.-XltZlt -Ylt zlt , t/X--_it+'-_Ylt 1 :_'lt ,02 "Lv'/''-_XIt"'_ �Ylt' V/Xl2t �Yl2t: ":
\

?E _ 0 17-22)

#l t /

7-10
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(
X ) A • -1 it = S10 

Ixft + Y~t 
0$ A ~ 27T (7-19) 

The elevation angle E is measured from the projection of the station-to-spacecraft 
vector onto the local tangent plane to the vector itself. This angle is positive 
whenever the spacecraft is above the horizon. i.e .• 

E = tao- 1 1t 

( 
Z ) 

/x2 + y2 
1t 1t 

(7-20) 

The partial derivative!:' of A and E with respect to tile local tangent plane c\)
ordinates are 

(7-21) 

and 

(7 -22) 
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7.2.3.1.4 Direction Cosines Z and m (Minitrack)

The direction cosine _ is the cosine of th? angle between the station-to-spacecraft
vector and the axis pointing toward the east in the local tangent system (the
xlt -axis). This direction cosine is positive when the spacecraft is east of the
station, i.e.,

xl t (7 -23 )
P

The direction cosine m is the cosine of the angle between the station-to-spacecraft

vector and the axis pointing toward the north in the local tangent system (the Yl t -
axis). This direction cosine is positive when the spacecraft is north o[ the station,
i.e.,

Ylt (7-24)m'-_

P

The partial derivatives of _ and m with respect to the local tangent plane
coordinates are

" _ ___._r| "(ylt2 + Zt2t) ' _XltYtt ' _XltZtt]

(7-25)

_'-0

arlt
and

_m 1 3
= [-xttYtt, (X12t + Zlt,. -YltZlt ]

aT'lt p3
(7-26)

am
---:.-. -- 0

p a_l t

7.2.3.2 Range (GRARR, ATSR, USB, C-Band Systems)

From th,_ description of the tracking process in Section 7.2.1, it is seen that all
trackers provide the user with the round trip tight time delay from the trans-
mitter through the satellite to the ground receiver, and an associated time ta_.
The round trip range is seen to be
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7.2.3.1.4 Direcdon Cosines ,.f. and m (Minitracit) 

The direction cosine ,f, is the cosine of th~ angle between the station-to-spacecraft 
ventor and the axis pointing toward the east in the local tangent system (the 
xlt -axis). '::'his direction cosine is positive when the spacecraft is east of the 
station, i.e., 

(7-23) 

The direction cosine m is the cosine of the angle between the station-to-spacecraft 
vector and the axis pointing toward the north in the local tangent system {the y 1 t -

axis). This direction cosine is positive when the spacecraft is north of the station, 
i.e., 

The partial derivatives of ,.f. and m with respect to the local tangent plane 
coordinates are 

and 

7.2.3.2 Range (GRARR, ATSR, USB, C-Band Systems) 

(7-24) 

(7-25) 

(7-26) 

From th'~ description of the tracking process 1n Section 7.2.1, it is seen that all 
trackers provide t."te user with the round trip light time delay from the trans
mitter through the satellite to the ground receivel', and an associated time tag. 
The round trip range is seen to be 
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_i- PRT- [_(%)- _T(tT)I �ITR(tR) -r-v(tv + AT)I (7-27) O

_ where

_ PRT"_ round trip range

_" _ satellite position vector in inertial Cartesian coordinates

_ . r-T _ ground transmitter position vector in inertial Cartesian coordinates

:_ "f_ ._ ground receivez position vector in inertial Cartesian coordinates

Ar _ transponder delay

tT _ time signal is transmitted from the ground station

i tv "_ time signal is received at the satellite¥

j

'_ I tR_ time signal is received at the ground station

i

.! In the case of USB and C-Band, the time tag on the raw data corresponds to th_ /"
time t_ at which the measured signal arrives at the ground receiver; for GRARR

and ATSR, the time tag on the raw data corresponds to the ground receive time _-[l._ ' tR less the measured value of the round trip light time delay. For all systems,
' the preprocessor provides GTDS with p (t_), the average of the uplink and down- !

link propagation distances. The value p (t_) is generated by multiplying the •
observed round trip propagation delay by c/2. The preprocessor also provides
t_ by m,_king the appropriate modifications to the raw time tag for GRARR and
ATSR data.

!

For the greatest accuracy, the expected value of the range should be calculated
_,_ ' by determining the uplink and downlink path of the signal as defined in Equation

(7-_7). This method requires an iterative process to determine the upllnk and :

downIink light time delays. A second, less accurate, method is to approximate _!
the range by ca',.culating the instantaneous range at the spacecraft turnaround
time. The iterative method is used to calculate the expected range for USB,
C-Band, and ATSR, while the instantaneous method is used for VHF GRARR. _

7.2.3.2.1 Iterative Method for Expected Range ,

The expected value of p (te) is computed from ephemeris information and station
;, coordinates using the following equation

7-12
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(7-27) 

where 

PRT '" round trip range 

r v '" satellite position vector in inertial Cartesian coordinates 

r T '" ground transmitter position vector in inertial Cartesian coordinates 

'fR'" ground receive..:' position vector in inertial Cartesian coordinates 

/::"r '" transponder delay 

tT'" time signal is transmitted from the ground station 

tv '" time signal is received at the satellite 

~ '" time signal is received at the ground station 

In the case of USB and C-Band, the time tag on the raw data corresponds to tha 
time ~ at which the measured signal arrives at the ground receiver; for GRARR 
and A TSR, the time tag on the raw data corresponds to the ground receive time 
tR less the measured value of the round trip light time delay. For all systems, 
the preprocessor provides GTDS with p (ta), the average of the uplink and down
link propagation distances. The value P (t

R 
) is generated by multiplying the 

observed round trip propagation delay by c/2. The preprocessor also provides 
tR by mrucing the appropriate modifications to the raw time tag for GRARR and 
ATSR data. 

For the greatest accuracy. the (~xpected value of the range should be calculated 
by determining the uplink and downlink path of the signal as defined in Equation 
(7-27). This method requires an iterative process to determine the uplink and 
downlink Ught time delays. A second, less accurate, method is to approximate 
the range by calculating the instantaneous range at the spacecraft turnaround 
time. The iterative method is used to calculate the expected range for USB, 
C-Band, and ATSR. while the instantaneous method is used for VHF GRARR. 

7.2.3.2.1 Iterative Method for Expected Range 

The expected value of P (tR) is computed from ephemeris information and station 
coordinates using the following eqnation 

p(tR) = ~ {\ry(ty) - 'FT{trJ\ + \rv(t) - fa(t R) \ } 

7-12 

(7 -28) 

REPRODUCIBILITY or THI 



• _ .... ' ........ I[I II I IIIII I I """ " ......... _ -_R-_"_Pi '

I,

O For simplicity, this equation is presented in an inertial reference frame, where

-rv _ spacecraft inertial position vector

r-"T _ transmitting site inertial position vector

r'-__ receiving site inertial position vector

t T _ time at which the measured signal left the ground transmitter

t v _, time at which the measured signal was received and retransmitted
by the spacecraft. The assumption of inst_,ntaneous turnaround is
used; :he constant bias in the observed rs_ge caused by the space-
craft electronic delay is accounted for P,s a measurement error else-
where in GTDS.

ts ~ time tag of the reduced observed range (thatis, the time at which the
measured signal arrived at _v ground receiver).

The algorithm used !n GTDS to compute p(tR) proceeds as follows:

1. Calculate YR(tR)

e 2. CalcuDte iteratively the downlink propagation distance /0d (tR) using the
following equations

(a) Pd(tR) = IT(t,) - 7R(tR)I

(b) 8d(te) = Pd(tR)/C (7-29)

(c) tv=t-s d(tR)

The iteration process is initiated by assuming that t v = ts, and is termi-
minated when successive values of _d (tR) agree to within tO"s seconds.

3. Calculate iteratively the uplink propagation distance _'u '_ts) using the
following equations

(a) Pu(tR)= iT(t,) -  T(tT)I

(h) au(ts) = Pu(ts)/c {7,.30)

(c) tT = t v - _u(tlt)

7-13
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For simpUcity, this equation is presented i.n an inertial referE;Qce frama, where 

r y '" spacecraft inertial position vector 

'i"T '" transmitting site inertial position vector 

"fR '" receiving site inertial position vector 

t
T

"- time at which the measured signal left the ground transmitter 

t '" time at which the measured signal was received and retransmitted 
y 

by the spacecraft. The assumptil>n of insUt.ntaneous turnaround is 
used; ~he constant bias in the observed re,nge caused by the space
craft electronic delay is accounted for p.s a measurement error else
where in GTDS. 

tR '" time tag of the reduced observed range (that is, the time at which the 
measured signal arrived at th~ ground receiver). 

The algorithm used in GTDS to compute P(tRI proceeds as follows: 

2. Calculate iteratively the downlink propagation distance Pd (tR) using the 
following equations 

(8) Pd(tR) = Iry(t y) - "fR(tR)1 

(b) Sd(tR) = PitR)/c 

(c) ty = ~ - Sd(tR) 

(7-29) 

The iteration proc~ss is initiated by assuming that tv = ta, and is termt
minated when successive values of S d (t R) "iree to within 1. 0-8 seconds. 

3. Calculate iteratively the uplhlk propagatio:1 distance Pu ·~tR) using the 
follOWing equations 

(hI .. , ,7··30) 
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_r_or_ is initiated by asFun_J._g that 8u (t) = 8d(t_), and is termJ,- _._ ',i:
_.ed_vhe:__uccessive vab-vs of °u (t_) agree to within 10_s second_.., -

_ _.... ,*0_'::_ -nggeo_.etrically exact equation is used to comp-_e the ex- _

-_'. p_?ta_ V_e of the rlmge p (t_) for the USB, C-Band _d ATSR systems. '_

,,: = ' ":_ --".: -," p(tR) = _Pu(tR)+ Pd(tR)]/2 (':-31) ";.

' _ " °_ Instavlaneous Method for Expected Range

;_- Range ds_a produced by the G'HARR-VHF system is less accurate than that pro- "
_ " _-
._ ' duced by the othe- tracking systems; therefore, it does not warrant the application '_

of the tterative solution described above. Instead, the following more efficient ' ',

algorithm is used to determine an instantaneous approximation for/_ (t_) using
GRARR range dam

. _' p(tR) = IL(t,)-TT(t,)l = +
:; , (7-32)

_-. where

"i t v .- t_ - ,_(t_)/e

and Ftt is the spacecraft position vector in loca! *,angent plane coordinates. _.

2

7.2._.2.3 R_a_ge Partial Derivatives ".,-

:. The partial derivatives of the expected, ange (Equation (7-28)1 in inertial coordt- ..::

,-\._ nates (USB system) arc ,_

_0(tR) _ I _d [._ (tv) -_ (tT) ] :

_Tv(tv ) 2PuPd (7-33) "

4-Pu [?T(tv) " "rT(tR)] } ,?_

= 0 (7-341

i I _'2

_" i 7-14
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I _ _, ~ 

~. 

~ It''?F~iPto~ 1S initiated by 8sfZumlng that 8u (t ) = 3d (tR" and is termj·~ 
'.ai whe:t fiUct}essive Vall!<:S of Cu (~) agree tei' within 1«(8 seconcL1 • 

.I. / l.,f::~,~ng georr.etl'ically exact equation is used to compute the ex
~ted v ... .:cus of the range p (tR ) for the USB, C-Band ,.nd ATSR systems. 
~," -

{': -31) 

'1 .~.~. 2.2 Instantaneous Method for Expected Range 

Range data produced by the GRARR -VHF system is less accurate than that pro
duced by the othe- tracking systems: therefl)re, it does not warrant the application 
of rhe iterative solution described above. Instead, the folloWing more efficient 
algorithm is used to determine an instantaneous approximation for P(t R ) using 
GRARR range d~,a 

(1-32) 

where 

tv = tit - P(tR)/C 

and r it is thlJ siAlcecraft position vector in local tangent plane coordinates. 

7.2.5.2.3 Rp..nge Partial Derivatives 

The partial derivatives of the expectel~ .. ange (Equation (7-28» in inertial coordi
nates (USB system) arc 

ap(tR) 1 
- {Pd[F!(tV> - 'F~(tT)] 

arv(tv) - 2PuPd 

+ Pu [F!(tv ) - F~(tR)]} 
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I
If it is assumed that p_ = Pd = p(t_), Equation (7-33) reduces to _

3

?P(tR) 1 {2-Fv_(tv) _ [_:I(tT ) + "F_(tR)] } (7-35) :_

8_'v(t ) 2p(tR) ,'_i:

The partial derivatives of _.heexpected range in local tangent plane coordinates
(for the remaining system_) are _-

_P(tR) = rTt (tv) (7-36) .*

o¥_t(t , ) P(tR) _ "
q

3

3/_(t_) (7-37) ;-.=0

7.2.3.3 Range Rate (GRARR, ATSR, USB) i /_'°
41

., The range rate of _ sp_-.ecra_t is determined by measuring the Doppler shift

_ of a signal resulting from the relative mot,ion between the station and the space- _ ?

cr_t. This can be done either by measuring the time required to count a fixed _ !

number of Doppler-plus-bias cycles, as with G1RARRand ATS1R, or by counting 1 _'the Doppler-plus-bias cycles over a fixed time interval, as with USB For all :

_' tracking systems, the preprocessor converts the raw Doppler information 1

I transmitted from the stations to range rate and a time tag.

There are three modes of calculating the expected value of the range rate for _ _ -_

I i

\ each of these tracking systems. In the first me_hod, the range rate is obtained :.
by computing the time difference quotient of ranges calculated at the beginnb_'

I and at the end of the Doppler count interval, lteratively correcting for the light ,time delays. The second method uses the instantaneous ranges at the beginning _"
and at the end of the count interval, with no corrections for the light time d_lays.
The third and least accurate method i_ to calculate an instantaneous range r_te
at the midpoint of the Doppler count interval as seen at the spacecraft. The first
methodisusedtocomputetheexpectedvalueoftherangerateforthe USB sys- .r_..
tem, while the other two methods are used (optionally) for the GRARR and ATSR

systems, i ?"_."
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If it is assumed that Pu = Pd = p(~), Equation (7-33) reduces to 

(7-35) 

The partial derivatives of the expected range in local tangent plane coordinates 
(for the remaining systcmJ) are 

------- (7-36) 

(7-37) 

7.2.3.3 Range Rate (GRAR~, ATSR, USB) 

The range rate of ~ spa ~ecraCt is determined by measuri'lg the Dopplnr shift 
of a signal resulting from the relative mot.ion between the station and the space
cr$t. This can be done either by measuring the time required to count a fixed 
number of Doppler-plus-bias cycles. as with GRARR anet ATSR, or by counting 
the Doppler-plus-bias cycles over a fixed time interval, as with USB.. For all 
tracking systems, t.he preprocessor. converts the raw Doppler information 
transmitted from the stations to range rate and a time tag. 

There a.re three moJes of calculating the expected value of the range rate for 
each of these tracking systems. In the first method, the range rate is obtained 
by computing the time difference quotient of ranges calculated at the bt!ginniu~; 
and at the elld of the Doppler count interval, iteratively correcting for the light 
time delays. T'e second method uses the inLJtantaneous ranges at the beginning 
and at the end of tne count interval, with no corrt:ctions for the light time ddays. 
The third and least accurate method iu to calculate an instantaneous range rllte 
at the midpoint of the Doppler count interval as seen nt t!le spac'3craft. The first 
method is used to compute the expected value of the range rate fo! t~c DSB sys
tem, while the other two methods ar~ used (optionally) for the GRARR and ATSR 
systems. 
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"_" _.. I ''- 7.2.3.3.1 Iterative Range Difference Method

: The modelkng of the expected value of the range rate which is most precise is to >
difference the average range at the beginning and end o_ the count interw.1 as -:

i shown below {Reference 1).

• e _

_. [Ou(tR) + Pd(tR )] - [Pu(tR - AtRR) + Pd(tR - AtRR)] (7-38)

¢_i . P(tR) = 2AtRI1 ":t

:_ where
_- ,_:

Pu(tR) _- up]ink propagation path of a signal arriving at the receiver at tR
"i

k

. ,Od(tR)_ downlink propagation path of a _ignal arriving at the receiver at t R

; '-1 AtRR _ Ooppler count time interval ;_

! T:;e calculations for these up]ink and down]ink ranges are iteratively corrected :
_. for the light time delay in exactly the same manner as the expected ranges _

modeled in Section 7.2.3.2.1. This method is used for USB measurements where <J

t__ time tag on the observed data is t_ (corresponding to the end of the count
interval) and the count interval AtRR corresponds to the sample interval. This f.__ :,
_aethod is accurate for both two-way and three-way Doppler measurements using

the USB system. Two-way Doppler measurements are obtmned when the trm_s-

mitting and receiving antennas are the same, while three-way Doppler measure-

: ments are obtained when the _ransmitting and receivivg ante,_.,has are different.
?

" The range-rate partial derivatives with respect to the epoch state elements R and "'i
" R are computed most efficiently by using the algorithms for the range partial

derivatives '_

aP(tz) _ _R _P' (7-39) :

?P(t R) ?P(t R - AtRR ) _'_

?R AtRR
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7.2.3.3.1 Iterative Range Difference Method 

The modeling of the expected value of the range rate which is most precise is to 
differ~nce the average range at the beginning and end o~ the count intervp..1 as 
shown below (Reference 1). 

(7-38) 

where 

pu(tR) '" uplink pl'opagation path of a signal arriving at the receiver at tR 

.oitR) '" downlink propagation path of a signal arriving at the receiver at tR 

t::. tRR '" Doppler count time interval 

T:~e calculations for these uplink and downlink ranges are iteratively corrected 
for the light time delay in exactly the same manner as the expected ranges 
modeled in Section 7.2.3.2.1. This method is used for USB measurements where 
t~-:.e time tag on the observed data is ~ (corresponding to the end of the count 
interval) and the count interval t::. tRR corresponds to the sample interval. This 
.illethod is accurate for both two-way and three-way Doppler measurements using 
the USB system. Two-way Doppler measurements are obtained when the trans
mitting and receiving antennas are the same, while three-way Doppler measure
ments are obtained when the I ransmitting and receiving ante!. nas are diffelent. 

-
The range-rate partial derivatives with respect to the eroch state elements R and 
R are computed most efficiently by using the algorithms for the range partial 
derivatives 
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A Less accuratv but. mor£ efficient range difference formulation is available in

GTDS for GRARR and ATSR. It is assumed in this model that propagation delays
are negligible compared with the Doppler count time interval. The resulting

equation is i

/_ _ p(t v + Ate) - P(tv) = I'_-,_(tv Tat_)l - I_,,(tv)l (7-41)
At]m Atp.q

-- F

The two range vectors rlt (t v +Atlu¢ ) and r,t (tv) are computed in the same manner Ias those for the range computations (Section 7.2.3.2.2). In order to use this

method in GTDS, the preprocessor must provide tR, the time of the received
signal at the beginning of the Doppler count interval, and A tp,, the count interval.
The partial derivatives of _ with. respect to local tangent c_rdinates are

a,_ _ 1 _ "F_t(tv + Attar) (7-42) _ '

,_ a'_It atPa Ll_,t(%+at_)l tT,,(%)Ij

a,_ _ 0 (7-43)

_'Ftt

7.2.3.3.3 Average Range Rate

A third method, which i_ the least accurate but most efficient, calculates the _

instantaneous range rate at the midpoint of the Doppler count interval as see:, at
the spacecraft. This value is used to approximate the average range rate over

the uplink and downlink paths, and is therefore denoted Pavg " It is computed as

_lt(tv)'_,t(t v)

P, vg - (7-44)
I_,,(%)1

The position and velocity vectors are expressed in station-centered local tangent
plane coordinates evaluated at the vehicle turnaround time t .

V
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7.2.3.3.2 Instantaneous Range Difference 

,.~ less accurate but; mor€. efficient range difference formulation is available in 
GTDS for GRARR and ATSR. It is assumed in this model that propagation delays 
are negligible compared with the Doppler count time interval. The resulting 
equation is 

(7-41) 

The two range vectors r 1 t (tv +6 ~ ) and r 1 t (tv) are computed in the same manner 
as those for the range computations (Section 7.2.3.2.2). In order to use this 
method in GTDS, the preprocessor must provide t

R
, the time of the received 

signa! at the beginning of the Doppler count interval, and 6 t~1O" the count intervp.l. 
The partial derivatives of p witl: respect to local tangent coo"rdbates are 

(7 -42) 

(7-43) 

7.2.3.3.3 Average Range Rate 

A third method, which i~ the least accurate but most efficient, IJalculates the 
instantaneous range rate at the midpoint of the Doppler count interval as ~e,=,·., at 
the spacecraft. This value is used to approximate the average range rate over 
the uplink and downlink. paths, and is therefore denoted p . It ts computed as 

avg 

(7-44) 

The position and velocity vectors are expressed in station-centered local tangent 
plane coordinates evaluated at the vehicle turnaround time tv' 
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;_ This method is used for the GRABR and ATSR range-rate models. When this
method isused thepreprocessormodifiesthetime tagon the GRARR data accord-

'_ ingto therelationship

It(t )[ (7-45) =
t =tR+ 2 e

: _e partial derivatives of _,,,,g with respect to local tangent plane coordinates
:. are

?

"_ ?-fl t P t - 7

:; ?P.,x _ "flt (7-47) :

: ?rl t

: q i , /g'i

: 7.3 SATELLITE-TO-SATELLITE TRACKING (SST) MODEL

._ The formulation is pre_euted in this sectio_ for tbe satellite-to-satellite range .:

sum and range sum rate (Doppler) model. Par.ial derivatives of the range sum

and range sum rate models are developed with respect to dynamical parameters,
: such as the epoch state vectors, for use in the statistical estimation process. It
-• is assumed that the tracking is accomplished by the modified ATSB system and

thatthe relaysatelliteisin a near-synchronousorbit. _

i

"\'_-• i 7.3.i Introduction ', '-

:_ i Th,,; ApplicationsTechnologySatellite-6(ATS-6) isan advanced synchronous _!
orbit communication satellite. It is the first satellite in the ATS series whichi
does notemploy spinstabilization.This feature,coupledw_than onboarddigital
computer, enables ATS-6 to function as a relay satellite in a sate!IRe tracking

i network,trackingothersatellitessuch _.sNimbus-F, GEOS-C, and theApollo-
Soyuz Test Project(ASTP). The ATS-6 satelliteincludesa multi-frequency ,.*
transpondersystem containingsixreceiversand ninetransmitterscapableof

. operatingon about17 frequencies.A key featureofthesetranspondersfor
sateUite-to-satelltte tracking (SST) is the maintenance of coherence of the phase
relationshipsbetween variousradiofrequencysignals.The range sum and
Doppler measurements are dependent on phase measurements of the returning

@
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This method is used for the GRARR and ATSR range-rate models. When this 
method is used the preproc~ssor modifies the time tag on the GRARR data accord
ing to the relationship 

(7-45) 

The partial derivatives of p with respect to local tangent plane coordinates 
av\; 

are 

(7-46) 

(7-47) 

7.3 SATELI1TE-TO-SATELLITE TRACKING (SST) MODEL 

The formulation is preee'lted in this secti,)!l for the satellite-to-satellite range 
sum and range sum ratf~ (Doppler) model. Par .. ial derivatives of the range sum 
and range sum rate models are developed with respect to dynamical parameters, 
SUfJr. as the epoch state vectors, for use in the statistical estimation process. It 
is assumed that the tracking is accomplished by the modified ATSR system and 
that the relay satellite is in a near-synchronous orbit. 

7.3.1 Introduction 
- -

Thb Applications Technology Sa1f3IHte-6 (ATS-6) is an advanced synchronous 
orbit communication satellitE'. It is the first satellite in the ATS series which 
does not employ spin stabilization. This feature. conpled WIth an onboard digital 
computer, ~nables ATS-6 to function as a relay satellite in a sateHite tracking 
network, tracking other satellites such $!.S Nimbus-F, GEOS-C, and the Apollo
Soyuz Test Project (ASTP). The AT8-6 satellite inc.1udes a multi-frequency 
transponder Rystem containing six receivers and nine transmitters capable of 
olJerating on about 17 frequtlncies. A key feature of these transponders for 
satell1te-to-satellite tracking (SST) is the maintenance of coherence of the phase 
l'elati(.mli:lnips between various radio frequency signals. The range sum and 
Doppler measurements are dependent on phase measurements of the returning 
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I
O signals, and as su_'h are sensitive to any phase delay originating in the trans- I

mission equipment. Since no onboard frequency source is absolutely accurate,
signal coherence is maintained in order to avoid introducing any additional bias
into these two measurements. Angle measurements, on the other hand, are not
affected by coherence.

The range and Doppler measurements are functions of the positions and velocities
of the ground transmitter, the relay satellite, and the target (ground transponder
or satellite). The same techniques can also be used to make range and Doppler
measurements for the relay satellite alone.

Three main tracking modes are considered: The coherent mode, the phase-locked
loop (P_L) mode, _d the crystal (XTAL) mode. The relay-only tracking mode
is referred tG as the coherent mode, even though all of the re_ay modes are
coherent. The phase- locked loop mode is the relay mode used to track phase-

locked loop transponders, such as GEOS and ASTP. The _rystal mode is used
to track crystal oscillator transponders, such as Nimbus-F. A detailed descrip-

tion of these tracking modes can be found in Reference 2.

_he ground transmitter broadcasts two uplink C-Ban_ tones, a pilot tone and a
carrier tone. T'_ carrier tone is modulated by the range tones and is the signal
used to genera_ the Doppler data. There are three uplink pilot frequency options:

5950, 6150, and G,_50 MHz. The carrier frequency can be varied to lock the
target transponder circuits onto the signal. The S-Band frequency which th_ relay
satellite transmits to the target is determined by the difference between the pilot
and carrier frequencies. When switching from one uplink option to another,
both frequencies are shifted so as to keep the frequency difference constant.
The two uplink signals are generated by a set of two fixed and two variable
frequency synthesizers, along with a frequency multiplier and adders.

The measurement geometry is illustrated in Figure 7-1. The transmitting sta-

tion transmits a signal at time to which is received by the relay satellite at t s
and transmitted :o the target satellite at t s +/Wz, where Ar s is the transponder
time delay. The target satellite receives the signal at t 2 and transmits it back
to the relay satellite at t2 + A_2. The relay satellite receives the signal at t_
and, after a transponder delay of/Wj, sends it back to the ground station, which
receives it a_ %. The ground station records the data and tags it with the UTC
time tag tR. The range sum measurement is the time that an RF signal takes t_
traverse the f_,_r-lcgged path from the transmitter to the relay satellite, to the
target, back to the relay satellite, and then to the transmitter. Xnthe coherent
tracking mode (relay only) the range sum observation is the light time for the two
legs from the transmitter to the relay sat.ellite and back to the transmitter.
_he range sum measurement is accomplished through sidetone ranging techniques.
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signals, and as 8uJh are sensitive to any phase delay originating in the trans
mission equipment. Since no onboard frequency source is absolutely accurate, 
signal coherence is maintained in order to avoid introducing any additional bias 
into these two measurements. Angle measurements, on the other hand, are not 
affected by coherence. 

The range and Doppler measurements are functions of the polSitions and veJ')cities 
of the ground transmitter, the relay satellite, and the target (ground transponder 
or satellite). The same techniques can also be used to make range and Doppler 
measuremer.ts for the relay satellite alone. 

Three maiu tracking modes are considered: The coherent mode, the phase-Iockec 
loop (PT-,L) mode, .md the crystal (XTAL) mode. The relay-only tracking mode 
is referred tc, as the coherent mode, even though all of th~ relay modes are 
coherent. ThE. phase- locked loop mode is the relay mooe uRed to track phase
locked loop transponders, such as GEOS and ASTP. The orystal mode is used 
to track crystal oscillator transponders, such as Nimbus-F. A detailed descrip
tion of these tracking modes can be found in Reference 2. 

The ground transmitter broadcasts two uplink C-Banj tones, a pilot tone and a 
carrier tone. T'- carrier tone is modulated by the range tones and is the signal 
used to general. ... the Doppler data. There are three uplink pilot frequency options: 
5950, 6150, and c,r;o MHz. The carrier frequency can be varied to lock the 
target transponder circuits onto the signal. The S-Band frequency which the rela) 
satellite transmits to the target is determined by the difference between the pilot 
and carrier frequencies. When switching fI'om one uplink option to another, 
both frequencies are shifted so as to keep the frequency difference constant. 
The two uplink signals are generated by a set of two fixed and two variable 
frequency synthesizers, along with a frequency multiplier and adders. 

The measurement geometry is illustrated in Figure 7-1. The transmitting sta
tion transmits a signal at time to which is rec(:ived by the relay satellite at tl 
and transmitted !o the target satellite at t 1 + t::.r l' where t::.r 1 is the transponder 
time delay. The target satellite receives the signal at t2 and transmits it back 
to the relay satellite at t2 + t::.r2 • The relay satellite receives the signal at t 3 

and, after a transponder delay (If t::.r J ' sends it back to the ground station, which 
receives it a~ t 4 • The ground station records the data and tags it with the UTe 
time tag tR • The range sum measurement is the time that an RF signal takes t\. 
traverse the four-Icgged path from the transmitter to the relay satellite, to the 
target, back to the relay satellite, and then to the transmitter. In the coherent 
tracking mode (relay only) the range sum observation is the light time for the two 
legs from the transmitter to the relay sat.ellite and back to the transmitter. 
:"he range sum measurement is accomplished through sidetone ranging techniques 

7-19 



" 1

"- RELAY (ATS-6) -" J '_

t3 •

' i I I;I \\//

//.iS / "
' .I// '
• / I./ t

,/ //' .-,

/ ,

} 7

4

_:. Figure7-I. SST Tracking Geometry I "

\ t
!_"_ The Doppler measurements are a functionof a two-component signal.The first

" component origiliates from the transmitter at to, follows the four-leg path, and _,

isfrequencyshiftedby the motion ofboththe relaysatelliteand thetarget.The
second component originatesattheground transmitteratt$,travelstothe relay

{ satellite,where itis mixed withthe signalarrivingatts from thetarget,and is :'
: rebroadcasttothetransmitter,which receivesitatt4. The lattercomponent is

frequencyshiftedonlyby the motion oftherelaysatellite.The incoming carrier _)
< signalisconvertedintoa Doppler-plus-biassignalwhich istheinputtoan N-cycle , ,, ,-

counter.
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Figure 7-1. SST Trac!dng Geometry 

The Doppler measurements are a function of a two-component signal. The first 
component origiJ.lates from the transmitter at to' follows the lour-leg path, and 
is frequency shifted ty the motion of both the relay satellite and the target. The 
second component originates at the ground transmitter at ts' travels to the relay 
satellite. where it is mixed with the signal arriving at t3 from t.he target. and is 
rebroadcast to the transmitter. which receives it at t4 • The latter component is 
frequency shifted only by the m~t1on of the relay satellite. The incoming carrier 
signal is converted into a Doppler-plus-bias signal which is the input to L"1 N-cycle 
counter. 
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7.3.2 Light Time Modeling

In the formulation of the modeling procedures used in the computation of the range
and range-rate measurements, an inertial reference frame was selected since
most orbit integrators use an inertial frame and less computation is required
to transform a single station location than to transform two satellite state vectors.
An inertial frame also makes it unnecessary to consider any rotational effects

on the radar signal. All signal paths are straight lines traversed at a constant
speed c, except as affected by atmospheric refraction. All of the internal calcu-
lations are carried out in terms of time, i.e., the light time for the range and
the time required for a given number of cycles of the Doppler frequency to be
counted. The light time calculations are performed by means of a backward
tracing of the light path (see Figure 7-1). The first step is to compute the trans-

mitter location at time t_. Next, the state vectors of the relay satellite at time
t3, the target at time t 2, tl:e relay s_teHite at time t 1, and the transmitter at
time to are solved for successively, using an iterative procedure. For Doppler
or coherent mode aata, the location of the transmitter at ts is also determined.
If a forward solution ,vere used, i_ would begin a_ t o and solve for the appropriate

state vectors at t t , t 2, t_, and t 4 in succession. The advantage of a forward
method is that the Doppler-shifted carrier frequency is known for each leg and the
transponder delay can be calculated, giving the exact time of retransmission.
However, for the C-Band and S-Band frequency ranges involved in the ATSR

O satellite-to-sstellite system, the transponder delays are virtually constant and
sufficiently small that the motion of the relay satellite and the target during the
delay can be ignored in the light time solution. Since the transmitter location at

ts is a function of the relay satellite orbit and the coordinates of the transmitter
at t4 , it can be solved for most efficiently using the backward trac!ng method.
Large ambiguities in the range measurements and Doppler measurements can be
resolved using either method, since the high resolution correction can be derived
from any solution which is in the neighborhood of the true time. The most im-
portant reason for favoring the backward solution is the simplicity of the calcula-
tion of the Doppler count interval.

Since the Doppler count is made over the time interval between two positive-
directed zero crossings of the received downlink (Doppler plus bias) signal, it
is more convenient to trace the light path backward from the two known reception
times. As the observation is time tagged within 10 -s seconds of the beginning of

the Doppler count, the first of these reception times is set equal to the time tag.

7.3.3 The Range Observation

The range observation measures the phase shift in the range tone corresponding
to the time required for a specified phase to travel from the transmitter to the
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7.3.2 Light Time Modeling 

In the formulation of the modeling procedures used in the computation of the rangl 
and range-rate measurements, an inertial reference frame was selected since 
most orbit integrators use an inertial frame and less computation is required 
to transform a aingle station location than to transform two satellite state vector~ 
An inertial frame also makes it unnecessary to consider any rotational effects 
on the radar signal. All signal paths are straight lines traversed at a constant 
speed c, except as affected by atmospheric refraction. All of the internal calcu
lations are carried out in terms of time. i.e., the light t.ime far the range and 
the time rf'quired for a given number of cycles of the Doppler frequency to be 
counted. The light tim(, calculations are performed by means of a backward 
tracing of the light path (see Figure 7-1). The fit'st step is to compute the trans
mitter lo('ation at time t ... Next, the state vectors of the relay satellite at time 
t3' the target at time t 2 , tb~ relay s2tellite at time t 1• and the transmitter at 
time to are solved for successively, using an iterative proclt>dure. For Doppler 
or coberent mode <lata, the location of the transmitter at ts is also determined. 
If a forward aolu.tion "!ere u~ed, it would begin at to and solve for the appropriatE 
state vectors at tl' t 2 , t 3, and t4 in succession. The advantage of a forward 
Llethod is that the Dop~ler-shifted carrier frequency is known for each leg and th4 
transponder delay can be calculated, giving the exact time of retransmission. 
However, for the C-Band and S-Band frequency ranges involved in the ATSR 
satellite-to-satellite system, the transponder delays are virtually constant and 
suffiCiently small that the motion of the relay satellite and the target durlng the 
delay can be ignored in the light time solution. Since the transmitter location at 
ts ts a function of the relay satellite orbit and the coordinates of the transmitter 
at t4 , it can be solved for most effiCiently using the backward tracing method. 
Large ambiguities in the range measurements and Doppler- measurements can be 
resolved using either method. since the high resolution corr~ction can be derived 
from any solution which is in the neighborhood of the true time. The most im
portant reason for favoring the backward solution is the Simplicity of the calcula· 
tion of the Doppler count interval. 

Since the Doppler count is made over the time interval between two positive
directed zero crossings of the received downlink (Doppler plus bias) Signal. it 
is more convenient to trace the light path backward from the two known receptioll 
times. As the observation is time tagged within 10~s seconds of the beginning of 
the Doppler count. the first of these reception times is set equal to the time tag. 

7.3.3 :rhe Range Observation 

The range observation measures the phase shift in the range tone corresponding 
to the time required for a specified phase to travel from the transmitter to the 
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_- relay satellite, to the target, back to the relay satellite, and then back to the sta- " :/

tion (for the co:.lerent mode the path is simply from the transmitter to the relay
" satellite and back). The range tones are transmitted as a modulation on the :_

carrier signal; they return medulatcd on the carrier (or, in the crystal mode, on
": _ the subcarrier). In practice, the time delay is measured from the zero phase of

;, a 500 kHz, 100 kHz, or 20 kHz transmitted range tone to the next zero phase _
._ in the received signal, which gives the rouud trip time minus a whole number of
_. range-tone cycles. This ambiguity is partiaily accounted for through use of low- '_

" frequency tones, down to a minimum of 8 Hz. In effect, the signal which stops ,_-
the timing clock is disabled until the return of the zero phase of the lowest fre-

> quency range tone which was transmitted simultaneously with the high-frequency
tone. For satellites at near-synchronous altitudes, an ambiguity still remains "

in the number of 8 Hz cycles which should be added to the range time; this am-

biguity must be resolved in the orbit determination program based on an a priori
estimate of the orbit. The total range of the signal propagation path is

PL = [_1(tl) -- r's(t0 )[ + ['r2(t2 ) " _l(tl + A_'I)I _

+ [Tl(t3) - "r'2(t2 + A'2)[ + IYs(t4) "_l(t3 �A_3)[(7-48) ,

for fotu'-way ranging, and j/

: PS = I'fs(ts ) - _1(t-_)] + I'Fs(t4 ) - "F1(t_+ A'_)[ 17-49) _ ;

• for two-way ranging (used for coherent mode tracking only), where !j_

;. T"z ",, inertial position vector of the relay satellite :

;. T2 _ inertial position vector of the target satellite ";

":\ "fs inertial position vector of the ground station _

" PL "_ four-leg round trip range

Ps _ two-leg round trip range

L_ ^ transponder delay during first pass through the relay satellite ';

,_ _r 2 "_ transponder delay at the target satellite _,

/_ "_ transponder delay during second pass through the relay satellite

2

•_" 0
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relay satellite, to the target, back to the relay satellite, and theIl back to the sta
tion (for the cO~.lel.·ent mode the path is simply from the transmitter to the relay 
satellite and back). The range tones are transmitted as a modulation on the 
carrier signal; they return modulated on the carrier (or, in the crystal mode, on 
the subcarrier). In practice, the time delay is measured from the zero phase of 
a 500 kHz, 100 kHz, or 20 kHz transmitted rftllge tone to the next zero phase 
in the received signal, which gives the round trip time minus a whole number of 
range-tone cycles. This ambiguity is partiaily accounted for through use of low
frequency tones. down to a minimum of 8 Hz. In effect, the signal which stops 
the timing clock is disabled until the return of the zero phase of the lowest fre
quency range tone which was transmitted simultaneously with the high-frequency 
tone. For satellites at near-synchronous altitudes, an ambiguity still remains 
in the number of 8 Hz cycles which should be added to the range time; this am
biguity must be resolved in the orbit determination progtam based on an a priori 
estimate of the orbit. The total range of the signal propagation path is 

PL =: Ir1(t 1 ) - rs(to)1 + Ir2(t2) - r1(t 1 + £\'7"1)1 

+ Ir1(t3) - f 2(t2 + £\'7"2)1 + Irs(t4) - r 1(t3 + £\'7"3)1 

for fOUl'-way ranging, and 

Ps =: Ifs(ts) - f 1(t3 )1 + \rs(t4) - r 1{t3 + £\'7"3)1 

for two-way ranging (used for coherent mode tracking only>", where 

fl '" inertial position vector of the relay satellite 

r
2 

'" inertial position vector of the target satellite 

r s '" inertial position vector of the ground station 

PL '" four-leg round trip range 

Ps '" two-leg round trip range 

£\'7" 1 ~ transponder delay during first pass through the relay satellite 

£\'7" 2 ~ transponder delay at the target satellite 

(7-48) 

(7-49) 

£\'7"3 '" transponder delay during second pass through the relay satellite 
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i From Equation (7-45) the four-way signal propagation time is

At R PL (7-50)=--c + AtAI + AtA4 + A_I + A_'2 + A_3

where

AtA1 _ atmospheric delay during leg 1

At^4 _ atmospheric delay during leg 4

r._- vacuum speed of light

The role of the target may be filled by a ground transponder, in which case there i

al _ two additional atmospheric delays
,

AtA2 _ atmospheric delay during leg 2

~ LAtA3 atmospheric delay during leg 3

and Equation17-50)becomes -L,'/-!
?

O "
PL (7-51) _

AtR =--c+ AtAi + AtA2 + AtA3 + AtA4 @ ATI @ A'r2% AI"3 +

However, the atmospheric delays, which are of the same order as the uncertainties ::.
in the system biases, are not included in the GTDS satellite-to-satellite tracking

implementation, reducing Equations (7-50) and (7-51) to ,_

_L (7-52) , '
AtR =--+A-r I +Av"1 +A_ 3c

The satellite transponder time delays are functions of the frequency of the signal ,,"
received by the trmlsponder, i.e.,

l = fl(ui) ,.

A'r 2 = f2(V2) (7-53) , -_.

r

A'r3 = fl(Ua) i

7

t '
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Fro:n Equation (7-4b) the four-way signal propagation time is 

where 

6 t A '" atmospheric delay during leg 1 
1 

6 t A4 '" atmospheric delay during leg 4 

:: '" vacuum speed of light 

(7-50) 

The role of the target may be filled by a ground transponder, in which case there 
al ~ two additional atmospheric delays 

6 t A2 '" atmospheric delay during leg 2 

6 t A3 '" atmospheric delay during leg 3 

and Equation (7-50) becomes 

(7-51) 

However, the atmospheric delays, which are of the Aame order as the uncertainties 
in the system biases, are not included in the GTDS satellite-to-satellite tracking 
implementation, reducing Equations (7 -50) and (7 -51) to 

(7-52) 

The satellite transponder time delays are functions of the frequency of the signal 
received by the transponder, i.e., 

t.'Tl = f 1(v1) 

t.'T2 = f 2(v2 ) 
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The functions fl and f2 are determined by bench calibration of the individual L-_
?

transponders prior to the launch of each satellite, and are entered in GTDS as _

tablee of trans._onder delay versus frequency. Delays for intermediate frequencies °

are then obtained by interpolation. In the absence of tables, a nominal (default)
constant delay can be used.

7.3.3.1 Range Sum Calculation

The actual observations are not corrected for tcansponder delays in the pre-
processor since Doppler corrections to the frequency-dependent transponder
delays are not available until the ground transmitter-to-relay satellite leg has
been solved. Thus, the transponder delay is added to the computed observation
at the end of the light time solution. This does not invalidate the light time
solution itself, however, because during a typical one-microsecond transponder
delay a satellite will only have traveled a distance of the order of a few milli-
meters. The light time for each transmission leg is (neglecting atmospheric

At1 = I_'x(tl) - _r-s(to)I j,'

delays)

C

1: At 2 = I'r2(t2) - "_'l(tl + ATI)I
C

! (7-54)

I-_1(t3)- "r2(t2 + _7"2)1 . :
At 3 = c

p

l'_s(t4)- _'1(t3+ Z_-3)l
At 4 c

For Doppler or coherent mode measurements, a fifth leg is required, i.e.,

I_s(ts) - "_s(t 3)1 (7-55)
At 5 = C

• @
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The functions f t and f2 a::e determined by bench calibration of the individual 
transponders prior to the launch of each satellite, and are entered in GTDS as 
tableE of transr><>nder delay versus frequency. Delays for intermediate frequencies 
are then obtained by interpolation. In th~ absence of tables, a nominal (default) 
constant delay can be used. 

7.3.3.1 Range &tm Calculation 

The actual observations are not corrected for t.ransponder delays in the pre
processor since Doppler corrections to the frequency-dependent transponder 
delays are not available until the ground transmitter-to-relay satellite leg has 
been solved. Thus, the transponder del&.Y is added to the computed observation 
at the end of the light time solution. This does not invalidate the light time 
solution itself~ however, because during a typical one-microsecond transponder 
delay a satellite will only have traveled a distance of the order of a few milli
meters. The light time for each transmission leg is (neglecting atmospheric 
delays) 

c 

Iri t 2) - r 1(t1 + ~'Tl)1 
~t2 = --------

c 

(7-54) 

For Doppler or coherent mode measurements, a fifth leg is required, i.e., 
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' III

J Each leg of the light path is solved for using the following algorithm:

(I) Assume that t3 = t 4, i.e., that At 4 = 0, and calculate the state of the
receiving station and the relay satellite at t 4.

(2) Calculate the time required for light to traverse the path rs (t4) - F1(t4) I

I'_s(t4) - T_(t,)l (7-56)
At 4 -- C

(3) Estimate t 3 as t 4 -At 4 and sob,e for the state of the relay satellite at
this new estimate of t3 .

(4) Refine the estim,'_te of t 3 using the formula

_., = t3 +fCl (t4-t3)-IYs(t4) -fl(t3)l"_ (7-57)ITs(t4) "_l(t3)l

This fornmla is derived from the Newton-Raphson method, which con-
O verges quadratically.

(5) Repeat steps 3 and 4 until convergence is obtained.

(6) Proceed in the same manner to determine At3,A_ 2, andA t 1.

The desired observables are modeled from the exact geometry calculated in

this fashion, t

7.3.3.2 Partial Derivatives of the Range Observation

The range observation, without corrections for transponder delays and atmospheric
delays, can be written as

'EAte - _- ]Tx(t_) - Ts(to)] + IT2(t_) -_(t_)l
e

(7-58)

+ 171(t3) - _2(t2)1 r'-s(t 4) - 7"1(t3)11
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Each leg of the light path is solved for using the following algorithm: 

(1) Assume that t3 = t 4 , i.e., that lH4 = 0, and calculate the state of the 
receiving station and the relay satellite at t 4 • 

(2) Calculate the time required for light to traverse the path rs (t4 ) - r; (t4 ) 

(7-56) 

(3) Estimate t 3 as t 4 - ~ t 4 and solve for the state of the relay satellite at 
this new estimat,e of t30 

(4) Refin~ the estimate of t 3 using the formula 

(5) Repeat steps 3 and 4 unl.il convergence is obtained. 

(6) Proceed in the same manner to determine ~ t3 ,!l ~ 2' and ~ t 10 

The desired observables are modeled from the exact geometry calculated in 
this fashion. 

7.3.3.2 Partial Derivatives of the Range Observation 

(7-57) 

The range observation, without corrections for transponder delays and atmospheric 
delays, can be written as 

(7-58) 
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where ,, .;

j_

r'-s _ ground station position vector :

7"1 _ relay satellite position vector
/

72 _" target position vector

The partial derivatives of the range observation with respect to the target posi-
tion and velocity vectors are then _

E_At, ..1 7",(5!-'*,(t,) 7",(t_- _ (0_ O_,) 17-s9)
_7",(%)_ U_) 7",(,,)II_=(%) _

?Ate - 0 (7-60)

?_2(t2)

where LT2 and TJ3 are unit vectors directed along legs 2 and 3, respectively. "_'"
Similarly, the partial derivatives of the range observation with respect to the
relay satellite position and velocity vectors are ; ... ' '

,2"

• _Ate _ 1 (01 - 02 + 03 - 04) 1"I-61) ,-
, ,B7"1 c ;

i; 8AtR _ .;:
: i - 0 (7-62)

], where 01 and U4 are unitvectorsdirectedalonglegsI and 4, respectively. _i!
d

_ For differentiationpurposes,rl(tl)and rl(t3)have been replacedby r_ which
representsa mean positionvectorlyingbetween'_l(ti)and rl(t31;thevariations

', ofthisme.anvectorcloselyapproximatethoseofYI(t_)and Y (%). Similarly, ..:
_ "Fz(t_)and_ (t3)have been replacedwith'_. , '_ '

• The part_.alderivativeswithrespectto therelaysatellitecoordinatesor with "

respecttotargetsatellitecoordinatesare relatedtothe epoch coordinatesvia
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wht:l'e 

r s '" ground station position vector 

fl '" relay satellite position vector 

f2 '" target position vector 

The partial derivatives of tile range observation with respect to the target posi
don and velocity vectors are then 

Clt.tR __ =0 

Cl"fl (t 2 ) 

(7-59) 

(7 -60) 

where O2 and 03 are unit vectors directed along legs 2 and 3, respectively. 
Similarly, the partial derivatives of the range observation with respect to the 
relay satellite position and velocity vectors are 

(,/-61) 

(7-62) 

where 0'1 and U4 are unit vectors directed along legs 1 and 4. respectively. 

For differentiation purposes. r l (t I) and r l (t3 ) have been replaced by r1 • which 
represents a mean poSition vector lying between r 1 (t I} and r 1 (t 3); the variations 
of this mean vector closely approximate those of fl (tl ) and f (t ). Similarly. •• • 1 3 .. r 1 (t l ) and r 1 (t 3) have been replaced with 1" 1 • 

The partial derivatives with respect to the relay satellite coordinates or \\1th 
respect to target satellite coordinates are related to the epoch coordinates via 
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the appropriate state transition matrix. This matrix can be used to link the epoch

time with any convenient time within the observation time span; however, for }
practical purposes, it can be ccnsidered constant for the duration of the observa- '
tion, which is only about half a second.

Partial derivatives with respect to the coordinates of the ground station or a _ _=
target transponder located on the ground are chained back to earth-fixed geodetic
coordinates, using Equation (7-10). The partial derivatives of the range observa- /
tion with respect to station coordinates at the time of observation are .

_At_ _ 1 (04 _ 01 ) (7-63) !
aT s c

where _s (to) and rs It4 ) have been replaced with a mean station location vector rs" '

In the coherent mode, the second and third legs are missing from the expression _.

for AtR, SO that ,;

aAtR _ 1 (0s _ U4) (7-64) "DJ ,i:

?/_tR - ?AtR 1 (04 -US) (7-65) i
?Ys aT, c _,,

where I_s is a unit vector directed _long leg 5.
5

\ 7.3.4 The Doppler Observation ',

The Doppler observation involves the counting of a number cf cycles of _ fre- _;_
quency returned trom the relay satellite to oetermine its Doppler shift du, _to the
motion of the relay and target satellite_ relative to the ground station and to one
anothcr. The actual frequency counting can be done by one of two methods, the
destruct mode or the nondestruct mode-,.

In the destruct mode, the counter input frequency _, is the sum of a bias fre-

quency I_b plus one-fifth Lhe Doppler frequency. This cotmter input frequency,
nominally 0.1 MHz, is counted up to a fixed number of cycles N The time re-

qulred to count these N O cycles is measured by C0, the number o_ 100 MHz cycles _

$ ,.. ] i"

1976017203-324

the appropriate state transition matrix. This matrix can be used to link the epoch 
time with any convenient time within the observation time span; howev,)r, for 
practical purposes, it can be ccnsidered constant for the duration of the observa
tion, which is only about half a second. 

Partial derivatives with re.3pect to the coordinates of the ground station or a 
target transponder located on the ground are chained back to earth-fixed geodetic 
coordinates, using Equation (7-10). The partial derivatives of the range observa
tion with respect to station coordina.tes at the time of observation are 

(7-63) 

where rs (to> and rs (t4 > have been replaced with a mean station location vector rs' 

In the coherent mode, the second and third legs are miSSing from the expression 
for l:::. t

R
, so that 

(7-64) 

and 

(7-65) 

where tis is a ur.it vector directed along leg 5. 

7.3.4 The Doppler Observation 

The Doppler obRervation involves the counting of a number cf cycles of 3 fre
quency returned h'om the relay satellite to aetermine its Doppler shift du'\ to the 
motion of the relay and target satellitea relattve to the ground station and to one 
another. The actual frequency counting can be done by one of two methods, the 
destruct mode or the nondestruct mod(~. 

In the destruct mode, the counter input frequency LI in is the sum of a bias fre
quency LIb plus one-fifth i.he Doppler frequency. This counter input freCtuency, 
nominally 0.1 MHz, is counted up to a fly.ed number of cycles N· The time re
quired to count these No cycles is reeasured by Co' the n\lmber 01 100 MHz cycles 
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_._ counted in the s:une time period. The counter is then reset to zer% giving rise
to the nomenclature destruct mode. The observation is the average Doppler

_ frequency _d, which is related to the average value _ of the counter input
! frequency over the time interval by

_'d = 5(_i, - Ub) = 5 - _ (7-66)

In the nondestr_ct mode, the counter input frequency is the sum of a bias frequency
plus 100 times the Doppler frequency. !t is nominally 20 MHz, and is to be counted

, over a fixed time interval/_ t_. The resulting count NO is cumulative, since the
:_ counte_" is not reset to zero between measurements (hence _e name nondestruct).

_ The time interval AtRR over which each count is taken is _he s_me as the time
between measurements. The measurement is the cumulative count N o. The aver-

:/ age value of the Doppie,. frequency can he calculated from the raw measurement
_ • v_ the relationship

I00 I00 /

where AN is the increase in the N-cotmt since _he previous measurement, after (J)
J accounting for any counter overflows.
!:

7.3.4.1 Formulation of the Dorpler Observation •

! In all three tracking mc_ies considered, the counter input frequency _,, can be
expressed in the fo_ m _,

' \'K

;'_n= u_ [Act_a_/_ + B%_ - C] (7-68) _

: where _ isthe system referencefrequency,thec_'sand _'s are the Doppler
factorsforindividualtransmissionlegs,and the coefficientsA, B, a,,:iC are1

constantswhich depend onlyon thetrackingmode co-,_tlngmetb.-._and thefre-
quency optionsused (A = 0 forthe coherentmode). H the Lorentzfactor(which

, is approximately1 + 10"12) affectingthetintingof clerksmoving withthetracking
st_ion is assumed to be u_i.ty, t_e Doppler-factor products in Equation (7-68) ,
can be e_pr_.ssed as

0"10t2_l_)2 = 1 -_/_L (7-69a)c
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ORI(HNAL PAGE I_ POOR

9760 7203-325

counted in the s:\IIle time period. The counter is then reset to zer(\, giving rise 
to the nomenclature de~ruct mode. The observation is the average Doppler 
frequency vd' which Is related to the average value v. of the counter input 
frequency over the time interval by In 

(7-66) 

In the nondestruct mode, the counter input frequency is the sum of a bias frequency 
plus 1QO times the Doppler frequency. !t is nominally 20 MHz, and is to be counted 
over a fixed time interv::..16 t

RR
• T!le resulting count No is cumulatlve, Since the 

countu is not reset to zero between measur~ments (hence the name nondestruct). 
The time interval t. tRR over which each count is taken is t.he same as the time 
between measurements. The mea&urement is the cumulative count No. Tha ~ver
age value of the Dopple!.' frequency can be calculated from the raw meaJ;lurement 
via the relationship 

(
_ t.N _ 1') 
LIt b 

RR 

(7- 67) 

where 6N is the increase in the N -cowlt since the previous measurement, after 
accounting for any counter overflows. 

7.3.4.1 Formulation of the Dopplpr Observation 

In all three tracking m~~eEJ considered, thd counter input frequency 
expressed in the fel m 

J.I. can be 
1.1 

(7-68) 

where J.lR2 is the oystem reference frequency, the a. 's and {3's are tlle Doppler 
factors for individual transmission legs, and the coefficients A, H, ai"d l.! are 
constants which depend only on the tracking mode counting method and the fre
quency options used (A = 0 for the coherent mode). If the Lort;ntz factor (which 
is approximately 1 + 10-12 ) affecting the timing of cln~ks m()vlng with the tracking 
station is assumed to be urlity. t~e Doppl~r-factor products in Equation (7-68) 
can be e~prf;ssed as 

(7-69a) 
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a3o.2 = 1 ---Ps (7-6ob) iC

where PL is the time rate of change of the four-leg round trip range (ground
_'.aticn-to-relay-to-target-to-relay-to-ground station) and Ps is the time rate
of change of the two-leg round trip range (ground station-to-relay-to-ground

station). These relationships are derived in d_..ail in Reference 2. I

The average Doppler fr6quency can then be expre_sed as 1 _!
!

_d - k(_. - _) --t,_a - +_ .... k_ 1
_a b

=k a(A+B-C)-v a " +B -ku b .7-70)c

=-ku R (APL+B-_)--O °
where k is 5 or 0.01, depet _iing on whether the desex-act or nondestru_ mode Is i -

being used, and 7_ Is the 5 MHz system reference frequency. For a particular _
tracking configuration, the bias tern. (A + B - C) and the coefficients A and B

can be determined in advance, _o that only the range rates PL and Ps need to
,_e modeled for observation.

The count obtained over a time _nterval AtRR in a destruct mode Doppler count
\ is

tR+AtRR

N = vindt

= vbAt n - -- ,'Ldt -.-_ /_sdt (7-71)C

t t R

= ;:bAtRl_ -_- (.ld_PL + _/3p._)

] 9760] 7203-326

and 

(7-6~b) 

where A is the time rt:.te of change of the four-leg round trip range (ground 
f~ation-to-relay-to-target-~J-relay-to-ground stal.ion) and Ps is the time rate 
of change of the two-leg round trip range ~ground station-to-relay-to-ground 
station). These relationships are derived in dt ... 'il.il in Reference 2. 

The t1.verage Doppler fr&quency can then l.>e e:lLpret~sed as 

~ 7-70) 

where k is 5 or 0.01, dcpeJ. ding on whether the destruct or non<iestru~ ruode is 
being used, and I R is the 5 MHz system reference freque!lcy. for a particular 
tracking configuration, the bias tem-, (A + B - C) and t.he coeWcients A and B 
can be determined in advance, '1CJ that only the range rates PL a..''ld Ps need to 
he modeled for observation. 

The ccunt obtained over a time Interval 6tRR in a destruct mode Doppler count 
is 

_ ":A r .. tu .. 

tw 
(7-71) 

7-29 



" ! I 'J

t

"- L

.. 2

i where Apt and Aps are the changes in the four-leg and two-leg round trip .L!
ranges, respectively, during the time AtrR. The same equation applies in the

i nondestruct mode. These relationships pe,'mit modeling of the Doppler meas-
urement using a backward light-time sol.Ltion algorithm. For either destruct
or nondestruct data, a light-time solution is performed at the time tag, yielding

values of PL and Ps" A second light-time solution is performed at the time tag
plus At_R for the destruct mode or at the time tag minus _t_ for the nonde-

struct mode. Values for APL and Aps are obtained from these solutions, and
a value of AN is computed. The average Doppler frequency is set equal to

_ . klAN/At_ - % 1. Iterative calculations may be performed in the destruct mode,
using a Newton-Raphson method with Atsa as the independent variable, until
the calculated AN is _ithin a specified margin of the preset count N. Corrections,_e

such as transponder delays, are not required, since only the differences are

_ used in the Doppler light-time solutions.

i-

7.3.4.2 Partial Derivatives of the Doppler Measurement

" , Since the dimension of the Doppler measurement varies according to whether

: the destruct or nondestruct mode is being used, and since preprocessing of the /,_
; data will often change the dimensions of the measured obser¢.qtions, GTDS ._

converts all of the observations and expresses the partial derivatives in terms

_ of the average Doppler frequency _d, i.e., _ }

30 ?_d, c (7-72)

In this equation, g is the total state vector, which includes both the position and '
velocity vectors. When At is modeled in the destruct mode _ _

p

_, N O _.
\ At - _

_d

'_ _b +,'_-

:2

and

!"
t

, bat -N O ?_d - (At)2 ?_d 17-74)

_ (S _ ) ?S'o SNo ?So
5 + _,_

/

" where _'o is the state vector at epoch.
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where 6P
L 

and!::'p are the changes in the four-leg and two-leg round trip 
ranges, respectiveiy, during the time !::.trR • The same equation applies in the 
nondestruct mode. Thes~ relationships pe'"Il1it modeling of the DoppJer meas
urement using a backward light-time sol"tion algorithm. For either destruct 
or nondestruct data, a light-time solution is performed at the time tag, yielding 
values of P

L 
and Ps' A second light-time solution is performed at the time tag 

plus !::. tRR for the destruct mode or at the time tag minus t:. tRR for the non de
struct mode. Values for !::.P

L 
and !::.Ps are obtained from these solUtions, and 

a value of !::.N is computed. The average Doppler frequency is set equal to 
k(!::.N/!::.~ - lib)' Iterative calculations may be performed in the destruct mode, 
using a Newton-Raphson method with !::.tRR as the independent variable, until 
the calculated!::.N is within a specified margm of the preset count N. CorrectiOns, 
suc~ as transponder delays, are not required, since only the differences are 
use1 in the Doppler light-time solutions. 

7.3.4.2 Partial Derivatives of the Doppler Measurement 

Since the dimension of the Doppler measurement varies according to whether 
the destruct or nondestruct mode is being used, and Silice preprocessing of the 
data will often change the dimensions of the measnred observgtions, Gl'DS 
converts all of the observations and expresses the partial derivatIves in terms 
of the average Doppler frequency vd t i.e., 

(7-72) 

In this t:quation, S is the total state vector, which includes both the poSition and 
velocity vectors. When !::.t is modeled in the destruct mode 

(7-73) 

and 

-No dVd __ (!::.t )2 Cl~d 
)So - 2-

( 
Vd ) dSo SNo Clso 

5 -- + v~ 
\ 5 I 

"o!::.t (7-74) 

where So is the state vector at epoch. 
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In the nondestruct mode

AN = Ato(100_ d + Vb) (7-75)

and

In the non<.!estruct mode 

(7-75) 

and 

(7-76) 

Now, 

(7-77) 

where P
L 

and Ps represent the average range rates over the time interval 6, tRR • 

The average range rate is given by 

and 

-;- it+~tRR pdt 

p=------ = 

I
t +~tRR 

dt 
t 

p(t + ~tRR) - p(t) 

O~ = _1_ {O,O(t ~ ~tRR) _ O::t~ 
-:>-s ~tRR as os o. 0 0 0 

= -- CI>(t + ~tRR' t ) - -p- CI>(t, to'~ 
1 {cP(t + ~tRR) a (t) ") 

~t 0 c.-s(t) J RR os(t + ~tR!!) 0 
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where p represehts.DL or p s, and ¢(t,t,)isthestatetransitionmatrix (see ,-- :
Section 6.5) from epoch time to to time t_ As indicated in Section 7.3.3, the / "

: f
,_ partial derivatives ol the range with respect to any of the velocity components ,,

: are zero. Thus, Equation(7-79)reducesto

_' _o _t_ L_r(t+Ate) -_¥(t'--'_,.t,to
,]

where _ represents a modified state transition matzix, consisting of the first '
;; three rows of the state transition matrix, i.e.,

i-

: _(t, to)_ ____?7(t) (7-81)
_: 8g(t o ) :,;

where ¥ representsthepositionvectoroftherelaysatellite,thetargetsa_Plite,
/- ;I

_ or the ground station. "

,L././]The partial derivatives of the average range rates/_L andes ,.;-ith respect to ,

the relavsatellitestateatepoch can be expressed as _ _ ._
x

- I_ ,_, (t + AtRR, to) B¥1(t) ¢1 (t, to)?gl(t0) AtRR +AtRR) "" _

i

_ 1 _0 i - O2 + 03 - O4)lt ;_1(t+ AtRR, to) 17-89.) '_
_tRR +AtRR _ .

%

- (Cs - O2 + 0 3 - O4)lt Ss(t, to?,) :.

8bs _ 1 {(Os O_)i Ss(t + At_, to) "
?_s(to ) AtR R - t: ,_tRR

17-83) l":.:

- (Os - 04)It ¢1(t_to 2
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where p represehts PL ot' P s' and cIl(t, tt) is the state transition matrix (see 
Section 6.5) from epoch time to to time t. As indicated in Section 7.3.3, the 
partial derivatives of the range with respect to any of the velocity components 
are zero. Thus, Equation (7-79)redllces to 

(7-80) 

"-
where \1) represents a modified state transition mabix, consisting of the first 
three rows of the state transition matrix, i.e., 

(7-81) 

where r represents the position vector of the relay satellite, the target satellite, 
or the ground station. 

The partial derivatives of tha average range rates PL and Ps ·;.ith respect to 
the relav satellite state at epoch can be expressed as 

(7-82) 

(7-83) 

7-32 

( , 
, .-I 



f

i 6 The partial derivatives with respect to the target satellite state are given by

m

ag:z(to) AtRR t

and

?,_s - o 17-85)
?g2(to)

Finally,thepartiaiderivativeswithrespecttotheground stationstateare

m

bPL 1

bSs(to) -AtlZIZ {(I'J4_t'jl)It,AtRR,s(t +AtRR, to)_ (__0Z)J t _s(t ' t0)_ (7-86)

and

J

b/_s 1 ((0¢- Us)! _ (t AtRR: to) (0, US)It Cs(t,to)}_(7-87)
O bSs (t0) - At'RR t+AtRR*S " - -

After the range-rate partial derivatives have been determined, an appropriate
transformation must be applied to obtain the partial derivative of the input measure-
ment. For exan.ple, the partial derivative of the Doppler count interval is given
by

bat - (At)2 b_d (At)2 lJR bPL (7-88)

_'. b_ ° - NO _E° = N0-----_ bW0 + B b_0/

where A, B, and vR are definedin Section7.3.4.1.

The statevectorsof therelayand targetsatellitesmay alsodepend on dynamic
parameters (e.g.,solarradiation,geopotentialcoefficients,etc.)whichare tobe

solvedfor. Ifbothstatevectorshave a common variable,thepartialderivative
isthesum of thetwo independentpartialderivatives.For example,the partial

derivativeof thefour-legaverage range ratewithrespectto a gravitational
constantG is
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The partial derivatives with respect to the target satellite state arE: given by 

(7-85) 

Finally. the partiai derivatives with respect to the ground station state arE: 

and 

OPs 1 

OS·~ (to) II tRR 

After the range-rate partial derivatives have been determined. an appropriate 
transforrn&tion must be applied to obtain the partial derivative of the input measure
ment. Fllr exan~ple. the partial derivative of the Doppler count interval is given 
by 

(7-88) 

where A. B. and lIR are defined in Section 7.3.4.1. 

Th.e state vectors of the relay and target satellites may also depend on dynamic 
parameters (e.g., solar radiation, geopotential coefficients. etc.) which are to be 
solved for. If both state vectors ha.ve a common variable, the partial derivative 
is the sum of the two independent partial derivatives. For example. the partial 
derivative of the four-leg average range rate with respect to a gravitational 
constant G ifl 
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BG AtRR aG _G

• 1 J'(bPL( t + AtsR) b'_l(t + AtRR) ""

_. _pL(t + AtRR) 8¥2(t • AtRR)_
_ + _'r2(t + AtRR) _'G" ]

_, (7-89)

:: (SPL(t) 87-l(t) 8pL(t) _ (t)_l

_, " _ 1 [(BPL(t +AtRR)_ _-rl(t +k'tRR) _PL(t) _I(t) ");. , _t_ L\B'_I(t _ AtRR) 8G _Tl(t) bG •

_. + .,°,fL(t + AtRR) 8r'2(t BPL(t) E-F2(t ,

7.4 RADAR ALTIMETER MODEL

GTDS models the satellite's orbital state vector in inertial coordinates, However,

i \ the radar altimeter measures the height of the satellite relative to the actual sea

-' _ surface at the subsatellite point. Thus, the observation modeling must relate the
inertial coordinates to the actual sea surface height. This is accomplished by

expressing both the satellite's position and the sea surface in body-fixed coordi- ,
•, hates Xb, Yb and Zb .

_ 7.4.1 Surface Model

z

The sea surface is primarily determined by the e.rth's gravity potential, which
s

is the sum of the gravitational potential and the potential of the centrifugal force
resulting from the earth's rotation. A particular equipotential surface of the

earth's geopotential field, called a geoid, passes through the mean sea level

surface and is nearly spherical, with flattening at the poles and a pear-shaped bulge
in the south- -n hemisphere. The geoid approximates very closely (within a meter
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+ OPL (t + ~tRR) Of2 (t 1" ~tRR») 
Of2 (t + ~tRR) oG 

(7-89) 

7.4 HADAR ALTIMETER MODEL 

GTDS models the satellite's orbital state vector in inertial coordin'ltes. However, 
the radar altimeter measures the height of the satellite relative to the actual sea 
surface at the subsatellite point. Thus, the observation modeling must relate the 
inertial coordinates to the actual sea surface height. This is accomplished hy 
expressing both the satellite's position and the sea surface in body-fixed coordi
nates xb ' Yb and Zb' 

7.1.1 Surface Model 

The sea surface is primarily determined by the e .... rth's gravity potential, which 
is the sum of the gravitational potential and the potential of the centrifugal force 
resulting from the earth's rotation. A particular equipotential surface of the 
earth's geopotential field, called a geoid, passes through the mean sea level 
surface and is nearly spherical, with flattening at the poles and a pear-shaped bulge 
in the south- "'n hemisphere. The geoid approximates very closely (within a meter 
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or two) the real sea surface in ocean areas. Small _tatic and dynamic differences
between the instantaneous sea surface and the geoid are caused by currents, tides,
and weather phenomena. Typical magnitudes of these deviations (References 3
and 4) are presented in Table 7-1.

Table 7-1.
Sea Surface - Geoid Deviation Sources

Source Typical Magnitude

Sea swell 1 meter
Wind waves 1 meter -'

Storm surges 1u centimeters
Barotropic depressions 10 centimeters
Currents 1 meter
Tides 1 meter

Since complete information is unavailable for modeling ther.,e small effects, they
are n_lected in the radar altimeter model.

j"
A reference surface is utilized which is conveniently ch._seu to be a rotationally

_j_ symmetric ellipsoid that best fits the geoid in a lea_.t squares sense. The maxi-mum distance between this ellipsoid and the geoid is approximately 100 meters.

This ellipsoidai surface also represents an equipotential surface of the normal
geopotential, which includes (in addition to the point-mass term} even zonal

harmonic coefficients, of which only C_ and C o are significant. As a result, the
sum of the additional terms needed to fully describe the geopotential (i.e., the
disturbing potential} is small (Reference 5).

'\ PO LE

UNDULATION 1

_.x/- REFERENCEELLIPSOID !

EQUATORIAL RADIUS

Figure 7-2. C,eo_.dUndulation

7-35

r-

1976017203-332

or two) the reaJ sea surface in ocean areas. Small :static and dynamic cllfioereI'.(;es 
between the instantaneous sea surface and the geoid are caused by currents, tides, 
and weather phenomena. Typical magnitudes of these deviations (References 3 
and 4) are presented in Table 7-1. 

Table 7-l. 
Sea Surface - Geoid Deviation Sources 

Source Typical Magnitude 

Sea swell 1 meter 
Wir.d waves 1 meter 
Storm surges 1 v centimeters 
Barotropic depressions 10 centimeters 
Currents 1 meter 
Tides I 1 meter 

Since complete information is unaVailable for modeling 11.er;e small effects, they 
are neglected in the radar altimeter model. 

A reference surface is utilized which is conveniently cl::-se'.l to be a rotationaJly 
symmetric ellipsoid that best fits the geoid in a lea.~! squares sense. The maxi
mum distance between this ellipsoid and the geoid is approximately 100 meters. 
This ellipsoidal surface also represents an equipotential surface of the normal 
geopotential, which includes (in addition to the point-mass term) even zonal 
harmonic coefficients, of which onLy C~ and C ~ are significant. As a result, the 
sum of the additional terms need~d to fully describe the geopotential (i.e., the 
disturbing potential) is small (Reference 5). 

POLE 

UNDULATION --

\ EQUATORIAL RADIUS 

Figure 7 -2. Geo!d Undulation 
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Figure 7-2 shows an exaggerated cross section of the geoid and the reference -[ '
ellipsoid. The distance measured along the normal to the reference ellipsoid
from point Q to the point P on the geoid is called the geoidal undulation and is
desigvated by U. Expressing the geopotential function _ as the sum of the normal/
geopotential qJN and the disturbing potential _D yields

i
. _b(r, _', )_) --_N(r, _', K) + _(r, _', )_) (7-92)

•: where, from Section 4.3,

_N(r ' _,, _) _ ft +__ pO(sin _,) + 64r r
f

and

r

: +-_r _.ffi, CO_\r/ P°(sin*') (7-94, _...,"

+ P_(sin qS') r,.,_L_n sin _ + C_ cos n_]
nm2 mffil

i

In these equations, r is the geocentric radius, _' is the geocentric latitude, )_

is the longitude, and Re i_ the earth's equatorial radius. _e geopotential function
' (the sum of the normal geopotential and the disturbing potential) differs from the
• gravitational potential in that it includes a term which represents the centrifugal

potential due to the earth's rotation. This term is included iv the second zonal

harmonic coefficient. Furthermore, the Co term in the normal geopotential is

a function of C°, whereas Co and Co are not functionally related in the gravi-
tational potential. Consequently, AC° and AC° are included in Equation (7-94) to
account for these differences.

)

In order to evaluate the magnitude of the geoidal undulations, the geoid of potential
' _o is compared with the reference ellipsoid of the same potential _N (Q) = _o. ,

The normal potential _N (P) at P can be approximated by the linear relationship

i_ _N(P) = _N(Q) + \ ?_/U = _N(Q) - _/(Q) U (7-95)
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Figure 7-2 shows lll. exaggerated cross section of the geoid and the reference 
ellipsoid. The distance measured along the normal to the reference ellipsoid 
from point Q to the point P on t~e geoid is called the geoidal undulation and is 
designated by U. Expressing the geopotential function'" as the sum of the normal 
geopotential "'N and the disturbing potential "'n yields 

(7 -92) 

where, from Section 4.3, 

'fN(r, ¢', A) < < f~ (~.) P~(sin ¢') + C~ (~. Y P~(sin ¢' ~ (7-93) 

and 

CXJ ()" f.1. c Re + - )' e - pO(sin¢') 
r L "\r " 

(7-94) 
n=2 

"" 2,4 

+!:!:. )' )' ~ I pm(sin ¢') (s,n sin rnA + em cos rnA] 
Q) " ~ \" 

rLL fl n n n 
"-2 m'"l 

Tn these equations, r is the geocer,tric radius, ¢' is the geocentric latitude, "-
is the longitude, and Re if, the earth's equatorial radius. The geopotential function 
(the sum of the normal geopotential and the disturbing potential) differs from the 
gravitational potential in that it includes a term which represents the centrifugal 
potential due to the earth's rotation. This term is included in the second zonal 
harmonic coefficient. Furthermore, the C~ term in the normal geopotential is 
a function of C~, whereas C~ and C~ are not functionally related in the gravi
tational potential. Consequently, 6.C~ and 6.C~ are inclu.ded in Equation (7-94) to 
account for these rlifferences. 

In order to evaluate the magnitude of the geoidal undulations, the geoid of potential 
"'0 is compared with the reference ellipsoid of the same potential "'N (Q) = "'0' 
The normal potential "'N (P) at P can be approximated by the linear relationship 

(7-95) 
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_ where T (Q) is normal gravity, i.e., the magnitude of the gradient of the normal
geopotential on the reference ellipsoid at the point Q, where the algebraic sign is
consistent with geodetic convention.

By definition
i

_b(P)= _n(P)+ _D(P) (7-96)

and

_(P) = _o = _N(Q) (7-97)

Substituting Equations (7-96) and (7-97) into Equation (7-95) yields Brun's Formula
(Reference 5) for the geoidal undulation

U - _v(P) (7-98)
T(Q)

The geoidal undulation U is a function of the disturbing potential at the point P

and normal gravityT atthe pointQ. However, frequentlythe coordinatesofthe _, ,,, '_
pointQ are known, butnotthoseofpointP. Inthiscase,evaluationof thedis- _'_

turbingpotential_b_ at Q insteadofP willcause onlya small error in thecalcu- !_lationof U.

A betterapproximationforthedisturbingpotential_D(P)can be obtainedby _ _
correcting the geocentric radius r by the undulation U, calculated as described _ }

above. This valuecan thenbe used in Equation(7-98)to obtaina bettervalue _

of U. Standard (normal) gravity, which is the gradient of the normal potential i

_N' is derived as a function of geodetic latitude and equatorial gravity in
Reference 3, yielding ;

7 = _',(I - f2 sin q_+ f4 s in4 _) (7-99) ._

where _

_ _ 15 m2 (7-100a) _!1 f2 26 fm +
f2 = - f +{-m )H"_"

I f2 5 (7-100b) '
f4 = --2 + _ fm ""

_2R e
3 m2 . (7-i00c)m4 - ,,_
2 7,
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where Y (Q) is normal gravity, i.e., the magnitude of the gradient of the normal 
geopotential on the reference ellipsoid at the point Q, where the algebraic sign is 
consistent with geodetic conver.tion. 

By definition 

(7-96) 

and 

(7-97) 

Substituting Equations (7-96) and (7 -97) into Equation (7 ·,95) yields Brun's Formula 
(Reference 5) for the geoidal undulation 

u = I/ln (P) 
y(Q) 

(7-98) 

The geoidal undulation U is a function of the disturbing potential at the point P 
and normal gravity 'Y at the point Q. However, frequently the coordinates of the 
point Q are known, but not those of point P. In this case, evaluation of the dis
turbing potentiall/l~ at Q instead of P will cause only a small error in the calcn-
lation of U. " 

A better approximation for the disturbing potential ..pD (P) can be obtained by 
correcting the geocentric radius r by the undulation U, calculated as described 
above. This value can then be used in Equation (7 -98) t.o obtain a better value 
of U. Standard (normal) gravity, which is the gradient of the normal potential 
I/lN' is derived as a function of geodetic latitude and equatorial gravity in 
Reference 3, yielding 

(7-99) 

where 

5 1 2 26 15 2 
f2 = - f + --m .J.._ f - - fm + - m 2 . 2 7 4 

(7-100a) 

f 1 2 5 
4 = - - f + - fm 

2 2 
(7-100b) 

(7-100c) 
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and . l

_'e _" normal equatorial gravity, which is 978.049 cm/sec 2 for the Inter-
' national Ellipsoid '.

, -L

"_ earth's rotation rate = 0.72921151 × 10 -4 rad/sec , :

_ _b _- geodetic latitude

f _- flattening of the reference ellipsoid; f = (a - b)/c, where a and b are _:
_-" the semimajor and semiminor axes, respectively, of the reference

ellipsoid.
7

_ The value of m is obtained iteratively from the expression

_- e 3 m2
,/ m-

_::_ i 7e 2 _-_ (7-101) ,

, "x_ starting from m0 = 0.00344986. /s(.
_ ,_.-

:_ The normal geopotential field and the normal gravity field of the reference

ellipsoid are determined by four constants, usually chosen to be ]
1

_' a _ semimajor axis of the reference ellipsoid

il c _. flattening of the referent" ellipsoid/

" _'e _" equatorial gravity

_,__ _ "" earth's angular speed of rotation.
\

0
The flattening f of the reference ellipsoid of revolution! and the values of C_ for
the sphericalharmonic expansionof thenormal potentialare directlyrelated. ,

Thus, Co can be usedinsteadoff as one ofthe fourconstants.

7.4.2 Measurement Equation

!
Ideally,the radar altimetermeasure theminimum distancefrom the spacecraft

to the sea surface, which is equivalent to the distance from the sea surface to
the spacecraft measured normal to the sea surface. Since the sea surface is

_:_ closelyapproximatedby thegeoid,the geoidisa convenientr_ferencesurface
: for altimetry; however, the present global mathematical models of the geoid are
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and 

y~ '" normal equatorial gravity. which is 978.049 cm/sec2 for the Inter
national Ellipsoid 

w '" earth's rotation rate = 0.72921151 x 10-4 rad/sec 

¢ '" geodetic latitude 

f '" flattening of the reference ellipsoid; f = (a - b)/c. where a and b are 
the semimajor and semiminor axes, respectively, of the reference 
ellipsoid. 

The value of m is obtained iteratively from the expression 

(7-101) 

starting from lllo = 0.00344986. 

The normal geopotential field and the normal gravity field of the reference 
ellipsoid are determined by four constants, usually chosen to be 

a '" semi major axis of the reference ellipsoid 

~ '" flattening of the referenc' ellipsoid 

Y '" equatorial gravity e 

W '" earth's angular speed of rotation. 

The flattening f of the reference ellipsoid of revolutioil and the values of C~ for 
the spherical harmonic expansion of the normal potential are directly related. 
Thus, C~ can be used instead of f as one of the four constants. 

7.4.2 Measurement Equation 

Ideally, the radar altimeter measure the minimum distance from the spacecraft 
to the sea surface, which is equivalent to the distance from the sea surface to 
the spacecraft measured normal to the sea surface. Since the sea surface is 
closely approximated by the geoid, the geoid is a convenient reference surface 
for aJtimetrYi however, the present global mathematical models of the geoid are 
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not accurate in fine detail. In the remainder of this section, the term geoid will
denote the mathematical model of the geoid represented by means of a spherical
harmonic expansion.

,., POLE
,,. .ITE

.: O

.j
;i

-_.

'i h H

H'
;- ; h'

g'_,:'• SU RFACE ..,/j __}

REFERENCE

_'-;' _. _,_ ELLIPSOID _,

_. //S

:" EQUATORIAL
: RADIUS

; Figure 7-3. Geoid Geometry

The minimum distance from the geoid to the spacecraft is indicated by the l_ne

! '_',,. segment OP in Figure 7-3. Solving for this distance is dtffteult because of the
complicated form of the equations for the geopotential. Therefore, an approxi-

.; motion to the distance H is made by using the length H' of the line segment OP'
along the normal to the reference ellipsoid passing through the spacecraft.

:_ The spacecraft position is assumed to be known in earth-fixed Cartesian coordi-
nates x_, Yb, and zb by transforming from inertial to body-fixed coordinates

:; using the methods of Section 3.3.1. The geocentric latitude _', the longitude X, ,

: and the magnitude rb of the position vector to the spacecraft are given by

_, = tan- 1 _U . (7-=02)

+
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not accurate in fine detail. In the remainder of this section, the term geoid will 
denote the mathematical model of the geoid represented by means of a spherical 
harmonic expansion. 

REFERENCE 
ELLIPSOID 

POLE 

EQUATORIAL ~ 
RADIUS 

Fib'Ure 7-3. Geoid Geomt:try 

The minimum distance from the geoid to the spacecraft is indicated by the }ine 
segment OP in Figure 7-3. Solving for this distance is difficult because of the 
complicated form of the equations for the geopotential. Therefore, an approxi
mation to the distance H is made by using the length H' of the line segment OP' 
nlong the normal to the reference elliptsoid passing through the spacecraft. 

The spacecraft position is assumed to be known in earth-fixed Cartesian coordi
nlltes xl:' Yb' and Zb by transforming from inertial to body-fixed coordinates 
using the methods of Section 3.3.1. The geocentric latitude ¢' , the longitude A, 
and the magnitude rb of the position vector to the spacecraft are given by 

[ 
z. ~ , -1 L' 

¢ = tan - -=--:;
V' .:2 . y' 

· ... b·r b ..... 
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.h.

t

_= tan-I [__I (7-103)
md ..

: rb = /-4 + Yb2 + z_ (7-104) ] •

The geodetic latitude _ and altitude h' to the subsatellite point S' on the reference ;i
- - ellipsoid are obtained from Section 3.3.6 as

-1 _:"- ' Zb [I N (2f f2) (7-105)
_: tan_-_ (N +h')

where 'i

!! "": N - (7-106) ,?
, _/i - (2f - f2) sin 2 _ :-_

' j;
and ._// _

h' = - N (7-107) :--- _,"
cos ';:

J

Equations (7-105), (7-106), and (7-107) must be solved iteratively.

The geoid undulation U' at S' is obtained from Brun's Equation, Equation (7-98), ._
(where _D (P) is given in Equation (7-94) and/IS') is given in Equation (7-99)) i_
and, if necessary, using the procedure described fn Section 7.4.1 to obtain the "_

\ required precision. 'i
?"

Therefore, the resulting approximation for H is _:

H' h' u' (7-108) _,,

_ 7.4.3 Partial Derivatives

j Partial derivatives of the observation are determined by transforming the observa- i

_ tion partial derivatives with respect to body-fixed coordinates to partial deriva- _:
rives with respect to inertial Cartesian coordinates as described in Section 7.2.2.

The partialderivativeofH withrespectto'_ istransformedto a partialderiva- ,_

ttve with respect to R as follows 4 ii_

i 7-40 _-
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(7-103) 

l.nd 

(7-104) 

The geo~etic latitude ¢ and altitude h' to the subsatellite point S' on the reference 
ellipsoid are obtained from Section 3.3.6 as 

tan ¢ = b 1 _ . , (2f _ f2) Z [N J-1 

I~ + yt (N ;. h ) 
(7-105) 

where 

(7 -106) 

and 

/~ + y2 
h' = b _ N (7-107) 

cos <P 

Equations (7-105), (7-106), and (7-107) must be solved iteratively. 

The geoid undulation U' at Sf is obtained fr0m Brun's Equation, Equation (7-98). 
(where l/J

D 
(P) is given in Equation (7-94) and .,-IS') is given in Equation (7-99» 

and, if necessary, using the procedure described in Section 7.4.1 to obtain the 
required precision. 

Therefore, the resulting approximation for H is 

H ~ H' = h' - u' (7-108) 

7.4.3 Partial Derivatives 

Partial derivatives of the observat1~n are determineri by transforming the observa
tion partial derivatives with respect to body-fixed coordinates to partial deriva
tives with respect to inertial Cllrtesian coordinates as described in Section 7.2.2. 
The partial derJvative of H with respect to rb is transformed to a partial deriva-
tive with respect to R as foli~ws ~ .. 
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I (7-1o9)

The partial derivative of H in Equation (7-109) involves numerous higher order
terms because of the dependence of the location of pv (Figure 7-3) on the r::_ula- i

tion Uv and the coordinates xu, Ye, a.ld zb . However, these effects can be neglected
to first order. The partial derivative of H with respect to _b is therefore approxi-
mated as

_H _ _h' _ _,T (7-110)

h'
where

Ixl
%

h'= Yb _" (7 111) /J

b Z

_J Equation (7-110)is exact a spb_rical geoid. I

(

7.5 VERY LONG BASELINE INTERFEROME'GER (VLBI) MODEL
)

The Very Long _aseline Interferometer (VLBI) system records signals trans-

mitted by a satellite, along with timing signals from a local atomic clock, at ti_"
,\ two or more ground stations. The presence at each statio.l of accurate atomic

" clocks, which can be coordinated by comparison with p_rtable clocks dispatched
between statiohS, means that the signals from the satellite recorded at each
station can be time correlated with great precision. 2_e ground stations "

measure phase differences between simultaneously received signals transmitted
by the spacecraft. The observables are a phase difference time interval r snd

its time derivative 4. The time difference r is the difference in the spacecraft

range as measured from each of the ground stations on a given baseline, divided
by the speed of ligh_ c. Ne_iecting atmospheric effects, the time difference
between reception of the same wavefront or phase at the first and second stations
is ]

, ,{ }: -rOh - P_): T I_x,_(t)l - IT_,_ft._ _')l (7-112)
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(7-109) 

The partial derivative of H in Equation (7 -109) involves numerous t.igher orde"f 
terms because of the dependence of the location of P' (Figure 7-3) on thf' t'~'_:!ula
tion U' and the coordinatt:s xu, Yb' a:1d Zb. However, these effects can be neglected 
to first order. The partial derivative of H with respect to rb is therefore approxi
mated as 

where 

=-l "b - x' 

z Z' 
b -

Equation (7-110) is exact for a sph"rical geoid. 

7.5 VERY LONG BASEUNE INTERF~ROMET.li:R (VLBI) MODEL 

(7-110) 

(7 111) 

The Very Long .Haseline Interferometer (VLBI) system records signals trans
mitted by a satellite, along with timing signals from a local atl')mic clock, at 
two 01' more ground stations. The presence at each statio.l of accurate atomic 
clocks, whi0h can be coordinated by comparison with v:>rtable clocks dispatched 
between statiOl.s, means that the signals from the satdl1te recorded at each 
Ri~lion can be time correl&.ted with great precision. The ground stations 
measure phase differences between simultaneously rec(-:lived signals transmitted 
by the spacecraft. The observables are a phase difference time interval T and 
its time derivative 7-. The time difference T is the difference in the spacecraft 
range as measured from f-)ach of the ground stations on a given baseline, divided 
by the speed of light c. Negiecting atmospheric effects, the time differen,~e 
between reception of the same wavefront or phase at the first and secont! stations 
is 

(7-112) 
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b- where Pl and P2 are the ranges from the _irst and second statto,_ to the satellite, _
respectively. The range vectors F1_ and rt t 2 are evaluated tn the local tangent
plane system c_,:'.tere,_ ,t the firr.t -_:-_o_eond stations, respectively. An it_ratlv¢

procedure is required to determine r, since t,' _ actual light time be' : .'. the
satellite and the station is not kno_-,', initiaUv. The iteration is initiated oy assum-

ing that _ is zero on the right-hand e_de of _:quation (7-112).

The time-rate (Doppler) difference _ is _e difference in spacecr_t r_uge rate
as measured from each station and di,_ded by c, i.e.,

1 1tl (t) " _ltl(t -rlt2(t �I')• r'lt2(t + 1" (7-113)

The partial derivatives o_ 1" and ¢ with respect to the epoch state vector components
and dynamic model parar,_eters are _.ven by

a.._T= 1 ._aP1(t),h'rlt(t)_ a_(t)

_ c _it(t ) _R(t) _ (7-114a)

_P2(t') _rlt(t') aR(t' _ /.s_.

t +_.,, (t') _(t') _-'_--J 'J

?-;- 1 (t)

I �__._...__.

:". _r_t(t) \ hR(t) _ aR(t) 8P / (7-1iIb)

_.

_'r'it2(t') \ aR(t') hP aR(t') _PP /J

where t'= t + 1". *

,_ The partial derivatives _(t)/_i and _R(t)la_ are obtained from solutions to the
variational equations; the partial derivatives _'_lt(t)/aR(t), arz:(t)/dR(t), and

_r_(t)/_R(t)are presented in Section 7.2.2; and the partial derivatives of the

•'j, p's and/3 's with res._ect to their .'espective station-centered loca_ tangent plane
coordinates are given h_ Sections 7.2.3.2 and 7.2.3.3.
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wbere P1 and P2 are the ranges fl.'om the first au·J second statiul13 to the sateUittl, 
respec.tively. The range vectors fl. and "f

lt 
are evaluated In the IOCkl t:angl'mt 

planE' 9y!'!t~rn r:',:,!'.~~!'eti qt th~ f!!':::~ oi.~ 'Oi..~ond Jtations, respectively. An iwrath~ 
procedure is requtred to determine T, since tJ ,\:I actual light time be· ',: ,~the 

satellite and the station is not !mOWit ;nitiaUv. The itsrati:>n iR initiated oy assu.m
ing that T is zero on the right-hand pi.de oj t:quation (7 -112). 

The time-rate (Doppler) difference'; is thG difference in spacecraft rdDge rate 
as measured from each station and divided by c, i.e., 

(7-113) 

The partial derivatives or T and 7- with respect to the epoch state vector components 
and dynamic model parar.J.eters are gi. ... ~n by 

aT = ~ {ap1(t) of1t(t) 'OR(t) 

oj) c or1t(t) oR(t) oj) 

+ oP2(t' ~, ~f1t(t') oR(t' 1 
Cfu (t') oR(t') OJ)) 

where t ' = t + T. 

oi(t») 
oj) I 

(7 -114a) 

(7-H4b) 

The partial derivatives ClR(t)/op and c,ft(t)/ol> are obta\noo from solutions to the 
v~riational equations; the partial derivatives Oflt(t)/oR(t). c"flt (t)/dR(t). and 
oflt(t)/o'R(t)are presented in Section 7.2.2; and U:e partial derivatives of the 
p'S and p IS with res~ct to their ~'especti\"e station-centered loca! tangent plane 
coordinat~s are given 'll Sections 7.2.3.2 and 7.2.3.3. 
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7.6 ATNOSPIIERIC EFFECTS i

All satelliteradartrackingobservationsfrom ground trackingstationsare _,
affectedby theprop_ation characteristicsof electromagneticradiationthrough

tlleearth'sstmo3phere. The be._a_.ng,or refraction,of theray_ means thata .. ,
measurement ,-{the directionofthesignalpropagationattheground does not i
correspondto ,L_,,__dlrcctionoftherelativepositionvectorbetween thespacecraft ._

_.,_ ray bendingalsorequiresthattheinterpretationand thetrackingstation. "" _

of theDoppleL--shff_m_',.surementmust be based on theprojectio_ofthe appro-

priatevelocityalongthe localpropsgationpathdirection,not alongtherelative | !,

positionvector. Sincethelocalpropagationspeed inthe atmosphere is different i

from thevacuum speed,the_.nterpretationoftime-delaymeasurements must _i
account for this effect.

I In principle, the refraction effects may be characterized in terms oi the variable I _

local index of refraction n of the medium through which the signal is propagated.
Itis assumed inthe correctionalgorithm_thatlocallytheatmosphere is spherically :_r

symmetric with respect to the center of the eat_h; therefore, n varies only with _,
the altitude h (measured reAi_ly) at each tracking statio _, However. the n

versus h _rsfii_ is determined as a function of the __tation location and the varia- ,_/_(dons in solar flux. The nature of these deperdencies is discussed in the following
sections, which present the mathematical algorithms characterizing the three basic :_'

refracticn effects considered.
2:

7.6.1 Troposphere Model (References 6 and 7)

The troposphere is the familiar gaseous atmosphere, which extends from the
earth'ssurfaceupward to a sensibh:limitol about30 kilometers. For the ._

microwave frequenciesof interestinspacecrr% tracking,thetroposphereis

essentially a nvndispersive medium, i.e., the index of refraction n is independent t .
ofthefrequencyof thesignaltransmittedthroughit.Withinthisregion,n is ' :

expressed as

n = I + N T (7-115) *'7'_4

where thetroposphericrefractivityNT depends onlyon thethe.'._odynamic
properties of the air. Since temperature and pressure data are not readily

available at altitude, surface data are used to compute the surface refractivity t /_i

N,, and an exponentialdecay withaltitudeis assumed i ' :i

-(h-h_ ) / XT '_
Nz : N,e (7-116)
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7.6 ATM0SPII~mC EFFECTS 

All satellite rad&!' trackiI'l~ observaticns from ground tracking stations are 
affect.ed by the propagation characteristics of electromagnet~c radiatioll through 
the earth's atm03phere. The be;lrH.ng, or refraction, of (Ie ray!" means tp.at a 
measu.rement "'t' the dircctit'r.. of the signal prop~ation at the ground does not 
corNspond t.) th~ di::.-~ction of the relative position vector between the spacecraft 
and the tracking station. T~.~s ray bending also requires thli.t tha int~rpretation 
of the DoppleL ·-shi!~ rn"'l.surement must iJe based on tlJe projectloi:l of the appro
priate velocity a1011~; the 10IJal propagation path dire~tion, flOt along the relative 
positioll vector. Since tbe local propagation speed in the atmosphere is diftt;.!"ent 
from the vacuum speed, t.he interpretation of time-d€lflY measurements mus/; 
account for this effect. 

In principle, the reb action effects may be ch"lrac..:terizeri in ter:ns oi the variable 
local index of refraction n of the medium through which the E;ignal is propagated. 
It is assumed in the correction algorithm;:; that locally the at.mot:.phcre is spherically 
symmetric with respect to the center of the earth; ther,afore, n varies ollly with 
the Rltitude h (measured r~ially) at each t-:ack.i.ng statio"', Ho~ever'. the n 
versus h prGfil~ is determineci as a functilln of the station location and the varia
"ions in solar flux. The nature of these deperdencies is discussed in the following 
sections, which present the mathematical algorithms characterizing the three basic 
refracticn effects considered. 

7.6.1 Tropospherb Model (References 6 and 7) 

The troposphere is the familiar gaseous atmosphere, which extends from the 
e&.rth's surface upward to a sensibl\~ limit oi about 30 kilometers. For the 
microwave frequeilcies of interest in spacecrr~t tracking, the troposphere is 
essentially h nundispersive medium, i.e., the index of refraction n is i!ldependent 
of the frequency of the sisnal transmitted through it. Within thiR ragion, n is 
expressed as 

(7 -J15) 

where the tropospheric refractivity NT depends only on the the :.nodynamic 
properties of the air. Since temperature and pressure data are not readily 
available at altitude. surface data are used to compute the surface refractivity 
N •• amI an exponential decay with ali;itud~ is assumed 

-(h-h ) I H 
Ny ::: N. e I T (7-116) 
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where h, and N_ are the altitude and refractivity at the tracldng site, respectively, C_
and HT is the tropospheric scale height, i.e.,t

_ HT = _ NT(h) dh ,

The National Bureau ,, Standards Central Radio Propaga_.ion .T.-_,boratory

_• i (NBS CRPL) giver, values of the scale height for different values of the surface
refractivity. Referen-e 6 stresses the importance of using corresponding v_hes _ _.

i Of HT and N. (Some formulations have fixed H T at a standard value, allow'_
_ only N to vary.)

7.6.2 Ionosphere Models (References 8 through 1_.)
.$

/
_ ' Abo"e the troposphere is another "atmosphere" called the ionosphere, consisting

of ionized particles and extending from about 80 kilometers to beyond 1000
_- kilometers. The index of refraction n is less than 1 in this dispersive medium

_r and it is expressed rigurously in terms of the ionospheric refractivity NI . For "/_

the sign convention chosen, the ionospheric refractivity N I > 0 and

n2 -- 1 - 2Nx 17-117) "

|

The difference from unity is small, and to first order in the refractivity Nx, n
can be written in a form analogous to that for the troposphere .i

• _

n -- 1 - Nx 17-118) !
\

• \\ The refractivity depends on the electron density Ne (in electrons/m 3) and the :
i signal frequency _ (in Hz) according to

40.3 N,
N_ - (7-119) ,

u2 i
I

! i

The electron density prof':le for the ionfJsphere reaches a maximum value N_
at altitudeh_, decayingto zero very rapidlybelow,and very slowlyabove,this

. altitude (Figure 7-4). The exact shape of the profile and t'_e values of N and h
', are highlyvariablefunctionsofgeographicallocation,time ofday,season,and

" sunspot activity. If sufficient ionospheric sounding data are measured (with ._
i

i £,
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where h. and Ns are the altitude and refractivity at the trad'lng site, reE"pectively, 
a&ld HT is the tropospheric scale height, i.e .• 

The National Bureau .~ Standards Central Radio Propagat.ion J ·~ratory 
(NBS CRPL) givec values of the scale height for different values of the surface 
refr clCtivity. Referen:--e 6 stresses the importance of using con'esponding values 
oi HT and Ns ' (Some formulations have fixed HT at a standard value, alluw:ug 
only N to vary.) s 

7.6.2 Ionosphere Models (References 8 through 12) 

Abone the troposphere is another "atmosphere" called the ionosphere, consisting 
of ionized particles and extending from about 80 kilometers to beyond 1000 
kilometers. The index of refraction n is less than 1 in this dispersive medium 
and it is expressed rigurously in I.erms of the ionospheric refractivity NI , For 
the sign convention chosen, the ionospheric refractivity NI > 0 and 

n2 = 1 - 2N I 
(7-117} 

The difference from unity is small, and to first order in the refractivity N1 , n 
can be written in a form analogous to that for the troposphere 

(7-118) 

The refractivity depends on the electron density Ne (in electrons/m3
) and the 

signal frequency 11 (in Hz) according to 

40.3Ne 
NI = ---

112 

(7-119) 

The electron denSity profile for the ionlJsphere reaches a maximum value Nm 
at altitude I\n, decaying to zero very rapidly below, and very slowly above, this 
altitude (Figure 7 -4). The exact shape of the profile and r'e values of N

m 
and h

m 
are highly variable functions of geographical location, time of day, season, and 
sunspot activity. U sufficient ionospheric sounding data are measured (with ~ ... 

7-44 
REPRODUCmILlTY fJF TBI 
ORIGn~AL PAGE IS POOIt 



". i _ : d

ionosonde or a backscattering radar) at a given location arid time, a reasonably __
• ._urate construction can be made of the electron density profile. From Lhese :_
dat_, interpolated to the time and geographic location of interest, the values of

N and h, can be estimated.

I

i

N = N_ e-k5a5

! "' i2000 km = h5

I = N4 e'k4a4

1

1000 km = h4, = N3 e-k3a3

..c h3" = N2 e-k2a2
z I I I 4

.._ -- a21 I I ,_' tU

-r h2. iL...L_.! = N1 e-klal ;
--+-+-"

hl _--i_ I _ =mm -'Y d I \ i
h .,-L -_---I I i_ e _,

$1 I I I
bl I I I I i_

I I = Nm " ',

I I 1 I tl I :_
i J I

d

N5 N4 N3 N2 NI Nm

ELECTRON DENSITY, N
J

o

Figure 7-4. Empirical Worldwide Electron Density Profile
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ionosonde or a backscattering radar) at a given location and time, a reasonably 
, ."urate construction can be made of the electron density profile. rrom Lltese 
dat~, interpoJated to the time and geographic location of interest, the values of 
Nm and hID can be estimated. 

H 

2000 km = hs 

1000 km = h4 

'A 

N2 Nl Nm 

ELECTRON DENSITY, N 

Figure 7-4. Empirical Worldwide Electron Density Profile 
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._ 7.6.2.1 Modified Chapman Profile i._9 _]

- The quantitiesNm and hm defineonlyone pointon theelectrondensityversus
altitudeprofile.Tlleotherpointscan be assumed to lieon a modifiedChapman

-_ profileinthe form (Reference8) ._

. Ne = Nme(1-z-e'Z) (7-120)

L-
q

_ h-h
z - m (7-121)

• H I

=.
where h isthealtitude.andH z isthe ionosphericscaleheight.

'_: SubstitutingthemodifiedChapman profile(Equation(7-120))intoEquation(7-119)
gives

:i 4o.at
. J NI _ e(1-z-e"z) (7-122)

7/2

!

as the altitude variation of the ionospheric refractivity. I
t

It is generally conceded that the modified Chapman profile does not represent I
the best possible normali_ed proi._le. The fixed ratio of the total electron content
above the maximum point to that below tends to be too large, on the average,
compared with the observed diurnal variation. However, the theoretical founda-

tion upon which Chapman based thederivation(Reference9) az_dthe susceptibility

ofthefunctionto treatmentof refractioneffectsiv a closedanalyticalform argue
for it_ continued use.

: In GTDS, the maximum electrondensityN m and itsassociatedaltitudeh m are

determinedas functionsofthetrackingstationlocationand thevariationsin

solarflux.The method ofcharacterizingand determiningthese,,ariablesis
describedinSection7.6.2.3.The ionosphericscaleheightis givenin Reference8
as

Hz =35 [30+ 0.2(h- 200)] (km) (7-]23)
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7.6.2.1 Modified Chapman Profile 

The quantities Nm and hm define only one point on tha electrnn density versus 
altitude profile. The other pOints can be assumed to lie on a modified Chapman 
profile in the form (Reference 8) 

(7-120) 

h-h 
m (7-121} z=---

HI 

where h is the altitude .and H I is the ionospheric scale h~ight. 

Substituting the modified Cbapman profile (Equation ('l-120» into Equation (7-119) 
gives 

40.3N 
N I =. m e (l-z-e -z) 

112 

(7-122) 

as the altitude variation of the ionospheric refractivity. 

It is generally conceded that the modified Chapman profile does not represent 
the best possible normalhed profile. The fixed ratio of the total electron content 
above the maximum point to that below tends to be too large, on the average, 
compared with the observed diurnal variation. However, the theoretical founda
tion upon which Chapman based thp derivation (Referen~e 9) 8IJ.d the susceptibility 
of the function to treatment of refraction effects il' a closed analytical form argue 
for its continued use. 

In GTDS, the maximum electron density Nm and its assocj ated altitude hm are 
determined as functions of the tracking station location and the variations in 
solar flux. The method of characterizing and determining these "ariable~ is 
descri:"'ed in Section '1.6.2.3. The ionospheric scale height is given in Reference 8 
as 

5 
HI = 3" [30 + 0.2(hm - 200)] (km) (7-]2:;) 
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i 1!7.6.2.2 Empirical Worldwide Profile !

The electron density profile is modeled as consisting of a btparabolic bottomside _

layer-, a parabolic topside layer, and a five-sectioned topside exponential layer, 1 :
as shown in Figure 7-4. This profile is defined by the following equations _i

t
Bottomside )

t

iNI=
\ !

!

Topside t

N x : N m - (Segment B- C) (7-125a)

P

-klal (7-125b)NI = N1e (Segment C-D) •
i S \

NI = N2e -k2a2 (Segmeklt D- E) (7-125c)

; l_i -k3a 3
_'*" NI = N3e (Segment E-F) (7-126d)

-k4a 4
Nx = N4e (Segmer, t F- G) (7-125e)

NI = Nse-ksas (Segment G-H) (7-125f) "

_ where i

"" _ Yt = ay_ ('i-126a) i',
,%

_, "I for foF2 < 10.5 MHz
a = (7-126b)

.1333 (foF2- 10.5) for foF2 > 10.5MHz

b -- h - h (7-126c)
m

a! = h - hI (7-126d)

a 2 = h - h2 (7-126e) '

a3 -" h - h3 (7-126f)
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'{ .6.2.2 Empirical Worldwide Profile 

The electron density profile is modeled as conSisting of a tlparaaolic bottomside 
layel-, a parabolic topside layer, and a five-sectioned to!='side exponential layer, 
as shown in Figure 7-4. This profile is defined by the following equations 

Bottomside 

2 

N, = N. ~ - :;) (Segment A- B) 

Topside ----

N, =Nm (1- :~) (Segment B- C) 

NI 
-k a 

== Nt e 1 1 (Segment C-D) 

-k a 
NI = N2e 2 2 (Segme'1t D-E) 

-k a 
NI = N3 e 3 3 (Segment E-F) 

-k a 
N - N e 4 4 (Segment F-G) I - 4 

NI 
-k a = NSe 5 5 (Segmen t G-H) 

where 

it ::: aYm 

for foF2 ~ 10.5 MHz 
a- ft - 'h "t .1333 (fOF2 - 10.5) for foF2 > 10.5 MHz 

b::h-h 
m 

8 1 :: h - h1 

a 2 :: h - h2 
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(7-124) 

(7-125a) 

(7-125b) 

(7-125c) 

(7-126d) 

(7-125e) 

(7-125f) 

('i -126a) 

(7-126b) 

(7-126c) 

(7 -126d) 

(7-126e) 

(7-126f) 
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.. ii I
]_ --J I ____J _ a- J- I lill i

• I: a4 = h - hA (7-126g) ;.._

as = h - hs (7-126h) J

: The empiricalprofileis completelydefinedby theparameters hm, N, and Ym ""

forthebottomsidesegment, and NI, N2, N 3,N4, Ns, kI,k2,k3,k4,ks,hI,h2, i
: h3,h4,and hs forthetopsidesegment. The maximum electrondensitypoint

_: (h, N )is determinedas a functionof thelocationand thevariationsofthesolar
flax as described in Section 7.6.2.3. The parameters hI through h s are defined
as follows

h, = hm+ d 17-127a)

1 (l.0x I0a (7-127b):: h2 = h 1 + _ - hI )

2 (I.0× 103 - hl) 17-127c)h3 = hI +'_

h4 = 1000 km (7-127d) !,-

hs = 2600 kr,, (7-127e) _
?

and d can be dctermined from

2 2 1
d = _/I+ klYt - (7-128)

kI

"_,\ The values cf N1 through N s are determined sequentially for the adjacent lower ,
profile segments so as to maintain continuity of N_ at the segment interfaces

NI= - Nm 17-129a)

,: N2 = NIe"kl(h2" hl ) (7-129b) /
s

.. -k2(h3-h 2)
, N3 = N2e (7-129c)

"k3(h4" h 3 )
- N4 = N3e (7-129d)

Ns = N4e'k4(h$-h4) (7-129e)
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(7-126g) 

(7-126h) 

The empirical profile is completely defined by the paramet(~rs ~, N m' and y m 

for th2 bottomside segment, and Nt' N 2 , N3, N4, Ns ' k l • k 2• k3' k4' ks ' hi' h2 , 

h 3• h4' and hs for the topside segment. The maximum electron density point 
(h , N ) is determined as a function of the location and the variations of the solar 

m m 
flux as described in Section 7.6.2.3. The parameters hi through h 5 are defined 
as follows 

h4 = 1000 km 

hs = 2 \Jon hI 

and d can be dct8rmined from 

(7-127a) 

(7-127b) 

(7-127c) 

(7-127d) 

(7-127e) 

(7-128) 

The values c,f Nt through N 5 are determined sequentially for the adjacent lower 
profile segments so as to maintain continuity of NI at the segment interfaces 

- 7-48 

(7-129a) 

(7-129b) 

(7-129c) 

(7-129d) 

(7-12ge) 
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i -- III11'-- I" I IIII I_ _;The final independent variables for the segmented N x versus h profile are the

maximum elech .,n density Nm, its associated aRitude 1_, the half-thickness of the -_
bottomside layer Ym, and the decay constants k 1 through k s for the five topside
exponential layers, respectively. The method for determining these variables
in GTDS is described in Section 7.6.2.3.

7.6.2.3 Electron Density Profile Parameters

Both the Chapman and the empirical profiles require the maximum electron

density N. and its associated altitude h.. These variables are determined
(References 10 and 12) as functions of the critical frequency of the F2 layer,

f0 F2, and the M-factor, which is the ratio of MUF(3000)F 2 (the highest frequency
usabte for a 3000 kilometer single hop propagation via the F2 layer) t,j the
critical frequency f0 F2, i.e.,

>

h --[1346.92- 526.40x (M-factor) + 59.825x (M- factor)2] •_

(';-13o)
Nm= 1.24 x 10-2 x (foF2) s

4#:

where Nm is in electrons/m 3 , h m is in kilometers, and foF_ is in Hertz. The ._../ _"
critical _requency and the M-factor are functions of location and the variations

O of the solar flux.

The critical frequenc) fo F: and the M-factor (also denoted M(3000)F2), required
for the profile calculation, are computed from monthly U.,k coefficient sets
using equations based on Fourier series expansions and spherical harmonic
mmlysis, which were developed by the Institute for Telecommunication Sciences
(ITS)in Boulder (now NationalOeeanic and Atmospheric Administration- _"

i'

Boulder). t .:

The values of f0F2 and M(3000)F 2 are functions f)(_, _, T) of geodetic latitude
_, longitudu_.,and time T. The f,mction-Q(_, _, T) can be expressedby a

series of products of time-dependent functions D(T) and position-dependent _
geodetic functions G(Ob,)_)

K ;"

'r)=nLD(T),G(¢, = (7-131)

k"0

where K is the cutoff point for the approximate representation of f2; K = 75 when _

= foF2, and K = 48 when _ = M(3000)F 2 , These c_toff points were originally
determined using a Student's t test.

?
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The final independent variables for the segmented N I versus h profile are the 
maximum elecL. ,In density Nm, its associated altitude h.n, the half-thickness of the 
bottoms ide layer Ym' and the decay constants kl through ks for the five topside 
exponential layers, respectively. The method for determining these variables 
in GTDS is described in Section 7.6.2.3. 

7.6.2.3 Electron Density Profile Parameters 

Both the Chapman and the empirical profiles requirp. the maximum electron 
density Nm and its associated altitude hm• These variables arE determined 
(References 10 and 12) as functions of the critical frequency of the F2 layer, 
fo F 2' and the M-factor, which is the ratio of MUF(3000)F 2 (the highest frequency 
usabl~ for a 3000 kilometer single hop p~opagation via the F~ layer) trJ the 
critical frequency fo F2 , i.e., 

h
m 

:. [1346.92 - 526.40 x (M- factor) + 59.825 x (M- fae tor)2] 

N
m

=1.24x 10-2 x (foF2)2 
(7-130) 

where Nm is in electrons/m3 , hm is in kilometers, and foF~ is in Hertz. The 
critical : .. equency and the M-factor are functions of location and the variations 
of the solar flux. 

The critical frequency fo F.:: and the M-factor (also denoted M(3000)F 2)' required 
for the profile calculation, are computed from monthly U.,k coefficient sets 
using equations based on Fourier series expansions and spherical harmonic 
analYSis, whioh were developed by the Institute for Telecommunication Sciences 
(ITS) in Doulder (now National Oceanic and Atmospheric Administration -
Boulder). 

The values of foF 2 and M(3000)F2 are functions n (1), A. T) of geodetic latitude 
¢. longitudtl f.., and time T. The fimction n (¢. A I T) can be expressed by a 
series of products of time-dependent functions D(T) and position-dependent 
geodetic functions G(¢ I Ai 

K 

n(¢. A. 'f) = n [D(T). G(¢. A)] = [ I\(T) Gk (¢. A) (7-131) 

k-O 

where K is the cutoff point for the approximate representation of n; K = 75 whe:n 
n = fo F 2' and K ::: 48 when n = M(3000 )F2 • These clltoff poInts were originally 
determined using a student l s t test. 
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-_ The time-dependent functions can be expanded iv their Fourier series represen-

; tation with the coefficients A} k) and B_ k)

.r

!!

"" _.(T) = A(ok) +E (A)k) cos jT + B.(k), sin iT) (7-1321 ,)

,. j',l

The number of harmonics retained in the series is H; higher harmonics are not

; considered since they are produced more by noise than by real physical varia-

'_ tion. It is sufficient to use H = 6 for the foF2 comput_ion and H = 4 for the
"; M(3OOO)F_ computation.

_ The Fourier coefficients A.(k) and B(. k> are numerically mapped as predicted,

or final, coefficients U,, k, _vhich are Jthe fo F2 or M(3000) F2 coefficient sets

used for the f0 F2 and M(3000)F 2 computations, respectively.

• A (k) = j = 0, 1 H: ( j U2j, k ....

' ) (7-1331

i = U2i-l,k J = 1, 2 .... H

Thus, O
%

_ x H I_(4), k, T)= _kffi0U0'kGk(_' k)+ _. OS iT" k"0 U2j'kGk(_' _)

: (7-134)

_ sin jT" E Gk(4_, h._ U2j-l,k
\ k"O
\

• The geodetic functions Gk(<p, _ 1 are linear combinations of the surface spherical
harmonics. Extensive investigations to find the best arguments for the harmonic

functions resulted in the use of the modified magnetic dip x = x(_, _1, since

smaller residuals between the measured and computed test data values for f0F2

were obtained for this case than for any other case. Thus, Gk(_, _) is both an
explicit and an implicit function of latitude _ and longitude _, i.e., s

k
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The time-dependent functions can be expanded in their Fourier series represen
tation with the coefficients A~k) and B~k) 

H 

D.j(T)=A&k) + L (A~k) cos jT+B~k) sin jT) (7-132) 

j • 1 

The number of harmon.i.cs retained in the series is H; higher harmonics are not 
considered since they are produced more by noise than by real physical varia
tion. It is sufficient to use H = 6 for th~ f OF2 comput&.tion and H = 4 for the 
M(3000)F 2 computation. 

The Fourier coefficiants Afk) and B~k) are numerically mapped as predicted, 
orfinal,coefficients Us,k' which are the foF2 or M(3000)F2 coefficient sets 
used for the fo F2 and M(3000)F2 computations, respectively. 

A (k) - U 
J - 2j,k j = 0, 1" .. H 

(7-133) 

Bfk) = U2j - 1 ,k j = I, 2, ... H 

Thus, 

K H 

D.(cp, A, T) = L UO,kGc(¢, A) + L 
k-O j-l 

Cos jT' t U,;.kG..(q" /.) 
[ k-O 

(7 -134) 

Th.e geodetic functions Gk «(/), A) are linear combinations of the surface spherical 
harmonics. Extensive investigations to find the best arguments for the harmonic 
functions resulted in the use of the modified magnetic dip x = x(¢, A), since 
smaller residuals between the measured and cOffilJutp.d test data values for foF 2 

were obtained for this case than for any other case. Thus, Gi..(¢' A) is both an 
explicit and an implicit function of latitude cp and longitude A, i.e., 
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c,o(®, 'in x i(%135)

Gk (qb, k) = s in qk x ' cos k qb• s in kk i|

|
k=l, 2 .... K

where qk denotes the highest power of sin x for the k th order h,,rmonic in
longitude.

The modified magnetic dip x is an explicit function of latitude and the magnetic
dip 4), where _ is computed from the magnetic field compoaents X(_, k), Y(_, k),

Z(_, k), i.e.,

1 _ = tan-1 -Z (7-136)sin x - --,
¢_2 + cos_

where X, Y, and Z are the north, east, and vertical components of the magnetic
field vector. They are computed following the spherical harmonic analysis of
the magnetic field by Chapman and Bartels, as discussed in detail it, Reference 11.

Defining

Re
0 = 90 °-q5 and R---

Re + hm

where R. "_ equatorialradiusoftheearth

hm _ heightofthe F2 layer

the following expressions for X) Y, and Z result

6 rt

X = d"_ Pn,,m(COs 0) [_ COS m)_ + hmnsin mK] R n+2

£ _, mPn,m(COS0)
(7-137)

y = ' [gin s in n._k- h mcos mK] Rn+2
sinO n

n=l m'O

6 n

Z= _ _ -(n+l) P re(cosO) [g_ncos ..k+ h:s inmK] R n+2

n= I mi0
7-51
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~(¢, A.) = sin
qk 

x' cask ¢. sin kA. 

k = 1, 2 .... K 

where qk denotes the highest power of sin x for the kth order :Jc..rrnonic in 
longitude. 

(7-135) 

The modified magnetic dip x is an explicit function of latitude B.."ld the magnetic 
dill {., where {. is computed from the magnetic field compo.lents X(¢. A.). Y(¢. A.). 
Z(¢. A), i.e., 

1 
sin x = r.;:;::::=== 

1{.2 + cos ¢ 
(7-136j 

where X, Y, and Z are the north, east, and vertical components of the magnetic 
field vector. They are computed following the spherical harmonic analysis of 
the magnetic field by Chapman and Bartels, as discussed in detall in Reference 11. 
Defining 

e=900-¢ And 

where Re '" eCtuatorial radius of the earth 

h
m 

'" height of the F 2 layer 

the following expressions for X, Y, and Z result 

(7-137) 

-(n + 1) jJ (cos e) [~ cos ... A. + hm s in:nA.] Rn+2 
j'\ m n n 
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Values tabulated from the analysis of tb_ magnetic field for Epoch 1960 are used

for the coefficients g_ and h_. The quantity P,,m (cos 8) is a multiple of the ;_
associated Legendre function. •

- In addition to the maximum electron density, the empirical electron densi_

profile also requires the half-thickness of the bottomside layer Ym' and the five
• topside decay constants k 1 through k s. The bottomside layer half-thickness is

interpolated from tables in which Ym is modeled as a function of f0 F2 and local i
_ - time. The five topside decay constants are interpolated from tables as functions

of f0 Fa, magnetic latitude, and daily solar flux. Adjustments for seasonal effects
_L are then made for y_ and the lower three exponential decay constants. The

magnetic latitude is _ven by

7

, % = [si % + cos % - (7-138) ,

" where (_p, _ ) are the geodetic latitude and longitude of the magnetic north pole. :;

7.6.3 Chapman Profile Refraction Corrections
j

The refraction correction formulas described in this section assume a spherically !

• symmetric atmosphere. The tropospheric cgrrection terms utilize an exponential ) !
refractivity profile and the ionospheric correction terms utilize a modified - _ !
Chapman electron density profile. Approximations in the derivation limit the
application at very smad elevation angles. The values for I_ and h m used in
the following equation._ _re determined as functions of the location of the tracking

station and the time as described in Section 7.6.2.3. The scale height H x is
calculated from Equation (7=123). _

7.6.3.1 Range Correction ":

There are two speeds associated with electromagnetic signal propagation through _::
a medium of index of refraction n ,'

c (7-139)c -- phase speed----
P FI

+

c -- group speed- c dn (7-140) I '
n+_

dv

where c is the vacuum speed of light.
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Values tabulated from the analysis of th9 magnetic field for Epoch 1960 are used 
for the coefficients ~ and h~. The quantity Pn ,m (cos e) is a multiple of the 
associated Legendre function. 

In addition to the maximum electron density, the empirical electron density 
profile also requires the half-thickness of the bottomside layer Ym ' and the five 
topside decay constants kl through ks. The bottoms ide layer half-thickness is 
interpolated from tables in which Ym is modeled as a function of fo F2 and local 
time. The five topside decay constants are interpolated from tables as functions 
of fo F 2' magnetic latitude, and daily solar flux. Adjustments for seasonal effects 
are then made for Ym and the lower three exponential decay constants. The 
magnetic latitude is given by 

(7-138) 

where (¢ ,A. ) are the geodetic latitude and longitude of the magnetic north pole. 
p p 

7.6.3 Chapman Profile Refraction Corrections 

The refraction correction formulas described in this section assume a spherically 
symmetric atmosphere. The tropospheric correction terms utilize an exponential 
refractivity profile and the ionospheric correction terms utilize a modified 
Chapman electron density profile. Approximations in the derivation limit the 
application at very srr:all elevation angles. The values for N;" and hm used in 
the following equatio~~. !!ore determined as functions of the location of the tracking 
station and the time as described in Section 7.6.2.3. The scale height H I is 
calculated from Equation (7-123). 

7.6.3.1 Range Correction 

There are two speeds associated with electromagnetic signal propagation through 
a medium of index (If refraction n 

c 
c = phase speed =_ 

P n 

C 
cit = group speed = ---:-

dn 
n + 11_ 

dll 

where c is the vacuum speed of light, 

(7 -139) 

(7 -140) 
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The phase speed cp is the speed associated v ith a phenomenon sensed by a phase
measurement. The group speed cg is the speed associated with a measurement
of the transmission time of an energy pulse In a nondispersive medium, such
as the troposphere, dn/dv = 0 by definition; therefore, the phase and group
speeds are the same .,

c c (7-141)
Cp = cg n 1 + N T

in terms of the refractivity given by Equation (7-115). The ionosphere, however,
is dispersive and the two speeds are different. Ap£ropriate differentiations and _:

substitutions of Equations (7-117), (7-118), and (7-119) into Equations (7-139)
and (7-140) show that, to first order in N I _

c,_ c

Cp - (7-142) _
n 1 - Nz _ }

_ c (7-143) i _"= nc = (I - NI) c = / ,-
eg 1 + NI i "_

_-_ The phase speed is greater than the vacuum speed oi light. The time associated ) ;
with the transmission of a signal over a path from the tracking station to the i
spacecraft is written as .

= -- )ds +- ) ds ,,
Atp c c __total path cttoposphere "ionosphere "_,

(7-144) }

At = --c (I +NT) ds +--c (I + NIp ds }
"*total path Ctropospher e "ionosphere

depending on whether or not the measurement is of a phase or a group transmission 1
property. In these expressions, ds is the increment of length along the signal ._
propagationpath. _ ' '

The f_rst terms in Equations (7-144) (unity in the integrands) represent the i

vacuum transmissiontimes,and thesecond terms (therefractivities)represent _}

.}
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The phase speed cp is the speed associated v ith a phenomenon sensed by a phase 
measurement. The group speed cg is the speed associated with a measurement 
of the transmission time of an energy pulse. In a nondispersive medium, such 
as the troposphere, dn/dv ::: 0 by definition; therefore, the phase and group 
speeds are the same 

c 

c '" c c =- = 
p n 1 - NI 

(7 -141) 

(7 -142) 

(7-143, 

The phase speed is greater than the vacuum sp~ed of light. The time associated 
with the transmission of a signal over a path from the tracking station to the 
spal:ecraft is written as 

6t = p ds/c =- (1 +NT)ds +- (1 -N[) ds f. 1 i 1 f 
total P:th C troposphE're C ionosphere 

6 t g = J'" d sl c =.!.. f. ( 1 + NT) d s + { f ( 1 + N r) d s 
total P:th C troposphere ionosphere 

(7-144) 

depending on whether or not the measurement is of a phase or a group transmission 
property. In these expressions, ds is the increment of length along the signal 
propagation path. 

The first terms in Equations (7 -144) (unity in the integrands) represent the 
vacuum tran&mission times, and the second terms (the refractivities) represent 
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:; }
-, the time corrections Ate caused by the atmosphere. The evaluation of Equations " ,

,_ (7-144),by substitutingfor therefractivitiesfrom Equations(7-1!6)and (7-IR2),
= yields the total atmospheric range correction in the form _

., Ap --catc = csc E[Q + U - (P + V) cot2 E] (7-145) i 4

_ The ionosphericterms are

"":: 40.3 NineHI[e- Qhm-hL) 'HI)]_, Q=+ _-z _ _e e

'i zf"

40.3NmeH! [e.e.. ffi e"e .,_ P : + - i7-14(;)

- (h- hL)- [S(Z)- SL1} /i ,]

where the positive sign denotes the range increment due to a group delay, and
where the negativesigncorrespondstothe phase range decrement. T_,etropo-
sphericdelay terms are

U " HTNs

(7-147)

H_NsV-
r

_" In Equations(7-145)through(7-14_)

E _ elevationofthestraightlinerelativepositionvectorfrom tracking "
stationto spacecraft

i" h _ spacecraft altitude

o

rs _- tracking station radius from the center of the earth

_"frequency of signal transmission

hL "_lower altitude limit for the ionosphere (set at 80 kilometers m GTDS)
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the time corrections ~tc caused by the atmospnere. The evaluation of Equations 
(7-144), by substituting for the refractivities from Equations (7-lJ.6) and (7-1~2), 
yields the total atmospheric range correction in the form 

~p :: c~ tc :: esc E [Q + U - (P + V) cot2 E) (7 -145) 

The ionospheric terms are 

(7-146) 

- (h - '1.) - HI [S(Z) - ~]} 

where the positive 8ign denotes the range increment due to a group delay, 9.nd 
where the negative sign corresponds to the phase range decrement. Tt·e tropo
spheric delay terms are 

In Equations (7-145) through (7-14'7) 

U:: H N T s 

(7-147) 

E '" elevation of the straight line relative position vector from tracking 
station to spacecraft 

h '" spacecraft altitude 

r. '" tracking station radius from the center of the earth 

11 '" frequency of signal transmission 

hL '" lower altitude limit for the ionosphere (set at 80 kilometers m GTDS) 
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L=, _ .... '........ II I _ _ I . . _ _' [ ilil ill I III I _" "

I _ S(Z) = e -z - e"2z e'3Z e'4Z (7-148)2. 2-'---T3.3! 4. 4! + "'"

SL = 0.5772156649 + _ (7-149)

where

h-%
z - (7-150)

H
I

.: The expression SL is used a_ the evaluation of the series S(z) at the lowsr limit
, because of convergence difficulties with the expression given by Equation (7-148).

: The approximations made in the evaluation of the integrals ill Equations (7-144)

lirrdt the validity of the form of the solution given by Equation (7-145). In
; 9articular, the error increases as the elevation angle decreases. Hence, the

• algorithn_ which is implemented in GTDS modifies this basic form (Equation

: (7-145)) in order to minimize the erroneous excursions at low elevation angles. ,i/

Typically, the true range refraction correctiorJ increases monotonically as theelevation angle decreases. LL:uation (7-145), however, can exhibit a maximum
value at some angle and then decrease (even to negative values) for smaller

angles. The maximum value is found by setting the derivative

dAp _ (c_t E) Ap + 2(P + V) cot E csc 3 E
dE

\ to zero and solving for E = E M

cot2 EM = Q + U - 2(P + V) (7-151)3(P + v)

In an example computed for typical troposphere and ionosphere profiles and for

"_ a VHF frequency of 136 MHz, the maximum v_ _e given by Equation (7-151)
• occurred atroughlyEM = 22°. Thus, itwould notbe a good approximationto .

truncatetherange correctionstothissame maximum valueforallelevations
E < 22°. Accordingly,thealgorithminGTDS simply replacesthe truecot2E

term in Equation(7-145)withthe limitingvaluegivenby Ecmation(7-151)when

cot_E > cot_EM. The csc E factorin Equation(7-I_5)causes the range correction
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'·2z e-3z e-4z S(z) = e-z __ e __ . _____ +_ .. 
2- 2! 3-3! 4- 4! 

(7-148) 

I ) hm - ~ ~ = 0.5772156649 + (--,-
\ dJ 

(7-149) 

whe:r..l 

h-h m (7 -150) z=---
HI 

The expression SL is used aF the evaluation of the series S(z) at the lower limit 
b.acause of converg,ence diffil,}ulties with the expres&ion given by Equation (7-148). 

The approxim&.tions made in the evaluation of the integrals in Equations (7-144) 
limit the validity of the form of thf! solution given hy Equation (7··145)_ In 
particular, the error increases as the elevation angle decrea.ses. Hence, tht-: 
il1gorith!i'~ which is implemented in GTDS modifies this basic form (Equation 
(7 -145» in order to minimize the er.t'oneous excurdiClns at low elevation angies. 

Typically, the true range refraction correction increases monotonically as the 
elevation angle decreases_ :E.l~uation (7-145), however, can exhibit a maximum 
valn'9 at some angle and then decrease (f'ven to negative values) for smaller 
angles. The maximum value is found by setting the derivative 

dt.p - = _. (Ct:lt E) t.p + 2(P + V) cot E csc3 E 
dF. 

to zero and solving for E = EM 

cot 2 E = Q + U - 2 (P + V) 
M ::s(P + V) 

(7-151) 

In an example computed for typical troposphere and ionoslJhere profiles and for 
a VHF frequency of 136 MHz, the maximum V3 . .le given by Equation (7-151) 
occurred at roughly EM = 22°. Thus, It would not be a good apr.roxlmation to 
truncate the range corrections to this same maximum value for all clevations 
E < 22°. Accordingly, the algorithm in GTDS simply replaces the true cot2 E 
term in Equation (7-145) with the limiting value given by Emlation (7-151) when 
cot 2E > cot 2 EM. The csc E factor in Equation (7 - 145) causes the range correction 
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to continue to increase as E decreases below EM. In fact, it is necessary to "-" :
truncate this factor land hence the range correction) at a small elevation angle _:_
to prevent the values from becoming unrealistically large. On the basis of ;Z

comparisons with ray traces computed through a typical ionospheric profile, iit was determined that the csc E cutoff should be made fc,r sin E < 0.225. The ,

comparison of the ray trace results with the GTDS algorithm is shown in i i
Figure 7-5. The ionosphere was represented as a modified Chapman profile
given by Equation (7-120), with

N = 1.0x 1012 electrons/m 3 _;
m

h = 300 km ,:
m

\

Hx = 65kin

v = 135 MHz

For E _ 35°, the corrections given by Equation (7-14 are essentially the same

as the e: act ray trace results. Below this angle the errors are i_._s than 20%. ,,
,2' ?,

Since unc_.rtainttes in the knowledge of the ionospheric characteristics can ,>-" '_
exceed 50%, it is not worthwhile from a practical standpoint to insist on greater ;

accuracy in the algorithm at lower elevation angles. _ , =_

7.6.3.2 Elevation Ang!e-I_pendent C¢.rrections

. Bouguer's Formula, the analogue to Shell's Law for a spherically stratified

medium, gives :

: (7-152) •_ "_'nt sin i -constant ,

\\ ':
along any ray through the medium. Here i is the local incidence angle between

the ray and the radius vector of magnitude r. Substit_Jtivg r, + h/or r in this ,)
formula and evalu,_ting at two points on a ray yields a rela_onship for the two

?' incidence angJ_.s as functions of the altitudes and indices of refraction '_

= (7-i53)

sin i n o : _

, If the initial point is taken at the tracking station, the apparent elevation angle

, : of the ray is F.. The initial point _rields 1 i
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to continue to increase as E decrez.ses below EM' In fact, it is necessary to 
truncate this fa~tor (and hence thl:'! range correction) at a small elevation angle 
to prE'vent the values from be~o!l1ing unrealistically large. On the basis of 
comparisons wIth ray traces computed through a typical ionospheric profile, 
it was detcrmint.~d that the esc E cutoff should be maCe fc.r sin E < 0.225. The 
comparison of tht.' ray trace resultt; with the GTDS algorithm is shown in 
Figure 7-5. The ionosphere was represented as a modified Chapman profile 
given by Equation ('7-120), with 

N = 1.0 x 1012 e lee t rono;/m3 
m 

hm = 300 km 

HI = 65 km 

1I = 136 MHz 

For E ~ 35°. the corrections given by Equation (7-14 lre essentially the same 
as the e~ act ray trace results. Below this angle the err-on are L..;s than 20%. 
Since unc,- v:-tainties in the knowledge of the ionospheric characteri&tics can 
exceeti. 50%. it is not worthwhile from a practical standpoint to insist on gr'?ater 
accuracy in the algorithm at lower elevat~on angleR. 

7.6.3.2 Elevation Angle-Dependent Cc·rrections 

Bouguer's Formula, the analogue to Snell's Law for a spherically stratified 
medium, gives 

n t sin i = eon s tan t (7-152) 

along any ray through the medium. Here i is the local incidence ang10 between 
the ray &lld the radius vector of magnitude r. SUbstituting r. + h for l' in this 
formula and eval1l4ting at two points on a ray yields a relationship for Ute two 
incidE'nce angJ~s as functions of the altitudes and indices of refraction 

sin 10 n Ir, +h) 
sin i = n 0 \~ ~ + ho 

(7 -153) 

If the initial point is taken at the tracking station, the appclrent elevation angle 
of the ray is F " The initial point "ields 
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_ :
i

! *

ho=O

no = I + N (7-154) .

s in i0 = cos Ea

: SubstitutingEquations(7-154)intoEquatinn(7-153)yie!ds
w

n(r s + h) (7-155) ;
,_ cos E s in i

" (1 + Ns) r. }

Ifiwere known a prioriatthespacecraftposition,Equation(7-155)couldbe used

to compute the apparent elevation angle at the ground station. However, i is not

•, known and Equation(7-155)must be modifiedto re2,rmulatethedesiredsolution •
interms ofquantitieswhich are known. An approximationismade to an integra-

: tionalongtheray,resultingin •

-_ cOS E .i"

cosE = (1 +N,) (I + I) (7-156) "

where

I - cot E [Q - U - (P - V) (2 + cot 2 E)] (7-157)
r _ _

S

r + h / (7-158)

Equation(7-156)isused as givenforthecorrectionof Minitrackdata,sincethe _
; directioncosineswithrespecttothe stationhorizontalbase linebothinvolvethe ,

factorE,. The correctionfortheelevationangleisdetermined(viathetangent
o_ the difference of two angles) to gi_e t

j.

_cosEIv/il+N) 2 (I+ I):2-cos:_E-si.n_]I (7-159) ,

........ _ ............ t

g -E= tan "I Lc°s2 E + sinZv/(l , Ns)2 (I _T)f_c_s 2 :" ":
.,J _

i

J
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(7-154) 

&lbstituting Equations (7-154) into Equati"ln (7-153) yields 

sin i 
(7-155) 

If i were known a priori at the spacecraft position, Equation (7-155) could be used 
to compute the apparent elevation angle !it the ground station. However, i is not 
known and Equation (7 -155) must be modified to refc,Tmulate the desired solution 
in terms of quantities which are known. An approximation is made to an integra
tion along the ray, resulting in 

E 
cos E cos = -,-____ -~ 

a (1 + N
s

) (1 + I) 
(7-156) 

where 

cot E 2 1 1=-- [Q - U - (P - V) (2 + cot E) 
r S 

(7-157) 
s 

(

yo cos E) .5 :: r.os-1 s _ £ 
r + h s 

(7 -158) 

Equation (7-156) is used as given for the correction of Minitrack data, since the 
direct;on cosines with respect to the station horizontal base line both involve the 
factor Ea. The correction for the elevation angle is determined (via the tangent 
Of the difference of two angles) to ghe 

{

COS £[/(1 + N )2 (1 + Ii - COS
2 E - sin El} 

E - E = tan -1 _--::-___ s -;:===::::::;;;:::=:::====::;::==;;:::=:-
a COS2 E + sin E/(1 ... Ns )2 (1 + 1)2 - cos2 E 

(7-159) 
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i i{
_, The refraction corrections to the X and Y gimbal angles (for both the 30' and the .

- K 85' antennas) enter through the dependence of these angles on the elevation angle
of the prooagation path. The appropriate corrections are

t

sinA cos E[sinE-, (1 + Ns) 2 (1 , I) 2 - cos 2 E; 1 "'"

_6

(7-16o)

cos Acos E ,(I , N) 2 (I , I)2 cos 2 E- sinE

_, (yA_ y)ss _-sin-I sinAcos I - sin2 Acos2 E _ _'(I+Ns)2 (I + I)2 - sin2 A cos2 E
1 + Ns) (I I) :

where A is the azimuth angle.

7.6.3.3 Doppler Corrections

The effects of atmospheric refraction on USB Doppler measurements are ex- :
:i

': pressed in Appendix C in terms of difference vectors A_ and _d between 'l

unit vectors along the actual (uplink and downlink) propagation paths and the ' ,
i, straight lines characte rizing the hypothetical vacuum propagation paths.

Figure C-1 depicts the geometry of the two- or three-way Doppler signal ,,
,•,, transmission. From this figure, the four equations which define the conditions

:, at each end of the uplink and downlink paths are (Equations (C-12) and (C-t4)) :

_- !
Li _ Li -_ l__ ,_ '

•,, (7-161) IV V

: ¢, =_+A
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The refraction corrections to the X and Y gimbal angles (for both the 30' and the 
85' antennas) entet' through the dependence of these angles on the elevation angle 
of the prooagation path. The appropriate corrections are 

JSin A cos E[sin E -, (1 + N )2 (1 , 1)2 - cos2 Ei} 
(XA - X)lO = tl'ltl - ,. 

lsin E. (1 • N )2 (1 ~ 1)2 _ cos2 E + sin2 A cos2 E , 

(Y _ Y) 0 sin- t {cos A (.'05 E [1 _ cos2 A cos 2 E _ , (1 + N.)2 (1 + 1)2 _ cos2 A cos2 E]} 
A 30 (1 + N.) (1 + 1) 

(7-160) 

(Y
A 

- Y)~s" sin-I {sin A cos E [.1 _ sin2 A cos2 E _ /('1 + N)2 (1 + 1)2 _ sin2 A ('os2 EJ} 
(1 + N.) (1 + I) • 

where A is the azimuth angle. 

7.6.3.3 Doppler Corrections 

The effects of atmospheric refraction on USB Doppler measurements are ex
pressed in Appendix C in terms of difference vectors L\u and !ld between 
unit vectors along the actual (uplink and downlink) propagation paths and t,he 
straight lines characterizing the hypothetical vacuum propagation paths. 
Figure C-1 depicts the geometry of the two- or three-way Doppler signal 
transmission. From this figure, the four equations which define the conditions 
at each end of the uplink and downlink paths are (Eqllations (C-12) and (C-14» 

U :: U .1" Lh.,.. 
'.' V (7-161) 

d = d + L\d v v 
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where ' }

oY

,"

and (7-162) :
t

- L
t ', ,

- t

; -, are unit vectors pointing up along the uplink path and down along the down!ink _ ::

path (both paths are characterized as straight hne relative position vectors) and

?

r--__ satellite position vector

YT "" ground tr_._mitter position vector
°J

_1¢ "_ ground receiver position vector

_, An equationw'._sderivedinAppendix C forthe Doppler-plus-biascyclecountN J _
for the two-way o_ three-way measurement made by the USB system. The ._/
atmospheric refraction effect is the term (Equation (C-34)) ._

The quantity i
l

A_(t + Atr._) + Ap(t) 17_16._) ', '{
A/_°vg = 2 ', :

_. is the average of the quantities obtained by evaluating

A,_ = A_ T • rT + A_v ._ _ A_v • _ _ A-dR • r x (7-164) ,'_

at the beginning and at the end of the Doppler-plus-bias counting interval, _ ::

The computation of the USB Doppler refraction effect, therefore, requires a _ ,: •

: means forcomputingthe correctionvectors/_UT'_' _-av'and/xde atthe , ;

appropriate times, i
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where 

u= 

and (7-162) 

r - r R y 

are unit vectors pointing up along the uplink path and down along the downlink 
path (both t>aths are characterized as straight line relative position vectors) and 

ry '" satellite posi~on vector 

rr '" ground transmitter position vector 

r
R 

'" ground receiver position vector 

An equation W~ de!'~ved in Appendix C for the Doppler-pIus-bias cycle COU!1t N 
for the two-way O£ thr.ee-way measureme~t made by the USB system. The 
atmospheric refraction effect is the term (Equation (C-34» 

6' 12 Payg 

The quantity 

(7-16~) 

is the average of the quantities obtained by evaluating 

(7-164) 

at the beginning and at the end of the Doppler-pIus-bias counting interval. 

The computation of the USB Doppler refraction effect, therefore, requires a 
means for computing the correction vectors SUr' 6.uy' lldy' and 6dR at the 
appropriate times. 
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: i

" _ The correction vector A_ T for the uplink path at an instant when the ground station i

transmits a signal to the spacecraft is the difference between the unit vectors _T i
and g along the actual and the hypothetical vacuum propagation paths. It must

lie in the plane defined by _ and the local vertical Vr at the station, if it is
assumed that the refractive medium is a spherically layered atmosphere. There-t

fore, AuT is expressed as a linear combination* of _ and VT i

= +BYT 17-1a5)

In terms of the apparent elevation angle E o of the actual propagatiou path and
; the straight-line relative position vector elevation angle E

u T'u : cos (E. -- E)
(7-166)

UT'V T : sin E

• Substituting from Equations (7-161) and (7-165) into Equations (7-166) and solving
_" explicitly for A and B yields

i cos Ea :_"
! A- 1

_ cosE (7-167)

_ B --sin E. - tan E co_ E. "

d

Equation(7-156)can thenbe u_ o eliminateE ,givingfinally

t _

' I- 1 _1 i• A= (I +Ns) (I + I)

.. (7-168) i

B - (I + N) (l + I) I + Ns)2 (I + I)2 - cos2 E - sin

t

• where I is as defined in Equation (7-157) and N, is the tropospheric surface i_ _._ refractivity at the transmitter. '__ ,

_-' *The vectors u'and'_ T coincide in the exceptional case of a direct overhead alignment. Hc,wever,

:: _i thiscasew°rks°utc°rrectly'sinceA"-B'giving AU'T =0"

1976017203-358

The correction vector boli for the uplink path at an instant when the ground station 
T 

transmits a signal to the spacecraft is the differl3nce between the unit vectors u
T 

and IT along the actual and the hypothetical vacuum propagation paths. It must 
lie in the plane defined by u and the local vertical V'T at the station, if it is 
assumed that the refractive medi~m is a spherically layered atmosphere. There
fore, boUT is expressed as a linear combination* of u and vT 

(7-10:5) 

In terms of the apparent elevation angle E of the actual propagation path and 
a 

the straight-line relative position vector elevation angle E 

u ·u = cos (E .• E) T a 
(7-166) 

U ·V = sin E T T a 

Substituting from Equations (7-161) and (7-165) into Equativns (7-166) and solving 
explicitly for A and B yields 

cos E 
A = a_I 

cos E 
(7-167) 

B = sin Ea - tan E co!< Ea 

Equation (7-156) can then be u~ o eliminate E ,giving finally 
a 

1 A= -1 
(1 + Ns ) (1 + I) 

(7-168) 

where I io as defined in Equation (7-157) and Ns is the tropospheric surface 
1"efractivit~' at the transmitter. 

* The vectors u and vT coincide in the exctlptional case ~ a direct overhead alignment. Hc,wever, 
this case works out correctly, since A = - B, giving /\ '1" = O. 
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Figure 7-6. UplinkPath Geometry at

Spacecraft Signal Reception.

, |

; i _ Similarconsiderationsapplyinthe determinationofthe correctionvectorA_ v _
!

_.j for the uplink path at the instant when the signal is received at the spacecrsft. ,4The geometry and notationare presentedinFigure 7-6. Here ag_n, thecorrec-
tionvector is expressed as a linear combination

A_v = CW + D_v (7-169)

l

The following relationships are obtained from Figure 7-6
t

U*V v ----COS O"

• Uv'U = COS cL i

; "\ i'
_,.. U v'V v = COS i !

, cos _ = cos crcos i + sin crsin i

i

Straightforwardmanipulationoftheserelationships,usingEquations(7-169)and

(7-161), yields a system of two simultaneous equations in the unknown coefficients i

C and D. The solutions for C and D in terms of i and cT are _ j

c=sin_i - I !

. sin _ (7-170) I

D- cos i -cot o'sin i t,!

" L i
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Figure 7-6. Uplink Path Geometry at 
Spacecraft Signal Reception. 

Similar considerations apply in the determination of the correction vector t.u v 

for the uplink path at the instant when the signal is received at the spacecraft. 
The geometry and notation are presented in Figure 7 -6. Here agru.n, the correc
tion vector is expressed as a linear combination 

t.u = Cu + Dv v v 

The following relationships are obtained from Figure 7-6 

u· v = '::os (j v 

u ·u = cos a. v 

u ·v = cos i v v 

cos a. = cos (J cos i + sin (j sin i 

(7-169) 

Straightforward manipulation of these relationships, using Equations (7-169) and 
(7-161), yields a system of two simultaneous equations in the unknown coefficients 
C and D. The solutions for C and D in terms of i and (j are 

C=~-l 
sin (j 

(7-170) 

D = co s i-co t (j sin i 
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Equating the right-hand sides of Equations (7-155) and (7-156), making use of i]
Equation (7-115), and so[ving explicitly for sin i yields

rT COS E
sin i = m (7-171)

rv (I -NI) (I + I) ._ "
{

Examination of the triangle in Figure 7-6 shows that
,!
t

or i
rr _

E+8=---_

Therefore

._- sin = = cos (Z + 8)

i /

and from Equation (7-158) this can be reduced to _ ->1

• ,. rT

sin _ = cos (E + 8) = _ cos E (7-172) "
r

v

- Substituting Equations (7-171) and (7-1_2) into Equation (7-170) finally yields

C 1
il (1

(7-173) "_

D = (I Nx) (I + I-_ ii - NI)2 (I + I) 2-
r2 r2
v v

Ifthe same procedureis repeatedforthedownlinkpathto solveforthecorrection i',_ '

,_ vectors A d'v and Ad R, the result is _,_ '

, _

r 7-63
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Equating the right-hand sides of Equations (7-155) and (7-156), making use of 
Equation (7 -118). and solving ex:>licitly for sin i yields 

Examination of the triangle in Figure 7 -6 shows that 

or 

Therefore 

7T 
E+-+O+cr=7T 

2 

7T 
E + 0 =- - u 

2 

sin u = co s (E + 0) 

and from Equation (7-158) this can be reduced to 

rr 
sin 0- = cos (E + 0) = - cos E 

r 
v 

(7-171) 

(7-172) 

Substituting Equations (7-171) and (7-1'i2) into Equation (7-170) finally yields 

1 
C = - 1 

(1 - Nx) (1 + I) 

1 __ ri_CO_S
2_E] 

r2 
v 

(7 -173) 

If the b9.me procedure is repeated for the downlink path to solve for the correction 
vectors 6, a'v and 6,d

R
• the result is 
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J

A_ : C'd + D'_ (7-174)

- A°a+B'v.

The solutions for C' and A' are identical with those for C and A, whereas the i
: solutions for D) and B ) are the ne_,atives of those for D and B (Equations (7-173)

and (7-168)).

The quantities I and NI appear in the expressions for the primed and uriprimed
values of A, B, C, and D. Equations (7-122), (7-146), and (7-157) show the

dependence of these quantities on the signal transmission frequency. The up[ink
carrier frequency should be used to compute the unprimed quantities, while the

down[ink carrier frequency should be used for the primed quantities.

The Doppler refraction correction for GRARR VHF and for sidetone ATSR data

_i is shown in Appendix C (Equation (C-42)) to be of the form

' i -Ah "r

; _ v v

_ where the spacecraft velocity_ is taken at the signal turnaroum, time correspond-
ing to the midpoint of the Doppler count interval. This time is the observation

time tag (the preprocessor-determined midpoint of the Doppler count interval) _ :

corrected in the orbit determination processL_g for the light time from the ,
spacecr_t to the station. The light-path bending term/_ is computed accord-
ing to Equations (7-169), (7-170) and (7-173). The vector _ is defined (Equation
(C-12)) as the unit vector directed along the instantaneous relative position vector I

" from the station to the spacecraft. All other parameters in Equations (7-170) mud

:. (7-173) are defined in terms of this instantaneous relative geometry.

i

:_ "\ 7.6.4 Segmented i'rofile Refraction Corrections

! The refraction correction formulas, described in Reference 10, assume that

the total refraction correction is the sum of the tropospheric and ionospheric
corrections as follows

; AE =AET + AEx (7-175)
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.0.d = C'd + D'v v v (7-174) 

The solutions for C' and A' arl3 identical with those for C and A, whereas the 
solutions for D' and B' are the nep;atives of those for D and B (Equations (7-173) 
and (7-168». 

The quantities I and NI appear in the expressions for the primed and unprimed 
valu.3s of A, B, C, and D. Equations (7-122), (7-146), and (7-157) show the 
dependence of these quantities on the signal transmission frequency. The uplink 
carrier frequency should be used to compute the unprimed quantities, while the 
downlink carrier frequency should be us~d for the primed quantities. 

The Doppler refraction correction for GRARR VHF and for sidetone A TSR data 
is shown in Appendix C (EquatiL'n (C-42» to be of the form 

. 
-.0.u ·r v v 

where the spacecraft velocity"f is taken at the signal turnarounc: time correspond-
v 

ing to the midpoint of the Doppler count interval. This time is the Jbservation 
time tag (the preprocessor-determined midpoint of the Doppler count interval) 
corrected in the orbit determination processiJlg for the light time from the 
spacecraft to the station. The light-path bending term 6\1 is computed accord-

v 
ing to Equations (7-169), (7-170) and (7-173). The vector ii is defined (Equation 
(C-12» as the unit vector directed along the instantaneous relative position vector 
from the station to the spacecraft. All other parameters in Equations (7 -170) aIld 
(7-173) are defined in terms of this instantaneous relative geometry. 

7.6.4 Segmented:i. 'rofile Refraction Corrections 

The refraction correction formulas, described in Reference 10, assume that 
the total refraction correction is the sum of the tropospheric and ionospheric 
corrections as follows 

.0.p ::: 6pr + .0.PI 

6E = 6Er + 6EI 

7-64 
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: }

' _ where Ap.r, AET, and A/_T are due to the troposphere, and App AE i, and A/3I
a: due to theionosphere.These individualcorrectionsare presentedbelow.

-1

7.6.4.1 Tropospheric Correction i'
The troposphericcorrectionsare obtainedfrom Reference7 and assume that _ ,

the atmosphere has spherical symmetry and an exponential refractivity function I
as describedby Equation(7-116).The equationsare applicableover theentire
range of elevation angle (0-90°).

Using monthly mean values of the refractivity N,, the scale height HT, and the i

local earth radius r. at the tracking sta+ion, the following parameters are t

calculated :!

p = v/2--HT/r' (7-176) ,

q = 10-6 N r /It. r (7-177)

J
: j

The range and elevation angle corrections are , I

" (I = 10-5 NsH T M - 1 10-6 Nsr2 cos2L L2/ (kin) (7-178)

4 _ AET = 10-6 N cos g (i - r L/p) (radians) (7-179)
J,

where

: _ E _ apparent elevation angle of the received signal

• p _ slant range to the satellite ' •

_' The quantity L is given by

1 10- 5 Nsi2 (7-180) :._",,. L= 1 - i sinE. +_ ,

_ and the quantities i (bending integral) and m are complex integral functions of ." '

_i the refractivity function and the elevation angle. Reference 7 presents the ,
: following approximations for i and m which are accurate over the entire range

_,: of elevation angle

"_, 7-65
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where 6p·c t 6E Tt and 6PT are due to the troposphere, and 6PI' 6E It and 6PI 
a!. due to the ionosphere. These individual corrections are presented below. 

7.6.4.1 Tropospheric Correction 

The troposphe"'ic corrections are obtained from Reference 7 and assume that 
the atmosphere has spherical symmetry and an exponential refractivity function 
as described by Equation (7-116). The equations are applicable over the entire 
range of elevation angle (0-90°). 

U sing monthly mean values of the refractivity N s' the scale height HT • and the 
local earth radius r. at the tracking station. the following parameters are 
calculated 

(7 -176) 

q = 10-6 N T /J.I s s • .,. (7-177) 

The range and elevation angle corrections are 

(7-178) 

6.r:: :: 10-6 N cos E (i - r Lip) (radians) 
....,. S 8 S 

(7-179) 

where 

E '" apparent elevation angle of the received signal 
8 

p '" slant range to the satellite 

The quantity L is given by 

L :: 1 _ i sin E +! 1 0-6 N i 2 
8 2 s 

(7-180) 

and the quantities i (bendillb integral} and m are complex integral functions of 
the refractivity function and the elevation angle. Reference 7 presents the 
following approximations for i and m which are accurate over the entire range 
of elevation angle 
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I , j , l. .if i __I....... j.i.. J m , 6._

) t

i ::F(sinE, p2Ii, p412 ' io/p' i,/p_) (7-181) ' ]

m = F(sin E, p2M, p4M2, too/p,m,/p 2) (7-182)

where the function F is given by i

1
:, F(a, FI, F2, fo' fl) =

:" ' gl
0.4

( (7-183)
r g2 x 1.08885 ,

a+

; g3 x 1.320903
. a+

a + g4 x 1.21313
%

1 with

gl - FI .'/.
,y"

t"

g2 = (F2/g,) - g,

(7-184)

; g3 = g2 gl I - g* - (I + f,g,

g4 = f0g,g3/g2

t

,\ The variables Ii,12,io and i, are
• \

I2 "-'4 -_q + _ " / (7-185) Y

ko - _ (I - 0.9205 q)-O.4458

i, --2/(1-q)

- 7-66 _,_
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· F ( . E 2 I 4 I . / . / ") l:~ Sln., p l' P 2' l(;,p, 11 pM (7-181) 

(7-182) 

where the function F is given by 

1 
F(o" FI , F2, fo' f 1 ) = -----------

gl 
Q,+-------

g2 x 1.08885 (7-183) 
a+ ______ _ 

gJ x 1.320903 
a+--___ _ 

a + g4 x 1.21313 

with 

(7-184 ) 

The variables I l' 121 io and i l are 

(7-185) 

io = I7i (1 - 0.9206 qrO.4468 

i 1 = 2/(1 - q) 
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\

9. and the variables M 1, M2, m o and m_ are :

" 1 3

: M2 = _- -_-_q+-_q
e

: (7-186)

: 1 q2i -lqk o5 mo=i o 1 +q+]-_ ;

with

k o = _ (1 - 0.9408 q)-O.4_s9 (7-187) ./

i_' :l The range-rate correction is given by_7

_' ApT = -10 -_ EsNsHT cos g a - L cos 2 E ?
_, . p s ._

(7-188) :

_-_! x(i + 10 -6 N i j - j sinE _;

q _

where ::

' _ i --F(sinE, p2j1, p4j2, jo/p, jl/p2) (7-189) , )
, ?

''r _ n--F(sin Ea, p2N I, p4N2, no/P 2, nl/p 2) (7-190)

: The variables Jl, J2, Jo, and Jl are

J1 =711
(7-191)

1
_,: J_ =_ (5I_-J_) _

i' "?7-67
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and the variables M1 , M2 • rno and n .... are 

(7-186) 

with 

ko = & (1 - 0.9408 qrO.47S9 (7-187) 

The range-rate correction is given by 

• -6 • ~ 2 r s 2 6PT=-10 ENHTcosE n --qLcos E 
• s • P • 

(7-188) 

x (i + 10-6 Ns i j - j sin E. ~ 

where 

(7-18:» 

(7-190) 

(7-191) 
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Jo =_ (7-191) _
(cont'd)

Jl = i2/Jo 2,

where
I

i2 = v/-#w/(l- 1.023q)1._ (7-192)

The variables N,, N 2, n o, and n1 are _,

¢

3

N1 = _ M, !_

q'

, N_ =_I (5 M2 - N_) (7-1931 }-Ji

1 no = vmq
"%] /J_

%= 1 q)2 + i2q +'4 i2 (iOq) o .;

7.6.4.2 Ionospheric Correction

Ionospheric refraction corrections are computed from the empirical electron

density profile, described in Section 7.6.2.2, and its integrated electron content.
The profile is computed for the latitude ¢ and longitude _ where the radio wave
from the observing station Lo the satellite penetrates the ionosphere. This is

%
cal!ed the subionospheric point and is computed as a function of the station

latitude ¢, and longitude ,', , and the elevation angle E and azimuth angle A from "
the station to the satellite

¢= sin -1 (sin_b s cos a + cos q5s sin a cos A) (7-194) :

_,=_, +._in" (sin A._!2,.'_ '°-:9_) ' :
\ ".:o _- ¢

where a is the geocentric angle between the .marl:,,, arq r, ._.tor,, sp:mric point

[
•ma ,_
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where 

The variables N1 , N 2' no' and n1 are 

7.6.4.2 Ionospheric Correction 

(7-191) 
(cont'd) 

(7 -192) 

(7-193) 

Ionospheric refraction corrections are computed from the empirical electron 
density profile, described in Section 7.6.2.2, and its inteerated electron content. 
The profile is computed for the latitude ¢ and longitude A where the radio wave 
from the observing station to the satellite penetrates the ionosphere. This is 
cal!ed the subionospheric point and is computed as a fU'/lction of the station 
latitude ¢ and longitude ,\ ,and the elevation angle E and azimuth angle A from 

s • 
the station to the satellite 

¢ = sin-1 (sin cPs cos a + cos cPs sin a cos A) (7-194J 

\ _\ ,'-1 (sinA"in ,.\ 
f\ - f\. + S 1 n __ - ... --

s ~:U~¢ . 
/'7-195) 

where a is the geocentric angle between the ':I~a}i~", .).1 r' ',:,1(';\1. -3J..:t€:ric point 
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{ s

i :

7T
a =--- E - sin "I (7-196) , .

;f
i

and hm is the height of the ionosphere at the maximum electron density above _ £the surface of the earth. On the first iteration, h is estimated to be 300 kHo-
rfl _ i ;

meters. After computingh m via Equation (7-130), the difference between the ' icomputed and estimated values of h is determined. If this difference is less
m _

than 1 kilometer, its effect is negligible; if it is greater than or equal t_ 1 i
kilometer, Equations (7-193) through (7-196) are iterated upon to obtain a new
value of h .

m }

I

The total vertical electron content NI required by the correction algorithm is
obtained by integrating the electron density profile in Equations (7-124) and !

I (7-125) from zero to the height of the satellite h. For a satellite below the

biparabolic layer of the ionosphere _'

NI = 0 (7-197) :,,• For a satellite in the bottomside biparabo]ic ,'ayer / ;_

NI = NIdh = Nm Ym - (h - h) + 3 2 5 v4 (7-198) -Ym " m

• 'r',

where y,_ is the half-thickness of the bottomside layer of the segmented electron _ '
' density profile.

For a satellite in the topside parabolic layer

t__ (hE5 .h)S

i N, =Nm ym- (h m-h) + 3y" " (7-199) !

' t .J _"

where Yt is the thickness of the topside parabolic layer (see Figure 7-4) and is '

if' given by ,'_i

y,. = ay m (_-200) "_
4
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(

R "0;; ~:. 
1T • -1 (" - .. ' ') a. = -_ E - Sln --_.-
2 Re + .1m 

(7 -1913) 

and hm is the height of the ior.osphere at the maximum electron density above 
the surface of the earth. On the first it~ration. hm is estimated to be 300 kHo
meters. After computinghm via Equation (7 -130), the difference between the 
computed and estimaten. values of h is determined. If this difference is less 

m 
than 1 kilometer, its effect is negligible; if it is greater thM or equal t') 1 
kilometer, Equations (7-191) through (7-196) are iterated upon to obtain a new 
value of h . 

m 

The total vertical electron content N 1 required by t~'le correction algorithm is 
obtained by integrating the electron density profile in Equations (7-124) and 
(7-125) from zero to the height of the sz.tellite h. For a satellite below the 
biparabolic layer of the ionosphere 

(7-197) 

For a satellite in the bottomside biparaboJic ~ l.yer 

ih ~8 , 2 (hm - hi 1 (hm •• h)5J 
NI ~ NI dh ::: Nm - y - (h - h) + - - - - ---IS m m 3 2 5 4 

o Ym Ym 

(7-198) 

where y,n is the half-thickness (If th~ bottomside laypr of the segmented electron 
de'1sity profile. 

For a satellite in the topside parabolic layer 

~
9 (hm - h)3 

NI = N - Y - (h - h) + - -._-
m 15 m m 2 

3Yt _ 
(7-199) 

where Yt is the thickness of the topside parabolic layt>r (se~ Figure 7-4) and is 
given by 

(17-200) 
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| where " ' /

FI for foF2 < 10.5MHz _

+ .1333 (2oF2 - 10.5) for foF2 > 10.5MHz _

i For a satellite in the first exponential layer {'
i ,

_ where

Y'l+ kl2YZt- 1 :!

i d = kl

j For a satelliteJnthe second _xponentiallayer

! ...;..,.,,• "}"

(8 . d_t_) (1 62 ) 1;NI --Nm Ym + d + Nm -_ .

'7-202) _ ,_2

( " "[kl(h2"Ll) +k2(h'h2)]) i

x 1 -- e kl(h2-hl) e "kl(b_'hl) - e } ,r

kl + k2 } :'%
y

For a satelliteinthethirdexponentiallayer :

(if'5 d3_t2) ( d_-t2)

NI =Nr. y_,+d- ,_N I- !

- [ ,]
- e "_l(h2"bl ) e kl(h2"hl) I -- e "k2(h3-h2 l

× , �(7-203'
kl k2 t_

e'[kl(h2"hl )+k2(h3"h2)] [1- e'k'(h'h3)l_ _ ' "_"a+

k_ j i
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where 

(1 
'" I 

for 
a = 

l1 + .1333 ('01"2 - 10.5) for 

For a satellite in the first exponential layer 

( 
\ ( 0 ( -k (h-h, ') NI = N ~ y + d _ ~') + N 1 _~ 1 - e 1 -_ 

n. 15 r.1 3 :; m 2 \ kl 
Yt Ytj 

where 

For a satellite h the second \..xponential layer 

- (' 8 d
3 

) (d
2 

) l~I = N -.- y + d - - + N 1 --
m 15 m 3 2m \ 2 

Y t Yt 

'7-202) 

For a satellite in the third exponential layer 

NI = N (~y _ + d _ d
3 

\ ~ N (/1 _ yd
2

2
) 

m \15'" 3y~) m \ t 

(7-203' 
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1 '

For a satellite in the fourth exponentza! layer :-

d3 '\ d_

NI=N ym +t:-3_/ +Nm 1- ._ '

f .. t'h2"hl ) r t

1 -- e -kl (h2-hl) e kl L1 - e "k2(h3-h2)l.J ._ :';

kl + ks _ -,

(7-204) _ _

"[k I (h2" hl)+k2(h3-h2)l I 1 e'k3(b4"h3 _ i "::

k3 i ?

- l'k 1 (h2-hl)+k2(h3-h2)+k3(h4-h3)] - - -)e :_- ;

+ k4 I ;;

Finally, for a s_tellite in or above the fitd_ exponential layer : ,, _
/ ,\

5

(aI _ ,'_" N'I " INm Ym+d- +N m 1- • _ !

h2-h ! ) e'kl(h2"hl ) : _-

[ 1 ,

"[k 1(h2"hl)+k2(h3"h2 )+k3(h4"h3)] e'k4(hs-b ; _ , ,,
e - :

- k 4 "_,

e'[kl(h2"bl) 3"h2)"k.](h4"h3)+k4(b$'h4)] - e'k$(h'h_ _ _}

+ ks

The range correction _p_ is computed/rom the verticai electron content ant the [' i_.

i elevation angle at which the radiowave pas,,'.,,, through the ionosphere _

] 9760] 7203-368

For a satellite in the fourth exponentIal layer 

- (8 dl 
\ (d2

) NI = N ~- y + (\ - -) + N 1 --IT. 15 m 'I m 3yM y' 
• t t 

(7-204) 

Finally, for a satellite in or above the fihl1 exponential layer 

(7-205) 

The range correction 6~1 is computed from t'-Ie verticai electron content ani the 
elevation angle at which thE' radiowave pas~'_.,,· thl'ough th~ ionosphere 

7-71 



40.3 Nz l^. (7-206)
_t.,I =

f_ 1 - cos 2 g
e + hmea a

I

where the height of the mean of the electron distribution h_e,. is

1 NI 8

h :h a+2 N 15Ym (7-207)

the quanti_y ¢ _s the transmismon frequency, and
J

g

7 = + 2fd2] (7-208) ,,
't

' I
where fu .ad fd are the uplink and downlink frequencies, respeehvely.

The range-rate correction A_I is obtained by differencing two successive range
corrections in the following form

Api(t) - Api(t - At)
= _ (7 -209)

A/_! At i

At the start of a data span for which no previous range correction exists, A_I
assumes one of the following forms:

Sate(lites Below the Lower Biparabolic Layer

A_, = 0 (7-210)

• 7-72
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40.3 NI 
6PI = -------------

where the height of the mean of the electron distribution hmean is 

1 NI 8 h =h + ____ y 
mean m 2 N 15 m 

m 

the quantity t ~s the transmisslOn frequency, and 

1 
y- ( 

1 1 )1/2 
2 f~ + 2f~ 

wherl; fu .... ld fd are the uplink and downlink frequencies, respect~vely. 

(7-206) 

(7 -207) 

(7 -208) 

The range-rate correction 6.PI is obtained by differencing two successive range 
corrections in th(' following form 

• 6.PI (t) - 6.PI (t - 6.t) 
6.Px = - ----t:,.-:--t ----- (7-209) 

At the start of a data span for which no previouE range correction exists, 6.Px 
assumes one of the following forms: 

~~tetlites Below the Lower Biparabolic Layer 

(7-2Hn 
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, i! .
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Satellites Within the Lower Biparabolic Layer

j ,_.
k, ::

_ (40.3 x 1.24 x 10 -2) _ " ,

_ dApi (_)2 \ ym ]_j x _ :

_" - cos E ._
i Re + hmean 2

g: (7-211) !

_" -Re- sin Ea COS E ,_ :
" _ A,DI • + h.lean] a .,

cos E

t- ;i 1 -- R + hmean ._'
; where fl is the altitude rate and 1_ is the elevatior: rate of he satellite. //

• j Satellites in the Topside Parabolic Layer

(h m_h): 1

(40.3 x 1.24 x 10 -2 )

dA#I (f f___2) 2
- - x × I_ "

2 1/2

- cos E -_ !
e + hmean

(7 -212) ',

Apl Re + hmean/ sin _a cos E a
+ XE

1 - cos E
-. e + h,.'nean : ,

7-73
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Satellites Within the Lower Biparabolic Layer 

(40.3 x 1.24 x 10-2) ~ _ (hmY-m hYJ2 
• d6PI (foF2)2 L) 

6PI == - -- == - -- x x h 

dt f f1 _ (R Re
h 

cos E
a
)2Jl/2 

L e + mean 

(7-211) 

( 
R )2 

6PI R eh sin Ea cos Ea 
e + I.,ean x E +-----------

where h is the altitude rate and E is the elevatio:l rate of ·he satellite. 

Sate.iiites in the Topside_ Parabolic Layer 

(40.3 x 1.24 x 10-2) rL _ (hm - hiJ 

£::'p == _ d6PI == _ (f 01'2)2 x l Y~ x ,; 
I d t f 1/2 

~ - (R R~ cos Ea)J L \' e + mean 

(7-212) 
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Satellitesin tbe Exponential Layers I

ApI = d t - x × _ x em
R :

- e COS Ea
e + hmean

(7-213)
t

5.]_Pl + hme,n/ sin g cos g
+ e XE

\?

)1 - ,_hme, cos E

°J

/ The exponential multiplier em of the l_ term can take on five different forms.

For a satellite in the first exponential layer
1

J
i

%- -kl(h'hl) (7 214a)

For a satellite in the second exponential layer i

em= e -kl(h2-hl) -k2(h-h2)c (7-214b)

For a satellite in the third exponential layer

em = e-kl(h2-hl ) e-k2(h3-h2) e -k3(h-h3) (7-124c)

For a satellite in the fourth exponential layer

em = e -kl(h2-hl) e -k2(ha-h2) e-k3(h4-h3) e"k4(h-h4) (7-124d)

Finally, for a satellite in or above the fifth exponential layer

em= e-kl(h2-hl) e-k2(h$-h2) e-k3(h4-h3 ) e-k4(hs-h4 ) e'k$ (h'h5) (7-124e)

The elevation angle correction AE_ is given by

X1 cos a - X2
cos (AE) = (7-215)

(X_ + X_ - 2XIX 2 cos a)"2

: ODUCIBILIT£OF Tlilg }
•i 7-74 KEPt, ... t)_C. IS _OOB _m

{ oRIGI_t_u.,._g _:
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Satellites in tile Exponeni:ial Layers 

• dt.PI 
t.PI = --- =

dt 

(7 -213) 

The exponential multiplier em of the Ii term can take on five different forms. 
For a satellite in the first exponential layer 

-k (h-h ) 
em - e I I 

For a satellite in the second exponential layer 

-k l (h 2-h l ) -k.,(l.-h2 > 
em = e [: -

For a satellite in the third cy.ponentiallayer 

For a satellite in the fourth exponential layer 

Finally, for a satellite in or above the fifth exponential layer 

The elevation angle correction t.E. is given by 

Xl cos a - X2 
COS (t.Ea) = .---------

(X~ + ~ - 2XI X 2 
cos a)l '2 

7-74 
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_ where

_,. Xl [(Re + h)2 _ ._2e c°s2 Ea ]1/2 + Re cos E tan -a. (7-216) :_

l '!a (7-217)
X2 =R e sine a -R e cos Ea tan-_

a =- _: -- (deviation angle) (7-218) :
- _ 2 r o Nm :

f ,
h :

_ r0 = R + hm... (7-219)

h :h + 1Nz 8 (7-220) :

- _ mean m 2 Nm 15 Y.1
_'" ..;I''f "":

_- Re

-- cos E (7-221) _
" - ] sin q5o = ro

The ,,ariable _ is tabulated as a function of ,_

sec2 _m :,

+_ ._
t

where _ :

Re (7-222) _
__ COS F-a; S ill (_) :

'mv r
m

; and .-/i

• = Re + hm (7-223) ,_ ,r m

+, i

! +
.; • ' _

,, _ 7-75
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where 

(7-216) 

X2 = R sin E - R cos E tan ~ 
e a e a 2 (7-217) 

2 2-

a __ ! (foF2) c tan ¢o sec ¢o NI 
s (dev~~t.i.on angle) 

2 f ro Nm 

(7-218) 

ro = Re + h mean (7 -219) 

(7 -220) 

R 
sin ¢o = ~ cos E 

r a o 
(7-221) 

The "ariable ~ is tabulated as a function of 

wherE 

R 
sill ¢ =....:. cos E 

m r a 
(7 -222) 

m 

and 

r = R + h m e m 
(7 -223) 
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7.7 ADDITIONAL CORRECTIONS I

7.7.1 Light-Time Correction
._

GTDS provides for a light time correction which can be applied to GRARR, C-Band, /

' and Minitrack observations for greater accuracy of modeling. All of these ob- ,

servation types are modeled (Section 7.2.3) in terms of the instantaneous relative

poqitlo_ vector from the tracking station to the spacecraft, computed in the

=- " local tangent coordinate system (Section 7.2.2). Since the spacecraft is the

only object which is moving in this coordinate system, the appropriate time for

calculating the instantaneous relative position vector is the time t v when the

vehicle transponder turns the tracking signal around. (For the one-way Minitrack

signal, t,. corresponds to the time when the signal was transmitted by the space- :

craft.) The actual observation is time-tagged at the time t a when the signal is (

received at the ground station. The light-time correction consists of making an

• . _ approximation to tv by changing the observation time tag to

= tR Ap' t v - -- (7-224)

/

where Ap is the one-way relative range from the spacecraft to the tracking station•

A first approximation to -_p is determined n GTDS by computing the relative range

vector at the actual observation time t a, _ -lizing the spacecraft position vector

at ta. The difference between this relative range and the correct relative range -"

corresponding to t could be corrected by means of an iterative estimation
algorithm. However, this is not done in GTDS, since the very small im?rovement ,

in accuracy is insignificant compared w_th the degree of the approximation

implicit _n the basic observation model. Thus, the first estimate for Ap is ;
used in computing the light-time correction to th_ observation time tag. _

7.7.2 Antenna Mount Corrections '

For X and Y antezmas, a correction is performed _n range and range-rate measure- }
ments, since the electrical phase center of the antenn_ moves with the antenna

and is displaced from the geodetic point of reference which is the center of the _:

fixed axis. The correctionAR applied for range _s

AR = D cos(Y) (7-225) _,

J_

which, by differentiationwith respect to time, gives the correction for range rate

/_R = - D s in(Y) Y (7-226)
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7.7 ADDITIONAL CORRECTIONS 

7.7.1 Light-Time Correction 

GTDS provides for a light time correction which can be applied to GRARR, C-Band, 
and Minitrack observations for greater accuracy of modeling. All of these ob
servation types are modeled (Section 7.2.3) in terms of the instantaneous relative 
position vector from the tracking station to the spacecraft, computed in the 
local tangent coordinate system (Section 7.2.2). Since the spacecraft is the 
only object which is moving in this coordinate system, the appropriate time for 
calculating the instantaneous relative position vector is the time tv when the 
vehicle transponder turns the tracking signal around. (For the oD.e-way Minitrack 
signal, t\. corresponds to the time wren the signal was transmitted by the space
craft.) The actual obse:-vation is tim~-tagged at the time tR when the signal is 
received at the ground station. The light-time correction consists of making an 
approximation to tv by changing the observation time tag to 

6.p 
t = tR--

v C 
(7-224) 

where 6.p is the one-way relative range from the spacecraft to the tracking station. 
A first aprroximation to ~p is determiner n GTDS by computing the relative range 
vector at the actual observation time ~, t 'lizing the spacecraft positi.Jn vector 
at ~. The difference between this relative range and the correct relative range 
corresponding to t could be corrected by means of an iterative estimatior. 

v 
algorithm. However, t~is is not done in GTDS, since the very small irn~rovemen\; 
in accuracy is inSignificant compared with the l~egree of the approximation 
implicit ~n the basic observation model. Thus, the first estimate for 6.p is 
used in computing the light-time correction to th~ observation time tag. 

7.7.2 Antenna Moun~ Corrections 

For X and Y ar..tenna.s, a correction is performed f)n range and range-rate measure
ments, since the electrical phase center of the antenn~ moves with the antenna 
and is displaced from the geodetic point of reference which is the center of the 
fixed axis. The correction6.R applied for range IS 

c.R = D cos (Y) (7 -·225) 

which, by differentiation with respect to time, gives the correction for range rate 

. . 
AR ::: - D sin (Y) Y 

(7 -226) 
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i In these expressions, Y is the observed Y angle and D is the nominal distance ._
_. from the electrical phase center to the center of the fixed axis. The correction '_
_ to _R and _ due to the X angle and the corrections to the X and Y angles due _ _.
_ to the displacement of the electrical phase center are ignored. _ :

, 7.7.3 Transponder Delay Correction _ '

-c For those tracking systems which use a transponder on'_oard the satellite to _
_" receive and then retransmit a signal, the transponder deiay, i.e., the time "

_ interval between reception and transmission of a given signal, must be taken _ _
_:-_ into consideration. These satellite transponder time delays are functions of

_ _ the frequency of the signal received by the transponder, i.e.,

!= AT = f (VR) (7-227) _ _:

The characteristics of the function f for a sT_eclfic transponder must be determined _
experimentally by calibration of the transponder on the groand boiore launch. ]
The function obtained in this maturer can then be entered in GTDS as a table of :

transponder delay time versus frequency, from which the delay for any inter- _ /,,
mediate value of frequency nan be obtained by interpolation. As an alternative, _i_ '2:
provision is made in GTDS to use nominal (default) tables or constant dela,, timcs.

7.8 ESTIMATION MODEL :

The deviation between the actual observation and the predicte( observation is
modeled as _ first-order Taylor series expa__sion around the predicted observa- :
tion. This expansion relates deviations in the observation residuals to devia- ,:

tions in dynamic parameters, station locations, observation biases, and time
biases, and establishes the required set of linear regression equations. The -,_

estimation model for any observable may then be written as

_0 _ (7-228) _ '_
0o-0 ¢ =-- Aq+n ! ,

where

00 -_ th_ actual ,_bservation with time tag t ,'

O "_, _he predicted observation based on a previous estimate of the parameter
vector q

,'_q "" the correction to t|:e parameter vector _
'i

,_ _ the observation noise
., 7-77
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In these expressions, Y is the observed Y angle and D is the nominal distance 
from the electrical phase center to the center of the fixed axis. The correction 
to 6R and till due to the X angle and the corrections to the X and Y angles due 
to the displacement of the electrical phase center are ignored. 

7.7.3 Transponder Delay Correction 

For those tracking systems which use a transponder on'1()ard the satellite to 
receive and then retransmit a signal, the transponder deiay, i.e., the time 
interval tetween reception and transmission of a given signal, must be taken 
into consideration. These satellite transponder time delays are functions of 
the frequency of the signal receiYed by the transponder, i.e., 

(7 -227) 

The characteristics of the function f for a sneCliic transponder must be determined 
experimentally by calibration of the transponder on the gro\lnd h~iore launch. 
The function obtained in this manller can then be entered in GTDS as a table of 
transponder delay time versus frequency, from which the delay for any inter
mediate value of frequency r:an be obtained by interpolation. As an alternative, 
provision is made in GTDS to use nominal (default) tables or constant dela~' times. 

7.8 ESTIMATION MODEL 

The deviation between the actual observation and the predicte i observation is 
modeled as a first-order Taylor series expa.. ... sion around the predicted observa
tion. This expansion relates deviations in the observation residua1~ to devia
tions in dynamiC parameters, station locations, observation biases, and time 
biases, and establishes the required set of linear regression equations. The 
estimation model for any observable may then be written as 

(7-228) 

where 

0
0 

'" th,~ actual nbservation with time t~ t 

0c "', L!1.e predi~ted observation based on a previous estimate of the parameter 
vector q 

:\q -- the c'Jrrection to U:e parameter vector q 

n '" the observation noise 
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The parameter vector _ may consist of dynamic parameters _ (those parameters )

i involved in the equations of motion); station locations _- ; observation biases b;
and observation time biases _ t. The total parameter vector may then be written
as

J

_ = ] (7-229)

' " b

i. t

The mocleled observation can ' o written functionally as

(7-230)
.4 0 = f(_, t)= f(_, ¥, b, _', t)

:: ' i Substituting the appropriate partial derivatives of Equation (7-230) into Equatio_

: _ (7-228) yields .t

=/_Oc._ (_O_-_r + (_)Ab /_Oc ')A(6t)+n (7-231)o,,-oo/V)_+ ,_-j +\_--_->
, which may be written in a more compact form as

-_1

[?oo:_oo_oo_oo7 >j

,. ) 17-232)

, ',. o0-oo: [?¢p:
) ' Ab ,

! 5(_t

or

0o - 0¢ - F_5-q+ n (7-233) ,

Equation (7-233) define3 the linear regression equations that are solx ed by the
iterative classical or sequential weighted least squares methods described in

m,
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The parameter vector q may consist of dynamic parameters p (those parameters 
involved in the equations of motion); st.ation locations r ; observation biases b; s 
and observation time biases S t. The total parameter vector may then be wl'itten 
as 

(7 -229) 

The modeled o~servation can ' 0 written function~lly as 

o = f (Ci, t) = f (p, r , b, 8', t) 
C S 

(7-230) 

Substituting the appropriate partial derivatives of Equation (7 -230) into Equatio'l 
(7-228) yields 

('00) ('00) (00 \ ((JO) O() -0 = _c L".p+ _c L".r + _c)L".b + _c_ L".(ot) + n 
C 'OJ) ,drs s ab 0(0 t) 

(7 --231) 

which may be written in a more compact form as 

(7-232) 

or 

(7 -233) 

Equation (7-233) define3 the linear regression equations that are soh ",d by thl 
iterativ(~ classical or sequelltial weighted least squares methods described in 
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i
_ _ Chapter 8. The formulation, as shown in Equation (7-233), describes m equations i

qfor m observations) in p unknowns (the number of q parameters). The matrix _

F in Equation (7-233) is of dimension (m x p). Chapter 8 derives the required ! "i

solution to the normal equations in terms of F and the weighting matrix W under

the assumption that W is a diagonal matrix, that is, the observations are _ n- "_ '_

correlated. Under this assumption, the terms in the normal equations requiring _ ' :_F can be developed on an observation-by-observation basis, thus yielding the

solution of the normal equations without explicitly forming the full (m x p) F _ ,_° matrix. This is a standard method for all existing least squares orbit determina- _ :

tionprograms and is discussed in more detailin Chapter 8. "i :

i '/ p

j,

.% ¢

?

I

3 ' :
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Chapter 8. The formulation, as shown in Equation (7-233), describes m equations 
(for m observations) in p unknowns (the number of q parameters). The matrix 
F in Equation (7-233) is of dimension (m x p). Chapter 8 derives the required 
solution to the normal equations in terms of F and the weighting matrix Wunder 
the assumption that W is a diagonal matrix, that is, the observations are l,
correlated. Under this assumption, the terms in the normal equations requiring 
F can be developed on an observation-by-observation baSiS, thus yielding the 
solution of the normal equations without explicitly forming the full (m x p) F 
matrix. This is a standard method for all existing least squareR orbit determiml.
tion programs and is discussed in more detail in Chapter 8. 
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: ESTIMATION

The basic orbit _stimation problem involves solving for values of a set of I

_, . parameters from an observational model (described in Chapter 7) so as to mini- t
:_. mize, in the sense of weighted least squares, the differe-ces between a _omputed _

:_ and an observed trajectory. The model parameters include the trajectory of the i

vehicle (initial conditions and differential equation parameters), the locations of _ :_

_. the observing stations, and the bias errors in their instruments a,."clocks (these |
errors may vary as a function of the pass over a station). In practice, values _ _

_ are determined for only a selected subset cf the model parameters. _ ,

)_ Since the observations made by a tracking system are imperfect, no tra- i
_, jectory f_ts these observations exactly. At best, only an estimate of the actual t :

i trajectory can be obtained from the data. GTDS uses either a classic,_l welgbted i !

_,. least squares estimator (derived in S_ction 8.2) or a sequential estimator (de- _
]

• _ rived in Section 8.4.1). For a theoretical discussio,_ of estimation, see Refer- _./,i
, _ ences 1 through 6. { _.

_, 8.1 DESCRIPTION _,r_'"THE PROBLEM "

: _ L._ a set of m observations, denoteJ by an m-dimensional vector y, be i :_
given. These observations are assumed to be equal to a known vector function i
f of a set of p parameters, denoted by a p-dimensional vector _ plus additive

. ._ lpndom no_se, denoted by a vector _ ,

; The above equation t_ called a nonlinear regression equation. The trajectory ,

_ de_ermina_,on problem is to estimate _ giver. _, the functional form of [, and :

,: _ the statistical properties of _. _

' _ The estimation ;_rcc_-_ : ,_ttempts to deduce a value for _ _hat minimizes the i
_ weightedsum o: ti,es,$-.,'._.'_.of the observationresiduals[y- f'C_)]betweenthe • ,

, !_ actu_lobservationsant thvobservationscomputed usingthemathern.t',cal model. ! '
i"',_ More precisely, ,.

_' _ _ (8-2)

k, .
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CHAPTER 8 

ESTIMATION 

The basic orbit estimation problem involves solving for values of a set of 
parameters from an observational model (described in Chapter 7) so as to mini
mize. in the sense of weighted least squares, the differences between a :lomputed 
and an observed trajectory. The model parameters inclurle the trajectory of the 
vehicle (initial conditions and differential equatioIl parameters), the locations of 
the observing stations, and the bias errors in their instruments 0.': clocks (these 
errorE> may vary as a function of the pass ovet' a station). In practictl, values 
are determined for only a selected subset cf the model parameters. 

Since the observations made by a tracking system are imperfect, no tra-
j ectory f;ts these observations exactly. At best, only an estimate of the actual 
trajectory can be obtained from the data. GTDS uses either a classierl weighted 
least squares estimator (derived in S~ction 8.2) or a sequential estimator (de
rived in Section 8.4.1). For a theoretical discussiou of ~st1mation, see Refer
ences 1 through 6. 

8.1 DESCRIPTIO~~ OF THE PROBLEM 

L.;t a set of m observations, denotej by &ll m-rlimellsional vector y, be 
gh-en. These observatiorls are assumed to be equal to a known vector functioll 
f of a SfJt 0f p parameters, denoted by a p-dimensional vector x plus additive 
umdom noise, denoted by a vecter n 

{8-1) 

The ab')ve equa~ion 1::. called a nonlinear regression equatjon. The trajectory 
determinaLlon p!'oblern is to estimate x giver. y, the functional form of r. and 
the statistical properdes of ii. 

The esUrnation !Jt'ocu " attempts to deduce a value fot' x ~hat minimizes the 
w6ighted sum o,r the 8'-1' ",'.J '_, hf the observa tion residuals [y - f (X)] between the 
actuRl observations am 'i.t:e observations computed using the mathem~~~cal model. 
Mor~ precisely, 

(8-2) 
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9" _ , ois minimized, where W is the m x m weighting matrix. This scalar quantity is _ " ;

called the loss fv_ctleu. An a priori estimate of the state _ 0 is assumed to be
_ avatiabl_ for use i',_the minimization. 1he deviation of x0 from the true value of
':_ the state is assv, med to have zero mean a._d eovariance P_ in order to make the

subsequent sE_gistical evaluati.',u more amenable to in_rpre_Uon.
- I

A necessary condition for the loss function to be minimum with respect to
_ is that ?Q/_ = 0. Ther_foce,the value of_ which minimizes Q is a root of

the equation

}
3 _ =- 2 [7- f (g)] r W ? 7 (8-_)
. ?

The method of solving this nonlinear minimization is to Enearize r_qu_ion (8-3)

?_ and then apply a standard Newton-Raphson procedure to iteratively s_olve _he non- i_
! Une;;r problem. Expanding f (_) in a truncated Taylor series about the _ priori "
' estimate Xo yields

.,:., 7 : ? +F (8-4) 1 !
where }

Ax: x- xo (8-5) ..

and ,:

_' fthe mx p matrix of f'l "

", [?_'\ . )partial derivatives o (8-6) -
_(_) with respect to_ t"

; \ F : _._-_x)(_.=_o,L evaluated at -_-- _0 ., _ *',._.

The linearlzed observation vector becomen

!

Ay:FAx ,i_ (8-7)

, it

8-9.
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is minimized, where W ip the m x m '.veighting matrix. This scalar quantity is 
called the loss funct!(m. An a priori estimate of the state x 0 is assumed to be 
avaiiab!f'l for us~ 1'-1 the minimization. 1:'1e deviation of Xo from the true value of 
the state is assl~med to have zero mean a.1d (}ovariance P 6x in order to make the 
dub sequent sh~lstica1 Avaluati":'n more ame!l8ble to interprebtion. 

A ne\.'essary condition for the loss function to be minimum with respect to x 
is that d Q/ax ::: O. Ther~fo{'3, the value of x whlch minimizes Q 5s a root of 
the equation 

~ i = - 2 [y - f ex)] T w (~ ~) = 0 (8-3) 

The method of solving this nonlinear minimization is to linearize Equation (8-3) 
and then apply a standard Newton-Raphson procedure to iteratively "~olve t~e non
line:~r problem. Expanding f (x) in a truncated Taylor serif'S aOCJlI.t the !I pdorl 
estimate Xo yields 

where 

and 

L1x::x-x o 

F = """"=) . p a ~ t i a Ide r i vat i v c s 0 f (
"«1"\ (the mx p matrix of } 

ax (~"XO) I L(X) wii:h respect tox 
L evaluated at x" Xo 

The linearized observation vector becomes 

E-Y = r Ax + n 

8-2 
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(8-5} 

(8-6) 

(8-7) 
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Substituting Equations (8-4) _ad (8-7) i_,to Equation _8-3j, the lLnearized p:_rtial _ '_
derivative of the loss function in Equation (8-a) becomer

- 2 (_-"-y- F A---_T WF = 0 (8-9)

"" which can immeo,a_ly be _,_tved for _ x, yielding the ci_ssic equation for the 4

best estimate t_ x

A'x = (F r WF, -1 Fr W_ (8-10) ._

The value of _, the estimate derived from the line_ized system, is therefore, . .f.

>

_. The symmetric matrix (F v W F) is called the normal matrix.

As a r ,suit of the linearizatlon performed in Equatiou (8-4), the correc_iou :.

_ _'x must _e sma'_l so as not to vioiate linearity. This means that the a priori .i ,,.
'., estimate x0 must be reasonvbly close to the true extremal solution of Equa- ,,-:

"_":. tion (8-2). If such is not the ca_e, _h_. _rocess is iteratively repeated in a standard ,,
Newton-Rachson procedure, each time using the last best estimate ._ as a reference
for the linearizaUon. The iterations c'.,ntinue u_,.t i the differential correction ,-

vector _._ % _cdly small {i.e., approaching zero), w_-ich ts equiva\ent to minimizing :the origir nonlinear loss function Q(x). ,,,

"-Theinverse of the p x p normal matrix (FTWF) is the covariance matrix: -:

of the error in the weighted '-_ast squares estim,tte _ after convergence is
achieved, and the following statistical assumptions of th_ measurement pro-
cess a_:. satisfied:

_i_ 8-3
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where 

(8-P) 

t)ubstltut1ng Equations (8-4) fillrl (8-7) u,to Equailon ~8-3}, the linearized pr.rtlal 
derivative of the loss functiC"n in Equmion (S-~) be comer 

- -T 
- 2 (6 y - F L x) W F := 0 (8-9) 

which can imme(.I .. <i"i:c!!' !..tE' "lnlved for :6. x, yielding the chasin equation for the 
best estimate S'x 

(S-10) 

'The value nf X, thE, estimate derived from the l1nep"'izec! system, is thel:~fore, 

(S-l1) 

The symmetrilJ matrix (FT W F) is c.aIled tl.e normal matrix. 

As a r Iswt of the lineal'i:lat~orl performed in Equation (8-4), the correctiol1 
ex must.:le smaU so as not to violate linearity. This means that the a priori 
estimate Xo must be reasunably clusc to the true extremal solution tlf Equa-
tien (8-2). If such is not the (.;aee, thp. process is iteratively repetttt-ci in a standard 
Newtol'l~Raphson proc\3dure, each time using the last best estimate S .. as a reference 
for the linearization. The iterations C')nthlu.~ Ul',t 1 the differential correction 
vector t~!~ !.culy slLaH {i.o., approaching zero), ","'i,ch is equivalc>nt to minimizing 
the origir noniiMar lo@s func"'ion Q(x). " 

The inverse of the p x p nOl,'mal matrix (FTWF) is the covarlanc\~ matrc, 
of the error in the weighted !tltlst squares eatim'lte ~ after convergenc~ is 
achieved, p.rld the following statistical assumptions of th~ measurement pro· 
coss al,_ satlsfi~d: 
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; la) The observatiou no_se is unbiased, i.e., _ (n} = O.

(b) The covariance of the observation noise vector is known and its inverse
_. is the weighting matrix W. Let _ be the variance of the measurement _,

noise cr'mponent n 1, which corresponds to measurement y_ ; c_2 the ,
variance of component n2, whih co_responds to Y2; and so on. The

_: weighting matrix is then

o- 1 2 _t

_-2 0 _"
2 :

W: (8-12)

: ] }

_ 0 o--2

Equating the inverse of W to the covarianee matrix of the measurement ,_ ,-
errors implies that multi_omponent observations at a given time (e.g ...... _ j
range_ azimuth, elevation) are not spatially correlated and that meas-

urements at different times are not time correlated, i ::

(c) The mathematical models of the trajactory and _bservations charac- s

;. terize exactly the physic, s governing the observation process. All
{, parameters such as biases, tracking station locations, and physical

constants that are not being estimated are known exactly. {,

The above criteria can never be met precisely in real spacecraft applications.
:: As a result, the covariance matrix (FTWF) -1 must be realistically interpreted "_;

\_, with regard to the specific application. In orbit estimation applications using :
_i, radar tracking data, the covarianc¢ ,off-diagonal) elements of the measurement _:

:i error are rarely available. In fact, for sensors that measure multicomponent ,,
vectors, the differing circuitry involved in the independent comr_t,:-ents frequently

: yields different time corrections for each compovent. This reaults in a meas- '
: urement vector having components at different times. As a result, GTDS :
': consider.,3 the observations to be uncorrelated scalar measuren.eat_ so that the _::

weighting matrix W is always diagonal and contains only the variances as shown _
_ in Equation(8-12).

! ,
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la) 'l'he observation noise is unbiased, i.e., E {Ii} :: O. 

(b) The covariance of the observation noiP9 vector is known and itR inverse 
is the weighting matrix W. Let o-~ be the variance of the mea.surement 
noise cr''llponent n 1 , which corresponds to measurement Yl ; o-~ the 
variance of component n 2 , whi-h cO.l:"'esponds to Y

2
; and so on. The 

weighting matrix is then 

w= (0-12) 

o 

Equating the inverse of W to the covariance matrix of the measurement 
errors implies that multbomponent observations at a given time (e.g., 
range, azimuth, elevation) are not spatially correlated and that meas
llrements at different time~ are not time correlated. 

(c) The mathematical models of the trajectory and 'lbservations charac
terize exactly the physics governing the observation process. AJl 
parameters such as biaGp.s. tracking station locations, and physical 
constants that are not being estimated are known exactly. 

The above criteria ean never be met precisely in real spacecraft applications. 
As a result, the covariance matrix (F T WFfl must be realistically i:nterpreted 
with regard to the specific application. In orbit estimatiC'T} applications using 
rllda.r tracki.ng data, the covarianc( ,Jff-diagonal) elements of the measurement 
error are rarely available. In fact, for sensors that meaSure multicomponent 
vectors, the differing circuitry involved in the independent compv:,~nts frequently 
yields different time corrections for each component. This rc::;ults in a meas
urement vector having components at different times. As a result. GTDS 
considel'l3 the observations to be uncorrelated scalar measuren.eati:> so that the 
weighting matrix W is always diagonal and contains only the variances llS shown 
in Equation (8-12). 
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The variance for each observation is formed from the relationship

(

: whe re

rX,

_ _ the a priori standard deviation of tLe observation noise.

_ _k _ the standard deviation of the data reduction curve fit obtained during
preprocessing of the observation data. The curve fit is assumed to

be polynomial in form.

k I ,_ a specified gain constant applied to Sk"

S k2 _ a specified gain constant applied to _k"

Typical a priori weighting schemes for observations processed in GTDS are

"_ presented in Appendix D.

: There is another, more subtle, qualification for identifying (FTWF) -1

• [ with the covariance matrix of uncertainty. In nonlinear regression problems

such as trajectory estimation, the true covariance matrix is equal to (FTWF) -1

plus terms involving higher order partial derivatives of the computed observa-
tions with respect to the variables solved for. These higher order terms were
neglected during linearization. So long as large deviations are not obtained, the

linearity assumption is reasonably well satisfied.

: In the following sections the specific estimator algorithms implemented in

, _ GTDS and their associated cevariance matrices are derived and discussed, and
"_ details concerning the application of the estimation process are described. Much

of the material is taken from References 4, 5, and 6.

8.2 THE BATCH ESTIMATOR ALGORITHM

In order to facilitate the derivation of an iterative weighted least squares

=, solution, the various quantities that are iteration dependent will be subscripted
with an i. Thus, _'-x in Equation (8-5) is written _"_i =_ - x_, where xi is the
best estimate of _, *.he extended state, obtained from the i th iteration. At the

"1g760"17203-383

The variance for each observation is formed from the relationship 

(8-13) 

where 

O'k 'V the a priori standard deviation of tl.e observation noise. 

Uk "-' the standard deviation of the data reduction curve fit obtained during 
preprocessing of the observation data. The curve fit is assumed to 
be polynomial in form. 

kl 'v a specified gain constant applied to (Tk' 

k2 'V a specified gain constant applied to uk' 

Typical a priori weighting schemes for observations proce[1sed in GTDS are 
presented in Appendix D. 

There is another, more subtle, qualification for identifying (FTWF)-l 
with the covariance matrix of uncertainty. In nonlinear regression problems 
such as trajectory estimation, the true covariance matrix is equal to (FTWF)-l 

plus terms involving higher order partial derivatives of the computed observa
tions with resper.:t to the variables solved for. These higher order terms were 
neglected during linearization. So long as large deviations are not obtained, the 
linearity assumption is reasonably well satisfied. 

In the follOwing sections the specific estimator algorithms implemented in 
GTDS and their associll.ted covariance matrices are derived and dIscussed, and 
details concerning the application of the estimation process are deseribed. Much 
of the material is taken from References 4, 5. and 6. 

8.2 THE BATCH ESTIMATOR ALGORITHM 

In order to facilitate the derivation of an iterative weighted least squares 
solution, the various quantities that are iteration dependent will be subscripted 
with an i. Thus, !:::.x in Equation (8-5) is written 6. Xi ::: X - Xi' where Xi is the 
best estimate of X, t.he extended state, obtained from the ith iteration. At the 
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beginning of the process (0th iteratien), Xo = Xo is the a priori value of these

: solve-for variables. The objective is to determine _i +1 from xl so as m min-
imme the loss function.

The initial assumption that the measurement vector _ can be related to
the state and model parameters at epoch time t o is given as

_ = f-(-_, _) + H (8-14)

: where two classes of variables are included. The p-dimensional vector _, desig-
nated the solve-for vector, contains as components the state and model parameters

• whose values are known with limited certainty and are to be estimated. The
_ q-dimensional vector ._,, designated the consider vector, contains as components

all model parameters whose values are known with limited certainty but are not
to be estimated. Nevertheless° the uncertainty of Z is to be considered. A priori

-_ values of _ and _ are specified _ xo and z0 with respective covariance matrice_/
PAx ° and PBZo, i.e.,

' _ _o) _, c°_° _ P_o- --- (8-15) /s

_-0) - ¥, coy '_o - z-') ---PA_° (8-16)

On the i th iteration the loss function is defined to be

A,o (_ - _0) (_-17)

The second term on the right has been added to the loss function to constrain

the best estimate to the a pmori specified x0, with the degree of constraint de- .

• pendent upon the uncertainty P Ax0" This term accounts for the fact that x0 is ! '
'_ known to be accurate to a confidence level given by PAx0. Therefore, any solu-

: tion is constrained to satisfy the a priori realization Xc to within the limits of
its uncertainty. _'

To obtain the weighted least squares solution that minimizes Q(x) in Equa-
tion (8-17), the same procedure is followed as is used in Section 8.1. First,

_Q/_x is linearized; then, a Newton-Raphson procedure is iteratively applied _'
to solve the nonlinear minimization problem. For convenience, *.hevalue of x_ ,
for the i th iteration is considered first, and the nonlinear regression equation

: is linearized as follows.
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beginning of the process (oth iteraticn). :Ko = Xo is the a priori value of these 
solve-for variables. The objective is to determine Xi +1 f:w:-om X i so as w min
imize the loss function. 

The initial assumption that the measurement vector y can be related to 
the state and model parameters at epoch time to is given as 

y = {(X, z) + n ~8-14) 

where two classes of variables are included. The p-dimensional vector x, desig
nated the solve-for vector, contains as components the state and model parameters 
w~ose values are known with limited certainty and are to be estimated. The 
q-uimensional vector 7., designated the consider vector, contains as components 
all model paramAters whose values are known with limited certainty but are not 
to be estimated. Nevertheless, the uncertainty of z is to be cone:idered. A priori 
values of x and z are specified a..c;;; xn and Zo with respective cova:Liance matriC6o. 
PA and P A ,Le., 

L.lXo L.l Zo 

(8-15) 

COY ,zo - Z} =' PA 
L.l Zo 

(8-16) 

On the i th iteration the loss function is definnd to be 

(3-17) 

The second term on the right has been added to the loss function to constrain 
the best estimate to the a priori specified xo, with the degrec of constraint de
pendent upon the uncertainty P &0' This term accounts for the fact that Xo is 
known to be accurate to a confidence level given by P6xQ. Therefore, any solu
tion is constrained to satisfy the a priori realization Xc to within the limits of 
its uncertainty. 

To obtain the weighted least squares solution that minimizE:s Q(X) in Equa
tion (8-17), the same procedure is followed as is used in Section 8.1. First, 
oQ/d x is linearized; then, a Newton-Raphson procedure is iteratively applied 
to solve the nonlinear minimization problem. For convenience, the value of Xi 
for the ith iteration is considered first, and the nonlinear regression equation 
is linearized as follows. 
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where

Axi = _ - xi (8-19)
I

:, _ =7- _o (8-20)
• and

: { F i = (S-21a)

_ (_ 7=_,¥ o, ., )

: I ?T; _ Ei = (8-2 lb)

: :t 17'7=_i'7°)
-t /

[. t Since the consider variables g are not being estimated, their values remain .,.-.-"

: _. j equal to go"

; Substituting terms with nonzero mean from Equation (8-18)into Equatiora

' 18-17) yields the linearized loss function

Q' (A'-_.i ) = [Ay i - Fi_-_xi]r W[_-YYi- Fi_'_xl] 18-22)

} + (axi - A'_xi PA

', I where the measurement residuals are
: f

: '_ _'YYi= Y - T(xi' 70) (8-23)

" and the deviation of the a priori estimate from the i th iterative estimate is

_ Axi = _o - xi (8-24) .
\ g,

': !, "_" 8-7

k
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(8-18) 

where 

E~ = x-x. 
1 1 

(8-19) 

(8-20) 

and 

(8-21a) 

(dI) E. = -
1 dZ _ __ _, 

(x'Z-~i' ZO) 

(8-21b) 

Since the consider variables z are not being estimated, their values remain 
equal to ZOo 

Substituting terms with nonzero mean from Equation (8-18) into Equatior.. 
(8-17) yi('los the lineariz~d loss function 

- - - T - -
Q' (t:.Y.. ) = [t:.y. - F. t:.x.] W [t:.y. - F

1
·t:.X

1
·] 

t • 1 1 1 1 (8-22) 

1 - ""' p~ (t:.x. - t:.x. ) 
Ux 1 1 o 

where the measurement residuals are 

(8-23) 

and the deviation of the a priori estimate from the ith iterative estimate is 

'" - ~ t:.x. == Xo - X. 
1 1 

(8-24) 
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The value of A-'_i that minimizes Q,, denoted by Ax i + 1, is therefore
Jg

p-I _i j -'p-1 )-1 [FTW_'_ + (8-25)_xi+I = (FiTWFi+ Ax ° Ax0 ,;

i
I

and the best estimate of the solve-for variables is

i+l

xi+l = x0 + Axk = _¢i +"Axi+t (8-26)

This estimation process is iterativelyapplied untilthe convcr_;oacecriteria

(discussed in Section 8.6.3)are satisfied.

• Equation (8-25) is the estimator algorithm used in GTDS. It requires the

_ . inversion of a p x p matrix, the same dimension as the vector of solve-for var-y

_ _ iables. Insofar as the estimator algorithm is concerned, it makes no differ-
_ i i ence whether consider variables are included. Equation (8-25)depends only

i on the values Zo, not on the uncertainty PAz0" This might be expected, since 4
, ,x_! the uncertainty resulting from the inclusion of consider variables affects only j/"

the second order statisticsor covariances (i.e., the ensemble properties).

The last term on the rightin Equation (8-25)can ouly be included subsequent i

_ to the initialiteration,since on the initialiterationA_x = 0.
I

The estimator algorithm in Equation (8-25) differs slightly from the classi-

cal weighted least squares algorithm (Equation (8-10)). This differonce results

-' _rom the addition of the second term on the right in the loss function (Equation •

(8-17)).

; _._.1 Mean and Covariance of Estimate '_

i The best estimate _ which results from convergence of the estimator ,

algorithm will ne_ be examined to determine its statistical properties. Two

quantities are of concern, the expected (mean) value and the covariance of _"

" the estimate. The expected value of the deviation _x yields the amount of bias :

in the estimate, while the covariance indicates the amount of dispersion or un-

certainty. Obviously, zero bias and minimum dispersion _re the qualities *
sought.

8-8
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The value of t.xi that minimizes Q', denoted by t.xi + 1 , is therefore 

t' T F -1 -1 rT.'TW A p-l ,,'" J D.x. +1 = (F. W . + P /I.) U'. uy. + /I. UX. 
1 1 1 UXo 1, UXo 1 (8-25) 

and the best estimate of the solve-for variables is 

(8-26) 

This estimation process is iteratively applied until the conY~=-6cnce criteria 
(discussed in Section 8.6.3) are satisfied. 

Equation (8-25) is the estimator algorithm used in GTDS. It requires the 
inversion of a p x p matrix, the same dimension as the vector of solve-for var
iables. Insofar as the estimator algorithm is concerned, it makes no differ
ence whether consider variables are included. Equation (8-25) depends only 
on the values zo, not on the uncertaInty Pt.zo' This might be expected, since 
the uncertainty resulting from the inclusion of consider variables affects only 
the second order statistics or covariances (i. e., the ensemble properties). 
The last term on the right in Equation (8-25) can onlv be included subsequent .... 
to the initial iteration, since on the initial iteration t.x = O. 

The estimator algorithm in Equation (8-25) differs slightly from the classi
cal weighted least squares algorithm (Equation (8-10». This difference results 
from the addition of the second term on the right in the loss function (Equation 
(8-17» . 

~.2.1 Mean and Covariance of Estimate . 
The best estimate x which results from convergence of the estimator 

algorithm will next be examined to determine its statistical properties. Two 
quantities are of concern, the expected (mean) value and the covariance of 
the estimate. The ~cted value of the deviation Cx yields the amount of bias 
ira the estimate, while the covariance indicates the amount of dispersion or un
certainty. Obviously, zero bias and minimum dispersion are Lhr: qualities 
sought. 
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'" In the following discussion, it is assumed that the i*.erations have converged
: and that the unsubscripted variables x, _ x, A y, etc., correspond to the converged :.

solution and perturbations about it.

' The expected value and covariance of the measurement noise vector n are

; assumed to be

: _Cd) = 0 (8-27a) :

cov_n_ = w -I (8-27b) :

and thelinearizedvectorof observationresidualscan be writtenas =\
.

" Ay :FAx +EA z +H (8-28) ::

: Therefore, the expected value of by is

{_yy) : _'(FA-x} (8-29) _.

since_ {_ ) = _{A-_} = O. The covarianceof _y is } ?

I , cov{A-'-y} :_.{[Ay-_(Ay)] [Ay- _"-(_-'yy?] T} ' {,

!

; =ES{Az &zT) ET +E$ {_--z._T}+ _{7_T}ET+_ ' {_a "T} 18-30)

PZX Er �w-_, = E z0 , ,

: where the correlation between the consider variable errors and the measurement ;

noiseisassumed zero,i.e., _"

: _' {/-_-zHT} :-0 (8-31)

t

s-9 ,.
i:
A

1976017203-387

In the following discussion, it is assumed that the iterations have convergeu 
and that the unsubscripted variables X, 6x, 6y, etc., correspond to the converged 
solution and perturbations about it. 

The expected value and covariance of the measurement noise vector Ii are 
assumed to be 

2{O} = 0 

-1 
cov{O} = W 

and the linearized vector of observation residuals can he written as 

Therefore, the expected value of 6y is 

2 {6 y} = E {F6x} 

since 2 {Ii} = 2{6 z} = O. The covariance of 6y it; 

(8-27a) 

(8-27b) 

(A-2S) 

(S-29) 

where the correlation between the consider variable errors and the measurement 
noise is assumed zero, i.e., 

(S-31) 
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I
, The mean of the best estimate _ is

_ i+l

{_i+l -- X') ---- _ {_'XXi+l -- Axi)

= (1_ WF + p-I _-1 [FTW8 {_} + p-1 _ {A'_x} _ (F T WF (8-32)"- Ax° / Axo

w

2

' = (Fr "¢F +p-1A,o)-1 p-l_x° 8 (_o - g}

However, x0 was defined to have an expecr_o v_ue equal to _ (see Ec_aation

._ (8-15)). Therefore
; t

:: _ {,_-x-} = 0 and _ {_.} :_ (8-33)
L

"N /,#

Equation (8-33) shows that the best estimate is unbz'ased. The eovariance
of the error in the estimate is

A r Ex_]_}

= { ETWF+FTWF+P -1
,,b F r WE P'_'o AXo

. A% + g 8 {A--_zi5T} W (8-34)

+ IP -I _{(_x z_'_x)_z T} ET + FT W _ {_zzT} E]WFAx°

+ p-IA,o #, {(_-_'x - _"x) ST} W F + F T W _ {_ (_x'- ._x) T} PAxo} #_T

whe re

p-I -i

8-10 REI'I_,L)DUCH311,1TYOP 1"1t I:,
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The mean of the best estimate x is 
i+l 

(8-32) 

However. Xo was defined to have an expected value equal to i (see Eauation 
(8-15». Therefore 

E {x - X} = 0 and E {x} = x (8-33) 

Equation (8-33) shows that the best estimate is unbiased. The covariance 
of the error in the estimate is 

where 

8-10 
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c ' _ To simplify Equation (6-34) the following definitions are made

c A = _ {(_-; - _x) _} = _ {(_ _ _0) (7 - 70)r}

_" ! = _ ((g0 - _-) (go - }-)r} (8-36)

l cr_ = = _{_ _ (Sx-_x) T}:_:{(7-_0 ) (_-_o)T_AxoA z , t

_, _ =8 {70 - 7) (go - g)T}

% °.'_' zn = " {_--_ gT} __ _ ((_ -- Z0 ) gT} = 0 "

": _ (8-37)

: : c T :F.{_g-_z r}= _(___0)T_ :0 i; 5zn

}

t CA_o_ = _ {(_---_x- Cx)_ T}= _ {(_ - _o) _r} = o ,.
(8-38) ;

Ctax°_ =_(_(_-_-L_x) T}:_ _R(x-x0)T_ =0 _"

,_ Therefore, Equation (8-34) becomes ""

P\x = ¢ {FTWEP5% ET WF + _:-'
(8-39)

+ P-_5 x o CSxo ;_z ET W F} cT '_-,,.+ F 1"WE C_xok " P_lxo ,'.

In Equations (8-37)and (8-38) it is assumed that no statistical correlation exists
,.

between the measurement noise and the error in the solve-for or consider vari-

ables. The correlation between errors in the a priori solve-for and consider

"_ variables CAxo,_ is neglected inGTDS, primarily because a priori values of a
this correlation _matrix are usually unavailable. The terms are maintained in

i Equation (8-39) for completeness and for possible use in the error analysis appli- _

i cation discussed later. In the event that no consider variables are included, _
! Equation (8-39) reduces to
¢

_',_"

p-I 1

i P% : '/' : (FT WF _ A%)- (8-40)

which is the gain matrix in the estimator algorithm (Equation (8-25)).

: r ' " 8-11
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To simplify Equation (8-34) the following definitions are made 

e = 2 {( L~ - 6-x) ~ T} = 2 {ex - xo) (i _ z ) T} 
6~~z 0 

= I: {(xo - x) (zo - z)T} (8-36) 

ex A =2 {6z (6x-E"x)T} =r: {(z-z) Cx-xO)T} 
LlXOLlZ 0 

= 2 {zo - z) (xo _ x)T} 

(8-37) 

(8-38) 

Therefore, Equation (8-34) becomes 

(8-39) 

In Equations (8-37) and (8-38) it is assumed that no statistical correlation exists 
between the measurement noise and the error in the solve-for or consider vari
ables. The correlation between errors in the !l priori solve-for and consider 
variables C,\ '\ is neglected in GTDS, primarily because a priori values of 

I Xo. Z 

this correlation matrix are usually unavailable. The terms are maintained in 
Equation (8-39) for completeness and for possible use in the error analysis appli
cation discussed later. In the event that no consider variables are included, 
Equation (8-39) reduce!) to 

(8-40) 

which is the gain matrix in the estimator algorithm (Equation (8-25». 
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It was stated previously that a desirable quality of an estimate is small d.s-
perslons. It is evident from Equation (8-40) that the covariance matrix of ] :

error in the estimate PA. varies with the measurement uncertainty W - and

the a priori covariance matrix of the solve-for variable uncertainty PAxo" ::
Equation (8-39) shows that PA, also varies with the covariance matrix of un- i.

certainty in the consider variables PA,o" Therefore, minimizing the measure- :_
ment noise, as well as the a priori uncertainty in the solve-for and consider
variables, will result in reducing the dispersion or uncertainty in the estimated _

- variables.

The correlation between errors tn the solve-for and consider variables,

which re_ulLs from the processing, is
>

cA, A =_{(_-_)(70-7) T)

18-41)

? '

= p-i - FT W E %}i _ { A_o Caxo'5" PA

'N

Even if the a priori correlation C_0 A_ is assumed to be zero, a correlation ."# :"
between errors in the solve-for and consider variables will result because of <1 ;:

their dependency in the processing model.

8.2.2 Observation Partial Derivatives )

'7

Throughout Sections 8.2 and 8.2.1, the componeuts of the solve-for and con-

sider vectors x and z have been ignored along with the way the components and

their error covarianc_s PA_ and Ph, are associated with a specific time or
epoch. Furthermore, it has been assumed in Equation 18-14) that the calculated t ..:
measurements at various times (t 1 , t_ .... , t_) can be related to the solve-for , :
and consider variables at the epoch time t 0. In Equation (8-18) itis assumed thatthe

time varying matrices F i and E i can be calculated which linearly relate the cal- '7

culated measurements to variables at the epoch time. In the following section, "_
attention will be focused upon the solve-for and consider vector components, the
manner in which the time dependency is accomplished, and the properties of the .

normal matrix which are utilized in its formation.

The general estimation (solve-for) vector _ in the regression equation , :
(Equation 18-14)) and the est:mator equation (Equation 18-25)) contains variables
from _ in Equation (_-221), i.e.,

b
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It was stated previously that a desirable quality of an estimate is small dis
persions. It is evident from Equation (8-40) that the covariance matrix of 
error in the estimate P 6.

x 
varies with the measurement uncertainty W -' and 

the a priori covarhmce matrix of the solve-for variable uncertainty P6. xo. 
Equation (8-39) shows that P 6. x also varies with the covariance matrix of un
certainty in the consider variables P6z o• Therefore, minimizing the measure
ment noise, as well as the a priori uncertainty in the solve-for and consider 
variables, will result in reducing the dispersion or uncertainty in the estimated 
variables. 

The correlation between errors tn the solve-for and consider variables, 
which re~ults fron: the processing, i3 

(8-41) 

Even if the a priori correlation C6.xo 6.z is assumed to be zero, a correlation 
between errors in the solve-for and consider variables will result because of 
their dependency in the r::cocessing model. 

8.2.2 Observation Partial Derivatives 

Throughout Sections 8.2 and 8.2.1, the componw(1ts of the solve-for and con
sider vectors X and z have been ignored along with ihe way the components and 
their error covariancas P 6.x and Pfu are associated with a specific time or 
epoch. Furthermore, it has been assun:.ed in Equation (8-14) that the calculated 
measurements at various times (t 1 , t~, ... , t"m) can be related to the solve-for 
and consider variables at the epoch time to. In Equation (8-18) itis assumed that the 
time varying matrices F i and E i can be calculated which linearly relate the cal
culated measurements to variables at the epoch time. In the following section, 
attention will be focused upon the solve-for and consider vector components, the 
manner in which the time dependency is accomplished, and the properties of the 
normal matrix which are utilized in its formation. 

The general estimation (solve-for) vector x in the regression equation 
(Equation (8-14» and the esl}.mator equation (Equation (8-25» contains variables 
from q in Equation ('7-221), I.e", 

8-12 



Ys
× q= - {solve-for vector) (8-42)

u1 i

:, tJ

. where

_, _ _ dynamic paramete _, consisting of ttle vehicle's state components at
epoch and model parameters in the acceleration model (Equation (4-1)).

-: _ These parameters include gravity constants, the drag parameter, the
L solar radiation constant, thrust, and attitude parameters.

Ts _ tracking station locations i_ earth-fixed coordinates.

71 b _ measurement biases.

_ t _ measurement timing bias.
/J

The specified components of the solve-for vector are ordered as follows:

• six (or fewer) position and velocity components, R0 and R0, or equivalent
elements

- • drag parameter [,_

• solar radiation parameter k = P A/m 0

• gravitational potential constants /_, _k, C_, and S_ ,i
i

"\ • thrust acceleration parameters a o, • • •, a4; (_0_ • • • _'_3; and _0 _ • " " _ _3

• attitude control parametersax, ay, az; L, _, b=; and cx, Cy, c z

' • tracking station locations
S

• observation biases b and _ t

i Either of the five optional clm_r.acterizations of the epoch position and velocity,
described in Section 1,6, can be solved for. The mean of 1950.0 Cartesian co-

: ordinates Ro and Ro are used for the purpose of describing the method.
?

im
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x q :: 
:.l 

:: {solve-for vector} (8-4~) 

b 

; tJ 
where 

p "" dynamic pararnete- :;, consisting of the vehicle's state components at 
epoch and model parameters in the acceleration model (Equation (4-1». 
These parameters include gravity constants, the drag parameter, the 
solar radiation constant, thrust, and attitude parameters. 

r "- tracking station locations ill earth-fi.xed coordinates. s 

b "" measurement biases. 

o t "" measurement timing bias. 

The specified components of the solve-for vector are ordered &S follows: 

.:.. 
• six (or fewer) position and velocity components. Ito and Ro. or equivalent 

elements 

• dr&g parameter 1'1 

• sclar radiation parameter k = ~ Aim 0 

• gravitational potential constants J.L, J.Lk, C~, and S~ 

• thrust acceleration parameters a 0' ••• , a 4; (t 0' ••• (l 3; and ~ 0 ' ••• ,;, 3 

• tracking station locations r s 

• observation biases b and 0 t 

Either of the five optional cha.racterizations of the epoch position and velocity, 
described in Secti~n 1.6, can be solved for. The mean of 1950.0 Cartesian co
ordinates Ro and Ro are used for the purpose of descr1.bing the method. 
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Each row of the F(t) matrix iv Eqaation (8-21a) contains partial derivatives
_ of the computed observation _Mth respect to Ro, 1_0 , and the other specified
_ components oi p, r,, b, aud _ t. The dynamic variables p must be related to the :
_ epoch time through tb_ state transition m_" _x ¢(tl, to) as discussed in Chapters
; 4 and 6. Partial _erivatives with respect to Y,, b, and 8 t are not dependent upon

an epoch avd can be obtained by differentiating the observation equation explicitly. _

The nonlinear observation equ _ion is written in Equation (7-1) as

"( Oc = fo [-_lt (t + S t, p, r), rtt (t + _t, p, r,)] + b +RFc (8-43) _;

t

:. whe re

- - _ vehicle position and velocity vectors expressed in local tangent _:, rlt, rlt

coordinates with respect to a tracking station located at _
s

1

,/ i 1tF _ systematic error correction to observation due to atmospheric re-
fraction, light time, transponder delay, antenna mount errors, etc.

,; _1 The partAal derivatives of an observation Oc, at time t i , with respect to the , /,,
: solve-for variables _ are ,_

- - I

; _ _ (t o) :

_ (t_)

- 30c (tJ)_f°(ti) _f°(t') _f°(t) ) _-f°(ti (8-44) t

: --L _ (t) _ ;_¥ ab a_t 1 ,'.1

,. 1 ' :

The first matrix on the right is explicitly determined from the observation equa- '

tions in Chapter 7. The second matrix on the right must be obtained by integrat-
ing the variational equations (or approximations of these equations) as described .
in Chapter 6. Equation (8, 4 0 constitutes a single row E of the F matrix, y ;

On each iteration, the m observations are sequentially processed to form
the normal matrix FTWF. Since the weighting matrix W is diagonal, the re-

cursive relation for accumulating the normal matrix is

W
8-14
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Each row of the F(t) matrix in E<t.1atlon (8-21a) contains partial derivatives 
of the computed observation with respect to Ro' Ito' and the other specified 
components 01 p, rs ' b, and 8 t. The. dynamic variable~ p must be related to the 
p,poch time through th~ state transition m~l' ix CIJ(ti' to) as discUDsed in Chapters 
4 and 6. Partial derivatives with respect to r s' b, and Stare not dependent upon 
an epoch and can be obtained by differentiating the obsel'Vation equation explicitly. 

The nonlinear observation equ tion is written in Equation (7-1) as 

Oc :: fo [fIt (t + ;3 t. P. f s)' tIt (t + bt, i>, rs)] + b + RFc (8-43) 

where 

fIt' tIt "V vehicle position and velocity vectors expressed in local tangent 
coordinates with respect to a tracking station located at r 

s 

R Fe'" systematic error correction to observation due to atmospheric re
fraction, light time, transponder delay, antenna mount errors, etc. 

The partial derivatives of an observation Oc' at time t j , with respect to the 
solve-for variables x are 

c R (t ) 
I 

c p (to) 

c R (t. , 
J' 

1 

1 

The first matrix on the right is explicitly determined from the observation equa
tions in Chapter 7. The second matrix on the right must be obtained by integrat
ing the variational equations (0:- approximations of these equations) as described 
in Chapter 6. Equation (8· 4·1:) constitutes a single row i of the F matrix. 

On each iteration, the m observations are sequentially processed to form 
the normal matrix FTWF. Since the weighting matrix W is diagonal, the ... ·e
cursive rel:ltlon for accumulating the normal matrix 1s 
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r-_' i

: i

, £ -_T_
"_- i F T WF= J J (8-45)

_2
: j=l j

whe re

[ _T r^ _ _0 ] th
_ Lxi (t J , = {j row oi F matrLx given by Equation (8-44) }i L_j --

, and _. is the standard deviation of the j th obsei_a_on.Jt
h

By forming FTWF row-by-row instead of manipulating the full (m × p) F
' i matrix, a saving in storage and computation time is realized. Since the matrix

FTWF is symmetric, elements be!ow the main diagonal need not be computed
, or stored.

The general co'asider vector _ in the regression equa_on (Equation (8-14))

,: can have as components any model parameters in _, r,, b, or _ t.

i ; ; Each row of the E(t) matrix in Equation (8-21b) contains partial derivatives

": _i u_ _he computed observations with respec_ to the specified components of _. The ,,
partial derivatives with respect to the dynamic variables _, specified in _, can .i."

! be calculated simultaneously with the dynamic partial derivatives in F(t) as de-
I scribed in Chapter 6. However, the partial derivatives in E(t) need only be com-

puted on the _inal converged iteration, since the estimator equation (Equation (8-25))
is not dependent upon E(t).

•"n GTDS the components of the vectors _ and _ are merged on the final

iteration to an expanded state vector _. The elements of u are ordered as de-
scribed above. The observation partial derivatives az _ then calculated with

respect to _, and a (p+q) x (p+q) expanded state norm_ matrix _TWF is ,i
sequentially accumulated as described above. When all m observations have

",, been processed, selected elements of _Tw_ are extracted to form FTWF,
E_WE, and E_WF, which are requlred to compute the covarianee and c_rrela-
tion matrices in Equations (8-39) through (8--41). It _hould be noted that only
elements on and above the main diagonal of FTWF need be ca!culatvd and stored.

8.2.3 Covariance Matrix Transformations

The converged estimate _, covariance matrix I_x, and correlation matrix
CA_A. resulting from the differential correction process correspond to the epocll
time to. Since GTBS can estimate the state in any of five subsets, the first six
components of x can correspond to Cartesian coordinates in L_ean of 19_0.0 or

8-15
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where 

a = 
J 

m 

FT WF= [ 

j=l 

d I [x. (t ), z ] 
1 ~_ 0 = {j th row ot F matrbc given by Equation (8-44)} 

d.< 

and a. is the standard deviation of the j th observation. 
J 

(8-45) 

By forming FTWF row-by-row instead of manipulating the full (m x p) F 
matrix, a saving in storage and computation time is realizad. Since the matrix 
FTWF is symmetric, elements beJ.ow the main diagonnl need not be computed 
or stored. 

The general consider vector z in the regression equation (Equation (8-14» 
can have as components any model parameters in p, rs ' b, or 8 t. 

Each row of the E(t) matrix in Equation (8-21b) contains partial derivatives 
vl the computed. observations with respect to the specified components of z. The 
partial derivatives with respect to the dynamic variables p, specified in Z, can 
be calculated simultaneously with. the dynamic partial derivatives in F(t) as de
scribed in Chapter 6. However, the partial derivatives in E(t) need only be com
puted on the final converged iteration, since the estimator equation (Equation (8-25» 
is not dependent upon E(t). 

:n GTDS the components of the vectors x and Z are merged on the final 
iteration to an expanded state vector U. The elements of u arc ordert!d as de
scribed above. The observation partial derivatives III a then calc.:ulated with 
respect to fi, and a (p+q) x (p+q) expanded state norml'll matrix 't'TW F is 
sequentially accumulated as described above. When all D1 ob13ervations have 
been processed, selected elements of ~TW F' are extracted in form FTWF, 
ETWE, and ETWF, which are reqIDred to compute the covarianre and cc.rrela
tion matrices in Equations (8-39) through (8--41). It should be not~d that only 
elements on and above the main diagonal of pTwF need be calculated and stored. 

8.2.3 Covariau.ce Matrix Transformations 

The converged estimate X, covariance matrix ¥L\x' and co.:orelation matrix 
C 6 x lJ.. resultin6 from the cUfferential correction process correspond to the epoch 
time to' Since G'!'DS can estimate the state in any of five subsets, the first six 
components of x can correspond to CarteSian coordhlatcs in 1.1ean of 19;:0.0 or 
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true of date axes, classical Kep]erian oroital elements, spherical coordinates, f !'
or DODS variables. For discussion purlc ses, the first six components _th_ state

components) of _ _re denoted by g. The vector §" can optionally be

iil )
e x 2 ,,

_ 1 3

s= = = _21 = v -:Ix 4

" " Li " L: x,/ _,,no_ t,., of .M_E,p1_,i_, Sph,,i_.l LX6_pODS
_, 1950.0 Epoch Element s Elemec, t s Varisb! es

• depending on the w_.riable set used in the, differential correction process. The _

upper left 6 x 6 submatrix of P_x, denoted P_, also correspond_ _J the variables _
: used in the d_fferential correction process.

"r _ GTDS transforms the estimated state _ and its covariance matrix PA.
: ,,;_ to any or the other variaule sets shown above. The constant solve-for _-

: ) parameters and consider parameters in x and _ of the original differential cor- "

:, ' rection problem &re not coordinate dependent. Only the state (position and " -:
' velocity) depends upon the coordinate system utilized. Therefore, only the sub-

set § of _ and submatrix P_= of P_ need be considered in the coordinate trans- :.
: formation.

. If the sets to :vnich _ and PA, are being transfe.r reed are denoted by g' and ..
P_,, thenonl_mar transformationc,m be writtenas

_" (t o) : h [_(t o) ] 18-46)

Transformationsof thistypebetween Cartesianand spheric_ coordinate_are
pre_entedin Section3.3.4,and between Cart,-_ansad Keplerianelementsin
Section 3.3.8.

To transformtb._cova,'iancematrix P._, Ec_uadon(8-46)is line_-_zed,
yielding

As' (t_) -- H(t o) As(t o) (8-47a) .

wkere .,

( -_"s-E--) (8-47b) />H(tr,) -- \ ,_
t:t 0

g
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true of date axes, classical Ke:plerian oroital elements, sphericw. coordinates, 
or OODS variab:es. For discussion purp ses, the first six compone:nts (f;h" state 
compc.nents) of x 1 re denof;er:", by s. The vector s can optionally be 

x r; r
a f:l r::1 y e 

Z 

t 
i Xl] S == X - x = Ii 

== I ~ l:: DODS 

y Y C;) 

Li Z M UJ r.cf' 'n of True of Kepletlan SpheriLal 
1950.0 Epoch Elements El erne.; t s Variabl f'" 

depending on the V<.1.riable set used in thE'! differential co .... re(;~lon process. The 
upper left 6 x 6 subruatrix of P6 x' denoted Pi:; ~, also cor cespond,; ~ the variables 
used in the dlfferentiai correction process. 

GTDS transforllls th~ estimated state s and its covariance m&trix Pt.. 
to any Of the other varial'le scts shown above. The constant solve-for 
parameters and consider pa;...oameters in x and z of the origiL.u cUfferential cor
rection problem are not coorvinate dependent. Only the state (position and 
velocity) depends upon the cool'dinate system utilized. Therefore, only the sub· 
set s of x and submatrix p,\ of P,I\ need be considered in the coordinate trans·· 

LlS wX 

formation. 

If the sets to ·;.nich s and 115 are being transfor med are denoted by s' and 
Pt.s' , the nonli.'lear transformation <-.'ill be written as 

(8-46) 

Transformations of this type between Cartt.'sian and sphericaJ coordinates are 
prefented in Saction 3.3.4, and ootween Ca.r.k.::;;an Ci.£ld Keplerhm elements in 
Section 3.3.S. 

To transform tht:. cova.i.'iance matrix p\ s' E'llla".'''ln (S-46) is lineC::i:'fzed, 
yielding 

(8-47a) 

where 

(S-47b) 
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!

These partial derivatives between Cartesian and spherical coordinates and
_artesian and Keplerian elements are presen_d in Sections 3.3.4 and 3.3.8,

" 1 respectively. The cowriavce matrix PAs i_ defined _:-

;: _ PAs(_O) = _ [_'s(t o) - A--S(to)] [/_(t o) - _S(to)] T) (8-48)

where A"s and A-_ correspond to the first six components of _'x and A-'-x,defined
• i previously. The covariance matrix of transformed variables PA,, is defi_ed :

as

PA_' (to) : _{ [_s' (to) - As'(to)] [_'s'(t o) - ,-qs'(to)] T} (8-49) ;.

•

: i Substituting Equation (8-47a) into E_-mtion (8-49) yields
J 1

;/ i PAs'(to)= H(to)P/ks(to)HT(t0) (8-50)
i t p U

A second type of transformation occasiGnally encountered concerns th_ i

; I tlmewise propagation of the estimate _ _nd the covariance matrix PA_. The

i estimate x(t0)_ --istransformed timewise by me_-e!y integrating the equations of i
motion from initial conditions x(t o ) to other times of interest. The best estimate
of all model parameters is used in this integration. :_

The timewJse propagation of the covariance matrix of state and model . -
parameters is slightly more complicated. First, the propagation is separate
from the differential correction process, and model parameters other than -_-

those estimated (solved for) can be considered as uncertain in the propagation

.,,_ process. The a priorivaluesof theuncertainstateand model parameters
(whether solved for or considered) a_ epoch time t o are denoted by u(t0) and #

: their covariance matrix by PA (t0). At any later time t, they are given by

_ _-_

I ' t

,_ x ! _

_ F,-1 I ,

L ,J ! ....
' _ a : _ and PAu = "" ;

LCAx A, , PA%

:. _ 8-17 ii
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These partial derivatives between Cartesian and spherical coordinates and 
Cartesian and Keplerian elements are presented in Sections 3.3.4 a..lJ.d 3.3.8, 
respectively. The covari8Dce matrix P,6s h: defined 3."" 

(8-48) 

where 6s and e" s correspond to the f!-rst six components of £X and .6x, defined 
lJreviously. The covariance matrix of transformed variables PLls' is defil1ed 
as 

(8-49) 

Substituting Equation (8-47a) into Eqnation (8-49) yields 

(8-50) 

A second type oftransform~tion occasic,nallyencounte:red concerns th" 
timewise propagation of the estimate ~ :md the covariance matrix P.6x' The 
estimate X(t 0) is transformed t}mewise by meJ.-ely integrating the equations of 
motion from initial conditions X(to) to other times of interest. The best estimate 
of all model parameters is used in this integration. 

The timewi se prcpagation of the cO'/ariance matrix of state and model 
parameters is slightly more complicated. First, the propagation is separate 
from the differential correction proc...~ss, and model parameters other than 
those estimated (solved for) can be considered as uncertain in the propagation 
process. The a priori values of the uncertain state and model parameters 
(whether solved for or considered) at epoch time to are denoted by ~(t(l) and 
their covariance matrix by P,6)tc)' At any later time t, they are given by 

I C.6 /::, , x z 
I 

and 
, 

----------
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:: It is assumed that _ and P_ are composed of state components s and uncertain
i_ model parameters u*. Perturbations about _(t) are related to perturbations about

the a priori values as follows

i A--_(t) _(t, t o) 7_u(to) (8-51a) .:
: `:, where the transition matrix _ is given by

[t0tot
: ¢(, ) d(t, t o :

;: ¢(t, to) = - (8-51b)

with

• = f 8"_(t) _ (8-51C)
._ *(t, to): (_s(t)_ and ,_(t, to) \_,(t0) j\?S(to)/

, jl-

,, _ By definition, the covartance matrix of fi at time t is

:,, PAo(t) = [_'u(t)-,-SGu(t)] [_,(t_ _-"uu(t)] _'} (8-52) .,-

Substituting Equation (8-51a) into Equation (8-52) yields

; P6u(t) : ¢(t, to) p_°(to) cT(t, to) (8-53)

The covariance matrix of state (upper left 6 x 6 submatrix of PAu) is obtained *
by partitioning ¢ and PA, into their _ and fi* subparts as follows

\\

: PA.(t) = ¢(t, t o) PA_(t0) cT(t, to) + _(t, to) CI ¢TAs Au* (t, to)

(8-54a)

+ @(t, to) C_A,s _u* _T (t, to) + L' (t, to) PZ_u,o_T(, to )

s

If no uncertain model parameters are Included in the propagation, Equation (8-54a)
reduces to

: PA_ (t) = ¢ (t, t o) PAs(to) (_T (t, t o) (8-54b)

L
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It is assumed that u and Pt,., are composed of state components s and uncertain 
model parameters u*. Perturbations about u(t) are related to perturbations about 
the a priori values as follows 

6u(t) = q;(t. to) 6~(to) (8-51a) 

where the transition matrix cP is given by 

q;( t. (S-51b) 

with 

and (8-5Ic) 

By definition, the covariance matrix of ii at time t is 

(8-52) 

Substituting Equation (8-5Ia) into Equation (8-52) yields 

(8-53) 

The covarianoe matrix of state (upper left 6 x 6 submatrix of P6 u) is obtained 
by partitioning q; and P6 u into their s and u * subparts as follows 

(8-54a) 

If no uncertain model parameters are included in the propagation, Equation (S-54a) 
reduces to 
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"- | A

"- _ ' } From the same pa_'titioning, the correlation between the state _ and fi* is given .;_-
by

J

CAsau , (t) = _(t, to) C_,A_, + 9(t, to) Pa_. (8-540)

4

i 8.2.4 Computational Procedure for the Differential Correction Program i

" This section describes conceptually how the estimator and covar_ance equa-

: tions are solved in GTDS. Figure 8-1, the comput'_tional flow schematic, will aid _,
in the discussion. The figure is divided into functional blocks and the discussion
is similarly organized. The logic shown in Figure 8-1 is not _he same as the !'
specific source logic in GTDS, but is presented in or_lcr _ characterize the
concepts.

t; ,
_ 8.2.4.1 A Priori Input

; The process is initialized by specifying all necessary input data at _

: This includes the estimated _nd considered variables and their covariances, as _'
1 well as measurement time spans and times to which the best estimates of the _

; sCate and covariances are to be propagated. _J.'hestate input _ _ptionally ex- _ '_

i pressed in any of several convenient coordinate systems. It is transformed to ':
the basic coordinate system used in GTDS (i.e., mean equator and equinox of

• 1950.0 or true equator and equinox of a given epoch) for subsequent processing. :_
.:: T_ese transformations are described in Chapter 3.

8.2.4.2 Data Management

The next step is the preparation of the observation data for l_rocessing at
(B_. This encompasses relocating the data within the specified measurement "_

\\ _span from the original input device (cards, singl, _, or multiple tapes, disk, or
_: keyboard) to a working file convenient for subsequent retrieval during processing. '_
; During this relocation function, the data sequence can optionally be edited con-

_ sidering the type of observation, the source of the data, the tracking station, and the
: time span between adjacent points. The data on the working file are chronologi- ";_

: cally numbered, and the number of the data point which bounds the initim epoch
time t o from below is recorded. The data m_agement function also includes

' the determination of whether the initial epoch time is less than the first data

time, between the first and last data time, or larger than the last data time.
_: For the first case, the data are processed sequentially from the first point at

t_ to the last _clnt at t m. For the second case, the processing starts backward

1_i 8-19 _"
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From the same paJ.·titioning, the correlation betwepn the state s and u* is given 
by 

(S-54c) 

8.2.4 Computational Procedu~e _for the Differential Correction Program 

This section describes conceptually how the estin.ator and covariance equa
tions are solved in GTDS. Figure 8-1, the compuh.tiomJ flow schematic, will aid 
in the discussion. The figure is divided into functional blocks and the discussion 
is similarly organized. The logic shown in Figure 8-1 is not the same as the 
specific source logic in GTDS, but is presented in orrlcr to characterize the 
concepts. 

8.2.4.1 A Priori Input 

The process is i:Utialized by specifying all necessary input data at @ . 
This includes the estimated and consid~red variables and their covariances, as 
well as measurement time spans and times to which the best estimates of the 
state and covariances are to be propagated. 'Ehe state input 10 -,ptionally ex
pressf.J irl any of several convenlent coordinate systems. It is transformed to 
the basic coordinate system used in GTDS (i.e., mean equator and equinox of 
1950.0 or true equator and equinox of a given epoch) for subseqltent processing. 
Tbese transformations are described in Chapter 3. 

8.2.4.2 Data Management 

The next step is the preparation of the observation data for proceSSing at ®. This encompasses relocating the data within the specHied measurement 
span from the original input device (cards, Singh or multiple tapes, disk, or 
keyboard) to a working file convenient for subsequent retrieval during proceSSing. 
During this relocation function, the data sequence can optionally be edited con
sidering the type of observatil)n, the source of the data, the tracidng station, and the 
time span between adjacent points. The data on the working file are chronologi
cally numbered, and the number of the data point which bounds the initial epoch 
time to from below is recorded. The data mflnagemp,nt function also includes 
the determination of whether the initial epoch time is less than the first data 
time, between the first and last data time, or larger than the last data time. 
For the first case, t'l),e data aL'e processed sequentially from the first point at 
t1 to the labt ?')cint at t m• For the second case, the proceSSing starts bfwkward 
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Figure 8-1. Computational Sequence for the Differential Correction Program 
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tLJ in time irom the initial epoch to the first data point. £t then switches back to the

:, initial epoch and proceeds forward in tSme to the last data point. In the third
+ case, the data are processed backward in time from the last (chronological) data

point to the first data point.
v

I

: 8.2.4.3 Outer Iteration Locp

® ©" The o_r iteration loop begins at ' or . Normal GTDS operation

starts at C_ with initialization of the inner processing loop point counter j and i
subsequent integration of the ephemeris from observation point to observation

point within the inner loop (at (_)) An al_rnati_,scheme, planned for the +i
• standalone DC Program, beg2ns_he outer loop at (E) ' by calculating and storing :

the ephemeris and state transition matrix over the entire DC time span (To to

•I T_ ). Later, in the inner loop, the state_d state transition matrix are obtainedby interpolation of the stored data (at _)).

8.2.4.4 Inner Processing Loop

i The inner processing loo]p_tarts by retrieving the first data point to be processed
from the working file at _. Under normal operation, the nonlinear equations of
motion (see Chapter 5) and associated varia,+ional equations_ee Chapter 4) are

: : numerically integrated (see Chapter 6) to the ,_ata time at {E ). Alternatively, if q

+:' the ephemeris and state transition matrix are g_uerated_ an_d'_stored at (_', their
values are interpolated to the observation time a_ (F). The best estimate of _he +

-£--VVj "J; ! measurement and its rel_edresidual are calculated (see Chapter 7) alon_ !
with the single row aj of the F matrL uorresponding to the measurement ate).
To minimize core storage, the matrLx products FTw_'y and FTwF are accumu- I

! lated as each row of F is calculated, as dc,_cribed in Section _.2.2. It is apparent
from Eq,Jation (8-25) that only these matri× products are required for determin- i},

\,

"_ : ing the estimate. All symmetric matrices __,g., FTWF) are stored in upper tri- '
angular form. On the last iterat=on tl,e matrix products FTWF, ETWE, FTWE,

and ETWF are accumulate_.for subsequent use in computing the covariance and
= correlation matrices. At _ tests are performed to determine Jf all m data

points have been procesc+ed. If they t:ave not, the meesurement point counter j
is incremented or decremented, depending on whether the data is being processed
forward or backward in time, The logic then returns to the beginning of the
processing loop to retrieve the next, point to be processed. 0

,
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in time trom the initial epocil to the first data point. J.t then switches back to the 
initial epoch and proceeds forward in time to the last data pOint. In the third 
case, the data are processed backward in time from the last (chronological) data 
point to the first data point. 

8.2.4.3 Outer Ite:ration Locp 

The o~r iteration loop begins at @I or ®. Normal GTDS operation 
starts at \SJ with initialization of the inner processing loop point counter j and 
subsequent integration of the ephemeris from observation point to observation 
point within the inner loop (at (E). An al~rnati~scheme, planned fot' the 
standalone DC Program, begin~e outer loop at \..;J , by calculating and storing 
the ephemeris and state transition matrix over the entire DC time span. (Toto 
T

f
). Later, in the inner loop, the state~d state transition matrix are obtained 

by interpolation of the stored data (at \!:). 

8.2.4.4 Inner Processing Loop 

The inner processing loo~tarts by retdeving the first data point to be processed 
from the working file at D. Under norn1al operation, the nonline3.l· equations of 
motion (see Chapter 5) an associated variational equation~see Chapter 4) are 
numerically integrated (see Chapter 6) to the ·lata time at E . Alternatively, if 
the ephemeris anti state transition matrix are gsnerated an stored at ®I, their 
values are interpolated to the oh~ervation time at 0. The best estimate of the 
measurement and its relstedresidual f':..y: are calcUlated (see Chapter 7) alo~ 
with the single row a of the F matriy ;.;orresponding to the measurement at \g} . 
To minimize core stdrage, the matrix pro1ucts FTWf':..y and FTWF are accumu
lated as each row of F is calculated, as dc:;oribed in Section ti.2.2. It is apparent 
from Equation (8-25) that only these matrix produots are required for determin
ing the estimate. All symmet"ic matric:;s \' g., FTWF) are stored in upper tri
angular form. On the last iterat!on +h~ mat .. iX products FTWF, E TWE, FTWE, 
and ETWF are accumulateft.~or subsequent use in computing the covariance and 
correlation matrices. At \!y tests are performed to determine jf all m data 
pOints have been process"ln.. If they llave not, the me~Burement point counter j 
is incremented or decremented, depending on whether the data is being processed 
forward or backward in time. The l<'gic then returns to the beginning of the 
processing loop to retrieve the next point to be processed. 
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8.2.4.5 Estimation Computation

When all m data points have been processed, the complete matrix products

FTW and FTWF are available at Q as is tlle measurement residual vector _'y. _
On thelastiterationFTwE, ETWF, and ETwE are alsoavailable.The best _A

estimate of the perturbations A x +x and variables are then calculated via

Equations (8-257 and (8-26) ate. xi+z

8.2.4.6 Termination of Outer Iteration Loop

; After determining an estin!ate at _, the iteration is complete and conver-
gene _ tests are performed at _. The convergence criteria are described in
Section 8.6.3. If the iterations are converging, the iteration counter i is tested

, againstthemaximum number of iterationsallowable.Ifthemaximum has not !

_ been reached, the iteration counter is incremented and logic proceeds through '
._ ,_ to begin the next iteration at _. At __L_ the measurement residual vector
, can be used to edit the data as discussed in Section 8.6.2, as well as to determine

iteration statistics as discussed in Section 8.6.4. If the convergence test at
:' "_-- determines that divergence is occurring, the problem can be terminated. If the / :

, iteration has converged, or the maximum number of iterations has been reac_ed,
then the covariance and correlation matrices at epoch t o are calculated at QM).

:: Finally, the state vector, the covariance matrix, and the correlation matrix can i
:' be transformed to other space and time sets as described in Section 8.2.3. :.
"- f

8.3 ERROR ANALYSIS APPLICATION

The weighted least squares estimator algorithm and the associated covari- i
._anc_ and correlation matrices, derived in Sections 8.2 and 8.2 1, are summarized ._,

\ as follows.

Estimator
q

Axo _.

S

t
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8.2.4.5 Estimation Computation 

When all m data points have been processed, the complete matrix products 
FTW and FTWF are aVailable at@ as is the measurement residual vector 6 y. 
On the last iteration FTWE, ETWF, and ETWE are also available. The best 
estimate of the perturbations 6"x. +1 and variables Xi +1 are then calculated via 
Equations (8-25~ and (8-26) atev. 

8.2.4.6 Termination of Outer Iteration Loop 

After determining an estimate at 0, the iteration is complete and conver
genc> -; tests are performed at @. The convergence criteria are described in 
Section 8.6.3. If the iterations are converging, the iteration counter i is tested 
against the maximum number of iterations allowable. If the maximum has not 
been reached, the iteration counter is incremented and logic proceeds through 
\~ to begin the next iteration at @. At ~ the measurement residual vector 
can be used to edit the data as discussed in Section 8.6.2, as well as to determine 
iteration statistics as discussed in Section 8.6.4. If the convergence test at @ 
determines that divergence is occurring, the problem can be terminated. If the 
iteration has converged, or the maximum number of iterations has been rea~ed, 
then the covariance and correlation matrices at epoch to are calculated at ~. 
Finally I the state. vector, the covariance matrix, and the correlation matrix can 
be transformed to other space and time sets as described in Section 8.2.3. 

8.3 ERROR ANALYSIS APPLICATION 

The w~ighted least squares estimator algorithm and the associated covari
anca and correlation matrices, derived in Sections 8.2 and 8.2.1, are summarized 
as follows. 

Estimator 

"" ~ T 1 J- 1 
( TWA-" + p-l 6x

i
+

1
:: F WF +P- F. uy. 

1 1 Lho 1 1 ~xo 
(8-55) 
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' I! Covarianceof Estimate '

PAx :¢,[FTWEPA% ETWF+FTWEC T p-1....,,. AXoAz Ax° a

• + p-1L_,xoCAxoA-ET WF �FTWF + p-IAxo] ,_,T _ ; ',_,

,
", Correlation of Estimate and Consider Variables

: CA"A" :_ P oCAxoA_-- FTWEPA, ° ?

whe re

p-1 j-1 (8-58a)
_: [FTWF+ Ax°

Ph,x0 : _ ((_o - _) (_0 - R')T) (8-58b)
F,

] PAx : _ {(_ - _) (_ - _)v} (8-58c)

PA, ° : _, {C70 - 7) (7 o - _-)T} (8-58d) "i

CAxoA, = _ _(_o- _) (_o - -_)T) (8-58e) _:

C/_xAz : _ ((_ _ _) (T 0 _ _)T} (8-58f) :

(_ is the converged xi) _ '_
I

In Equations (8-55) through (8-57), only the estimator requires measure- :_.

ment data. The equations for the covariance and correlation matrices require ,:-;
only the statistics W of the observations, which are usuaUy known for specific )
classes of trackers and sensors. Therefore, if it is assumed that the a priori ,_
reference trajectory _o is the best estimate, the estimator equation can be :_

omitted and the covariance and correlation matrices can be determi_md for spe- :,
cific mission sensors and observation profiles. It must also be assumed that ," ._

the mathematical models in the program accurately characterize the physical
sitta_tion. Since actual measurements are not required, these operations can be
performed during preflight studies to determine:

I

,_ 8-_.3 ',_
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Covariance of Esiimate 

Correlation of Estimate and Consider Variables 

where 

P[',X
O 

= 2 {(xo - X') (X'o - xl} 

P~ = 2 {(x - x) (x - X')T) 

p" = ~ {(z - z) (z _ z) T} 
~Zo 0 0 

C" f\ = E {(X'o - x) (zo - z) T} 
~Xo'-'Z 

(x is the converged x.) 
1 

(S-56) 

(S-57) 

(S-5Sa) 

(S-5Sb) 

(S-5Sc) 

(S-58d) 

(S-5Se) 

(S-5St) 

In Equations (S-55) through (S-57), only the estimator requires measure
ment data. The equations for the covariance and correl~_tion matrices require 
only the statistics W of the observations, which are ·J.8ually known for specific 
classes of trackers and sensors. Therefore, if it is assumed that the a priori 
reference trlljectory Xo is the best estimate, the estimator equation can be 
omitted and the covariance and correlation matrices can be determined for spe
cific mission sensors and observatio.:l profiles. It must also be assumed that 
the mathematical models in the program accurately characterize the physical 
sitlU\tion. Since actual measurements are not required, these operations can be 
performed during preflight studies to determine: 
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' 1: • the effect of measurement data errors (random and systematic), measure-
: ment time spans, and sampling rates on the accuracy of the estimated

state and model parameters
r

• the effect of the trajectory dynamics and the trajectory/sensor relative ,!
geometry on the accuracy of the estimated state and model parameters

• the relative effects of different types of measurements on the accuracy

• of the estimated state and model parameters

Such pr._blems are referred to as error analysis problems, since they are
) solely concer_cd w_th the influence that errors in problem variables have on the

accuracy of the estimate. This type of analysis can strongly influence the design
and enhancement of spacecraft missions, as well as establish requirements for -_
observation sensor accuracies, sampling rates, tracking times, and sensor

J locations.

_ The method for evaluating Equations (8-56) and (8-57) in GTDS is nearly
_ ' identical to that for estimating applications. An a priori estimate of the solve-

_ for and consider variables x0 andz0, along with their covariance and correlation •

matrices PA_0 , PA_0 and CA_0A_0 is specified. The measurement schedule and .// _!
measurement uncertainty W is also specified a priori. The program then pro-

ceeds to integrate the nonlinear differential equations of motion and their corre- I
spending variational equations to the measurement times and compute the

|

measurement partial derivatives. The rows of the matrices F and E in Equa-

tions (8-56) and (8-57) are accumulated as the measurement statistics are
processed. Ultimately, the covariance and correlation matrices PA_ _md C A_A=
are calculated at the epoch time. The covariance and correlation matrices are

: then propagated to specified times T1 , T2, . . . , Ts by means of Equations (8-51)
and (8-54). Analogously to the transformations presented in Equatiom,_ {8-46)
through (8-50), the time transformed covariance matrix PAs (Tt ), which is a !

"_ submatrix of P_(T i ), is itself transformed to the-s v system. From the non-
linear transformation _

_' _Ti) = h [_(T i)] (8-59) ,,:

a linearization yields "_

As'(Ti) = H(Ti) A'-_(Ti) (_-60) _,
r

where

(8-61) ],

"(Ti ) --x-,-k'_'/tTi "• t

! .,
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• the effect of measurement data errors (random and systematic), measure
ment time spans, and sampling rates on the accuracy of the estimated 
state and model parameters 

• the effect of the trajectory dynamics and the trajectory/sensol' relative 
geomctry on the accuracy of the estimated state and model parameters 

• the relative effects of different types of measurements on the accuracy 
of the estimated state and model parameters 

Such pr!'lblems are referred to as error analysis problems, since they are 
solely concer!l~xl wIth the influence that errors in problem variables have on the 
accuracy of the estimate. This type of analysis can strongly influence the design 
and enhancement of spacecraft missions, as well as establish requirements for 
observation sensor accuracies, sampling rates, tracking times, and sensor 
locations. 

The method for evaluating Equations (8-56) and (8-57) in GTDS is nearly 
identical to that for estimating applications. An a priori estimate of the solve
for and consider variables Xo and zo. along with their covariance and correlation 
matrices Pl::. xo ' Pl::.zo and C6xol::.zo is specified. The measurement schedule and 
measurement uncertainty W is also specified a priori. The program then pro
ceeds to integrate the nonlinear differential equations of motion and their corre
sponding variational equations to the measurement times and compute the 
measurement partial derivatives. The rows of the matrices F and E in Equa
tions (8-56) and (8-57) arc accumulated as the measurement shtistics are 
processed. Ultimately, the covariance and correlation matrices Pl::.x and C l::.xl::.z 
are calculated at the epoch time. The covariance and correlation matdces are 
then propagated to specified times Tl , T2 , ••• , T s by means of Equations (8-51) 
and (8-54). Analogously to the transformations presente~ in Equatiom. (8-46) 
through (8-50), the time transformed covariance matrix Pl::. s (Ti ), which is a 
submatrix of PA (T.). is itself transformed to th"J S' system. From the non-ux 1 

linear transformation 
(8-59) 

a linearization yields 

(~-€O) 

where 

{8-61) 
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The covariance matrix of _'(T i ) is thus formed by appropriate substitution as .:

: H(T i ) PA.(Ti ) HT(Ti ) (8-62)

The correlation CA.Az(T i ) is transformed to CAs,A. (T i ) _ follows _,_

CA,'A,(Ti) : _{[_'(Ti) - s'(Ti)] _o - ¥]T) ':,

--_( [_"_'(T_)- _" (T_)]_o - _ _') '(8-63)

= _(H(Ti) [A_(Ti) - A"=s(T,)] [Eo - ¥]r} '"

= H(.Ti ) CAsAz(Ti )

Since the estimation equation is ),ot being solved, iteration is unnecessary.

; Differentiating Equation (8-25) with respect to _ and ignoring both the iter- :-
ation notation and the _ dependence on the matrix of observation partial deriva- ../.'i

_" tives, the variation of the least squares estimator with respect to the consider ":" :

parameters is i

= _ (FTWF + p-1 )-1 FTWE (8-64) ."
_- A_o

Within the bounds of linearity, the responsiveness of the components of _x to ,!
perturbations in the components of _ are given in the epoch sensitivity matrix

?,Sx_ (8-65) _ ..
,i, S=\W /,,_j ,, ,,

L

From Equations (8-51) for the state vector -_, the perturbation about a given value ! *':
of s ts

As(t) = ¢(t, to) AS(to) + (_(t, to) _* (8-66)
,,.%

Differentiating A s(t) with respect to-u*, the variation of the state components with ,, ;_
" respectto theconsiderdynamic parameters isobtained ,

^ V a78_s(t)_¢(t, to) + O(t, to) (8-67)
_" L_'J

c

: 8-25
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The covariance matrix of steT. ) is thus ft>rmed hy appropriate substitution as 
1 

Pfls .(Ti ) = e{[~'(Ti) - SS' (Ti '] [[S'(Ti ) - 6s'(Ti )]T} 

= H(T. ) p" (T.) HT(T. ) 
1 Ws 1 1 

The correlation C" A (T.) is transformed to ("'. , A (T. I !'II'! follows 
LlsWZ 1 "'ns Wz 1 

C6.s' fu (Ti ) = e {[s'(Ti ) - s'(Ti )] [Zo - z]T} 

-= e{[~'(Ti) - 6.s'(Ti )] [Zo - ZJT} 

Since the estimation equation is not being solved, iteration is unnecessary. 

(8-62) 

(8-63) 

Differentiating Equation (8-25) with respect to z and ignoring both the iter
ation notation and the z dependence on the matrix of observation partial deriva
tives, the variation of the least squares estimator with respect to the consider 
parameters is 

A 

d6x = _ (FTWF + p;l. r1 FTWE 
dZ W-o 

(8-64) 

~ 

Within the bounds of linearity, the responsi veneSfJ of the components of 6. x to 
perturbations in the components of z are given in the epoch sensitivity matrix 

(8-65) 

From Equations (8-51) for the state vector 3, the perturbation about a given value 
of s is 

(8-66) 
A _ 

Differentiating 6. set) with respect to u"', the variation of the state components with 
respect to the consider dynamic parameters is obtained 

A [ /'\.] o6.s(t) __ "'(t. t) ODs 'let t' 
..... 0 - + Co • 0) au· 011· 

(8-67) 
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Then the time propagation of the matrix of lunctional sensitivities is

s(t) = t) (8-68)

I

As in the transformation of the covariance matrix from 1_, to P_,, a s_mple
chain rule calculation yields the variation of the transformed state with respect

- to the consider variables

To give more insight into the applicabilityof the sensitivity quantities, the
i th component of the least sqaares estimator As is written in nonlinear functional
form as

A_i = _i (_) (8-70)

_ By expanding gi (z) in a Taylor serie,-_ about z = z0, the following first-order
i; approximation is obtained /",

(8-71) (
J

If the errors in the 7 parameters are uncorrelated in a Bayesian sense (as they

are assumed to be in GTDS), and if the linearity assumption is valid, an estimate

of the variance of _s i due solely to the variability in-z is obtained. In particular,

this varrance estimate is given by invoking the variance operator on both sides of

the above expression for A s i and noting that gi (zo) is a constant and that the
A_ 's are uncorrelated. Therefore,i

-%

: I'--, k"" \2

__E(o,,,,/o'aA_ (_) _ _ (8-72)

j\

Assuming the lieearization is valid, it is easily seen that/_ z) = _._ .in the sensi-
tivity ar,alysis. Hence, the sum of squares of the sensitivities fo:- a_given s+.ate

i component over all consider parameters plus the excess of the (i, i) elemen,: of "

the consider covariance of/_s over _% (z) yields the total variation observed"_ i

in _s i. This excess quantity is the (i,i) element of the normal matrb: (measure-
meat noise variance component) since the covariance equations were derived

under the assumption that B and'z0 are uncorrelated, thus uncoupling their effects
: on variauce e_timation.

: i
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Then the time propagation of tl.e matrix of iu..'lctional sensitivities is 

S (t) == (CltG (t) t.u~) 
~_. J 
oU. 

J 

(8-68) 

As in the transformation of the covariance matrix from %s to Pt.s', a simple 
chain rule calculation yields the variation of the transformed state with respect 
to the consider variables 

(ots~ (t») = (O~'(t») (os~t») 
Clz as (t) oz 

(8-69) 

To give more insight into the applicability of the sensitivity quantitieE, the 
".,... 

ith component of the least squares estimator t.s is written in nonlinear functional 
form as 

/'\.. 

6...,. = g. (Z) 
1 1 

(8-70) 

By expanding gi (z) in a Taylor series about z = zo' the following first-order 
approximation is obtained 

( A) /'\.. otis. 
tis. = g.(Z) = g. (20) + )' __ 1 t."'i. 

1 IlL oz. J 
j J 

(8-71) 

If the errors in the z parameters are uncorrelated in a Bayesian sense (as they 
are assumed to be in GTDS), and if the linearity assumption is valid, an estimate 
of the variance of C'Si due solely to the variability in z is obtained. In particula!', 
this varunce estimate is given by invoking the variance operator on both sides of 

7'- - -the above expression for t:, s i and noting that gi (zo) is a constant and that the 
6 Z. 's are uncorrelated. Therefore, 

J 

(8-72) 

Assuming the line:u'ization is valid, it is easily setm that 6 z j = a.'li .in the sensi
tivity ar.alysis. Hen"e, the sum of squares of the sensitivities fo;- aJgiven s~ate 
component over all consider parameters plus the excess of the (i, i) elemeni". of 

/'\ 2-the consider covariance of t.s over CTtI"s. (z) yields the totfl variation observed 
in ~.. This excess quantity is the (i,i)' element of the normal :rratrb: (measurf;-

1 

ment noise variance component) since the covariance equations were deriveu 
under the assumption that ii and -zo are uncorrelated, thus uncouplLlg their effects 
on variallce elitimation. 
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"•- It would appear that since an estimate is not actually being determined, it
' should make little difference whether model parameters are associated with the
, solve--for vector _ or _he consider vector _.. A subtle difference does exist,

however. Components of the consider vector _. are maintained at their a priori
specified values throughout the processing, and therefore have no possibility for
modification through estimation. As a result, their covariances never differ from

_ those initially specified, i.e., P/_z0 in Equation (8-56). The solve-for variables
_ _ have their values continually modified through the estimation process, which is

_ reflected through the changes in the variance elements in PAx • Because of the
coupling, the unce_-tainty of the state components is affected differently if the

_ same model parameter is associated with _ rather than with _.

b-

8.4 SEQUENTIAL ESTIMATION

.i

_ In the approach taken to the basic orbit estimation problem in the preceding
sections of this chapter, the ubservations are processed by classical least squares

methods, i.e., by processing the data in batches. The solution to the problem is
_ the state vector (the system parameters or unknown constants) which is estimated ,

from a set of measured data. Since the problem is nonlinear, the solution is lin-
earized about the a priori state estimate and then iterated +.ominimize the loss
function. This approach requires considerable computation time and cannot be
applied to real-time situation_.

An alternative appror,_h is to perform the data reduction and parameter esti-
: marion in a sequential or recursive manner. The process is begun by making an

|,nitial estimate of the state vector from a minimum data set or from a judicious
guess. Each new data point is combined with the previous parameter estimate

by appu'opriately weighting the data point to give an improved estimate of the state.
: This process is repeated as each new data point is reduced. Hence, the procedure

_\ can be interrupted at any time and the best estimates of the system parameters

: and their uncertainties based or, all accumulated data to that time are known.
: Other _ivantages of sequential weighted least squares estimators are that at '

each sLep the calculations are fixed in size and format and that the need for stor-

ing previous data points is eliminated. Under certain assumptions the sequential
weighted least squares estin'._+._r _._ identical to the "Kalman" minimum variance

! esflm:_tor. Additional discussion of sequential weighted least squares and mini-
_ mum variance estimation can be found in Reference 2.

- _ The Extended Kalman Fdter is the baltic sequenLial estimator in GTDZ. Its •

k

derivation from recursive weighted least square_ is discussed in Section 8.4.1. _,
_, Because of the sensitivity o_ Kalman filt_rs to dynamic model errors associated _
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It would appear that since an estimate is not actually being determined, it 
should make little difference whether model parameters are associated with the 
solve--for vector x or the consider vector z_ A subtle difference does exist, 
however. Components of the consider vector z are maintained at their a priori 
specified values throughout the processing, and therefore have no possibility for 
modification through estimation. As a result, their covariances never differ from 
those initially specified, i.e., P6 z in Equation (8-56). The solve-for variables 
x have their values continually m~ified through the estimation process, which is 
reflected thl"ough the changes in the variance elements in P6x' Because of the 
coupling, the uncertainty of the state components Is affected differently if the 
same model parameter is associated with x rather than with z. 

8.4 SEQUENTIAL ESTIMATION 

In the approach taken to the basic orbit estimation problem in the preceding 
sections of this chapter, the ubservations are processed by clasSical least squares 
methods, Le., by processing the data in batches. The solution to the problem is 
the state vector (the system parameters or \lIlkr)own constants) which is estimated 
from a set of measured data. Since the problem is nonlinear, tlle solutlon is lin-
earized about the a priori state estimate and then iterated to minimize the loss 
fUllction. This approach requires considerable computat~on time and cannot be 
applied to real-time situationE'. 

An alternative approar..:h is to perform the data reduction and parameter esti
mation in a sequential or recursive manner. The process is begun by making an 
i.nitia! estimate of the state vector fro .. n a minimum data set or from a judicious 
guesa. Each new data point is combhled with the previous parameter estimate 
by app:.:opriately weighting the data point to give an improved estimate of tr.e state, 
This process is repeated as each new data point is reduced. Hence, the procedure 
can be interrupted at any time and the best estimates of the system parameters 
and thei.r uncertainties based on all accumulated data to that time are known. 
Other advantages of sequ~ntial weighted least squares estimators are that at 
each step the calculations are fixed in size and format and that the need for stor
ing pr(~vious \lata points is eliminated. Under certain assumptions the sequential 
weighted least squares esti~:::.t'Jr ~d identical to the "KaIJ'T'::ul" minin.um variance 
estimator. Additional discussion of sequential weighted least squares and mini
mum variance estimation can be found in Reference 2. 

The Extended Kalman fl!ter is the barlic sequential estimator. in G'1:'D~. Its 
derivation from recursive weighted least squarep is disoussed in Section 8.4.1. 
Because of the se:tBitivity o~ Kalman fUrors to dynamic model errors associated 
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; 8.4.1 De.ri,;ation and Applications of the Extended Kahnan Filter

T

.i In reconsidering the weighted least squares problem described in _ection 8.1,
an m-component observation vector _ is assumed. The nonlinear regression ;_

., equation (Equation (8-1)) is linearized about a referenc_ _te x0 as shown in ;
Equation (8-7). The best estimate _, it_ the classical weighted least squares sense, _"
is given by Equations (8-10) and (8-11) as

- + (8-73)._ m

; _ where

'Ax = (FTWF)-x FTW_y (8-74)m

The subscript m indicates that the solution is based on an m-component obser-

vation vector, and the quantities F, W, and _-_ are defined by Equations (8-6),
(8-12), and (8-8), respe.etively. K one more observation is included, the correc- I
tion has exactly the same form,

i _xm (F'_'F')-_ F'Tw'_'_ (8-75)

where F', W', and Ay, are related to F, W, and 5y as follows

F IIIW _ ;*

",. F' = , W' = .... , _ = .... (8-76) .i

\ 'w 11 _'*, _+ [_Ym+1_.J

and F + _, w + x' and/x y_+ _ correspond to the (m+l) _t observation. In other ' -
words, the original matrices a_d vectors are augmented to include the next
observation.

Substituting Equation (8-76) ._nto Equation (8-75) gives
°1

= ' _ - - - [F T, Fro+ I]_x FZ,FT I : r (8-77)

?

,,_.
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with orbit gem.ration, filt.e:L'fi a.9.ve been ~asigned to adaptively estimate the true 
value of the UOI'l{'r~'!l00 >.\.Ccob.1'!:Ition along with the state, This approach, dynamic 
model cOIDpans?tic:n, ie Ql'j(';uor;:,xi in Section 8.4.2. In Section 8.4.3, statistical 
adaJ.'tive fllterirlg', whi.::i1 ~3~i.m inates the need to spec!fy a priori noil:le statistics, 
is discussl3d. 

8.4.1 ~rtvation and Applications of the Extended Kalman Fllter 

In reconsidering the weighted least squares pr()blem described in ~ction 8.1, 
an m-component observation vector y is assumed. The nonlinear regreSSion 
equat.ion (Equation (8-1» is linea:dzed about a referenc~ fZtate Xo as shown in 
Eqll.atlon (8-7). The best estimate i, ir.. the classical weighted least squares sense, 
1S given by Equations (8-10) and (8-11) as 

.... /'. 

X = Xo + 6x m m (8-73) 

where 

(8-74) 

The subscript m indicates that the solution is hased on an m-component obser
"'ation vector, and the quantities F, W, and D y are defill(~d by Equations (8-6), 
(8-1.2), and (8-8), respectively. If one more obbervation is includ~d, the correc
tion has exactly the same form, 

EX
m

+
1 

= (F''l\Y'F,)-l F'TW'6y' 

where F', W', and t::. y' are related to F, W, and 6yas follows 

F' J:-]. 
~m+l W' ,,~- -:-w~J' 6y' ~ ~~.~] 

(8-75) 

(8-76) 

and F
m

+1 , w
m

+
1

' alld6Ym+l co-r-respond to the (m+l)st observation. In other 
words, the o::'iginal matrices and vectors are augmented to include the next 
observation. 

Substituting Equation (8-76) :nto Equation (8-75) gives 

ix." = ~FT:F!'ll [~_ ~: ~ J I; ~ _1)1 
\ I m+J ~nl+ J/ 
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:, i The quantiLy in parentheses in _.quaiion (_J-77) is the inverse of the covariance :

_j ,, for the weighted lea_t squares estimate Hx m+_,i.e.,_ matrix of error P_x +_ .

= (FrWF + Fr+lWm+1 Fm+l)-I (8"78)
P_xm+ I m

However, FTWF is the inverse of the covaria_ce matrix PAx , which is ba_ed on '
m

; m observations. Therefore,
r

P_Xm+l = (P_Ix T ". . _+ xW_+ie_,i)-l (8-79)
.

Equations (8-77) m;d (8-79) are expressions for the state correction estimate and _.

: the covariance of the error in the c_timate olc.ainea by processing (re+l) obser ca- _,

tionB. These expressions can be written more conveniently in the following
reeursiw form

5x +i =Sx +Ax (8-80a) f

._ (S-S0b)
" = PAx +LP
; PAxm+ 1 m

II

: _ /N S t a'

• where 5 x and A P represent the changes in /',Xrnand PAx camped by the (re+l) "
" observation. This form allows the slate vector and covarlance matrix to be de-

termined as each observation is sequentially processed.I
., As shown in Appendix __.',Equation (8-80b) can be written as ,

Pa.+1=Pa. - PA.mF;+I[,_:'_1 +F +,P_.mFTm+']-I _'n+'PHxm(8-81a)
or

PAxm+, = PAxm- KF+'PAxm = (I - KF+I) PAxm (_-.Slb)
where _ :

,°

_ Fm+1[wm+1 + Fm+iP&xmF_+,]-1K p_, r -, 18-8,c)
"_x m "

Substituting P_xm+l from Equation (8-81b) into the first term on the right of "
Equation (8-77) yields

A"_m+l = (I - Kl_;+l)P&x _'TW_y + F_+lWm+I/3Ym+lJ (8-82) l

Rlihm'#"{f,,'HnmlT'n,,n_nn_ t_-74_ and (8-81b)into Equation (8-82)yields "

_" = 1" F T (S-_.q)
£xm+, (I - KFm+t)_x m+ P&'m"t "+lWm+I&Ym+'

I
' 8-29
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The quantity in p&':':entheses in Equation (e-77) is the inverse of the covariance 
A 

matrix of error ~ for the weighted lea.st squares estimate .6 Xm +1' i.e., 
X m +1 

(8-·78) 

However, FTWF is the inverse of the covariarce matrix P6x ,which is baGed on 
m observations. Therefore, m 

(8-79) 

Equations (S-77) ~~~ (8-7~) are expressions for the state correction estil'1.ate and 
the covariance of the error in the c~timate ot~dinea uy processing (m+1) observ'a
tions. These expressions can ue written more conveniently in the following 
recursiv ~ form 

/'. /'.-

6x + 1 ::: 6X + 6x 
In m 

(S-SOa) 

(S-SOb) 

A st 
where 6 x and 6 P represent the change") in DX and P6 c'lu;.:~ed by the (m+1) 
observation. This form allows the state vector mand cova~iance matrix to be de
termined as l~ach observation is sequentially pro('8ssed. 

As shown in AppenLiix E, Equation (S-SOb) can be written as 

1 T -1 
PI\ =PI\ -PI\ FT+l[\\'-Jl+Fm+lPl\xFm+l] F.n+1P"x 

L\Xrn + 1 uXm wXm m m .u m U In 

(8-S1a) 

or 

(H-·8lb) 

where 

(8-8 1 ~} 

Substit\A.cing P6xm+l fl'om Equation (8-Slb) into the first term 011 the right of 
Equation (S-77) yields 

(8-S2) 

~l1hRtftl1tin~ "'~l1nf;nnR fR-74 \ and (8-8Ib) into Equation (S-82) yields 

(S-2~) 
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In Appendix E it is shown that

K=Fax, F_,lw,1 (8-84)

Therefore, Equation (8-83) can be written as

-"- ,x (8-86 _ :_
_Xm+ 1 =-Axm + K[AYm+1 - Fm+IAXm]

. Summarizing the above results,

:" x+l = _o_ aXm+l (a)

A'Xm+I - A_ 4-K [AYm+I _ F+IAxm ] (b)
(8-86)

= KZ,.+,pAx <: KFm+,)p_. (c)PAx 1 PAxm - = -m'l" m PA

• ") T -I (d);' t _--PAxF:+IEwe:,+_+,PA_rm+lJ

I m I,I

: where +
J

., ",- -I B_-m+ .j
Fm+1'-. __ ,

\ Bx 1(+= Iand ;o) .

Aym+I ~ theiinearized(re*l)stobservatio:i(seeEquation(8-8))

w_+I, _ the variance of the (re+l) st observation, e.g., c_2 _
" m+l

The.precedingreoursiveformoftheweightedleastsquaresestimateyieldsthe
update equations for the Extended Kalman Filter in GTDS. The weighted )eas*. i

squares estimate is a minimum variance estimate because the observations are _
weighted with W = l[cr2. This is the condition necessary for Equation (8-78) to

.,, be the covariance matrix of error. The matrix K is defined as the Kalmar. gain.
For additional discussion of Kalman filter theory, see References 6, 7, and 8.

q,,,

T in Equation (8-84) is a matrix whose elements are allAssuming lhat F _+1
unity, then each element of the gain matr+x K is a ratio between the statistical

measure of uncertainty in the state estimate PAx+t and the uncertainty in themeasurement _2
m+i ' j,

From the fundamental definition of the covariance matrix given in Equation

(8-34), a more convenient form for PA_+ 1 can be derived using Equation (8-86b)

, 8-30 REPItO1)UCIBIIXI_ 0F THE
+ . ..' A,..,l'.,: t>;'.:.,'++,_+'l, .... ' IS P(XOR

I '
• p+o

' q9760] 7203-409

In Appendix E it is shown that 

Therefore, Equation (8-83) can be written as 

Summarizing the above results, 

A ""'-

Xm + 1 == "0 ; Llxm + 1 
(a) 

(b) 

(c) 

(d) 

whe:;:-e 

and 
'" the linearized (m-t-1)st observatio~l (see Equation (8-8» 

the variance of the (m+lt t obs~rvation, e.g., 0-2 
m+l 

(8-84) 

(8-86) 

The. preceding recursive form of the weighted least squares estimate yields the 
update equations for the Extended Kalman Filter in GTDS. The weighted least 
squares estimate is a minimum variance estimate beeause the observations are 
weighted with W = 1/0-2• This is the condition necessary for Equation (8-78) to 
be the covariance matrix of error. The matrix K is defined ad the Kalmar. gain. 
For additional discussion of Kalman filter theory, see References 6, 7, and 8. 

Assuming ',.hat F !+1 in Equation (8-84) is a matrix whose elflments are all 
unity, thea each element of the gain matrix K is a ratio between the statistical 
measure of uncertainty in the SLate estimate Plh and the uncertainty in the 

2 Ml measurement (J i' 
m+ 

From the, fundamental definition of the covariance matrix given in Equation 
(8-34), a more convenient form for PA ~2n be derived using Equation (8-86b) 

Llxm+1 
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I! - PAxm+l - _.{_Xm {[(I _ K_ �¼�_Xm+ I_Ym �I]

• :lj x [(I - EFt+l) A'_m'" + K_Ym+l IT} .:• = 8{[(I - KFm+I) Ax m + KAYm+1] ,'_X_T(I - KFm+I)T .

T t
! + [(I - KFm+I) Ax m + K_ym+ 1] t_Ym+lKY} (8-87)

.l >
"'_+ l -- (I - KF+I) _{_Xm_X-r} (I - KFm+')T + K_(AYm+I_'XmT) :

1 •x (I - KF+t)z + (I - KF+I ) _(A'xAYmT+I}KT

+ KSIA3,m.,. 1Ayli +1} Kr

: i Assuming uncorrelated measurement errors, then _:

-| ._.

'#I" _ {AYm+IAxmT) = _ (_XmAY-T'I} = 0 (8-88) :
+

I

_ By definition , , /""_:

+ _ {AXmAXl} = PAx (a)
I m ; :,

' ' i and (8-89) + _"

• " _ {Ay.,+iAymr+t}= w:Ii (b) i

! ,
: i.

SubstitutingEquations(8-88)and (8-89)intoEquation(8-87)yields I

t

_: , PAXm+' = (I - KF+,) PAxm(I - KF+,) "r + Kw:ItKT.. (8-90) ',! .
\ ,

., Equation (8-90) is preferred over Equation (8-86c) for the following reasons: "_ -
; ., To firstorder,itis insensitivetoerrors inthefiltergain,and itisbettercon- _. .:

7.
ditioned for nm_er_cal computations, since it is the sum r,f two symmetric non-

_ negative definite matrices. .

Up to this point the effect of adding ene more observation to a set of m
observations has been considered. These results will next be generMized to

indicate sequential estimates without dependence on the size of the, observation _i

i, vector, that is, j will represent the observation counter, replacing m in th_ .'+.
subscripts. , ,+

_ The prediction formulas for the Extended Kalman Filter follow from the +'
discussion in _ection 8.2.3 concerning the timewise propagation of state per-

,. turbations (Equation (8-51)). Including the state noise _ with zero mean and :
_ covariance Q, the prediction equation can be written _:

"_ 8-31)
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......... ......T ;"-
P6x = €{6x +1L'\x_+1} =€ {[(I - KF +1) 6x + Kt.y +1] m+l m I..., m m m 

...... T 
X [(I - KF ... +1 ) 6xm + Kt.ym+1] } 

= €{[(I - KFrn+1) &m + Kt.ym+1] Ih!(I - KI<~+I)T 

(S-S7) 

+ K€f6"jm't'1 6Y;+1} KT 

Assuming uncorrelated measurement errors, then 

(S-SS) 

By definition 

(a) 

and (S-S9) 

(b) 

Substituting Equations (S-SS) and (S-S9) into Equation (S-87) yields 

(S-90) 

Equation (S-90) is preferred over Equation (8-86c) for the following reasong: 
To first ord&r, it is insensitive to errors in the filter gain, and it is better con
ditioned for numerical computations, since it is the sum n! two symmetric non
negative definite matrices. 

Up to this point the effect of adding f)ne more observation to a set of m 
observations has been considered. These results will next be generalized to 
indicate sequential estimatpz without de~ndence on the size of tlh.q observation 
vector, that is, j will represent the observation counter, replacing m in th3 
subscripts. 

The prediction formulas for the Extended Kalman Filter follow from the 
discussion in Section 8.2.3 concern1.ug the timewise propagation of state per
turbations (Equation (8-51». Including the state noise w with zero mean anJ 
covariance Q, the predlction equation can be written 
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: Ax(tj+ll tj) = ¢(tj+ll tj) Ax(tj Itj) + _j+_ (8-91)

: where Ax(tj _1 I tj) denotes the best estimate of the correctiop, at time tj+ 1 based
on processing data through time t j, and ¢ (t i I t i ) is the state transition matrix. ,'

For prediction purposes, the state noise _ *t in Equation (8-917 is set equal to , :

zero. The predicted covariance matrix at time ti+ _ is obtained from Equation
(8-91) as follows

PAx(tj +11tj ) = 8 {A_x(tj +1 ]tj ) AxT(tj+ 1It] ))

C /x /,,

'- = _{[¢Ax(ti]tj) +_j+l ] [¢Ax(tj Itj) + W-j+lJT} (8-92a)
/N A

--T= 8 {[¢_(tj It i ) + _j41] AxV(tj It; ) ¢_" �[¢Ax(ti [tj ) + _j+l ] _j+l }

: ¢8{_x(t i It i) AxT(t i [tj)} CT + 8{wi+lAxT(t j [tj)) CT '1-

; _ + ¢_ {_x(ti Itj ) o_j+li-v + 2 (_i+t_hI+x) '
;

A ' 7/ "_

: _'- Assuming that the noise _ and the state Ax are uncorrelated, Equation (8-92a) ,/
: becomes

-. pAx(t]+l[_.: _ : CPA(t i iti) ¢T + Qj+_ (8-92b)

where Qj+I is _he ccvarisnce of the state noise, i.e.,

:" +IWj 41 } (8-93): Qj+I 8{_j --T

In order to use this formulation of the E_ended Kalmm_ Filter, a refeIence tra-

jectory taust be generated. This is done by numerically integra:ing a ;_onlinear

., second-order differential equation (see Equation (5-2)) of the :orm

Xref(t ) = g(-x, t) (8-94) , _,

where _ is a known function of the stah_ variables, _ is an n-dimensional state

vector, R(t0) = _ 0, and t > t 0.

The predicted measurement residual error r(ti+_ It_) is '

'_ r(t_+_itj) = y(ti+t) - F_+ _¢(tj+_ltj) (8-95) ,

where _(t i+_ Its) is obtained from the integration of Equation (8-94) with the ini- _

tial state for the integration obtained from the previous state updated by Equation

' (8-91), and the predicted measurement residual u_certainty Y(t_+_ i ti) is _:

8-3_.
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A "-
6x(t.+11 t.) = <I>(t.+11 t.) t.x(t.lt.) + W.+! 

J J J j J J J 
(8-91) 

A 

where t.x(tj 1-1 I tj) denotes the best estimate of the correction at time t j+1 based 
on processing data through time t j' and <I> (t j til t j) is the state transition matrix. 
For prediction purposes, the state noise Wj +1 in Equation (8-91) is set equal to 
zero. The predicted covariance matrix at time t j +1 is obtained from Equation 
(8-91) as follows 

P6x(tj+lltj) = 2{ix(tj+1Itj) £~T(tj+l!tj)} 

A I - A I - T = P.{[<fIt.x(t j tj) + Wjtl] [<I>t.x(t j tj) + wj +1J } (8-92a) 
A A A 

= 2 {[<fIt.x(t j It) + Wj~l] Dj(T(tj It) <fiT + [<fIt.x(t j It j ) + wj+1] wIt l} 

= <fI2{~(t.lt.) fucT(t.lt.)} <l>T + 8{w.tlD~T(t.lt.)} <fiT 
JJ JJ J JJ 

A 
Assuming that the noise w and the state DX are uncorrelated, Equation (8-92a) 
becomes 

PA (t.+ 11,:,)=<fIPA (t.lt.)cl)T+Q·+1 
ux J .. U1. J J J 

(S-92b) 

where Q j +1 is the covariance of the state noise, Le., 

(8-93) 

In order to use this fOl'mulatton of the Extended Kalman Filter, a reference tra
je~tory IJlUst be generated. This is done by numerically integra;ing a ~10nlinear 
second-order differential equation (see Equation (5-2» of the Zorm 

{8- 94) 

where g is a known function of the state variables, x is an n-dimensional state 
vdctor, X(to) = ;Co, and t ~ to. 

The predicted measurement residual error r(t j +1 I t j> is 

(8-95) 

where x(t. 1 It.) is obtained from the integration of Equation (8-94) with the ini-
J + J 

tial state for the integration obtained from the previous state updated by Equation 
(8-91), and the predicted measutement residual u 1certainty Y(t j +1 i tj) is 
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J
Y(ti_xltj)= _(r(ti+,lti)rT(tj,11tj)}--Fj+iPAx(tj+11tj)F_+I + w_+XI (8-96) l

A comparison oftheseresidualswiththeirtheoreticalstatisticalproperties
provides a means of judging the performance of the filter (cf. Section 8.6.4). ':

Equations (8-91) and (8-92b) are used to predict the state correction and '

covariance matrices at a future Lime ti+ x, based on the best estimate at the
last observation at time tj. Th,_ next measurement y, +1 is then used to update
the sta_ correction and covarlance matrices (Equation (8-85)). These steps
are repeated until all the observations have been processed. The advantage of
this recursive estimator is that the estimate of the state and covariance based _.

i on processing m+l observations uses the information contained in the (re+l) st
_' observation plus the state and covariance based on m observations. The entire
! process of accumulating sums and inverting matrices does not have to be re-

, peated when a new observation is processed. The error covariance of the filter :.
is inversely proportional to the measurement noise from Equation (8-79). Large

: i measurement noise implies that _. "s small, and hence P_*a decreases by _.
. only a small amount. Small measur_nent noise implies a large w_ 1 , and con-

" I sequentlya relativelylargedecrease inP_+I • _ _.

_- The recursiveequationscan be appliedfrom thefirstpointon. In thatcase,

_ the reference trajectory is chosen as X(to) = x0, the a priori state; hence

I E_(tvl to) = 0. There are two ways in which the Extended KalmanFilter may be
used, with an updated or a nonupdated reference trajectory. In the nonutx_.ated
reference approach, the corrections Ax are accumulated, and the a priori ref-

eren_ e state _0 is corrected only once, at the final time after all data are
, processed.

The updated state vector at the final time, based on processing all the data,
is then smoothed back to the initial time to obtain the best estimate of the state _ -_

at all intervening times. The covariance matrix can also be propagated backward ', ;
,\ in tim_ via Equation (8-92b) to obtain the timewise variation of the uncertainty of :

• the state based on processing all data. , ._

If the batch of observations is s,ffficicntly large, a new initial reference state
can be determined from the following equation

A (8-97) _ ;"_'(t0)=_(t0)+Ax(to]tf)

where '
A

/a x(t0] tf) "_ the '_,_wbest estimate of the state at to based on processing ,_
_ all observations

_ t_ _ the time of the final observation ,
• _'_ _ _ ,_

_" 8-33 "
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Y(t· .. 1! t.) = 2{r(t·+ 1! t.) rT(t·+1: t.)} == F·+ 1PA (t·+1!t.) F~+1 + W--:--!l (S-96) 
• J. J J J J J J LlX J J J J 

A comparison of these residu81s with their theoretical statistical propertieR 
provides a means of judging the performance of the filter (cf. Section 8.6.4). 

Equations (8-91) and (8-92b) are used to predict the state correction and 
covariance matrices at a future time t

j
+

1
, based on the best estimate at the 

last observation at time t j • Th(~ next measurement Yi +1 is then used to update 
the state correction and covariance matrices (Equation (S-85». These steps 
are repeated until all the observations have been processed. The advantage of 
this recursive estimator is that the estimate of the state and covariance based 
on processing m+l observations uses the information contained in the (m+1)st 
observation plus the state and covariance based on m observations. The entire 
process of accumulating sums and inverting matrices does not have to be re
peated when a new observation is processed. The error covariance of the filter 
is inversely proportio~al to the measurement noise from Equation (8-79). Large 
measurement noise implies that \\~. 's small, and hence Pm"'1 decreas6s by 
only a small amount. Small measur",.aent noise implies a large wm+1 , and con
sequently a relatively large decrease in Pm+

1 
• 

The recursive equations can be applied from the first point on. In that case, 
the reference trajectory is chosen as x(tO> = xo' the a priori state; hence 
Cx(tul to) = O. There are two ways in whic}l the Extended Kalman Filter may be 
used, with an updated or a nonupdated reference trajectory. In the nonupdated 

!". 
reference approach, the corrections 6x are accumulated, and the a priori ref-
erem estate Xo is corrected only once, at the final time after all data are 
proc~ssed. 

The updated state vector at the final time, 1;)ased on processing all the data, 
is then smoothed back to the initial time to obtain the best estimate of the state 
at all intervening times. The covariance matrix can also be propagated backward 
in time via Equation (S-92b) to obtain the timewise variation of the uncertainty of 
the state based on processing all data. 

If the batch of observations is s'lfficicntly large, a new initial reference state 
can be detennined from the follOwing equation 

where 
/'\. 

L. x(to I t f ) '" tht, '~..lw best estimate of the state at to based on proceElsing 
all observations 

t f '" the time of the final observation 
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This reference state will be closer to the "true" initial state than will _(to).

Using the new state, the data are reprocessed, i.e., the solution is linearized about
_'(to), and the filtering proces_ is repeated over the same batch of observations.
This process is repetitively applied until there is no change in the initial refer-
ence state. At that time, convergence to the best estimate of the state has been
achieved, i.e., a solution has been found which is as close to the "true" solution a

as the neglected nonlinear effects will allow. These "global iterations" involw
the same procedure as that which is followed in the batch processor (iterated

• weighted least squares). This mode is _,sed w4_enthe signal-to-noise ratio is
small, and a good initial estimate of the state is available. The nonupdated refer-
ence approach is not presently available in GTDS.

Another approach (used primarily when the signal-to-noise ratio is large or
: when a good estimate of the state is unavailable) is to update the reference tra-

jectory after processing each subset of the data vector _. This allows large
errors in the a priori state _0 to be corrected early in the process, thereby

J

assuring that the processing of later data satisfies linearity. This, in turn,
improves the ou_r loop (global iteration) convergence. Linearization about

_(t0) results in AX(tolto) = 0. Hence, using Equation (8-91) and relinearizing
• _, about each point yields /,"

/_x(tltj)= O, tj _<t_< tj+ I, for all j (8-98) I
Since, due to the relinearization,

: Ax(ti+lltj+ 1) : _(tj+lltj+ I) - x(tj+,lt i) (8-99)

substitution of Eq'mtions (8-8), (8-98), and (8-99) into Equation (8-86b) gives

, ?_(tj+llt_+ 1) = x(ti+llt j ) + K(tj+ 1) [y(tj+ 1) - f (x(tj+lltj); tjj 1 ',] (8-100) -
• ,

The preceding result is used for updating the state vector. The updated reference
mode is ideally suited to real-time applications.

The Extended Kalman Filter for continuous-discrete systems described above
is the result oi the application of the linear Kalman filter to a linearized non-

linear system, which is relinearized after each observation. To summarize, the

procedure for the updated reference mode in GTDS is as follows:

1. Store the reference state x(tj 1%) and the covariance matrix PAx (tj I tj ). '

_ 2. Compute the predicted state at time t.+. by numerically integrating
Equation (8-94), i.e., obtain x(tj+lltj) given x(t_ !ti).
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6x(tj+lltj+l) = x(tj+1ltj+l) - x(t j +1 It j ) (8-99) 

substitution of Eq"lations (8-8), (8-98), and (8-99) into Equation (8-86b) gives 

(8-100) 

The preceding result is used for uptlating the state vector. The updated reference 
mode is ideally suited to real-time applications. 

The Extended Kalman Filter for continuous -discrete systems described above 
is the result of the application of the linear Kalman filter to a linearized non
linear system, which is relinearized after each observation. To summarize, the 
procedure for the updated refen~nce mode in GTDS is as follows: 

1. Store the reference state x(t. It.) and the covariance matrix p" (t. I t. ). 
J J wx J J 

2, Compute the pl'edicted state at time t. + 1 by numerically integrating ,.. I J ,. I Equation (G-94), i.e .• obtain x(t j +1 tj) given X(t,i ,t j ). 
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: 3. Calculate the state transition matrix from time tj to time t j+ 1 , either ]
analytica!ly or numerically, as discussed in Section 4.10.2.

4. Compute the predicted error covariance matrix at time ti+ I via
Equation 18-92b).

P_x(tj+lItj, =,(ti �1,tj)PAx(tjlti)*T(ti+ 1, ti) +Qi "

5. Compute the observation vi _ P,q_,.tion (8-1) assuming no noise.

y(tj+I)--f(x(tj+iItj); tj+I)

6. Compute thepartialderivativeoftheobservationvia Equation(8-6).

; Fj+I= I

:_ =_(t j+ 1 [tj ) _'""

} 7. Test whether this is an acceptable observation, i.e., is the absolute
value of the residual (observed minus computed value) less than the
RMS multiplier times the square root of the predicted measurement

residual uncertainty Y(ti+ 1 I ti) in Equation (8-96)? If not, reject
the observation, increment j, and return to Step 1.

8. Calculate the filter gain matrix via Equation (8-86d)

T _Fi+lPAx(ti+llti)F T + -I -I i ,.. g(tj+I)= PAx(ti+11ti)Fj+I i+I wj+l] , '

9. Process theobservationy(ti+I)to obtaintheupdatedstatevia
Equation (8-100)

x(ti+llti+ 1) = x(ti+llti) + K(ti+ 1) [y(tj+ l) - f'(x(tj411ti); tj+l)]

10. Compute the updated error covariance matrix at time t i+1 via
Equation (8-90)

t

Ps.(ti+11ti+1)= [I- l((ti+I)Fi+I]PAx(ti+1[ti)[I- K(ti.t)F.I]T

+ K(tj+ 1) w_I1KT(tj+ 1)
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3. Calculate the state transition matrix from time tj to time t j +1 • either 
analytically or numerically, as discussed in Section 4.10.2. 

4. Compute the prec.:-.:ted error covariance matrix at time t j +1 via 
Equation (S-92b). 

PA (t·+ 1 It· 1 = <I>(t·+ 1 , t.) PA (t.lt.) <l>T(t·+ 1 , t.) + Q'+l 
wx J J J J ux 1 J J J 1 

5. Compute the observation via Eq,,' tion (8-1) assuming no noise. 

y(t j+1 ) = f(i(t j+1It j ); t jtl ) 

6. Compute the partial derivative of the observation via Equation (8-6). 

7. Test whether this is an acceptable observation, i.e., is the absolute 
value of the residual (observed minus computed value) less than thp. 
RMS multiplier times the square root of the predicted measurement 
residual uncertainty y(t j +1 ! t j) in Equation (8-96)? If not, reject 
the observation, increment j t and return to Step 1. 

8. Calculate the filter gain matrix via Equation (S-S6d~ 

K(t j +1 ) = P6/t j+llt j ) FT+l[Fj tlP6/t j+l!t j ) FI+l + wj!lf1 

9. Process the observation y(tj + 1) to obtain the updated state via 
Equation (S-100) 

10. Compute the updated error covariance matrix at time t j +1 via 
Equation (8-90) 

P6/tj+lltj+l) = [I - K(t j +1 ) Fj +1] P6/tj+lltj) [I - K(t j +1 ) F,+1]T 
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11. Increment j and return to Step 1 to repeat the cycle for the next

observation.

12. Continue the cycle between Step 1 and Step 12 until a specified set oi ._,
observation data is processed.

13. Integrate back to epoch and output the results utilizing data to time tf, _ •

e.g., x(t o itf) and PAx(t0 Itf), where tf represents the time of the final _
data point in the set of observations processed.

" 14. Continue the cycle between Step 1 and Step 14,until all the data are :
processed.

15. Make a final pass through the observation data to compute residual
statistics and print final reports.

One of the main difficulties associated with the filtering approach to orbit
determination is filter divergence, i.e., the estimated (filtered) state diverges

- J from the actual state. It can occur when estimates of the state become more

; accurate and hence the covariance becomes smaller. As a result, the Kalman
i gain decreases and new observations exert less influence on the solution. The

j observations, which are a realization of the true state, have a smaller effect than ,,'_
the "learned" dynamical model. Therefore, successive estimates of the state tend ,1
to follow the erroneous "learned" dynamical model and to diverge from the true
state which is reflected in the observations. Consequently, the estimated covari- I
ance fails to represe_ the true estimation error.

Divergence can arise from the _ollowing sources:

1. Lineariz ation errors (e.g., measurement linearization) •

2. Computational errors (e.g., PAx lo3es its positive semidefiniteno_s)

3. Modeling errors

4. Unknown noise statistics .

Generally, the first source can be minimized by iterating the solution (updated
reference trajectory). Computational errors can be minimized by square root
filtering algorithms (Reference 9) and program ceding techniques (Reference 10).
Modeling errors can be handled in either a nonadaptive or an adaptive manner. _

The nonadaptive m, _hcds modify the filter structure in order to maintain the _

!_alman gain at some statable level for sustained filter operation. The Modified ,
Extended Kalman Filter (MEKF) by Torroglosa (Reference 11) implemented in
GTDS is a filter of this type. The adaptive techniques can be divided into struc-

tural and statistical methods. The structural or dynamic model compensation
methods are designed to adaptively estimate the true value of the unmodeled
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acceleration along with the state. Tapley and his associates (References 12, 13 :
and 14) have followed this approach, which will be discu _ed in Section 8.4.2.
The statistical methods are designed to correct the basic filter to accommodate
the combined effects of all error sources, e.g., the neglected nonlinearities,

unlmown noise statistics, and computational error effects, in addition to the _

model errors. The Jazwinski Filter (Reference 15) in GTDS is a filter of this i _
type. Statistical adaptive filtering is discussed in Section 8.4.3.

8.4.2 Dynamic Model Compensation Filtering

The dynamic model compensation (DMC) techniques are designed to adaptively
estimate the true value of the unmc_leled acceleration along with the state. A _
sequential estimation method has been developed (References 12, 13, and 14)
which compensates for unmodeled effects in the differential equations which de-
fine the dynamical process. The advantages of this me'_hod are: (1) It can be

• _ used to obtain an improved estimate of the sta*.e vector in real-time applications, :
and (2) it yields information which cmt _ used in post-flight analysis to improve

: j the basic dynamical model. The unmodeled accelerations are assumed to be a _:

I first cider Gauss-Markov process, i.e., they consist of the superposition of a _
" time-correlated component and a purely random component. Because this type _.

of filter is not implemented in GTDS at the present time, the discussion of the
i mathematical model follows that of Reference 12. There the technique is applied _

to estimate the state of a lunar orbiting spacecraft acted upon by unmodeled _'
forces due to venting, water dumps, or translational forces due to unbalanced
attitude control reactions.

The equations of motion of the nonlinear dynamical system are given by

--v Ca)
(8-1oi)

-_ v = a(-_, _, t) + _(t) (b)

where r and v are the position and velocity components, am is the three-
component acceleration vector used in the filter-world or nominal dynamical
model, and au is the three-component vector of all unknown and/or unmodeled ">
accelerations.

t.

The unmodeled acceleration _(t) is represented as a first-order Gauss- _"
Markov process _ (t) which satisfies the differential equatiov ,

i

_ "E-(t)= A(t) _(t) + B(t) _(t) (8-102)
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acceleration along with the state. Tapley and his associates (References 12, 13 
and 14) have followed this approach, which will be discu:3ed in Section 8.4.2. 
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the combined effects of all error sources, e.g., the neglected nonlinearities, 
unknown noise statistics, and computational error effects, in addition to the 
model errors. The Jazwinski Filter (Reference 15) in GI'DS is a filter of this 
type. Statistical adaptive filtering is discussed in Section 8.4.3. 

8.4.2 Dynamic Model Compensation Filtering 

The dynamic model compensation (DMC) techniques are designed to adaptively 
estimate the true value of the unmvdeled acceleration along with the state. A 
sequential estimation method has been developed (References 12, 13, and 14) 
which compensates for unmodeled effects in the differential equations which de
fine the dynamical process. The advantages of this me"chod are: (1) It can be 
used to obtain an improved estimate of the state vector in real-time applications, 
and (2) it yields information which Call tel used in post-flight analysis to improve 
the basic dynamical model. The unmodeled accelerations are assumed to be a 
first order Gauss-Markov process, i.e., they consist of the superposition of a 
time-correlated component and a purely random component. Because this type 
of filter is not implemented in GTDS at the present time, the discussion of the 
mathematical model follows that of Reference 12. There the technique is applied 
to estimate the state of a lunar orbiting spacecraft acted upon by unmodeled 
forces due to venting, water dumps, or translational forces due to unbalanced 
attitude control reactions. 

'The equations of motion of the nonlinear dynamical system are given by 

r = v (a) 
(8-101) 

(b) 

where r and v are the position and velocity components, am is the three
component acceleration vector used in the filter-world or nominal dynamical 
model, and au is the three-component vector of all unknown and/or unmodeled 
accelerations. 

The unmodeled acceleration iiu(t) is represented as a first-order GaUBS

Markov process € (t) which satisfies the differential equatior. 

-[(t) = A(t) e(t) + B(t) u(t) (8-102) 
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: where Alt) and B(t) are coefficient matrices, _(t) is a three-component vector,
" and fi(t) is a three-component vector of Gaussian noise whose components satisfy

the a priori statistics

_{u(t)} : 0, _{u(t) uT(t)} : IS(t - _) (8-103)

S I

The matrix I is a 3 x 3 identity matrix and _ (t - r) is the Dlrac delta function.
_. The quantity A(t) is a 3 x 3 diagonal matrix of the time correlattor coefficients

VI ,I0 210 -1/T

where T1 , T2 , and T3 are the correlation times, which are unknown parameters
to be estimated by including the vector T

.$

: ! TT= [TIT2Ta] (8-I05)
]

. _ in the set of parameters to be estimated. ,_

The quantity B(t) is a 3 x 3 diagonal matrix [

. 0

B(t) : b2 (8-106)

,: 0 b

: where the b j are treated as specified constants.

,, When Equations(8-I01)and (8-I02)are combined withT ::O, thedynamical
"- system is described by the ._ollowing set of first-order differential equations

r=v ,,

v = a(_, _, t) +7(t)

= A_ + B_(t) (8-I07)

T=0

• If the state vector _ is augmented as

I t I

_T : rT-T,VTCTTITT]

z
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where A(t) and B(t) are coefficient matrices, E(t) is a three-compollEmt vector, 
and u(t) is a three-component ventor of Gaul3sian noise whose compoD,ents satisfy 
the a priori statistics 

2{u(t)} = 0, 2{u(t)uT(t)} = !S(t - 7") (8-103) 

The matrix I is a 3 x 3 identity matrix and ~ (t - 7") is the Dirac delta function. 
The quantity A(t) is a 3 x 3 diagonal matrix of the time correlatior coefficients 

[

lO/Tl 0 00 ] 
ACt) = -1/T2 

o 0 -1/T3 

(8-104) 

where T1 , T2 , and T3 are the correlation times, which are unknown parameters 
to be estimated by including the vector T 

(8-105) 

in the set of parameters to be estimated. 

The quantity B(t) is a 3 x 3 di.agonal matrix 

f.1 
B(t); C 

o 
(8-106) 

where the b j are treated as specified constants. 

When Equations (8-101) and (8-102) are combined with T := 0, the dynamical 
system is described by the :ollowing set of first-order differential equations 

. 
r = v 

~ = Bm(r, v, t) + "€(t) 

i = A"i + Bu(t) 

T=O 
If the state vector x is augmented as 
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_["_._' the dynamical system in Equation (8-107) can be written as

x = _(_, U, t), X(to) - _o (8-109a)

> where

_T = [VTiC_m+ _)Ti(AT + BU )zi0] (8-109b) ,

; and the _nitial conditions x0 are unknown.

:- " For t > tj, where tj is a reference epoch, the solutions to Equation (8-107)
in integral form are

- m

7(t)='_(ti)+_(ti)At �_('_,v, e, t) [t-r] dr (a)
• I j

7' _(t) = _(tj)+ _a(-_,v, e, t)dT (b)
' _ . (8-110)
; .I

"x. _(t) = E(t) Z(ti) + _(t i) (c) .,/'-

t

[ T(t) = T(ti) (d)

: where A t= t - ti and a(_,v,-_,t)= a_(r,v,t)+ _(t)
¢

; The matrices E(t) and _ (t i) are defined as

• 0 0

' E(t) = a2 (a)

. o (8-1ii)

I

:. _v (tj) = [c_,(I - a_) I/2 u, ic2(l - a])*/2 u2 ,.or3(1 _ a32),,'2u3] (b)

where

ak = exp[-(t - ti)/T k] (9.)

and k : 1, 2, 3 (8-112)

crk = b_(2/Tk) 1/2 &b)

_,_' 8-39
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the dynamical system in Equation (S-107) can be written as 

(S-109a) 

where 

(S-109b) 

and the i.nitJ al conditions Xo are unknown. 

For t > t., where t. is a reference epoch, the solutions to Equation (8-107) 
J J 

in integral form are 

r(t) = r(t j ) + v(t j ) t.t + it aCT', v, €, t) [t - r] dr (a) 

t j 

v(t) = v(t j ) + it a(r, v, e, t) dr 

tj 

e(t) = E(t) ~{t.) + :t(t.) 
J J 

where 6 t = t - tj and a(r,v,€,t) = ~(r,v,t) + £(t) 

The matrices E(t) and :t (tj) are defined as 

where 

~ = exp [- (t - tj )/Tk ) 

and 
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(c) 

(d) 

(a) 

(a) 

k :: 1, 2, 3 

(S-110) 
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_. Equation (8-110) can also be written as /

'- - . (8-113)
._ _(t, tj) =G(x(tj), tj, t) +_j, t_> tj
" where

_T= [%Tlo:TI_T;O]I V! c:!

is the state noise matrix which is due to the purely random components of the
_cxleled _celeratton_

_ -_t t -
_: _(t i) [t- r] dr

J

: _, = g(t i ) dr (8-114)
J

,g(tj)
0

/

.,2.J
The statistics of N are

-Qrr Qrv Qr_ O-

O,v %v o
-: _[_] = 0, _ [_T] = Qj_ij = 81 j (8-115)
; Qr_ Q_v Q_ 0

: 0 0 0 0

where _ij is the Kronecker delta functLon, and

' _ = Sj (At)4/4 ,: "_- Qr r

Qrv -- Qvr = Sj (At)3/2 ,:

Qr, = Qe, = Sj (At)'_/2
(8-116)

,. Qvv= S, (/_t) 2

Qv_ - Q,v = SiAt

Q_ = Sj

8-40 w
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Equation (8-110) can also be written as 

(8-113) 

where 

is the state noise matrix which is due to the purely random components of tht;; 
unmodeled accelerations 

ft :[(t.) [t _ 'T] d'T Jt. ) 

The statistics of ware 

CIJ. = 
) 

) 

:[(t. ) 
) 

o 

Qrr Qrv 

Qrv ~v e [w] = 0, e [ww T] = Q.S .. = 
) 1) 

Qre: Qe-v 

0 

where S.. is the Kronecker delta function, and 
1) 

Q = S. (6t)4/4 rr ) 

0 

Q =- Q = S. (6t)3/2 rv vr ) 

Qrf = Qu = Sj (6t)2/2 

Qvv = S; (6t)2 
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Qre- 0 

Qve- 0 
o i j 

Qu 0 
(8-115) 

0 0 

(8-116) 
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sj - o - 0 (8-117) :
0 0 cza2(1- i'

_.- The obset_,ation equation for the jth observation is ;_

,"_ "1 yj = 7(_(tj), tj ) + _j (8-118a) i

:" where _. is the observation noise which satisfies the following conditio_ _

-- 8 [_] - 0, 8 [_T] .. Rj _ij (8-118b)

and where R is the covariance matrix of the observahon noise. ;

_, The procedure then follows that of the Extended Kalman Filter described in .!
: Section 8.4.1, with the following modifications:

/ \
i. The state is predicted via Equation (8-113) with _ -=0. ,y

,_ ]) 2. Equation (8-115) is used for Qj+I in the predicted covariance matrix ;of error.

3. In the filter gain matrix K, R from Equation (8-118b) replaces w "x. _"

; 4. The updated covariance matrix is computed via Equation 18-_c) rather
than Equation (8-90).

The algorithm requires a priori values for the augmented state x0, along with _,

the a priori covariance matrices PA_° , Qj, and Rj. t

"_. When applied to the Apollo 10 and 11 missions, the DMC method gave the
, following results:

: i 1. Its accuracy was limited by the observation noise rath.-.:r than by the
;, i model inaccuracies.

2. The uumodeled accelerations were primarily due to neglected effects in ,the lunar potential, and the magnitude of the uvmodeled accelerations waa / "
dominated by the radial component. ' :

'; 3. The estimated values of umnodeled accelerations were repeatable from -_.
orbit to orbit and from mission to mission. _i

i:

;t

- G_A1
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and 

l
~(l - a~) 

S. = 0 
J 

o 

(S-117) 

The observation equation for the jth observation is 

Yj = f(x(t.). t.) + ii'. 
J J J 

(S-11Sa) 

where ii j is the observation nt'ise which satisfies the following conditio~ 

e en] = o. E [ii nT] ::: R. O .. 
J 1 J 

(8-118b) 

and where R is the covariance matrix of the observanon noise. 

The pr0\1edure then follows that of the Extended Kalman Filter described in 
Section 8.4.1, with the following modifications: 

1. The state is predicted via Equation (S-113) with ~ ;: O. 

2. Equation (8-115) is used for Qj+l in the predicted covariance matrix 
of error. 

3. In the filter gain matrix K, RfromEquation(8-118b) replaces w- 1• 

4. The updated covariance matrix is computed via Equation (8-~6c) rather 
than Equation (8-90). 

The algorithm requires a priori values for the augmented state ;Co' along with 
the a priori covariance matrices Ph , Q. , and R .. 

UXo J J 

When applied to the Apollo 10 and 11 missions, the DMC method gave the 
following results; 

1. Its accuracy was limited by the observation noise rath·,:,<l' than by the 
model inaccuracies. 

2. The unmodeled accelerations were primarily due to negl(~cted effects in 
the lunar potential, and the magnitude of the unmodeled accelerations W8.l~ 
dominated by the radial component. 

3. The estimated values of unmodeled accelerations were repeatpble from 
orbit to orbit and from mission to mission. 
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_!r j 4. The magnitude of the radial component of the tmmodeled acceleration was ,

_' I highly correlated with the locgtion of lunar surface mascons.

j The obvious drawback of the preceding filtering theories is that the noise

_ l st_istics must be supplied a priori. A remedy for this difficulty is discussed
I in the following section.
i

_ 8.4.3 Statistical Adaptive Filtering_:

_ Statistical adaptive fi!terlng techniques are designed to correct the basic i
filter tc a_eount for the combined effects of all error sources, e.g., neglected

"_ nonlinearities, unknown noise _tatistics, computational errors, and model
errors. One of the diffi_xlties with filtering is the determination of the

.- proper value of Q, the state noise covariauce. Additional problems arise iu
determining the statistics associated with the ob_e._ration noise. Effects such

-/ as atmospheric refraction variation and random disturbances in the radar in-
( _t.'-,:mentation are unpredictable. The assumptioIm that have been made are that
i _, the measurement noise (Equation (8-1)), _md_', the state., noise (Equation (8-91)),

_. _ have zero mean. However, due to model errors and nonlinearities, this is raxely /_
true. The goal of statistical adaptize filtering is to determine the actual mean ._
mid covariance of both the state and observation noise so that better estimates

- of the state can be obtained.

Numerous ilwestigators have developed adaptive sequential estimation tech-

niques based on '_he recursive Kalman filter equations (References 15 and le_
_ The J-adaptive filter in GTDS is discussed as an example of statistical adaptive

filters. Jazwinski developed a sequential adaptive estimator having the capability
to track system state and model errors in the presevce of large and unpredict-

able system or environmental variations. The approach is to add a low froquency i :-"
random forcing functiou, representing the model errors, to the differential equa-

"\ tion representing the system model. The filter then estimates this function as
well as the state. The model chosen for this random forcing function is a poly-
nomial with time-varyin[, coefficients. This particular approach is especially
useful in parameter identification problems.

It is assumed that the estimator system _nodel is

,

= g! ('x, t) + _2_(t) (8-119)

_ere _ includes the accelerations that are well known,

F_ includes possible unk_,own accelerations and model errors in _

and 5(t) is a zandom forcing function.
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4. The magnitude of the radial component of the unmodeled acceleration was 
highly correlated with the location of lunar surface mascons. 

The obvious drawback of the preceding filtering theories is that the n.:>ise 
statistics must be supplied a priori. A remedy for this difficulty is discussed 
in the following section. 

8.4.3 Statistical Adaptive Filtering 

statistical adaptive filtering techniques are designed to correct the basic 
filter to a~(;ount for the combined effects of all error sources, e.g., neglected 
nonlinearities, unknown noise tftatistics, computational errors, and model 
errors. One of the diffiC'.1lties with filtering is the determination of the 
proper value of Q, the state noise covari~ce. Additional problems arise ttl 
determining the statistics associated with the otile!"Vation noise. Effects such 
as atmnspheric refraction variation and random disturbances in the radar in-
~t !".m1entation are unpredictable. The assumptions that have been made are that 
ii, the measurement noise (Equation (8-1», and w, the state noise (Equation (8-91», 
have zero mean. However, due to model errors and nonlinearities, this is rsxely 
true. The goal of statistical adaptile filtering is to determine the actual mean 
alld covariance of both the st~!e and observation noise so tllat better p.stimates 
of the state can be obtained. 

Numerous il\vestigators have developed adaptive sequential estimat!f)n tech
niques based on i:he recursive Kalman filter equations (References 15 anell r ; 

The J -adaptive filter in. GTDS is discussed as an example of statistical adaptive 
filters. Jazwinski developed a sequential adaptive estima.tor having the cl}.pability 
to track system state and model errors in the presence of large and unpredict
able system or environmental variations. The approach is to add a low frequency 
random forcing funCtlO~l, representing the model errors, to the differential equa
tion representing the system model. The filtdr then estimates this function as 
well as the state. The model ch.Jsen for this random forcing function is a poly
nomial with time-varyin{F coefficients. This particular approach is especially 
useful in par&.meter identification problems. 

It is assumed that the estimator system .LIlodel is 

(8-119) 

\\-here gl includes the accelerations that are well known, 

Y:2 includes possible unknown accelerations and model errors in gl-
and u(t) is do .L"andom for(ling function. 
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_ - ,_ If _(t) is .: linear polynomial in time, the discrete form of the sytem model / _'

__ over the time interval ..f_,j,_;j+l]is

_(tj+l) =g [_(tj ), U'.(t)] (8-120a) "_

_(t) =_(tj) +u(t_) [t- tj] (8-120b) ,_

_vhere _ is modeled ss a random constant to be estimated.

The meagurement model is t,h_esame as in previov_ eections, i.e.,

,: Y(t; ) - f (_(tj); tj ) + _ (8-121a) ;:

' where fi is measurement noise with :,
g

8{H_ T} = R (8-121b)

Hence, the complete dynamical system model is

x(tj+llt j) : G[_(tjltj), g(tj+ l Itj)J 4 _.' (8-122a) I'

- (8-122bl !

, 1' u(tj._lltj)-= U(tjltj) +u(tj+lltj)-r; "r - tj+ 1 -tj , (,

'* t.) (8-1_,c) _-u(tj+l_-_) - u(tll

In order to describe the system, the covariance and correlation matrices are
defined as follows

•i' _ {Ax (tj), A'_T (t j )} = P(tj Itj ) (8-123a) :

_ {Ax (tj) AuT(,t._ )) = C.x(t i !tj ) 18-123b) ,•

8{_x(tj ) _uV(tj 1} = C5 x_,t_lt j ) 18-123C) i-

8(Au(tj ) A_'uV(t_)} = U u(t _It j) (8-1_3d) _
a_, _

8 {Au(tj ) Aur(tj )) .-.U_ (t i ltj ) (8-123e)

8(Au(tj ) AuT(tj )} = U55 (tj it i ) 18-123i_,

_z
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If U(t) is .~ linear polynomial in time, the discrete form of the sytem model 
over the time interval [~., i; . "'1] is 

J J' 

x(t
j
+1 ) = G [x(t j j, u(t)] 

u(t) = u(tj) + i1(t) [t - tj] 

h'here it is modeled 9S a random constant to be estimated. 

The measurement model is the same as in previou.s fections, i.e., 

where ii is measurement noise with 

Hence, the complete dynamical system model is 

i" (t j + 11 t j ) = G fx (t j It j ), u (t j + 1 I t j ) J ., '.' 

(8-120a) 

(8-120b) 

(8-121a) 

(8-121b) 

(8-122a) 

(8-122b) 

(8-12?c) 

In order to describe the system, the covariance and correlation matrices are 
defined as follows 

"'" "'" E{6x(t.) 6xT(t.)} = p(t.lt.) 
J . J J J 

(8-123a) 

(8-123b) 

(8-123<:) 

E{~(t.) ~T(t.)} :: U (t.lt. \ 
J J uu J J' 

(8-1?3d) 

,.... r,.. 
2{6u(t.) 6uT(t.)} :-: U • (t·lt.) 

J J uu J J 
(S-123e) 

n ....-:". ~ T ' 
d6u(t.)6u (t.)} =U .. (t.lt.) 

J J uu J J 
(8-12:Jf) 

8-4:3 
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where

A_(tj ) -- x(tj) - x(t i) (8-124a)

A"_(tj) = _(tj) - u(tj) (8-124b)

Au(t i) = u(tj ) - _(tj) (8-124c)

Let

' 7(tj+1[ti) = qbx(ti) + @_(tj ) , _,du(ti) (8-125)

where

_x(tj +I) (8-126a)

q_(tj+lltj) - Bx(tj )

.J

/
} _(tj+ 1I% ) - ?x(tJ+l) (8-126b)

?u(tj )

¢d (%+1 It] ) = ?x(t]+l) (8-126C) I
?u(tj )

The J_winsld Filter is derived by augmenting the state _ with the vectors fi and
fi and using the Extended Kalman Filter in augmented form.

Equations (8-122b), (8-122c), and (8-125) can be combined to _eld an aug-
mented transition matri_

i

¢ = I (8"_I27)"

0 _'

The augmented form of the error covariance matrix is

%1
P ¢.x

P(tjltj)= CTx U.. U_ 18-128)

% u,.oo%1

REPRODUCIBILITY OF THE
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where 

Let 

where 

"" ... 
~x(t.) = x(t.) - x(t. ) 

J J J 

"" ... 6u(t.) = u(t.) - u(t.) 
J J J 

ox(t '+1) 
¢(t.+

1
It.)= ----:;J_ 

J J ox(t.) 
J 

I dX(i: j +1 ) 
l/J(t·+ l l t .) = ---

J J ou(t. ) 
J 

(S-124a) 

(S-124b) 

(8-124c) 

(S-125) 

(S-126a) 

(S-126b) 

(S-126c) 

The Jazwinaki Filter is derived by augmenting the state x with the vectors ii and 
IT and using the Extended Kalman Filter in augmented form. 

Equations (S-1221), (S-122c), and (S-125) can be combined to yield an aug
me>lted transition matriY. 

The augmented form of the error covaria.."'lce matrix is 

fp Cux C. 
ux 

rue t. It. ) = leT Uuu u. (S~12S) 

" l"' uu 

c! uT. u .. _ ux uu u 

REPRODUCffiILlTY OF THE 
S-44 ORIGINAL PAGE IS POOR 
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-i The augmented state, gain, and observation matrices are

, , :I - _ = _ _ = [Fi0',0] (8-129) :

Substituting Equations 18-127) and 18-128) into Equation (8-92b) and ignoring the

•: state noise yields

i la(ti+zlti) 0 I _" -T _7 ;"= -ux Uu. I_G I 0 (8-130) .

i o o I cT u'.u_ _ _ zI UX UU -- ._

; _, Expanding the right-hand side, the upper triangular elements of P(tj+l I tj) are "

i j I.,ttj+llt)) = _pq_T + _CuTx_)T + _YdC_xgbT + (_Cux@T + _bUuu@T o; (8-131a) /

+_dUu_a_T+_c:, _. +_u_ +
i

.,_ cx<tj+zltj) = _X_ux + CUuu + V_dU_5 + T(@Cc_ + v_UG + V_dUa5) (8-131b)

c. (tj+_i_.)=_c. +_ua +_dU_a 18-131C)ux ) ux

u (tj+,Iti)= U u + .rU T...,.+ f(U.G + fUGG ) (8-131d) ?-

U 5(ti+z(t}) :: U G + TUG_ 18-131e)

"'. UGs(ti+ z ]tj ) = UG_ (8-131f)

where all the terms on the right-hand sides of Equations (8-131a) through (8-131f) , ,,

are evaluated at (t i l t j).

8-45
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The augmented state, gain. and observation matrices are 

3 = [F: 0:0] (S-129) 

Substituting Equations (S-127) and (S-12S) into Equation (S-92b) and ignoring the 
state noise yields 

¢ I/J I/Jd P Cux C. ¢T 0 0 
\IX 

1<)( to +1 1 to) = 0 I r CT 
Uuu U. ..j;1 I 0 (S-130) 

J J ux uu 

0 0 r C! U T. u .. ..j;! r I 
ux uu uu 

Expanding the right-haud side, the upper triangular elements of fc>(t j +1 I tj) are 

(b-131a) 

C (to+llto) =¢C t'/,U tt/JdUT. tr(¢C. tvJU . t'-PdU
u' u') 

UX) ) ux 'I" uu uu "'x uu (S-131b) 

C. (to+lit.) =¢C. tt/;U. tt/;dU" 
ux) ) ux uu uu 

(S-131c) 

U (t 0tllto) = U t OjUT. t r(Uuu' t rU .. ) 
uu J J uu ~IU uu 

(S-lil1dj 

U .(to+ll t.) :: U . t TU .. 
uu) ) uu uu 

(S-131e) 

U .. Cto+llt)o) = U •• 
uu J uu 

(S-131f) 

where all the terms on the right-hand sides of Equations (S-la1a) through (S-la1f) 
are evaluated at (t j I t j). 

8-45 
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Substituting Equations (8-128) and (8-129) into Equahon (8-86d) yields

"- I_'] P CUX %X V _T ] .'

L:J\ I UX

[K. I cT ur. u..
L-- UI -- UX ULI UU

, " (8-132)

: " I

_-_ +_F,OIO]CT Uu. U_× j+l ux

CT UT. U;
; UX UU

-' Carrying out the indicated matrix multiplications,J

_, Kx PF T(FPFT + w_-+11)-;
_..

" Ku = CTxFT(FPF T + w_,+11)-I (8-133) //
I"

Kd CTxFT(FPFT + w_+11)-I

SubstitutingEquations (8-128) and (8-129) intoEquation (8-86c)yields

/ Kxl PC

[o(h+,lh+,)-I i-.K. IEFiO!Oj/ C_ U u.o!

\ I
_'_ -- UX Ukl

(8-134)

= KuF I CTux Uuu Uu

K_F 0 T UT.

v
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Substituting Equations (8-128) and (8-129) into Equahon (S-S6d) yields 

K 

"fc: 
Cux c. FT ,. ux 

K Uuu U. 0 
U Ul< uu 

K. Lc: UT
• U .. 0 u ux uu uu 

(8-132) 

1FT 
-1 

P Cux C. ux 

l: 
-1 rF' 0' 0] cT Uuu U. W + l I I x ;+1 ux uu 

C! UT. u .. ux uu uu 

Carrying out the ii.'\dicated matrix multiplications, 

~ PFT (FPFT + wj!1 r' 

Ku = CT FT (FPFT + w-:- 1 r 1 
ux J+l (S-133) 

KuJ C! FT (FPFf + w~1 r 1 
ux J+l 

Substituting Equations (S-12S) and (S-129) into Equation (S-S6e) yields 

I 

~ l [FiOIOil 

P Cux Col ux 

f"(t j +1 It j +1 ) = CT Uuu U. ux uu 

KuJ ) c! uT • u·· ux uu uu 
(S-134) 

I - l\cl' 0 0 P Cux C. 
u" 

-- - Ku F I 0 CT U U. ux uu uu 

- K.F 0 I C! UT • tT •• u L. Ul< UU Ull 
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" ! _} J Hence, the upper Lriangular elements of Pit j+i )tj +i ) are
d J

i P(tj+IIti+l) = (I - KxF) F(tj+llt_) (8-135a)

'_. Cx(tj+ 1)tj+:) = (I - K_F) Cux(tj �1)tj ) {8-] 35b)
; ,

i ' C6x(ti+llti+l) .--(I - KxF) C6x(tj+llt]) (8-135c)

Uu(tj)l ]tj+l ) _- 'Juu(tj+l]tj ) _ KrCux(tj •� �¬�(8-135d)

: _ U6(ti+liti+l) = U6(t_+lltj) - KuFqx(tj+llti) (8-135e)
i

i U;d (tJ+l!tJ+') = U_6(tj+lltl) - KfFCsx(tj'lltj) 18-135t)

, Substituting Equation (8-129) into Equation (8-100) gives the update eo,_ion for
: the augmented state

t

• i

I = + Ku [Y(t'_+l )- T(_(tJ +I Iti ); ti+1)] (8-136) ,,

(tj+l]tj+ I) (tl+llt j )

[ or
" x(ti+llt)+ 1) = x(tj+llt _) + Kx[Y(tj+ I) - T(x(t_+liti))] (8-137a)

_(ti+lltj+ 1) = _(tj+ilt j) + K.[y(tj+ l) - T(x(tj+l)tj))] (8-137b)

u(tj+llti) =u(tj+tlt i) + K6[y(ti+ 1) -T_x(tj+llti))] (8-137c)

Equations (8-125) and (8-130) are the prediction equations for the Jazwinski

Filter, mad Equations (8-133), {8-134), and (8-137) are the update equations.
The incJusion of Equation (8-135f) is a modification by Torroglosa which keeps

"- the eovariance :._atrix of the state from becoming nontm_itive definite. In the
origin_fl Ja.zv inski Filter, the uncertainty in u was maintained constant and hence,

U66 (tj+ 1 ]tj} = Ua5" The initial condit'ons _¢(0]0), PAx (01 0), Uuu (O] 0), and

U55 (0] 0) must be specified. The correlation terms C_ (010), Csz (010), U 5 {010),@

and the initial values of u(0 10) and _7(0(0) are set equal to zero externally.

8.4.4 Computational Procedure for the Filter Program

The computational sequence for the Filter Program is similar to that for
the Differential Correction Program (see Section 8.2 4). The computational flow

" _I) 8-47
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Hence, the upper ~riangula!' elements of iCl(t j +II t j +1) are 

p(tj+lltj+l) = (I - I\.F) p(t j +1It i ) 

Cux(tj+lltj+l) :: (I - I\.F) CuxCtj+ll t ) 

C. (t·+1 It·+1 ):= (I - K F) C. (t·+1It.) ux» x ux) ) 

U .(t·+1 It·+1)=U .(t.+1It.)-K FC. (t·+1It.) uu) J uu) J u ux J J 

u·· (t·+1 It +1):: U •. (t·+llt.) - K.FC. (t·illt.) 
.JU J J uu J J u ux J J 

(8-135a) 

(8-1 35b) 

(8-135c) 

(S-135d) 

(8-135e) 

(8-1351) 

Substituting Equation (8-129) into Equation (8-100) gives the update eqJ1~:tion for 
the augmented state 

(R-136) 

or 
i"(t·+ 1 It +1):: ~(t·+llt.) + K [y(t·+ 1 ) - T(i"(t·+ 1 I t . »] 

J J ) j x I l I (8-137a, 

(8-137b) 

tJ(t·+ 1It.) :: tJ(t· .. t/t.) + K. [Y(t·+ 1 ) - T(i(t·+1 :t. »] 
I J J I u I l I 

(8-137c) 

Equations (8-125) and (8-130) are the prediction equations for the Jazwinski 
Filter, and Equations (8-133), (8-134), and (8-137) are the update equations. 
The inclusion of Equation (S-135f) Is a modification by Torroglosa which keeps 
the covariancf :;..:.atrix of the state from becoming nonpositlve definite. In the 
original Ja.~v inaki Filter, the uncertainty in {I was maintained cODstant and hence, 
Uuu (tj.ql tj) = Duu' The initial condit:ons x(OIO), P,c..x (010), Uuu (010), and 
U .. (0 10) must be specified. The correlation terns C (0 10), C. (0/0), U . (0/0), 

uu '" ":0 ux ux uu 
wd the initial values of u (0 10) and u(O 10) are set equal to zero externally. 

8.4.4 Compltational Procedure for the Filter Program 

The computational sequence for the Filter Program is similar to that for 
the Differential Correction Program (s'3e Section 8.2 4). The computational flow 
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schematic is shown in Figure 8-2. Both the figure and the accompanying dis- _
cussion are divided into f_mc_ional blocks.

: 8.4.4.1 A Priori Input i :

All necessary input data are specified at (_. This includes the estimated :
variables and their covariances, the measurement time spans, and the number

_: - of observations per set. The state input can be expressed optionally in any of
several convenient coordinate systems as in the DC Program. For subsequent
processing, the state is transformed into the mean equator and equinox of 1950.0

._ system or into the true equator and equinox of a given epoch system. The trans-
formations are given in Chapter 3.

8.4.4.2 Data Management
J

® ©: The observation data are prepared for processing at and This
encompasses relocating the data for the specified measurement span from the

_ _- original input device (cards, single or m_-Jlviple tapes, disk, or keyboard) to a ._/ ,
- working file convenient for subsequent retrieval during processing. During this
• relocation function, the data sequence can optionally be edited considering the I

type of observation, the source of the data_ the tracking station, and the time I

span between adjacent points. The data on the working file are chronologically
numbered, and the number of the data point which bounds tl;v initiai epoch time

t o from below is recorded. The data management function -also includes the
determination of whether the initial epoch time is less than the first data time, ,y

between the first and last d._ta time, or larger than the last data time. For the

first case, the data are processed .qequential]y from the first point at tj to the
last point at t_. For the second case, the processing starts backwards in time _
from the initial epoch to the first d_t_ point, and it then switches back to the

_\ initial epoch and proceed_ forward in time to the last data point. In the third

case, the data are processed backwards in time from the last (chronological) _
data point to the first.

8.4.4.3 Processing Loop ,-_

The processing loop begins by retrieving the first data point to be processed ,

from the working file at _ A test is made to determi_e the optimal integrator
to be used considering the ti_,e span between observations at t i and tj. 1 . A
predicted covartance for tb.e observation is calculated. The observation, its
residual, and the partial derivatives of the measurements with respect to
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schematic is shown in Figure 8-2. Doth the figure and the accompanying dis
cussion are divided into flmctional blocks. 

8.4.4.1 A Priori Input 

All necessary input data are specified at 0. This includes the estimated 
variables and their covariances, the measurement time spans, and the number 
of observations per set. The state input can be expressed optionally in any of 
several convenient coordinate systems as in the DC Program. For subsequent 
processing, the state is transformed into the mean equator and equinox of 1950.0 
system .:>r into the true equator and equinox of a given epoch system. The trans
formations are given in Chapter 3. 

8.4.4.2 Data Management 

The observation data are prepared for processing at @ and ®. This 
encompasses relocating the data for the specified measurement span from the 
original input device (cards, single or--nl:~1tiple tapes, disk, or keyboard) to a 
working file convenient for subsequent retrieval during processing. During this 
relocation function, the data sequence can optionally be edited considering the 
type of observation, the source uf the data, the tracking station, and the time 
span between adjacent points. The data on the working file are chronologically 
numbered, and the number of the data point which bounds th~ initial epoch time 
to from below is recorded. The data management function also includes the 
determination of \\Ihether the initial E;'!loch time is less than the first data time, 
between the first and last dJ.ta time, or larger than the last data time. For the 
first case, the data are processed Requentially from the first point at t) to the 
last pOint at t m• For the second case, the processing starts backwards in time 
fro"'ll the initial epoch to the first o..1ta point, and it then switches back to the 
initial elJoch and proceeds forward in time to the last data point. In the third 
case, the data are processed backwards in time from the last (chronological) 
data point to the first. 

8.4.4.3 Processing Loop 

The processing loop begins by retrieving the first data ~oint to be processed 
from the working file at @ A test is made to determil1e the optimal integrator 
to be used considering the tiwc span batween observations at t j and t j -1' A 
predicted covariance for the obser~ation is calculated. The observation, its 
reSidual, and the partial derivatives of the measurements with respect to 
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® 
A PRIORI MEASUREMEN, @) 

RETRI£V£ ~ 
~ 

OATA 
~EASUR~ 

~~A"IAGEMEN,! INITIALIZE 
• SOLVE·FOR veCTOR f-- f-----4 POINT COUNTER hro '"v"o, r • EDIT ALL DATA 

.... '0
'
'''1. p ... I"" OUTSIDE sPAN I TO FIRST 

• ESTIMATION ERROR POINT TO B~ 
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+ parameters being 3stimated axe computed at _, determining whether to accept

the observation at _. If the observation is accepted, the Kalman
or reject gain
is calculated, the state, state covariance matrix, m_d correlation matrices are
updated _ and the processed observation is output at C_.

3.4.4.4 Data Set Loop

If it has been determined at (H) that the last observation of a set has been

processed, the updated state at the last observation time and its co_ sriance
+ matrix are printed_ the updated state is then integrated backwards to the a priori

epoch time; and the Current Elements Report, the Solve-for Parameters Report,

and the End-of-Set Summary Report are printed, all at _ After it has been
determined at Q that all the observations have been processed, a last pass is
made through the observation data to compute residual statistics and print final

., reports at _).
Y

8.5 COVARIANCE MATRIX INTERPRETATION

In the previous sections, equations have been presented for calculating the i_

mean i and the covariance matrix PAx of the errors in the estimated state and !

model parameters. There is little diffictdty in recognizing the value of the mean, I
or estimated value, but interpretation of the covariance and correlation matrices
in terms of the uncertain_y of the variables is not as clear. Yet, the covsriance
matrix yields _ great deal of information on the statistical character of the vari-
ables. Some of these characteristics are described in the following sections.

8.5.1 Augmented Vector and Covariance

-. The estimation process yields the mean _ and covariance of errors PA_

of the solve-for variables, and the matrix CA_A, relating errors in solve-for
and consider variables. The mean g0 and covariance PA. of the consider
variables are known a priori. As an aid in understanding _e role of each of the
matrices, the augmented, or expanded, state vector u is defined as (x"i z-)r The
best estimate (or expected value) of u is (x i z0) T. The covariance matrix of
errors of E is PA_, which can be partitioned into the following components

t

ip_, t CA,_ 1

+-- .... i....

LC'zA, [ PA,o
)
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parameters being 3stimated are computed at @, determining whether to accept 
or reject the observation at 0. If the observation is J.Ccepted, the Kalman gain 
is calculated, the state, state covariance matrix, 3l1d correlation matrices are 
updated, and th03 processed obser-;atioll is output at @. 

3.4.4.4 Data 5.:-t I.~op 

If it has been determined at ® that the last observation of a set has been 
processed, the updated stat~ at the last observation time and its CO\ ariance 
matrix are printed; the updated state is then integrated backwards to the a priori 
epoch time; and the Current Elements Report, the Solve-for Parameters Report, 
and the End-of-Set Summary Report are printed, all at CD After it has been 
determined at 0 that all the observations have been processed, a last pass is 
made through the observation data to compute residual statistics and print final 
reports at ®. 

8.5 COVARIANCE MATRIX INTERPRETATION 

In the previous sections, equations have been presented for calculating the 
mean x and the covariance matrix P6x of the errors in the estimated state and 
model parameters. There is little difficulty in recognizing the value of the mean, 
or estimated value, but interpretation of the covariance and correlation matrices 
in terms of the uncertainty of the variables is not as ciear • yet, the covariance 
matrix yields 1. great deal of information on the statistical character of the vari
ables. Some of these characteristics are described in the follOwing sections. 

8.5.1 Augmented Vector and Covariance 

The esthnation process yields the IDt:'an X and covariance of errors Pll x 
of the solve-for variables, and the matrix C6x6z relating errors in solve-for 
and consider variables. The mean Zo and covariance P 6 z of the consider 
variables are known a priori. As an aid in understanding ~e role of each of the 
matrices, the augmented, or expanded, state vector u is defined as (x: Z) T. The 
best estimate (or expected value) of u is (x: zo) T. The covariance matrix of 
errors of u is P 6 u , which can be partitioned into the following components 

[

p I 
.'\ x I 

p,\ ~ - - - - -:-(. 1I 

l C,\zt\x : 
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i•.,} where PAu is a positive definite symmetric matrix. Therefore ]

CAzAx = C r .;AxAz :_

_ The submatrix PA-0 remains constant throughout the processing, since the s ,
consider variable uncertain._y car__ot be improved through estimation.

: The following sections present a geometric heuristic interpretation of the ,

covariance matrices PA ' PAx, and/or PA _0 in terms of hyperdimensional : :

volumes of constant probability in the (p + q)-, p-, and/or q-dimensional !
Euclidean space of the vector components. ;_-

1 8.5.2 Hyperellipse Probabilities

In the followingdiscussion, the random vector _ with uncertainty PAx is
considered. The discussion is equally applicable to the random vartables u and ;;

_ _. Assuming that the random vector _(t) is normally distributed, it can be s _'
completely described by its mean and covariance. The assumption that x(t) is nor- _/ V

_, really distributed is partially justified as a result of an analogue of the Central _,

Limit Theorem which states_ "If a large number of random variables are corn- !_
., ' blued in a reasonably complicated fashion to form a single multivariate random

variable, then this random variable will have a nearly normal distribution." :!

For the following discussion, it _s assumed that the random vector of errors
Ax about the mean _ is composed of six components. It is normally distributed .7

:" with zero mean and covariance PAx. Its probability density function can be ' .:!
' _ written as ._

I

Px (A-"_) : 1 exp 1 A xT p-I (8-138)

F

I If PA_ is a diagonal matrix, then ff has components that are statistically tnde- .x

• i pendent (uncorrelated),and p_(_'_)can th_nbe factoredintoa productof six _unlvariatefunctionsofx_,x 2,..., x_ (theone-dlmensionalmarginal probabiD_y ." _!,
,,:_ density functions of the six components of the state). This constitutes a sufficient ,

_ condition for independence of the marginal random vari_ !es x_, . .., x _. :

• 'd

J

• _, _I

'f _'_" 8-51 {
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where P6u is a. positive definite symmetric matrix. Therefore 

The submatrix p" remains constant throughout the processing, since the uZo 
consic:Ier variable uncertain4;y ca~"1ot be improved through estimation. 

The following sections present a geometric heuristic intervretation of the 
covariance matrices P 6 ' Pox • and/or P 6 Zo in terms of hyperdimensional 
volumes of constant prof>ability in the (p + q)-, p-, and/or q-d1m.ensional 
Euclidean space of the vector components. 

8.5.2 Hyperellipse Probabilities 

In the followingdiscussion, the random vector x with uncertainty PAx is 
considered. The discussion is equally applic..able to the random variables ii and 
z. Assuming that the random vector x(t) is normally distributed, it can be 
completely described by its mean and covariance. The assumption tha-;; x(t) is nor
mally distributed is partially justified /:l.S a result of an analogue of the Central 
Limit Theorem which states: "If a large number of random variables are com
bined in a reasonably complicated fashion to form a single multivariate random 
variable, then this random variable will have a nearly normal distribution." 

For the following discussion, it ~s assumed that the random vector of errors 
6x about the mean x is composed of six compont:nts. It is norma.lly distributed 
with zero mean and covariance P6". Its probability density function can be 
written as 

- 1 [ 1 -T -1-] p x (/::, x) = e xp - - /::, x P /::, /::, x 
(277)3 IpL\x11/2 2 x 

(8-138) 

If P 6" is a diagonal matrix, then x has components that are statistically inde
pendent (uncorrelated), and p (Z\X) can than be factored into a product of six 

" univarj.ate functions of Xl' X 2, ••• , X6 (tile one-dimensional marginal probablUty 
density functions of the six components of the state). This constitutes a suffiCient 
condition for independence of the marginal random varialles Xl' • • • , X 6' 
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_" By virtue of its definition, PAx is a nonnegative definite matrix so that it

has n_egatlve elgenvalues. Hence, a stmfl_wlty transformation

=s (8-139)

: which dtagonalizes P&x is always possible since the hypersurface of constant t
likelihood (constant value of probability density) in six-dimensional space is a
hyperellipsoid, and by a rotation of axes it is possible to use the principal

axes of the hyperellipsoid as coordinate axes (i.e., to transform to another ran-
; " dom variable space having uncorrelated or independent components)° The

_yy in Equation (8-139) represents space coordinates and is unrelated to the
observations.

Of interest is the probability that x I , x 2, . . . , x6 lie with.in the hyperellipsoid

,- A x r p_ _-"x -- ,C2 (8-140)

i

where _ is constant. By transforming to principal axes, this expression be- /_,
: comes

i I
_" A y_ A y22 /_y2 _2 (8-141), + +...+ -

.?

where _, _2, • • •, _6 are *he eigenvahms of PA_. The _ransformation matrix
_ from 5 x to _- space is accomplished by the matrix of eigenvect_rs S. By a ._

_, second transformation, A z i = _ Yi/_ ' the expression in Equation (8-141) becomes
the equation for a hypersphere in six dimensions

The probability of finding _-_-_inside this hypersphere is ,_

(2_) 3
volun,P

8-52

1976017203-431

By virtue of its definition, P6.x 1s a nonnegative definite matrix so that it 
has nonnegative eigenvalues. Hence, a similacity transformation 

6.y=S6.x (8-139) 

which diagonalizes P6.x is always possible since the hyper surface of constant 
likelihood (confrtant value of probability density) in six-dimensional space is a 
hyper ellipsoid, and by a rotation of axes it is possible to use the principal 
axes of the hyperellipsoid as coordinate axes (i.e., to transform to another ran
dom variable space having uncorrelated or independent components). The 
liY in Equation (8-139) represents space coordinates and is unr.elated to the 
observations. 

Of interest is the probability that xl' x 2 ' ••• , X6 lie within the hyperellipsoid 

- -- 2 t::. x T P6,! t::. x = {, (8-140) 

where {, is constant. By transforming to principal axes, this expression be
comes 

-- + 
(72 

2 

+ ... + 
cr 2 

6 

(8-141) 

where..5 ' (72 ' ••• , cr6 are "'1e eigenvalues of Pt::. x• The transformation matrix 
from I'::. x to 1SY space is accomplished by the matrix of eigenvectors S. By a 
second transformation, I'::. z. = I'::.y. /(7. , the expression in EquatIon (8-141) becomes 

1 1 1 

the equation for a hypersphere in six dimensions 

A 2 A 2 A 2_92 
Ll Z 1 + Ll z2 -t • • • + i...I Z 6 - 'V (8-142) 

The probability of finding L~Z inside this hypersphere is 

Ir·· I 
vol Un'" 
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) where the integration is carried out over the volume of the hypersphere of radius /
A r, where

Thus, the probability of finding/X x 1, Ax 2, "• " , Ax6 inside the hyperellipsoid
_xx TP_I x _ = Z2 iS

i .4

: _1 Jo e-I/2Ar2 f (A r) d Ar (8-145) :P" (2 _-)3

where f(Ar) is the spherically symmetric differential volume element.

In six-dimensional space, Equation (8-145) is

Pr : 1 J e -l12Ar2 (Tr3 /_ r 5) d A r ] 1 e_i1242 22 _"_/J_
.... +, + (8-146)

_' (2 rr)3 o 2
I :

For _ = 1, 2, and 3, the probability is 0.014, 0.332, and 0.826, respectively. Also

of interest are hyperellipsoids of other dimensions. Considering an m-dimen- :_
sional random vector where m = 1 through 7, the probabilities corresponding to : _

• _ = 1 through 4 (often called 1, 2, 3, and 4_ probabilities) are as shown in Table
8-I. i _

'fable 8-1 , :,

""_. Hyperellipse Probabilities

_ 1 2 3 4 ,.,_

I

i l 0.683 0.955 0.997 1.00 "_:

2 0.394 0.865 0.989 1.00 _
' 3 0.200 0.739 0.971 0.999 _. ,;
i 4 0.090 0.594 0.939 0.997

5 0.037 0.450 0.891 0.993

i 6 0.014 0.323 0.826 0.986 .
0.005 0.220 0.747 0.975

}

8-53
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where the integration is carried out over the volume of the ltypersphere of rSJiius 
6 r, where 

6r2 = .6z~ + .6z2 + ..• + .6z2 
'2 6 

(R-144) 

Thu:, the probability of finding .6 xl' .6 x 2' .•• ,.6 x6 inside the hyperellipsoid 
[::, x P6~ [::, x = {,2 is 

(8-145) 

where f(6r) is the spherically symmetric differential volume element. 

In six-dimensional space, Equation (8-145) is 

For {, = 1, 2, and 3~ the probability is 0.014, 0.332, and 0.826~ respectively. Also 
of interest are hyperellipsoids of other dimensions. Considering an m-dimen
sional random vector where m = 1 through 7, the probabilities correspOl1ding to 
{, = 1 through 4 (often called 1, 2, 3r and 40- probabilities) are as shown in Table 
8-1. 

'fable 8-1 
HypereUipse Probabilities 

m ,{; 1 2 3 4 

1 0.683 0.955 0.997 1.00 
2 0.394 0.865 0.989 1.00 
3 0.200 0.739 0.971 0.999 
4 0.090 0.594 0.939 0.997 
5 0.037 0.450 0.891 0.993 
6 0.014 0.323 0.826 0.986 
'7 0.005 0.220 0.747 0.975 
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._ The problem of evaluating the hyperellipsotd, however, remains very difficult I
.. since it cannot _e visualized. The equation for the ellipsoid can be transformed
i to its principal a::es by means u _ the eigenvector transformation. The resulting ,,
_ diagonal matrix of eigenvalues yields the maximum excursions of the state vari- _.

, ables. Howevel, these excursions are inthe transformed (principal) axes and there-

fore are maximum excursions for combinations ofA x 1 , Ax2, . . ., A x6 and still _ _
difficult to visualize.

- 8.5.3 Hyperrectangle Probabilities

Another method of interpreting the confidence regions of state variable un- _!

_ certainty is by means of hyperrectangles instead of hyperellipses. Consider a ",

i two-dimensional case where PA, is the covariance matrix

_'! PA. = (8-147) _i

, i#'_
, The quadratic form FxxTp_lx_-X'X=_l is _ ;

A 2= ,f,2IPA,<I (8-148) , t '_o,_,,,a._- 2o-a.,,a,.,a.. a., +o-L.' ,,, _

This quadratic equation represents an ellipse such as that in Figure 8.3. 1 }

t
&x21 ] '

i '\
_ _.

._ ! ,_,<

g .

Figure 8-3. Error Ellipse and Rectangle

I
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The problem of ~valuating the hyperellipsold, however, remains very difficult 
since it cannot IJe visualized. The equation for the ellipsoid can be transformed 
to its principal a~:es by means l)~ the eigenvector transformation. The resulting 
diagonal matrix of eigenvalues yields the maximum excursions of the state vari
ables. Howevel, tbese excursions are in the transformed (principal) axes and there
fore are maximum excursions for combinations oft. x l' t. x2' ••• , t. x6 and still 
difficult to visualize. 

8.5.3 Hyperrectangle Probabilities 

Another method of interpreting the confidence regions of state variable un
certainty iEi by means of hyperl'ectangles instead of hyperellipses. Consider a 
two-dimensional case where Pt.x is the covariance matrix 

This quadratic equation represf.lnts an ellipse such as that in Figure 8.3. 

I 
I 

_~----1 ___ -.J 

Figure 8.3. Error Ellipse and Rectangle 
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1

< The width A x l* and height _x2* of the rectangle enclosing the ellipse are
_ determined from Equation(8-148)for the condition that dt_x2/dAx _ = 0 and ;_
_ d_x 1/dAx 2 = 0, respectively, yielding

_i (8-149)

},

r

i Thtts,the probability that Ax 1 lies within the region -3 _Ax < Axl < 3 _Ax is

} 0.997, A x 2 falling wherever i_ may. _e p_obabilI_y th._ A x 2 lies within _he
region -3 _Ax < _x2 _ 3 _Ax is also 0.997, Ax 1 falling wherever it may.
Assuming no _ignificant correlations, the probability that Ax1 and Ax 2 simultaneously

lie with the respective, regions -3 crA_'- <_ Ax,. _<3_^._.1 and -3or A <:_ Ax 2 _<3 crA_2 is
_ therefore (0.997) 2 or 9.994. The probabilit_ thgt Ax 1 -- __ana ax_ nc within the 3or ellipse
"'[ is 0.989, slightly less than that for the rectangle due to the lesser area.

Extending thi.,_ interpretation to six dimensions, the probabdity that /_x_, ::

:_ _ x_, . . ., Ax r simultaneously lie within their 3_ hype_._c_angles is (0.997) _ _
_ _. or 0.982. The probability that they lie within the six-dimensional hyperellipsoid _.L/' _

is 0.826, significantly lower because of the smaller volume. The hyperrectangle
[ ) probabilities corresponding to _ = 1, 2, 3, and 4 and m = 1 through 7 are pre-

sented in Table 8-2. '_

Table 8-2

_ Hyper--ectangle Probabilities

" ,f, 1 2 3 4 ,:

• t ,!
1 0.683 0.955 0.997 1.00

, 2 0.466 0.912 0.994 1.00 , _:
' "_,. 3 0.319 0.872 0.991 1.00 -

4 0.218 0.832 0.988 1.00 _.ii_
5 0.149 0.794 0.985 1.00 i;

" 6 0.102 0.759 0.982 1.00
:i 7 0.069 0.724 0.979 1.00

; The hyperrectangle probabilities are much easier to analyze since the various -. •
sides of the hyperrectangles are multiples of the square root of the variances. ' _:
However, it is important to be aware of the fact that the boundary of the hyper-

• rectangle merely encloses a volum¢_ of space and in no way can be regarded as :

a boundary of constant probability as is the case with h.,_rellipses.

I I_I,' 855

, I
•: |
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The width .0, Xl * and height L.X 2 * of the rectangle enclosing the ellipse are 
determined from Equation (8-148) for the condition that d 6X/d ~X 1 = 0 and 
d&1/dM

2 
"" 0, respectively, yielding 

~ x; = {,06x
2 

~ x; = {, o-~xl 
(8-149) 

Thus, the probability that ~xI lies within the region -3 o-~x ~ ~ Xl ~ 3 o-~x is 
0.997, ~ x2 falling wherever ii; may. Thti probabillt'tJ that t:. x 2 lies within ihe 
region -3 0-~X2 ~ ~x2 ~ 30-.6.x is also 0.997, .6.x t falling wherever it may. 
Assuming no Significant correl~tion~, the probability that u. Xl and ~x2 Simultaneously 
1iewiththerespectiveregions-30-~x'~ ~XI ~30-~x and-30-~x $ ~X2 $ 30-~"2 is 
therefore «(\.997)2 ot" 0.994. The probabilit) that i\~: and ~X2 Ii.:? "Vithin the 30- ellipse 
is 0.989, slightly less than that for the rectangle due to the lesser area. 

Extending thhl interpretation to six dimensions, the probaLllity that ~ Xl ' 

6 X2 ' ••• , .6. x( simultaneously lie within their 30- hypel. actangles is (0.997)6 
or 0.982. The probability that they lie wHhin the six-dimensional hyperellipsoid 
is 0.826, significantly lower becau!le of the smaller volume. The hyperrectangle 
probabilities corresponding to {, = 1, 2, 3, and 4 and m = 1 through 7 are pre
sented in Table 8-2. 

Table 8-2 
Hyper-:ectangle Probabilities 

m {, 1 2 3 4 

1 0.683 0.955 0.997 1.00 
2 0.466 0.912 0.994 1.00 
3 0.319 0.872 0.991 1.00 
4 0.218 0.832 0.988 1.00 
5 0.}49 0.794 0.985 1.00 
6 0.102 0.759 0.982 1.00 
7 (/.069 0.724 0.979 1.00 

The hyperrectangle probabilities are much easier to analyze since the various 
sides of the hyperrectangles are ll.iultiples of the square root of the variancE:tj. 
However, it is important to be aware of the fact that the boundary of the hyper
rectauglc merely encloses a volum(:: of space and in no way can be regarded as 
a boundary of constant probabll1ty as is the case with h~~relllpses. 
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,_, The hyperrecta_slo probabilities are particularly convenient during program
/_i checkout. By processing simulated data having Gauss]an random error with _

zero mean and known variances, the residuals of the estimsted vector can be
compared with the calculat_d standard deviations. The distribution of residuals
sho,ld satisfy the 1, 2_ 3, and 4or probabilities in Table _-2.

._ 8.5.4 Correlation Coefficient

_ It has been shown that the off-diagonal co'_ariance elements of a covariancer

matrix determine the deviation between the random vector coordinate axes and

_;_ the principal axes of the hyperellipse of constant probability. When the covari- _"
ance elements are zero, the principal axes are aligned v,ith the coordinate axes
and the components are independent of each other. Furthermore, the normal

_ density function (Equation (8-138)) ca_ then be factored into a product of n

untvariate functions of Agl, Ax 2, . .., Ax .
l n

I Another measure of th_ dependence of two random vectors A'x and A z-'-,having :

'• !_"_[I a (p × q) correlation matrix

COV (A Xl, _ ZI) COY (A XI, g Z2) • • " COV (_ Xl, A Zq)

I I ?
f'_. __

:, '-axA,: 18-150)

, ?

/', COV (A Xp, A Zl) COV (A Xp, /_ Z2) " " ' COV (A Xp, /_ Zq) _'

\,_ is the correlation coefficient, defined as

i Pii = P (Axl,Az) = coy (A xl,_ :i) 18-151) _,_"
: /var (_ x) vat (A zi) _/

: The variance elements are the squares of the stsndard deviations for Ax_ and
; Az., respectively', and lie along the ma_n _agonal of P^ and PA,, respectively. /j L._x

Tl_ corre|ation coefficient satisfies the following conditions:

8-56 _"
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The hyperrectall~la probabilities are partic~hr1y convenient during program 
checkout. By processing simulated data having Gaussian random eHor with 
zero mean and known variauces, the residuals of the estiD".J3ted vector can be 
compareci with thA calculattJd standard deviations. The distribution of residuals 
s'h"'llld satisfy the 1, 2, 3, and 40' probabilities in Table \3-2. 

8.5.4 Correlation Coefficient 

It has been shown that the off-diagonal covariance elements of a covariance 
matTix determine the deviation between the random vector coordinate axes and 
the principal axes of the hyperelUpse of constant probability. When the covari
ance elements are zero, the principal axes are aligned ¥1th the coordinate axes 
and the components are independent of each other. Furthermore, the normal 
density function (EQ.uation (8-138» can then be factored into a product of n 
univariate functions of 6 K l , 6x 2, ••• , 6x

n
• 

Another measure of th~ depe'ndence of two random vectors L\x and6 z, having 
a (p x q) co!'relation matrix 

rov (6 Xl' 67.1 ) 

I cov (6 x2 ' 611 ) 

('~x6z = 

is the correlation coeffiCient, defiDed as 

cov (6 x., 6 z. ) 
Pij = P (6xi' 6z.) = 1 1 

J Ivar (0 X ) var (/\ z.) 
1 1 

(8-150) 

(8-151) 

The variance elements are the squares of the standard deviations for 6x. and 
1 

6z. , respectively, and lie along the ma~n Q~3gonal of PI\ and PI\ ,respectively. 
J wx WI 

The correlation coeW.cient satisfies the following conditions: 
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_' _ • p = O ifand only if_x, andAz i (and therefore x i andz.)areuncorrelatedj ,•r

_ • P = "1, ifand only if

: = + _ (8-152)

. Y%J L 'A,d
': where

' CrAxi, CrAzj _ the _tandard deviations of the errors x i and zj, respectively.

8.6 ESTIMATION RELATED TECHNIQUES

' ., Specifictechniques required in the estimation process include matrix inver- ,:

• _ sion, editingof residuals,iterationcontrol,residual statistics,and hypothesis '

- i tests.

" J-..

: 8.6.1 Matrix Inversion ,t

: l The normal matrix is inverted by recursively inverting smaller matrices ._

; and by the use of the Schur identity. The symmetrical properties ,.: the normal

matrix are utilized during the inversion process. The Schur identity method is

developed by asstuning that the matrix to be inverted is of the form "_

_.,

-,, [_ : _ .' .... (8-153) i_

" _i2 ,-[i_ -':.
,7

with the inverse given by

I"[H,,] 'LH,_;-

, 21] t [H22j-
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• p = 0 if and only if 6x and!:::' '/.. (and therefore x. and z. ) are uneorrelated 
1 1 1 J 

• I ",i " 1 
1/'''''1 ~ J. 

• p = ±1, if and only if 

{:Xi} = ± {o-!:::'Zj} 
!:::'x. !:::,z. 

1 1. 

(8-152) 

where 

0-6 ,0-6 '" the ~tandard deviations of the errors x. auJ z. , respectivehr. 
Xi Zj 1 1 • 

8.6 ESTIMATION RELATED TECHNIQUES 

Specific techniques required in the estimation process include matrix inver
si.on, editing of residuals, iteration control, residual statistics, and hypothesis 
tests. 

8.6.1 Matrix Inversion 

The normal matrix is inverted by recursively inve!''ting smaller matrice3 
and by the use of the Schur identity. The symmetrical properties \.: the normal 
mairix are utilized during f;he inVersion process. The Schur identity method is 
developed by aAsuming that the matrix to be inverted is of the form 

(8-153) 

with trte Inverse given by 

r~[H11] : lH12J 
I 

.. - --------

[H21 ] : lH22! 

(8-154) 
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Since

, :0i\

[m]-: =Q ,' ) (8-155)[oI till

then

-=_ [M11] _I1x] _ [M1) [H21] = [I]

(8-156)

[M2t] [HIt ] - [M2_ [H21] = [0]
=

-_ , Eliminating [H2t] from Equation (8-156) and solving for [Hll] gives

[M_I] [Hll] [M22]-1 [M21] [HI1] = [I] (8-157)
_. sj

or

[Htl ] = [M11]-I _ [MII]-I [M12] [M2_-I ([M21] [Hl1]). (8-158) I

PremultiplyingEquation(8-157)by [M 2I][M11]-i gives

[M21] [Hxl] + [M21] [M11]-I [M12] [M22]-t [M21] [Hst] = [M21] [M11]-1 (8-158)

%

[M2x] [Hxt] -- [[x] . _2,] [Mtl ]-I [MI2] [M22]-I] -' [M21] [M,x] -1 (8-160)

SubstitutingEquation(8-160)intoEquation(8-158)gives

[H11] _; [M11]-I - [Mill -I [M12] [M22]'I
(8-161)

X [[I] + [M21] [Mll ]-1 [M12] [M22]-1] -1 [M21] [MI1 ]-I

t
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Since 

(8-155) 

then 

(8-156) 

Eliminating [H
21

] from Equation (8-156) and solving for [H
ll

] gives 

(8-157) 

or 

(8-158) 

Premultiplying Equation (8-157) by (M ] [M ]-1 gi ves 
• 21 11 

(8-159) 

(8-160) 

Substituting Equation (8-160) into Equation (8-15b) gives 

(8-161) 
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The matrices [tt22] , [H_2], and [h2_] may be derived in a similar manner,
yielding

[H22]--- [[M21] [Mll ]-1 [M12] + [M22]] -1
I

[H12] =_ [Mll]-1 [M12] [H22 ] (8-162)

[H21] = [M22]-1 [M21] [Hll]
¢

" It is assumed that the inverse of [Mxl] is known and that [M22 ] is in all cases
a (lxl) matrix. The matrix inversions required in Equations (8-161) and (8-162)
are simply the reciprocals of the elements of the respective matrices. The in-

version begins by setting [M11 ] as
.3

: /
: 1

[Mil]-I--N (8-163)
roll

"_ and J
Ji

I _[M22]-I- - _ _1- (8-164)m2 2

Equations (8-161) and (8-162) are then employed to determine the inverse of

Imll m121 (8-165)
tY21%2_J '

The resultiscalled[M Ii] and thediagonalelementfollowing(inthiscase m3_ )
isused to form a new [M22]. The process iscontinuedalongthe diagonaluntil
the required matrix is inverted. GTDS takes full advantage of the symmetry of

the normal matrix by computing and storing only the upper triangle of the matrix.
The inversion process is designed to invert a matrix in upper triangular form
and store the result in the same manner.
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The matriceR [Hu ]' [H
12

J, and [11
21

] may be derived in a similar manner, 
yielding 

[[M21] [Mllr l [M12] 
-I 

[H22] = + [M22]] 

[HI ~ - - [Mllr 1 [MI~ [H2~ (8-162) 

[H21 ] = [M
22

] -I [M
2I

J [HII ] 

It is assumed that the inverse of [M 11] is mown and that [M 22] is in all cases 
a (IXl) matrix. The matrix inversions required in Equations (8-161) and (8-162) 
are simply the reciprocals of the elements of the respective matrices. The in
version begins by setting [M II J as 

(8-163) 

and 

(8-164) 

Equations (8-161) and (8-162) are then employed to determine the inverse of 

(8-165) 

The result is called [Mil] and the diagonal element following (in this case m 3 ) 
is used to form a new [M22 ]. The process is contiuued along the diagonal until 
the required matrix is inverted. GTDS takes full advantage of the symmetry of 
the norma! matrix by computing and sturing only the upper triangle of the matrix. 
The inversion process is designed to invert a matrix in upper triangular form 
and store the result in the same manner. 
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8.6.2 Editing ofObservation Residuals /

The observationresidual,as computed by GTDS, is definedas the actual
observationminus the computed observationthatisbased on thetrajectory

specifiedby the currentstatevectorsolution.Deletionofan observationfrom

the differential correction or filter computation may be accomplished by one or ,
more of the following tests that are made on each iteration or filter set for each
observation:

• By number. After examination of a previous run's residual printout,
the user may elect to delete some residuals by sequence number.

• By time. The observation is rejected if it falls outside a specified time
span.

• By type. The observation type is among those to be rejected.

• By station. The identifier of the station making the observation is
among those to be rejected.

: • By n th observation. Every n th observation of this type is to be

processed; all other observations are rejected. /

• By deviation. The observation is rejected when the deviation from the
: orbit estab]ished by the previous iteration is greater than a specified

value, or, in a filter run, when the residual differs from the predicted
measurement residual, by more than a specified amount.

• By geometry. The observation is rejected when the elevation argle of the
line of sight from the tracking station is below a specified minimum value.

If a residual is deleted by any test, then the row of the augmented matrix F
(matrix of partial derivatives of the observations with respect to the estimated i
parameters) corresponding to the observation is not computed.

8.6.3 Iteration Control for the Differential Correction Program

Condit_.ons that may cause termination of the differential correction process
are as follows:

• Convergence of the solution

• Maximum number of consecutive divergent iterations reached

• Maximum number of iterations reached

8-60 w
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8.6.2 Editing of Observation Residuals 

The observation residual, as computed by GfUS, is defined as the actual 
observation minus the computed observatiOI: that is based on the trajectory 
specified by tlle current state vector solution. Deletion of an observation from 
the differential correction or filter computation may be accomplished by one or 
more of the following tests that are made on each iteration or filter set for each 
observation: 

• By number. After examination of a previous run's residual printout, 
the user may elect to delete some residuals by sequence number. 

• By time. The observation is rejected if it falls outside a specified time 
span. 

• By type. The observation type is among those to be rejected. 

• By station. The identifier of the station making the observation is 
among those to be rejected. 

• By nth observation. Every nth observation of this type is to be 
procE:ssed; all other observations are rejected. 

• By deviation. The observation is rejected when the deviation from the 
orbit estabHshed by the previous iteration is greater than a specified 
value, or, in a filter run, when the residual differs from the predicted 
measurement residual, by more than a specified amount. 

• By geometry. The observation is rejected when the elevation argle of the 
linE: of sight from the tracking station is below a specified minimum value. 

If a residual is deleted by ::my test, then the row of the augmented matrix F 
(matrix of partial derivatives of the observations with respect to the estimated 
parameters) corresponding to the observation is nat computed. 

8.6.3 Iteration Control for the Diffc·rential Correction Program 

Condit:'ons that may cause termination of the differential correction process 
are as follows: 

• Convergence of thA solution 

• Maximum number of consecutive divergent iterations reached 

• Maximum number of iterations reached 
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, i The convergence criter.2ain GTDS are based on iterativereduction of the /

square root of the mean square of the observation residuals. This quantity, :
denoted by RMS, is calculated as follows on the ith iteration

?

• - ),.. ,_: Ms = <:Ty:wa y,+_x,_P-'_,.,) (8-166)
Ax 0

where A Yi and &xi are defined in Equations (8-23)and (8-9.4),and m is the

number of observations. Ifthe value of RMS decreases during two consecutive

iterations,the solutionis converging, After a prespecffied number of consecu-

tivedivergentiterations,the problem is terminated. After testingfor conver-

gence or divergence, a predicted RMS is calculatedthrough firstcrder in
for the next iterationas follows i+i

RMSP = /1 (A---_i - Fi Axi+:) T W (ZXYi- Fi A"'xi+,)
t u"
; (8-167) .:.

• )•"_ ,.,.. 1/2

: _ +(Zx+I_A_:)Tp-_zX_0<2x_+,- zxx_) ,.:

where _xi+ I ,_'xi,and F are defined in Equations (8-25),(8-24),and (8-21a),
' respectively. The second term on the right is exactly correct for the

(i+l) _' iteration. The first term on the right linearly corrects the measure-

ment residuals to account for the differential correction _"x i + 1" If the

regression equation (Equation (8-14)) were linear, the predicted tt_,.2 (RMSP)
would be exactly correct. The iterations are considered converged and the

problem terminated when the following criterion is met

I"" R-M-Sfi <e (8-168) . ,,::

where

RMSB _ t,_e smallest RMS achieved compared with all previous iterations

_ the improvement ratio criterion specified by input

8.6.4 Weighted Least Squares and Filter Statistics

Upon completion of each iteration of the weighted least squares fit or after

a specified set of observations has been filtered, a summary of the observation

• _ 8-61
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The convergence criteria in GTDS are based OIl iterative redu-::tion of the 
square root of the mean square of the observation residuals. This quantity, 
denoted by RMS, is calculated as follows on the ith iteration 

{
I -T - - T _ }112 

RMS = _ (6 y. W 6 y. + 6 Xl' p- 1 6 x.) 
mil 6 1 Xo 

(8-166) 

where 6 Yi and t,-x
i 

are defined in Equations (~-23) and (8-24), and m is the 
number of observations. If the value of RMS decreases during two consecutive 
iterations, the solution is converging. After a prespecified number of consecu
tive divergent iterations, the problem is terminated. After testing for conver
gence or divergence. a predicted RMS is calculated through first crder in Cx. 

1+1 
for the next iteration as follows 

(8-167) 

where Dc. ,["x., and F. are defined in Equ,\tions (8-25), (8-24), and (8-21a), 
1 +1 1 : 

respectively. The second term on the right is exactly correct for the 
(i+ltt iteration. The first term on the right linearly corrects the measure
ment residuals to account for the differential correction 6x i + l' If the 
regression equation (Eq1.:.a.tion (8-14» were linear, the predicted Rl\-1.~· (RMSP) 
would be exactly correct. The iterations are considered converged and the 
problem terminated when the follOwing crit.erion is met 

where 

I 
RMSB - RMSP I < E 

RMSB 
(8-168) . 

RMSB '"" tue smallest P.MS Rchieved compared with all previous iterations 

f "- the improvement ratio criterion speCified by input 

8.6.4 Weighted Least Squares and Filter Statistics 

Upon completion of each iteration of the weighted least squares fit or after 
a speCified set of observations has been filtered, a summary of the observa4;ion 
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residual statistics is calculated and printed. The statistical quantities that
comprise the summary are computed for data types and residual groups which
contain data from specific tracking stations. The following abbreviations are
used in the statistical relationships

Ay i " the jth residual, YJ - f!xi(tj)' ZO] t

.,, _ the total number of residuals for a station
• and data type (group).

• Root Mean Square Error

The total weighted RMS, the predicted total RMSP, and the RMS for
each station and data type are calculated from Equations (8-166) and (8-167).
It is normally desirable that RMS be small, preferably zero.

? • Group IVlean

: The mean value of each residual group is a measure of the bias in the ob-
_- servation and is calculated as follows /"

ns I

S-= 1 A YJ (8-169)
I'ls

j--I

• It is desirable that _ for each group be zero to be consistent with the

assumption in Equation (8-27a) that the measurement noise has zero
mean.

• Sum of Squares About Mean

The sum of the squares of the residuals about the mean of each residual
group is

ns m

S =_ (z_\yj - _)2 (8-170)
I=1

RIRODUCIBILITY--OFTttv "8-62
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residual statistics is calculated and printed. The statistical quantities that 
comprise the summary are computed for data types and residual groups which 
contain data from specific tracking stations. The following abbreviations are 
used in the statistical relationships 

fly. '" the jth residual, y. - Ox. (t.), zo) 
J J 1 J 

the total number of residuals for a station 
and data type (group). 

• Root Mean Square Error 

The total weighted RMS, the predicted total RMSP, and the RMS for 
each station and data type are calculated from Equations (8-166) and (8-167). 
It is normally ::'esirable that RMS be small, preferably z.ero. 

• Group Mean 

The mean value of each residual group is a measure of the bias in the ob
servation and is calculated as follows 

ns - lL-m = - 6 y. 
n J 

S j"'l 

(8-169) 

It is desirable that m for each group be zero to be consistent with the 
assumption in Equa.tion (8-27a) that the mea..c;urement noise has zer<. 
mean. 

• Sum of Squares About Mean 

The sum of the squares of the residuals about the mean of each residual 
group is 
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t: J_ - • Sample StandardDeviation

_: The sample standard deviation of each residual group is a measure of
- ._ the dispersion of the observation dat:, and is calculated as follows

nm 1 i : (8-171) :

In GTDS the approximation is made that n. is large. Hence, n, - 1 is =

replaced by n in the denominator of Equation (8-171). The standard
deviation should be consistent with the values used in the a priori weight-

ingm_trix W. _

• Confidence Interval for Group Meav '-

/, If the observation residual group population is normally distributed with =
/

zero mean, then the variable ="

t - .T, (8-172) .>i

has a t-distribution(_udent's)with (n - 1) degreesof freedom. There-
fore, confidence intervals for the mean can be constructed from tables _.

of the t-distribution. As n_ becomes large, the t-distribution ap 'oaches
the normal distribution.

• ObservationResidualGroups
,i ,_-

For each iteration of the weighted least squares fit, or after a specified '
set of observations has been filtered, the following data are printed for ;

each residual group: •

• the number of observations n
s

• the number of rejected aud accepted observations J

• the histograms of observations by true anomaly ,.

i.
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• Sample Standard Deviation 

The sampie standard deviation of each residual group is a measu.re of 
the dispersion of the observation dat':' and is calculated as follows 

0' == -- I (fj,y, - m) =-
( 

1 ",- _ 2) 1/2 ( S )1/2 
ns - 1 I-J j ns - 1 

(8-171) 

In GTDS the approximation is made that ns is large. Hence, ns - 1 is 
replaced by n. in the denominator of Equation (8-171). The standard 
deviation should be consisrent with the "alues used in the a priori weight
ing mstrix W. 

• Confidence Interval for Group Mean 

If the observation residual group population is normally distributed with 
zero mean, then the variable 

t =- __ nl_ 

;;;:r;;;-
s 

(8-172) 

has a t-distribution (student's) with (n s - 1) degrees of freedom. There
fore, confidence intervals for the mean can be constructed from tables 
of the t-distribution. As ns becomes large, the t-distribution ap 'oaches 
the normal distribution. 

• Observation Residual Groups 

For each iteration of the weighted least squares fit, or after a specified 
set of observations has been filtered, the following data are printed for 
each residual group: 

• the number of observations n s 

• the number of rejected alld accepted observations 

• the histograms of observations by true anomaly 
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_. _ CHAPTER 9 _,

EARLY ORBIT h_ETHODS• !

t

,' ' The estir_ator algo_:ithm in the Goddard Trajectory Determination System (GTDS)

requires an a pr_.ori estimate of the spacecraft position and velocity in order to

": "i initiate the itera_ive estimation process (see Chapter 8)° An accurate estimate
is frequently unav:,Alable because of large booster injection errors, maneuver

_ errors, or unknown orbits of tracked satellites. GTL-_ has been provided with the
, capability to determine a starting value of position and velocity from a limited

: _ number of discrete tracking data samples.

Three techniques are optionally provided to perform this function. They are as
follows:

• The Gauss Method and Double r-Iteration Method - These determi___stic

: methods use three sets of chronologically ordered gimbal angle observa.. ##

., tion pairs to solve for the six Cartesian position and velocity compo- .>/"
nents at an epoch time equal to that of the second observation. The

I gimbal angle observation sets need not be from the same tracking sta-

i i tion. The central angle (from the earthts center) subtended by the three
sets of angles should be less than 60 degrees for the Gauss Method and
less than 360 _ for the Double r Method. Either X and Y or A and E

gimbal angle data from GRARR, ATSR_ USB or C-Band Systems, _-and

i m-direction cosines from tb_ Minitrack System, or geocentric right
ascension a and declination b observations can be used.

• The Range and Ar_les Method - This method uses multiple (more than
', two) sets of simultaneously measured range and gimbal angle data from '

\ the GRARR, ATSR, USB or C-Band radar systems. Two-body equations
are regressivelyfittedto thetransformeddatatoyieldepoch valuesofthe

: spacecraft position and velocity.

9,1 ANGLES ONLY METHODS

Both the Gauss Method and the Double r-lterationMethod use threesetsof

chronoiogieallyordered gimbal anglemeasurements from up tothree separate
trackingstationstodeterminethe Cartesiancomponents ofpositionand velocity.
The angledata setcan be distributedover an orbitalarc of lessthan60 degrees

mean anomaly forthe Gauss Method and up to360°in mean anomaly forthe

. 9-I
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CHAPTER 9 

EARLY ORBIT :METHODS 

The estiIi.iato:r algodthm in the Goddard Trajectory Determination System (GTDS) 
requires an a pdori estimate of the spacecraft position and velocity in order to 
initiate the iterative estimation process (see Chapter 8). An accurate estimate 
is frequently unavailable because of large booster injection errors, maneuver 
errors, or unknOw.l orbits of tracked satellites. GTa; has been provided with the 
capability to determine a starting value of position and velocity from a limited 
number of discrete tracking data samples. 

Three techniques are optionally provided to perform this function. They are as 
follows: 

• Ths Gauss M~thod and Double r-Iteration Method - These determil!i stic 
methods use three sets of chronologically ordered gimbal angle observa·· 
tion pairs to solve for the six Cartesian position and velocity compo
nents at cUl epoch time equal to that of the second observation. The 
gimbal angle observation sets need not be from the same tracking sta
tion. The centraJ angle (from the earth's center) subtended by the three 
sets of angles should be less than 60 degrees for the Gauss Method and 
less than 360 u for the Double r Method. Either X and Yor A and E 
gimbal angle data from GRARR, ATSR, USB or C-Band Systems,'{ -and 
m-direction cosines irom thl' ~,fi.nitrack System, or geocentric right 
ascension 0. and declination b o!Jservations can be used. 

• The Range and Angles Method - This method uses multiple (more than 
two) sets of sim'J.ltaneously measured range and gimbal angle data from 
the (",xRARR, A'l'SR, USB or C-Band radar systems. Two -body equations 
are regrel:l~ively fitted to the transformed data to yield epoch valueD of the 
spacecraft position and velocity. 

9.1 ANGLES ONLY METHODS 

Both the Gauss Method and the Double r-Iteration Method use three sets of 
chronologically ordered gimbal angle measurements from up to three separate 
tracking stations to deu.rmine the Cartesian components of position and veloclty. 
The angle data set can be distributed over an orbital arn of less than 60 degrees 
hi. mean anomaly for the Gauss Method and up to 3600 in mean anomaly for the 
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[ Double r-Iteration Method. The epoch for the position and velocity corresponds
to the time of the second observation set. The methods are deterministic since

(

the six measul ement components yield the six position and velocity components.
: Additional descriptions of these methods are presented in Reference 1.

, 9.1.1 Transformation of Topoeentric Gimbal Angles to Inertial Coordinates "

All gimbal angles are initially transformed to topocentric station centered azi-

•- muth A and elevation angle E. The X30 and Y30 angles corresponding to the :
_ GIL_P,_ and USB 30 foot antennas are transformed by

, ?

sin E - cos X3ocOS Yso

_ <_.E_< _

cos E = I{1- sin2E (9-1a)

and
; )

f.

_ sin A = sin X30 cos Y30/cos E _,

(O<A<2_) _ ;

: cos A = sin Y30/cos E (9-1b) '

The Xss and Yss angles corresponding to the USB 85 foot antennas are trans-
,, formed by )_

sin E = cos Yss cos Xas

<E<

cosg= I/l-sin 2E (9-Ic)

#,

sin A = sin Yss/cos g _ ::

(0 < A <_2_)

cos A = - cos Yss sin Xas/cos E (9-1d) ,

9-9. N
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Double r-Iteration Method. The epoch for the position and velocity corresponds 
to the time of thtl second observation set. The methods are deterministic since 
the six measulement components yield the six position and velocity components. 
Additional descriptions of these methods are presented in Reference 1. 

9.1.1 Transformation of Top<.~entric Gimbal Angles to Inertial Coordinates 

All gimbal angles are initially transformed to topocentric station centered azi-· 
muth A ar.d elevation angle E. The X 30 and Y 30 angles corresponding to the 
GI',A.P.R and USB 30 foot antennas are transformed by 

sin E = cos X30 cos Y30 

(9-1a) 

and 

s in A = sin X30 cos Y301cos E 

(O::;A::;27T) 

cos A = sin Y3/cos E (9-1b) 

The Xas and Yss angles corresponding to the USB 85 foot antennas are trans
formed by 

sin E = cos Yss cos Xas 

cos E = i 1 - s in2 E (9-1c) 

sin A = sin Vas/cos E 

(0 ::; A S 2 7T) 

cos A = - cos Yas sin Xalcos E (9-1d) 
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,-J The direction cosines _ ana m are transformed by j

cosE- _'_2+m 2 (0_<E_<2) (9-2a) ::

and

sin A = _/cos E

, (0 __E _<27T)

r ! COS A - m/ros E. (9-2b)
i

, , The C-Band radar glmbal anglesare directlymeasured as A and E, and the

resulting angle sets are denoted by (t, A, E). The altitude above the reference
_ earth ellipsoid, the geodetic latitude, and longitude of the tracking station meas-

1 uring *,.heangle set are denoted by (h, _,, _, ). The unit vector directed toward
the spacecraft can be written in topocentric local tangent coordinates as follows.

_OS E sin q _" ;

'i' + L

The tr,acking s_atlon coordinates, expressed in body-fixed axes, are presented in _+
Section S.32 as

+I
(N,+h) cos .s

r-Ib -- I (N,+h) cos _, sin k (9-4)

L[N,+h - (2f - f2)N,] sin

where

R
N,= ('J"5) '

_'I - (2f - f2) sin 2 qS, i

and +

R earth's equatorial radius
f ,_ earth's flattening coefficient

9-3
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The direction cosines {. ana m are transformed by 

and 

sin A = ,f',/cos E 

Cos A = m/f""s E. 

(O<E<71) 
\ - - 2 

(0 , E S 271) 

(9-2a) 

(9-2b) 

The C'-Band radar gimbal angles are directly measured as A and F., and the 
resuiting angle sets are denoted by (t, A, E). The altitude above the reference 
earth e1l1psoid, the geodetic latitude, and longitude of the tracking station meas
uring the angle set are denoted by (hs' rf>s , As). The unit vector directed toward 
the spacecraft can be written in topocentric local tangen'; coordinates as follows. 

Icos E sin A] 
Llt = [OS E cos A (:>-11) 

sin E 

Th€. tracking fliation coorciinates, expressed in body-flxed axes, are presented in 
Section 3.3.7 as 

where 

anti 

N. = -;::.==::::;:==.:::;;:::==::;:= 
it - (2f - f2) s i n2 ¢. 

Re '" earth's equatorial radius 
f '" earth's flattening coefficient 
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' Both the Lit and _,_ vectors are transformed to a common inertial Cartesian /
¢

_ axes system, either true of reference date or mean of 1950.0. The transfor-

mations, presented in Sections 3.3.1, 3.3.2, and 3.3.7, follow. The matrix M,rt
_' from Section 3.3.7 transforms from the topocentric local tangent system to the

body-fixed system and is a frnction of the station's latitude and longitude, i.e.,<

>

where _

': I_ -S in _ cos _ Gq51 _":._ Mlt - sin q_ cos k -sin_s sin k cos (" ,') ,

[_ '-
. _

cos q_scos _'s cos _s sin _ stn _

The matrix B T, from Section 3.3.2.3, transforms from the body-fixed system to
_: the true of date system and is normally a function of the Creenwich sidereal time /" i

and polar motion. Polar motion is negl_e_d for early orbit application (from .:t :,

considerations of precisinn). The transformation ls as fellows

OS _t COS a t

f"r = I c°s 3t sln _t = ]]T(n "_ f. (9-8) ';
t. - X--g/ "-b _.

: '" and ' _;
_, t ' _-

1" = Br (a) r (9-9) , i
gb

where ,i

cos a -s in a 0
g g " ;

B r = _ COS c_ (9-10)'_ g g

t

9-4 _"
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.. 
:Both the Llt and rSI:> vectors are transformed to a common inertial Cartesian 
axes system, either true of reference date or mean ()f 1~50.0. The transfor-
mations, presented in Sections 3.3.1, 3.3.2, and 3.3.7, follow. The matrix M~t 
from Section 3.3.7 transforms from the topocentric loc.u tangent system to the 
body-fixed system a.'ld is a n:nction of the station's latitude and longitude, i.e., 

(9-6) 

where 

I- -sin A cos A.. co:J -s in ¢ cC'ss A.. 

s 

Mit :-: -sin ¢ sin A.. (. :) 
s s s s 

sin qlJ Leos ¢ cos A.. cos ¢ sin A.. s 5 S S 

The matrix BT, from Section 3.3.2.3, transforms from the body· fix€ld system to 
the true of date system and is normally a function of the Greenwich sidereal time 
and polar motion. Polar motion is nogiActed lor early orbit application (from 
considerations of precision). The transfot:"mation is as f('liows 

ros 8t 
-i 

.. c~s at I 
= BT fry 'I i. J._ = I co sSt Sin '-'-t \ (9-8) , 

L 
\-"&' --b 

sin St J 

and 

1'" = aT (a ) 1'" 
s g Sb (9-9) 

where 

cos a -s in a 0 
II & 

BT = sin a cos a 0 (9-10) 
& II 

0 0 1 
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_, a t _ topocentric right ascension of spacecraft from true-of-date equinox
_ topocentric declination of spacecraft from true-of-date equator _"

: _ t

a -_ Greenwich sidereM time at measurement time t (see Equation (3-19))._ g

Equations (9-6) and (9-8) can be combined resulting in a single transformation
: matrix M1t identical to that in Equation 19-7), with \ replaced by (_ + _g ),. b ^

• the longitude measured from the true vernal equinox. The unit vector L T in

: Equation (9-8) can be solved for the topocentric right ascension _t ard declina-
: tion _, ' Should observations of the topocentric right ascension and declination be
_, available, they can be used to replace the topocentric gimbal angles aria deter-

• mine L T directly from Equation (9-8). The matrix C T from Sectiou 3.3.1.3 :
transforms from the true of d_te system tc the mean of 1950,0 system a_.d

• accounts for nutation and precession. The resulting transformation is

" ' /L--cTZ,T (_--._) ."g- •

-< R= -_C T -r- (9-12) :$ .

, ,f

•:Chore C T is the product of the precession transformation A(_0, ()p, _:p) and the
mttatton t"ansformation N(Se, S¢ ) as follows :

C T = (N A)T (9-13)

1

The elements of the summation matrix C T are cbtained from an ephemeris file

in GTDS as a f_.ction of time from 1950,0,

Combinin_ the preceding transformations,

Z,= {M,tBC) T I_,, (9-14)

and ":

= (BC)TV (9-15_ z

,u,.

'_' 9-5
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and 

at '" topocentric right ascension of spacecraft from true-of-date equinox 
b '" topocentric dAclination of spacecraft from true-of-date eq'lator 

t 

2 "v Greenwich sidt'rea! time at measurement time t (see Equation (3-19)). 
!! 

Equations (9-6) and (9-8) CaL be combined resulting in a single transformation 
matrix M It identical to that in Equation (9-7), with \ replaceQ oy (\ A+ '\)' 

the longitude measured from the true vernal equinox. The unit vector LT in 
t:quation (9-8) can be solved for the topocentric right ascension 'It ard declina
tion 8 t ' Should observations of the topocentric right ascension and declination be 
available. they can be used to replace the topocentric gimbal angles ana detel'
mine iT directly from Equation (9-8). The matrix CT from SectiOl1 3.3.1.3 
tra. .. ·lsforms frl)m the true of dl:lte system tc the mean of 1950.0 systp-m and 
accounts for nutation and precession. The resulting transformation is 

j' _CTLA 
- - T 

(9-12) 

whpre CT is the product of the preCeS'3iOll tra.I1sformation Ago, ()p' c;p} and the 
nutation t"ansformation N( 8 €, 8..j;) as follows 

(9-13) 

The elements of tbe swnm~.tion matrix C T are cbtained from a!l ephemeris file 
in G:'DS as a ruction of time from 1950.0. 

Combining the preceding transformations, 

(9-14) 

and 

R =' BC)Tr s' I, 
(9-15~ 
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Equations (9-14) and (9-15) present the transformation._ necessary when the 1
computations are performed in the mean of 1950.0 system. Specifying C -- I

: permits the vectors to be transformed to the true of reference date system.

In the following sections three sets ofgimbal angles, obtained at times tl, t 2 and

t 3, _re available from either the same or different _*ations. Station vectors and

unit vectors directed towards *.he spacecraft, (t{_1 ' _ )' ('-_s2' L2 ) and (R,3' L3),
can be determined from Equations (9-3), (9-14), and (9- _5) for each gimbal
angle set.

9.1o2 Gauss Method

The Gauss Method utilizes the geometric properties of the station positions and
station-to-spacecraft unit vectors, in conjunction with an approximation of the
orbital dynamics, to determine an estimate of the sp_cecraftVs position at time

./ t 2. The orbital dynamics are approximated by the low order terms of the f and
: g series, *_erefore limiting the orbital arc of the angular observations to be

within approximately 60 ° in mean anomaly. Subsecf_ently, the accuracy of the
position vector is iteratively improved, and the velocity vector determined by the
method of Gibbs. This method utilizes the approximately known position vectors /_

at the three observation times to determine a velocity vector at time t2 . Know- ' _
ing the velocity allows one higher order term to be included in the f and g series [
and thereby improves the spacecraft position determination. ]

The geocentric inertial position vector R. can be determined from the known

vectors L and R_i and the unknown slant range _i from the station to _e
spacecraft as follows (see Figure 9-1).

/

r

Figure 9-1. Position Vector Geometry

•_ ,,=(.
9-6
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Equations (9-14) and (9-15) present the transformatione necessary when the 
computations are performed in the mean of 1950.0 systel11. Spp,cifying C = I 
permits the vectors to be transformed to the true of reference date system. 

In the following sections three sets of gimbal angles, obtained at times t l' t2 and 
t 3' ?.re available from either the same or different ~"!itions. Station vectors and 
unit vectors directed towards ~he spacecraft, (1\1 ' ~), (1<5)' 4) and (its3 ' L3), 
can be determined from Equations (9-3), (9-14), and (9- .... 5) for each gimb8.l 
angle set. 

9.1.2 Gauss Method 

The Gauss Method utilizes the geometric properties of the station positions and 
station-to-spacecraft unit vectors, in conjunction with an approximation of the 
orbital dynamics, to determine an estimate of the sp'3.cecraft's position at time 
t 2 • The orbital dynamics are approximated by the low order terms of the f and 
g series, t"erefore limiting the orbital arc of the angular observations to be 
within appr .. .'dmately 60° in mean anomaly. Subsequently, the accuracy of the 
pOSition vector is iteratively improved, and the velocity vector determined by the 
method of Gibbs. This method utilizes the approximately known position ve<:tors 
at the thrpe observation times to determine a velocity vector at time t:J. Know
ing the velocity allows one higher order term to be included in the f and g series 
and thereby improves the spacecraft position determination. 

The geocentric inertial position vector Ii. can be determined from the known 
~ - 1 

vectors L and Rs 0 and the unknown slant range f-oo from the station to the 
1 1 1 

spacecraft as follows (see Figure 9-1). 

Figure 9-1. Position Vector Geometry 

9-6 



_- -_'" J i • _'.... * .... ' - |-- | - t I _

• t

T g_=R +p_L, (i =1, 2, _) (9-16)I. i

r The three vectors _, R2 and _ are coplanar since they all lie in the same :

!. orbit plane. Therefore, _ can be written as a linear combination of P'I and R3as follows

1

I

l C1RI + C2_2 + C3R3 = 0 (9-17)

i where

! c2=- 1 (9-1s)

; Substituting Equation (9-16) into Eqnation (9-17) yields

/!

:_ CIPI£I + C2p2L2 + Cjp3L_ = - (CzR-_I + CzRs2 + C3Rs3) (9-19) -,oo,e" _-

or, bl matrix form
.,

z P CI i_

L [C 2p21 =-R C2 (9-20)

where t ,:

r

I-

1
• '" 9-7

_,_, _ _ _'i

1976017203-451

(i '" I, 2, n (9-16) 

The three vectors ~ , R2 and ~ are coplanar since they all lie in the same 
orbit plane. Therefore, ii.z can be written as a linear combination of 1\ and R3 
as follows 

where 

fubstituting Equation (9-16) into Eq'lation (9-17) yields 

or, ill matrix form 

where 

",-R 
s 

and R '" 
I 

9-7 
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l>remultiplying Equation (9-20) by L "I yields /

CI P_ CI

C2p: ---D C2 (9-22) ,

C33 P:.j _ _

where

D = L-' R_ (9-23)

The precedingthreescalarequationsix.volvethefiveunknown variablesC I, C2,
PI' P2 and Ps- Additionalconditionsmust be impos_l todeterminethe slant

• ranges Pl , P2 or P3" Knowing any one of these ,:nr_ges, a geocentric position

i vector RI, R2 or R3 can be determined frcm £quaticu (9-i6).

- The cross product of RI and R_ _'th Eo_tat_on :';-17) yields /

" G : ×RG
(9-24)

_3 X R2 = ClF"3 X R1

Dotting_,theunitvectornormal totlmorbitalplane)uthed__rectionof theangular
momentum, intoEquation(9-24)gives

Ca =

(9-25)

c_=_ . (R_×R3)

The posttion vectors can next be expressed in terms of the f and g series
representation for two-body motion (Reference 2). The series is expanded
about t2, the time of the second observation, as follows

m

9-8
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Premultiplying Equation (9-20) by L -I yields 

(9-22) 

where 

(9-23) 

The preceding three scalar equations ir··;olve. the five lillknown variables CI , C2 , 

PI' P2 and P3' Additional conditions WU8t be inl!'lOS~ to determine the slant 
ranges PI ' P2 or P3. Knowing anyone of these j:':ln~es, a ger-centric position 
vector HI' R2 or R3 can be determrned frem lquniic"a (9-16). 

The cross product of HI and R~ -w:tb. E<!,~atlon ;~)-17) yields 

(9-24) 

Dotting k, the unit vector nortr..al to the orbital plane In the c~rection of the anglliar 
momentum, into Equation (9-24) gives 

(9-25) 

The position vectors can next be expressed in terms of the f and g series 
representation for two-body motion (Reference 2). The series is expanded 
about t 2 , the time of the second observation, as follows 
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l

; I _. = fiR- 2 + gi_ 2 (9-26)

where
k

i ,

: fi =1 lu._.? 16._..3_2_(h. 2 u_)__4" I- 2 " ' -6 " ' - ,-_(G'2-4u2621"i s .... (9-27a)

r.

1 3 1fi2_4 1 (3_j. 2 u2) _..s _ (9-27b_:: gi =-ri -_u2_i - - 12---O - " _ "'"

: and

-'_ ¢i = ti - t2 (9-28) :

u2 = _ (9-29)

where

F _ gravitational parameter for the earth

Substi._ating _ and R._ from Equation (9-26) into Equation (9-25) yields

g3 _
(21 =

LI g3 - f3gl "

(9-30)
i

-gl

C3 - flga- fag1

Approximating fl' f3' gl and g3 by

I _2 "
fi =l-_u 2 i+0(_)

(9-31) :,

1 r3 0(,i4) (i 1, 3)gi = _i -'_'u2 i + =

9-9
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a 

R = f. R2 + g. R2 
1 1 1 

where 

_ 1 2 1 • 3 1 •• 24 1 ••• 4' 5 f. = 1--U2 T. --U2 T. --(U 2 -U2 ) T. --(U 2 - U2U2 )T. - ••• 
1 2 1 6 1 24 1 120 1 

and 

where 

_ 1 3 1. 4 1 3" 2) 5 g . = T. --U2 T. - -U 2 T. - -( U2 - U" T. - ••• 
1 1 6 1 12 '120 ~ 1 

U - J1-
2 --

~ 

J1- '" gravitational parameter for the earth 

SUbstit'.:.tiDg ~ and R3 from Equation (9-26) into Equation (9-25) yields 

1 3 0 4 g. = T. - - tl2 '1". + (T.) 
1 1 6 1 1 

(i = 1, 3) 

9-9 

(9-26) 
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(9-27b) 

(9-28) 

(9-29) 

(9-30) 

(9-31) 

REPRODUClBtLtrY O~ m~ 
ORlomAL PAGE IS Pooft 



: F _dation (9-30) becomes j

C 1 = a 1 + b I u 2

(9-32)
C3 = a- + b 3 u 2

|

where

"r3 7"3 _ )2 _ "r:_]a 1 - b I - [(T 3 r 1
_3 - % 6 (% - _1)

(9-33)

T 1 T 1
a3 - b3 - [(Y3 - "rl)2 _ ./-2 ]

"r3 - 'r I 5 (r 3 - "r1)
J

Substituting Equation (9-32) into (9-22) gives s
/

(al + bl u2) Pl al bl

-P2 =-D -1 + 0 u (9-34)

(a3 + b3 U2) P3 a3 .b31

1_epreceding Lhree scalar equation5 involve the four unknown variables Pl, P2,
,o3 and U2o i

Dotting Equation (9-16) with itself (for i = 2) yields

Rg--;g, p_c_+R: (9-35)
' J2

where

C,,."-2 £'2 ' R'2 (9-36)

is known. The second scalar equation of Equation (9-34) is

9-10 _B
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F -1.!ation (9-30) becomes 

(9-32) 

wherE' 

(9-33) 

Substituting Equation (9-32) into (9-22) gives 

(al + b I u 2 ) PI 

"1 
b I 

-P2 =-D -1 + 0 u2 

(a3 + b3 u 2) P3 La3J b3 

The preceding three scalar equations involve the four unknown variables PI', P2' 

P3 and u 2• . 

Dotting Equation (9-16) with itself (for i = 2) yields 

(9-35) 

whera 

(9-36) 

is known. The second scalar equation of Equation (9-34) is 

9-10 



It,

2

* , ¢z
i IO2 : d l + d2 _ (9-37)
f

:- where

: d I -- d21 a I - d22 + d23 a3
; t

, (9-38)
; d2 -- d21 b I + d23 b3

• and the matrix D contains the elements (dij).

Substituting Equation (9-37) into (9-35) gives

," R2 = + d_ + + d2 C_ + R_2 (9-39)

; or

2 6 d* * *
: -x [ R_ - (d 2 + d,C_ + Rs2 )R 2 -/.L ( 2 C_ + 2d,d2) R23-/_2d_2 = 0 (9-40) /

I Solving the preceding equation for its real positive root yields R2, whicb, from
Equation (9-29), determ_es u2 . Equation (9-34) can then be solved for ;,, P2
and ps, and, finally, Equation (9-16) can be solved for Ph, R2 and R_. Tills
sequence of computations is summarized in Figure 9-2. The resulting position
vectors are only approximately correct because of the truncation of the f and g
series to get Equations (9-31).

The accuracy of the _'osition can be improved and the velocity vector computed
by the method of Gibbs (Reference 1 ). Th_s method utilizes the three ap=
proximately known position vectors R1, R2 and Rs to determine the velocity R2"
This allows an additional term to be retained in the f and g series.

The position vectors R1 and Rs can be obtained from a Taylor series expansion
about R2 as follows

• .. T2

_ _Ri = R2 + R2 "rl + R2 "_"+ -_- (9-41)

The vector differences (R, - R2) and (R3 " 1_2)can be obtained from Equation
(9-41). Multiplying (R1 - R2) by - r_ and adding to (R3 - ii2) multiplied by _
yields

" 9-11
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(9-37) 

where 

(9-38) 

and the matrix D contains the elements (d ij ). 

Substituting Equation (9-37) into (9-35) gives 

(9-39) 

or 

(9-40) 

Solving the preceding equation for its real positive root yields R2 , whicr, from 
Equation (9-29), determines u2 • Equation (9-34) can then be solved for PI' P2 
and P3 , and, finally, Equ.ation (9-16) can be solved for RI , R2 and RJ • This 
sequence of comput?.tions is summarized in Figure 9-2. The resulting position 
vectors are only 9.pproximately correct because of the truncation of the f and g 
series to get Eq1..tations (9-31). 

The accur&.cy of the ;,osition can be improved and the velocity vector computed 
by the method of Gibbs (Reference 1). Tht.s method utilizes the three ap~ 
proximately known position vectors HI' R2 and R3 to determine the velocity R2 • 

This allows an additional term to be retained in the f and g series. 

The position vectors RI and R] can be obtained from a Taylor series expansion 
about R2 as follows 

2 ] 
- -..!.. !.! 7" i !.!- r 2 
R. == R2 + R2 7". + R .• -- + R2 -

1 1 ~ 2 6 (9-41) 

The vector differences (R I - R2) and (RJ - R 2) can be obtained fro~n Equation 
(9-41). Multiplying (R I - R2) by - 7"~ and adding to (R3 - ii2 ) multiplied by 7": 

yields 

ll-ll 
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J
Given Calculate (Gauss Method) I

,- t,. £v Rs, 'I R,
_ -_ ar a a D - L'lRs d_

t2, I_2. R_z _ _ _ -,_ _ C _ r 2 u 2

"a b 1, bj = ((lj) d_ -'_ _ "z _ Rz_ a

h. £3.xs_ _ i_3

Eq(28) Eq(33) Eq(21). (23) Eq(38) Fq(36) Eq(40) Eq(29) Eq(34) Eq(16)

?

So I u t I on R 2, _2

ICo _ed......

HI, G,, D 1 fl' gl CI 'l Tt'st

R 2 u 2

H2' G2' Dz _ R2 _ • -'_ _ fz' g2_C_ --1) _ .,2"*'Convergence Not

. ; R 2 t'l2 Conve r lied

/ He' Gv De fe' ga Ca of l'e " '2" 3

Eq (50). (Sl). (49) Eqt48) Eq(52.53) Eq(29.54) Eq(27) Eq(301 E¢,t 22)

\
"x. ¥

Calculate (Gibbs Correct lon'_ ,*/

Figure 9-2. Gauss Method Computational Sequence

I

IR _ R_w) 1 (9-42)- - _'I _'2_13 2 - _2 %_ - ""__'3(_'_ + _'l ) _ + ' •

where
p

I

_,_ = "re- _'I (9-43)

Differentiating twice gives ' .

- _'__, + (_'_- -r_)_ + _-__a - - "rl"ra"r,a'_'2+ 0 (R2(Iv)) (9,-44)

Multiplying (R, - R2 ) by r 3 and (R3 - R2 ) b_ - r 1, adding the results and differ-
entiating twice yields

REPRODUCIBILITY OF TIIE
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Call"ulat,· (Gauss Method) 
r----_--,I 

I 

t" i". R.,_ 

t J . LJ • R
SJ 

r-------------------~A------------------------ ----~ 

" R, 

aI' a J D - L-'R. d; 
C - r, --- ", - " - R, 

b" bJ ' (e1,,) d' , 
" R, 

Eq(28) Eq(33) Eq(21). (23) Eq( 38) Fq(36) Eq(40) Eq(29) Eq(34) Eq(16) 

R, 

So 1 utI Oil R,. R, 

" 

t COllver I(ed 

TL'st 

t 2---+ Conv£'r ~l'nc(' 

'J 
of., . 2' J 

Eq (50). (51). (49) Eq(48) Eq;52.53) Eq(29.54) Eq(27) Eq(30) E(1(22) 

\---------------------------------~y,--------------
Calculat(· (Gibbs CorrC'C't lon' 

Figure 9-2. Gauss Method Computational Sequence 

.J 
where 

Differentiating twice gives 

2 ~ 2 2!! 2 !! o.u - (IV) 
- T 3 R 1 + (T 3 - T 1 ) R 2 + 7" 1 R 3 = - TIT 3 T 13 R 2 + 0 (R2 ) 

Not 

(9-42) 

(9-43) 

(!:I'-44) 

Multiplying (R
1 

- R2) by T 3 and (R3 - R2 ) by - T l' adding the results and differ
entiating twice yields 

9-12 
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.. .. .. Iv)
-r3R1 - 7-t3R2 - "rlR3 -- - 7-17-3"ra3--_ + O(R(2Zv)) (9-45)

°..

Solving Equations (9-44) and (9-45) for R2 and R (2Iv) and substituting them into "
Equation (9-42) give_ i

. _ Substituting the inverse-square law
i,

R_ =- _ (i = 1, 2, 3) (9-47) _/
Rf ":J

into Equation (.9-46) and rearranging terms yields

R2 = - D1RI + D2R2 + D3R3 (9-48)

where

,i
H.

(9-49)Di --Gi +_ (i = 1, 2, 3)
Rf

with

/_7-3 #7-I
H, : _, H3 : .... , H2 : Hl - H3 (9--50) ;12 12

7"3 7-I

G 1 - G3 - , G_ - Gl - G3 (9-51)
';l 7-13 '/37"13

4 '
e

' _'_ 9-13

¢,

....... r ........................................ ,/L'_' ' ' j_ 1 ' _.,.. ,,_,,..,ml.m_m,*e_w'mmmm't< _ I

]9760]7203-457

(9-45) 

... 
Solving Equations (9-44) and (9-45) for R2 and Ii ~IV) and substituting them into 
Equation (9-42) giver; 

~ 
... .. ··l 

~ R1 R2 R. 
=-777 R -7-+(7 -T)--T_J 

1 2 13 2 3 12 3 1 12 1 12J 

(9-46) 

Substituting the inverse-square law 

.. R. 
R. =_/-L_l 

1 3 
R;, 

(i = I, 2, 3) (9-47) 

into Equation (9-46) and rearranging terms yields 

(9-48) 

where 

(i = I, 2, 3) (9-49) 

with 

(9--50) 

(9-51) 

9-13 
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Knowing R2 and R 2 from Equations (9-40) and (9-48), R 2 and its time derivative ]

1_2 are obtained from

Then u 2 can be determined from Equation (9-29), and 52 ca_. be dete:cmined as
follows

_i2 : - 3__R2 (9-54)

?

Knowing u2 from theprecedingequationpermits one higherorder term tobe in-
. cluded in the f and g series in Equation (9-27). An improved determination of B 2 t

r

is thereby obtained by iteratively solving Equation (9-27) for fi and gi (including ....

the higher order term); Equation (9-30) for C 1 and C3; and Equation (9-22) for "1,
P2 and P3 • After converging on Pl, /_2and P3, Equation (9-16) is solved for R2
and Equation (9-48) is so!ved for R2. The computation sequence is shown sche-
matically i_ Figure 9-2.

9.1.3 Double r-Iteration Method

The Double r-Iteration method requires an initial guess of the magnitudes R 1
and R 2 . Then the geometric relations of the three station positions and station-
to-spacecraft unit vectors are used in conjunction with the orbital dynamics to
determine the time intervals 7' (between the first and second obsecvations) and1

7' (between the third and second observations). A standard Newton-Raphson3
successive approximation scheme is then used to correct R1 and R 2 to

match rl' and r_ to the known intervals _1 and T_.

The Double r-Iteration method can be used when the angle data is spread out

over a considerable arc in eccentric anomaly whereas the Gauss method is

um'eliable and may not converge over large arcs.

From Figure 9-1 and Equation (9-16), the slant range vector from the station to
the spacecraft is

I

9-14
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. 
Knowing R2 and R2 from Equations (9-40) and (9-48), H2 and its time derivative 
R2 are obtained from 

(9-52) 

and 

. ~·R2 
R =---

2 R 
2 

(9-53) 

Then u 2 can be determined from Equation (9-29), and ~ can be determined as 
follows 

(9-54) 

Knowing u2 from the preceding equ~tion permits one higher order term to be in
cluded in the f and g series in Equation (9-27). An improved determination of Bi 
is thereby obtained by iteratively solving Equation (9-27) for f; and g; (including 
the higher order term); Equation (9-30) for C1 and C 3; and Equation (9-22) for! '1' 

P2 and P3 • After converging on PI , h and P3, Equation (9-16) is solved for R 2 
.L 

and Equation (9-48) is solved for R2 • The computation sequence is shown sche-
matically in Figure 9-2. 

9.1.3 Double r-Iteration Method 

The Double r-Iteration method requires an initig} guess of the magnitudes R 1 

and R2 • Then the geometric relations of the three station positions and station
to-spacecraft unit vectors are used in conjunction with the orbital dynamics to 
determine the time intervals T~ (between the first anrl second obse.cvations) and 
T' (between the third and second observations). A standard Newton-Raphson 

3 
successive approximation scheme is then used to correct R 1 and R 2 to 
match 7; and 7; to the known intervals 71 and 73 • 

The Double r-Iteration method can be used when the angle data is spread out 
over a considerable arc in eccentric anomaly whereas the Gauss method is 
unreliable and may not converge over large arcs. 

From Figure 9-1 and Equation (9-16), the slant range vector from the station to 
the spacecraft is 

9-14 
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i

> _ = _ - _ (i = 1, 2, 3) (9-55)
i' si

; Dotting Equation (9-16) with itself yields Fquation (9-35) rewritten for the i th
' observation as follows

2 (R_ R2) 0 (i 1, 2, 3) (9-56)Pi +PiC_ + - = =

where ;

% =2/..g (i=l, '_ ._ (9-57)
i i s i -' -,

, Solving Equation (9-56) for Pl and P2 by means of the Binominal Theorem
/ gives

J
"_. #

Pi _(-c¢ii +¢% - 4(R2s- R_)) (9-5S) .... :i

I i
where the positive sign on the radical is known to yield the correct roct from

physicalconsiderations.InitiallyestimatingR iand R2, Equation(9-58)can be

solved for Pl and P2' and Equation (9-16) for R 1 and 1%. Knowing R1 and _t2
merely defines the orbit plane ',in terms of fl and i) an_ two position vectors
in this plane. However, there axe numerous orbits (in terms of a and e) which
satisfy the two position vectors R1 and 1R2. Therefore, a third position vector,
along with orbital dynamics relationships, are necessary to uniquely determine t

the orbit being observed.

lhe quantity k is defined as the unit vector perpendicular to the orbit plane, i.e.,

R 1R 2

Then, since the third position vector R3 must lie in the otbital plane,

_3'_ = 0 (9-60)

" 9-)5

i'

' ,,,,i * _ ,*l I _ m I _ ,L_,_m, , , ..... :--:: : _

1976017203-459

(i = 1, 2, 3) (9-55) 

Dotting Equation (9-16) with itself yields Equation (9-35) rewritten for the i th 

observation as follows 

P~ + p.e.l • + (R2 - R~) = 0 
1 ~ s. 1 

1 

(i == 1, 2, 3) (9-56) 

where 

(i = 1, 2, .3) (9-57) 

Solving Equation (9-56) for PI and P2 by means of the Binominal Theorem 
gives 

(9-58) 

where the positive sign on the radical is known to yield the correct roct from 
physical considerations. Initiilly estimating R 1 and R 2 , Equation (9-58) can be 
solved for PI and P2' and Equation (9-16) for R 1 and R • Knowing it 1 and R2 
merely defines the orbit plane :in terms of D and i) ana two position vectors 
in this plane. However, there are numerous orbits (in terms of a and e) which 
satisfy the two position vectors R 1 and R2 • Therefore, a third poSition vector, 
along with orbital dynamics relationships, are necessary to uniquely determine 
the orbit being observed. 

~ 

fhe quantity k is defined as the unit vector perpendicular to the orbit plane, i.e., 

(9-59) 

Then, SlDce the third position vector R3 must lie in the 01 bital plane, 

R 'k :: 0 
3 

(9-60) 

9-J5 
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Substituting Equation (9-16) into Equation (9-60) yields I _,

7
R "k

s 3

" Ps =_ (9-61)

i

: Knowing P3' the geocentric vector R 3 can be obtained from Equation (9-16).

• Note that when Ps lies in the orbit plane, Rss and L3 are perpendicular to
" and Equation (9-61) is singular. Should such a singularity occur, a different

observation time t 3 must be used. Thus the vectors Rl, R 2 and R3 have to be

i determined as functions of the estimated vector magnitudes R, and R 2.

, The difference in the true anomalies can be determined as follows

R'P
, c°s(ti - fk)- ' (9-62a)

-, RI_ <¢ 1 •

_"- sin(fi fk) m vll cos 2 (fj fk) (j, k 1 2, 3) (9-62b) ," ;:

where f denotes the true anomaly and I ,:.
;?

m=± % (9-63)
I\Yj - XjY I

i

,,

where Xk, Yk, Zk are the components of I_; _he positive sign is used for direct
-. orbits and the negative sign for retrograde orbits. In order to correct the , :t'

estimated values of R and R2, it is necessary to compute the resulting time
intervals between (1%3,_) and (1_,, R:) to obtair residuals as actual time diff.r-
ences. The semilatus rectum obtained from Gaussian sector to triangle the:.r"
(Reference 1) is

R 1 + Cr3R 3 - CrlR 2 _-
p _- (q'o Lp

I _ C_ - C,
_

or, dividing the numerator and denominator by C_
I

CIRi + C3R._- R2
P --- 19- _5) ",

C1 ._ Cs - 1

L

9-16 REPRODUCIBILITY OF THE
_, (IIII(IINAL PAGE IS POOR
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Substituting Equation (9-16) into Equation (9-60) yields 

(9-61) 

Knowing P3' the_%eocentric vector R 3 can ..?e obtai~ed from Equa~ion (9-16). 
Note that when P3 lies in the orbit plane, RS3 and L3 are perpendicular to K 
and Equation (9-61) is singular. Should such a singularity occur, a different 
observation time t3 must be used. Thus the vectors R

l
, R2 and R3 have to be 

determined as functions of the estimated vector magnitudes Rl and R
2

• 

The difference in the true anomalies can be determined as follows 

R .~ 
cos( t. _ f ) = _I_ 

I k Rj~ 
(9-62a) 

(j,k=1,2,3) (9-62b) 

where f denotE'S the true anomaly and 

(9-63) 

where Xk , Yk , Zk are the components of Rio.; t.'1c positive si6'11 is used for direct 
orbits and the negath e sign for retrograde orbits. In order to correct the 
eRtimated values of R, and R

2
, it is necessary to compute the resulting timtl 

intervals between (R
3

, R
2

) and (R!, R
2

) to obtair residuals as actual time diff.,t,
ences. The semilatus rectum obtained from Gaussian sector to trian~L~ th(·;,!" 

(Reference 1) is 
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nHlOINAL PAGE IS POOR 



| | " ;r
• j_

L
i,

_L

[_ where
= , f •

R2 sin(f3 - f2) R2 sin(f2 - fi )
C1 = w C3-

R1 sin(f3 - fl) R3 sin(f3 - fl )

(9-66) ' "
; I

R1 sin(f3 - fl) RI sin(f2 - fl)

Crl =R--2 sin(f 3 - f2) Cr3 =R3 sin(f3 - f2)

For very short observational arcs, bo*h Equation (9-64) and Equation (9-65) are

poorly determined, and the Gauss Method (Section 9.1.2) should be used. The _

siugularity inherent in Equation (9-64) when f3 - fl = 7r can be avoided, along

with other numerical difficulties, by using Equation (9-65) when fa - fl < v and

Equation (9-64) whenever f3 - fl > _' i:
/

•_ From Equation (3-183) the conic eq,,ation for true anomaly is

c cos fi - p 1 (i = 1, 2, 3) (9-67)

i I E.,.oanding factors of the form sin (fl + f2 + f3) gives

e cos fl c°s(f2- fl )- e cos f2e sin f =

(9-6_)

- e cos f2 c°s(f2 - fl ) + e cos fl _
e sin f2= _-_-

s_n(f2-2- )h

for (f2 - fl ) _rr, and _ ",_

e cos f2 c°s(f3 - f2 ) - e cos f3
e sin f2 = ...........................

sin(f 3 - fl )

(9-69) _

- e cos fa c°s(f3 - f2 ) + c cos f2
e sin _f3 .................

sinif£- fl)- ,,

._' 9-17
i

]9760]7203-46]

where 

CI 
R2 sinCf3 - [2) R2 sinCf 2 - r,) 

=- C3 =--.-
~ sinCf3 -f I ) R3 ~ 1 n (f 3 - f 1 ) 

(9-66) 

Crt 
R1 sinCf.3 - f 1 ) RI sin Cf 2 - f 1 ) 

-- C --
R2 sin (f 3 - f 2 ) r3 - R . Cf ") 

3 s1n 3- t 2' 

For very stort observational arcs, both Equation (9-64) and Equation (9-65) are 
poorly determined, and the Gauss Method (Section 9.1.2) should be used. The 
sil1gularity inherent in Equation (9-64) when f 3 - f 1 = TT can be avoided, along 
with other numerical difficulties, by using Equation (9-65) when f 3 - f 1 ~ 7T and 
Equati:m (9-64) whenever f3 - fI > TT. 

From Equation (3-183) the conic eG.,'ation for true anomaly is 

e ('as f. =E.-l 
1 Ri 

(i = 1, 2, 3) (9-67) 

E~.t>anding factors of the form. sin (f 1 + f 2 + f 3) gives 

e co s fIcO S Cf 2 - f 1) - e co s f 2 
- ---------- - -- -----_. -------- --~.---

sin(f2- f I) 

(9-68~ 

e sin 
- e cos f2 cos(f:.! - f 1 ) + e cos f1 

f :: --- - -- ~. __ -- -- - -----.--_ 
2 sin(f2- f l) 

l' sin 
e cos f2 cos(f3 - f 2) - e cos f3 

f = -------- ---. -- - -- - - - - -------
2 sin(f3 - f I ) 

(9-69) 

e s i 11 
- e cos [3 cos(f3 - f 2) + (' c.:>s f 

f = . __ . _. _. _. .._ _ ____ .3.. 
3 sin(f3 -f1) 

9-17 
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: for (f3- f,) _. From Equations (9-67)thru (9-69) the eccentricity can be ,
-_ determined as

e 2 = (e cos f2 )2 + (e sin f2 )2 (9-70) _'

and the semimajor axis as

_ a = P (9-7-)
: (1 - e2)

For ms elliptical orbit (e < 1) the mean motion n is

n =- (9-721%6
a

i
and the eccentric anomaly E. is

I
R, r--

sinE i =--_ vl -e 2 sin fi
P

(9-73)

Ri (e + cos fi) (i 1, 2, 3)---- _-"

COS Ei = P J,

The preceding equation can be written as follows for the second observation point
_'"t

S -= [e s,n E2] :.--R2 v'i---'e "3 [e sin t2l 'e p

(9-74)

R2
C =: [ecosE 2] :--(e 2 + [ecos f2])e p

[
I

9-18

i
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fo.t' (f 3 - f t) "1T. From Equations (9-67) thru (9-69) the eccentricity can be 
determined as 

and the semimajor axis as 

For an elliptical orbit (e < 1) the mean motion n iR 

and the eccentric anomaly E. is 
1 

R. '"" __ 
sin E. =~v'1 - e 2 sin f. 

1 P 1 

Ri 
COS E =--(e + cos f.) 

1 P 1 
(i :- 1. 2, 3) 

(9-70) 

(9-7J.) 

(9-72) 

(9-73) 

The precEding equation can be writteJi. as follows for the second observation point 

R2 
[e cos E] = __ (£,2 + [e cos f

2
1) 

2 p 

9-18 

(9-74) 
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{ . The following eq_,ations for differences iu eccentric anomalies expressed as
Ii functions of true anomaly differences can be obtahmd by expanding Equati m (9-72). ;

: _ _ R3 R 3
._ ?, sin(. -E2)-_sin(fa_ f2 j ___ [1 -cos(f 3 - f2)] Se ;,

_/ p

' (9-75)

RaR:
"i' c°s(E 3 - E2) = 1 - _ [1 - cos(f a - f2)]

,; _ ap :

_ :,

:' RI RI

sin(E 2 - El) = _ sin(f 2 - fl) -_- [1 - cos(f.: _ f;).l Se :

)I (9-76_'_}

,_ R2R1
! cos_E 2 - E,) : 1 - _ [1 - cos(f 2 - fl)]

Kepler's equation (Equation (3..147)) is written as

_;_.=E - e sin E {9-77)

where M is the mean anomaly. Mean anomaly differences about the _econd _
point c-m be written , :

M3 - M2 = E 3 - E2 + _ S sin 2 3 - g ,::'" e _' - C s i,,(E a - E2) _"

(9-7b)

M1-M2=E,-E2 +2Se si:_2 (-E?2E-1)+C si,,(E2-E,)

,_ 9-19
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The following eql..ations for difierences in eccentric anomalies expressed as 
functions of true anomaly (lifferences l.!an be obtaLled by expanding Equati m (9-73}. 

sin( . 
R R 

- E2) =_3_ sin(f - f ) -~ [1 - cosU - f )] S 
II np '3 2 P 3 2 e 

(9-75) 

R3R~ _ 
cos(E - E ) = 1 - -- [1 - cos(f - f )J 

3 2 ap 3 2 

R 
sinCE - E ) = __ 1_ sin(f - f ) 

2 1 r-- 2 1 yap 

Rl 
- II - cosU, - L)~ Se p ~. 

(9-7n) 

Kepler's equation (Equation (3,,147» is written a'3 

f,~=E-esinE {9-77) 

where M Is the mean anomaly. Mean anomaly differences about the <lecond 
point C''1n be written 

(9-7b) 

(E -E) 
M -M =E -E + 2S si:\2 -~--.! +C sill(E -E) 
1212 c 2 c 21 

9-19 
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The mean anomaly cau also be written in terms e,_ the mean motion as

Mi -M 2 = n(ti - t2) (i = i, 2, 3) (9-79)

Revrriting the _weceding equation for the time differences yields
£

/

: M3 - M2 M1 - M2
- , ,, (9-8o;

r_ rl

I

where T'3 and 71 are defined by Equation (9-28). Equation (9-80) express¢ ' the
time differences between points 3 and 2 and between points 1 and 2 as functions• /

/ of the _ocentric position vector magnitudes R 1 aud R 2. This process is sum-
.nari_ _in Figure 9-3.

' and ' _rill, in general, not agree _ith the_ne calculated time differences _1 _3

ephemeris time differences _ and _3 corresponding to the station observa- _""
tions. Thus R, and R 2 must be adjusted to obtain agreement between the calcu- !
lated -_nd actual time differences. A standard Newton-Raphson successive I
approximation procedure performs tbis adjustment az shown in Figure 9-3.

If the functions F1 and F2 are defined as follows,

M l- M2
FI(RI' R2) = _1 ---_ n

(9-8D

M 3 - M 2
F2(Rt'R2) = _3 .... '

n

the calculated and actual time diffexences will agree when F 1 and F 2 are zero.

The algorithm for successively driving F 1 and F 2 to zero is obtained by

linearizing Equations (9-81) about the estimgted values of R1 and R2, denoted

R] im_d R 2i "

l

R_:'RODUCIBIL1TY Oh' 'vliL ,_.
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The mean anomaly ca'l also be written in terms f'l: the mean motion as 

(i = 1, 2, 3) 

Rewriting the- rlreceding equation for the time differences yields 

, M3 - M2 
T3 =----, 

n 

(9-79) 

(9-80~ 

whl~re T~ and T~ are defined by Equation (9-28). Equation (9-80) express( . the 
time differences betwben points 3 ana 2 and between points 1 and 2 as functions 
of the docentric position vector magnitudes R laud R 2' This process is sum
.llariz ,in Figure 9-3. 

ule calculated time differences T; and T; will, in general, r..ot agree "'ith the 
ephemeris time differences TI and T 3 corresponding to the station observa.
tionl'l. Thus RI and R2 must be adjusted to obtain agreement between the calcu
lated ~nd actual time differences. A standard Newton-Raphson successive 
apprf)ximation procedure performs this adjustment a..: sho~ in Figure 9-3. 

If the functions FI and F2 are defined as fo1l0ws, 

(9-81) 

th6 calculated and actual time diffel ences will agree when F I and F 2 are zero. 
The algOl'ithm fot' successively drh'ing Fl and F2 to zero Is ubtained by 
linearizing EquatloAls (9-81) about the estimeterl values of RI and R 2' den0ted 
R].a..,d R2 .. 

1 I 
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i I
G I ', (.i; Est imat, Calculat(.

f----_-'--_ _ I, '_
/

tl l_l" -;I'sl RI ti ' I R, c s_n(f2-f ]) CI (. cc.-¢ fl e2

t l_2. _ _ _ _ _ _ co_(f_-f_) _ C2 _ e cos f2 _ a -_
, 2 R% R_ ' 2 R2

It 3. f._ _ _j _,,_(r3-f _) p ,. s,. f_ .

(i I) co_(fz-f2_ e sln f2
l

Eq(58) Eq(16) Eq(59.61,16) Eq(62) Eq(64-66) Eq(67-69) Eq(,70-72) ]

i L s_n(E3-E2)

S Mz--M 2 FI(RI.R2)

C Mz -M_ "-" F_ ( R_. R2 ) _ ,,_'

s ]n(E:-E_) ] " '"

o_ _E2-E I )

Eq,, 74) Eq{75.70) Eq{78) Eq(79) /

r T,.._tF,_ F_ =[Sol,t.... R_,R_

:L
9

R_ Rl - ' RI _ . '.
* R2 --R2 ) , R2

i 3

\.

LR t _FI AFI 4
"_I')RZ * "_Rt R! 1 ," • ! ,',R I _R 2 #

R2- .R2=.._ _ _ _1 _ _

l _F2 ,Trz "z "'P'I R_ ,l_:a)n,_t z_,ro

_Rt _Rz

Eq(89) E(1(86) Eq(85) Eq(87) Eq(88)

Figure 9-3. Doubler-herotion ComputationSequence
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II L,. lis , 
I, L,. Rs , 
I J . L, 

R"J 

(I 1) 

ea I cut.lt t' E,lln'al. ~-
~I r-----------------------------~A-------------------------------~ , 

. (0 c:c,,,; f I ,.2 
RI 'I iii 

R, R, " 

RJ 

Eq(58) Eq(16 ) E'1(59.61.16) E'1(62) 

p cos ('l :l 
(" Sill f 2 

Eq(64·66) Eq(67'6~ --
p t' sin (1 

[So M, •. M, F, (RI.R,) 
<,o,<E,-E, )_ 

C . M,-M, f·,IR , . R,) 

~ I n(E]-E1 ) 

,0, (E,-E,) 

E'I',74) E'I(75,71) E'1(78) Eq(79) 

tl~:lIllst It'ro 

~RI RI I RI __________ __ 

R, RI - 'R I 
J L-___________________ R, .' R, I ,R I 

.1 

Eq(RR) 

Figure 9-3. Double r-Iterotion Computation Sequence 
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This linearization yields

8F 1 oF 1

AFz = _ t_R, +% AR2

(9-8_.)

3F. 8F2
AF2 : --" AR: + AR2

• _RI _2

where

AFI = F11+1 - Fli = F1i

(9-83)

AI_"2 = - :F2i+ 1 F2 i F2 i
J

",

; and

= R1i+ I - RI i . I

(9-84_

AR 2 = IR2L+I - R2i

SolvingEquation (9-82)simultaneouslyforAR I and AR2,

ARI =-_-

(9-85)

A2
AR2=T

where

iN)
(9-86)

I

_J

9-22
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This linearization :yields 

(9-82) 

where 

~F1 =F 
1 i +1 

-F 
1i 

=F 
1· 1 

(9-83) 
~F· 

2 =F 
2i+1 

-F =F 2. 2. 
1 1 

and 

(9-84' 

Sol.vmg Equation (9-82) simultaneously for ~Rl and 6R
2

, 

(9-85) 

where 

(9-86) 
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I and

i

The corrections ARI_d AR2 axe added to RI_ and R2 to yield the i + I th
approximation

= R1 * AR1Rli+l i

(9-87)

= R2. + AR2R2i+l

,,r

/. This process is repeated successively, incrementing i each time, until con-
. vergence is obtained. The convergence criteria are satisfied when the absolute

_alues of the corrections are less than a prespecified tolerance e, i.e.,
.%._ I,

J

|

(9-88)

[_R2[ < _.

The partial derivatives required in Equations (9-86) are approximated by the
one-sided finite differcnc,e approximations

, 3F 1,,,F l(R 1 + bR1, R2) -F I(R 1, R2) .,

3R 1 _RI

3F I.,,F lfR 1, R2 + SR2) -F I(R 1, R2)

3R2 b R2

(9-89)
3F2_F2(R I • 5RI,R2)-F2(R I,R2)

3R1 _R,

JF_ _.F2(R1, R2 + bR2) - F2(RI,R_)

,)R2 SR2

' _" 9-23
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and 

The correctbns 6R1 and 6R2 are added to R 1 . and R2 to yield the i + 1 th 

approximation 1 1 

(9-87) 

This proccss is repeated successively, incrementing i each time, until con
vergence is obtained. The convergence criteria are satisfied when the absolute 
,alues of the cor-rections are less than a prespecified tolerance E, i.e., 

(9-88) 

The partial derivatives rf~quired in Equations (9-86) are approximated by the 
one-sided finite differc!\ce approximations 

oFI '" Fl CRI + DR1 , R2 ) - FI (Rl , R2) -- = ---- ---+----- - --. - ---

oRl SRI 

oFI '" Fl (R1, R2 + &R2) - FI (R1, R2) - = ------------- _. - ---- ---- ~------

(9-89) 

clF;! '" F2 (R1 , R2 + 6R2) - F
2

(R
1

, R
2

) 

- = (1R
2 

&R
2 
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I
The converged solution for R 1 and R 2 yields the position vectors RI, R2' _'a and
•all related variables in Figure (9-3). Therefore, the closed-form f and g coef-

ficients (Reference 1) are

f = 1 -a [1- cos(E 3 -E2)]
R2

(9-90)

1
g -- v'3 --- [J_:3- E2 - sin(E3 - E2)]'

which yields the velocity vector

- Ta - f R2
• , r2 - (9-91)

g

9.2 RANGE AND ANGLES METHOD " -

The Range and Angles Method determines spacecraft position and velocity by I =

fitting two-body orbit relations to GRARR, C-Band or USB range and gimbal

angle data in a regression manner. _,

A set of m chronologically ordered radar data vectors are available from

the GRARR, C-Band and/or USB systems. Each vector consists of a range

measurement and two gimbal angle measurements. The measurement vectors
are first transformed to the station centered topocentric local tangent Cartesian

coordinate system. The GRARR and USB angles, X and Y, are translJrmed to

azimuth A and elevation angle E, as shown in Equation (9-1). The C-band data

vectors and transformed GRARR and USE data vectors are then transformed to

local tangent coordtnates as follows

x os E i sin . :

- = Y = P I cosE cos (i = 1, 2 ..... m) (9-92)

Lz1_ IL _in E, ,

I
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Tha converged solution for RI and R2 yields the position vectors RI, R2, R3 and 
all related variables in Figure (9-3). Therefore, the clc.sed-form f and g cOtlf
ficients (Reference 1) are 

f = 1 - ~ [1 - cos(E - E )] R 3 2 
2 

(9-90) 

g = 'T -.!.. [E - E - sin (E - E )], 
3 n 3 2 3 2 

which yields the velocity vector 

(9-91) 

9.2 RANGE AND ANGLES METHOD 

The Range and Angles Method determines spacecraft position and velocit"J by 
fitting two-body ol."bit relations to GBARR, C- Band or USB range and gimbal 
angle data in a regression n~anner. 

A set of m chronologically ordered radar data vector.s are available from 
the GRARR, C-Bnnd and/or GSB systems. Each vector consists of a range 
measurement and two gimbal angl'3 measurements. The measurement vectors 
are first transformed to the station centered topocentric local tangent Cartesian 
coordinate system. The GRARR and USB angles, X and Y, are transiJrmed to 
azimuth A and elevation angle E, as shown in Equation (9-1). The C-band data 
vectors and transformed GRARR and USn data vectors are then transformed to 
local tangent coord~,nates as follows 

Xl t ~os E sin Al 
co~ El cos A: 

PI t, = Ylt = P; (i = I, 2, ... , m) 
1 I ' I 

Zit L sin E, J 
(9-92) 
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• 1• _ The local tangent vectors are fi,._n transformed to true of r':feren _e date or ',

mean of 1950.0 inertial coordinate s_ztems as described in Section 9.1.1, i.e.,

_i : (Mlt BC)T _lt (9-93)i i

The station position vector in geocentric inertial Cartesian coordinates, given in

• Equation (9-15), is ":

Rs = (BC)T _ (9-94)
Sb i "_

,. where the station coordinates in body-fixed axes are given in Equations (9-4) and
o

/ (9-5). Vectorially adding tbe station vectors Rs i aria topocentric spacecraft

vectors E i yields the geocentric spacecraP, posi_Aon vector
$,

/

Ri = Rs + _, (i = I, 2 ..... m) (9-95)|

I
A two-body orb,t is then fitted to the m position vectors by using the I and g

series, expanded a:_out a d,_sired epoch time

2

Ri = f,Ro + g_Ro (i : 1, 2.... , m) (9-96)

Multiplying the preceding equation by f and then summing on i yields
I

f2_ f giRo (9-97a)fiRi = _ t u * i
i-'l t=l *=1 ':-

i

•' 9-25
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The local tangent vectors ar.'e ti..:'11 transformed to true of r ',fel'en ~e date or 
mean of 1950.0 inertial coordinate s~;::,tems as described in StlCtiOll 9.1.1, i.e., 

Pi = (Mlt BC)T Pll . (9-93) 
I 

The station position vector in geocentric inertial Cartesian coordinates, given in 
Equation (9-15), is 

(9-94) 

where the station coordinates ill body-fixeci axes are given in Equations (9-4) and 
(9-5). Vectorially adding the station vectors Rs i ana topocentric spacecraft 
vectors {. yields the geocentric spacecraf: position vector 

I 

R,' = Rs + P 
1 I 

(i :-: :, 2, .. " m) (9-95) 

A two-body orblt is then fitted to the m position vectors by using the f and g 
series, expanded at)out a d~sired epoch time 

(i = 1,2, .,., m) (~-96) 

Mll1tiplying the preceding equation by f ::;"''1d then summing on i yields 
I 

~ m m 

[ f.R. = }' 
1 I /..-..J [ f. g. Ro 

I I 
(9-97a) 

i"'l 
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MultiplyingEquation(9-96)by g i and summing on iyields [

- 2- (9-97b)giRl = fi giRo + g_Ro
i=l i-I i--I

Solving Equations (9-97a and b) simultaneously for R0 and R 0 yields the desired
inertial geocentric position and velocity at epoch.

L 2 2
R0 = i-1 i--1 i--I ,=I (9-98)

: f2 2 fi
// gi- g

i=1 i=1
0

f) Ri f gi f Ri

R0 = i;l i;1 i:l i--1 (9-99) [

1 gi - g
d

i--1 i=l

Equations (9-98) and (9-99) are s,,lved iteratively by successively improved

approximations for f i ,'rod g i"

The orbit is initially approximated by a circular orbit with the semi-major axis
a obtaired by averaging the m position vectors

1 2 I (9-100)IRi ,[t
nl

i--1

The mean motion n is

n = _ (9-101)

L

m

? 9-26 '"; );_ E
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Multiplying Equation (9-96) by g; and summing on i yields 

m 

g.R. = )' 
11 L 

;-1 

(9-97b) 

Solving Equations (9-97a and b) simultaneously for Ro and Ro yields the desired 
inertial geocentric position and velocity at epoch. 

m m m m 

L g~ L f. R. - L f. g. L g. R1 1 1 1 1 1 

Ro = ;=1 .=1 ;=1 1=1 

m m 

gi - (t. fiO)' Lf~ L 
;=1 ;=1 

(9-98) 

m m m m 

)' e )' g R. - )' f. g. )' 
L" .~'1 ~ 1lL f. R. 

1 1 

;=1 ;=1 ;=1 ;=1 
RO:::----

4>~ t, g~ - (~ f i .y 
(9-99) 

Equations (9-98) and (9-99) are sol"/ed iteratively by successively improved 
approximations for f. and g .• 

1 1 

The orbit is initially approximated by a circular orbit with the semi-major axis 
a obtaired by averaging the m position vectors 

(9-100) 

The mean motion n is 

n :: tS· (9-101) 
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" and the mean anomaly measured from epoch is /

Mi - M_ = n(ti - to) (9-102)

I

The coefficients f and g for the two-body cireul_Lr orbit, corresponding to each
measurement vector, are (Reference 1)

fi= c°s(Mi - Mo)

._ (9-103)
1

gi =- sin(Mi - Mo)n

: 'i Substituting the preceding fi and g i into Equations (9-98) and (9-99) yields the
4 first approximation for R0 ar.d R 0. After the initial iteration the coefficients ./

fi and gi are calculated fro_, the following procedure. -....

I Reference.2 presents a general method for computing fi and gi as functions
of R0 and R0" The Sundman transformation is used to obtain a new independent
variable _. defined by

= _! (9-104)
R

The coefficients i i and gi are determined from the relations

fi= 1 - _zS2(q;i)/Ro

1'9-105)

The velocity R i can be determined by

Ri = l:iRo+ gi_o (9-106)

,t #, (_ #)_!

i

• --_p_._ _ .....

1976017203-471

and the mean anomaly measured from epoch is 

(9-102) 

The coefficients f and g for the two-body circuhr orbit, corresponding to each 
measurement vector, are (Reference 1) 

(9-103) 

g. = ~ sin(M. - Mo) 
1 n 1 

Substituting the preceding f. anq. g . into Equations (9-98) and (9-99) yields the 
_ 1 _ 1 

first approximation for Ro aI'.d Ro. After the initial iteration the coefficients 
f. a."Jrl g. are calculated fron. the following procedurA. 

I 1 

Reference.2 presents a general method for computing f. and g. as functions _ _ 1 1 

of Ro and Ro. The Sundman transformation is used to obtain a new independent 
va't'iabl e 'f defined by 

. 1 
tj; = -

R 

The coefficients f i and g i are determined from the relations 

. 
The vdoclty Rican be determined by 
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_ where ]

!

,' f., = -/_S: (_b)/(R i Ro) '_

(9-107)
" _ = 1 - _S2(%)/R_ '

and the time difference between _t i and Rc is •

T i -- t i - t o -- _0Sl(_bi) + _0S2(qJl) + _S3(_i ) (9-108)

The parameter _o is

% : P,o'Ro (9-:09)
,(

and _he parameters 81, b 2 and S 3 are obtained by solving Keplerts equation by
successively approximating _/, to satisfy Equation (9-108). The method, described
in Reference 2, is summarized below.

After initially estimating a value of q_, the quantity k is calculated from

k = a_b2 (9-110)

where •

a = R0"R 0 - 2_/R 0 (9-111) :-Ii

The parameters C_, C1 ..., Cs are next computed as functions of

m

9-£_

, .... ,- ,,_, , _,_........, , .................. _. , _i
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where 

(9-107) 

- -
and the time difference between R i and Rc is 

(9-108) 

The parameter ero is 

(9-109) 

and 'i.he parameters S1' ~2 and S3 are obtained by solving Kepler's equation by 
successively approximating v' to satisfy Equation (9-108). The method, depcribed 
in Reference 2. is summarized below. 

After initially estimating a value of 1f;, the quantity A is calculated from 

A = a1f;2 (9-110) 

where 

a = R . R - 2/lJI? o 0 ''0 
(9-111) 

The parameters ct, C1 ••• , Cs are next computed as functions of ~ 



t

3Cs = (! + (1 + (1 + (1 + (1 + (1 + (1 + 19" 18 -_ '--3"-l-J J'--"_/f-?-6/Io

' i c 4 (1 + (1 + (1 + (1 + (1 + (1 + (1 + 4 ," 18"1

i '

(9-112)

1

C2 = _ + _C4

i CI= I+kC,

CO = 1 + XC 2

• I
and $1,8 2 aad S_ are calculated as functions of C 1, C., C a and qJ

S, = C,_,

S2 = C2@ (9-113)

S3 C3'_'

The time interval between the point correspond|ng to _ and the reference cpoch ;,
to is determined from Equatio_ (9-108) to be

T(_,]= I_S, _ _oS2 + gS3, (9-!14)

and the geocentric radius corresponding to _bis

R(_): l%q +%s,+_s_l (9-.11s)

" )" 9-29
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3c...s - (£ + (1 + (1 + (1 + (1 + (1 + (1 + -- -- -- ---- --- - -- 40 -1 'A) '11.)'11.) '11.)'11.)'11.)'11.)0 
1 9 . 18 1 7 . 16 1 S· 14 J.3. 1 2 11' 1 0 9' 8 7' 6 

C
4 

= (1 + (1 + (1 + (1 + (1 + (1 + (1 + _'11._, _'11._) _'11._) _'A_)~)~) >. \ ;;4 
18' 17, 16' 15 14' 13 12' 11 1 O· 9 8' 7 6' 5)/ . 

(9-112) 

and S l' S 2 c!.nd S3 ar-e calculated as functions of C , C ,C and VJ 1 _ 3 

(9-113) 

The time iuterval bet''':leen the ~oint corresponding to Ij; and the reference epoch 
to is determined from Equatioll (9-108) to be 

(9-114) 

and the geocentric radius corresponding to Ij; is 

(g--!!!) 
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- r The difference between the &=,sired time increment r ,:and r (_) is /

_, Ar = r i - roSl(_b ) - o-oS2(_) - _$3(,_) (9-116)

t

• The successive approximation scheme involves correcting _ in order t_ cause _r

: to vanish. The fint_ difference form of Equation (9-104)

ti - to

" _i - R (_here _b=-0 at t = to) (9-117)

aids in determining the iterativecorrection algorithm

_ ,/, _ (9-118)_' _"k+ I "Y'k "

a R(_ k ) /

When the solution has converged, the value ¢_ which yields r is obtained.

J Vai,les of S 1(_h) and S_(_i) are a by-product and are used to determine fi and
gi by means of Fquai:i_.r. t,q-105).

Repeating the precedL_g process f¢ • the data times t_, t:, ..., t_, the values of
f_ and g_ for i = 1, 2, ..., m axe obtained for su[stitution into Equations (9-98)

and (9-99), along with data measureme_ts R1, R2, "'" R_" These equations yield
new estimates of R0 and _0 to commence the next iteration. This computational
sequence is shown schematically in Figure 9-4.

9.3 REFERENCES

1. EscobM, P.R.: 1965, Method _ of Orbit Determination, John Wiley and Sons,
New York.

2. Goodyear, W. H.: 1966, A General Met_od for the Computation of Cartesian
Co, rdinates and Partial Derivatives of the Two- Body Probleau, NASA Repo: :
NASA-CR-522, Septemt)er 1966.
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The difference between the dt~sired time increment T i and T (l/J) is 

(9-116) 

The successiv6 approximation scheme involves co!'recting lj; in order tl" cause 6". 
to vanish. The finite difference form of Equation (9-104) 

ti - to 
lj;.=--

1 R (9-117) 

aids in determining the iterativa correction algorithm 

/1-

V' k+ 1 - A - R7~k)' (9-118) 

When the solution has converged, thf' value tfi which yields "'1 is obtained. 
Vai1les of SI hli) and S 1 U'i J are il. bY-lJroduct and ~_re used to determine f i and 
gi by means of ;:'i]uatt(jr~ (~-105). 

Repeating the preceding process f( . the data times 11 ' t
2

, ••• , t m' the valUf'S of 
f. and g. for i = 1, 2, ••• , m are obtained for sut 3titution into Equations (9-98) 1 1 _ _ _ 

and (9-99), along ~th da~ measuremc:.:.ts Rp R2 , ••• Rm' These equation!:) yield 
new estimates of Ro and ito to commence the next iteration. This computational 
sequence is shown schematically in Figu!"e 9-4. 

9.3 REFERENCES 

1. Escob&l, P. R.: 1965, Method'" of Orbit Deter~ination, John Wiley and Sons, 
New York. 

2. Goodyear, W. H.: 1966, A General Mettod for be Computation of Cartesian 
Co' rdlnates and Partial Derivative') of the Two- Body Problem, NASA Repu:..: 
NA::>A:'CR-!)22, September 1966. -
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APPENDIX A

T_AJECTORI _NSOR SYSTEM FUNCTIONAL
DESCRIPTIONS AND PREPROCESSING

J

The trajectory sensor systems meas-xre the various prop,.Vatton charactert. :Jcs

of electromagnetic or optical si_;aals transmittvd batweea the satellite and tl ..ck-

ing stations (or o_her reference sources). These dal-_ are subsequently lined to
determine _ne =atellite trajectory. The dependence of these mea_urernents upo-

the rel.tPJe states of the spacecraft provides the key to the orbit determ_nsti_a
process.

This appendix provides a brief functlcnal description of the trajectory senring

,- systems currently included in GTDS. It also describes the procedures fol!o-_d
: in preprooessL_g the data prior to GTDS plocessing. These computations are

independent of GTDS and are presented primarily for informatio,,al purposes.
_ HJwever, they do provide a_. insight to the condition of the data at the prepvecessor/ /

processor interface which is n_cessary in order tc understand the processor
measuremen_ model o described in Chapter 7.

A. 1 GODDARD RANGE AND RANGE-i_ATE (GRARR) SYSTEM AND
APPLICATIONS TFCHNOLOGY SATELLITE RANG.E A1TD IitNGE-

RATE (ATSR) SYSTEM

A.].I Functional Description

The GRARR System (Reference through 6) and the ATSR System (References _,

5, and 6) determine and record spacecraft range, rauial velocity a_d angular position.
GRARR a: J ATS.. Systems are located at the tracking sites shown Ln Table A-1.

Tt_ese systems transmit a continuous wave signal from the tra¢4dng station
antenna at a carrier frequency .:. which is modulated by a low-frequency ton-,
UL" This signal propagates t_ £he spacecraft's omni-directlonal antenna, where
*.he received freq ency v_ appears _o be sllghfly different from that transmit,ted

(z r) because of the up!ink Doppler shift. The received signal is mod_,fied by the
_pac_cr_t transponder electronics and retra_:sm, tted back to the ground-tracking
station. Again, the signal ex!__riences a dew, link Doppler _nift so that the

frequency : R received at the ground differs hem that transmitted to the space-
craft. The 30-foot diameter ground ,'eceiving antem_a is aut'_n,.atieally steered

through t_o gimbal angles, X_0 and Y_0 _,r A ._.:_.-',, shown in Figure A-l), to

A-1
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APPENDIX A 

TnAJECTOR\ ~¥.NSOR SYSTEM FUNCTIONAL 
DESCRIPTIONS AND PREPRUCESSING 

The trajectory sensor systems moas".lre the various :prop:)f'ation characterL. 'j cs 
of slectromagnetic or optical Sit~llalS transmittFd batweeu tile satellite and tI .'ch.· 
ing ~tati()ns (or other reference sources). These datil are subst>qilently llsed to 
determine \one :::atelli!.e trajectory. The dependellce of these maacuremonts upo!' 
the reI q.t!":e states of the spacecraft provides the key to the C'rbit determiugth..:... 
process. 

This appendix provides a brief funCtlCilal description 01 the trajectory .genring 
systems currently included in GTDS. It also describes the proceriuras follo',ved 
in preprO(les3i."\g. the data prior to GTDS plOcessing. These computations are 
independent of GTDS and are presented primarily for informatioual purposes. 
HJwever, they do provide ar. insight to the condition of the data at the prepJ:'ccessor/ 
processor i'lterface wbich is nbcessary in order to understand the proceSElor 
measurement mlJr:iel" described in Chapter 7. 

A.l GODDARD RANGE AND HANGl:;-HATE (GRARR) SY3'.lE1VI AND 
APPLIC/.TIONS TFCHNOLOGY SATELLITE RANG~; API) R~NGE
RATE (ATSR) SYSTEM 

A.l.l Functional Descri!>tion 

The GRAHR Syatem (Reference through 6) aad the .\ TSR System (Reference'3 'i, 

5, and 6) 1etermine clnd i'ecord space::raft range, raLiial velocity anrl angular position. 
GRAi'!a a:. j ATS~. Systems are located at the trackine; sites shown m TaL1e A-l. 
These systems transmit a continuous wave signal from the tral.~ldng st.:\.tion 
antenna at a car~i6r frequency 1'., which is !Iloddatcd by a llJw-il'equency too.-, . 
ilL' This signal propagates t~ the spacecraft's omni-dil'ec+ional antenna, where 
the received freq' ency lJ v a~pears '0 be dl~ghtl.y different from tt.flt tf.1nsmit~.ect 
(IT) because of the upllr.!~ Dop! .. i~r Ehift. The received signal is modified by the 
bpacecraft transponder electronics and retranSld.Ltted back to the grouud-tracking 
atatio~ .• Again, the !:Iignal expt3rlences a dowLlink Doppler :;n1ft gO that the 
frequency: R rec(,ived at the ground differs fr GlU that transmitted to the space
craft. The 30-foot diameter grotmd Y'e<:eiving &ntenna is aut"matically steured 
through t\\O gimbal angles, X

JO 
and Y

JO 
('\r A c~~d !'show'1 in Figure A-1), to 
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' Table A-I

"; G_ARR and ATSR Stations >

l Frequency, Independent Gimbal _

I Hardware Angles , _GRARR Stations

Rosman, North Carolina Yes X30' Yso
Orroral Valley, Canberra, Austra!ia Yes X3o, Yso

Tananarive, Malagasy Republic Yes X3o' Y3o i
Falrbanks, Alaska Yes Xso, Y3o _
Santiago, Chile _ No X3o' Y30 :

ATSR St:_'tions

(

• Rosman, North Carolina No X3o ' Y30

. Mojave, California No X30, Y3o
-_ Toowoomba, Australia No A, E /i

Kashima, Japan _ No A, E "" "_

4

maximize the receivedsignalstrength.As thesignalisprocessedthroughthe ";
ground electronics system, the spacecraft transponder modification is undone
and the transmitted carrier frequency is subtracted. At the output, the differ- _
enced Doppler signal (reflecting the uplink and downlink Dopplec shiftc) is !

modified by the addition of a bias signal of known frequency 7-'b .

Three different types of measurements result from signals received during the ".

"frame" time interval which begins at "frame" time tF: '

1. The gimbal pickoff angles, X and Y or A and E, defining the direction of

:: the received signal path at the antenna at time tF, are recorded in degrees ",.
and decimal fractions. ,_,

• 2. The two-way range time delay is measured as a count C ef the number ,_
of cycles of a reference frequency 7,R1 occuring between positive- / ,:.
dire, ted zero crossings of the low-frequency ranging tone (frequercy = "L)
assoc_ated with the transmitted and received signals. The counter is

started and the frame time t_ is signaled simultaneously by a zero
crossing of the transmitted signal. The counter is stopped by the ne::t

: zero crossing of the received signal. Since the lowest sidetone :.

A-2 _--t ;
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Table A-l 
GRARR and ATSR Stations 

.----- ------... -- -.----- --------------1--- -F;e~~;~~--l----~imbal 

~ 
Independent i Angles 
Hardware I 

---.---- -.----.---------- .---- -------- ~ ----I 

GRARR Stations 

Rosman, North Carolina 
Orroral Valley, Canberra, Australia 
Tananarive, Malagasy Republic 
Falrbanks, Alaska 
Santiago, Chile 

A TSR St:!tions 

Ye& 
Yes 
Yes 
Yes 
No 

Rosman, North Carolina No 
Mojave, California No 
Toowoomba, Australia No: 
Kashim a, Japan I No I 

~---- ._-- --- - -. - - _._. -- ----- -._- .. - -. - --. --- . - . -... -_ .. - -_. -- -----~-

maximize the received signal strength. As the signal is processed through the 
ground electronics system, the spacecraft transponder modification is undone 
and the transmitted carrier frequency is suhtracted. At the output, the differ
enced Doppler signal (reflecting the uplink and downlink DoppleI' shifte) is 
modified by the addition of a bias Signal of known frequency J.'b' 

Three different types of measurements result from signals received during the 
"frame" time interval which begins at "frame" time tF: 

1. The gimbal pickoff angles, X ::..nd Y or A and E, definmg the direction of 
the received signal path at the antenna at time tF , are recorded in degrees 
and decimal fracti(ms. 

2. The two-way range time delay is measured as a count C 1 of the number 
of cycles of a reference frequency l-'Rl occuring betwp.en positive-
dire' :ted zero crossings of the low-frequency ranging tone (frequer~y = vd 
assodated with the transmitted and received Signals. The counter i~ 
started and the frame time tF is signaled simultaneously by a zero 
crossing of the transmitted signal. The counter is stopped by the ne:-:t 
zero crossing of the received Signal. Since the lowest sidetone 
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I I :

Spacecraft :.
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_r _

North

. East Local Horizontal Plane

FigureA-]. Schematicof GRARRGimbolAngles 'r

frequency for the GRARR System is 8 Hz, the maximum unambiguous /" -

one-way range measurement corresponds to a distance of approximately

: i ) 18,737 kilometers. Distances greater than this produce phase shifts :..
larger than one cycle of the _L signal. When this occurs, the GRARR
system utilizes a pseudo-random binary code to determine the r__ge

ambiguity number p., the number of whole cycles to be added to the
:_ counter-measured fractional phase shift. The ATSR Systum does not

require an ambiguity resolving system since it is used only in conjunction 4'
' with ATS synchronous satellites which remain in the same ambiguity _.
, period during a pass.

: . 3. T_e two-way range-rate measurement is made by counUng the number of ,

: _--! cycles C O of a reference frequency _R2 required to count exactly N
i ('yclcs of the Doppler-plus-bias signal _d + 7"5 in the Gt'ARR System

, , and 100 times _d + _b for the ATSR System. The count also is
started at the frame time t F and ended after the accumuJation of N: ,_

• f cycles of the _0 * _b signal. All GRARR Stations except Santiago
_, have been modified to remove the dependency of C 0 on the indepenC _nt

_ frequencies _b and _r2. The modification amounts to deriving the .
reference and bias frequencies from the same source as the trans-

: i mitted frequency.

[ The gimbal angles X3,0 and Y30 (or A and E) are measured only at the frame
: ii time t FP but the range and range-rate measurements are made at the frame

,_ time and at three subsequent data sample times t within the frame-time
' ' S

_'" &-3
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Zenith 

I~Fii\ooI"'-- Spacecraft 

Tracking Station 

Local HQrizontal Plane 

Figure A·l. Schematic of GRARR Gimbal Angles 

frequency for the GRARR System is 8 Hz, the maximum unambiguous 
one-way range measurement corresponds to a distance of approximately 
18.737 kilometers. Distances greater than this produce phaRe shifts 
larger than one cycle of the Jl

L 
signal. When this occurs, the GRA'RR 

system utilizes a pseudo-random binary code to determine the rru'lgc 
am'liguity number p. t the number of whole cycles to be added to the 
counter-measured fractional phase shift. The A TSR System does not 
require an ambiguity resolving system since it is used only in conjunction 
with A TS synchronous satellites which remain in the same ambiguity 
period during a pass. 

3. T!,le two-way range-rate measurement is made by counting the number of 
cycles Co of a reference frequency lIR2 required to count exactly N 
('ycks of the Doppler-plus-bias signal Jld + lib in the GPARR System 
and 100 times Jld + lib for the ATSR System. The count also is 
started at the frame time tF and ended after the accumuJation of N 
cycles of the 11 c! + lib signal. All GRARR Stations except Santiago 
have been modified to remove the dependency of Coon the indepent: l!nt 
frequencies Vb and lIR2' The modification amounts to deriving the 
reference and bias frequenoies from the same source as the trans
mitted frequenoy. 

The gimbal angles x3,o and Y
JO 

(or A and E) are measured only at the frame 
time t F t but the ran/Ie and range-rate measurements are made at the frame 
time and at three subsequent data sample times t within the frame-time 

s 
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I
interval. The spacing of these data samples (and hence the time span of a data

• frame) may be varied to give range and range-rate recording rate_ of 4, 2, or 1

i samples per second or 6 samples per minute. ATSR Stations can _lso record at
a rate of 8 samples per record. The data, one angle sample and four range and

:'i range-rate samples for each frame, are punched ou paper tape at the tracking
station in standard Baudot 5-level teletype code and then transmitted to GSFC i i

via teletype to be preprocessed. :_

A.1.2 l>reprocessing Description :_

)- The GRARR and ATSR data processing procedures and tnterface_ are obtained
from References 1 through 6 and have been revised to reflect subsequent

modifications in the software. Emphasis is placed on the preprocessor compu-
tations, but the interfaces with the stations and the processor are also incluaed.
Figure A-2 summarizes the station/preprocessor/processor interfaces and will
aid in the ensuing description.

.J

/
" fhe data are formatted into trames at the station. Each frame contains four

sets of r_ge and range-rate observables C_ and C 1 , as well as a single set of J

: "_- gimbal angh, s Xs0 _ Ys0 (or A and E). Each frame is time-tagged in station /
time t R. Prior _,_transmission to the Goddard Space Flight Center, data calibra-

: tion corrections aze applied to the data, and the time tag is corrected for the
propagation delay of the WWV signsl from transmission to its reception at the ]
tracMng station, i.e.,

tF = t R + At (A-l)

Thus, t F corresponds tothe UTC time at initiation of the range ',ounter. Each ,:

range observable C1 is divided by the reference frequency _R1, thereby ._

•, converting it to a time interval At R with a standard transponder delay /__ '_
"" accounted for as follows i

C 1

At R =__- A_ (A-2)

, where

AT = _0 for S-Band
[_17.1_zsec for VHF

; A-4
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interval. The spacing of these data samples (and hence the time span of a data 
frame) may be varied to give range and range-rate recording rate'3 of 4, 2, or 1 
samples per second Qr 6 samples per minute. ATSR Stations can ",lso record at 
a rate of 8 samples per record. The data, one angle sample and four range and 
range-rate samples for each frame, are punched on paper tape at the tracking 
station in standard Baudot 5-level teletype code and then transmitted to GSFC 
via teletype to be preprocessed. 

A.1.2 Preprocessing Description 
:~ 

Thp. GRARR and A TSR data processing procedures and interface3 are obtained 
from RefereJlces 1 through 6 and have been revised to reflect subsequent 
modifications in the software. Emphasis is placed on the preprocessor compu
tations, but the interfaces with the stations and the processor are also included. 
Figure A-2 summarizes the station/preprocessor/processor interfaces and will 
aid in the ensuing description. 

fhe data are formatted into trames at the station. Each frame contains four 
sets of rwge and range-rate observabl~s C() and C1 ' as well as a Single set of 
gimbal anglbs X 30 au~ y 30 (or A and E). Each frame is time-tagged in station 
time t R • Prior to) transmission to the Goddard Space Plight Center, data calibra
tion corrections art! applied to tho data, and the time tag is corrected for the 
propagation delay of the WWV signal from transmission to its reception at the 
traclo.ng station, i.e" 

(A-I) 

Thus, tF corresponds to the UTC time at initiation of the range ~ounter. Each 
range observabl~ C 1 is divided by the reference frequency lIRl' thereby 
converting it to a time interval LHR with a standard transponder delay L\T 

accounted for as follows 

whet'e 

(A-2) 

{
:::::o for S-Band 

AT = 
::::: 17, 1 p.s e c for VHF 
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'_ 0bservab_es Station Preprocecscr Processor

i tf, Co, CI tf= tf +L1tlw v t.= tF +KAt +At_ &t2=o'/C _

'i - RD
l q

l X3o' Yso AtR =Cl/vm l-A_ p, =cAt_ t R= t -_t_

: 2 s

_c(v_-Nv',/co)._ GRARR =p, (p __)

._; * J2v T - (v b- NvR2/C0) Santiago P.._ v-_A_mos_Uer;+C clVL _"
_" J c(m I -m2N/C0) GRARR Refraction

'°,vz =_] (2_ms) _m2N/Co) Frequency Correction

:- Independent .

I c(ub - N Vlt;i/Co)I

L200 VT- (v b _NvR2/Co) ATSR \

FORMATA FORMATB

_ Is' IT /
- Xso, Ate, CO,D, H, M, S, Ate, CO / *

/ ts, p', _.v , X y / "J" "_
• . 8 ' ,i Y3o' Ate, CO, Is, IT, )'I"' n, Ate, Co! '

D, H, M, S -_ Day, Hour, minute, seconds of time t F

I s, I T _ Satellite and tracker identification r
• ,A

,\ n _ Sampling rate indicator , ,
-\

_^ _ ltm'_ge ambiguity number

V L _" Lowest sidetone frequency ' ,:

_?, ZD-D " Standard transponder delay (AT = 1'/.1 ysec for VHF and 0 for ":
t S-Band) applied at the statien, and deviation from standard .

: delay applied in the processor _;

FigureA-2. GRARRandATSRDataPreprocessorComputo':onsandInterfaces

i
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ObservaWes Station 

- -
Preproct.';sc~ 

C(Vb -Nv./Co) 

2vT - (vb -Nv./Co) 

c(ml -m2 N/Co) 
(2 -ml) -012 N/Co) 

GRARR 
Santiago 

-

GRARR 
Frequency 
Independent 

FORMAT A FORMAT B 

ts' p'. POYI ' X. Y 

b-:~ 
D, H, M, S '" Day, Hour, minute, seconds of time tF 

Is' IT '" Satellite and tracker identification 

n '" Sampling rate indicator 

eJ
A 

'" Range ambiguity number 

lIL '" Lowest sidetone frequency 

Processor 

Atmospheric 
Refraction 

Correctlon 

l 

67. t.7" D '" Standard transponder delay (67 = 17.1 fi sec for VHF and 0 for 
S-Band) applied at the statiC'n, and deviation from standard 
delay applied in the processor 

Figure A·2. GRARR and ATSR Data "Preprocessor Computat:ons and Interfaces 
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Each frame of data is received at GSFC in approximately format A in Figure ] ;
A-2 (data quality, carriage return, line feed, and figure shift indicators are
omitted). These data are then preprocessed as described in the following sections. !

' A,1.2.1 Gimbal Angles

, The gimbal angles Xs0 and Ys0 (±00.00 to - 90.00 degrees) or A (000,00 to .
360.00 degrees) and E (000.00 to 090.00 degrees) are unaltered in the pre-

' processor. Atmospheric refraction corrections must be applied later in the !
processor.

t\

A.I.2.2 Range

The range observable C I iscorrectedtothetwo-way propagationtime interval

At R at the station. In the preprocessor, the iuterval is converted to one-way
distance by multiplying by one-half the velocity c of the signal propagation as
follows _

p, = c At R (A-3) / ':

t

where

c = 2.997925 x 10a m/sec ':
i

q

The preprocessed range p' always lies in the first ambiguity period and must, ..

therefore, be corrected for range ambiguity in the processor. Furthermore, _
the transponder delay is a function of the received signal frequency at the space- t
craft transponder_ Therefore, any deviations from the standard transponder
delay deducted in the preprocessor must be accounted for in the processor. The '!

time at each of the four range samples within each frame is :

t s = t r + k _tRD (k = 0, I, 2, 3) (A-4) (

where

s

AtRD "" the reciprocal of the recording rate

t

I.

A-6
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Each frame of data is received at GSFC in approximately format A in Figu-.:oe 
A-2 (data quality t carriage return, line feed, and figure shift indicabrs are 
omitted). These data are then preprocessed at. described in the following sections. 

A,l.2.1 Gimbal Anf~les 

The gimbal angles X30 and Y30 (±OO.OO to -.:)0.00 degrees) or A (000,00 to 
360.00 degrees) and E (000.00 to 090.00 degrees) are unaltered in the pre
processor. At;-.1ospheric refraction corrections muat be applied later in the 
processor. 

A.1.2.2 Range 

The range observable C 1 is corrected to the two-way propagation time interval 
6t

R 
at the station. In the preprocessor, the hterval is converted to one-way 

distance by multiplying by one-half the velocity c of the signal propagation as 
follows 

c 
p' = - 6tR 2 

(A-3) 

where 

c = 2.997925 x 108 
ml sec 

The preprocessed range p' always lies in the first ambiguity period and mURt, 
therefore, be corrected for range ambiguity in the processor. Furthermore, 
the transponder delay is a function of the received sib'llal frequency at the space
craft transponder. Therefore, any deviations from the standard transponder 
delay deducted in the preprocessor must be accounted for in the processor. The 
time at each of the four range samples within each frame is 

(A-4) 

where 

6. tRD ..... the reciprocal of the recording rate 
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+ i:
_ The time t, is the ground receive time in UTC, corresponding to each

_ range sample. The range and gimbal angles correspond to the spacecraft's
,_ position at the time it retransmits the tracking signal. Therefore, the times must

+ be corrected for the one-way light time in th_ processor. The gimbal angles

_ correspond to the first time (i.e., k = 0 iu Equation (A-4) on each frame), i

: A.1.2.3 Range-Rate

The interpretation of the Doppler cycle count CO as a measure of the tracking
station-to-spacecraft relative range-rate rests upon the following assumptions:

}
(1) The Doppler effect can be adequately represented by the theory of

special relativity.

(2) A simplification can be made in representing the motion of the tracking
station.

;/I
, , Assuming the tracking station motion is uniform in inertial space, it is shown in

: i Appendix C that the average range-rate (in the sense of the Theorem of the Mean) ,,
? f over the time interval t s and t s + AtRR is / ;

" I C(Vb - N/_tRR) (A-5)I - ('b -

where the Doppler-plus-bias count time interval AtRR is

' Co
AtRR - (A-6)

• t

' Equation (A-5) is used for the GRARR station at Santiago. Since ATSR stations '
_- _ count N cycles of 100 times the two=way Doppler-plus=bias frequency, the range-

rate equation for the ATSR station data is

}
C(U b -- N/AtI_ )

! P"_g = 200 VT (v'- N/AtR_ ) (A-7)

i

_

i, The average range rate /).vg in Equations (A-5_ and (A-7) is dependent on the _

i three frequencies 7)T, l)b, and "R2. Four of the GRARR stations were modified

by driving Yb and vR2 with the transmitted frequency VT, i.e., }

+ 1
i = _"R2

i V+ mI VT - m_,_T (A-S)

: *_ A-7 i
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1976017203-482

The Erne ts is the ground receive time in UTC, corresponding to each 
range sample. The range and gimbal angles correspond to the spacecraft's 
position at the time it retransmits the tracking signal. Therefore, the times must 
::'e corrected for the one-way light time in till" processor. The gimbal angles 
correspond to the first time (Le., k = 0 ill Equation (A-4) on each frame). 

A.1.2.3 Range-Rate 

The interpretation of the Doppler cycle count Co as a measure of the tracking 
station-to-spacecraft relative range-rate rests upon the following assumptions: 

(1) The Doppler effect can be adequately represented by the theory of 
special relativity. 

(2) A simplification can be made in representing the motion of the tracking 
station. 

Assuming the tracking stati.on motion is uniform in inertial space, it is shoWll in 
Appendix C that the average range-rate (in the sense of the Theorem of the Mean) 
over the time interval t s and ts + .6 tRR is 

. c(vb - N/.6tRR ) 

Pavg = 2vT - (Vb - N/.6tRR ) 
(A-5) 

where the Doppler-plus-bias count time interval .6tRR is 

(A-6) 

Equation (A-5) is used for the GRARR station at Santiago. Since A TSR stations 
count N cycles of 100 times the two-way Doppler-plus-bias frequency, the range
rate equation for the A TSR station data is 

(A-7) 

The average ra~ge rate I) in Equations (A-'S) and (A-7) is dependent on the 
BVg 

three frequencies l)T' vb' and lIR2. Four of the GRARR stations we~e modified 
by driving vb and vR2 with the tr::lnsmitted frequency LIT' i.e., .' 

(A-B) 
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: where m1 and nh. are the following constants.

GRARR Stations raz m2

; Rosman " ""

VHF Crystal 1/5000 1/15 i
:. Tananarive

:. . S-Band Crystal 1/3600 1/180
Carnarvon

S-Band PLL* cr/4500 cT/225
Fairbanks

I
L_....

*or= phaselockedtranspondermultiplicationconstant(Reference4).

£

i, Substitl_ting Equations (A-8) into (A-5) yields the relation for preprocessing
_! Doppler data from these frequency independent GRARR stations

_* i c(ml - m2N/Co)

• '_ /_.vg = (2 - ml) - m2 N/C--'-'o (A-9) /,,

A more precise modeling of the Doppler data is pzovided by the range difference
formula in Appendix C. In this optional processing mode, the preprocessor

,, ' compu_as

__ c
2_TAtRR (_b AtRR - N) (A-10)

• rather than/b go The processing program compares p with the range difference i_
' calculated by Equation (7-,11 ).

A.1.2.4 Smcothtng

The range, range-rate and gimbal angle data are finally smoothed by regresstvely
fitting low order (third or fourth) polynomials to at least 20 samples each of range
and range-rate and at least 5 samples each of the gimbal angles. A least squares
method is used for the polynomial fits, and a 2.5_ data rejection criterion is used /
to eliminate "wild" data. The midpoint values of the polynomials replace the
original data, The smoothed values are stored in a format similar to format B
in Figure A-2 for subsequent use in the processor.

A-S
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whe:r.e 1111 and Il\;! are the following constants. 

-----------,--------
GRARR Stations m1 
---------- --+--

Rosman 
VHF Crystal 1/5000 

Tananarive 
1/3600 

S-Band Cl'Ystal_J Carnarvon 
S-Band PLL* a /4500 l ~_~b~________________ _ _____ _ 

*a = pilase locked transponder multiplication constant (Reference 4). 

1/15 

1/180 

a/225 _J 
Substitltting Equations (A-8) into (A-5) yields the relation for preprocessing 
Doppler data from these frequency independent GRARR stations 

• c(m1 - m2 N/Co) 

Pavg = (2 - m
1

) - m
2 

N/Co 
(A-9) 

A more pret)ise modeling of the Doppler data is pI"ovided by the rang9 difference 
formula in Appendix C. In this optional processing mode. the preprocessor 
COmpl!l-dS 

(A-10) 

rather than Pavg " The. pl'ocessing program compares P with the r~e difference 
calculated by EquatiC'u (7-41). 

A.1.2.4 Smcothtl1g 

The range, range-rate and gimbal angle data are finally smoothed by regressively 
fitting low order (thtrd or fourth) polynomials to at least 20 samples each of range 
and range-rate and at least 5 F,amples each of the gimbal angles. A least squares 
method is used for the polynomial fits. and a 2.5a data rejection criterion is used 
to eliminate "wild" d'lta. The midpoint values of the polynomials replace the 
original data. The smoothed values are stored in a format similar to format B 
in Figure A-2 for subsequent use in the processor. 
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q
A.2 C-BAND RADAR SYSTEM

A.2.1 Functional Description

The FPQ-6, FPS-16, TI_Q-18, and MPS-26 pulse radars used most frequently to
i

support NASA satellite tracking are listed in Table A-2. These radars measure
the two-way light time from the antenna to the spacecraft as well as the antenna
pointing angles. The antenna Gimballing system records the azimuth and elevation
angles A and E shown in Figure A-1.

The usual mode of tracking a satellite via a C-Band radar is similar to the
GRARR System. The two-way light time of a transmitted pulse and associated
gimbal angles are measured and time tagged at the ground receive time of the
return pulse. The range messurement is corrected for satellite transponder time
delay, and the time tag is corrected for system delays and WWv propagation time

delay. The resulting two-way time is converted to units of distance by multiply-
ing by one-half the speed of light. These corrections are performed at the track-
ing site. There is no range ambiguity or range-rate associated with this tyl;e of

system. ,,
t'

Table A-2

._)_-i C-Band Radar Sites

i 1 Station Locations Type

| Bermuda FPQ-6, FPS-16
Grand C anary Island MPS-26

i Carnarvon, Australia FI_-6
Woomera, Australia FPS-16
Hawaii FPS-16

,I,, Point Arguello, California FPS-16 '
Eglin Air Force Base FPS-16
Patrick Atr Force Base FPQ-6

Cape Kennedy FPS-16
Grand Bahama FPS-16, Tl_-18
Grand Turk TPQ-18

l San Salvador Island FPS-16

Merritt Islsnd TI_Q-I 8 :

Ascension Island FPS-16, TPQ-18 _

_ A-9
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A.2 C-BAND RADAR SYSTEM 

A.2.1 Functional Description 

The F~-6, FPS-16, TPQ -18, and MPS-26 pulse radars used most frequently to 
support NASA satellite tracking are listed in Table A-2. These radars measure 
the two-way light time from the antenna to the spacecraft as well as the antenna 
pointing angles. The antenna Gimballing system records the azimuth am elevation 
angles A and E shown in Figure A -1. 

The usual mode of tracking a satellite via a C-Band radar is similar to the 
GRARR System. The two-way light time of a transmitted pulse and associated 
gimbal angles are measured and time tagged at the ground re(;eive time of the 
return pulse. The range measurement is corrected for satellite transponder time 
delay, and the time tag is corrected for system delays and WWV propagation time 
delay. The resulting two-way time is converted to units of distance by multiply
ing by one-half the speed of light. These corrections are performed at the track
ing site. There is no 't'ange ambiguity or range-rate associated with this type of 
system. 

Table A-2 
C-Band Radar Sites 

F ----~i~~~:;:~--=- ~~-=-i~~;;~~;---- -~~11 
. Carnarvon, Australia FPQ-6 

Woomer a, Australia FPS-16 
Hawaii FPS-16 
Point Arguello, California FPS-16 
Eglin Air Force Base FPS-16 
Patrick Air Force Base FPQ-6 
C ape Kennedy F PS-16 
Grand Bahama FPS-16, TPQ-18 

I Grand Tur~ TPQ-18 

l San Salvador Island 
Merritt Is19ud 
Ascension Island 

---.---~---~ ~--~--. --,--.--- ... ~-- -- -. 

FPS-16 
TPQ-18 

___________ 1 _____ .. __ ~~~~~~_~ 2'~~:~ ___ . _________ 1 
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A.2.2 Preprocessing Description 1

The data received from the C-Band tracking site is calibrated, corrected for ..
transponder delay, and time corrected. The p_eprocvssor converts the range
data from yards (received from the station) to kilometers (1 meter equals _ii'

3.280839895 international feet) and the gimbal angles from mils to degrees (6400
mils equals 360 degrees). The time tag corresponds to the ground receive ti_-3.

• Capability must be provided in the processor to account for atmospheric re-
fraction and light time correction of the time tag.

7.

i A.3 UNIFIED S-BAND (USB) SYSTEM

i A.3.1 Functional Description

,! The USB System (References 2, 5, 6, 7 and 8) determines and records the

f ," I spacecraft range, range-rate, and antenna gimbal angle positions at the globally

located sites listed in Table A-3. The USB transmits :track_.ng System a con-

*_t tinuous S-Band carrier s._.gnal with a modulated pseudo random code. The nominal t'" :_
up-link signal frequency of 2 GHz is multiplied by a constant (k = 240/221) at "Y
the coherent spacecraft transponder, and retransmitted to the receiving stations.

Table A-3 )

Unified S-Band (USB) Stations ?

USB Station Antenna Size, Feet '°

2-Merritt Island 30, 30 ,_
Bermuda 30

C arnarvon, Australia 30
:tawati 30

".. Corpus Christi, Texas 30
Guam 30 '

2-Goldstone, California 85 and a 30 oriented as a_ 8b ' '_

Pioneer 85 hr, dec angles .;
Ascension Island 30

¢

Canberra, Australia 85 i:,
Tidbinbilla, Australia 85 hr, dec angles _

, Madrid, Spain 85 , ?,
Cerebros, Spain 85 hr, dec angles ' |

Grand Canary Island 30
2-Greenbelt, Maryland 30 and a 30 oriented as an 85

Vanguard Ship 30

• ,

A-IO
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A.2.2 Preprocessing Description 

The data received from the C-Band tracking site is caHbrated. corrected for 
transponder delay. and time corrected. The p.reproC'assor converts the range 
data from yards (received from the station) to kilometers (1 meter equals 
3.280839895 international feet) and the gimbal rulgles from mils to degrees (6400 
mils equals 360 degrees). The time tag corresponds to the ground receive tirr 3. 

Capability must be provided in the processor to account for atmospheric re
fraction and light time correction of the time tag. 

A.3 UNIFIED S-BAND (USB) SYSTEM 

A.3.l Functional Des:lription 

The USB System (References 2, 5, 6, 7 and 8) determines and records the 
spacecraft range, range-rate, and antenna gimbal angle positions at the globally 
located tracking sites listed in Table A·-3. The USB System transmits a con
tinuous S-Band carrier Signal with a modulated pseudo random code. The nominal 
up-link signal frequency of 2 GHz is multiplied by a constant (k = 240/2~1) at 
the coherent spacecraft transponder, and retransmitted to the receiviag stations. 

Table A-3 
Unified S-Band (USB) Stations 

--- .. -----------------. ----------.-... ------------~--- _._-----------------, 
USB station 

------- ----.--- .-.------------f--

2-Merritt Island 
Bermuda 
Carnarvon. Australia 
:Iawaii 
Corpus Christi. Texas 
Guam 

2-Goldstone, California 

Antenna Size, Feet 
--- ---------------------------+ 

30,30 
30 
30 
30 
30 
30 
85 a.'ld a 30 oriented as al" 8b 

Pioneer P6 hr, dec angles 
Ascension Island 30 
Canberra. Australia 85 
Tidbinbllla. Australia 85 hr, dec angles 

Madrid. Spain I' 85 1 

Cerebros. Spain 85 hr, dec angles ! 

Grand Canary Island I 30 J: 
~:~_~;;_~~~y~::_ _J_______ :~~~: 30_:::~.~~_=~ 

A-IO 
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The USB System range measurement i$ made by means of an autocorrelation
involving a pseudo random code which is modulated onto the S-Band uplink carrier
and coherently turned around by the transponder. The locally generated code at _ _"

the ground station undergoes a variable delay when compared with the received _., f_
code, which has undergoue a two-way propagation delay. When the inserted ground i i_

s_ation delay equals the two-way propagation delay, the autocorrelafion has a _

maximum value and the inserted ground time delay is a measure of the slant
range. With the "long code" or nor hal pseudo random noise code, the USB range

measurement is unambig_ou_ to a ra _e of 800,000 kin. Normally, only one _uch =
"range acquisition" is made over a single tracking station, and subsequent range

• readouts are obtained by upd_ing the initial meas._rement by integrating a "clock :
• Doppler _Tsignal.. That is, once range acquisi_ton is made, the ranging code is

i switched off and a clock modulation is _witched on. The relative phase change :

of the clo_k signal, as relayed via the _pacecraft, is then a measure of rangechange. As presently configured, the clc : is not an integral submultiple of the

• _ carrier frequency, however, the smallest increment of range change in the tra_k- _
ing format (termed the range unit RU) corresponds to approximately 16 cycle_

_i. of two-way carrier Doppler change. Thus, whenever the vehicle moves a
radlgl

[ distance c[ approximately 16 half-wavelengths of *he carrier frequency relative // ((

i to the ground station, one RU is recorded. One RU corresponds to 1.e496936 -_ _
meters of range. The range update is done at the tracking site and, from an

_ equipment standpoint, is ess_u_mlly independent of the carrier Doppi_r tracking i
- - _nformation which is also contained in the raw USB data format. O_ly tb_- re-

: ceiv_r radi_ frequency and intermediate frequency stages are common to the
range and r_nge-r_ channel_.

The raw time tag associated with the range corresponds to UTC ground receive i
time and includes an on-si_ correction for WWV propag',tion time delay. Typ-

ically, all USB r,_mote site clocks are synchronized to the Naval Observatory _ _
Master clock to within 50 microseconds. The USB dish antennas employ an

X-Y gimbal mounting _ystem (see Figure A-l). The 30-foot diameter antennas _
employ an X_o-axi_ aligned North-South, whereas the 85-foot antenna X ss-axis

; is aligned East-West. The X-axis is always contained in the local tangent _ . i

_ plane. , =.

i_ _ii,,_ basic measurement of range rate in the USB System _ that of carrier frequency _

_, Doppler pnase change. The down link carrier from the spacecraft is coherently ,_
tracked by e pha_e-locked ground receiver. The essential system functions are: ,

_ 1. The up-Hnk carrier has a nominal fixed frequency of 2 GHz derived
_ from a cesium clock source.

_' A-II , :'
t
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The USB System range measurement is made by means of an autocorrelation 
involving 3. pseudo random code which is modulated onto the S-Band uplink carrier 
and cohel'ently turned around by the transponder. The locally generated code at 
the ground station undergoes a variable delay when compared with the received 
code, which has undergolle a two-way propagation delay. Wo.en the inserted ground 
station delay equals the two-way propagation delay, the autocorrelation has a 
maximum value and the inse'cted grnund time delay is a measure of the slant 
range. With the ''long colie" or nor nal pseudo random noise code, the USB range 
measurement is unambiguous to a r& ~e of 800,000 km. Normally, only one ouch 
"range acquisition" is made over a single tracking station, and subsequent range 
readouts are obtained by updating tha initial measolrement by integrating a "clo('k 
Dopplel· lI signal .. 'fhat is, on~e r:cge acquist:-ton is made, the ranging code is 
switched off and a clock modu1~tion is fPvitched on. The relative phase change 
of the clouK: signal, 8EI relayed via the ;:;pacecraft, is then a measure of range 
.Jhange. As presently configured, the cle ~ is not an in~egral submultiple of the 
carrier frequency, however, the smallest increment of range change in the track
ing format (termed the range unit RU) corresponds to approximately 16 cycles 
of two-·way carrier Doppler change. Thus, whenever the vehicle moves a rad!!!l 
distan':le d. approximately 16 half-wavelengths of ~he carrier frdquency relative 
to the ground station, one RU is recorded. One RU corredponds to 1.M96936 
met6rs of range. The range update is done at the tracking site and, from an 
equipment 8tandpoint, is ess~~'lally independent of the carrier DOPllisr tracking 
information which is also contained In the raw USB data format. Oll1y tb~ re
ceiver radio frequ~ncy and intermedie.te frequency stages are c():;nmon tl' the 
range and rsnge-r~td channels. 

The raw time tag associated wi.th the range corresponds to UTe ground receive 
time and inclwles an on-sit.) correction for WWV propag~tiol\ time delay. Typ
ically, all USB r~m.ote site ClOCKS are synchronized to the Naval O~servatory 
~ aster clock t.o within 50 mh!r.osec.onds. The USB dish antennas employ an 
X-y litnbal m.ounttlg .3ystem (sae Figure A-I). The 30-f.o.ot diameter antennas 
empioy an X30 -axlE aligned N.orth-South, whereas the 85-f.oot antenna X 85 -axis 
is aligned East-West. The X-axis is always c.ontained in the l.ocal tangent 
plane. 

1'il'" 'b::.qic measurem('nt .of range rate in the USB System i~ that of cnrrier freqli.~ncy 
D.oppler llnase ch3Ilge. The d.own link carrier fr.om the spacecraft is coherently 
tracked by a phase-locked gr.ound receiver. The esseatial system func'dons are: 

1. The up-link carrier has a nominal fixed frequency of 2 GHz derived 
from a cl'slum clock source. 

A-ll 
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2. _2he transponder receiver aboard the spacecraft is phase-locked to the
_ up-lin_ frequency plus the up-link Doppler shift.

: 3. The transponder transmitter frequency is coherently derived from the _i
- up-link carrier plus up-link Doppler shift. A fixed frequency turn- _

L around ratio of 240/221 is used for _1 USB tracking. _ i

_ 4. The ground receiver is phase locked to the do_n-link signal which is at
_ " the transponder output frequency plus the d m-link Doppler frequency i

shift, l
t: -"

5. In the 2-way mode, a 1 MHz _gnal is subtra_ed from the ground
/ receiver _Agnal prior to compariRor wit_, a signal which is coherent

with the transmitted carrie_ zre_,ency. '"he basic output is then
the Doppler frequency plus a stable 1 MHz bias. "r

_ / The raw data consists of whole cycle counts of phase change, which is a diz oct
: measur_ of the spacecraft radial change relative to the station. The b_!

moasurement N is a nondestruct cycle count of carrier phase shift, plus bias

"-- over a time period AtRR. It is termed nondestructive since, although tae counter _ /,' ;'
is read out at even time intervals, the accumulated count is not destroyed. Thus, _'"
the _¢erage frequency is obtained by differencing the count in adjacent frames

and d'viding by the sam vie time. I

The Doppler count N zs resolved to .01 cycle through the implementation of the
Time Increment Resolver (TIH). Cycle resolving gives a precise measure of
the time between the start of the data interval and the time at which the last

positive-directed zero crossin_ of the biased Djppler signal is counted. This
time duration is measured by countir.g the cycles of a 100 MHz oscillator. T_e
Dcppler count, along with the TiR count, w_:i appear in the same data trans-

',, missionframe. Inthehighspeed format,thegranularityof TIR is i0 nar,o-x

seccr.ds, while in the low speed format, the granularity is 40 nanoseconds.

The normal low speed data rates of the USB system are one frame per six ,
seconds and one frame per 10 seconds. This low speed data is derived on-site
from the high speed data, which consists of a 240 bit iormat. High speed data is
simultaneously available _t a rate of 10 frames per second, 5 frames per second,
or 2.5 frames persecond, depending on the r,pera.'or selection at the on-site USB
data processor. USB sites are capable of obtaining gimbal angle sad range rate
data _thou_ ranging in contrast to the GBARR system which always provides
range data.

A-12 _'"
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2. The transponder receivel' aboard the spacecraft is phase-locked to the 
up-link frequency plus the up-link Doppler shift. 

3. Th.e transponder transmitter frequency is coherently derived from the 
up-link carrier plus up-link Doppler shift. A fixed frequency turn
around ratio of 240/221 is used for all USB tracking. 

4. The ground receiver is phase locked to the down-link signal which is at 
the transponder output frequency plus the d V'.l-link Doppler frequency 
shift. 

5. In the 2-way mode, a 1 MHz &ignal is subtracted from the ground 
receiver ~lgnal prior to compat"iFlol' wlti' a signal which is coherent 
with the transmitted carrlfji: ireqr.ency. I,~e basic output is then 
the Dop~Jler frequency plus a stable 1 MHz ulas. 

The raw data consists of whole cycle counts of phase change, which is a dh~ct, 
measur:3 of the spacecraft radial change relative to the station. The basi c 
mU8Burement N is a nondestruct cycle count of carrier phase shift plus bias 
over a time period ~tRR. It is termed nondestructive since, although tile counter 
is read out at even time intervals, the accumulated count is 1.0t destroyed. Thus, 
the ~V'erage frequency is obtained by differencing the co~t in adjacent fr8.illes 
and d'viding by the sample time. 

The Doppler count N 1S resolved to .01 cycle through the implementation of the 
Time Inc!'ement Resolver (TIrl). Cycle resolving gives a precise measure of 
the tirr,e between the start of the data interval and the time at which the last 
positive-directed zero crossiIlb of the bias\:ld D-.>ppler Signal is counted. This 
time duration is measured by countir..g the '~yc1es of a 100 MHz oscillator. T~e 

Dcppler count, along with t.he TlR count, will af)pe~.r in the same data trans
mission frame. In the high speed Iornlut l the granularity of Till is 10 nar:o
secor-ds, while in the low speed format, the granularity is 40 nanoseconds. 

The normal low speed data rates of the USB system are one frame pe:..' six 
seconds and one frame per 10 seconds. This low spead data is derived on-site 
from the high speed data, which consists of a 240 bit iormat. High speed rlata is 
simultaneously available ~t a rate of 10 frameR per second, 5 frames per second, 
or 2.5 frames per second, depending on the r,pera~.,r selection at the on-site USB 
data processor. USB sites are capable of obtaining l-:imbal angle and l'ange rate 
data without ranging in contrast to the GRARR systa.:n which always provides 
range data. 
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A.3.2 Preprocessing_Description I

The USB ranze data t_ transmitted from the sites in octal with a granularity of
1.0496936 metsrs. The output of the data handler is the one-way range in
kilometerswithno dat_ correctionsapplied. _,,

I

The N-count and TIR requiredtocompute range rateare trJJnsmi_tedinoctal _
with a granularity of I cycle and 40 nanoseconds respectively. The 1-way and

_ 3-way Dopplerare convertedto range rateinkrn/secthroughthe equations !
,/

t
' _. FOC = _(t) -N"(t - AtRR , (A-I1) i """- --_RR 4 * C(t) * 10 -8 ';"

\

N*(t) = N(t) - FOC (A-12)

l

_._g N*(t)-N*(t-AtRR ) 10 * c (A-13) "J _;i = ...... &

L AtRR 2KvT

i(' " _

" _ where k

f FOC = fractions of a cycle ,_
! N(t) = contents of Doppler count,er at time t I

N'(t) = Dopplercounterattime t correctedby TIR
C(t) = contents of TIR counter i ,'

¢ &.t_R = sample i_tervalofthe Dop._lercountez

_i{ P,,vs = average range rate
,: c = speed of light
L

_ K ffi transponder turnaround ratio (240/221 for USB) .

, '_ _r = transmitter frequency.

_ The angular measurements are the X and Y gimbal angles, with the 85-foot sites
"- having the X-axis aligned East-West and the 30-foot sites having the X-axis

aligned North-South. The data are transmitted in octal with a granularity of
!, 6.8664× I0-4 degrees. The datahandleroutputsthe anglesinradians.

_ The time tagassociatedwithallUSB angledataistheground receivetime

i corrected un-site for WWV propagation delay.

" _ A-13
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A.3.2 Preprocessing Description 

The USB raL~e data iE' transmitted from the sites in octal with a granularity of 
1.0496936 meters. The output of the data handler is the one-way range in 
kilometers with no dat~ corrections applied. 

Tbe N-count and Tm reC',uired to compute range rate are tr .msmhted in octal 
with a granularity of 1 nycle and 40 nanoseconds respectively. Tha I-way and 
3-way Doppler are converted to range rate i.n km/sec through the equations 

whera 

FOC = 
N(t) = 

N·(t) = 
C(t) = 

I::, tRR = . 
Pays = 

c = 
K = 

;J = T 

FOC = P-' -' =-- - -__ ~R * 4 * C(tJ * 10-8 [.I(t) N" (t - 1::," ~ 
L I::, tRR 

N*(t) = N(t) - FOC 

. 
Pavg = 

fractions of a cycle 
contents of Doppler cot:.nter at time t 

* c 
2Kvr 

Doppler counter at time t correctad by Tm 
contents of Tm counter 
samy:.Je iIlterval of the DOP'Jler counter 
average range rnte 
speed of light 
transponder turnaround ratio (240/221 for USB) 
tranamitter frequency. 

(A-U) 

(A-12) 

(A-I3) 

The angular measurements are the X and Y gimbal angles, with tha 85-foot sites 
having the X-axis aligned East-West and the 30-foot sites having the X-axis 
aligned North-South. The data are transmitted in octal with a granularity of 
6.8664 x 10-4 degrees. The data handler outputs the angles in radians. 

The time tag associated with all USB angle data is the ground receive timt~ 
corrected un-site for WWV propagation delay. 
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, A.4 MINITRACK SYSTEM :

A,,4.1 i,'unctional Description !
; J

+ _ The +Minitracksystem, References 5, 6, 9 and 10, is basicaUy a radio direction ,,i
fir.ider which utilizes the interferometer principle to locate a radiating transmitter
carried by a spacecraft. The Minitrack network is composed of seven stations, _ ?_
globally located as sho:m in Table A-4,

_j o !,
Table A-4

Minitrack Stations

+ Quito, Equador

,_+ Santiago, Chile

• Winkfield, England :":

Johannesburg, South Africa

, Fairbanks, Alaska .

: _'-- Orroral Valley, Canberra, Auztralia /

Tananarive, Malagasy r.epublic

Each system consists of a series of six horizontal baselines at each station,
three oriented east-west (EW) and thre_ oriented av.'_a-_oum..... (N,3), .__+_hownin
Figure A-3a. A fixed ante_._a system is located at each end of each baseline to :-

receive a nominal 136 MHz signal transmitted continuously from a spacecraft ++

as it passes within view of each _tation. The spacecraft trmasmitter frequency i
can be preset to any of 2000 frequencies between 136.000 and 137.999 MI-lzin _.
steps of 1 kHz. Each set of three EW or N3 baselines consists of a fine, a :c

-.. medium, and a coarse baseline. The fine baselines are accurately surveyed to
"_ be 46 or 57 times the vacuum wawZ,ength of the nominal 136 Mttz signal. The i"

! medium and coarse baselines are 4.0 and 3.5 nominal wavelengths, respechvely.

The principleunderlyingthe_"initracksystemi_illustratedby thefollowing ,,,
simplified two-dimensional case (see Figure A-3b). The spacecratt transmitter '+
is assumed to be located _t an elevation angle a and at a very large distance ::
from the station so that received signals appear to be 91anar wavefronts, e.g.,

BC and BvC'. The baseline distance AB is a multiple Ns of the nominal 136 MHz
vacuum wavelength. At any given instant, the phase of the signal along the
propagation paths ACt and BB' is characterized by _he two sinusoids shown in _:

r

A-14 REPROPUCIB_tLrrYOF TIIE :.
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A.4 MINITRACK SYSTEM 

A,4.1 Functional Descrlption 

The Minitrack system, References 5, 6, 9 and 10, is basically a radio direction 
finder which utilizes the iI.terferometer principle to locate 11. radiating transmitter 
carried by a spacecraft. The Minitrack network is compos.ad of seven stations, 
globally located as sho:'ll in Table A-4, 

Table A-4 
Minitrack StRtiona 

I Qui~~Equ~or I 

I 
Santiago, Chile '\ 

Winkfield, England 

Johannesburg, South Africa I 
i 

Fairbanks, Alaska :J 
Orroral Valley, Canberra, Australia 

Tananarive, Malagasy r.epublic L __ . _______ .. ___ ._ .. _ .. _". ________ _ 

Each system consists of a series of six horizontal badelines at each station, 
three oriented east-west (EW) and t~ll'e~ oriented uudL-tmuth (NS), ~!: I'Ihown in 
Figure A-3a. A fixed ante!W.a system is located at each end of each baseHne to 
reueive .l nominal 136 MHz signal transmitted continuously from a spacecraft 
an it passe6 within view of each ~tation. The spacecraft transmitter frequency 
can be preset to any of 2000 fr~ql!encies between 136.000 and] 37.999 MHz in 
steps of 1 kHz. Each set of three EWor NO:: baselines consistl'! of a fine, a 
medium, and a coarse baseline. The fine baselines ar~ accurately surveyed to 
be 46 or 57 times the vacuum wavr;-i'ength of the nominal 136 MHz signal. The 
medium and coarse baselines are 4.0 and 3.5 nominal wavelength~. respecbvely. 

The principle underlying the ]\"'~nitr:lck system is illustrated by the following 
Simplified two-dimensional case (see Figure A-3b). The spacecraft transmitter 
is assumed to be located ~.t an elevation angle a and at a very large distance 
from the station so that received signals appear to be ,lanar wavefronts, e.g., 
BC and B'C'. The baseline distance AD is a multiple No of the nomin::.ll36 MHz 
vacuum wavelength. At any giv,en instant, the phase of the signal along the 
propagation paths AC' and BB' is characterized by ~he two sinusoids shown in 
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FigureA-3. MinitrackBaselineandSignalReceptionGeometry / _'

!

Figure A-3b. The s_parate signals received by the two antennas at A and B arei ,
" i 1! fed into a phase counter which measures the phase difference between the two

signals, normalized to a fractional part of the received si%ual wavoiength, e.g., '_
_ ' aF in the figure. This measurement gives no information concerning the addi- ,
: , tional number of whole wavelengths which occur between the signal received at

antenna A and the signal received at antenna B. This ambiguous integral number, :,
i
i as well as the fractional phase displacement itself, is dependent upon the wave- :

length of the received signal _., the length of the baseline NF, and the spacecraft _ ,
i angular geometry a. Thus, the reasonfor the multiplicity of parallel baselines !_ "'_! , f

•,,, ,".e., 46 or 57, 4 and 3.5 wavelength bases) is to resolve the integral cycle count , ;
_ ,, ambiguity on the longer (fine) baseline. This resolution is accomplished by "

synthesizing a 0.5 wavelength measurement by differencing the 4.0 and 3.5 wave- ., ;
: length baseline phase difference measurements, i.e.,
?

I
J

: "a0. S = a4.0 - a3. S (A-14)

, •
i where _ indicate_ absolute phase difference. _,
i

i It would be impracticalto builda 0.5 wavelengthbaseline,sincethe antennas ,,"+,

" _ would physically Interfere with each other. The synt.hesized 0.5 wavelength phase

" A=I5

' i
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Figure A-3. Minitrack Baseline and Signal Reception Geometry 

, , 

Figure A-3b. The b-.!parate signals received by the two antennas at A and Bare 
fed into a phas~ counter which measures the phase difference between the two 
signp.ls, normalized to a fractional part of the received si';:1al wavEllength, e.g., 
aF in the figure. This measurement gives no information concerning the addi
tionaillumber of whole wavelengths which occur between the signal received at 
antenna A and the signal received at antenna B. This ambiguous integral number, 
as well as the fractionfl.l phase displacement itself, is dependent upon the wave
length of the received signal >-" , the length of the baseline NF , and the spacecraft 
angular geometry a. Thus, the reason for the multiplicity of parallel baselines 
:" .e., 46 or 57, 4 and 3.5 wavelength bases) is to resolvE' the j"n~egral cycle count 
ambiguity on the longer (fine) baseline. This resolution is accomplished by ~ 
synthesizing a 0.5 wavelength measurement by differencing the 4.0 and 3.5 wave
length baseline phase difference measurements, i.e., 

(A-14) 

where, i indicateu absolute phase difference. 

It would be impractical to build a 0.5 wavelength baseline, since the antennas 
would physically interfere with each other. The synthesized 0.5 wavelength phase 
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4o difference go. 5 is unambiguous since the extra path length, corresponding to f ,
: AC in Figure A-3b, is less than one wavelength. By similarity of triangles in
,_ the figure, the absolute length of the path AC may be estimated from the 0.5 wave-

length value as follows ,

N F _ ;

" aF = _ ao. s 1A-15) .

* • where N F = 46 or 57.

In practice _-0. s is not precise enough to be used directly to obtain _F; therefore.
a slightly more complicated process is used to determine the unambiguous fine

=_i phase difference a-F, Knowing _, the direcUon cosine is ;-

Ac /A 1_1. cos ¢ =_ = _ _-'_-_-'-'1
AB AB

: For the three dim=nstonP_l case, the corresponding ratios ob+.ained from the EW
. and NS phase difference measurements yield the direction cosines ,f. and m of - -

the signal path at the station,

Each fine baseline has its own phase difference counter; hence, two measure- . i
F

merits (EW and NS) are recorded simultaneously. The four ambiguity baselines
, (EW and NS, medium and corxse baselines) share a single counter through a

_ multiplexed digital recording system. Since all measurements cannot be made i

, simultaneously, the sequence of recordings for each data frame occurs according "_ *_'_
- ",_. to the schedule of Table A-5. These data may be recorded at the rate of one
; frame every 1, 2, 10, 20, or 60 seconds. The fine baseline counter registers
'} a decimal number between .000 and ,999, and the medium and coarse baseline , _

counter registers a decimal number trom .00 to .99. "
r_

' {,The frame rate is generally scheduled so that 31 frames give complete coverage
of the usable data for a spacecraft pass over a station. A message consisting ' _ ,{

• of up to 31 frames is punched on paper tape at the tracking station in standard _ , .{

Baudot g-level teletype code and transmitted via tel.etype to GSFC for preprocessing. " i

5

"_ ;
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difference ao. s is unambiguous since the extra path length, corresponding to 
AC in Figure A-3b, is less than one wavelength. By similarity of triangles in 
the figure, the absolute length of the path AC may be esti.mated from the 0.5 wave-
length value as follows . 

where NF = 46 or 57. 

N 
- F -a =-8 

F 0.5 0.5 

~ 

(A-15) 

In practice ao•s is not precise enough to be used directly to obtain iF; therefore, 
a slightly more complicated process is used to determine the unambiguous fine 
phase difference aF. KnOwing av, the directlOn coslne is 

~ 

AC aF cos a. =-=-
AB AB 

(A-16) 

For the three dim,~nsioncl case, the corresponding ratios o~tained from the EW 
and NS phase difference measurements yield the direct!on cosines ,f', and m of 
the signal path at the station. 

Each fine baseline has its own phase difference counter; hence, two measure
ments (EW and NS) are recot"ded simultaneot:dy. The four ambiguity baselines 
(EW and NS, medium and cor..rse baselines) share a single counter through a 
multiplexed digital recording sYEltem. Since all measurements cannot be made 
simultaneously, the sequence of recordings for each data frame occurs according 
to the schedule of Table A-5. These data may be recorded at the rate of one 
frame every I, 2, 10, 20, or 60 sel}onds. The fine baseline counter registers 
a decimal number between .000 and .999, and the medium and coarse baseline 
counter registers a deciJ:1al number trom .00 to .99. 

The frame rate is generally scheduled so that 31 frames give complete coverage 
of the usable data for a spacecraft pass over a station. A message consisting 
of up to 31 frames is punched ('Ill paper tape at the tracking station in standard 
Baudot 5-level teletype code and transmitted via tel.etype to GSFC for preprocessing. 
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Minitrack Counter Sequence

Time Registered by Initiation of Both Initiation of Ambiguity ,:
Minitrack Data Clock Fine Baseline Counters Coauter and Baseline Sampled _ :

I

t F* X E-W Medium :

t F * 0.2 sec X E-W Coarse _ :

t F + 0.4 sec X N-S Medium :_

_ t F + 0.6 sec X N-S Coarse , 5

t F + 0.8 sec X

• t F = UTC at the beginning of the frame.

A.4.2 l>reprocessing Description _)

i I The Minitrack preprocessing procedures and interfaces are obtained from /_

: i: References 9 and 10 and have been revised to reflect subsequent modifications -_
_ to the software. Figure A-4 summarizes the station/preprocessor/prooessor

: interfaces and wili aid in the following description.
/ I

At the Minitrack station, the fine, medium, and coarse phase difference measure-b

merits are sampled and recorded in frames, as described in Section A.4.1. The

' time-tag t_ for each frame is corrected at the station for the propagation delay
: of the WWV signal from transmission to reception ,it the tracking station. Thus, :

t_ corresponds to UTC time at the beginning of 6_cll frame. Each frame of data
is transmitted to GSFC in approximately format A ,_f Figure A-4 (the data signal) i .'i
strength indicators are omitted). These data are then preprocessed by rectifying ' :

\_ the shift in whole cycle counts between consecutive fine, medium, and coarse phase :
difference measurements, and then least square fitting low order polynomials to
the data. Electronic system filter delays are corrected in the polynomial time '

variable, and calibration corrections are applied to the data. =

k

The ambiguity correction for the fine phase data is determined from the
medium and coarse data. At each output time, a 0.5 wavelength baseline phase _ _

i difference ao.s is synthesized from the 4.0 wavelength baseline (medium) data , "
a4. 0, and the 3.5 wavelength baseline (coarse) data aa. s . The medium and

I coarse data are obtained from the smoothing polynomial previously determined.

_ A-17
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Time Registered by 
Minitrack Data Clock 

t * F 

tF "'" 0.2 sec 

tF + O.~ sec 

tF + 0.6 sec 

tF + 0.8 sec I 

Table A-5 
Minitrack Counter Sequence 

-
Initiation of Both Initiation of Ambiguity 

Fine Baseline Counters Counter and Baseline Sampled 

X E-W Medium 

X E-W Coarse 

X N-S Medium 

X N-S Coarse 

X 

*tF = UTe at the beginning of the frame. 

A.4.2 Preprocessing Description 

The Minitrack preprocessing procedures and interfa.ces are obtained from 
References 9 and 10 and have been revised to reflect subsequent modifications 
to the software. Figure A-4 summarizes the station/preprocessor/r-rooessor 
interfaces and will. aid in the following description. 

At the Minitrack station, the fine, medium, and coarse phase difference measure
ments are sampled and recorded in frames, as described in Section A.4.1. The 
time-tag tF f(}l' each frame is corrected at the station for the propagation delay 
of the WWV signal from transmission to reception qt the tracking station. Thus, 
t ,," corresponds t.o UTC ttme at the beginning of bflCh frame. Each frame of data 
is transmitted to GSFC in approximately format A af Figure A-4 (the data signal) 
strength indicators are omitted). These data are then preprocessed by rectifying 
the shift in whole cycle counts between consecutive fine, medium, and coarse phase 
difference measurements, and then least square fitting low order JXllynomials to 
the data. Elec~ro":.ic system filter delays &.re corrected in the polynomial time 
variable, and calibration corrections are applied to the data. 

The ambiguity correction for the fine phase data iR determined from the 
medium and coarse data. At each outpl1t time, a 0.5 wavelength baseline phase 
dif!erence ao. 5 is synthesized from the 4.0 wavelength baseline \medium) data 
a 4.0' and the 3.5 wavelength baseline (coarse) data a 3 • 5' The medium and 
coarse data are obtained from the smoothing polynomial previously determined. 
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Observables Station Preprocessor Processor

t • Sample observables • Linearize and • Atmospheric

a_wF , aNSF for each frame smooth data refraction
azw M, a.s u • Correct frame time • Time adjustment correction
aFwc, nNsc forWWV propaga- and zenithcall- i

tiondelay bration

. • Ambiguity

resolution
-_' • Antenna field

correction
• Conversion to

direction cosines

: Ambiguity Finedata'_ Is, IT

2 2 [ ..J

"- tF" t
:: "_ H, 3 _3 f
#' %W F _LNSF /

i. [.. D, aNsc, a_WF,a_SF/ \ _-----_._.__ ..1'

: D, H, N, S _ Day, hour, minute, and seconds of time t F

Ip "_ Indicates polar antenna (NF = 57) or equatorial antenna "L
\_ (_ = 46)

• I s, Ir _ Satelliteand s;ationidentification _.
k

) alj _' Phase diffe:yence measurement

i _ NS (North-South)or EW (East-West) :

j "__'_.ne(F),medium (M) or coarse (C)baselines
ft,

k _"kthdatapointwithinframe

,£, m _-Directioncosinesof receivedsignal

Figure A-4. Minitrack Preprocessor and Interface Schematic
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I 

Observables station Preprocessor Processor I 

t 
aEWF' aNsF 
aEWM' aNSM 
aFWc' aNSc 

• Sample observables 
for each frame 

• Linearize and 
smooth data 

• Correct frame time • Time adjustment 
for WWV propaga- and zenith cali-
tion delay bration 

FORMAT A 

• Ambiguity 
resolution 

• Antenna field 
correction 

• Conversion to 
direction COSines 

FORMAT B 

,-------

D, H, M, S "-' Day, hour, minute, and seconds of time tF 

• Atmospheric 
refraction 
correction 

Ip 'u Indicates polar antenna (NF = 57) or equatorial antenna 
(~ = 46) 

Is, Ir "-' Satellite and s·;ation identifioation 

a~ j ~, Phase diffe7:ence measurement 

i "-' NS (North-South) or EW (East-West) 

j "'- Fine (F), medium (M) or coarse (C) baselines 

L __ ~ m ~ rnrecU:n :0;;;:1 ;;~;;~;~~ _________ ._~ 
Figure A·4. Minitrack Preprocessor and Interface Schematic 
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Because of its short baseline, the synthesized 0.5 wavelength baseline data is an

absolute (unambiguous) phase difference (the bar denotes absolute phase
_ difference). Were it not for inacct, racies in a0.s, it ceuld be used to deternVne
• the ambiguity correction for the fine d'ata. In order to minimize the amplification

': I of these measurement inaccuracies, a0.s is used to correct the ambiguities in
. _ a a. s and a 4.0, which are then used to synthesize a _. 5, corresponding to a fictitious 7.5 ,

t wavelength baselino resding. Finally, aT.s is used to correct the ambiguity in
l the 46 or 57 wavelength baseline fine data. This stepping process is described

i mathematically in Section A.4.2.3.

t At each output time, the absolute fine phase difference data are corrected for

( l antenna field corrections and converted to direction cosines for use in subse- _
i quent processing. Data at different output times from the same station are
i correlated by means of the smoothing polynomials which are used to replace

: '_ the actual measurements.

• ?

_;_ j followingThepreprocessingsections,steps summarized above are described in more detail in the

/ A.4.2.1 Data Linearization and Smoothing
i! I

As stated in Section A.4.1, up to 21 frames of data are recorded lor each space-
craft pass over a station. Each frame of data contains five fine, one medium, ::

and one coarse baseline phase-difference measurements from each East-West

(EW) and North-South (NS) baseline set. Thus, up to 155 fine, 31 medium, and 31
coarse baseline measurements are recorded from each of the EW and NS base-

line sets for each spacecraft/station pass.

_ The fine phase difference counte_s register only from .000 to .999; therefore, it

i is possible that the absolute value of the difference between consecutive readings ,

may be numerically larger than .500. This is assumed to mean that a new cycle
crossing occurred between measurements, and that the measured data should
be rectified by adding or subtracting a full cycle count to one of the points. This

i process of rectifying the data by converting to nonmodular number sets Is called _linearization.

i,

a
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Because of its short baseline, the synthesized 0.5 wavelength baseline data is an 
absolute (unambiguous) phase diff'~rence (the bar denotes absolute phase 
difference). Were it not for inaccl1racies in a::>. 5 ' it cculd be used to determ;.ne 
the ambiguity correction for the fine d ':ita. In order to minimize the amplification 
of these measurement inaccuracies, a 0.5 is used to correct the ambiguities in 
a 3. 5 and a 4 • 0' which are then used to synthesize a 7.5' corr:!spondingto a fictitious 7.5 
wavelength baseline resding. FinaJly, a7 .S is used to correct the ambiguity in 
the 46 or 57 wavelength baseline fine dat.a. This stepping process is described 
mathematically in Section A.4.2.3. 

At eacr output time, the absolute fine phase difference data are corrected for 
antenna field corrections and converted to direction cosines for use in subse
quent processing. Data at different output times from the same station are 
correlated by means of the smoothing polynomials which are used to replace 
the actual measurements. 

The preprocessing steps summarized above are described in more detail in the 
following sections. 

A.4.2.1 Data Linearization al~d Smoothing 

As stated in Section A.4.1, up to ~l frames of data are recorded tor each space
craft pass over a station. Each fn me of data contains five fine, one medium, 
and one coarse baseline phase-difference measuremants from each East-West 
(EW) and North-South (NS) baseline set. Thus, up to 155 fine, 31 medium, and 31 
coarse baseline measurements are recorded from each of the EW and NS base
line sets for each spacecraft/station pass. 

The fine phase difference counteJ."s register only from .000 to .999; therefore. it 
is possible that the absolute value of the difference between consecutive readings 
may be numerically larger than .500. This is assumed to mean that a new cycle 
crossing occllrl'ed between measurements, and that the measured data should 
be rectified by adding or subtracting a full cycle count to one of the points. This 
process of rectifying the data by converting to nonmodular number sets is called 
lineari? ation. 
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A.4.2.1.1 Ambiguity Data ]

The ambiguity u _a (medium and coarse baselines) are linearized first since it
is less likely that the phase difference will exceed +.50 between consecutive
points with these data. The linearization is accomplished as follows:

(a) Beginning with the first, phase difference measurement,

, the difference between consecutive points is calculated, i.e., ;

?

_ = ai+ 1 - a. (A-17)

(b) If _i lies within the range -.500 < _i < .500, no rectification is

necessary. If _i > .500, then integer multiples of 1.000 are subtracted

from ai+ 1 until $1 lies within the range -.500 < _, < .500. If $i <
-.500, then integer multiples of 1.000 are added to ai+ 1 until _ lies
within the range -.500 < _ < .500.

• (c) The index i is then updated and steps (a) and (b) are repeated until :'
all phase difference measurements have been rectified, j

This linearization process is applied separately to each of the E'¢; and NS medium
and coarse baseline data sets. The components of the resulting data vectors

bEWM,bNS_, b_wc, and bNsc have the correct relative phase, butthe vectors may
have an incorrect absolute phase.

After linearizing the medium and coarse baseline data, quadratic smoothing

polynomials are least-squares fitted to each of the four data sets. The polynomials
are of the form

bn = A n + B n 7" + C I"2

(A-18)

(n = EWy, EW c, NS M, NSc)

where v is the time measured from tFM, the fraJllO time of the midframe (middle
frame of the data sets), i.e., _ = t - t FM" When determining the polynomial :_
coefficients, the ambiguity data are tagged at their frame times; thus, each of the

polynomials is biased in time by the multiplexer time delay. The multiplexer
time delay is accounted for later when evaluating the polynomial. Ambiguity data
exhibiting unusually large deviations from the smoothing polynomials are rejected
during the fitting process.

A-20 v
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A.4.2.1.1 Ambiguity Data 

The ambiguity u .~a (medium and coarse baseline~) are linearized first since it 
is less likely that the phase difference will exceed ±.50 between consecutive 
points with these data. The linearization is accomplished as follows: 

(a) Beginning with the first phase difference measurement, 
the difference between consecutive points is calculated, i.e., 

(A-17) 

(b) If 0i lies within the range -.500 < 0i < .500, no rectificatic,n is 
necessary. If & i ~ .EOO, then integer multiples of 1.000 are subtracted 
from a'+ 1 until ° lies within the range -.500 < S. < .500. If S. :; 

1 1 1 1 

-.500, then integer multiples of 1.000 are added to a i +
1 

until 01 lies 
within the range -.500 < S. < .500. 

1 

(c) The index i is then updated and steps (a) and (b) are repeated until 
all phase difference measurements have been rectified. 

This linearization process is applied separately to each of the EVi and NS medium 
.!!:Ild co~se ~eline d!ta sets. The components of the resulting data vectors 
bEWM ' bNsM ' b EWc, and b NSc have the correct relative phase, butthe vectors may 
have an incorrect absolute phase. 

After linearizing the medium anf! coarse baseline data, quadratic smoothing 
polynomials are least-squares fitted to each of the four data sets. The polynomials 
are of the form 

b :: A + B .,. + C .,.2 
n n n n 

(A-I8) 

where .,. is the time measured from t FM , the frame time of the midframe (middle 
frame of the data sets), i.e., .,. = t - t FM. When determining the polynomial 
coefficients, the ambiguity data are tagged at their frame times; thus, each of the 
polynomials is biased in time by the multiplexer time delay. The multiplexer 
time delay is accounted for later when evaluating the ~!:Y"Domia1. Ambiguity data 
exhibiting unusually large deviations from the smoothing polynomials are rejected 
during the fitting process. 
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A.4.2.1.2 Fi_e Data t:

The linearization procedure for the fine baseline data is somewhat more complicated

than for the ambiguity data, since the phase change between data in successive ?
frames can exceed one cycle• Therefore, an approximation to the LW and NS

• , I

data phase change is estimated as follows, using the fine phase rate _F"

_i = ai+l - ai -_fF(ti+l - ti) (A-19)

• _ The fine phase rate is determined by averaging the rattoed slopes of the medium

_ and coarse smoothing polynomials at the middle frame time tF.

" +4.0/

_ !i NF Bc BMI (NF- 46 or 57) (A-20)

The quantities Be and B. are the coarse and medium phase rates from Equation(A-18) at the middle frame time, i.e., _- = 0. /

The fine phase linearization is accomplished as described in Steps (a), (b), and

[ (c) in the preceding section, but using the estimated difference givenby Equa-
i - _ tion(A-19). The components ofthe resultingdatavectorsbEw F and bNs F have
: the correct relative phase, but the vectors may have an incorrect absolute phase.

After line.zing the fine b_ehno da*,a, their time tags t are computed for
the appropriate sequential po31tlon within each frame by accounting for sequencer

i delay /xtp and for the counter delay in the phase readout digitizing equipment

: i At c , as follows

_, t = t F + _tp + ZXt (A-21) ;

; i
" where

_tp = 0, .2, .4, .6, .8

depend;ng on the relative position of the data point within its frame (see Table
_: A-5),and

i,
At = .01 ar7_ C

_ _ A-21
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A.4.2.1.2 Fi:'1e Data 

The linearization procedure for the fine baseline data is somewhat more complicated 
than for the ambiguity data, since the phase change between data in successive 
frames can exceed one cycle. Therefore, an approximation to the I,W and NS 
data phase change is estimated as follows, using the fine phase rate iF' 

(A-19) 

The fine phase rate is determined by averaging the ratioed slopes of the medium 
and coarse smoothing polynomials at the middle frame time tFM 

~ = NF (Be + BM I 
F 2 3.5 4.0/ 

(NF :: 46 or 57) (A-20) 

The quantities Be and BM are the coarse and medium phase rates from Equation 
(A-18) at the middle frame time, i.e., T = O. 

The fine phase linearization is accomplished as described in Steps (a), (b), and 
(c) in the preceding section, but using the estimated differe.!lCe given_by Equa
tion (A-19). The components of the resulting data vectors bEwF and bNsF have 
the correct relative phase, but the vectors may have an incorrect absolute phase. 

After linearizing the fine baselme da~a. their time tags t are computed for 
s 

the appropriate sequential poaition within each frame by accounting for sequencer 
delay bot: p 2nd for the counter delay in the phase readout digitizing equipment 
bote' as follows 

(A-2I) 

where 

t.tp = 0, .2, .4, .6, .8 

depending on the relative position of the data point within its framt: (see Table 
A-5), and 
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: Cubic smoothing polynomials are then least-squares fitted to the li:,earized and
• time corrected EW and NS Rue baseline data. The polynomials are of the form ;

r

,, bm-A +B_ +Cm_"_ dDT s (A-22) ,.
I

(m=EWF,NSF)

. 7

where -r is the time measured from the middle point of each data set. The NS

". and EW midpointtimes tMmcalldifferdue tothecorrectionAt . Fine data ,_c
: exhibiting large deviations from the smoothing polynomials are rejected during =

: the fitting process.

Y

A.4.2.2 Txme Adjustment and Zenith Calibration

/ The four ambiguity polynomials and two fine baseline polynomials, in Equations ' :
; (A-18)and (A-22),areinconsistentinterms oftheirtime variables.The ambiguity

j'
,' /J

__ polynomials neglect sequencer delay and use a reference time equal to the mid- ,_ ,_
frame time tFm. The fine [olynomials use a reference time equal to the time of

the midpoint tM_ of each data set. Neither of the polynomials accounts for the
:: delaysbetween thetime thesignalisreceivedattheantennasand thetimes the _ ; :-

phase differences are sampled and tagged, nor do they account for calibrations :'
in the phase difference measurements. ,i

These discrepancte_ are accounted for by making the following corrections to
the fine baseline smoothing polynomials . "

b m " [A'm] + Bm'rm �C7-2 + Dmr_ (A-23)m m l

. where

A' =A -Z (A-24) :m m m

= t - t* (A-25)
m m

_':"

KF :

t*m= tM_ + 1--_O + gI - 0.4 (A-26)

1 (m = EWF, NSF) '_,

;' _ "

, A-22
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Cubic smoothing polynomials are then least-squares fitted to the li:lflarized and 
time corrected EW and NS fiue baseline data. The polynomials are of the form 

b -= A + B 'T + C 'T2 of D 'T3 
m m mm mm mm 

(A-22) 

where 'T is the time measured from the middle point of each data set. The NS m 
and EW midpoint times tM can differ due to the correction 6t. Fine data m C 

exhibiting large deviations lrom the smoothing polynomials are rejected during 
the fitting process. 

A.4.2.2 n.me Adjustment and Zenith Calibration 

The four ambiguity polynomials and two fine baseline polynomials, in Equations 
(A-I8) and (A-22), are inconsistent in terms of their time variables. The ambiguity 
polynomials neglect sequencer delay and use a reference time equal to the mid
frame time t FM. The fine rolynomials use a reference time equal to the time of 
the midpoint tMm of each data set. Neither of the polynomials accounts for the 
delays between the timr.. the signal is received at the antennas and the timeR the 
phase differences are sampled and tagged. nor do they account for calibrations 
in the phase difference measurements. 

These discrepancie~ are accountl3d for by making the following corrections to 
the fine baseline smoothin~' polynomials 

b = [A'] + B 'T + C 'T2 of D 'T3 
m m mm mm mm 

(A-23) 

w.aare 

A' = A - Z m m m (A-24) 

'T = t - t* m m 
(A-25) 

(A-26) 
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_ The correction terms are defined as follows: ,/

Zm ,_ zenith cnltbration constant which accounts for internal system
changes such as aging and maintenance of electronic components, _
phase shifts caused by antennas and feed lines, and unequal lengths

of cable connecting the antenna pairs , :

KF _ _!ay of approximately 36 msec caused by the fine filter

. KI _ delay of .120 sec due to the optional 2 Hz bandwidth filter when used

_ The 0,4 second delay in Equation (A-26) accounts for the difference between the

I time of the middle point tMmand the midframe time tFM. This term shifts the ;
reference time of the fine polynomials to that of the corrected mid_rame time.

• The notation [ ] denotes that the integer part of the number is truncated leaving

only the fractional part. This transforms the phase difference to the first

I. ambiguity period at the reference time.

t The ambiguity polynomials are corrected for sequencer and 2 Hz filter deJay,

:i _ their reference times are made equal to those of tbe fine polynomials, and call- ../ i

bration corrections ar_ applied as shcwn in the following equations. _

t
" " bn = CA'] + B_" + Cr 2 (A-27) :

i '
_ where

A' =An + Bn(tm*- t:) + Cn(t*- t:) 2 -Z (A-28)

I _- = t - t* (A-29) :

m

t '

}, t'n = tFM + At_ (A-30)

_, NSr for II,= NSM or NSc

A-23
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The correction terms are defined as follows: 

Z '" zenith calibration constant which accounts for internal system 
m 

changes succ as aging and maintenance of electronic components, 
phase shifts caused by antennas and feed lines, and unequal lengths 
of c:able connecting the antenna pairs 

KF m '" u"lay of approximately 36 msec caused by the fine filter 

KI '"" delay of .120 sec due to the optional 2 Hz bandwidth filter when used 

The 0.4 second delay in Equation (A-26) accounts for the difference between the 
time of the middle point tMm and the midframe time t FM . This term shifts the 
reference time of the fine polynomials to that of the corrected midlrame time. 
The notation [ ] denotes that the integer part of the number is truncated leaving 
only the fractional part. This transforms the phase difference to the first 
ambiguity period at the reference time. 

The ambiguity polynomials are corrected for sequencer and 2 Hz filter deJay, 
their reference times axe made equal to those of tbe fine polynomials, and cali
bration corrections art; applied as shewn in the following equations. 

b = [A') + B r + C r2 
n n n n 

(A-27) 

where 

(A-28) 

(A-29) 

t~ = t Fy + 6t. 
" 

(A-30) 

C =EW. for n = EWy or EWe) 
ITI = NSF for n. = NSy or NSc 
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The correction terms are defined as follows:

• Zn _ same as Z m above

_ td ,,. correction due to sequencer delay, plus a 0.15 sec delay due to a
2 Hz bandwidth filter in the digital recording system

I

_-0.15 for EW medium

0.15 for EW coarse

_td = 0.25 for NS medium (A-31)

,. 0.45 for NS coarse

The first three terms on the rigl_t in Equation (A-28) account (approximately)
: for the shift in reference time of the ambiguity polynomials.

j A.4.2.3 Ambiguity Resolution

The time adjusted and calibrated smoothing polynomials provide the proper 1 s

_ relative phase difference (time variation). The phase difference magnitudes / S
are reduced to the first ambiguity period when the constant terms A'

(n = EWF, EWM, EWc, NSF, NSM, NSc) are reduccd t_ their fractional parts [
in Equations (A-23) and (A-27). Since the time variation Gf the polynomials

is proper, the coefficients B, C (and D for fine polynomials) are correct and
only An' needs to be altered to accommodate the ambiguity resolution. Furthermore,

An' = b _ = 0) = _* is the smooth, time corrected, and calibrated ambiguous
phase difference at approximately the midframe time.

The stepping process, summarized at the beginning of Section A.4.2 and described
in detail in References 9 and 10, is now performed to determine the absolute ph'.se

differences of the fine baseline polynomials. Throughout the following descr_p-
• \ tion, [ ] denotes fracti.-mal part only and { ? denotes minimum phase differ-

ence, i.e., -.500 < { } < .500.

The absolute phase difference for a fictitious North-South and East-West 0.5

wavelength baseline is determined from the medium (4.0 x__velength) and coarse
(3.5 wavelength) baseline relative phase ,:lifferences b*. c a ld b_. s as follows

J

P
$

b0. s = {[b_. 0 .. b3.s]} (A-32)
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The correction terms are defined as follows: 

Zn '" same as Zm above 

6, td '" correction due to sequencer delay, pius a 0.15 sec delay due to a 
2 Hz bandwidth filter in the digital recording system 

6t = 
d 

-0.15 for EW medium 

0.15 for EW coarse 

0.25 for NS medium 

0.45 for NS coarse 

(A-31) 

The first three terms on the rigrt in Equation (A-28) account (approximately) 
for the shift in reference time of the ambiguity polynomials. 

A.4.2.3 Ambiguity Reso!ution 

The time adjusted and calibrated smoothing polynomials provide the proper 
relative phase difference (time val.'iation). The phase differen~e magnitudes 
are reduced to the first ambiguity period when the constant terms A' 

n 

(n= EWF• EW
M

, EWe' NSF' NS
M

, NSc ) are reduced. tf) their fractional parts 
in Equations (A-23) anJ (A-27). Since the time variation Gf the polynomials 
is proper, the coefficients B ,C (alld D for fine polynomialS) are correct anel 

n n n 
only A~ needs to be alte~ed to accommodate the ambiguity resolution. Furthermore, 
A~ = bn \ r = 0) = b~ is the smooth, time corrected, and calibrated ambiguous 
phase difference at approximately the midframe time. 

The stepping process, summarized at the beginning of Section A.4.2 and describe~ 
in detail in References 9 and 10, is now performed to determine the absolute p!1".se 
differences of the fine baseline polynomials. Throughout the following descrl.p
tion, [J denotes fractbnal part only .. and { J denotes minimum phase diff d

ence, i.e., -.500 <. { } < .500. 

The absolute phase difference for a fictitious North-South ap-:; East-West 0.5 
wavelength ba.seline is determined from the medium (4.0 \~ lvelength) and coarse 
(3.5 wavelength) baseline relative phase differences bt, c t. IJ bt 5 as follows 

(A-32) 
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:: The absolute phase differences for the medium and _. _rse l:=_ellnes are obtained
as follows . :

C

r

b'-_.s = 7 bo.s (A-33) +,
/

?

_i b3.s ='b;.s- (['b;.,- b; .j} (A-34)

J-+ b4. o : 8-be. s (A-35)

3

-- -- -- $

)+" b4. o = b4. o - ([b'4. 0 - b4.o]} (A-36)

J

" ?i]

: The absolute phase difference for a fictitious 7.5 wavelength baseline is deter-
:_ mined from the absolute medium and coarse data b4.0 _nd b3.s, as follows

?" b_. s b3. s + b+. o (A-37) .j
4

+,

l Finally, the absolute phase difference for the fine baseline is determined from
'" the absolute 7.5 wavelength baseline data.

,: b; = b 7.s (NF/7"5) (A-38)
t

-* {-_F - b;]} (A-39)_F =bF -

"\

: The above process is performed for both EW and NS baseline data. The result- "
: ing EW and NS fine baseline absolute phase difference polynomials are

bm('r) = b(_ -- 0) + B r + CZ2 + Dm_'3 (A-40)
j, -

s

• (m = EWF. NSF)

°_ where
¢

• _ : t - t* (m = EWF, NSF) (A-41)m {
J

': A-25 ,
!
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The absolute phase difference!:> for the medium and '- ... U'se I:; ~dl1nes are obtai:r:.~d 
as follows 

(A-33) 

(A-34) 

b~oo = 8 boos (A-35) 

(A-36) 

The absolute phase diflerence for a fictitious 7.5 wavelength baseline is deter
mined from the alJsoluta medium and coarse data b 40 0 ~nd b 3. s. as follows 

(A-37) 

Finally. the absolute phase difference for the fine baseline is determined from 
the absolute 7.5 wavelength baseline data. 

(A-38) 

(A-39) 

The above process is performed for both EW &ond NS baseline data. The result
ing EW and NS fine baseline abf30lute phase difference polynomials are 

b (,,) = b (" = 0) + B " + C,,2 0 D ,,3 m m m m or m (A-40) 

where 

(A-41) 
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A.4.2.4 Antenna Field Correction
eL I

The calibration Z given in Equation 1A-28) is determined as an average ovel
the usable antenna field. There are dtstortioas In the field patterns, however,

and they are corrected by the following calibration polynomials operating on the

corrected absolute phase differencea, bNsF and bEWF, obtained from Equation i
: (A-40). These corrections are of the form given below

i :orrected L.._ I0 (A-42)

: '° 1%
i where the coefficients C_ are obtained by field calibration.

"_ A.4.2.5 Conversion to Direction Cosines
._ I ,i:.,,,./

The direction cosines _' r_.ndm' of the corrected phase differences are deter-

• mined from the corrected absolute fine ba_eline phase differences by dividing by -- ,
_ the distance between the fine antennas, expressed in wavelengths of the received '

signal. The fine antennas are positioned to be N F (4_ or 57) times the nominal

136.000 MHz vacuum wavelength. For tz_msmitted signal frequencies uT, the
baseline length in terms of the transmitted frequency is NFUT/136.000. There-
fore, the direction cosine of the received _ig_al from the station centered local
tangent east-pointing axes is

'\',. _, = (bEWF)co' 136.000 (A-43) i ,
• |_'F Vl-

and the direc'don cosine to the local tangent north-pointing axis i

( '
,136.0 00 /

m' = (bNsF)cor,ected _ _ZZ/ (A-44) [

A-26 I-
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A.4.2.4 Antenna l~ield Correction 

The calibration Z given in Equation (A-28) is determined as an average ovel 
n 

the usable antenna field. There art' distortion~ In the field patterns, however, 
and they are corrected by the following calibration polynomtals operating on the 
corrected absolute phase differenCetl bN5F and bUF ,obtained from Equation 
(A-40). These corrections are of the forI& given below 

(A-42) 

where the coefficients C. are obtained by field calibration. 
1 

A.4.2.5 Conversion to Diroction Cosines 

The direction cosilles ,f,' &ild m' of the corrected phase differences are deter
mined from the corrected absolute fine b:l3aline phase differences by dividing by 
the distance between the fine antennas, expressed in wavehmgths of the recaived 
signal. The fine antennas are posj.tioned to be N F (40 or 57) times the nominal 
136.000 MHz vacuum wavelength. For tI:msmitted signAl. frequencies liT' the 
baseline length in tern's of the transmitted frequency is NF lI

T
/136.000. There

fore, the direction cosine of the received uignal from the station centered local 
tangent east-pointing axes is 

,f,' == (b) (136.000) 
EWF cOI;"rted N

F
lIr 

(A-43) 

and the direc'don cosi:.!e to the local tange:llt north-pointing axis 

, _ (b ) 136.000 ( 
" 

.. - .s. , ... "... N. "T ) 
(A-44) 
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Several aspe_, , _ . oce(h_'e _:fluence the accuracy and use
of direction _,:._ne da_ _ i,. subs ,_,_.,_ orblt r_;ete_mination processing. First,
the sampled da_a ar_ apffCximated_._, , _ _bic I_lynomial which is used to de-

termine the directS.on cosmes_ _1_._cubic polynomial can introduce time corre-
lated errors into multiple dire,_tton cos,_, poirs obtained from the same station
pass. Therefore, the vari,_uce of _be r,.yic,t:_ls between the cubic polynomial and
the data should be scrutinized, and cr,_ideration should be given to limiting
the direction cosine data to one pair pe_"station pass. Second, the received sig_ml
frequency in Equations (A-43) and (A-44) neglects the downlink Doppler shift
and assumes that the transmitted and received signal freq_encies are the _ame
(i.e., vR = VT)" Finally, the direction cosines _' and m' correspond to vacuum
signal paths. Thus, atmospheric refraction corrections and light time delays
must be applied in the processor.

A.b VERY LONG BASELINE INTERFEROMETER (VLBI)

Like Minitrack, the VLBI system measures the phase differences at two or more ,L./s
ground stations when they simultaneously receive the same radio signal. How-
ever, in the VLBI system each terminal is controlled by its own independent

i _ frequency standard so that there is no necessity to use cable or microwave links
to preserve the phase coherence among these stat".._ns. This permits the stations
to be separated by arbitrarily large distances, typically of the order of thousands
of kilometers. Since the angular resolution of any interferometer is directly
proportional to the length of the baseline, the VLBI concept permits the position
of the radio source (e.g., satellite) to be determined to a much greater degree of

i accuracy than is possible with a short baseline system like Minitrack.

" The principle underlyin_ the VLBI concept is illustrated by the simplified two- '
\_" dimensional geometry shown in Figure A-5. The figure shows a signal, charac-

terized ss a planar wavefront, being simultaneously received at stations A _nd

i! B, which are separated by distance D. The phase difference _ between the two "
received signals is related to the separation of the stations D as foilows

A_ --(D/h) cos _ (A-45) ,.

, A-27
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Several ast)edtt, .oceOw.'p,- .JHfluence the accuracy and use 
of direction "I:·t'!~ne dal1. i" subs I ... ~.,torblt (f~te.i .. mination processing. First, 
the sampled daM'! al':.l al'f.t"ximatp,d)·~y ... ~hic lJo1ynomiai which is used to d€
termine the dirt!ct:on COSll:.el:l~ 1~~ cubic polynomial can introduce time corre
lated errors into multiple di.r~'ltiol1 COb' D~ poirs obtained from the same station 
pass. Therefore, the vari~Ylc;e of the r·.r-iw.!'lls between the cubic polynomial and 
the data should be scrutinized, i:llld \!r.~"iiidC'ration should be given to limiting 
the direction cosine data to one pail' ptl.l.' station pass. Second, the received sigual 
frequency in Equations (A-43) and (A-44) neglects the downlink Doppler shift 
and assumes that the transmiUt:d and received signal frecl'lencies are the Fame 
(i.P.., lIR = liT)' Finally, the direction cosines,f,' and m' correspond to vacuum 
signal paths. Thus, atmospheric refraction correotions and light time delays 
must be applied in the processor. 

A.b VERY LONG BASEUNE INTERFEROMETER (VLBI) 

Like Minitrack, the VLBI system measures the phase differences at two or more 
ground stations when they simult&.neously receive the same radio signal. How
ever, in the VLBI system each terminal is controlled by its own independent 
frequency standard so that there is no ne-::essity to use cable or microwave lir.ks 
to preserve the phase coherence among tht-se statbns. This permits the stations 
to be separated by arbitrarily large distances, typically of the order of thousands 
of kilometers. Since the angular resolution (If any interferometer is directly 
proportional to the length of the baseline, the VLBI concept permits the position 
of the radio source (e.g., satellite) to be determined to a much greater degree of 
accuracy than is possible with a short baseline system like Minitrack. 

The principle underlyiJlb th~ VLBI concept is illustrated by the Simplified two
dimensional geometry shown in Figure A-5. The figure shows a signal, charac
terized as a planar wavefront, being simultaneously received at stations A ~nd 
B, which are separated lJy distance D. The phase difference 6¢ between the two 
received signals is related to the separation of the stations D as foHows 

6¢ = (D/~) cos (J (A-45) 
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_ FigureA-5. SimplifiedSchematicof VLBI i

where _) is the source direction and K is the signal wavelength. When the value

, of 8 is such that A¢ is an integral number of half-cycles, i.e., 8 = oo_-_ (nX/2.D)
where n is ,an integ3r, the signals received at each terminal are in phase or anti-
phase, and a relative ex_remum of power is available from the interferometer.

As the source transits the inter_rometer, a power (or intensity) response like , .."

that shown in Figure A--6 is produced. The abscissa is time, which is rela_ed

monotonically to the sour_8 direction 0. Ifthe time a_ which a specific fringe is ]
produced can be determined precisely enough, the relationship for A¢ in Equa-

tion (A-45) can be equally precisely specified in terms of source posiUon and :.
baseline parameters. The fringe density is so srea6, however, that it i_ very

difficult to identify the central fringe (the fringe produced when the source diruc-
tion is perpendicular to the baseline), and hence very difficult to record accurately
the time of p_ge through any n th -order fringe (i.e., the fringe displaced from
the cantrai one by n cycles). _

/

FigureA-6. InterferometerFringes

/
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Figure A-5. Simplified Schematic of VLBI 

where e is the source direction and A is the signal wavelength. When the value 
of (Ji8 sunh that 6.¢ is an integral number of half-cycles, Le., e = Cu3- 1 {!l.A_/2D) 
where n is an integar, the signals receivod at each termini:l.l. are in phase or anti
phase, and a relstive eA1remum of power is available f:rom the interferometer. 

As the source transits the inter:l~rometer, a power (or intensity) response like 
that shown in Figure A··6 is produced. The abscissa is time, which is related 
monotonically to thA soures direction o. rf the timA ~t which a specific fringe is 
produced can be determined precisely t3nough. the relationship for 6.¢ in Equa
tion (A-45) can be equally precis~ly specified in terms I)f source position and 
baseline parameters. The fringe density is so great, however, that it i~ very 
difficult to identify the central fringe (the fringe produced when the source dir~(;
tion is perpendi.cular to the baseline), and hence very difficult to record accurately 
the time of l)~.B~age tbrough any nth -order frtnge (i.e., the fringe displaced from 
the central one by n cycles). 

-It ..... 

-
Figure A-6. Interferomet~r Fringes 
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"_ The fringenumber ambiguityis resolvedby recordingthe receiveclsignal _
onto magnetic tape at as high a b_ndwidth as possible.These recorded _*

signals are clipped and sampled so that the information is preserved in distal |

format. Corrections to compensate for the clipping and sampling are applied Iduring preprocessing. Pairs of tapes, one from each station, are crosscorrelated i
afterwards in a pr_processing program. The correlations are repeated for many
trf.._l combinations of relative delay offset and delay-rate offset between the two

records. When both digital records are correctly aligned, all of the frequencies
within the signal bandwidth will have the same phase, and at this point the super- _"

position of all the harmonic components within the complex correlation function

v._ll produce a maximum lnits amplitude, as well as in the amplitude of its power
spectrum. For each observation, the delay and delay-rate values that rroduce

this maximum are recorded, and the series of such values form the observables ,
that enter as input into the GTDS progr_n.

: A. 6 RADAR ALTIMETER

A satelliteis assumed tobe ina near earthorbit,and itsattitudeis assumed j
/s

: to be stabilized so that the axis z I of an attached pointing instrument is directed ._
,_ alon_ the local vertical or gravity gradient. This may be accomplished (ss for

J GEOS-C) by gravitygradientstabilizationor otherattitudestabilizationtechniques.
Such stabillzatiovallowsthe use of a directionalantenna,pointedalongthezI-
axis,forthe radar altimeter.The transmitteraboardthe satellitetransmits

X-band signalpulseswhich form a seriesofsphericalwavefrontsdirected
towardsthe earth. The antennabeamwldth resultsin a signalcone with_tsapexat

thetransmitterand an axiswhich coincidesapproximatelywiththez_-axisof
the satellite _s shown in Figure A-7. As the wavefront of each pulse intersects
the sea surface, it is reflected back towards the satellite. The tilde difference
between the time of transmission and time of reception of the radsr pulse Is a _ "

_.. measure of the height of the satellite above the local surface. If the beam- ;
width of the transmitted signal is larger than the nomtnal spacecraft libration in

_ attitude about the local vertical, the first return signal will lie on the transmission ' ,
path normal to the sea surface and through the satellite° The effective size of the

r tllumlnatecl spot on the surfac.e is determined by the transmitted pulsewidth, the _ '
beamwidth, and the type o_ return pulse detection utilized. As long as the local
vertical from the surface to tb_ satellite lies tn_ide the antenna beamwidth cone,

i the altimeter measurement will represent the shortest distance between the /
satelliteand the sea surface. _ .

4
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The fringe number ambiguity is resolved b~T recording the received signal 
onto magnetic tape at as high a bl".ndwidth as possible. These recorded 
signals are clipped and sampled so that the information is preserved in digital 
format. Corrections to compensate for the clipping and sampling Rre applied 
during preprocessillg. Pairs of tapes, one from each station, are crosscorl"elated 
afterwards in a preprocessing program. The correlations are repAai:ed for many 
trial combinations of relative delay offset and delay-rate offset between the two 
records. When both digital records are correctly aligned, all of the frequencies 
within the signal bandwidth will have the same phase, and at this point the super
position of all the harmonic components within the complex correlation function 
w.Jl !Jroduce a maximum luits amplitude, as well as in the amplitoJ.de of its po~r 
spectrum. For each observation, the nelay and delay-rate values that rroduc9 
this maximum are recorded, and the series of such values form the observables 
that enter as input into the GTDS progr2JIl. 

A.6 RADAR ALTIMETER 

A satellite is assumed to ~e in a near earth orbit, and its attitude is assumed 
to be stabUized so that the axis z I of an attached pOinting instrument is directed 
alon?: the local vertical or gravity gradient. This may be accomplished (aB for 
GEOS-C) by gravity gradient stabilization or other attitude stabilization techniques. 
Such stabilizatioll. allows the use of a directional antenna, pointed along the ZI

axis, for the radar altimeter. The t~ansmitter aboard the satellite transmits 
X-band signal pulseB which form a series of spherical wavefronts directed 
towards the aarth. The antt-.lnna beamwidth !'esults in a signal cone with Its apex at 
the transmitter and an axis which coincides approximately with the ZI -axis of 
the satellite PB shown in Figure A-7. As the wavefront of each fJulse intersects 
the sea surface, it is reflected back towards the satellitE-. The tiu')e difference 
between the time of transmission and time of reception of the radar pulse is a 
measure of the height of the satellite above the local surface. If the beam-
width of the transmitted signal is larger than the nomtnal spacecraft libration in 
attitune about the local vertical, the first return signal will Ue on the transmission 
path normal to the sea surface and through the satellite. The effective size of the 
illuminated spot on the suiace is determfned by the transmitted pulsewidth, the 
beamwidth, and the type of return. pulse detection utilized. As long as the local 
vertical from the surface to tbe satellite lies im"lde the antenna beamwidth cone, 
the altimeter measurement will represent the shortest dist.ance between the 
satellite and thfJ sea surface. 
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Figure A-7. Radar Altimeter Cone
J

f_
: , The satellite timing equipment p_ovides signals for measuring the time interval

; between the transmitted and received signals, and _or time tagging discrete

"4 observations. This timing equipment is periodically cahbrated from ground s
r

stations. <1"

Initial preprocessiag of the altimetry data wi91.consist of applying calibration
and ambiguity corrections to the t_vo-way time difference between transmitted

and received signals, and convel_ing the result to an altitude by multiplying by

one-half the speed of light. The time tag is calibrated and corrected to the

midtnterval time (i.e., the time that the signal is reflected from the sea surface}.
After these preprocessing computations, each data element is treated as if it
were an instantaneous measurement at the midinterval time.

i

_- A.7 SATELLITE-TO-SATELLITE TRACKING

A relay satellite is assumed to be in a near synchronous orbit over a tracking

site, and a target satellite is assumed to be in a low elliptical orbit. Figure A-Sa

presents a schematic of the geometry of the two satellites relative to the tracking

site. The tracking station transmits a signai to the relay satellite. The relay

satellite then retransmits the signal to the target satellite, which retransmits

it back to the relay satellite. Finally, the relay satellite retransmits the signal

to the ground station. The signal traverses the path S -- A _ 1'_ _ A _ S. The

return signal, when related to the transmitted signal, can be expressed as the

sum of the range segments of the signal path {RS) and the bime derLvative of the

range sum (RSR).

I
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Figure A-7. Racbr Altimeter Cone 

The satellite timing equipment ti_;Jvides Signals for nleasuring the time intc!"val 
between the transmitted and rect!lvcG signals, and lor time tagging discrete 
observations. This timing equipment is periodically calibrated from ground 
stations. 

Initial preprocessing of the altimetry data wi1.1 consist of applying calibration 
and ambiguity corrections to the two-way time difference between transmitted 
and received signals, and converting tlJ.e result to an altitude by multiplying by 
one-half the speed of lir--ht. The time tag is calibrated and corrected to the 
midinterval time (Le., the time that the signal is reflected from the sea s~face). 
After these preprocessing computations, each data element is treated as if it 
were an instantaneous measurement at the midinterval time. 

A.7 SATELLITE-TO-SATELLITE TRACKING 

A relay satellite is assumed to be in a near synchronous orbit over a tracking 
site, and a target satellite is assumed to be in a low elliptical orLit. Figure A-Sa 
presents a schematic of the geometry of the two satellites relative to the tracking 
site. The tracking station transmits a signai to the relay satellite. The relay 
satellite then retransmits the signal to the target satellite, which retransmits 
it back to the relay satellite. Finally, the relay satellite retransmits the signal 
to the ground station. The signal traverses the path S .... A - N .... A .... S. The 
return signal, when related to the transmitted Signal, can be express~d as the 
sum of the range segments of the signal path (RS) and the time derivative of the 
range sum (RSR). 
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k An exaggerated schematic of the signal paths is shown in Figure A-8b. The
'_ station transmit_ a signal at time t 0. The signal is received by the relay

} satellite at t 1 and retransmitted to the target satellite at t_ +/_l where Ah _

__ the transponder time r_elay. The target satellite receives the signal at t 2 an-]
[ retransmi_s back to the relay satellite at t 2 + 572. The relay aateUite receives , i

the retransmitted sign_,l at ta, and "alter a transponder time delay, of A_3 , sends
- it back tothe ground station, which receives it at t 4, The station records the ,.

• data at UTC tag time t R. The signal time delays depicted in Figure A-8b are •
defined as follows: i •

c

RelaySatellite t3 tl '] :

-' A i :
iAr3

/:ti_ 2

I ,
Stat _

N ( i 'i

\_/),/_ TargetSatellite 'i

(a) (b) t _:

FigureA-8. Rang_SumGeometryendTra.smissionLegs

h "_ time delay due to the transponder on the relay _
satellite at its firsg reception

, _

Ar2 ,_ time delay due to the transponder on the target _ ,
satellite at its reception ' _

A_ ~ time delay due to the transponder on the relay
! satelliteatitssecond reception

-I=" A-31
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An exaggerated schematic of the signal paths is shown in Figure A-8b. The 
station transmiti: a signal at time to' The signal is received by the relay 
satellite at t1 and l.·~transmitted to the target satellite at tl + t.T1 where t.T\ ~~ 

the transponder time rl~lay. The target satellite receivps the signal at t2 anj 
retransw..its back to tne relay satellite at t 2 + 6T 2' Tile relay .;atellite r~ceives 
the retransmitted sign:> .. l at t3' and after a transponder time dela~· of t.T3' sends 
it back tothe grou.u.dstation, which receives it at t 4 • The station rec(lrds the 
data at UTe tag tiMe t R, The signal time delays depicted in. Figure A-8b are 
defined aq foll()ws: 

Relay Satellite t3 t1 

A 
iM31 

I 
t 

rT 
N 

1 Target Satellite 

J 
\ '" / '-... . --(a) (b) 

Figure A-a. Rang!: Sum Geometry and Trallsmission Legs 

t::. T1 '" time delay due to the transponder on t.he relay 
satellite at its first reC\3ption 

t::. T3 '" time delay due to the transponder on the relay 
satellite at its Recond reception 
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_ _t 1 _ light *" " ._lmospheric delay during leg 1

_: At 2 "_]',ght time delay during leg 2

_ At 3 "_light time delay during leg 3 '
J

: At 4 _ light time and atmospheric delay during leg 4. i

The recorded measurements, descr'bed in Section A.1, consist of
t

" • The gimbal angles X and Y defining the direction of the received signal
path at time t F.

• The four-way range time delay, measured as a count C of .*he number1
: of cycles of a reference frequency VR1 which occurs between the positiw,,-

directed zero crossings of the high-frequency ranging tone (frequency _h ) _,

_'i associated with the transmitted and received signals. The counter isstarted and the tag time t R is signaled simultaneously by a positive
: ] zero crossing of the transmitted signal. The counter is stopped at the

_i next zero crossing of the received signal.

• The four-way range-rate measurement ., be made in two ways. In the --t" _

"destruct" method the measurement is Co, the number of cycles of a
: reference frequency _R2 required to simultaneously count e×actly N J

: cycles of the Doppler-plus-bias signal lJ d + L' b. The count is begun at .

time t R and ended after the accumulation of N cycles of the lJd -I. Vb mgnal.
In the "non-destruct" method the measurement is N, the number of cycles

of the Doppler-plus-bias signal _d + _'b required to simultaneously count !
C0, a fixed number of cycles of the reference frequency, i.e., At for the

counting period is constant. _;

. A more detailed description of the Doppler measurement for an existing '
satellite-to-satellite tracking scheme can be found in Reference 11.

,° The data sample time t_ corresponds to the time that the range measurement , _,
of the received signal was inigigted. Therefore, the end cf the measurement

occurs at ')

, CI :"t 0= t + -At_ n (A-46) : ,_
% :i

where AtRD wccounts for ihe signal propagation delay withtD the ground station
electronics as well as dcl_ in the counter itself, and is determined by on-site "
calibration, The round t_ ', 'tght time is

A-32
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l1tl '" light t:ill~ .!D.c.' :-.tmospheric delay dur1n~ leg 1 

6. t 2 "V] ~ght time delay during leg 2 

tot 3 "V light time delay during leg 3 

6. t <4 '" Ught time and atmospheric delay during leg 4. 

The recorded measurements, descr'bed in Section A,I, consist of 

• The gimbal ar.gles X and Y defining the direction of the received signal 
path at time t F, 

• The four-way range time delay I measurer. as a count C 1 of tile number 
of cycles of a reference frequency lIRl which occurs between the POSitiVEI

directed zero crossings of the high-frequency ranging tone (frequency Lih ) 

associated with the transmhted and receivl3d signals. The counter is 
started and the tag time tR is signaled Simultaneously by a positive 
zero crossing of the transmitted signal. The counter is stopped at the 
next zero crOSSing of the received signal. 

• The four-way range-rate measurement .1 be made in two ways. In the 
"destruct" method the measurement is Co' the number of cycles of a 
reference frequency VR2 required to simuaaneously ~ount exactly N 
cycles of the Doppler-plus-bias signal Lid + L'b' The count is begun at 
time tR and ended after the accumulation of N cycles of the lid .. Vb signal. 
In the "non-destruct" method the measurement is N, the number of cycles 
of the Doppler-pIus-bias signal Lid + l-'b reql.ired to simultaneously count 
Co, a fixed number of cycles of the reference frequency, i.e., 6t for the 
countiTlg- period is constant. 

A more detailed description of the Doppler measurement for an ~xistinr. 
satellite-to-satellite tracking scheme can be found in Reference 11. 

The uata sample tim..; ts corresponds to the time that the range measurement 
of the received signal was initiated. Therefore, the end c..f the measurement 
occurs at 

(A-46) 

where 6.tRD accounts for ine Signal propagation delay within the ground station 
electronics as well as dda~ in the counter itself, and is determined by on-site 
calibratioll. The round 11,:, fight time is 
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_ 7 CI Pa Pb

AtR - + _ +_ - AT - &tRD (A-47)
VRI lJh I_L

i'
_. where I

Pa' Pb "_ range ambiguitynumbers

; :: A_ --thesum ofthetranspondertime delays

The ambiguity number p_, the number of cycles of vh , is determined by range
tone methods which superimpose a series of low frequencies on vh . The ambi-

: guity number Pb ' the number of cycles of vL , is the large ambiguity which
; results from the light time being greater than 1/v L . Both At_ and p./v h are

accounted for in the logic by the station hardware. The time of the return signal

t 0 does not involve the range ambiguity numbers since their effect would be to
/ increase the return time erroneously rather than decrease the transmission
; time. The range ambiguity can be accounted for in the gross logic of the process,

since its omission accounts for large, obvious errors.
t _ pJ

I

4_ A-33

t

1976017203-508

(A-47) 

where 

Pal P
b 

""' range ambiguity numbers 

6T ""' the sum of the transponder time delays 

The ambiguity number Pa , the number of cycles of ),Ih' is determined by range 
tone methods which superimpose a series of low frequencies on ),Ih. The ambi
guity number Ph ' tne number of cycles of ),IL ' is the large ambiguity which 
results from the light time being greater than l/),IL. Both 6 t RD and Pa /z-'h are 
accounted for in the logic by the station hardware. The time of the return signal 
to does not involve th9 range ambiguity numbers since their effect would be to 
increase the return time erroneously rather than decrease the transmi.ssion 
time. The range ambiguity can be accounted for in the gross logic of the process, 
since its omission accounts for large, ol.,vious errors. 
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:: : TIME ELEMENTS :

_ The Time-t'.egularized Cowell system of equations achieves analytic stepsize _ '

control through the transformation of the independent variable time to a new il ,'
i variable s defined by i

:: i dt a :-- = r (B-l) }

} where a is called the uniformization constant and r is the magnitude of the radius
/

: vector. The physical1"imet is obtainedthroughthe integrationof Equation(B-l),
: which involves r. Any linear error in r will propagate into a nearly quadratic _:

t

error in the time. Time elements are introduced to reduce this nearly quadratic ::
error growth to a nearly linear error growth for perturbed motion. An element

J i in two-bodymotion isdefinedas a parameter which iseitherconstantor a ,linear function of the independent variable.

' For perturbedmotion (assuming small perturbations)an element v'_riesslowly _ ,,

from the two-body solution. Thus, in deriving a time element _ for the Time- ,_-/"
i" Regularized Cowell method, _ is required to vary linearly with the independent

• : I variable s, i.e., i

d_r

-- =c (E-2) :'_ ds

where c is a constant; it is also required that _- be related analytically to the
physicaltime t. This isdone viaKepler'sEquation )

1
t = to +- (E-e sinE) (B-3)

which can be rewrittenwiththeintroductionof r as

1
t = to + _- g(a----_)+--(Z-e sinE) (B-4)

II n
#

where, by definition,

-
n (B-5)

and g(a ) is a ftmction relating _ to the Kepler element a. |

, i
_ B-1

, &
le_e I ml i I ml .... I I{]ll _ m
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APPENDIX B 

TIME ELEMENTS 

Tht.) 'Time-Regularized Cowell system of equations achieves analytic stepslze 
control through the transformation of the independent variable time to a new 
variable s defined by 

dt a - = r ds 
(B-1) 

where a is called the untformization constant and r is the magnitude of the radius 
vector. The. physical time t is obtained through the integration of Equation ('8-1), 
which involves r. Any linear error in r will propagate In1.O a nearly quadratic 
error in the time. Time elementf; are introduced to reduce this nearly quadratic 
error growth to a nearly linear error growth for perturbed motion. An €l~ment 
in two-body motion is de-fined as a parameter which is either constant or a 
linear function of the ind,ependent variable. 

For perturbed motion (assuming small perturbations) an element vuies slowly 
from the two-body solution. Thus, in deriving a time element". for the Time
Regularized Cowell method, ". is required to vary linearly with the independent 
variable s, I.e., 

d". 
-=C 
ds (B-2) 

where c is 8, (~Onstanti it is also required that". be related analytically to the 
physical time t. This is done via Kepler's Equation 

t = to + .!. (E - e sin E) 
n 

which can be rewritten with the introduction of ". as 

where, by definition, 

t = to + ". -~ +.!. (E - e s in E) 
n n 

". = g(a) 
n 

and g(a) is a fWlction relating ". to the Kepler element a • 

B-1 

(B-3) 

(B-4) 

(B-5) 
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1 :
! DifferentiatingEquation(B-5)withrespectto s and substitutingEquations(B-I) _ _/ :

c

and (B-2)yields i

dg_ ! _
-- -ncr -_ (B-6)dt ._

#

B.1 UNPERTURBED MOTION :_

The definitionofthefunctiong isobtainedforvariousvaluesof a by utilizing
known integralsofthetwo-body problem.

B.1.1 Time Element Correspondingtothe EccentricAnomaly (a = 1)

In Keplerianmotion,thetime derivativeof theeccentricanomaly E isgiven
by "

dE = nat-I (B-7): dt

where the mean motion n and the semimaj( ': axis a are constants for two-body ,,
motion. Comparing Equations (B-6) and (B-7) for a = 1 yields ._

g = E (B-Sa)

and '-

c =a tB-Sb_

Thus,
.3

,_. d_r_ 1 dE ra = a (B-9) '
ds n dt

and, from Equation (B-4) ,.

.to +'r e sinE _oJLv/'_-_""t

which is the desired result for two-body motion.

B-2
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Differentiating Equation (B-5) with respect to s and substituting Equations (B-1) 
and (B-2) yields 

dg -a - = ncr 
dt 

(B-6) 

B.l UNPERTURBED MOTION 

The definition of the function g is obtained for various values of 0; by utilizing 
mown integrals of the two-body problem. 

B.1.l Time Element Corresponding to the Eccentric Anomaly (0; = 1) 

In Keplerian motion, the time derivative of the eccentric anomaly E is given 
by 

dE -1 -::: nar 
dt 

(B-7) 

where the mean motion n and the semimaj('~ axis .1 are constants for two-body 
motion. Comparing Equations (B-6) and (B-7) for a. = 1 yields 

and 

Thus, 

and, from Equation (B-4) 

g=E 

c = a 

d7" 1 dE a 
-=--r =a 
ds n dt 

e sin E 
t = to + 7" - --

::1 

which is the desired result for two-bo'..iy motion. 

B-2 

(B-8a) 

(B-8b) 

(B-9) 

(B-IO) 
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L2 B.1.2 Time Element Corresponding to _he True Anomaly (a = 2)

7:
The time derivative of the true anoma',y f is given by

df
-- = _ r"2 1B-11) •
dt _;

where the semilatus rectum p is a constant of the motion for the Kepler problem.

Comparing Equation (B-6) and Equation (B-11) yields

= f (B-12a)
\

and _

c - _ (B-lZb) :
n

Thus, I :-

d__ 1 d f r2 _ _ (B-13) _//4ids n dt n

, )

which is the desired differeutial equation for _. Kepler's equation, Equation i
(B-4), can t.hen be written as

J •

-- ) f 1 - sin E)t = t0+_'---+ (E e, n n t _;
(B-Z4) , .,

1

, (f-E) e sine ' i

) B.2 PERTURBED MOTION

i The extension of the time element equation for perturbed motion is presented ,
for ,, -- 1 and a = 2, using the approach followed in References 1 and 2.

¢
f
I B.2.1 Time Element Equation Corresponding to the KS Formulation (a = 1) ' ,

Equation(B-10) can be writtenas

f

; =---.' ...... •.... ).I_ =,m====-.,-m '. _ .:-:- :==7: -:-:::::'_ .,.
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B.1.2 Time Element Corresponding to 'he True Anomaly (a. = 2) 

The time derivative of the true anoma'.y f is given by 

df ~-2 - = v J.Lp r 
dt 

(B-ll) 

where the semilatus rectum p is a constant of the motion for the Kepler problem. 

Comparing Equation (B-6) and Equation (B-ll) ylelds 

and 

Thus, 

g = f 

~ c=~ 
n 

d7" 1 df 2 IJ.Lp 
ds -;; dt r =-;-

(li-12a) 

(B-12b) 

(B-13) 

which is the desired differential ~quation for 7". Kepler's equation, Equation 
(B-4), can then be written as 

t = to + 7" _1. + 1.. (E - e sin E) 
n n 

_ t (f - E) e sin E 
- 0+7"- ----

n n 

B.2 PERTURBED MOTION 

(B-14) 

The extendion of the time element equatlon for perturbed motion is presented 
for a = 1 and a = 2, USing the approach followed in References 1 and 2. 

B.2.1 Timo Element Equation Corresponding to the KS Formulation (a = 1) 

Equation (B-IO) can be written as 

B-3 
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:': _r= t + 2h_ (B-15) ._

°_

where hK is the negative Keplerian energy

hK _ /x v 2" r 2 18-16) {

: " Differentiating Equation (B-15) with respect to the new independent variable s :

: yields

• ?

: d, _ dt _(}'_'_r) (r" r) r_".r l_] dt (B-17) i :

-i

_ ! This expression simplifies to

_-J d__ _ + r(-r'P) + r('f'r) (r-P) (B-18) .-t

""i

' where P is the perturbing acceleration, i.e., I

r = __ +P (B-19)
3 "

The differentialequation for the time element in Equation (B-18) clearxy has the

desired properties in thatthe element varies linearlywith re_'peetto the inde-

pendent variable s for unperturbed motion (P = 0),and for perturbed motion

",, (prowding P is small) the element varies slowly from the two-body solution•

' \ An alternative expression involving the total energy

h = i_ - V (B-20)

where V is the perturbing potential, can be derived by beginning with the expression

= t + _(_' r) (8-2l)
2h

Differentiating this equation with resp,_ct to the independent variable s yields

i

B-4 R]_RODUCIBILrI_#0P TIIK "q
ORIG_1ALPAGE ]B POOR

1976017203-513

(B-15) 

where hx is the negative Keplerian energy 

fl v 2 

hx=---r 2 
(B-16) 

Differentiating Equation (B-15) with respect to the new independent variable s 
yields 

This ~xpression simplifies to 

d'T _ fl r Cr . P) r (r . -f) ci=" . P) 
--- +--- + ----
d~ 2~ 2~ 2~ 

where P is the perturbing acceleration, i.e., 

~ -flr -r = __ +P 
3 

(B-17) 

(B-1S) 

(B-19) 

The differential equation for the time element in Equation (B-1S) clearlY has the 
desired properties in that the element varies linearly with rer-pect to the inde
pendent variable 5 for unperturbed motion (Ii = 0), and for perturbed motion 
(providing P is small) the element varies slowly from the two-body solution. 
An alternative eX?ression involving the total energy 

h=hK-V (B-20) 

where V is the perturbing potential, can be derived by begianing with the expression 

(r . r) 
r=t+-=~ 

2h 
(B-2l) 

Differentiating this equation with resp'"ct to the inde}:lendent variable s yie Ids 
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"I1

, d-r_ 1 _- 2rV- r(T. VV)+ r(¥'P)] -r(-f" r) !_ IB-22) ,
: ds 2h 2h2

J

where VV is the perturbing acceleration due to the perturbing potential function, i
i.e.,

• " r - _ P - VV 1B-23) ,_
; r 3

:i

Equation (B-22) can be shown to be the time element equation corresponding to
the KS formulation (Equation (5-10a)) by noting that

d d
_= 2_- (B-24)ds dE "

co = _ (B-25) j.
i' IS _

} The comparison between Equations (B-18) and the KS equatiorL, Equation (B-22), !
has been made in Referencb 2, and it was found that they give the same amount : :

[ ,. of accuracy improvement for the +_qfed._.cases.

_: B.2.2 Time Element Equation Corresponding to the DS Formulation (a = 2)

Equatim:1B-15)can be written as

(_._) _(f - E_

2hK (2N_3/_ "_
'%

Differentiating Equation (B-26) wit3 respect to the new independent variable s

yields ,,,

dT_ dt r2 r2(7.r)

: ds as +_"-_ [(r' r) + (_" r)] I_
2h_ ,_

f, (B-27) .

: _i /_r2 3_r _(f - E)

i (21%),v_ (2hz)S.'2

9760 7203-5 4

d'T 1 r ~'"f) h -- = - ~ - 2 r V - r cr' VV) + r (r . P)] 
ds 2h 2h2 

(B-22) 

where VV is the perturbing acceleration due to the perturbing potential function, 
i.e., 

:.:. -fJ-r -
r =_ -+ P - VV 

r3 
(B-23) 

Equation (B-22) can be shown to be the time element equation corresponding to 
the KS formulation (Equation (5-10a» by noting that 

d d 
-=2w-
ds dE 

(B-24) 

and 

C,) = Ih/2 (B-25) 

The comparison between Equa.tions (B-18) and the KS equation, Equation (B-22), 
has been made in Refe!"encb 2, and it was found that they give the same amount 
of accuracy improvement for ~be tested cases. 

B.2.2 Time Element Equation Corresponding to the DB Formulation (a = 2) 

EquatiOl: (B-15) can be written as 

'T = t + cr· r) +fJ-(f - £). 
2~ (2~ )3/2 

(B-26) 

DIfferentiating Equation (B-26) w1t~l respect to the new Independent variable s 
yleldR 

(B-27) 

+ 



l
This expression simr]ifles to

r 2 _ r 2
d_"_ _ _ + (T" P) + _ (_'" r) (r" P)

(B-9.8) i -

+ (f-E) (r'P) + .. _. "P- • •

, " (2hx)S/2 (2hx)3/2 t.

! Noting that the leading term In this ec_lation is a constant and all o_her terms
are a function of the perturbations, it is clear that this differential equation for

has the desired properties noted previously. °,

The differential equation {or the time element .£ in the DS formulation (see

Equations (5-45), (5-46), z.ndRFf_ercncu _) is given by _:i

%J d__ /_ +V r (2 ar r _.._ r2 _V ! ,"_ds (2L)3/2 q _/34 q _4} + q aL P4 (B-9"9) _;/ "

where L, the total energy, is one of the elements of the formulation, and s, the
independent variable, is the true anomaly. Transforming the independent
variable of Equation (B-28) to the true anomaly using the operator

d d
-- = (G - _) -- (B-S0)
ds df

",, (where G isthe _.otalang,'dar momentum and • istheperturbingenergy)and ,

\ lettingOl repre£ental_terms dependentupon ¢r_rturbations,yields ,,

d_"_ /_ + QI (B-31) '
df (2hx)3.2

If _ represents those terms in Equation (B-29) which are dependent upon per-
turbations, the followingequationresults

d_ _ # + O2 {B-32)
ds (2L)a/2

,.:

B-6
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This exprflission silIlJ'lifies to 

(B-28) 

Noting that the leading term in this equation is a constant and all other terms 
are a function of the perturbations, it is clear that this differential equation for 
r has the desired properties noted previously. 

The differE:ntial equation for the time element·t in the DS formulation (see 
Equations (5-45), (5-46), ;;nd Rpfercnc;", :J.j is given by 

(B-29) 

where L, the total energy, is one of the elements of the formulation, and s, the 
independent variable, is the true anomaly. Transforming the independent 
variable of Equation (B-28) to the true anomaly using the operator 

d d 
- = (G - ell) -
ds df 

(B-30) 

(wbere G is the total ang'uar momentUnl and ell is the perturbing energy) and 
letting Q1 repreEent al~ ter.'ms I.~ependent upon perturbations, yields 

dr 
df 

(B-31) 

If ~ represents those terms in Equation (B-29) whioh are dependent upon per
turbations, the following equation results 

(B-32) 

B-6 
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' As in the case where a -- I, the leading term in Equation (B-31) is a s_mctlon of
_ the Keplerian energy h K , whereas the leading term in Equation (b -32) is a

function of t_'e totai energy L. This may lead to accuracy improvements for
eonsezwative perturbed motion situations, although at present no comp.'urison

stl_dies have been perfo,uned, i

I
i

% !

B..7
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As in the case where a =- 1, the leading term in Equation (B-31) is 3. function of 
the Keplerian energy hK' whereas tlte l~ading term in Equation (b -32) is a 
function of U:e total energy L. This may lead to accuracy improvements for 
conservative perturbed motion situations, although at present no comparison 
studies have been perfOJ."1lled. 

B··7 
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; _ . APPENDIX C i i

2
• _ DEVELOPMENT OF RANGE-RATE FORMULAS

, This appendix presents the devt_lopment of formulas which relate the tracker and :,

spacecraft relative motion to the Doppler shift in an electromaguetic signal trans- . ' }

mitted from one to the other. For a further definition of the mathematical sym-// '

" Systems.b°lsused, refer to Appendix A, which describes the GRARR, ,VI'SB, USB_/S_T .

The general relativistic expression relating the frequencies of an electromagnetic ::

signal propagation from a transmitter to a receiver is

)
,t

Ur at - Fr'iir"_ (C-l)
- _

, _ _

where ,,

l 2 i= "'+._ " "" (C-2)
• a O0+ goix_ c2

i=l l,j=l

1 googil)ddx. dxJ /_" goiF- (g01g0J- S dS _ :,,
Cgo0 i,j=l i=l

and

t, r ~ subscripts indicating that the designated quantities are evaluated
at the transmitter and receiver, respectively

I)t' Pr '_* frequencies of the transmitted and received signals
.i

rt, rr _ velocities of the transmitter and receiver, defined as the derivatives '
of theirinertialpositionswithrespecttothecoordinatetime_" ._

gii elements of the metric matrix defining the nature of the space-time
frame

'" c-I REPRODUCIBILrrYOF
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APPENDIX C 

DEVELOPMENT OF RANGE-RATE FORMULAS 

This appendix presents the devdoprr;ent of formulas which relate the tracker and 
spacecraft relative motion to the Doppler shift in an electromagiletic signal trans- . 
mitted from one to the other. For a further definition of the mathematical sym-,// 
boIs used, refer to Appendix A, which describes the GRARR, ATSF, USB andJST 
Systems. ./ 

The general relativistic exp-ression rdating the frequencies of an electromagnetic 
signal propagation from a transmitter to a receiver is 

II a ~ - Fn . tJ r t r r r ---
lit ar 1 - l\"t . ~ 

(C-l) 

where 

and 

a = 

1 
F=-

egoo 

(C-2) 

(C-3) 

t. r ,.., subscripts indicating that the designated quantities are evaluate:.d 
at the transmitter and receiver, respectively 

"t' "r frequencies of the transmitted and received signalA 

. . 
r;. r; velocities of the transmitter and re::eiver, defined as the derivatives 

of their inertial positions with respect to the coordinate time r 

~j elements of the metric matrix defining the nature of the space-time 
frame 
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:: ×i ~ components _,f the space coordinates /

• S _ arc length along the propagation path

_, nt, nr "_ unit vectors along the local propagation path at the transmitter and
recei_-er, respectively

l

c _ wave propagation speed

The derivatives, dx i/dS are simply the direction cosines o_.the propagation path,
and thusare _hccomponents ofthelocalunitvector_.

!_ Equation(C-1)is derivedunder theassumptionthatthemetric elements gi] v_._
slowlyintime compared withthewave propagationspeed c. This is _ good ap-

proximationsincethe variationsofthegij'sare due tovl?.n_tarymotions,which
are very slow compared withc.

i'i Inprinciple,theg ijshouldmathematicallydescribeeverythingtlmtphysicaily
.!

: 1 affects the propagation of electromagnetic waves in th_.ir region of definition,
",1 including gravitational influences, the refractive effects of the atmosphere, and

' any other significant influences. If such a rigorous mathematical descrip:ion of ,/
the space-time frame could be formulated and then solved analytically, pr,_p_.ga-

tion paths for specific cases could be computed very accurately as geodesics.

However, no such completely general treatment of the problem has yet been
produced.

It is generally assumed that the metric coefficients for the case of special

relativity are

g00 = 1

"- _i -1 (C-4)
i,j= 1,2,3

gij = 0, iCj
4

Equation (C-2) then becomes

(c-s)

e

}

C-2

\
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components ~ 'f the space coordinates 

s arc length along the propagation path 

unit vectors along the local propagation path at the transmitter and 
receiver, 'l.'espectively 

c wave prop:::.gation speed 

The derivative~ dxi IdS are simply the direction cosines of the prf)pagalion path, 
and thus are ~h(; components of the local unit vector n. 

Equation (C-l) is derived under the assumption that the metric elements gij Vb.ry 

siowly in time compared with the wave propagation speed c. This is b. e;ood ap
proximation since the variations of the gij ts are due to pl?rldtary motions, which 
are very slow compared with c. 

In principle, the g ij should mathematically describe everything that physicaUy 
affects the propagation of electromagnetic waves in thp.ir region of definition, 
including gravitational influences, the refractive effects of the atmosphere, and 
any other significant influences. If such a rigorous mathtlmatical description of 
the space-time frame could be formulated and then solved analytically, pr,)pr.ga
tion paths for specific cases could be computed very accurately as geodesics. 
However, no such completely general treatment of the problem has yet been 
produced. 

It is generally assumed that the metric coefficients for the case of speci:.'.l 
relativity are 

~o = 1 

~i 
:;:: -1 

} i, j = J, 2, 3 
~j = 0, i *j 

Equation (C -2) then becomes 

H ' ror 
a-= \---

c2 

C-2 

(C-4) 

(C-f.) 
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'. 2 and Equation (C-3) simplifies to /

1 _:
F =--

c (C-6) "_

/

The propagation path, which is the straight relative position vector from r t to

_r, is giv._n by

_t = _,= _ - _-r,l (c-7)

Under the preceding conditions, Equation (C-I) reduces to

= o2 (c-8)
1'r • r r

c 2 /-" ,:

which is the formula from special relativity for the one-way Doppler frequency
shift.

'i

:- _ The metric coefficients in Equation (C-4) describe straight line propagation in a
vacuum. The neglect of the ray path bending due to gravitational effects in an
acceptable approximation, considering the precision of the radar Doppler measur- i:

r ing equipment. However, ;he refractive bending of the ray by the atmosphere
(troposphere and ionosphere) is not negligible and must be taken into account. _ .,

_- The special relativistic formula given by Equation (C-8) is modified to replace ,
'-._ the unit vector _ along the idealized straight ray path with the unit vectors "

, _, = _ + Aftt ,,_:

i 1C-9) ,
nr = _ + Ant

_. along the actual curved propagation path. The method by which the refraction /
_, difference vectors An t and A_ r are estimated is discussed in Chapter 7. Here
,_ the terms will simply be introduced into the equations and formally carried
_ through the derivations. As a result of this substitution, Equation (C-8) becomes

?

f,
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and Equation (C-3) simplifies to 

1 
F=

c (C-6) 

The propagation path, which is the straight relative position vector from r t to 
rr' is given :)y 

(C-7) 

Under the preceding conditions, Equation (C-l) reduces to 

"r 
"it • It n fr 

1--- 1---
c2 

(C-S) -= 
ir • Ir ii • It 

1--- 1---
c2 ': 

which is the formula from special relativity for the one-way Doppler frequency 
shift. 

The metric c(;officients in Equation (C-4) describe straight line propagation in a 
vacuum. The neglect of the ray path bending due to gravitational effects i.'1 an 
acceptable approximai:ion, considering the precision of the radar Doppler measur
ing eqUipment. However, ~he refractive bending of the ray by the atmosphere 
(troposphere and ionosphere) is not negligible and must be taken into account. 
The special relativistic formula given by Equation (C-S) is modified to replace 
the unit vector ii along the idealize" straight ray path with the unit ve"tors 

flt = n + .6.ff. , 
(C-9) 

nr = Ii + 6ii r 

along the actual curved propagation path. The method by which the refraction 
difference vectors ~nt and ~nr are estimated is discussed in Chapter 7. Here 
the terms will simply be introduced into the equations and formally carried 
through the derivations. As a result of this substitUtion, Equation (C-8) becomes 

C-3 
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b

. v, T - (C-lO)

c2 _ c _J

where nr and Wt are given by Equations (C-9).

The geometry of two-way (or three-way) signal propagation is illustrated in

Figure C-1. A continuous wave signal of frequency uT is emitted by a ground

, station at position rT at time t r. At a later time tv, the spacecraft at position
r-v receives this signal along the curved uplink transmission path. Application

of Equation (C-IO) gives the relationship between the apparent signal frequency

at the ground transmitter :'1' and at the spacecraft receiver uv , i.e.,

] _ _._.v""

Uv = _ cI . c (C-11) ., ,"

c2 L_

!

l

__,l ¥

• • sP4
"% g

, Figure C-1. Signal Propagation Geometry

w
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1I 
t 

where nr and lit are given by Equations (C-9). 

(C-IO) 

The geometry of two-way (or three-way) signal propagation is illustrated in 
Figure C-l. A continuous wave signal of frequency vT is emitted by a Ground 
station at poSition l'y at time~. At a later time tv' the spacecraft at poSition 
rv receives this signal along the curved uplink transmission path. Application 
of Equation (C-IO) gives the relationship between the apparent signal frequency 
at the ground transmitter ;'1' and at the '3pacecraft receiver Vv ' i.e., 

IT'fT u .r1 
1- -- v v 

/.Iv c2 1 -

, J (C-ll) - . . 
/.IT rv . rv uT' rT 

J- -- I -

c2 c 

Figure C-l. Signal Propagation Geometry 
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! where ,
UT = _" + AUT

-- i

_ uv = _" + A_ v _ <

(C-12)

_" _v - r'T

rTt
and the subscript T reier8 to quantities evaluated at the ground transmltter.

Although it is not rigorously correct to do so, the spacecraft USB transponder

can be modeled as though it coherently turns the received signal around and

:// retransmits it at the received frequency vv.* The downlink signal is received
by the ground station (either the same station which _ransmitted the uplink signal

or an entirely different station whose oscillator is coherently linked with the

transmitter) at position _k at tirae tR. The one-way frequency shift which occurc
on the curved down/ink path is

] - __ ._./'/"

VR c2 c. (¢-13)
_, Vv rR "rR

1
c2

where dv = _" + Adv

(C-14)

?R - ?v
: d -

I_R-_',,t

The relationshipbetween the transmitted and received ground frequencies for

thistwo- or three-way case is computed by multiplying Equations (C-11) and

(C-13) together to ubtai_

*TheUSBuplinkfrequencycapabilityis2025to2120MHz,andthedownlinkfrequencycapabilityIs2200to
23n0MHz.

C-5
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where 
uT = IT + 6uT 

- + 6ii u y = u y 

(C-12) 
r - r 

y T 
'IT =---

rry • tTl 

and the subscript T refers to quantities evaluated at the ground transmitter. 

Although it is not rigorously correct to do SOt the spacecraft USB transponder 
can be modeled as though it coherently turns the received signal around and 
retransmits it at the received frequency ""y.* The downlink signal is received 
by the ground station (either the same station which transmitted the uplink signal 
or an entirely different station whose oscillator is coherently linked with the 
transmitter) at poSition l'R at time t R• The one-way frequency shift which occurc 
on the curved downlink path is 

!. 
Iy ·Iy d

k 
• r

R I --- I -
IIR c2 c 

= (C-13) - d .f IIv rR • TR y y 

I - 1 -
c2 c 

where 
d =d+6d y y 

(C-14) 

d = 
IrR - (yl 

The relationship between the transmitted and received ground frequencies for 
this two- or three-way case is computed by multiplying Equations (C-ll) and 
(C-13) together to ubtaih 

-The USB uplink frequency capability is 2025 to 2120 MHz, and the downlink frequency capability IS 2200 to 
23nl) MHz. 
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j,+-I I JVg _ c2 (C-15)

_T'-T- I+--_'-R'?R_ iJ_ d'_r'lc2 ,=

: !

: - The frequencies vR and vT are defined with respect to the tracking station oscil- i
lator. In the language of relativitytheory, this "clock" measures the proper i

time associated with the inertiallymoving tracking station. The velocities,on I

the other hand, are alldefined in terms of derivativeswith respect to coordinate

time, the time system associated with the inertial reference frame. This time i _

can be regarded as the same as mtiform time for the present development. I

IfEquations (C-12) and (C-14) are substitutedinto Equation (C-15), and the i

/._ il factors within the brackets are expanded in terms of no higher order than 1
:' l AT. (r/c)or Ad" (r/c),the followingform results !

rT • rT _ -_

UR _ c2 c + -- (C-16)

_T rR'_R u"#'Tl L dcrv ; cl �d�Jc 2 c

where ?

rT " . _ Ad R :.. A_ : A_T ' + Adv" Fv - AUv "rv "_R

The first term within the braces (the product of the expressio;:s in brackets) "'

represents the vacuum portion of the Doppler shift. The additional term A_/c, .}
involving the propagation path unit vector deflections, represent_ the refraction

effects. Equation (C-16) relates the received frequency to the transmitted fre-
quency via the geometry of the round-trip lightpath.

The continuouslytransmitted signalis beat against the received signal,resulting

in a signalwith a frequency equal to the differencebetween the two, i c., i

Pd : PR-PT : PT -I (C-17)
}

,!
,_.

C-6
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o 0 

IT· fT Uy • Iy dR • ~R 
1 + -- I - 1 vR c 2 - (C-15) c c --

vT lR· 
0 

IR UTe rT 
d e t 

y V 
1 + -- I - --- I -

c 2 c c 

The frequencies "R and "T are defined with respect to the tracking station oscil
lator. In the language of relativity theory, this "clock" measures the proper 
time associated with the inertially moving tracking station. The velocities, on 
the other hand, are all defined in terms of derivatives with respect to coordinate 
time, the time sY"3tem associated with the inertial reference frame. This time 
can be regarded as the same as wliform time for the present development. 

If Equations (C-12) and (C-14) are substituted into Equation (C-15), and the 
factors within the brackets are expanded in terms of no higher order than 
~ U • (.f/c) or ~d . ("flc), the following form results 

IT· rT 

"·f ~ d • lR 
1+-- v 

1--- 1 -
IIR c2 

U ~iT-
c bop 

-- -.,..-.-- +- (C-16) 
liT lR .IR (joc c 

y 

1+--
1 - ---;-J 1---

c2 c 

where 

The first term within the braces (the product of the expressio:.~s in braCKets) 
represents the vacuum portion of the Doppler shift. The additiollal term flplc, 
involving the propagation path unit vedor deflections, represent3 the refraction 
effects. Equation (C-16) relates the received frequency to the transmitted fre
quency via the geometry of the round-trip light path. 

The continuously transmitted sign~l is beat against the received signal, resulting 
in a signal with a frequency equal to the difference between the two, i ':'., 

.d : ·R -·T = .T (:: - I) (C-17) 
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r: _..) A fixed frequency bias signal vb is added to this Doppler signal and the combina-
: tion is fed to a Doppler-plus-bias cycle counter. Simultaneously, a reference

frequency Va2 is fed to a separate time interval counter. At most tracking stations,
the bias ahd reference frequencies are coherently derived from the same source

as PT" The measurement is mechanized in one of two ways, a destruc t. or a non-
destruct count. The destruct count mode (employed in the GRARR and ATSR sys-

_ terns) counts a preassigned fixed number of cycles N of the Doppler-plus-bias

signal and records the measurement as the (variabLe) number COof cycles of the
_ reference frequency required to accumulate the simultaneous N cycle count. The

" nondestruct mode (employed in the USB and ATSR SST systems) continually ac-
cumulates the count of the Doppler-plus-bias signal in its counter. The measure-
ment consists of recording this continually increasing number whenever a pre-

- assigned fixed number of reference frequency cycles has been accu_ ulated.
Differences between the recorded values at different sample times g_ves the

: number N of the Doppler-plus-bias count over the reference time interval. Using
either technique, the measurement results in a count of some number N of Doppler-

, plus-bias cycles over a period of time
?
, CO

AtRR = --- (C-18) /
.',_ PR2 .:i/

This measurement countcan be modeled mathematicallyby the equation
i

t+AtRR_ (C-19)
N = I (vd+ vb)dtR

"t
:

Ifthemeasurement is made in thedestructmode, theintegrationtinleinterval

AtgRshould be varieduntilthecomputed valueof N matches thefixedcyclecount
number exactly.Inthenondestructmode, AtRR isfixedand N, ingeneral,will

,\ be some whole number of cycles plus a fractional part. This fractional part
should be truncated to simulate more rigorously the actual accumulation of whole
cycles.

The integration variable t Rin Equation (C-19) is the receiving station clock time,
or proper time. The significance of this point will become evident during the
evaluation of the integral.

Substitution of Equation (C-17) into Equation (C-19) yields

I
, _" C-7
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A fixed frequency bias signa] vb is added to this Doppler signal and the combina
tion is fed to a Doppler-plus-bias cycle cocnter. Simultaneously, a reference 
frequency vR2 is fed to a separate time interval counter. At most tracking stations, 
the bias alld reference frequencies are coherentiy derived from the same source 
as vT • The measurement is mechanized in one of two ways, a destruct or a non
destruct count. The destruct count mode (employed in the GRARR and ATSR sys
tems) oounts a preassigned fixed number of cycles N of the Doppler-plus-bias 
signal and records the measurement as the (variable) number Co of cycles of the 
reference frequ~i1Cy required to accumulate the simultaneous N cycle count. The 
nondElstruct mode (employed in the USB and ATSR SST systems) continually ac
cumulates the count of the Doppler-plus-bias signal in its counter. The measure
ment consists of recording this continually increasing number when£ver a pre
assigned fixed number of reference frequency cycles has been accu:.. ulated. 
Differences between the recorded values at different sample times glves the 
number N of the Doppler-plus-bias count over the reference time interval. Using 
either technique, the measurement results in a count of some number N of Doppler
plus-bias cycles over a period of time 

(C-18) 

This measurement count can be modeled mathematically by the equation 

(C-19) 

If the measurement is made in the destruct mode, the integration tinle interval 
~tRR should be varied until the computed value of N matches the fixed cycle count 
number exactly. In the nondestruct mode, ~tRR is fix?'i and N, in general, will 
be some whole number of cycles plus a fractional part. This fractional part 
should be truncated to simulate more rigorously the actual accumulation of whole 
cycles. 

The integration variable tR in Equation (C-19) is the receiving station clock time, 
or proper time. The silnificance of this point will b'=lcome evident dUl"ing the 
evaluation of the integral. 

Substitution of Equation (C-17) into Equation (C-19) yields 
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= i

L

;' } t+AtRR l

; i N = + vb - v dtR
" I r

! , (c-20)

; i _ t+AtRRvR i '
I = (V'b - VT) AtRR + VT _ dtR
_ vT

t

_. and Equation(C-16)can be substitutedforthe remainingintegrand

/Ji iT"tr :

• 1+
c2 _

N= (%-v T)AtRR+ vr iR'_S

2' ,2 (C-21)
)

, t+AtRR

: ----- -i-- A* i + t
: C C2 -'-'"

X _'rT ?.r dtR + VTAtRR

,¢ o j - c2

In writing Equation (C-21), it is assumed that the squares of the inertial speeds

r T • i_ and FR . i"R are constant, since the motion of the tracking sta_.ons is due
to the near!y uniform rotation of the earth. The refraction integral is evaluated
by the trapezoidal rule, yielding

APt+AtRR + _0t _
• A_ = (,2-22)

The remaining integral in Equation (C-21) will now be considered. The geom-
etries of the uplink and downlink ranges are related to the light times by

p. = IL-_TI = c(?,-T r) (C-23)

: and "
t

Pd = [YR-rvl = c(_*a-_v) (C-24) :

:' The derivatives of these ranges with respect to the coordinate time _" at the
receiver are given by

]

C-8
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(C-20) 

and Equation (C-16) can be substituted for the remaining integrand 

x 1-~l 
IT 0 tT 

1- --
C J 

c 

dor-
v 

1---
C 

..!.. .:. 
r
R 

0 r
R 

1+-
c2 

(C-21) 

In writing Equation (C-21), it is assumed that the squares of the inertial t,peeds 
FT 0 i:'T and FR 0 r~ are constant, since the motion of the tracking staLons Is due 
to the nearly uniform rotution of the earth. The refraction integral is evaluated 
by the trapezoidal rule, yielding 

(C-22) 

The remaining integral in Equation (C-21) will now be considered. The geom
etries of the uplink and downlink rangel:i are related to the light times by 

P = rr -r I ::; c (t - t- ) u v T v I (C-23) 

and 

P = If - f I ::; c (t' - r ) d R v R v {r:-24) 

The derivatives of these ranges with respect to the coordinate time t at the 
receiver are given by 

C-R 
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Explicit solution for the coordinate time derivatives gives

rR

dL l - d" --c 1 dPd

d_. "-= l dr. /rv C ,.
l-i'--

_ c

. L (C-27)
rV

dT.T l-_.-- , T

I-6.--
c

Equations (C-27) show that a coordinate time increment of a given length at the i

receiving station corresponds to increments of different lengths at the space-
-- craft and at the transmitter, considering that the arrival of corresponding phases

at _T and '_T + O_r marks the interval.

Substitution of Equations (C-27', into the integrand in Equation (C-21) yields the
1

expression for the integral term

i T • r T tR+AtR R

'+-7- , .' dOu,,q
_T -_. _ 1 --- dr, (C-28)

rR.rR C \dr R
+

. c 2

4
_', ,:

_" C-5
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(C-25) 

dPd _ ~. • dT) ~ Q't
y

) - = d' r -r y = c 1--- R y- -
d~ ~ d~ 

R 

(C-26) 

Explicit solution for the coordinate time derivatives gives 

fR 
dTy 

1- d'--
I dPd c - = -. 1---

dTR ry c dtR 
I - d .-

c 

(C-27) 
. 
ry 

dtT 1-.,- 'dT) C' dP,) ely 
= 

_ tT \ dtR 
= 1 - Z dtR +-

dtR 
dtR 

I -u'-
c 

Equations (C-27) show that a coordinate time increment of a given length at the 
receiving station corresponds to increments of different lengths at the space
craft and at the transmitter, considering that the arrival of corresponding phases 
at iT and iT + dtT marks the interval. 

Substitution of Equations (C-27; into the integrand in Equation (C-21) yields the 
expression for the integral term 

. . 
fT 'fr tR +t.tRR 1+---

c2 
[ 1 (P, d. '~ liT .&.. .:.. 1-- - + d~) dt R (C-28) 

rR • r
R c dtR 

I + 
tR 

c2 
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: At the receiving station, the relationship between coordinate and proper time is - ;
J

't'

dtR = _'R"rR aTR (c-29)

i
{

? .

Therefore, .
• t

) ; rR'rR do - do (C-30) '

' _i d_ dtR ' i
J

.,} and, since itwas assumed that rR' rR " constant,Equation (C-2=) becomes

; i PT VT . ,4,_ N = PbAtRR ----APCc + _/AtRRAP_vgc (C-31) _ /Ji
1

Terms higher thaa firstorder in Irl/c have been neglected,and the computed I _
quantity

f

APc = (Pu + Pd )tR+AtRR - (Ou + Pd )tR (C-32) _ :

t

is the range ,-Ufference.Since the quRntitlesN, A tRR, Pb' and vTare known, the !

preprocessor program can compute the "obser,,ation" I

" P0 2V T b- AtRR (C-33) _ :

, %,

and Equation (C-31) can be written as

Ap,: A_avg

- Po + _ (C-.54)
2AtR R 2 ]'

r

where the division by 2 ,'_tRR causes the range difference to approximate the
one-way range rate. Equation (C-34) mathematica!lv describes the modeling of

the USB Doppl,_r measur_ment in GTDS. The quantity on the left side of the

equation is the computed measurement and is calculated by means of Equations

C-10
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At the receiving station, the relationship between coordinate and proper time is 

{3;°R ° ;R- -

= 1 - dt 
2 R 

c 

(C-29) 

Therefora, 

(C-30) 

and, since it was assumed that FR ° FR - constant, Equatioll (C-2:) becomes 

(C-31) 

Terms higher tha,l first order in IFI/c have been neglected, and the computed 
quantUy 

(C-32) 

iR the range differ~ncp.. Since the quantities N, ~ tRR, "b' and "Tare known, the 
preprocessor prograrr. can compute the "obser"ation" 

o C ( N) 
Po = 211T "b - t.tRR (C-33) 

and Equation (C-31) can be written as 

t. 0 

• Pavg 
= P +--o 2 

2l~tRR 

where the division by 2 iHRR causes the range difference to approximate the 
one-way range rate. Equation (C-34) mathematically describes the modeling of 
the USB Doppl l3r measur~~ment in GTI1). The quantity on the left side of the 
equation is tho computed meaSUl"ement and is calculated by means of Equations 

C-IO 



i i
i !

_ (C-32), (C-23), and (C-24). The latter two equations require that two iterat!ve

light-time solutions be determined to correspond to the round-trip propagation
paths terminating at the receiving station at the start and at the end of the Doppler- !

ulus-bias count interval A tgg. Tbe first term on the right side of Equation (C-34) t ";

represents the actual observation and is calculated in the preprocessor from the _
basic measurement data according to Equation (C-33). The second term on the _ s
right in Equation (C-34) is the refraction correction term. It is computed by
Equations (C-22) and (C-16), where the appropriate A_ and Ad path deflection
vectors are computed as described in Section 7.6.3.3. _

The GRARR and sidetone ATSR Doppler observations are implemented in GTDS
in the form of a very simple model. The Doppler measurements made with the
GRARR and ATSR systems differ from those made using the USB system in x,

terms of the bardware details. The GRARR VHF system operates with a nominal
uplink carrier frequency of 148.98 MHz and a nominal downlink frequency of
136.89 MHz. The ATSR system, operating in the sidetone Doppler mode, uses _,

C-Band trequencies of approximately 6000 and 4000 MHz on the uplink and d,_wn- _
link legs, respectively•

The simple model for these data types Is derived by further restricting the / :
assumptions made in deriving Equation (C-15). As given, that expression for the -Y
two-way Doppler-shifted frequency ratio is valid under the assumptions that

! I spvctal relativity holds and that the origin of the inertial coordinate fra_r e is at
the center of the earth. If it is assumed instead that the tracking qtatton moves

! with uniform velocity, i.,_.,

; rR = rT = constant (inertially)
$

then the origin of the coordinate system can be considered to be fixed at the track-

ing station aud moving with it. Then\
rR = rT = 0 ,i_

and Equation (C-15) becomes

U v • r v _.,

VR c • "

C ?

C-11

li ,
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(C-32), (C-23), and (C-24). The latter two equations require that two iterative 
light-time solutions be determined to correspond to the round-trip propagation 
paths terminating at the receiving station at the start and at the end of the Dopplec
plus-bias count interval A ~R. The first term on the right side of Eqaation (C-34) 
represents the actual observation and is calculated in the preprocessor from the 
basic measureme!lt data according to Equation (C-33). The second term on the 
right in Equation (C-34) is the refraction correction term. It is computed by 
Equations (C-22) and (C-16), where the app:oopriate Au and A'<i path deflection 
vectors are computed as describerl in Section 7.6.3.3. 

The GRARR and sidetone A TSR Tbppler observations are implemented in GTI); 
in th~ form of a very simple model. The Doppler mea3urements made with the 
GRARR and ATSR systems differ from those made using the USB system in 
terms of the hardware details. The GRARR VHF system operates with a nominal 
uplink carrier frequency of 148.98 MHz and a nominal downlink frequency of 
136.89 MHz. The ATSR system, operating in the sidetone Doppler mode, uses 
C-Band frequencies of apprudmately 6000 and 4000 MHz on the uplink and dl)WD
link legs, respectively. 

The simple model for these data types is derived by further restricting the 
assumptions made in deriving Equation (C-15). As given, that expression for the 
two-way Doppler-shiftee frequency ratio is valid under the assumptions that 
spscial relativity holds and that the origin of the, inertial coordinate frarr.e is at 
the center of tlte aarth. If it is assumed instead that the tracking ~tation moves 
with uniform velocity, i.~., 

.!.. 
'fR = rT = constant (inertially) 

then the origin of the coordinate system can be considered to be fixed at the track
ing station aud movin~ with it. Then 

and Equation (C-15) becomes 

c 
:: 

C-ll 



Substituting Equations (C12) and (C14) into this expression expanding eiimi
< nating higher order terms and noting that in thi_ case _ = d f

T
t

U • r v

vR c Ab (C35) ,

, 0T u * rv c _,

, C

"t
where _

%,

Since the tracking station is motionless in this coordinate frame, the unit vector
,-" _ can be defined in terms of the instantaneous position _ector of the vehicle rela ,,

t tive to the station

rvt.t¢)

u- (r)l (c3)
a*

at the vehicle turnaround time t v The instantaneous relative range at this time

p = (c-a7)
)-

and the rate of change w_th respect to coordinate time is i ;

i _ = u" _v (C-38) _i ,
?

• , If Equation (C 38) is substituted into Equation (C-35) and the result then substituted _ -_

,,_. into Equation (C20) ,
t+AtRR ."

N - PbAtRR = "T F___ I-2 dt R "_

' (C-39) '

• = -2 + _, dtg 1

: C-12
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Substituting Equations (C-12) aud (C-14) inlo this expression, eX"J,>ancling, eiirni
nating higher order terms, and noting that in thilS case u • -d 

. 
-Ii 'r~ 

1---
(C-35) 

- - =-
c b.p ---.-+-

ii'ly C 

i +---
c 

where 

Ap' = 2Ao .j-y y 

Since the tracking station is motionless in this coordinate frame, the unit vector 
U can be defined in te't'ms of the instantaneous position, ector of the vehicle rela
tive to the statton 

(C-36) 

at the vehicle turnaround time t
y

• The instant&.neou9 relative range at this time 
is 

p = I r:. <t:) I (C-37) 

and the rate of chf:.nge with respect to coordinate time is 

(C-38) 

If EquaUo'l (C 38) is substituted into Equation (C-35) and the resait then substituted 
into Equation (C-20) 

r P j 1 -- -.:... 
c t;uy'fy 

l
--. -1- 2 dt 
peR 

1+
t 

[ . b.u .r] p v v 
--+. dt 
c + pelt 

C-12 

(C-39) 



' {

_=)' Applying the Theorem the Mean gives t

J " i

"_,: N PbAtRR 2UT av R 2PT c /avg i

"tin last te'__n on the right is the refraction correction, and it will be assumed
that the mean value can be approximated with stJficient accuracy by evaluai;ing

_ " A_v and rv at the vehicle turnaround time _"* corresponding to tile counting inter-
val midpoint. W_th this understanding, the subscript "avg" will be dropped from

:_ this term. Writing Pavgfor the value of the range rate which produces the correct

; average value in Equation (C-40), and solving explicitly for _g gives

'; "" A_v " rv
¢ b

;' AtRR.| ¢
: = (C-41)

i" _ , rv

: N 2UT
"_ ! 2PT " b AtRE c #

,%. ,_../

this ex-presston in terms of the sin:all parameter A_ v • r v andEximnding eliminatingA

_- , _ _ higherorder terms in thisparameter,and terms involvingt.hisparameter _vidvd
by c,yieldsB

c ub AtRR _

• Ptvs "_ - A_v , _" (C-42}

' 2VT - Ub A_R R / 4

• 't

_" _ It is again assumed that the correct average value for Pa , the tnstantansous
_' relativerange rate,isgivenby Equation(C-38)evaluate_att *,thevehicle

turnaroundtlme correspondingto' . couh,int,.rvalmidpointat theground
station.Equation(C-42}thereforerepresentsthemodel of theGRARR and

_.,_ sidetone ATSFt Doppler measurements in the form of an instantaneous relative

_.,, range rate. the term on the left is the computed value obtained by evaluating /
:. F_luation (C-38) for the cttrrent estimate of the spacecraft ephemeris. The a

first term on the right L_ldeof Equation (C-42)
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Applying the Theorem of the Mean gives 

(C-40) 

mbe last te: 'tIl on the right is the refraction I~orrection, and it will be ass'~med 
that the mean value can be approximated with swficient accuracy by evaluai;ing 
4'i\ and ~ at the vehicle turnaround time tv * corresponding to the counting inter
val midpoint. W!th this understanding, the subscript "avg" will be dropped from 
this term. Writing Pavg fol' the value of the range rate which produc2s the correct 
average value in Equation (C-40), and solvlng e>q>llcitly for p gives 

<lvg 

(C-41) 

E:xp:mding this eA'pressJon in terms of the small parameter A IT • r and eliminating v v 
higher tlrder terms in this p9.ramt~ter, and terms involviJ"0J this parameter dJvidad 
by 0, yields 

C (II - --~-) 
b bt RR . 

- 6u 'r v v (C-42) 

It is again assumed that the COl'rect average vallie for p ,the instantaneous aVB _ 
relative range rat.e, is given by Equation (C-38) evaluated at t *, fle vehicle 

v 
turnaround time corresponding to r . COUl.. inh'rval midpoint at the ground 
station. Equktion (C-42) therefortl represents thr model of the GRARR and 
sidetone ATSr, Doppler measurements in the form of an instantaneous relative 
range rate. The torm on the left is the computed value obtained by evaluating 
F.quation (C-38) for tht.' current estimate of th" spacecraft ephemeris. The 
first term on the right l'ide of Equation (C-42) 

C-13 
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N

,• c b _ R (C-43)

2p T - v b AtRR ,.,

is the algorithm in current use in the preprocessing of the GRARR and ATSR
Doppler dab (References 1 through 4 in Appendix A) and repre'_ents the given
observa+.ion. The second term on the right side of Equation (C- .2), A_'v._ v ,

j * definedis the refraction correction. The vehicle velocity is taken _t _he time t v
"_ above, and A_,, is ew luated as described in Section 7. :,,,.o.

\ A development similar to the one presented in this ._9pendix is carried out in
Reference 2 of Chapter 7 for the four-way Doppler measurements used in the
ATSR Satellite-to-Satellite (SST) Tracking System (see Section 7.3). The re-

j
:: suiting range difference for the Doppler count is

A B
VR2 VR2

N = PbAtRR APL - _ APs (C-44)c c t

where _ _"
[

• , b'R2 '_ system reference frequency

_ _b _ bias frequency

A, B,C ~ constants which depend on the tracking mode counting method
and the frequency option used

APL, APS "" changes in the four-leg and two-leg round trip ranges, re- _
•_ _ spectively, during the count interval AtRr_.

!

/
a

REPRODUCIBILIIYOP THE
? i ORIGENAL PAGE IS POOR

' ! c-.
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V

1976017203-530

C (Vb -~ \ 
~RR) (C-43) . 

Po = 
2" _ (II __ N ) 

T b ~t 
RR 

is the algorithm in current use in the Jlreprocessing of the GRARR and AT8R 
Doppler da~ (References 1 through 4 in Appendix A) and rflprA~)ents the gi",en 
obst:rvaf;ion. The second term on the right side of Equation (C- ,2), 6uv• 'fv ' 
is the refraction correction. The vehicle velocity is taken at ;;he time tv * defined 
above, and 11 u is avt.luated as described in Section 7. " ..... .:s. ,. 

A development similar to the one presented in this ":;.ppendix is carried out in 
Reference 2 of Chapter 7 for the four-way Doppler measurements used in the 
ATSR Satellite-to-Satellite (SST) Tracking System ,see Section 7.3}. The re
sulting range difference for the Doppler count is 

where 

"R A. "R B 
2 2 

N = P /:!,L - --/:!'p - --b.p 
b"RR c L c S (C-44) 

V
R2 

,.., system reference frequency 

Pb bias frequency 

A. B. C constants which depend on the tracking mode counting method 
and the frequency option used 

IlPL't:..PS ,.., changes in the four-leg and two-leg round trip ranges, re-
spectively, during the count interval t:..tRrt 

C-14 
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APPENDIX D

OBSERVATION WEIGHTING

Tables D-1 and D-Z define typical dynamic weighting factors and a priori standard
I

deviation_ for s,o.veral observ_ion types that are processed in GTDS. The dynamic
weighting factors are used in the following manner: If 02 is the a priori variance

for a given observation type and PF iS the dynamic weighting factor, then the data
weight for an observation is formed as

'_" W = OF/ 02 (D-l)

or, for those observation_ where a dynamic weighting factor is not specified,

w = 1/o2 (D-2)

Table D-1 ' /

_" Dynamic Weighting Factors l .,"

1-._- ObservationType Dynamic Weigh'.ingFactor*

Minitrackdirectioncosine

_' _ Minitrack direction cosine m V/1 - m2

Range Cl sin (Elevation) + C2

Range Rate Cl sin (Elevation) + C2

' Elevation Cl sin (Elevation) + C2

: Aztmuth C3 cos (Elevation) + C4

*Cl , C2 , C3 , and C4 are _r-supplied constants.

' e

e !

5 (

" ill D-1 i

"I
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APPENDIX D 

OBSERVA TlON WEIGHTING 

Tables D-I and D-2 define typical dynamic weighting factors and a priori standard 
deviatioru; for s·weral observation types that are processed in GTDS. The dynamic 
weighting factors are used in the follow:.ng manner: If 02 is thp. a priori variance 
for a given observation type and PF IS the dynamic weighting factor, then the data 
weight for an observation is formed as 

(D-I) 

or, for those observationf: where a dynamic weighting factor is not specified, 

w = 1/02 

Table D-I 
Dynamic Weighting Factors 

Observation Type Dynamic Weigh:lng Factor* 

Minitrack direction cosine £ }1 _ £2 

Minitrack direction cosine m )1- m2 

Range C) sin (Elevation) + C2 

Range Rate C1 sin (Elevation) + C2 

Elevation C) sin (Elevation) + C 
2 

Azimuth C3 cos (Elevation) + C
4 

*C1 ' C2 ' C3 , and C4 are us6r-supplied constants. 

D-l 

(D-2) 



I
Table D-2 I

Typical A Priori Data Standard Deviations

Observation Type A Priori Standard Deviation

Range (VHF) 500 meters

Range Rate (VHF) 30 centimeters/second '

X30Orientation angle (VHF) 3600 seconds of arc

Y30Orientation angle (VHI_ 3600 secoads of arc

Minitrack direction cosine _ 0.3 m_ls •

Minitrack direction cosine m 0.3 mils

Range (S-Band) 100 meters

Range Rate (S-Band) 10 centimeters/second

-J Azimuth (C-Band) 54 seconds of arc

Elevation (C-Band) 54 seconds of src

_ Range (USB) 15 meters ./.i

Range Rate (USB) 5 centimeters/second

X30 (USB) 720 seconds of arc I

Y30 (USB) 720 seconds of arc

Xs5 (USB) 54 seconds of arc

Yss (USB) 54 seconds of arc

, D-2

/
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Table D-2 
Typical A Priori Data Standard Deviations 

Observation Type A Priori Standard Deviation 

Range (VHF) 500 meters 

Range Raf;e (VHF) 30 centimeters/second 

X 300rientation angle (VHF) 3600 seconds of arc 

Y30 Orientation angle (VHF) 3600 seconds of arc 

Minitrack direction cosine 2 0.3 mUs 

Minitrack direction cosine m 0.3 mils 

Range (S-Band) 100 meters 

Range Rate (S-Band) 10 centimeters/second 

Azimuth (C-Band) 54 seconds of arc 

Elevation (C-Band) :14 seconds of arc 

Range (lJSB) 15 meters 

Range Rate (USB) 5 centimeters/second 

:>So (USB) 720 seconds of arc 

Y30 (USB) 720 seconds of arc 

XS5 (USB) 54 seconds of arc 

Y
S5 

(USB) 54 seconds of arc 
I 

D-2 
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APPENDIX E

MATRIX IDENTITIES ASSOCIATED i "

WITH SEQUENTIAL ESTIMATION _.

- _ This appendix presents the derivations of a recursive form of the covariance

; _ matrix of error and an alternative form of the optimal linear gain. The resu]ts
i of these derivations are used in Section 8.4.1 to simplify the expressions for the

i covariance matrix of error and the updated state correction vector.

'_: The following symbols are used in the derivations

,i P -_ a symmetric, positive definite matrix

( I I _the identity matrix

! _ the weight of the (re+l) "t measurement; its inverse is equal to the
"_i Wm+l variance of the measurement noise ,,

F _ the matrix of partial derivatives (see Equation (8-6)) ">/

!
E. I DERIVATION OF THE RECURSIVE FO_PdVlOF THE COVARIANCE

MATRIX OF ERROR, PAxm+l
i

From Equation (8-80b) the covariance matrix of error is given as

PAxm+, : PAx + Z_P (E-l)

• In order to find an expression for AP, Equation (E-l) is substituted into

P;* P^ = I (E-2) :
_xm+ 1 _Xm+ 1 _ ,,

yielding

p:l (p. + Ap) = I (E-3)
_Xm+ 1 _x m !

; Inverting Equation (8-79), the following expression is obtained
i '
_ ,

p-*&x_+l: (p_l,,+F_+,,,,+iF+,) (E-4) _° !
Substituting Equation (E-4) into Equation (E-3) gives

p-I AP* T
Axm F_+lWm.lFm+lVAxm+ Pmr+lWm+lFm+lAP=0 (E-5) t

j _'lmil

"_"E-1 I
REPRODUCIBILfI_ OF T_]_
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APPENDIX E 

MA TRIX IDENTITIES ASSOCIATED 
WITH SEQUENTIAL ESTIMATION 

This appendix presents the derivations of a recursive form of the covariance 
matrix of error and an alternative form of the optimal linear gain. The results 
of these derivations are used in Section S.4.1 to simplify the expressions for the 
covariance matrix of error and the updated state correction vector. 

The following symbols are used in the derivations 

P '" a symmetric, positive definite matrix 

I '" the identity matrix 

w
m

+1 '" the weight of the (m+1)st measurement; its inverse is equal to the 
variance of the measurement noise 

F '" the matrix of partial derivatives (see Equation (S-6» 

E.l DERIVATION OF THE RECURSIVE FO~ OF THE COVARIANCE 
MATRlX OF ERROR, P.6 

Xm+l 

From Equation (S-SOb) the covariance matrix of error is given as 

In order to find an expression fo!' .6P, Equation (E-1) is substituted into 

yielding 

Inverting Equation (8-79), the following expression is obtained 

Substituting Equation (E-4) into Equation (E-3) gives 

P61
x I:JP"'" F~+ 1 Wm·" 1 F m+ 1 P ~x + F~+ 1 Wm+ 1 F m+ 16P = 0 
m m 

(E-l) 

(E-2) 

(E-3) 

(E-4) 

(E-5) 

E-l 
R£PRODucmn..rrY OF TUi 
ORIGINAL PAGE IS pooi\ 
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PremultJplyingEquation(E-5)by PAxm yields ] •

Ap + paxmFmT+lwm+IFm+IPAxm+ PAx F_+lW +xF+IAF = 0 (E-6)

Solving this expression for AP yields

XmF (E-7)! AP=- (I + PAx FT w + F 1)-IPA _+lWm+IF°+lPAxmm m+l _" I m+

Premultiplyingby PAxmp-IAx

AP : - PAx (I F_+lw_+IF_+l)-IF°X+'w°+IFm+IPAx (E-8)
_: m m m

' MultiplyiugFT_+Iw_+1Fm �|theterm inparenthesesin Equation(E-8_.and
factoringforward y£elds

' Ap = - PAx FZm+lW_+1F_+x(I+ PAx F_X+IWm+'F+I)-IPAx° (E-9)
', m Ir_

' Equation (E-9) is not the best fcrm for AP. From the definition of the inverse

I of a matrix, the expression #,

FT _-1(w_+lI +F+.p^ FT+I)= I (E-10) /(w:+11+F+_PAxo_+_" _,_,_o -_" .

can be obtained.

, PostmultiplyingEquation(E-10)by Win+ IFro.1 and thenfactoringout Fro+1 <
yields

- FT _-i (E-11)('m+'l+Fo+_PAxo+I" F_+I(_+PaxFT+xw_+_Fro+l)= Wm+lF+l
- l_: 111

Fm+1Wm+1 Fm+1 ' i '_If Equation(E-f1)isthenpostmultipliedby (I + PAx° Z 71

, raFT "1 +lWm+iFm+ i)-1 .:,\ (w_1+1 �Fm+IPAxre+l) Fm+l : Wm+lFm+l(I + PAx FT (E-12)

Substituting Equation (E-12) into Equation (E-9) gives

AP : - P. FT+.(w-+1- + _ P _-T _-1 F+lpAx m (E-13) 'i/.Axm m I m J. _m+l _Xm--m+l/

and substitutingEquation(E-13)intoEquation(E-l)gives

,_ FT {w-1 F+I F z )ol F+,PAx (E-14)' ""P^ - PA_ m+l x m+l �PAxAXm+l _m m m+l m

or

PAxm+1 = (I - KFm+1) Paxm (E-15) >

E-2
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Premultjplying Equation (E-5) by Pllx yields 
m 

(E-6) 

Solving this expression for {:, P yields 

(E-7) 

Premultiplying by Pllx Pt:! 
m m 

(E-8) 

Multiplying FJ+l w
m

+
1 

F
m

+
1 

into the term in parentheses in Equation (E-8) and 
factoring forward yields 

(E-9) 

Equation (E-9) is not the best ferm for liP. From the definition of the inverse 
of a matrix, the expression 

can be obtained. 

Postmultiplying Eqnation (E-IO) by wm+1Fm"'1 and then factoring out Fm+l 
yields 

If Equation (E-ll) is then postmultiplied by (I + Pllx F!+l wm+1 Fm+1 fl , 
m 

Substituting Equation (E-12) into Equation (E-9) gives 

and substituting Equation (E-13) into Equation (E-l) gives 

1\ == p~ - PI\ F\l (w:!l + Fm+1 P" F!+l r 1 
Fm+1P" 

uXm+l WAm 1(m m LlXm LlXm 

or 

E-2 

(E-IO) 

(E-ll) 

(E-12) 

(E-13) 

(E-14) 

(E-15) 
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g ..
whe. 'e

i K- PA. FT F +.P^ F_+I)-I (E-16)

i E. 2 DERIVATION OF AN ALTERNATIVE FORM OF THE OPTIMAL LINEAR GAIN

From Equation (8-79), the covariance matrix of error is given as

! PAxm+l= (p;l + FretlWm+lFm+l)-I (E-17) :

PostmuILiplyingthisequationby FmT+IWin+1 and factoringout p-1 givesAx
m

i

" Xm+lF -- m I A _'PA _+xW +, (I + PA_.FmT+Iw_+'F_+')-I PAxmFT+'w_+" (E-18) ,,

PremultiplyingEquation(E-18)by F Tm+l Wm+l Fm+l and substitutingEquation

; (E-I_) into the result yields

• m• m 1PAxm+1F.,+1Win �1(E-19) /,,

Fro+l) _+IPAx FT+-w ,.=FT+ (w:+11+F+,pA x T -11 m lm z
m m

Moving the factor Fro+ 1 PAx FTm+I Wm �„�insidethe brackets and factoring out w.+ 1 ,

FmT+lWm+,Fro+1PAx FmT+lWm+1 (E-20) :
m

F T i] -I I= Fro+1) +m+l Win+i[W_ll (Fro+ipAx T -I

p T ,Factaringout Fro+I A_ Fm+1 from thisexpressionand premultiplyingby
T ",, "1 . m _

(F._+lw_,u_+1) p.ves

Fm+l m+lP^ F'f+w +. = PAx T (w:lI + Fm+IPAx FT )-I (E-P-I) :LlXm+l m _t m I m m

Finslly,substitutingEquation(E-21)intoEquation(E-16)yieldsthe following

expression for K.

Fr+.w ¬�(E-29.)
K = P^L1Xm+lm /. m I

' " '_ E-3

,:
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whe.·~ 

(E-16) 

E.2 DERIVATION OF AN ALTERNATIVE FORM OF THE OPTIMAL LINEAR GAIN 

From Equation (S-79), the covariance matrix of error is given as 

P ( -1 T F )-1 
A = ,P A + F m+1 Wm+1 m+1 u"'m+l uXm 

(E-17) 

Postmultiplying this equation by F!+1 Wm+1 and factoring out P~~ gives 
m 

P
6 

F!+1 wm+1 = (I + P6x F!+1 wm+1 Frn+l r 1 P6 ", F!+lwm+l (E-1S) 
"'m+1 m m 

Premultiplying Equation (E-1S) by F!+l wm+1 Fm+l and substit'uting Equation 
(E-12) into the result yields 

(E-19) 

Moving the factor Fm+l P6", F!+l wm+1 inside the brackets and factoring out wm+1 ' 
m 

(E-20) 

FT [ -1 (F P FT )-1 1]-1 = m+1 Wm+l Wm+1 \ m+l 6 x m+l + 
m 

Fact..)ring out Fm+1 P6x F!+1 from this expression and premultiplying by 
(F T T' )-1 . m 

-n+l Wm·, 1 J.' m+l glVes 

(E-21) 

Finally, substituting Equation (E-21) into Equation (E-16) yields the following 
expression for K. 

(E-22) 

E-3 
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_: GLOSSARY OF MATHEMATICAL SYMBOLS

.i

_ A - Azimuth angle.

7
_' - Reference satellite area for aerodynamic drag in Section4

: 4.5.

- Satellite area exposed to direct solar radiation in Sec-
; _ tions 4.6 and 5.4.

- Precession transformation matrix from mean of i950.0
to mean of date coordinates. See Sections 3.3.1 and 9.1.1.

i1 A - External acceleration vector in Section 4.9.

l A, B, C - Matrices of time-varying coefficients in variational dif- /
_! ferential equations in Sections 4.1, 6.4, and 6.5. ...

i - Coefficients used in the SST Doppler count in Section. 7.3.3.

A, B, C, D - Coefficients of polynomial fitted to Minitrack fine base-
line rectified data in Appendix A.

A, B, C - Coefficients of polynomial fitted to Minitrack coarse and

medium baseline rectified ambiguity data in Appendix A.
b

A - Solar paddle area in Section 4.5.2.
". p

A.1 - Atomic time.

# I

A l , A2, A 1 , .., A25 - Auxiliary parameters defined in Equations (5-184).

a - Semimajor axis of satellite orbit.

- Semimajor axis of reference ellipsoid in Section 7.4.

- Magnitude of spacecraft thrust acceleration in Section 4.8.

- Minitrack fine baseline fractional phase rate in Appendix A.

" _ G-I
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GLOSSARY OF MATHEMATICAL SYMBOLS 

A - Azimuth angle. 

- Reference satellite area for aerodynamic drag in Section 
4.5. 

- Satellite area exposed to direct solar radiation in Sec
tions 4.6 and 5.4. 

- Precession transformation matt'ix from mean of i950.0 
to mean of date coordinates. See Sections 3.3.1 and 9.1.1. 

A - External acceleration vector i::l Section 4.9. 

A, B, C - Matrices of timE.--varying coefficients in variational dif
ferential equations in Sections 4.1, 6.4, and 6.5. 

- Coefficients used in the SST Doppler count in Section 
7.3.3. 

Am' Bm, Cm, Dm - Coefficients of polynomial fitted to Minitrack fine base
line rectified data in Appendix A. 

An' Bn' Cn - Coefficients of polynomial fitted to Minitr&.ck coaroe and 
medium baseline rectified ambig'lity data in Appendix A. 

A - Solar paddle area in Section 4.5.2. 
p 

A.l - Atomic time. 

A~ , A;, Ai' •. ,A26 - Auxiliary parameters defined in Equations (5-184). 

a - Semimajor axis of satellite orbit. 

- Semimajor axis of reference ellipsoid in Section 7.4. 

- Magnitude of spacecraft thrust acceleration in Section 4.8. 

a - Minitrack fine baseline fractional phase rate in Appendix A. 

G-l 
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I
ab - Inertial acceleration vector in body-fixed coordinates.

= See Section 4.3.

Ez(M) - Inertial acceleration of the point mass earth due to the
moon's oblateness. See Cection 4.4.

i

aF' aF' _ - Minitrack fine baseline fractional phase difference in
Appendix A.

: aij - Polynomial coefficients of polar motion in Section 3.3.2.2
(see Table 3-1).

- Time difference polynomial coefficients in Section 3.5.2.

- Term s used in the evaluation of the Chebyshev polynomial
coefficients (b i) in Section 3.6.

.J

;_ a,, b_i , ci - Shank's coefficients used in the Runge-Kutta integration
method in Section 6.6.

J
d%. /'

: _ - kepresents the j th row of the matrix of measurementJ
partial derivatives, F, in Chapter 8.

_ - Acceleration vector in the nominal dynamic tl model.
See Section 8.4.2.

a - Planet rad'us in Section 4.6.1.p

a_ - Vector of unknown or unmode_ed accelerations in Section
8.4.2. ,,

a, ay, a - Coefficients of the polynomia: -" :_-acterizing the attitude
control system acceleration in Section 4.7.1.

a0, a 1"' • ' a4 - Coefficients of the polynomial characterizing the space-
craft thrust acceleration in Section 4.8.

al, a2, a 3 - Parameters in the topside electron density profile in /
Section 7.6.

B - Transformation matrix from true equator and equinox _f

date coordinate system to body-fixed coordinates in Sec- i
tions 3.3.2.3, 4.3, 9.1, and 9.2.
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a b - Inertial acceleration vector in body-fixed coordinates. 
See Section 4.3. 

aE(M) - Inertial acceleration of the point mass earth due to the 
moon's oblateness. See ~ection 4.4. 

a F , a F , a; - Minitrack fine baseline fractional phase difference in 
Appendix A. 

a i i-Polynomial coefficients of polar motion in Sectio~ 3.3.2.2 
(see Table 3-1). 

- Time difference polynomial coefficients in Section 3.5.2. 

- Term':l used in the evaluation of the Chebyshev polynomial 
coefficients (b i) in Section 3.6. 

a , b .. , c. - Shank's coefficients used in the Runge-Kutta integration 
1 1 J 1 

method in Section 6.6. 

a - Hepresents the j th row of the matrix of measurement 
J 

partial derivatives, F, in Chapter 8. 

am - Acceleration vector in the nominal dynamic'll modol. 
See Section 8.4.2. 

al' - Planet rad:'us in Section 4.6.1. 

au - Vector of unknown or unmodeled accelerations in Section 
8.4.2. 

ax' a
y

' a z - Coefficients of the polynomia, ~ .. , ~L'acteri?;ing the attitude 
control system ..l.cceleration in Section 4.7.1. 

a 0' a l' ••• , a 4 - C,oefficients of the polynomial characterizing the space
craft thrust acceleration in Section 4.8. 

a l' a 2 , a 3 - Parameters in the topside electron density profile in 
Section 7.6. 

B - Transformation matrix from true equator and equinox :)f 
date coordinate system to body-fixed coordinateR in Sec
tions 3.3.2.3, 4.3, 9.1, and 9.2. 

G-2 



i '-S !
; )

_ B - Bias correction vector in Section 4.9. _

B, C, A - See A, B, C above.

Be, BF, BM - Minitrack coarse, fine, and medium phase rates in ; t
Appendix A. i

_ - B 1 - Transformation matrix from true of date to pseudo body-

.; fixed coordinates in Section 3.3.2. _

B 2 - Simplified transformation matrix from pseudo body-fixed
to body-fixed coordinates in Section 3.3.2.

: BI,..., B is - Auxiliary parameters defined in Equation 15-185).

,/ b - Measurement bias in Sections 7.1 and 8.2.

_ bF - Absolute phase difference for the Minitrack fine baselipe
_ in Appendix A. t

b, - Chebyshev coefficients of interpolating polynomial in

{ Section 3.6.

_' ; bj, cj - Numerical coefficients in S_-etion 5.6.

b m - Polynomial fitted to Minitrack fine baseline rectified data
in Appendix A.

_ b° - Polynomial fitted t_ Minitrack coarse and medium base- ,
line rectified ambiguity data in Appendix A.

b_, by, b, - Coefficients of the linear term of the polynomial charac-
terizing the attitude control system acceleration in Sec-
tion 4.7.1.

C - Transformation matrix from mean equator and equinox
of 1950.0 to true of date coordinate system in Section

_ 3.3.1.3 and Chapters 4 and 9.

C, A, B - See A, B, C above.

n

CAc - Force coefficient for the force along the cylinder axis in
,, Section 4.5.2 (see Table 4-1).

!
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B - Bias correction vector in Section 4.9. 

B, C, A - See A, B, C above. 

It, B
F

, BM - Minitrack coarse, fine, and medium phase rates in 
Appendix A. 

B 1 - Transformation matrix from true of date to pseudo body
fixed coordinateE in Section 3.3.2. 

B2 - Simplified transformation matrix from pseudo body-fixed 
to body-fixed coordinates in Section 3.3.2. 

Bl , .•• , B 15 - Auxiliary parameters defined in Equation (5-185~. 

b - Measurement bias in Sections 7.1 and 8.2. 

bF - Absolute phase difference for the Minitrack fine baseline 
in Appendix A. 

b, - Chebyshev coefficients of interpolating polynomial in 
Section 3.6. 

b j , c) - Numerical coefficients in SE.-ction 5.6. 

b m - Polynomial fitted to Minitra~k fine baseline rectified data 
in Appendix A. 

b
n 

- Polynomial fitted t) Minitrack coarse and medium base
line rectified ambiguity data in Appendix A. 

bx , by, bz - Coefficients of the linear term of the polynomial charac
terizing the attitude control system acceleration in Sec
tion 4.7.1. 

C - Transformation matrix from mean equator and equinox 
of 1950.0 to true of date coc,rdinat(:; system in Section 
3.3.1.3 and Chapters 4 and 9. 

C, A, B - !:lee A, B, C above. 

C A - FOl.'ce coefficient for the force along tne cylincier axis in c 
Section 4.5.2 (see Table 4-1). 
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Cn , CD_ - Aerodynamic drag coefficient with and without systematic
- error corrections in Section 4.5.

CF - Nondimensional force coefficient in Section 4.5.2.

,: CNc - Force coefficient for the force normal to the cylinder s
axis in Section 4.5.2 (see Table 4-1).

! •

C - Force coefficient for the force normal to the plate in
Np Section 4.5.2 (see Table 4-1).

_ C R - Nondimensional force coefficient for solar radiation
pressure in Section 4.6.

C - Force coefficient for the force tangent to the plate in
Tp

_/ Section 4.5.2 (see Table 4-1).

C _ - Harmonic coefficients of the earth's nonspherical poten-
J

_ tial in Section 4.4.
s 4

" m

C n - Gravitational harmonic coefficients. ,

CA_A, - Correlation between errors in -s and _* in Chapter 8. I

i

C5_ - Currelation between errors in _ and z0 in Chapter 8.

CA_0, - Correlation between errors in _o and _ in Chapter 8.

CA_oA_ - Correlation between errors in Xo and Eo in Chapter 8.

. CA__ - Correlation between errors in _ and _ in Chapter 8.

C_ - Dot product in Chapter 9.

Co, C, - Count of the number of cycles of the GRARR and ATSR
Doppler. reference frequency and the range reference
frequency in Chapter 7, and Appendices A _nd C.

c - Vacuum speed of light.

c, cp - The group speed and phase speed of propagation of an
electromagnetic signal in Section 7.6.
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CD' CDO - Aerodynamic drag coefficient with and without systematic 
error corrections in Section 4.5. 

<; - Nondimensional force coefficient in Section 4.5.2. 

- Force coefficient for the force normal to the cylinder 
axis in Section 4.5.2 (see Table 4-1). 

- Force coefficient for the force normal to the plate in 
Section 4.5.2 (see Table 4-1). 

CR - Nondimensional force coefficient for solar radiation 
pressure in Section 4.6. 

C - Force coefficient for the force tangent to the plate in 
Tp 

Section 4.5.2 (se~ Table 4-1). 

C ~ - Har<rlonic coefficients of the earth I s nonspherical poten
J 

tial in Section 4.4. 

Cm 
- Gravitational harmonic coefficients. n 

CLs6u* - Correlath.)n between errors in sand u* in Chapter 8. 

C - Correlation between errors in x and Z 0 in Chapter 8. /I., • .l'!. z 

C - Correlation between errors in x 0 and Ii in Chapter 8. 
l'Ixon 

C6XOD z - Correlation between errors in io and Z 0 in Chapter 8. 

C - Correlation between errors in z and ii in Chapter 8. 6z"1 

C'" - Dot ..Jroduct in Chapter 9. 

Co' C 1 - Count of the number of cycl€s of the GRARR and A TSR 
Doppler. reference frequency and the range reference 
frequency in Chapter 7, and Appendices A and C. 

c - Vacuum speed of light. 

- The group speed and }Jhase speed of propagation of an 
electromagnt.tic signal in Section 7.6. 
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I ii _ Harmonic coefficients of the moon's nonsphcrical poten- :Ci

tial in Section 4.4. 1 "_;o

cj - Coefficients in the expression for Y_lt) in Section 3.6. 1

c, c, c - Coefficients of the quadratic term of the polynomial char- '
acterizing the attitude control system acceleration in
Section 4.7.1.

D - Transfol_mation matrix from true of date to local plane
coordinates. See Section 3.3.4.

t i.
- Parameter obtained from BarkerVs equation for parabolic

_ motion in Section 3.3.8.1. i

i - Parameter used to determine if the spacecraft is within _i

the cylindrical shadow of a celestial body in Section 4.8.

- Linear differentiation operator in Sections 6.1 and 6.4. j
/#P

,_ D, D - Matrix and its elements in Section 5.5.
sj

. J D, - Quantity used to snlve KeplerVs equation for elliptical
: motion in Section 3.3.8.

! d - Spacecraft diameter in Section 4.5.2. '

d - Unit vectorpointingdown a_ungthevacuum downlinkpath _ :_

from the spacecraft to the tracking station in Section 7.6.3 ,
_ and Appendix C _ "_

_ ,

_ d -Numbcr ofephemeris days past Oh January I, 1950 ET in _

_ Section 3.3.3. ,_

E - Eccentric anomaly of an orbit. '_

i '- Transformationmatrix from body-centeredtrue ofdate

_ inertialCartes_.ancoordinatestoorbitplanecoordinates ,
{_ in Section 3.3.5. ' ,:

_ - Elevation angle ,neasured from the reference plane to t_.
_ station-to-spacecraft position vector in Section 3.2.4,

!! Chapter 7,Section9.1,and Appendix A. i

]9760]7203--540

c t - Harmonic coefficier..ts of the moon's nonspherical poter.
tial in Section 4.4. 

c i-Coefficients in the expression for Ym (t) in Section 3.6. 

c , c , c x y z - C06fficients of the quadratlc term of the polynomial char
acterizing the attitude control system acceleration in 
Section 4.7.1. 

D - Transformation matrix from true of date to local plane 
coordinates. See Section 3.3.·1:. 

- Parameter obtained from Barker's equation for parabolic 
motion in Section 3.3.8.1. 

- Parameter used to determine if the spacecraft is within 
the cylindrical shadow of a celestial body in Section 4.6. 

- Linear differentiation operator in Sections 6.1 and 6.4. 

D, D.. - Matrix and its elements in Section 5.5. 
1) 

Dn - Quantity used to solve Kepler's equativn for elliptical 
motion in Section 3.3.8. 

d - Spacecraft diameter in Section 4.5.2. 

d - Unit ve~tor pointing down ailing the vacuum downlink path 
from the spacecraft to the tr~1.cking station in Section 7.6.3 
and Appendix C. 

d - Number of ephemeris tiays pa.st Oh January 1, 1950 ET in e 
Section 3.3.3. 

E - Eccentric anomaly of an orbit. 

- Tranaforml:l.tion matrix from body-centered true of date 
inertial Cartet:ii~" cJordinates to orbit plane ~oordinates 
in Section 3.3.5, 

- Elevation angle ,neasureJ from the reference plane to tlo.p' 

station-to-spacecraft position vector in Section 3.2.4, 
Chapter 'i, Se~tion 9.1, and Appendix A. 
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"' E (cont'd) - Matrix of partial derivatives of the nonlinear measure-
: ment equations f(x_) with respect to consider variables
._. z in Section8.2. ::

_; - E - Observed elevation angle in Section 7.6.
'4 "

E• - Linear shitting operator in Section 6.1.

= ET - Ephemeris time. :

e - Orbital eccentricity, i _

- Eccevtricity of the planet's fibre in 3ection 3.3.6. i

_ _ - Eccentricity vector in Sections 3.2.6 and 3.3.10.
!

? c., ey, e_ - Herrick eccentlicity vector components used in Section i
:_ ; 3.3.11.2. _ o

r - em - Exponential multiplier in Section 7.6.3.

F - H3_perbolic anomaly in Section 3.3.8. [ :1 -.

- Er_entric longitude in Section _.3.9. Equals the sum of

the eccentric anomaly, argument of perigee, and right
ascension of the asceading node. ,_ !.

t

- Total force acting on the spacecraft in Chapter 4.

- Perturbed Hamiltonian in Section 5.5. _ _

: - Matrix of partial derivatives of observations with respect
to solve-for variables in Chapter 8 and Append.ix E.

F' - Augmented matrix of partial derivatives in Section 8.2.

FB - Aerodynamic acceleration per unit density in Section 4.5.2.

FTwF - Normal matrix inChapter 8.

_ WF - Expanded state normal matrix in Chapter _.

Ft, F, - Parameters used in general relativistic expression
(defined in Appendix C).

!
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E (cont'd) - Matrix of partial derivatives of the nonlinear measure
ment equationa f(x,z) with respect to consider \-ariables 
z in Section 8.2. 

En - Observed elevation angle in Section 7.6. 

ES - Linear shifting operator in Section 6.1. 

ET - Ephemeris time. 

e - O:-bita1 eGcentricity. 

- Eccentricity of the planet's figure in Section 3.3.6. 

e - Eccentricity vector in Sections 3.2.6 and 3.3.10. 

Cx ' e y , e z - Herrick ec~entlicity vector components used in Section 
3.3.11.2. 

em - Exponential multiplier in Sectivn 7.6.3. 

F - HypeIbolic anomaly in Section 3.3.8. 

- Er"entric 10rJgitude in Section 3.3.9. Equals the sum of 
the eccentric anomaly, argument of perigee, and right 
ascension of the ascending node. 

- Total force acting on the spacecraft in Chapter 4. 

- Perturbed Hamiltonian in Section 5.5. 

- Matrix of partial derivatives of observations with rcsp~ct 
to solve-for variables in Chapter 8 and Appendjx E. 

F' - Augmented matrix of partial derivatives in Section 8.2. 

FB - AerodYM.mic acceleration rer unit density in Section 4.5.2. 

FTWF - Normal matrix in Chapter 8. 

Fr WF - Expanded state normal matrix in Chapter ~. 

F t ' Fr - Parameters used in general relativistic expression 
(defined in Appendix C). 

G-·6 
• 



!

I !
2-

F0 - Unperturbed gamiltonian in Section 5.5. _ _

F 1 , F 2 , F 3 , F 4 - Functions ustd in the evaluation of the density in Section i_ :
4.5.4. ! :_

Fs0.7 - Daily a_erage of the 10.7 cm solar flux in Section 4.5. i _"

F-'10.7 - The 81-day running average of F10.7 . See Section 4.5.

- Augmented observation matrix in Section 8.4. _

f - Planetts flattening coefficient in Sections 3.3.6.1, 4.5.G,
7.2, and 9.1.

:_ - Orbital true anomaly in Sections 3.3.8.1, 4.10, 5.9, 6.1.2, :

and AFpend_x B.

- Ceneral time-varying function in ChaI_te_ 6.

f, g -. Se,'ies used to predict spacecraft positions in Chapter 9.
,2J

: f, _, _ - Equinoctial unit vectors along the equin(ctlal coordinate r

_ .J-_ directions Xep, Yep' and z ,p, respect_¢ely, in Sections .i
3.2.5 and 3.3.9.1.

_ flti) - Observ_ttion model in Section 4.10.

I fi - Functions used ih the Runge-Kutta integration method in .Section 6.6.

_' f_ - Nonlinear measurement functiona in Sections 7.1 and 8.2. , "

fo F2 - Critical frequency of the F2 layer in Section 7.6. -!

G - Universal gravitational constant. ,:

- Total angular momentum in Section 5.5 and Appendix B.

GHA - Greenwich Hour Angle. " _
e

- ¥,
g - Argument of the pericenter in vection 5.5,

: i g' g' - Mean anomaly of the moon and sun, respect.rely, in Sec- _
tton 3.3,3.

} i,
L
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Fo - Unperturbed Hamiltonian in Section 5.5. 

1"1 ' F2 , FJ , F4 - Functions l!St-d in the evaluation of the derlsity in Section 
4.5.4. 

F IO . 7 - Daily average of the 10.7 cm solar flux in Section 4.5. 

FlO . 7 - The 81-day running average of FlO. 7' See Section 4.5. 

3 - Augmented observation matrix in Section 8.4. 

f - Planet's flattening coefficient in Sections 3.3.6.1, 4.5.&, 
7.2, and 9.1. 

- urbita~ true anomaly in Sections 3.3.8.1, 4.10, 5.9, 6.1.2, 
h.nd A~pendjx B. 

- Ceneral time-varying function in Chaptei" 6. 

f, g ., Se:des used to predict space~rait positions in Chapter 9. 

f, g, w - Equinoctial unit vectors along the equint ctial coordi~te 
directions X ep ' Yep' and z ep' respect~'vely, in Sections 
3.2.5 and 3.3.9.1. 

f(t.) - Obsarvf1tion model in Section 4.10. 
1 

f. - Functions used iI. the Runge-Kutta integration method in 
1 

Section 6.6. 

fo - Nonlinear :measurement functionu in Sections 7.1 and 8.2. 

fO F2 - Critical frequency of the F2 layer in Section 7.6. 

G - Universal gravitational constant. 

- Total angular momentum in Section 5.5 and Appt>ndix B. 

GHA - Greenwich Hour Angle. 

g - Argument of the pericenter in ;:,action 5.5. 

g, g' - Mean anomaly of the moon and sun, respect.vely I in Sec
Uon 3.3.3. 
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;: g(a) - Function relating _- and a in the time element formula- ]
tion in Appendix B. ..

gi - Nonlinear functicaal form of/_'_i in Section 8.2.3.
,/

g ij - Elements of the metric matrix defining the nature of the , :
space-time frame in Appendix C. ,

L

g_ - Sea-level acceleratioP due to gravity in _ection 4.5.4.

H - Local hour angle of the sun ill Section 4.5.4.

: - The z component of the angu}ar momentum in Section 5.5.

, - Matrix used for expressing the Cowell _orrector formula
: in matrix form in Chapter 6.

\

; HI - Ionor.I_heric scale height in the expression for refractivity

( in Sectio_ 7.6.

HM, H_ - Maxirnam and minimum scale heights in Section 4.5.6. -"

H, h - Travsformations of the covariance matrix P_ and the
estimated state g, respectively, in Chapter 8.

i

HT - Tropospheric scale height in the expression for r ",'ac-
tivity in Section 7.6.

: h - Altitude measured as the p_ rpendicular distance from the
surface of the ellipsoidal planet :nodel to the point being
measured. See Sections 3.2.2, 3.3.6, and Chapter 4.

%

- Longitude of the ascending node in Section 5.5.

- Energy of the orbit in Section 5.4 an" Appendix B. __

- Integration stepsize it. Chapter 6.

h, hr - Projection of the rector g on the Yep axis in Chapter 3
(equinoctial elements).

i_, ]_, h , h , h - Orbital angular rnomentu:, vectors and Cartesian com- t
X y Z

portents in Section 3.3 _. I_
L

t

G-_ "_
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g(a) - Function relatinjl r and a in the time eleme:lt formula
tion in Appendix B. 

gi - Nonlinear functicnal form of tis i in Section 8.2.3. 

g.. - Elements of the metric matrix defining the nature of the 
1 J 

space-time frame in Appendix C. 

gs - Sea-level acceleration due to gravity in .;,edion 4.5.4. 

H - Local hour angle of the sun ill Section 4.5.4. 

- The z component of the anguJar momentum in Section 5.5. 

- Matrix used for expressIng the Cowell :)orrector formula 
in matrix form in Chapter 6. 

HI - Ion08pheric scale height in the expression for refractivity 
in Section 7.6. 

l\t, Hm - Maxil"!..tlm and minimum scale heights in Section 4.5.6. 

H, h - Tnt.Jlsformations of the covariance matrix PL\s and the 
estimated state s, respectively, in Chapter 8. 

Hr - Tropos!Jheric scale hel~ht in the expression for r "ac
tivity in Section 7.6. 

h, h 

h - Altitude measured as the p( cpendicular diE:ta.nce from the 
surface of t.he ellipsoidal planet :nodel to the point being 
mepsured. See Eections 3.2.2, 3.3.6, and CJu.pter 4. 

r 

- Longitude of the ascending node in Section 5.5. 

- Energy of the orbit in Section 5.4 an~ Appendix B. 

- Integration stepsize il: Chapter 6. 

- Projection of the vector e on the y f'P axis in Chapter 3 
(equinoctial elements). 

ii, li, h , h , h 
x y z 

- Orbital angular .momt~"t'~:.J vectors and Cartesian com
ponents in Section 3,3 d. 
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; h h - Apofoca' and perifocal altitude in Section 3.3.8.3.
a _ p

h K - Negative Keplerian energy in Appendix B.

• h L - Lower altitude limit for the ionosphere in Section 7.6.

h m - Altitude corresponding to maximum electron density in
Section 7.6.

h s - Height of tracking station above referer .e ellipsoid in
Sections 3.3.7, 7.6, and 9.1.

h0 , h,, h 2 - Parameters in the topside electron density profile in
Section 7.6.

•- _._ I - Orbital inclination in Section 5.5.

i'l - Linear identity operator in Section 6.1.
I

•,_ / S

- Abbreviation used in ray angular deflection formula in : -_

Section 7.6.3 (Equation (7-157)).

! - Identity matrix in Chapter 8 and Appendix E.

I

I, T - Inclination of the mean lunar equator to the ecliptic of
date in Section 3.3.3.

Ip , IIpn ; Isn, IIs - Summation symbols in Chapter 3.

i - Orbital inclination.

- Local incidence angle between an electromagnetic ray
and a radius vector in Section 7.6.

i - Incider.ce ang]_ between the spacecraft axis and thep
paddle surface in Section 4.5.2.

i s - Inclination of the moon's equatorial plane to the earth's
equatorial plume. (Euter angle used in transformation

from selenocentric to selenographic coordinates.,) See
Section 3.3.3.

J - Zonal harmonic coefficients (Jn = -CO) • See Chapter 4.

4_
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h , h - Apofoca~ and perifocal altltude in Section 3.3.8.3. 
a p 

hK - Negative Keplerian energy in Appendix B. 

hL - Lower altitude limit for the ionosphere in Section 7.6. 

hm - Altitude corresponding to maximum electron density in 
Section 7.6. 

h s - Height of tracking station above referer Je ellipsoid in 
Sections 3.3.7, 7.6, and 9.1. 

ho , 1'1' h 2 - Paramaters in the topside electron density profile ie 
Section 7.6. 

I - Orbital inclination in Section 5.5. 

- Linear identity operator in Section 6.1. 

- Abbreviation used in ray angular deflection formula in 
Section 7.6.a (Equation (7-157». 

- Identity matrix in Chapter 8 and Appendix E. 

I, J rA - Inclination of the mean lunar equator to the ecliptic of 
date in Section 3.3.3. 

Ip , IIp ; Is ' IIs - Summation symbols in Chapter J. 
n n n n 

i-Orbital inclination. 

i 
p 

- Local incidence angle between an electromagnetic ray 
and a radius vector in Section 7.6. 

Incidence angJ{! between the spacecraft axis and the 
paddle durface in Section 4.5.2. 

Inclination of the moon's equatorial plane to the earth's 
equatorial plane. (Euler angle used in transformation 
from selenocentric to selenographic coordinates.,) See 
Section 3.3.3. 

I n - Zonal harmonic coefficients (';n = -C~). See Chapter 4. 
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J2' J3' J4' J5 - Zonal harmonic coefficients in Chapter 5.

JD - Julian day number.

K - Diagonal matrix of accelerometer scale factor correc-
tions in Section 4.9. ,

- Kalman filter gain matrix in Chapter 8.

g - Augmented gain matrix in Section 8.4.

Kp - Geomagnetic planetary index in Section 4.5.4.

• k - Solar pressure model parameter in Section 4.6.2.

- Factor used in definition of the average Doppler fre-
.$

quench, in Section 7.3.

, k- - Unit vector normal to the orbital plane J_ Section 9.1.2. :
_X. j

:;; k, k - Projection of the vector _ on the x axis in Chapter 3 .t . "r ep

(equinoctial elements). I
?

k - Functions used in the Runge-Kutta integration method in
1

: Section 6.6.

kl, k 2 - Gain constants used to compute measurement variances
in Section 8.1.

¼ ',

: kl, k2, k 3 - Decay constants for the lower, middle, and upper third, _;
respectively, of the topside electron density profile in

\ Section 7.6. '

k 2, k 3, k 4, k s - Auxiliary parameters defined in Section 5.9. '

L - Cylinder length in Section 4.5.2.

- Luminosity of the sun in Section 4.6.

- Total energy of the orbit (DS element) in Chapter 5 and _

Appendix B. ,,

_-

- KS matrix in Section 5.4. ..

"i
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J 2' J 3' J 4' JS - Zonal harmonic coefficie11ts in Chapter 5. 

JD - J1llian day number. 

K - Diagonal matrix of accelerometer sCf..le factor correc
tions in Section 4.9. 

- Kalman filter gain matrix in Chapter 8. 

3{ - Augmented gain matrix in Section 8.4. 

K - Geomagnetic planetary index in Section 4.5.4. p 

k - Solar pressure model parameter in Section 4.6.2. 

- Factor used in definition of the average Doppler fre
quenc~' in Section 7.3. 

k - Unit vector normal to the orbital plane jv Section 9.1.2. 

k, kr - Projection of the vector e on the xf'p axis in Chapter 3 
(equinoctial elements). 

k - Functions used in the Runge-Kutta integration method in 
Section 6.6. 

Xl' k2 - Gain constants used to compute measurement variances 
in Section 8. L 

k l , k2' ;':3 - Decay constants for the lower, middle, and upper third, 
respp.ctively, of the topside olectron dens1ty profile in 
Section 7.6. 

k
2

, 1:.
3

, k 4 • ks - Auxiliary paralHeters defined in Section 5.9. 

L - Cylinder length in Section 4.5.2. 

- Luminosity of the sun in Section 4.6. 

- Total energy of the orbit (DS element) in Chapter 5 and 
Appendix B. 

- KS matrix in Section 5.4. 
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"" L (cont'd) - Ma&mitude of the angular momentum vector in Section 4.8.2.

L, I_, I__, Lr - Unit vector directed toward the spacecraft from a track-
: ing station in mean of 1950.0, body-fixed, local tangent,

or t.--ue of date coordinates, respectively. See Section 9.1.

L, - Components of the a_gular momentum vector in Section
4.8.2.

o

_,_-'TTD_./l''-fl T P_ 2 .. (LTp)_ - Transformed components of perturbing accelerations i_
_ection 5.4.

_ - _arameter in Robert's temperature profile in Section ,
4.5.4.

- Mean anomaly in Delaunay elements in Chapter a and ,

/ Appendix B. :
s

- Direction cosine of the angle between the station- : ,.
! spacecraft vector and the local tangent east-pointing _>.,,"

axis. This angle is measured by the Minitrack system
and is described in Section 7.2.3.

- Number which scales the hyperellipse of constant (normal)
probability in terms of the standard deviations. See Sec-
tion 8.5.2.

- Direction cosine of the corrected phase difference from

the east-pointing axi_ at the station in Appendix A. i

_, _, 2 _ - Herrick angular momentum vecto," and its components iny' z

_. Sections 3.2.6, 3.3.10, and 3.3.11.

M - Orbital mean anomaly.

M(_') - Mean molecular mass of at,-nosphere in Section 4.5.4. I

M, M' - Transformation matrices from selenocentric to seleno- ; /

graphic coordinates in Sections 3.3.3 and 4.4.

M, M_i, m_i - Notation used in describing the matrix inversion proce-
dure in Section 8.6.

' " G-II
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L (cont'oJ - Magnitude of the angular momentum vector in Section 4.8.2. 

L, 1;" ~, J.,. - Unit ve\~tor directed toward the spacecraft from a track
ing station in mean of 1950.0, body-fixed, local tangent, 
or true of date coordinates, respectively. See Section 9.1. 

L i-Components of the aragular momentum vector in Section 
4.8.2. 

(LTp)l' (L Tp\, (r}p), - Transformed components of perturbing accelerations i."l 
section 5.4. 

{, - Parameter in Robert's temperature profile in Section 
4.5.4. 

- Mean anomaly in Delaunay elements in Chapter:> and 
Appendix B. 

- Direction cosine of the angle between the station
spacecraft vector and the local tangent east-pOinting 
axis. This angle is measured by tht! Minitrack system 
and is described in Section 7.2.3. 

- Number which scales the hyperellipse of constant (normal) 
probability in terms of the standard deviations. See Sec
tion 8.5.2. 

- Direction cosine of the corrected phase difference fr')m 
the east-pointing axis at the station in Appendix A. 

{" 1: , ,f, , £ - Herrick angular momentum vecto .. • and its ~omponp,nts in 
x y z 

Sections 3.2.6, 3.3.10, and 3.3.11. 

M - Orbital mean anomaly. 

M(:..") - Mean molecular mass of atmosphere in Section 4.5.4. 

M, M' - Transformation matrices from selenocentric to seleno
graphic coordinates in Sectior.s 3.3.3 and 4.4. 

M, Mij ,mij - Notation used in describing the matrix inversion proce
dure in Section 8.6. 
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M i - Molecular mass of atmospheric constituents in Section
4.5.4.

Ml t - Transformation matrix from body-fixed coordinates,
centered at a tracking station, to local tangent coordi- ,
hates at the station. See Section 3.3.7 and Chapter 9. , :

': Ms - Sea-level mean molecular mass in Section 4.5.4.

MJD, MJD. - Modified Julian date and tabular modified Julian date.l

_ MUF(3000)F2 - Highest frequency usable for a 3000-kilometer single-hop
propagation via the F2 layer in Section 7.6.

M-factor - Ratio of MUF(3000)F2 to th_ critical frequency f0F2 in
Section 7.6.

, m - Mass of a body in Chapter 4.
:i Y

- Direction cosine of t,Se angle between the station-spacecraft /

vector and the local tangent north-pointing axis. This angle
: is measured by the Minitrack system and is described in
: Section 7.2.3.

_ - Group mean in Section 8.6.

m' - Direction cosine of the corrected phase differs, : from

the north-pointing axis at the station. See Appenciix A. ;

N - The distance along the normal vector from the intersec- , :_

,,_ tion of the normal and the ellipsoid to the z b axis. See ,
Figure 3-15 and Section 3.3.6.

- Nutation transformation matrix from mean of date to true

of date coordinates in Sections 3.3.1 and 9.1.1.

Ascending nodal vector in the equinoctial system. See _:
Figure 3-5 and Section 3.2.

N, NO - Number of cycles cf the Doppler-plus-bias sig_tl counted , ,
over the Doppler counting cycle. See Section 7.3, Appendix

! _t, and Appendix C. _ \

d .
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M. - Molecular mass of atmospheric constituents in Section 
1 

4.5.4. 

Mit - Transformation mat ... ~x from body-fixed coordinates, 
centered at a tracking station, to local tangent coordi
nates at the station. See Section 3.3.7 and Chapter 9. 

Ms - Sea-level mean molecular mass in Section 4.5.4. 

MJD, MJD. - Mo~.ified Julian date and tabular modified Julian date. 
1 

MUF(3000)F2 - Highest frequency usable for a 3000-kilometer single-hop 
propagation via the F2 layer in Section 7.6. 

M-factor - Ratio of MUF(3000)F2 to th..; critical frequency foF2 in 
Section 7.6. 

m - Mass of a body in Chapter 4. 

- Direction cosine of L'le angle between the station-spacecraft 
vector and the local tangent north-pointing axis. This angle 
is measured by the Minitrack system and is described in 
SeGtion 7.2.3. 

m - Group mean in Section 8.6. 

m' - Direction cosine of the corrected phase diffen,.. .' from 
the north-pointing axis at the station. See Appenciix A. 

N - The distance along the normal vector from the intersec
tion of the normal and the ellipsoid to the Zb axis. See 
Figure 3-15 and Section 3.3.6. 

- Nutation transformation matrix from mean of date to true 
of date coordinates in Sections 3.3.1 and 9.1.1. 

N - Ascending nodal vector in the equinoctial system. See 
Figure 3-5 and Section 3.2. 

N, No - Number of cy')les af the Doppler-plus-bias signal counted 
over the Doppler counting cycle. See Section 7.3, Appendix 
A, and Appendix C. 
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1 "'_'_" Ne,N m - Electrondensityand maximum electrondensityinSec-
ticn 7.6.

NF - The Minitrack fine baseline lengths in terms of vacuum
wavelengths of the nominal 136.0 MHz frequency signal. _
See Appendix A.

N_, NT - Ionospheric and tropospheric refractivity in Section 7.6.

Npq - Brouwer drag parameters in Section 4.10.

Ns - Magnitude of the normal vector to the surface of the ref-
erence ellipsoid at the tracking station in Sections 3.3.7

• _ and 9.1.

• I
_ - Surface r_fractivi .ty in Section 7.6. :

N O , i I , N 2 - Parameters in the topside electron density profile in

Section7.6. /P

; _ n - Keplerian mean motion. .=I -:?

•!,: } - Adjustable parameter exponent of the cosine variation be-
tween the Harris-Priester maximum and minimum densityf

i' _ profiles in Sections 4.3.5 and 5.3. "

- Uniformization constant in Section 5.1.

- Variable local index of refraction in Section 7.6.

- Measurement noise in Section 7.8.

: K - Unit vector along the idealized straight signal propaga-
' tion path in Appendix C.

_ - Random noise vector in Chapter 8.

_ fi, 5' - Unit vectors normal to the reference ellipsoid and the

_ geoid, respectively, in Section 7.4.

! n - Total number of residuals ior a tracking station and data
L type in Section 8.0.

- - G-1.q
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Ne , N m - Eh~ctron density and maximum electron density in Sec
tien 7.6. 

NF - The Minitrack fine baseline lengths in terms of vacuum 
wavelengths of the nominal 136.0 MHz frequer..cy signal. 
See Appendix A. 

N1 , NT - Ionospheric and tropospheric refractivity in Section 7.6. 

Npq - Br(\uwar drag parameters in Section 4.10. 

N - Magnitude of the normal vector to the surface of the ref-
s 

erence ellipsoid at the t~acking station in Sections 3.3.7 
and 9.1. 

- Surface r.1fractivity in Section 7.6. 

No' N l' N 2 - Parameters in the topside electron density profile in 
Section 7.t). 

n - Keplerian mean motion. 

- Adjustable pa:rameter exponent of the cosine variation be
tween the Harris-Priester maximum and minimum denSity 
profiles in Sections 4.3.5 and 5.3. 

- Uniformization constant in Section 5.1. 

- Variable local index of refraction in Section 7.6. 

- Measurement noise in Section 7.8. 

Ii - Unit vector along the idealized straight signal propaga
tion path in Appendix C. 

- Random noise vector in Chapter 8. 

ii, ii' - Unit vectors normal to the reference ellipsoId and the 
geoid, respectively, in Section 7.4. 

ns - Total number of residuals for a tracking station and data. 
type in Section 8.6. 
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n t , n - U-_ vectors along the local signal propagation path at ]
the transmitter and receiver, respectively, in Appendix
C.

Oc , O0 - The computed and actual observations in Sections 7.1, "
7.6, and 8.2.

P - Transformation matrix from orbital rectangular coordi-
nates to true of date coordinates in Sections 3.3.8.1 and
3.3.8.2.

- Orbital period in Section 3.3.8.3.

- Ionospheric term used in the equation for atmospheric

time delay in Section 7.6.3.

- Symmetric positive definite matrix in Appendix E.

P - Perturbative accelerations additional to the primary body's
* inverse square gravity m Chapter 5 and Appendix B. / :

- Augmented error covariance matr_ in Section 8.4. :

; P^, PT - Adopted and truepole,respectively,of th_earth. See
Section 3.3.2.2.

Pi (cos 0) - Legendre functions in Section 4.2.

p m - Legendre functions in Section 4.3.1.
n

Ps - The force on a perfectly absorbing surface due to solar , :
_. radiation pressure at one astronomical unit in Section 4.6.

PT' YT - Pitch and yaw angles, respectively, defining the thrust '
directlcn in Section 4.8. ,:

P_ - Covariance matrices in Chapter 8. (

P' - Covariance matrix of the estimated state variable errors
PA, ' As _"

inChapter 8.

P%,, - Covariance matrix of the state and model parameter :errors in Section 8.2.3.

G-14 ., ,
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-------nt ,nr 
- Uait vectors along the local signal propagation path at 

the transmitter and receiver, respectively, in Appendix 
C. 

0c,Oo - The computed and actual observations in Sections 7.1, 
7.6, and 8.2. 

P - T":'ansformation matrix from orbital rectangular coordi
nates to true of date coordinates in Sections 3.3.8,1 and 
3.3.8.2. 

- Orbital period in Section 3.3.8.3. 

- Ionospheric term used in the equation for atmosph .... ric 
time delay in Section 7.6.3. 

- Symmetric positive definite matrix in Appendix E. 

P - Perturbative acc'.:!lerations additional to the primary body's 
inverse square gravity In Chapter 5 and Appendix B. 

fo - Augmented error covariance matrix in Section 8.4. 

PA ' PT - Adopted and true pole, respectively, of thE; earth. See 
Section 3.3.2.2. 

Pi (cos e) - Legendre functions in Section 4.2. 

pm _ Legendre functions in Section 4.3.1. 
n 

Ps - The force on a perfectly absorbing surface due to solar 
radiation pressure at one astronomical unit in Section 4.6. 

P
T

' Y
T 

- Pitch and yaw angles, respectively, defining the thrust 
directicn in Section 4.8. 

P6a - Covariance matrices in Chapter 8. 

Pt.s 'Pt.s - Covariance m!itrix of the estimated state variahle errors 
in Chapter 8. 

P - Covariance matrix of the state and model parameter 1\ II 
errors in Section 8.2.3. 

G-14 



T !

z

I

3 )

• P^ - Covariance matrix of estimated solve-for variable errors. _
r L.AX

- Covariance matrix of a priori solve-for variable errors i
PAx° in Chapter 8. _ "_

• l>Az - Covariance matrix of consider variable errors. ;

- Covariance matrix of a priori consider variable errors _ :

PAz° in Chapter 8.

Ip,, ZZpn _ Summation matrices in Section 6.4. i

_. 1)z ' P2 ' P3 - Components of the perturbing accelerations in Section 5.4. il

p - Semilatus rectum of orbit.

S - Dimension of tile solve-for vector in Chapter 8.

_" - Vector of dynamic parameters in the acceleration model

_' which can be estimated. ./"

i_ 1 p* - The components of _ remaining after excluding satellite : i- position and veloc;t_ variables. These components in-

clude constant model parameters pertaining to Urag, :_

: gravitational harmonic coefficients, etc. See Section 4.1. "

15, Cl - Unit vectors in the orbit plane in Section 4.10. i

p, p_ - 1)ro_ection of vector N on the Y_, axis in Sections 3.2.6,
3.3.9.1, and 3.3.11.1 (equinoctial elements). F

PM(_) - Interpolating polynomial represe_iting n_onmuonent_ o_ ;
acceleration as a function of normalized time in Section

- 5.6. ' I,

Px - Normal probability density function in Section 8.5.

Q - Transformation matrix from spacecraft vehicle-fixed
axes to true of date coordinates in Section 3.3.1_. and

Chapter 4.

- Difference between ephemeris data and the function Y,, (t)
in Section 3.6.

G-15 ,
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- Covariance matrix of estimated solve-for variable errors. 

- Covariance matrix of a priori solve-for variable errors 
in Chapter 8. 

Pf) z - Covariance matrix of consider variable errors. 

- Covariance matrix of a priori consider variable errors 
in Chapter 8. 

lPn' IIPn - Summation matrices in Section 6.4. 

Pi ' P
2 

' P
3 

- Components of the perturbing accelerations in Section 5.4. 

p - Semilatus rectum of orbit. 

- Dimension of tile solve-for vector in Chapter 8. 

p - Vector of dy namic parameters in the acceleration model 
which can be estimated. 

p* - The components of u remaining after excluding satellite 
position and veloc:t} variables. These components in
clude constant model parameters pertaining to drag, 
gravitational harmonic coefficients, etc. See Section 4.1. 

p, q - Unit vectors in the orbit plane in Section 4.10. 

p, Pr - Projection of vector N on the Yep axis in Sections 3.2.6, 
3.3.9.1, and 3.3.11.1 (equinoctial elements). 

PM (~) - Interpolating polynomial represeJitin~ R ~()mponent of 
a0celeration as a function of normalized time in Section 
5.6. 

Px - Normal probability density function in Section 8.5. 

Q - Transformation matrix from spacecraft vehicle-fixed 
axes to true of date coordinates in Section 3.3.12 and 
Chaptel' 4. 

- Difference between ephemeris data and the function Y,., (t) 
in Section 3.6. 
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_" ! Q (cont'd)- Ionosphericterm used in theequationforatmospheric i

time delay in Section 7.3.3.

- Least squares loss function defineg in Sections 8.1 and :,

8.2. i:

- Covariance of the state noise in Section 8.4. _

Q' - Linearized least squares loss im_c_on in Sections 8.1
and 8.2.

,..3.8.1.q - PericentricdistanceinSection" '

- Scaling factor defining tlme transformation in Section _ :
5.5 and Appendix B.

: _J - Dimension of the consider vector in Chapter 8.
I

,= , q - The total parameter vector of all candidate solve-for /=
variables in Chapter 7. .y"

q' q, " Projection of the vector N on the xep axis in Sections
..... 5, 3.3.9.1, and 3.3.11.1 (equinoctial elements).

R - Universal gas constant. See Section 4.5.4.

- Covariance matrix ci the observation noise in Section 8.4.

R - Position vector in mean equator and equinox of 1950.0
coordinates in Chapter 3. _'

- Column vector of vehicle position coordinates in Chapter 4.

4

- Epoch stateelementsin Section7.?.3.

eX.

R - Vector from the center of an inertial coordinate system
to the satellite in Section 4.2.1. )

R - Velocity of the spacecraft in Section 4.5.2. ; ,

R' - Satellite position vector relative to the shadowing body
in Section 4.6.1. !
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Q (cont'd) - Ionospheric term used in the equation for atmospheric 
time delay in Section 7.3.3. 

- Least squares loss function definet: in Sections 8.1 and 
8.2. 

- Covariance of the state noise in Section 8.4. 

Q' - Linearized least squares losf. functicn in Sections 8.1 
and 8.2. 

q - Pericentric distance in Section ~.3.8.1. 

- Scaling factor defining tjl!lG transformation in Section 
5.5 and Appendix B. 

- Dimension of the consider vector in Chapter 8. 

q - The total parameter vector of aU candidate solve-for 
variables in Chapter 7. 

q, qr - Projection of the vector N on the xep axis in Sections 
2.2.5,3.3.9.1, and 3.3.11.1 (equinoctial elements). 

R - Universal gas constant. See Section 4.5.4. 

- Covariance matrix (",1 the observation noise in Section 8.4. 

11 - Position vector in mean equator and equinox of 1950.0 
coordinates in Chapter 3. 

- Column vector of vehicle position coordinates in Chapter 4. 

- Epoch state elements in Section 7.? .3. 

". R - Vector from the center of an inertial cuordinate system 
to the satellite in Section 4.2.1. 

R - Velocit-J of the spacecraft in Section 4.5.2. 

R' - Satellite position vector relative to the shadowing body 
in Section 4.6.1. 
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tt - Total acceleration vector expressed in an inertial
Cartesian coordinate system in Section 4.1.

R^ - Sum of nonpotential accelerations expressed in an iner-
tim Cartesian coormnate system in Section 4.9. ,

R - Polar radius of the earth in Section 4.5.4.
a Jt

Rv - Acceleration due to aerodynamic forces expressed in an
inertial Cartesian coordinate system in Chapter 4.

Rp - Inertial acceleration of the ears in an inertial Cartesian _:
coordinate system. See Section 4.4. ,,

i

R , R - Equatorial and polar radii, respectively, of earth or
e p

° reference body. _:

R Io - Acceleration due to the mutual nonspherical gravitational

attraction of the earth and moon in an inertial Cartesian ,," :
:' coordinate system. See Chapter 4. - :

R_ - Geocentric inertial spacecraft position vectors in :_"
Chapter 9.

/

Rkp - Vector from the k th body to the satellite in Chapter 4.

R_ - Inertial acceleration of the moon in an inertial Cartesian
: coordinate system in Chapter 4. _

R - Equatorial radius of the moon in Section 4.4.

RNS - Gravitationnl acceleration due to nonsphericity of the
gravitational potential in inertial Cartesian coordinate
system. See Chapter 4. _,

,,

ttpM - Gravitational acceleration due to n-point masses in ,
inertial Cartesian coordinate system in Chapter 4.

R - Position vector of the sun in the ineztial mean of 1950.0
$

coordinate system in Section 4.6.1.

T{ - Tracking station position vectors in Chapter 9. i:
i ,"

" - G-17
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· . 
R - Total acceleration vector expressed in an inertial 

Cartesian coordinate system in Section 4.1. 

.. 
R A - Sum of nonpotential accelerations expressed in an iner

tial Cartesiail coordinate system in Section 4.9. 

R - Polar radius of the earth in Section 4.5.4. 
a .. 

Rn - Acceleration due to aerodynamic forces expressed in an 
inertial Cartesian coordinate system in Chapter 4. 

RE - Inertial acceleration of the earth in an inertial Cartesian 
coordinate system. See Section 4.4. 

R ,R - Equatorial and polar radii, respectively, of earth or 
e p 

referen~e body. 

RIO - A('celeration due to the mutual nonspherical gravitati(lnal 
attraction of the earth and moon in an inertial Cartesian 
coordinate system. See Chapter 4. 

R i - Geoc:entl'ic inertial spacecraft position vectors in 
Chapter 9. 

R
kP 

- Vector from the k th body to the satellite in Chapter 4. 

RM - Inertial acceleration of the moon in an inf'rtial Cartesian 
coordinate system in Chapter 4. 

Rm - Equatorial radius of the moon in Section 4.4 . 

.. 
R

NS 
- Gravitational acceleration due to nonsphel'icity of the 

gravitational potential in inertial Cartesian coordinate 
system. See Ch8pter 4. 

HpM - Gravitational acceleration due to n-point masses in 
inertial Cartesian coordinate system in Chapter 4. 

R - Position vector of the sun in the ineItial mean of 1950.0 
s 

coordinate system in Section 4.6.1. 

R - Tracking station position vectors in Chapter 9. 
S i 
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_ RSR - Acceleration due to solar radiation pressure expressed ] :
in an inertial Cartesiap coordinate system in Chapter 4.

, Rsu" - One astronomical unit in Section 4.6.1. -

RT - Acceleration due to thrusting of the spacecraft engines ,
; in an inertial Cartesian coordinate system in Chapter 4.

.. L

RTAC - Acceleration due to attitude control system corrections
in an inertial Cartesian coordinate system in Chapter 4.

R - Right ascension of the fictitious mean sun on the meanu

equator of date and measured from the mean equinox of
; date. See Section 3.4.3.

R - Distance from the spacecraft to the sun in Section 4.6.1.
I

' ! R, Ry, R= - Rotational transformations about the x, y, and z axes, ,
! respectively, in Section 3.3. :
t

,P

R E (M) - Inertial acceleration of the point mass earth due to an : ,_" ';'
oblate moon in Section 4.4.

.. i :_

RM(E) - Inertial acceleration of the point mass moon due to an :
oblate earth in Section 4A.

RF - Observation correction due to refraction, light time, ,
transponder delay, antenna mount errors, etc., in
Chapter 7. i ,_

RMS Actual root mean square error in Section 8.6. _ "_'-

RMSP - Predicted root mean square error in Section 8.6. _
,,_

RMSB - The smallest RMS over all prior iterations in Section 8.6. ,:

r - Radial distance from the origin to the satellite or point _,_
being measured. ',

J "

- Magnitude of the satellite position vector in inertial geo-
centric coordinates in Section 4.5.6 and Appendix B.

- G_ocentric radius in Section 7.a.

0-18 _"
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RSR - Acceleration due to solar radiation pressure exprClssed 
in an inertial Cartesiall coordinate system in Chapter 4. 

R - One aRtronomical unit in Section 4.6.1. Sun .. 
RT - Acceleration due to thrusting of the spacecraft engines 

in an inertial Cartesian coordinate system in Chapter 4. 

RTAC - Acceleration due to attitude control system corrections 
in an inertial Cartesian coordinate system in Chapter 4. 

R - Right ascension of the fictitious mean sun on the mean 
u 

R 
vs 

R,R,R 
x y z 

equator of date and measureC: from the mean equinox of 
date. See Section 3.4.3. 

- Distance from the spacecraft to the sun in Section 4.6.1. 

- Rotational transformations about the x, y, and z axes, 
respectively, in Section 3.3. 

RE (M) - Inertial acceleration of the point mass earth due to an 
oblate moon in Section 4.4. 

RM (E) - Inertial acceleration of the point mass moon due to an 
oblate earth in Se.::tion 4.~. 

RF - Observation correction due to refral'!tion, light time, 
c 

trans~onder delay, antenna mount errors, etc., in 
Cr.~pter 7. 

RMS - Actual root mean square error in Section 8.6. 

RMSP - Predicted root mean square error in SecUon 8.6. 

RMSB - The smallest RMS over all prior iterations in Section B.ll. 

r - Radial distance from the origin to the satellite or point 
being measured. 

- Magnitude of the satellite position vector in inertial geo
centric coordinates in Section 4.5.6 and Appendix B. 

- Geocentric radius in Section 7.4. 
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i -" _ r - Position vector in true of date coordinates in Sections 3.2, 2
_'_ 3.3, and 5.4.2. mr

\

- Satellite position vector in inertial geocentric coordinates ._
in Section 4.5.6. _

m

-- "- "" t

r, r, r - Positiop, velocity, and acceleration vectors in the iner-
tial Cartesian coordinate system in Chapter 5. :_

" r - Magnitude of the apofocal radius vector in Section 3.3.8.
a J

"" _b ' _b - Position vector expressed in body-fixed and pseudo body- :
: fixed coordinates, respectively.

_E - Positio: 7ector in Cartesian coordinates referred to the i--
mean equator and equinox of date in Sections 3.2.1 and

i 3.3.1.
} .y

z
x

- Position vector of the earth in selenographic coordinates _,
in Section 4.4. ,,

, r"EM- Moon's position vector in geocentric coordinat." _ in Sec- :
tion4.4. i

rlp - Positionvectorreferredtothe localplanecoordinate
system inSection3.3.4.1.

_, _,

r"it- Positionvectorreferredtothe localtangentcoordinate ::.

_: system in Sections 3.2.4 and 3.3.6. _:.:

_u - Lunar position vector in true of date coordinates in ';

Section 4.4.

_'ME - Earth'spositionvectorinselenocentriccoordinatesin ,.:
Section 4.4.

_op " Posztionvectorreferredtotheorbitplanecoordinate
system. See Sections3.2.5and 3.3.4. r,

r, - Magnitude of the perifocal radius vector in Sectio_ 3 :, ?. ' _

% - Positionvectorreferredto theorbit_-Irectangularroor _.2.
- dinate system with the Xp axis directed toward pr ,-tz_ ;,':_.

See Sectio_ 3.3.8.

1976017203-554

r - Position '/eC'tl)l- in true of date coordinates in Sections 3.2, 
3.3, and S.4.2. 

- Satellite position vector in inertial geocentric coordinates 
!n 8ection 4.5.6. 

- -r, r, r - Position, velocity, and acceleration vectors in the iner-
tial Cartesian coordinate systero in Chapter 5. 

r - Magnitude of the apofocal radius vector in Section 3.3.S. 
a 

r;, , Ft! - Position vector expressed in body-fixed and pseudo bvdy
fixed coordinates, respectively. 

r - Positin". -lector in Cartesian coordinates referred to the 
E 

mean equator and equinox of date in Sections 3.2.1 and 
3.3.1. 

Position vector of the earth in selenographic coordlnates 
in Section 4.4. 

rEM - Moon's position vector in geocentric coordinat~ _ in Sec
tion 4.4. 

rIp - Position vector referred to the local plane coordinate 
system in Section 3.3.4.1. 

r
l 

t - Position vector referred to the local tangent coordinate 
system in Sections 3.2.4 and 3.3.6. 

1M - Lunar position vector in true of date coordinates in 

r op 

Section 4.4. 

- Earth's position vector in selenocentric cOO1'dinates in 
Section 4.4. 

- Posltion vector referred to the orbit plane coordinate 
system. See Sections 3.2.5 and 3:3.4. 

rn - Magnitude of the perifocal radius vector in SectiO'l 3 .~ " -
\ ." . 

rp - Position vector referred to the orbit~l rectangular ,'oor
dinate system with the xp axis directed toward pc ,-Un :':3. 
See <)ection 3.3.S. 
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rR - Position vector of the tracking station at sign_,l reception
in inertial Cartesian coordinates. See Chapter 7.

' r',, _t - Position vectors of the generalized receiver and trans,- r

mitter in inertial Cartesian coordinates in Appendix A. I '

r - Geocentric radius of a point (tracking station) on the sur-
face of the ellipsotdal planet. See Sections 3.3.6 and 7.6.

- Radius of the earth in Section 4.5.6.

Fs - Inertial position vector of the ground station in Section
7.3.3.

_, - Earth-fixed coordinates ._f the tracking station.

i _T - Position vector of the tracking station at signal trans- i
; i mission in inertial Cartesian coordinates in Chapter 7,

. ._.j Appendix A, and Appendix C. i _"
i.y /

rT - Acceleration due to tL,_st of the spacecraft engines in
Section 4.8.1. I I'

rTAc - Acceleration due to attitude control effects in Section 4.7,

::_ - Vector in vehicle-fixed coordinates in Section 4.7.1.

- Position vector of the spacecraft in inertial Cartesian

coordinates in Chapter 7 and/_ppendix C. _

, r E (1_I)- Acceleratica of the point mass earth due to the oblate
mo_n in selenographic true of date coordinL_tes in Sec-
tion 4.4.

r_ (E) - Acceleration of the poi,lt mass moon due to the oblate
earth in geocentric true of date coordinates in Section 4.4.

_0 - Earth-centered positi vector in Section 3.3.5.

r1 - Ir.erti_,l position vector of the relay satellite in satellite-

,' _-satelltte tracking. See Section 7.3.3. 1
!
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rR - Position vector of the tracking station at sigIlfJ receptiol1 
in inertial Cartes~.an coordinates. See Chapter 7. 

rr ,rt - Position vectors of the generalized receiver and trans·· 
mitter in inertial Cartesian coordinates in Appendix A. 

r - Geocentric radius of a point (tracking station) on the sur-s 
face of the ellipsoidal planet. See Sections a.3.6 and 7.6. 

- Radius of the earth in Section 4.5.6. 

rs - Inertial position vt:!ctor of the ground station in Section 
7.3.3. 

rs - Earth-fixed coordir.ates :)f the tracking station. 

rr - Position vector of the trackir.g station at signal trans
mission in ineltial Cartesian coordinates in Chapter 7, 
Appendix A, and Appendix C. 

rr - Acceleration due to tJ, t-ust of the spacecr.aft engines in 
Section 4.8.1. 

r TAC - Acceleration due to attitude con~rol effects in Section 4.7. 

J.' v - Vector in vehicle-fixed coordinates in Section 4.7.1. 

- Position vector of the spa~ecraft in inertia.l Cartesian 
coordinates in Chapter 7 and !'lppendix C. 

FE (M) - Acceleratic.} of the point mass earth due to the oblate 
mo:)n in selenographic true of date coordint,tes in Sec·· 
tion 4.4. 

~\I (E) - Acceleration of the poillt mass moon due to the oblate 
earth in geocentric true of date coordinates in Section 1.4. 

ro - Earth-centered posiU vector in Section 3.3.5. 

r1 - Inertip.l position vector of the relay satellite in satellite
to-satelHte tracking. See Section 7.3.3. 
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,r r2 - Inertialpositionvectorofthetargetsatelliteinsatellite-
t_-satellite tracking,, See Section 7.3.3.

S - Mc_m solar flux at oue astronomical unit in Section 4.6.

- Orbitalperiodin r_g'alarizedtime system in Section6.i0. ,

I - Seriesi,wolvedinatmosphericsignalpr_pagationtimedelay i7/;Section 7.6.3.

- F..pocl, sensitivity lnatz_x in Section 8.2.3.

l - _,igenvector transformation from basic coordinate frame

i to t,rincipal axes in Section 8.5.
- Sum of the squares of the residuals about the mean Jn
each residualgroup inSection8.6.

- Arc length along the signal propagation path in Appendix A.
J

! Sc - The projectionofthe spacecraftpositionvectorontothe .1
_ plane normal to the sun vector in the shadow n.odel of
, I Section 4.6.

S c, S, Sp, S - Coefficients in the aerodynamic force equations in Sec-
tion 4.5.2.

S_ - SeeS_,S_,Sp,S_ above.

'; S! - Harmonic coefficientsof theeaz_h'snonsphericalpoten-
tim inSection4.4.

S m - Gravitational l_rnAonic coefficients in Section 4.3.
n

' Se - See Se,S,, Sp,S._above.

i S - SeeS c,3 ,Sp,S, above.

S,,- Greenwich Hour Angle of thefictitiousmean sun in
Section3.4.3.

_ Xs_,nZS, - Firstand second sums, respectively,in theAdams-Cowell
formulas in Chapter 6.

f
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r 2 - Inertial position vector of the target satellite in satellite
to-satellite tracking" See Section 7.3.3. 

S - Mc~n solar flux at O'le astronomical unit in Section 4.6. 

- Orbital period in r'eg-ularized time system in Section 6.10. 

- Series i ilvolved in atmospheric signal prr ?agation time 
delay iJ;' Section 7.6.3. 

I 
- Epocl' sensitivity Matrix in Section 8.2.3. 

- ~igE:;nvector trandformation fl'om basic coordinate frame 
to r,rincipd axes in Section 8.5. 

- Sl,m of the squares of the residuals about the mean jn 
each residual group in Section 8.6. 

- Arc length along the signal propagation path in Appendix A. 

S c - The project:on of the spacecraft pO~lition vector onto the 
plane normal to the sun vector in the shadow rhodel of 
Section 4.6. 

S , S ,S ,S - Coefficients in the aerodynamic force equations in Sec-c e p s 
tion 4.5.2. 

Si - Harmonic coefficients of the eal..h's nonspherical poten
i 

tial in Section 4.4. 

Sm _ Gravitational harruonic coefficients in Section 4.3. 
n 

Su - Greenwich Hour Angle of the fictitious mean sun in 
Section 3.4.3. 

ISn , IISn - First and second sums, respectively, in the Adams-Cowell 
formulas in Chapter 6. 
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S1 , S2 , S3 - Components of the unit vector to the sun in true of date
coordinates in Section 4.5.

ST - Station time as defined in Section 3.4.&

SV - Universal time correction due to seasonal variations in
the rotation of the e_rth in Section 3.4.6.

• s - New inaependent variable in the time-regularized eoua-

tion, of motion in Chapter 5 and Appendix B.

_, _' - The _rate vector in Chapters 7 and 8.

_ s i - Harmonic coefficie_t_ of the moon's nonspherical posen-1

• Vial in Section 4.4.

:. -_J _" - Average orbital period defined in terms of the average
value of the semimajcr axis in Section 5.8.

_< T 1 , T¢2 - Epoch times at which the attituue control accel _ration /_
: polynomials are _r,md on apd turned off in Secdon 4.7.1. - '_

Tb - Rocket motor's effective burn time in Section 4.8.1.

T - Nighttime minimum glob_,l eyospheric temperature for
zero geomagnetic activity in Section .' .5.4.

T_ - Time in Julian centuries (36525 _ulian days) measured
from 1900 January 0d 12h ET (JP 2415020.0) to specifled
date. See Section 3.3.1.'..

_ . T - Number of Julian centuries of 36525 Julian ephemeris
e

days past 0 h January I, 1950 ET. See Section 3.3.3.

Tf, TO - The effective termination and initiation times, respec-
tively, of the s:)acecraft m.otor burn in Section 4.8.1.

Ti - Specified time to which the covariance and cc. relation
matrices are prop_ gated in Chapter 8.

Tj - Chebyshev )olynomlu!s in Sections 3.6 and 5.6.

m
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Sl ' S2 ' S3 - Components of the unit vector to the sun in true of date 
coordinates in Section 1.::;. 

ST - Station time as defined in Section 3.4.S,· 

SV - Universal time correction due to seasonal variations in 
the rotation of the ei:trth in Section 3.4.6. 

s - New independent variable in the time-regularized eClua
tion. vf motion in Chapter 5 and Appendix B. 

~, s' - The io tate vector in Chapters 7 and S. 

:;~ - Harmonic coefficie)"lt~ of the moon's nonspherical po~en
tial in Section 4.4. 

'1' - Average orbital period defined in terms of the avera6e 
value of the semimajcr axis in Section ::i.S. 

Toe 1 ' T Be 2 - Epoch times at which the attitulte control accel ~ratioll 
JX>lynomials are turned on and turned off in Sec~ion 4.7.1. 

Tb - Ro!!k~t motor's effective burn time in Section 4.8.1. 

Tc - Nighttime minimum globr,1 eyospheric temperature for 
zero ~eomagnetic activity in Section , •. 5.4. 

T E - Time in Juli&.n centuries (3652fi Julian days) measured 
from 1900 January Od 12h ET (JI:' 2415020.0) to specifIed 
date. See Section 3.3.1.1. 

T - Number of Julian centuries of 36525 Julian ephemeris 
e 

days past Oh January 1, 1950 ET. See Section 3.3.3. 

T
f 

' To - The effective termination a.nd initiation times, respec
tively, of the s:)acerraft motor burn in Section 4.8.1. 

T. - Specified time to which the covariance and c( , relation 
1 

matrices are prop. gated in Chapter 8. 

T) - Chebyshev )olynomi'lls in Sections 3.6 and 5.6. 
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i ,
: : ,, Tu - _.ime in Julian centuries (of 36525 Julian days) from ]

! "_950.0 in Section 3.3.1.1.: _

Tu - Number of Julian centuries elapsed from 12 hours UT1

: '. January 0, 1900 (JD = 2415020.0) to the UT1 time of date _
: ih Sections 3.3.2 aud 3.4.3.

T -. Inflection point temperature in Sec_on 4.5.4.

T(Z) - Atrnosl_ eric temperature profile in Section 4.5.4.

: To, T - ,_.e3[,T o above.

T I - Uncorrectedexospherictemperaturein Section4.5.4.

TI, T2, T 3 - Numerical integration error bounds "nSection6.9.

f T _ - "orrected exospheric temperature in Section 4.5.4.

i t - Coordinate time measured in seconds from epoch. The i
independent variable of the ,]uatior,.s of motion ..... " ,

} - Varirt)le defined in Section 8.? for testing residuals to
determine the confidence interval for *,he group mean.

f

- Coordinate time in Appendix C.

t • - Reference date inSection _,3.1.3.

t F - Time commencing the frame time interval for the GRARR •
and Minitracksyste._sinAppendixA. _i ._

tFM - )_idframetime forthe T,_initracksystem inAppendix A.

tf - T_me of the final observation in Section 8.4.

t* - The corrected mldframe time of the Minitrack system
5;

in Appendix A.

t - Reference time associated with the Brouwer drag param-q _e
tiersirSe ztion4.10,

t a - Time tag of the C-Band range data. •

_ G-2,'
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Tu - -::ime in Julian centuries (of 35525 Julian days) from 
)950.0 in Sectio!l 3.3.1.1. 

T - Number of Julian centuries elapsed from 12 hours UTI 
u 

January 0, 1900 (JD = 2'U5020.0) to the UTI time of date 
ill Sections 3.3.2 a~ld 3.4_J. 

Tx .. Inflection point ten-,perl'lture in Sec~ion 4.:>.4. 

T(Z) - Atrr.osJ. eric temper.ature profile in Secticn 4.5.4. 

T 1 - Uncorrected exospheric temperature in S~~tion 4.5.4. 

Tl ' T 2' T 3 - Numeri.cal integration error boundB 'n Section 6.9. 

T ro - :.orrected exospheric temperature in Sedion 4.5.4. 

t .' Coordinate time measured in seconds from epoch. The 
independent variable of the .l\laticrld of motion. 

"" 

- Varirole defined in Section S.:- for testing residuals to 
detel-mine the confidence interval for +:he group mean. 

t - Coordinate time in Appendix C. 

t* - Referer.ce date in dection ;),3.1.3. 

tF - Time commencing the frame time interval for the GRARF.. 
and Minitrack syste~s in Appendix A. 

tFM - l'1:idframe time for the Hinitrac!, system in Appendix A. 

t f - Time of the final ob~ervation in Section 8.4. 

t* - The corrected mldf.name time of the Minitrack system r.; 
in AJ.;pendb.. A. 

t - RI~fE:rence time assoctated with the Brouwer drag param
'1 

clers il" Sf> ~tion 4.10, 

t - Time tag of the C-Band range nata. a 
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t R(eont'd) - Time at which the ground station receives the return

signal in Chapter 7 and Appendix A.

- Proper time at the receiving station in Appendix C.

t s - Sample time of the tracker range and range-rate data m r

Appendices A and C.

t v - Signal transmission time at the ground station in Chapter
7 and Appendix A.

t v - Signal turnaround time at the spacecraft in Chapter 7 and

Appendix A.

t o - Epoch time in Chapter 4 and Section 8.2.3.

,. U - Geoidal undulation in Section 7.4.

; U - Unit vector directed at the satellite and referred to the

geocentric inertial Cartesian coordinate system in Sec- t
_" tion 3.3.5. . ,./

U, V - TropospPeric delay terms in Section 7.6.3. }

,T - Unit vector directed toward the apex of the diurnal bulge"_B

expressed in inertial geocentric coc,rdinates in Section
4 5._).

UBx ' UBy' UBz - Components of the unit vector U_ in Section 4.5.6.

l]_ - Unit vector directed al,mg i th leg m satellite-to-satellite
tracking. See Section 7.3.3.

UN - Unit vector normal to the orbital plane in the direction of
the angular momentum vector. See Section 3.3.4.2.

U_ - Unit vector directed at the sun from a sbadowing body in
_ection 4.6. l.

UT - Urlit vector directed along the thrust axis and referred
to the geocentric inertial Cartesian coordinate system.
See Section 4.8.1.
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tR (cont'd) - Time at which the ground station receives the return 
signal in Chapter 7 and Appendix A. 

- Proper time at the receiving station in Appendix C. 

t s - Sample time of the tracker range and range-rate data In 

Appendices A and C. 

tT - Signal transmission time at the ground station in Chapter 
7 and Appendix A. 

tv - Signal turnaround time at the spacecraft in Chapter 7 and 
Appendix A. 

to - Epoch time in Chapter 4 and Section 8.2.3. 

U - Geoidal undulation in Section 7.4. 

U - Unit vector directed at the satellite and referred to the 
geocentric inertial Cartesian coordinate system in Sec
tion ~.3.f.I. 

U, V - Tropospreric delay terms in Section 7.6.3. 

U B - l:nit vector directed toward the apex of the diurnal bdge 
expressed in inertial geocentric coordinates in Secti<l'.1 
4 5.!). 

UB ,U B ,UB - Components of the unit vector l1>~ in Section 4.5.6. 
x y z 

A 

Ui - Unit vector directed allJllg i th leg 10 satellite-to-satellite 
tracking. Set:: Section 7.3.3. 

U - Unit vector normal to the orbital plane in the direction of 
N 

the angular momentum vector. See Section ~.3.4.2. 

Us - Unit vector directed at the sun from a shadowing body in 
8ection 4.6.1. 

UT - lTllit vector directed along the thrust axis and referred 
to the geocentric inertial Cartesian coordinat.e system. 
See Section 4.S.1. 
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t j" " UT - Universal time.

UTC - Universal time coordinated. :

UTO - Uncorrected universal time.
J

UT1 - UT0 corrected for polar motion.

UT2 - UT1 corrected for periodic seasonal variations.

- Unit vector in the local plane z lp-axis direction and
='P referred to the geocentric inertial Cartesian system.

See Section 3.3.4.2.

U_, _ - Partial derivatives of Uv with respect to the right
ascension, _, and declination, $. See Section 4.8.2.

4

f E - Unit vector pointing along the vacuum uplink signal prop-

; agation path from the station to the spacecraft. See Sec-
tion 7.6.3 and Appendix C. t-

- Expanded state vector containing as components the
merged vectors R"and _. See Section 8.2.

- Vector of Gaussian noise in Section 8.4.

fi - Best estimate oi uncertain state and model parameters
in Section 8.2.3.

E* - Uncertain model parameters in u iu Section 8.2.3. i .'

E, E' - £ransformed position and velocitT -_ectors in Section 5.4.

u, Uy, uZ - Unit v.ectors in the body-centered t_e of date Cartesian _.
coordinate system in Section 3.3.8.3.

u( _ ) - Function used in Section _.7.1.

V - Spacecraft's velocity vector magnitude.

- Magnitude of velocity with respect to a medium produc-
ing an aerodynamic force in Section 4.5.

- Perturbing potential function in Section 5.4 and Appendix B.

, , G-25
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UT - Universal time. 

UTC - Universal time coordinated. 

UTO - Uncorrected universal time. 

UTI - UTO corrected for polar motion. 

UT2 - UTI corrected for periodic seasonal variations. 

U 
zip 

- Unit vector in the local plane Zip -axis direction and 
referred to the geocentric inertial Cartesian system. 
See Section 3.3.4.2. 

Va' Us - Partial derivativ~s of UT with respect to the right 
ascension, ct, and declination, S. See Section 4.8.2. 

u - Unit vector pointing along the vacuum uplink signal prop
agation path from the station to the spacecraft. See Sec
tion 7.6.3 and Appendix C. 

- Expanded state vector containing as components the 
merged vectors x and z. See Section 8.2. 

- Vector of Gaussian noise in Section 8.4. 

u - Best estimate oi uncertain state and model parameters 
in Section 8.2.3. 

U* - Uncertain model parameters in u in Section 8.2.3. 

il, il' - Transformed positiun and velocity -vectors in Section 5.4. 

u ,u,if 
x y z - Unit v.ecto'fs in the body-centered true of date Cartesian 

coordinate system in Section 3.3.B.3. 

u ( s) - Function used in Section .4.7.1. 

V - Spacecraft's velocity vector magnitude. 

- Magnitude of velocity with respect to a medium produc
ing an aerodynamic force in Section 4.5. 

- Perturbing potential functi.on in !Section 5.4 and Appendix D. 
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V - Unit vector normal to the geocentric position vector and I =
lying in the orbital plane. See Section 3.3.5.

VB - Relative wind velocity in the spacecraft body axes coor- -_
dinate s)stem in Section 4.5.2.

I

Vre, - Velocity of the spacecraft relative to the atmosphere in
Section 4.5.

v - Local vert_c_! at the ground station in Section 7.6.3.

- Magnitude of spacecra_ velocity in Appendix B.

5

V - Velocity vector in S£ction 8.4.2.

v - Quantity denoting the Cowell velocity integrator for i

J linear systems in Section 6.3.

W - Weighting matrix in the least squares loss/unction in '
" -< Chapter 8.

/I

W - Unitvectordirectednormal to +._heorbitplanein the _
direction of the angular momentum vector. See Section •
3.3.5.

W' - Augmented weighting matrix in Chapter 8.

win+- - Weigbt of the (rn L1)st measurement in Chapter 8 and , _.
AppendLx E. _ i

X, Y, Z -- Inertia] CarLesian components of spacecraft position in
the mean of 1950.0coordinatesystem inSection3.2.1.

XB - Unitvectoralor4_thecylinderaxisinSection4.5.2. ,

XI, YI - Positioncoordinatesinthe eq dnoctialcoordinatesystem
in Sections 3.3.9.1 and 5.7.

X a0,Ya0 - Gimbal anglesfortheGRARR, ATSR, and USB systems.
See Eection 7.2.3.

Xss, Y_s - Gimbal angles for the USB system in Section 7.2.3.

G-26 _ _'_
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v - Unit v~ctor normal to the geocentric position vector and 
lying in the orbital plane. See Section 3.3.5. 

VB - Relative wind velocity in the spacecl:"aft body axes coor
dinate system in Section 4.5.2. 

Vre1 - Velocity of the spacecraft relative to the atmosphere in 
Section 4.5. 

v - Local vertical at the ground station in Section 7.6.3. 

- Magnitude of spacecraft velocity in Appendix B. 

v - Velocity vector in Section 8.4.2. 

v - Quantity denoting the Cowell velocity integrator for 
n 

linear systems in Section 6.3. 

W - Weighting matrix in the least squares loss function in 
Chapter 8. 

W - Unit vector directed normal to the orbit plane in the 
direction of the angular momentum vector. See Section 
3.3.5. 

WI - Augmente(l w~ighting matrix in Chapter 8. 

Wm+: - Weight of the (m L l)st measnrement in Chapter 8 and 
Appendix E. 

x, Y, Z .. Inertial. (;arJ.esian c(lmponents of spacecraft position in 
the mean of 1950.0 coordinate system in Section 3.2.1. 

XB - Unit vector along the cylinder axis in Section 4.5.2. 

~~1 , Y 1 - Position coordinates in the eq linoctial coordinate system 
in Sections 3.3.9.1 and 5.7. 

X 30 , Y30 - Gimbal angles for the GRARR, ATSR, and USB systems. 
3ee ~ection 7.2.3. 

X SS ' Y/IS - Gimbal angles for the USB system in Section 7.2.3. 
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_ _ - Augmented state matrix in Section 8.4. ;

7: x - Transformed time variable in Section 3.6.

) m

x - Vector of slow osculating orbital elements in Section 5.8. ?

; _ x, x i , x i, x 0 - Epoch values of the solve-for or expanded state vector ef
c

_ p-dimension in Chapter 8. The vector xi is the best est_-
mate of _ obt_ned on the i th iteration. The vector _'_., is

_ the reference solution on the i th iteration. The vector _0
( (-

is the a priori estimate of the reference state.

_ x, y, z - Inertial Cartesian components of spacecraft position in

: the true of date coordinate system.
]

Xb' Yb ' Zb -- Rectangular Cartesian components of spacecraft position
" in body-fixed (rotattng) coordinates of the principal gra_ri- :

tat-ing body.
,%

j -

x_, y_, z_ - Components of spacecraft position in the pseudo body ....
fixed coordinate system in Section 3.3.2. "

1 x E , yz, z E Inertial components of spacecraft position ix, _ e mean of '
date coordinate system in Section 3.2.1. _"

Xep ' Yep ' z_p - Components of spacecraft position in the equinoctial coor-
dinate system in Section 3.2.5.

x' - Components of the space coordinates in Appendix C.

- Xtp, Ylp, zip - Components of space_raft position in _eocentric local
n!vue coordinates _,,u_?, east, north) in Section 3.2.3.

x _t, Y t t, z _t - Components of spacecraft position in topocentric loca ' "_
tangent coordinates (east, north, up) in Section 3.2.4.

x, - Quantity denoting tl_e Cowell position integrator for
linear systems.

i
Xop,Yop,Zop - Components of spacecraftpositionin geocentri_orbit ,

plane coordinates in Section 3.2.5.

i G-27
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J - Augmented state matrix in Section 8.4. 

x - Transformed time variable in Section 3.6. 

x - Vector of slow osculating orbital elements in Section 5.8. 

X, Xi ' Xi' X 0 - Epoch values of the solve-for or expanded state vector :-f 
p-dimension in Chapter 8. The vector Xi is the best estJ.
mate of x obtained on the i th iteration. The vector Xi _, is 
the reference solution on the i th iteration. The vector Xo 
is the a priori estimate of the reference state. 

x, y, Z - Inertial Cartesian components of spacecraft position in 
the true of date coordinate system. 

"t> ' Yb' Zb - Rectangular Cartesian components of spacecraft position 
in body-fixed (rotaUng) coordinates of the principal gravi
tating body. 

x~ , y~, z~ - Components of spacec-raft pOSition in the pseudo body
fixed coordinate system in Section 3.3.2. 

x E ' YE ,ZE - Inertial components of spacecraft po8ition ilt 1 e mean of 
date coordinate system in Section 3.2.1. 

Xep , Yep' Zep - Components of spacecraft position in the equinoctial coor
dinate system in Section 3.2.5. 

Xl - Components of the space coordinates in Appendix C. 

Xl p , Yip , Zip - Components of space'~raft position il1 ~eocentric local 
n'?ne coordinates {up, east, north) in Section 3.2.3. 

:x 1 t' Y 1 t ' Zit - Components of s?acecraft positiml in topocentric loca
tangent coordinates (east, north. up) in Section 3.2.4. 

X n - Quantity denoting the Cowell pos5tion integrator for 
linear systems. 

Xop , Yop , Z op - Com?onents of sJlacecraft position in geocentri:! orbit 
plane coordindtes in Sectiun 3.2.5. 
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x ,yp - Instantaneousangularcoordinatesofthepolarmotion in j-( _ p
Section 3,3.2.2 (see Figure 3-11).

; xp, yp, Zp - Keplerian Cartesian components of spacecraft position
, inorbitalcoordinates,i.e.,Xp is directedtowaro peri-

gee and Zp in the direction of the angular momentum.
: See Sections 3.2.5 and 5.7.

• x , y , z - Keplerian unit vectors in Sections 3.2.5 and 5.7.p P p

x' z' - Components used in two-dimensional analysis of ellipsoidS' $

' in Section 3.3.6 to indicate that the y component is omitted.

: x, y_, zs - Coordinates of a point s on the surface of an ellipsoidal
planet expressed in body-centered rotating coordir.ates.
See Section 3.3.6.

s xv, Yv, z - Components of spacecraft position in the tehicle-fixed
: coorainate system in Sections 3.2.7 and 4.7.1.

l
/

x 1. . . x19 - DODS variables used in the Brouwer-Lyddane theory de- " ""
fined in Section 4.9.1.

x 20. • • xs9 - DODS drag parameters in Section 4.9.2.

Y - See X, Y, Z above.

- Dependent variable vector in the second-order linear dif-
ferential system of variational equations in Sections 4.1
and 6.4. i

'_ Y_' PT - Yaw and pitch angles, respectively, defining the mrust
direction in Section 4.8.

Y(t), Y{t) - Matrices obtained by integrating the variational equations
in Section 4.1.

- Matrices of position partial derivatives and velocity
partial derivatives, respectively, in Section 6.4.

Y(t ¸t j) - Predicted measurer:,ent residual uncertainty in Section 8.4.
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x y - Instantaneous angular coordinates of the polar motion in p' p 
Section 3.3.2.2 (see Figure 3-11). 

Xp ' yp' zp - Keplerian Cartesian components of spacecraft position 
in orbital coordinates, I.e., xp is directed towaro peri
gee and zp in the direction of the angular momentum. 
See Sections 3.2.5 and 5.7. 

A A A 

xp ' yp' zp - Keplerian unit vectors in Sections 3.2.5 and 5.7. 

x! ,z! - Components used in two-dimensional analysis of ellipsoid 
in Section 3.3.6 to indicate that the y component is omitted. 

X s ' y s' Zs - Coordinates of a point s on the surface of an ellipsoidal 
planet expressed in body-centered rotating coordir.ates. 
See Section 3.3.6. 

Xv' y v' Zv - Components of spacecraft position in the /ehicle-fixed 
coorainate system in Sections 3.2.7 a.nd 4.7.1. 

Xl ••• Xl9 - DODS variables used in the Brouwer-Lyddane theory de
fined in Section 4.9.1. 

X 20' •• XS9 - DODS drag parameters in Section 4.9.2. 

Y - See X, Y, Z above. 

- Dependent variable vector in the second-orde-r linear dif
ferential systerr. of variational equations in Sections 4.1 
and 6.4. 

Y T' P
T 

- Yaw and pitch angles, reopectively, defining the thrust 
direction in Section 4.8 • 

. 
Y (t), Y (t) - Matrices obtained by integrating the variation!!l equations 

in Section 4.1. 

- Matrices of position partial derivatives and velocity 
partial derivatives, respectively, in Section 6.4. 

Y(t jf1 I tj) - Predicted meaSUl"CL-'ent residual uncertainty in Section 8.4. 
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I Ym (t) - Linear combination of functions used in the interpolation
of ephomeris data in Section 3.6.

y - See x, y, z above.

- Fast osculating orbital elements in Section. 5.8.

- The m-dimensional vector of measurement data in
Chapter 8.

Yb - See x b, Yb, Zb above.

y_ - See xJ, y_, z_ above.

Yz - See x_, Yz' zz above.
.|

/{ y_p - See x_, Yep ' Z p above.
t
1

" _ Yi - JPL ephemeris function value at time t i in Section 3.6. sa c ;

Ylp - See Xlp, Ylp, Zip above,

] ,i Ylt - See xit, Ylt _ zlt abovc.

y_ - Half-thickness of the bottomside layer of the electron
density profile in Section 7.6.

yp - See xp, yp, Zp above. .

(

Ys - See xs, Ys' zs above. _ :

Yv - See x v, yv, z_ above.

Yo, - See x o,, yop , z o_ above.

Z - See X, Y, Z above.

- Altitude in Section 4.5.4.

Zm. Z - Zenith calibration constants in Appendix A.

z - See x, y, z above.
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Ym (t) - Linear combination of functions used in the interpolation 
of ephrJmeris data in Section 3.6. 

Y - See x, y, z above. 

- Fast osculating orbital elements in SectiOi.. 5.8. 

y - The m-dimensional vector of measurement data in 
Chapter 8. 

y~ - See "t:, y~ ,~ above. 

Yer.- - See ~:> ' Yep' zep above. 

Yi - JPL ephemeriF! function value at time ti in Section 3.6. 

Y - See x Y Z above. It It' It' It 

Y
M 

- Half-thickness of the bottomside layer of th~ electron 
density profile in Section 7.6. 

Yp - See xp, Yp ' zp above. 

Ys - See xs'Ys,zs above. 

Yv - See xv' Yy' Zy above. 

Yop - See x op' Yop , z or.- above. 

Z - See X, Y, Z above. 

- Altitude in Section 4.5.4. 

Zm' Zn - Zenith ca!ibration constants in Appendix A. 

z - See x, y, z above. 

G-29 



z (cont d) - Nondimensional altitude used in the Chapman profile for i
electron density in Sections ?.6.2 and 7.6.3.

- The q-dimensional consider vector containing as compo- .:
nents all model parameters whose values are known with

,+

limited c£rtainty but are not to be estimated. See Chap- i

ter 8.

+

Z b -- See xb ,Yb J Zb above. '.

z_ - See x_, y_, z_ above,

: zz - See xz,YE' ZE above. ;

Zep -- See Xep _ Yep _ Zep above.

_' z, - The z b axis intercept of the vector normal to the sur-
face of the ellipsoidal planet r._odel in Section 3.3,6.

__ z ip - See x Ip, Ylp, Zlp above. -" _:
-r

Zlt -- See Xlt $ Ylt _ Zlt above. Ii

Zop - See Xop,yo,,Zop above.

zv - See Xp, yp, Zp above. :
i

z_ - See :%, Ys, z_ above.

z,, - See x_,y_, % above. L

. _0 - A priori value of z" in Chapter 8. ,

,_ - Right ascension of the spacecraft relative to the true of "_

date system.

- Geocentric angle between the ground station and the sub-
ionospheric point in Section 7.6.3.

- Uniformization constant :n Appendix B.

8 - Unit vector normal to the orbit plane in Section 4.]0.

}
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Z (cont'd) - Nondimensional altitude used in the Chapman profile for 
electron density in Sections '7.6.2 and 7.6.3. 

z - The q-dimensional consider vector containing as c!'mpo
nents all model parameters whose values are known with 
limited c(.rtainty but are not to be estimated. See Chap
ter 8. 

z:, - See ~, y~ , ~ above. 

Z - See x ,Y ,Z above. ep ep ep ep 

z, - The Zb axis intercept of the vector normal to the sur
face of the ellipsoidal planet nodel in Section 3.3.6. 

Zip - See XI 'YI $ ZI . p p P above. 

zit - See X It' Y It' ZI t aboye. 

z 
°P - See xop ' Yo, ' 'ZoP above. 

z - See x p ' YP' zp above. 0 

zs - See Xs , Jrs , Zs above. 

Z y - See Xv, yy , Zy above. 

Z 0 - A priori value of z in Chapter 8. 

(1 - Right ascension of the spacecraft relative to the true of 
date system. 

- Geocentrjc angle between the ground station and the sub
ionospheric point in Section 7.6.3. 

- Uniformization constant :n Appendix B. 

(; - Unit vector normal to the orbit plane in Section 4.10. 

G-30 kRPRODucmUJTY OF THEJ 
OIUGI.\lAL PAG1~ Ii POOR 



] I I
I

L

; b,

i
I

• _. fl - Slow and fast elements, respectively, in Section 5.7. :

• i _' _ - Four-vectors in Section 5.4 and Appendix B. ,,

I a - True Greenwich sidereal time, the Greenwich Hour Angle ,
, _ of the true equinox of date, or the righ_ ascension of
"_ Greenwich.

aGM - Mean Greenwich sidereal time, measured in the mean
equator and equinox of date system.

a_ - Thermal diffusion coefficient in Section 4.5.4 (see Table
' 4-2).

- DS elements vector in Section 5.5.
] _

: i ai' /_i; a_, _ .. Coeffic:ents of the Adams-Cowell predictor formulas

(ordinate form) in C_ '_pter 6. ,z
r

; a - Right ascension of the sun in Section 4,5.6. •

i a T - Right ascension of the spacecraft's thrust axis in Sec-tion 4.8.1.

a t - Topocentric right ascension of the spacecraft in Sec- i
t

tion 9.1.
!

a - Right ascension of the spacecraft's longitudinal axis in _.
Section 3.3.12.

_J0..... _4 - Coefficients of polynomial characterizing the thrust axis
right ascension in Section 4.8.1.

'_1' "_2' _3 - Doppler factors for individual transmission legs in
satellite-to-satel_ite tracking in Section 7.3.3.

_zl..... % - DS elements vector in Section 5.5.

_" -, Flight path angle measured from the geocentric position ::
vec_r to the velocity vec_or in Section 3.2.3.

" - Unit vector lying in the orbit plane inSection 4.10. _
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1976017203-566

Lt, (j - Slow and fast elements, respectively, in Section 5.7. 

a, jJ _ Four-vectors in Section 5.4 and Appendix B. 

a - True Greenwich sidereal time, the Greenwich Hour Angle 
g 

of the true equinox of date, or the righ~ ascension of 
Greenwich. 

a GM - Mean Greenwich sidereal time, measured in the mean 
equator and equinox of date system. 

a, - Thermal diffusion coefficient in Section 4.5.4 (see Table 
1 

4-2). 

- DS elements vector in Section 5.5. 

. ~. 

ai' Pi; ai' Pi .. Coeffic:ents of the Adams-Cowell predictor formulas 
(ordinate form) in C" ''I.pter 6. 

as - Right ascension of the sun in Section 4,5.6. 

aT - Right ascension {If the spacecraft's thrust axis in Sec
tion 4.8.1. 

at - Topocentric right ascension of the spacecraft in Sec
tion 9.1. 

v - Right ascension of the spacecraft's iongitudinal axis in 
Section 3.3.12. 

eJ,o' ••• , '. 4 - Coefficients of polynomial characterizing the thrust axiE 
right ascension in Section 4.8.1. 

,1. 1 , (1 2 , lt3 - Dorplcr factors for individual transmission legs in 
satellite-to-satelUte tracking in Section 7.3.3. 

el,l' .. " as - DS dlJments vector in Section 5.5. 

•. FliRht path angle measured from the geocentric position 
vector to the velocity v~ctor in Section 3.2.3. 

- Unit vector lying in the orbit plane in Soc'tion 4.10. 
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t, t

_ /31' f12' _ - Doppler factors for individual transmission legs in
satellite-to-satellite tracking in Section 7.,3.3.

F T - Vector containing powers of the t .,ust burning time in
n

Section 4.8.2.

- Normal gravity at a point. See Section 7.4.

" _, - Unit vector forming right-hand system with _ and ¢_ in
: Section 4.10.

,

7e - Normal equatorial gravity in Section 7.4.

0 #

7i, _i' "7i - Coefficients in the Adams-Cowell formulas in Section 6.1.

J Y2 ' Ya' Y4, Ys - Auxiliary parameters defined on pages 5-44 and 5-45.

,I # $ • I

)2, Ya, _4, fs - Auxiliary parameters defined on pages 5-44 and 5-45.

A - Auxiliary angle used in determining the transformation /
from true of date selenocentric to selenographic coordi-
nates in Section 3.3.3,

A_-_,,Ad - Correction vectors used in the determination of refrac-v

tion correction in Section 7.6.3.

AE - Atmospheric elevation correction in Section 7.6.3.

/_f - The correction to the frequency fees, = 9,192,G31,770cesium

cycles of cesium per ephemeris second in Section 3.5.1.

AH - The correction to the mean right ascension to account
for lmtation in Section 3.3.2.1,

A_DRAG, ,_MI_RAG - First-order correction to the mean anomaly in Sections
5,9 and 4.10, respectively.

(A log,0 P)G - Geomagnetic activi_p correction to standard density cal-
culation in Section 4.5.4.

(_ log 10F_),,, - Density correction for seasonal latitudinal variat,on of
helium in Section 4.5.4.
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/31 ' f:3 2 , J33 - Doppler factors for individual transmission legs in 
satellite-to-sateUite tracking in Section 7 .. 3.3. 

r T - Vector containing powers of the toll-ust burning time in 
r. 

Section 4.8.2. 

y - Normal gravity at a point. See Section 7.4. 

A 

Y - Unit vector forming right-hand system with a and j3 in 
Section 4.10. 

'Ie - Normal equatorial gravity in Section 7.4. 

'Ii' 'I:, '17 - Coefficients in the Adams-Cowell formulas in Section 6.1. 

'1
2

' '1
3

' '1
4

' 'Is - Auxiliary parameters defined on pages 5-44 and 5-45. 

'I;, 'I;, 'I:, 'I; - Auxiliary parameters defined on page~ 5-44 and 5-45. 

6. - Auxiliary angle used in determinlng the transformation 
from true of date selenocentric to selenographic coordi
nates in Section 3.3.3, 

S(~, 6d
v 

- Correction vectors used in the determination of refrac
tion correction in Section 7.6.3. 

6E - AtmosphlJri'J elevation correction in Section 7.6.3. 

6 f. - The correction to the frequency fcas I = 9,192,f:31,770 
cesium ' 

cycles of cesium per ephemeris second in Section 3.5.1. 

6 H - The correction to the mean right ascension to account 
for llutation in Section 3.3.2.1. 

L\{ DRAG' I~MnRAG - First-order correction to the mean anom~ly in Sections 
:;·.9 and 4.10, respectively. 

(L\ log 10 p)G - Geomagnetic activi~l correction to standard density cal
culatio.l in Section 4.5.4. 

,,'\ log 10") )H.. - Density correction for seasonal latitudinal variat",m of 
helium in Section 4.5.4. 
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(A log lop )LT - Density correction for seasonal latitude variation of the
lower thermosphere in Section 4.5.4.

(A log10 P)s^ - Semiannual atmospheric density variation in Section ,t.5.4.

Ar - Radius of fhe error hyt,ersphere in Section 8.5.2.
¢

5 r, Ar - Range and range-rate antenna mount corrections in Sec-

: _ tion 7.6.3.

= 5 s, 5"_ - First six components of A_ and 5_ in Chapter 8.

•AT® - Correction to exothermic temperature in Section 4.5.4.

_Tlgs8 - The difference ET - UT2 on January 1, 1958, ohomo_UT2

;_ minus the periodic terms "n the ET to A.1 transformation
_ in Section 3.5.1.

,_ L_t - Atmospheric _elay in the i th leg in satellite-to-satellite
^i tracking in Section 7.3.3. s i

I 5 t e - Counter delay in the phase readout digitizing equipment
,. in Appendix A.

5 t a - Correction to sequencer delay in Appendix A. _

A tp - Sequencer delay in Appendix A.

A t R - Two-way light time corresponding ,e range observable
in Section A.1. _ ,

/\ t_u - The reciprocal of the data recording rate in Section A.1. _

L_ tRR - Doppler count time interval in Chapter 7 and in Appendices ' i
A and C.

7_'u - Perturbations about _ in Section 8.2.3.

A_ - Best _stimatc of _ in a weighted least squares sense

in Chapter 8.

_-uT' :_u'_ - Correction vectors used in the o_ermination of refrac-
tion cnrrection in Section 7.6.3.

,,t,, G-33
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(tllog10P)LT - Density correction for seasonallatitade variation of the 
lower thermosphere in Section 4.5.4. 

(61og10 P)SA - Semiannual atlLlospheric density variation in Section 4.5.4. 

f'." r - Radius of the error hYl'ersphere in Section 8.5.2 • 

. 
tI r, f'." r - Range and range-rate antenna mount corrections in Sec-

tion 7.6.3. 

6 s, 68 - First six components of L",X and 6 x in Chapter 8 • 

. 6 Too - Correction to exothermlc temperature in Section 4.5.4. 

t. T 1958 - The difference ET - UT2 or, January 1, 1958, Oh if' OS UT2 
mmus the periodic t~rmA ~.n the ET to A.1 transformation 
in Section 3.5.1. 

- Atmospheric ~elay in ihc ith leg in satellite-to-satellite 
tracking in Section 7.3.3. 

6 t - Counter del~y in the phase readout digitizing equlp~nent 
c 

in Appenrti.x A. 

6 td - Correction to sequencer delay in Appendix A. 

6 tp - Sequencer delay in Appendix A. 

6 t - Two-way light tirr.e corresponding .0 range observable 
R 

in Section A.l. 

1\ t R:J - ~he -recipr.)cal of the data recording rate in Section A.1. 

L'\ tRR - Doppler count time interval in Chapter 7 and in Appendices 
A and C. 

Au - Perturbations about u in Section 8.2.3. 

6u - Best ~stimatc of !\ u in a wbight.ed least squares senEe 
in Chapter 8. 

~\U ,(\U - Correction vectors used in the cAt-termination of refrac-
T v 

tion cnrrection in Section 7.6.3. 
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A-'_ - Perturbation in the solve-;or vector about the i th iterated
L

estimate, xi • See Section 8.2.

_x i - Best estimate of A x in a weighted least squares sense in :
Sectaon 8.2.

Ax i - Deviation of the a priori from the i th itelated estimate
of _. See Section 8.2.

" i A"_i - Vector of deviation between the actual measurements and _
the i th iterated estimate of the measurements. (Note: _

: A"y = _'y_ ). See Sections 8.1 and 8.2. ,

A---_- Perturbations of the consider vector g" about its a priori
value in Section 8.2.

., I A z i - Components of transformed state vector which constitute
/_I the coordinates of a h_persphere in Section 8.5.2. _

" I A_ - Difference between the adopted and true longitude in /'i
_! Section 3.3.2.2. "J

¢

Ap - Atmospheric range correction in _ection 7.6.3. )

A_ - Atmospheric range-rate correction in Section 7.6.3. !

Apc - Density correction factor Jn Section 4.5.5.

- Computed range differenc _ in Appendix C. _'
" t_

5_ - Spacecrat't tIans._..'o.r time delay in Chapter 7 and
Appendix A.

A,_ - Difference between the adopted and true latitude in ':
_ Section 3.3.2.2. ,i

, - Declination angle measured north from _ht, equator.
1

- Quantity useJ in the determination of atmospheric r_-
fraction correction to the elevation augle in Section 7.6.4.

- Dirac delta functloh in Section 8.4.
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t, x - Perturbation in the solve-:or vector about the i th iterated 
i 

estimate, Xi' See Section 8.2. 

t\""X. - Best estimate of t, x in a weighted least squares sense in 
1 

Section 8.2. 

t,Xi - Deviation of the a priori from the i th itelated estimate 
of x. See Section 8.2. 

t, y i-Vector of deviation betw'een the actual mea sur(;:ments and 
the i th iterate~ estimate of the measurements. (Note: 
t, y = t, y&). 3ee Sections 8.1 and 8.2. 

t, z - Perturbations of the consider vector z about its a priori 
value in Section 8.2. 

t, Z i-Components of transf(\~med state vector which constitute 
the coordinate3 of a h:,. persphere in Section 8.5.2. 

t,'A - Difference between the adopted B.nd true longitude in 
Section 3.3.2.2. 

t:.p - Atmospheric range correction in section 7.6.3. 

/').p - Atmospheric range-rate correction in Section 7.6.3. 

/').Pc - Density correction factor in Section 4.5.5. 

- Computed ranp:e differenc 9 in Appcneix C. 

/').". - Spac!3ct'.lit t:l:anspoH,'gr time delay in Chapter 7 and 
Appendb!. A. 

/').(jJ - Difference between the adopted and true latif11de in 
Section 3.3.2. ~. 

" - Declin.ltion angle measured north from tht' equator. 

- Quantity useJ in th? determination of atmospheric r2-
fraction correction to the elevation angle in Section 7.6.4. 

- Dirac delta functjoh in Section 8.4. 
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_° G" - Coefficients of the ordinate form of the Adams-Cowell 1i' i ! 'formulas in Section 6.7.

_ij - Polynomial coefficients in densi_ calculation in Section
4.5.4.

- Kronecker delta function in Sections 4.8.2 a,d 8.4.

G - Declination of the sun.

_T - Declinationof_e spacecraft'sthrustaxisinSection :_:
4.8.!.

_t - Topocentricdeclinationof the spacecraftinSection9,1.
Z

- Declination of tltv spacecraft's longitudinal axis inV

Section 3.3.1P.

_0..... b4 - Coefficients of polynomial characterizing the thrust axis
declilmtioninSection4.8.1. j_

i _._ _ i, b_, 3w - Perturbations in the orbit inclination, rig_,_ ascension ofthe ascending node, and argument of perigee, respectively,

in Section 4.10. ) ,_

8t - Timing biasinobservationdatainSections7oiand 8.2. !

_a, G_, bT - Rotationalperturbationsaround _, _, and _, respectively,
l=iSection 4.10.

_ Differencebetween thetru_and mean obliqul_yinSee-

.. tion3.3.1.2.

G_ - Nutation in longitude in Section 3_3.1.2.

_ _ - Small param¢'er propo,-tio,..A1 to the perturbing aceelera-

i ticninSection5.8.
_: - Improvement ratio criterion spe:lfted for least square_

z

_ iteration convergence in Sectton 8.6.3.

e, _ - Mean and true obliquity in Section 3.3.1.2.
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S~, 07 - Coefficients of th~ ordinate form of the Adams-Cowell 
formuJas in Section 6.7. 

o i i-Polynomial coefficients in density -calculation in Section 
4.5.4. 

- Kronecker delta function in Sections 4.8.2 a, .• d 8.4. 

o - Declination of the sun. 
s 

Sr - Declination of the spacecraft''3 thrust axis in Section 
4.&. J. 

0t - Ttlpocentric declination of the spac6craft in Section 9 •. 1. 

8 - Declination of the spa~ecraft's longitudinal axis in 
" Section 3.3.1~~. 

00 , ' , ., b 4 - Coefficients of polynomial characterizing tile thrust axis 
declination in Section 4..8.1. 

o i, Hi ,Sw - Perturbations in the orbit inclination, rig"!~ ascension of 
the ascending node, and argument of perigee, respectively, 
in Section 4.10 • 

. st - Tlming bias in observation data in Sections 7.1 and 8.2. 

8 a, 0 p, b:, - Rotational perturbations around a, ~, and y, 1;'espectively, 
h Section 4.10. 

8 € - Difference between the trut. and mean obliquity in Se~-
tion 3.3.1.2. 

'by; - Nutation in longitude in Section 3.3.1.2. 

e - Small para:n('''er propo ... tioli8.1 to the perturbing accelera
tic.n in Section 5.8. 

- Improvement ratio criterion spedfied fot" least squar~::. 
iteration convergence in Sectlon 8.6.3. 

f, €' - Mean and true ob1.iquity in Section 3.3.1.2. 
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"', _(t) - First-order Gauss-Markov process rcprescntin_' _ne un- / "
_, modeled acceleration au in Section 8.4.2.

e - Local error of the numerical integration in Section 6.9. _

: _ ( ) - Denotes the expected - ",_

: {0 - Precesamn angle in Section 3.3.1.1.
}

_ :7 - Surfau_ reflectivit_ coefficient in Section 4.6.

_ - Auxiliary parameter deflr ed on pr,ge 5-44. _

0 - Flight path angle in Section 4.10.

: - Transition matrix between perturbations _.n solvc-fc,
variables _nd perturbations in consider variables i_
Section 8.2.3. ';

_" - A_ilimT varameter defined on page 5-44. / ,:

0, 8M - Orbital angle and mean orbital angle° respectively, me*.s-
ur_d a!ong th? lunar equator from the desce,ding ,.o_" ,.f
the _arth's orbit to the lunar prime meridian. ,See Sec-
tion 3.3.3.

,, c._p- .arecession angle in Section 3.3.1.

_, - Euler angle used in the _xansformation frou_ __i,;_.,_centric
to selenographic ccardin,'_c_s in Sectim_ 3.3.5.

'-, X - Longitude measured east from the prime mer_di_'n.

': _ Equinoctialand Berrlck mean longitudesinSeer,ms 3._.6
_d 3.3.9.1. "

- Lag anglebetween th_ san lineanJ the _pex of thediurnal ,
bulge _n Section 4.5.6,

_^' _r - Adopted and instantaneous (true) longitudes, respectively,
in Section 3.3.2.2.

_'z- S_leuogr._pb!,.long_.tudeofthe earth_.r,Section4.4. _.
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~ (t) - First-order Gauss-Markov process rcprcsentin:- ~ne un
model~d acceleration au in Section 8.4.2. 

Cn - Local error of the nu.merical integration in Section 6.9. 

E ( ) - Denotes the expected value. 

So - PreCCSi:ilCll angle in Section 3.3.1.1. 

,) - Surfa~~ reflectivit. coefficient in Secti,on 4.6. 

- Auxiliary parameter defiT ed on p:4ge J-44. 

e - Flight path ar.glc in Section 4.10. 

- 'I'ransition matrix between perturba';.ions in solvc-fc \ 
variables 'lnd perturbations in consider variables iI! 

Section 8.2.3. 

- A(JAilial-Y para.lJleter defined t)n p8.be 5-44. 

e, eM - Orbital angle snd mean orbit21 angle, respectivAly, me~.s
ur~d i!long th1 It;n~r equacor {nm the descending .~o( J cf 
the ",arth's orbit to the lunar prime meridian. See Sec
tion 3.3.3. 

(~ - ~recession angle in Section 3.3.1. 'p 

'I - Euler angie used in the ~ransfol'mation fro~.1 E ;"'~"!I."lcentri0 
to selenographic cc)rdin~>L~:s in Sectioil 3.3.5. 

>-. - LongitudCl measured east fr'om the prir.le nlerldkn. 

- 'EqulOl)ctial and Herrick mean longitudes in Sect"lns 3.2.6 
ll.'1d 3.3.9.1. 

f.... - Lag angle between th·~ sun line an,:i the ~pe:.< of the diurnal 
bulge :n Section 4.5.6. 

f.... A' I\.r - Adopted and instantaneous (true) lonp:jtuJes, rt-lspcctively, 
ill Section 3.3.2.:l. 

f....[ - S~lp.nograpb~'J long!~'Jde of the earth t.n Sedion 4.4. 
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_ | _- h_,

....... ,4.11_ ........ - ...... Jr .......... | I ii _ " _4_,_

" i J _ :

_" _ _ - Geocentric mean longitude of the moon in Section 3.3.3.

_ - True right ascension of the moon in Section 4.4.

- Longitude of the magnetic north pole in Section 7.6.
I

4 - l_.ean longitude for retrograde orbit in Section 3.3.11.1.

" _ - Longitude of the tracking stai_on in Sections 3.3.7 and 9.1.
S

- Gravitational parameter of the reference body, i.e., the _

product of the universal gravitational parameter and the
mass of the body.

u - Eclipse factor in Section 4.6.1,

_ - Electromagnetic signal frequency in Section 7.6.

_'b - Bias frequency on Doppler signal in Section 7.3.3 and
_i Appendices A and C. Is:

! 1 ud - Doppler signal frequency in Appendices A and C.

z,h - High frequency modulation (ranging) tone in Appendix A. ""

ui, - Counter input frequency in satellite-to-s_elltte tracking _,
in Section 7.3.3.

_i, - Average value of ui, over the Doppler count interval ';

_._ in Section 7.3.3. .)

- uL - Low frequencymodulation(ranging)toneinAppendix A. :-

_,_ - Signal fre_'encs' received at the ground stattcn in ' 4
Appendices A and C.

- System reference frequency for satelllte-to-,atellite _

tracking Doppler measurements in Section 7.3..% , ;_

- Reference frequency for the GRARR and ATSR range and _,
:' !. z_R1 , _R2

[ range-rate measurements. See Appendices A ar.d C.

t]T - Frequency of signal transmitted at the tracking station ':
¢

,_ in Appendices A and C. ,_

_'" G-37 ,:
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AM - Geocentric mean longitude of the moon in Section 3.:i.3. 

- True right ascension of the moon in Section 4.4. 

'\.p Longitude of the magnetic north pole in Section 7.G. 

A - IV.ean longitude for retrograde orbit in Section 3.3.11.1. 
r 

A - Longitude of the tracking station in Sections 3.3.7 and 9.1. 
s 

iJ. - Gravitational parameter of the reference body, i.e., the 
product of the universal gra'\itational parameter and the 
mass of the body. 

v - Eclipf;e factor in Section 4.6.1. 

- Electromagnetic signal frequency in Section 7.6. 

LIb - Bias frequency on Doppler signal in Section 7.3.3 and 
Appendices 11 and C. 

Vd - Doppler signal frequency in Appendices A and C. 

V
h 

- High frequency modulation (ranging) tone in Appendix A. 
, 

vi n - Countel" input frequency in satellite-to-sa ~ellite tracki~ 
in Section 7.3.3. 

v in - Average value of vi n over the Doppler count interval 
t:. tRR in Section 7.3.3. 

l/L - Low frequency modulation (ranging) tone in Appendix A. 

iJ
R 

- Signal fl'ea:'~9n(:y received at the ground stat;j~n in 
Appendices A and C. 

- Syst.em reference frequency for satellite-to- ~atellite 
tracking Doppler measurements in Section 7 .3.~. 

VR - RefE!rence frequency for the GRARR [Lnd A TSR range and 
2 range-rate measurements. See AppfJndices A ar..d C. 

VT - Frequency of signal transmitted at the tracking station 
in Appendices A and C. 
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4_

_ v t , v r - Frequencies of transmitted and recex-Ted signals in ]
Appendix C.

, v - Frequency of signal received at the spacecraft. See
Appendices A and C. ""

i

_E - Normalized time in Section 5.6.

_ _ p - Precession angle in Section 3.3.1.

7 p - One-w:: r range from the tracking station to the space-
craft in Chapters 3, 7, and Appendix A.

- Planet's mass density in Section 4.3.

- Atmospheric density in Section 4.5.

!
] - AverageinSection°f7.2.theuplink and downlink propagation distances J

r P' V' 9 - Oblate spherical coordinates in Section 5.12.
4

_ p. - Atmospheric density in Section 4.5.2.

; Pa' Pb - Range ambiguity numbers in Appendix A.

p._g - Average range rate over the uplink and downlink paths
in Chapter 7 and Appendices A and C.

PF - Dynamic weighting factor in Appendix D. I

Pi - Atmospheric constituent densities in Section 4.5.4.

_k

_ - Slant range from tracking station to spacecraft in Sec-
tion 9.1.2.

Pii - Correlation coefficient in Section 8.5.

PL - Four-leg round trip range in satellite-to-satellite track-
ing in Section 7.3.3 and Appendix C.

/_L - Average four-leg range rate (in satellite-to-satellite
• tracking) over the Doppler count interval 5 tk_. See
! Section 7.3.3.

: G-38
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V t' V r - Frequencies of transmitted and recel":red signals in 
Appendix C. 

Vv •• Frequency of signal received at the spacecraft. See 
Appendices A and C. 

f - Normalized time in Section 5.6. 

'" p - Precession angle in Section 3.3.1. 

P - One-w:~ .. ' range from the tracking station to the space
craft in Chapter~ 3, 7, and Appendix A. 

- Planet's mass density in Section 4.3. 

- Atmospl...e.cic der1sity in Section 4.5. 

- Average of the uplink and downlink propaga~ion distances 
in Section 7.2. 

p. Tj. e - Oblate spherical coordinates in Section 5.12. 

Pa - Atmospheric density in Section 4.5.2. 

Pa' P
b 

- Range ambiguity numbers in Appendix A. 

Pavg - Average range rate over the uplink and downlink paths 
in Chapter 7 and Appendices A and C. 

PF - Dynamic weighting factor in Appendix D. 

p\ - Atmospheric constituent densities in Section 4.5.4. 

- Slant range from tracking station to spacecraft in Sec
tion 9.1.2. 

Pi j - Correlation coefficient in Section 8.5. 

P
L 

- Four-leg round trip rangt: in satellite-to-satellite track
ing in Section 7.3.3 and Appendix C. 

PL - Average fm.'r-Ieg range rate (in satellite-to-satellite 
tracking) over the Doppler count interval 6. ~R' See 
Section 7.3.3. 
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L_

O Plt i - Measurement vector in station-centered topocentric !

local tangent coordinates in Section 9.2. i :
PM - Physical libration in the inclination of the mean lunar

equatorinSection3.3.3. ,I

PM' Pr._ - Maximum and minimum densities in Section 4.5.6. i

Ps - Two-leg round trip range in satellite-to-satellite track-
ing in Section 7.3.3 and Appendix C. i

|

PS - Average two-leg range rate (in satellite-to-satellite
tracking)over the Doppler countinterval/_tRR in !i
Section 7.3.3.

Ps - Summed atmospberic density in Section 4.5.4.

Pu' Pd - One-way range distancecorrespondingtotheuplinkand i
,:_ downlink signal path in Section 7.2.3 and Appendix C. !

/P

Pl ' P2 - Ranges from first and second stations to the satellite in !_"_

n VLBI tracking in Section 7.4. _!
4 _]_ i

PI' P2' P3 - Systematic error coefficients in the atmospheric density
r model in Section 4.5.

c_ - Sample standard deviation in Sectim_ 8.6.4.

_ - V_rianceof themeasurement noisecomponent n_ in
Chapter 8,

q

_" c_k - The standard deviation of the k th observation in
Chapter 8.

. "_k " A priori standard deviation of the noise on the k th obser- _
_" ration in Section 8.1.

_, Fk - Standard deviation of the data reduction curve fit obtained
- k

I duringpreprocessingofthe k th observationinSection8.1. ,

}_ _ - H_,yn'sphysicalllbrationinthemean rightascensionof
_ M

"° theascendingnode ofthelunarorbitinSection3.3.3.

; _:" G-39
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P - Measurement vector in station-centered topocentric It. 
1 local tangent coordinates in Section 9.2. 

PM - Physical libration in the inclination of the mean lunar 
equator in Section 3.3.3. 

P P - Maximum and minimum densities in Section 4.5.6. M' r.l 

Ps - Two-leg round trip range in satellite-to-satellite track
ing in Section 7.3.3 and Appendix C. 

-:-
Ps - Average two-leg range rate (in satellite-to-satellite 

tracking) over the Doppler count interval 6 tRR in 
Section 7.3.3. 

Ps - Summed atmospheric density in Section 4.5.4. 

P
u

' Pd - One-way range distance corresponding to the uplink and 
downlink signal path in Section 7.2.3 and Appendix C. 

P
l

' P
2 

- Ranges from first and second stations to the satellite in 
VLBI tracking in Section 7.4. 

Pl' P2' P3 - Systematic error coefficients in the atmospheric density 
model in Section 4.5. 

U - Sample standard deviation in Sectioll 8.6.4. 

U~ V~riance of the measurement noise component n i in 
Chapter 8. 

Uk - The standard deviation of the kth obs~rvation in 
Chapter 8. 

'O-k - A priori standard deviation of the noise on the k th obser
vation in Section 8.1. 

Ok - Standard deviation of the data reduotion curve fit obtained 
during preprocessing of the k t h observation in Section 8.1. 

CJ - Hayn's physica11ibration in the mean right ascension of 
M 

the ascending node of the lunar orbit in Section 3.3.3. 
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p,

; O'1,... , 0"6 -- Eigenvaluesof PA in Section8.5. ": X

cr2 - Estimate of the variance, of A s in Section 8.2.3. _
,,: A_ i _ _.

: _ _ 2 - Estimate of the variance of A z i in Section 8.2.3.
/_z, t,"

w = Auxiliary angle used in the calculation of the uncorrect(d
exospheric temperature in Section 4.5.4. :"

-y

- Time measured from effective ignition of the thruster in :
Section 4.8.1. _

: - The independent variable (time element) for the h_ans- :
formed time-regularized system in Sections 5,4, 6.10,

,: and Appendix B.

_, - Phase difference time interval in VLBI tracking in Sec- _"
: ', tion 7.4. i
!>

_i _ p_ - Hayn's physical libration in longitude in Section 3.3.3, _/'i

_ - Perturbing energy in Section 5.5 a_d Appendix B. _:

' - State transition matrix in Section 6.5. _,

- Augmented state transition matrix :n Section 8.4. ,

_, _b° - Geodetic and geocentric latitudes, respectively, in Chap-
ters 3 and 7.

",, - Geocentricand geodet'tclatitudes,respectively,in Chap- , ,
_" ter 4 ' '

,t

_(T_, to) - State transition matrix relating state perturbations at _:,
time t o to state perturba __ns at time T_. See Chapter 8. /

q_(t, to) - Transition matrix relating perturbations about g(t) at times

t and t o in Chapter 8. * , !
a

_A' _w - Latitude corresponding to the adopted and true poles, re= I
spectively, in Section 3.3.2.2.

_z - Selenographic latitude of the earth in ,_ection 4.4, _
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cr l' ... , a 6 - Eigenvalues of P
DX 

in Section 8.5. 

a 2 
- Estimate of the variance of ~ s. in Section 8.2.3. 6.S j 1 

a~ - Estimate of the variance l,f 6. z i in Section 8.2.3. 
L1Z i 

T - Auxiliary angle used in the calculation of the uncorrectEd 
exospheric temperature in Section 4.5.4. 

- Time measured from effective ignith)n of the thruster in 
Section 4.8.1. 

- The independent variable (time element) for the trans
formed time-regularized system in Sections 5.4,6.10, 
and Appendix B. 

- Phase difference time interval if I VLBI tracking in Sec
tion 7.4. 

PM - Haynls physical Ubration in longitude in Section 3.~.3,. 

~ - Perturbing energy in Section 5.5 a'ld Appendix B. 

- State transition matrix in Section 6.5. 

- Augmented state transition matrix :',n Section 8.4. 

rp,.:p' - Geodetic and geocentric latitudes, respectively, in Chap
ters 3 and 7. 

- Geocentric and geodetlc latitudes, rnspectively, in Chap
ter 4,. 

¢(Ti' to) - State transition matrix relattng state perturbations at 
time to to state perturb&. _",ns at time Ti • See Chapter B. 

¢(t, to) - Transition matrix relating perturbat:ons about u(t) at times 
t and to in Chapter 8. 

<PA' ¢T - Latitude corresponding to the adopted and true poles, re
spectively, in Section 3.3.2.2. 

¢E - Selenographic latitude of the earth In Section 4.4. 

G-40 REPROIHICmIL!T'l OF THE 
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_h - Geocentric latitude (declination) of the moon in Section 4.4. !

_p - Geodetic latitude of the magnetic north pole in Section 7.6. _

_, _'_ Geodetic and geocentric latitude of the tracking station in

Sections ;3.3.7 and 9.1. _ ::

_T -- S_'_' _A' (_T above.

1

f _ - Roll angle of the spacecraft in Section 3.3.12.

:: i" _ - Gravitational l_tential in Sections 4.3.1 and 4.4. i

- Angle between the satellite position vector and the ape:" i
of the diurnal bulge in Section 4.5.6.

- Generalized true anomaly in Section 5.5.

- Geopotentialfunction(sum ofthe normal geopotential_N

and the disturbing potential _r )" See Section 7.4. /"

! j - Abbreviation for the covariance matrix of the estimatedstate in the absence of consider variables in Section 8.3.

_0u - Disturbing potential in Section 7.4.

7JN - Normal geopotential in Section 7.4. _

- Right ascension of the orbital ascending node.

I_ - Skew matrix whose elements are components of the earth's
"_ rotation vector Jn Section 4.5.3. ,

_' - Euler angle used in transformation from selenocentric to i
selenographiccoordinatesinSection3.3.3. _

_M - Mean rightascensionofthe ascendingnode ofthe lunar _ I
_ orbitinSection3.3.3. _ :

_ _ - Argument of perigee of the satellite orbit. _;

_ - Frequency related to the negative of the total energy in ,i

Section 5.4 and Appendix B. _ "
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¢,. - Geocentric latitude (declination) of the moon in Section 4.4. 

¢ p - Geodetic latitude of the magnetic north pole in Section 7.6. 

¢s' ¢: - Geodetic and geocentric latitude of the trdcking station in 
Sections S.3.7 and 9.1. 

¢v - Roll angle of thA spacecraft in Section 3.3.12. 

tf.i - Gravitational potential in Sections 4.3.1 and 4.4. 

- Angle between the satellite position vector and the ape;~ 
of the diurnal bulge in Section 4.5.6. 

- Generalized true anomaly in Section 5.5. 

- Geopotential function (sum of the normal geopotential tf;N 
and the disturbing potential tf;r)' See Section 7.4. 

- Abbreviation for the covariance matrix of the estimated 
state in the absence of consider variables in Section B.3. 

tf.i n - Disturbing potential in Section 7.4. 

tf.i N - Normal geopotential in Section 7.4. 

Q - Right ascension of the orbital ascending node. 

- Skew matrix whose elements are components of the earth's 
rotation vector fn Section 4.5.3. 

D.' - Euler angle used in transformation from selenocentric to 
selenographic coordinates in Section 3.3.3. 

o.M - Mean right ascension of the ascending node of the lunar 
orbit in Section 3.3.3. 

w - Argument of perigee of the satellite orbit. 

- Frequency related to the negative of the total energy in 
Section 5.4 and Appendix B. 
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oo(com'd) - Rotation rate of the earth in Section 7.4.

, _ - Angular rotati,_n vector of the earth expressed in mean
of 1950.0 coordinates in Section 4.5.2.

)

5.

- State noise in Chapter 8.

_M - Moon's argument of perigee in Section 3.3.3. ii

(

• ¢
'2

:

\

, ?

-i

t

o, _, ;

r

! :
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w (coni"'d) - Rotation rate of the earth in Section 7.4. 

w - Angular rotati'.Jn vector of the earth expressed in mean 
of 1950.0 coordinates in Section 4.5.2. 

- State noise in Chapter 8. 

CL;M - Moon's arguml;lnt of perigee in Section 3.3.3. 
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(_ Subscripts

i ,
( )^ - adopted qusntity; averaged quantity; or model replacement _ -.

j •

( )a - apofocus;atmospheric;or apparent _" X

( )._ - attitudecontrol _ id

• l '
i ( )_ - average

( )B - spacecraft axis

( )b - body centered; tmdy fixed; burn; or bias

( )c - correction; or coarse baseline (Minitrack) i

#r : -

i ( )_ - computed; cylinder; or minimum exospheric

_-- ( )D - drag; aerodynamic; deviation; or dist_arbing • /..

( )d - Doppler; or downlink J

{ -'_ ( )z - earth; or mean of date

( )E-W - east-west ':_
7

(), - equatorial; ephemeris; end plate; or electron density i_

i ( ),p - equinoctial system ;,
t ( )F - frame; force; or fine baseline (Minitrack)

i ( )FM - midframe ,,_!J

( )f - final

( )o_ -Greenwich mean _

( )_ - geomagnetic; Greenwich; or group

( )I -- lonospberlc

( )_o - mutual nonspherical gravitational attraction of earth,
t

and moon _ }

G-43 _ '_
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Subscripts 

( )A - adopted quantity; averaged quantity; or model replacement 

()a - apofocus; atmospheric; or apparent 

() - attitude control ae 

()avg ~ average 

()B - spacecraft axis 

(\ - body centered; oody fixed; burn; or bias 

()c - correction; or coarse baseline (Minitrack) 

()e - computed; cylinder; or minimum exospheric 

()D - drag; aerodynamic; deviation; or distllrbing 

()d - Doppler; or downlink 

()E - earth; OT mean of date 

() - east-west E-W 

(\, - equatorial; ephemeris; end plate; or electron densit-; 

()ep - equinoctial system 

()F - frame; force; or fine baseline (Minitrack) 

()FM - midframe 

()f - final 

() - Greenwich mean 
GM 

(\ - geOl~agnetic; Greenwich; or group 

()I - ionospheric 

()IO - mutual nonspherical gravita4ional attraction of earth 
and moon 
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t

' I ( )i_ - counter input _

_' I ( )j - refe__nce (centr_.l) body _ ._;

- I ( )x - Keplerian

I'i ( )_ - bodyk

o I ( )L -- four-way ranging; or low frequency _

i- i ( )tp - local plane ii

( )It- localtangent !

( )M - moon; maximum; or medimn baseline (Minitrack) t

_: ( )M - midpoint !

: i i

i ( )_ - minimum; maximum (Chapter 7);or middle point

( )N- normal

( )NS - non_pherical _ i

( )N-S- north-south

( )of- orbitalframe ,_ _
'I

, ( )op- orbitplane _

( )p_ - point mass i :

( )p - polar; pertfocus; precession; solar paddle; geomagnetic; ! _
: planetary; orbital rectangular coordinates; or phase

: ( )R" groundreceiver; or reference i ;;

( )R_- Dopp_';rcount i

( )_T - round trip

( )r = generalized receNer (Appendix C)

G-44 :,1
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( )in - counter input 

( )j - refe.L°:mce (central) body 

( )K - Keplerian 

( )k - bod"y k 

( )L - four-way ranging; or low frequency 

( )lp - local plane 

( )It - local tangent 

( )M - moon; maximum; or medium baseline (Minitrack) 

()M - midpoint 
m 

( )m - minimum; maximum (Chapter 7); or middle point 

( )N - normal 

( )NS - nom;pherical 

( )N-S - north-south 

( )of - orbital frame 

( )op - orbit plane 

( )PM - point mass 

( \ - polar; perifocus; precession; solar paddle; geomagnetic; 
planetary; orbital rectangular coordinates; or phase 

( )R - ground receiver; or reference 

( )RT - round trip 

( )r - generalized rece~ver (Appendix C) 
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""i

( )tel - relative to the atmosphere

( )s two-way ranging

( )s^ semiannual ,

( )SR - solar radiation

(), o tracking station; solar; sample; selenographic; surface;
spherical; or sea level

( )T " ground transmitter; thrust; tropospheric; or true (instan-
taneous) pole

( )T_ - attitude control system

( )t - time; topside; topocentric; or generalized transmitter
(Appendix C)

(). - uplink _/"

_.} (). - spacecraft; or vehicle fixed

(). - inflection point

( )_, ( )y, ( )_ -corresponding axis

( )0 - mean elements at epoch; earth centered; initial conditions;

actual; or a priori (Chapter _'j _
I

"'\ ( )so - GRARR and USB 30-foot antennas

( )_s - USB 85-foot antennas ,_

I ( )_ - corrected exospheric
#

ll;,

,L'i
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( 

( 

( 

)re 1 - relative to the atmosphere 

( )S - two-way ranging 

)SA - semiannual 

)SR - solar radiation 

( )s - tracking station; solar; sample; selenograpbic; surface; 
spherical; or sea level 

( )T - ground transmitter; thrust; tropospheric; or true (instan
taneous) pole 

( )TAC - attitude control system 

( )", ( \. 

( )t - time; topside; topocentric; fjr generaliz£d transmitter 
(Appendix C) 

( )u - uplink 

() - spacecraft; or vehicle fixed 
v 

() - inflection point 
" 

') - corresponding axis 
z 

( )0 - mean elements at epoch; earth centered; initial conditions; 
actual; or a prj ori (Chapter ~'I 

( )30 - GRARR and USB 30-foot antennas 

( )115 - USB 85-foot antennas 

( )00 - corrected exospheric 
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Superscripts

;: ( )c - corrected values
_,

.; _ ( )d - day I"• j
?_ ( )h - hour

*. . ( )m - minute

'?',-, ()i) - predicted ,_ ,ues

i'
, ( )" - second

_ , ( )T - transpose

"!'l- (_ -perturbedinitialc°n'l_ti°ns

Z ._)

\

G-46
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Superscripts 

( )C - corrected values 

( )d - day 

( )h - hour 

( yn - minute 

( )P - predicted ~Tr ~ues 

( )I' - second 

( )T - transpose 

( J - perturbed initial con'l4.tions 
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J )Opera_ional Symbols

V - hnear gradient; or backward _i_ference operator

( ) × ( ) - vect,_r cross product ""

( )" ( ) -vector dot product

E s - shifting operator (Section 6.1)

• D -.differential operator (Section 6.1)

I - identity operator

(") - first derivative with respect to time

(") - second derivative with respect to time

(') - best estimate

(-) - vector; or average value

) _ ( ) - expected value

co,_ ( ) - covariance

¢ar ( ) - variance

()' - first derivative with respect to the variable s (Chapter 5)

\x ( )" " second derivative with respect to the variable _ (Cl_.ap-
ter 5)

q
t

, i

I
#

d

#
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Operational Symbols 

'V - lmear gradient; or backward difference operator 

( ) x ( ) - vectllr cross product 

( 'I • ( ) - vector dot product 

E
S 

- shifting operator (Section 6.1) 

D •. differential operator (Section 6.1) 

I - identity operato:r 

( ') - first derivative with respect to time 

( . ') - second derivative with respect to time 

... 
( ) - best estimate 

( ) - vector; or average value 

c ( ) - expected value 

cov ( ) - covariance 

\Tar ( ) - variance 

( )' - first derivative with respect to the variable s (Chapter 5) 

( )" •. second derivat1.ve with respect to the variable s (Chap
ter 5) 
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"_ hNDEX :

2

+ This index consists of an alphabetical list of significant topics contain,-_ Jn this

,_ document. Cross-r_ierenchlg is used where _ppropriate, The notation appear- ',
_ lag in parentheses after certain topics refers tv the section or chapter which is i

primarily concerned with that topic. The hyphenated numbers refer to the pages
where the specified topic is mentioned. A page number immediately following
a section or chapter number indicates the beginning page of that section or chap-

" ter. For example, the following entry

Mean of estimate, (8.2.1) 8-8, 8-50

indicates that the "mean of estimate" is discussed in Section 8.2.1, which begins
_" _ on page 8-8, and thatitis_Jsomentionedon page 8-50.

_ Accelerometer data, 4-73
'. Acr_eleration,

: of earth due to oblateness of earth and moon, 4-20 f#
•. of moon due to oblateness of earth and moon, 4-20 ">_

• f unknown, 8-42
, _._ unmodeled, 8-37

Adams integrationformulas, 5-8, 5-9, 6-1, 6-2

: Adams-Bashforth formula, 6-1
Adams-Cowell integration formulas, (6.1) 6-9

_ Adams-Moulton predictor-corrector coefficients, 6-6
Aerodynamic force coefficients, Table 4-1, 4-26

: cylinarical spacecraft, 4-25, 4-27, 4-28
cylindrical spacecraft with solar paddles, 4-28, 4-29

spherical spacecraft, 4-25 through 4-27 i
L Aerodynamic forces, (4.5) 4-22 through 4-32

aerodynamic force modeling, (4.5.2) 4-24 through 4-28 '
asseciated partial derivatives, (4.5.3) 4-29 through 4-32

Algorithm, batch estimator, (8.2) 8-6 i

Analytic partial derivstives, (4.10) 4-75 through 4-36
conversion of differential corrections, (4.10.3) 4-83 through 4-86
definition o! )ermrbation variables, (4.10.1) 4-75 through 4-79 _ .
state transition matrix elements, (4.10.2) 4-79 through 4-83

Angles onlyearlyorbitmethods (9.I)9-1 _ '
Antenna mount corrections, _7.7.2) 7-76, 7-77
ApplicationsTechnologySatelliteRange and Range-Rate (ATSR) System,

i (see Goddard Range and Range-Rate (GRARR) System)
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This index consists of an alphabetical list of significant topics (:ontain('" i jn this 
document. Cross-r~.Le.l:encillg is used where qppropriate, The notation appear
ing in parentheses after certain topics refers tv the section or chapter which is 
primarily concerned with that topic. The hyphenJ.ted numbers refer to the pages 
where the specified topic is mentioned. A page number immedi&tely following 
a section or chapter number indi<:ates the beginning page of tba.t section or chap
ter. For example, the following entry 

Mean of estimate, (8.2.1) 8-8,8-50 

indicates that the "mean of estimate" is discussoo in Section S. 2. I, which begins 
on page 8- 8, and that it is :uso mentioned on page 8-50. 

Accelerometer data, 4-73 
Acr;eleration, 

of earth due to oblateness of earth and moon, 4-20 
of moon due to oblateness of earth and moon, 4-20 
unknown, 8-42 
unmocieled, 8-37 

Adams integration formulas, 5-8, 5-9, 6,-1, 6-2 
Adams - Bashforth formula, 6-1 
Adams-Cowell integration formulas, (6.1) 6-9 
Adams-Moulton predictor-corrector coefficients, 6-6 
Aerodynamic force coefficients, Table 4-1, 4-26 

cylinarical spacecraft, 4-25, 4-27, 4-28 
cylindrical spacecraft with solar paddles, 4-28, 4-29 
spherical spa~ecraft, 4-25 through 4-27 

Aerodynamic forces, (4. 5) 4-22 through 4-32 
aerodynamic fOl'ce modeling, (4.5.2) 4-24 through 4-28 
aSD~ciated partial derivatives, (4.5.3) 4-29 through 4-32 

Algorithm, batch estimator, (8.2) 8-6 
Analytic partial derivatives, (4. 10) 4-75 through 4-86 

conversion of diffe.r.ential corrections, (4.10.3) 4-83 through 4-86 
definitior. ot .>en.urbation variables. (4.10.1) 4-75 through 4-79 
state transition matrix elements, (4.10.2) 4-79 through 4-83 

Angles only early orbit ml,thods (9.1) 9-1 
Antenna mount corrections, (7.7.2) 7-76, 7-77 
Applications Technology Satellite Range and Range-Rate (ATSR) System, 

(see Goddard Range and Range-Rate (GRARR) System) 
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Atmospheric density models, 4-22, 4-2_

comparison of, (4.5.8) 4-60 i
Jacchia-Roberts model, (4.5.4) 4-33 through 4-49 !

modified Harris-Priester model, (4.5.6) 4-53 through 4-60 )
Atmospheric effects, (7.6) 7-43 through 7-75

Chapman profile refraction corrections, (7.6.37 7-52 through 7-63 !,
Doppler corrections, 7-55 through 7-64 i
elevation angle-dependent corrections, 7-56 through 7-59
range correction, 7-52 through 7-56 t

' ionospheric m,_els, (7.6.2_ 7-44 through 7-52
electron density profile parameters, 7-49 through 7-52

,_, empirical worldwide profile, 7-47 through 7-49 1

;, m(._tffied Chapman profile, 7-46 !
sequenti-,1 urofile refraction corrections (7.6.4) 7-64 through 7-75 _ ,

ionospheric correction, 7-68 through 7-75 ! _:
tropospheric correction, 7-65 through 7-68 _

/ J troposphere m_del, _7.6.1) 7-43, 7-44 i

_ Attitude control effects, (4.7) 4-64 through 4-65, 2-18 |

i _ partial derivatives, (4.7.. 2) 4-66 !/?perturbation model, (4.7 1) 4-64, 4-65 _.

. Averagg}ormation,(5.8) -45,5-5 |
; equincbtial VOP formulation, (5.8.3) 5-40 ! !:
_ Keplerian formulatfon, (5 8.4) 5-40 ( , ] '

BaLch estimator algorithm, (8.2) 8-6 I _
Be3selian solar year, 3-1 ,,

: Bot_guerts formula, 7-56 _.j

; Brouwer drag parameterg, 4-78, 4-79 ] :.
'. B_youwer-Lyddane formulation, (5.10)5-51, 4-75, 5-4, 5-48 t

Brouwer theory, (5.9)5-42, 2-6:, 5-1, 5-39, 5-51, 5-58, 5-5_, _-60 i "_

l._. C-Band radar system, A-S, A-10
• early orbit data, 9-24 _ ,-
_ functional description, A-9 _ "

; preproce,ssL_g description, A-10 _ ,
Canonical variable.s, 5-1, 5-2, 5-16

force, ,5-18
Cassini_s lsws, 3-26
C _lestlal equator, 3-_.
Celestial _.uh,_re, 3-2
Chapman profile, 7-46
Chapman profile refraction corrections, (7.8.3) 7-52 through 7-6_

Doppler corrections, 7.-59 through '_-64

. elevation angle-dependent corrections, 7-56 througl'. 7-59
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Atmospheric density models, 4-22, 4-2S 
comparison of, (4.5.8) 4-60 
Jacchia-Roberts model, (4.5.4) 4-38 through 4-49 
modi1ied Hr..rris-Prieste:r mod~l, (4.5.6) 4-53 through 4-60 

Atmospheric effecl '3, (7.6) 7 -43 through 7 -75 
Chapman profGt: r~f::Ci.ction corrections, (7.6.3) 7-52 through 7-63 

Doppler corrections, 7 -5S through 7 -64 
elevation angle-dependent corrections, 7-56 through 7 -59 
range correction, 7-52 through 7-56 

ionosphelic muuels, (7. 6. 2~ 7-44 through 7 -52 
electr-on density profile parameters, 7 -49 through 7 -52 
empirical worldwide profile, 7-47 through 7-49 
mc..dified Chapman profile, 7 -46 

sequ~ntial profile refraction corrections (7. 6.4) 7 -64 through 7 -7 5 
ionospheric correction, 7-68 through 7-75 
tropospheric correction, 7 -65 t:trough 7 -68 

troposphere model, (7.6.1) 7-43, 7-44 
Attitude control effects, (4.7) 4-64 through 4-65, 2-18 

partial derivatIves, (4.7.,2) 4-66 
perturbation model, (4.7,1) 4-64, 4-65 

AveragiLg formulation, (5.8) 5-45, 5-5 
equinobtial VOP formulation, (5.8.3) 5-40 
Keplerian formulation, (5,8.4) 5-40 

Batch estimator algorithm, (8.2) 8-6 
Be3selian solar yen, 3-1 
Bouguer's formula, 7-56 
B i'ouwer drag parameter'3, 4-7tl, 4-79 
:Rl~ouwer-Lyddane formulation, (5.10) 5-151, 4-75, 5 -4, 5-48 
Brouwer theory, (5.9) 5-42,2-6:, 5-1, 5-39, 5-51, 5-58, 5-5~, ;,,-60 

C-Band radar system, A<:, A-IO 
early orbit data, 9-24 
functional description, A-9 
preproce:ssi.ng description, A-10 

Canonical vartabh'!s, 5-1, 5-2, 5-16 
force, f,-18 

Cassini's laws, 3-26 
C '31esiial equator, 3-2 
Celestial eph~re, 3-2 
Chapman profile, 7 -46 
Chapman profile l"efraction cO:L'rections, (7. S. 3) 7-52 through 7-64 

Doppler correction~, 7 ·-59 through '1-64 
elevatio!1 angle-dependent corrections, 7-56 throug}-, 7-59 
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"! !_ Chapman profiiarefractioncorrections(cont'd.)
ionosphericmodel for,7-46

k range correction, 7-52 through 7-55
_ Chebyshev series,(5.6)5-26

Considervariables,2-13
Considerv_.riables,s priori,8-6, 8 J, 8-24 i
Considervector,8-6, 8-12, 8-15, 8-27

I uncertainty, 8-51• Convergencecriteria,8-61

_ Correlation,8-11, 8-19

between stateand uncertainmodel parameters, 8-19
F coefficient, (8.5.4) 8-56

of est_-mat_ and consider variables, 8-23
of errors in a priori solve-for and consider variables, 8-11
of errors in solve-for and consider variables, 8-11, 8-12

•'. i of solve-for and consider variables, timewise propagation, 8-24
_ Coordinate systems, (Chapter 3)

: ; body-centered equatorial inertial, (3.2.1) 3-3
rect_ngular Cartesian, 3-4

/spheric_1polar,3-4 .,
;_ body-centered rotating, (3.2.2) 3-4

geodetic, 3-5

l rectangularCartesian,3-5

sphericalpolar,3-5
• local plane, (3.2.3) 3-5

rectangularCartesian,3-6
sphericalvelocity,3-6

orbitplane,(3.2.5)3-7
equinoctial,3-8

i Keplerian, 3-7

. ". i orbitalelements, (3.2.6)3-8
\_ equinoctial,3-9

Herrick, 3-9
, Keplerian, 3-8

_- seleno_entric,3-26
_ selenographic,3-26
: topocentriclocaltangent,(3.2.4)3-6, 7-5

rectangular Cartesian, 3-6
[ spherical position, 3-7

vehicle-fixed, (3.2.7) 3-10
_' rectangular Cartesian, 3-10
_' Coordinate time, C-6, C-8, C-9, C-IO, C-12
_. Coordinatetime derivatives,C-9

_'J" I-3
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Chapman profil~ refraction corrections (cont'd.) . 
ionospl>eric model for, 7 -46 
range correction, 7 -52 tcrough 7 -55 

Chebyshev series, (5.6) 5-26 
Consider variables. 2-13 
Consider vuiables, ~ !,riori, 8-6, 8· J, 8-24 
Consider vector. 8-6, 8-12, 8-15, 8-27 

uncertainty, 8-51 
Convergence criteria, 8-61 
Correlation, 8-11, 8-19 

between state and uneertain model parameters, 8-19 
coefficient, (8.5.4) 8-56 
of est!matt.; and consider variables, 8-23 
of errors in a priori solve-for and consider variables, 8-11 
of errors in solve-for and consider variables, 8-11, 8-12 
of solve-for and consider variables, timewise propagation, 8-24 

Coordinate systems, (Chapter 3) 
body -centered equatorial inertial, (3. 2. 1) 3-3 

rectangular Cartesian, 3-4 
spheric~1 polar, 3-4 

body-centered rotating, (3.2.2) 3-4 
geodetic, 3-5 
rectangular Cartesian, 3-5 
spherical polar, 3-5 

local plane, (3.2.3) 3-5 
rectangular Cartesian, 3-6 
spherical velocity, 3- 6 

orbit plane, (3.2.5) 3-7 
equinoctial, 3-8 
Keplerian, 3-7 

orbital f;lements I (3. 2. 6) 3-8 
equinoctial, 3-9 
Herriek, 3-9 
Keplerian, 3-8 

seleno~entric, 3-26 
selenographic. ~-26 
topocentriC local tangent, (3.2.4) 3-6, 7-5 

rectangular Cartesian, 3-6 
spherical position, 3-7 

vehicle-fixed, (3.2.7) 3-10 
rectangular Cartesian, 3-10 

Coordinate time, C-6, C-8, C-9, C-I0, C-12 
Coordinate time derivatives, C-9 
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Coordinate transformations, (_. 3) 3-10, 2-18 1
,- body-centered true of date to orbit plane, (3.3.5) 3-39 -_

body-fixed to geographic, (3.3.6) 3-40

: earth-fixed to geodetic, (3.3.6.3) 3-44 _
_, geodetic to earth-fixed, (3.3.6.2) 3-43
• earth-fixed to topocentric local tangent, (3.3.7) 3-47 .::

:_ , equinoctial to Cartesian, (3.3.9) 3-58 ' i
Cartesian coordinates to equinoctial elements, (3.3.9.2) 3-60 _

== . equinc,_ial elements to Cartesian coordinates, (3.3.9.1) 3-58
_ Herrick to Cartesian, (3.3.10) :_

Cartesian coordinates to Herrick elements, (3.3.10.2) 3-63
Herrick elements to Cartesian coordinates, (3.3.10.1) 3-62 :L

:: Keplerian to Cartesian, (3.3.8) 3-49 ,.

: body-centered true of date to Keplerian elements, (3.3.8.3) 3-55 .
Keplerian elements to body-centered true of date, (3.3.8.1) 3-49

, Keplerian to equinoctial and Herrick, {3.3.11) 3-64
_ y_ Keplerian to equinoctial elements, (3.3.11.1) 3-64 !_

, ,_ Kepleriaa to Herrick elements, (3.3.12) 3-64

i mean of 1950.0 to true of date, (3.3.1) 3-11
, _ mean of date to true of date, (3.3.1.2) 3-14

mean of 1950.0 to mean of date, (3.3.1.1) 3-12 .._... _:
spherical to Cartesian, (3.3.4) 3-34

Cartesian position and velocity to spherical, (3.3.4.2) 3-36 _, ._
spherical position and velocity to Cartesian, (3.3.4.1) 3-34 _

selenocentric true of date to selenugraphic, (3.3.3) 3-26
true of date to body-fixed, (3.3.2) 3-18 _i

pseudo body-fixed to body-fixed, (3.3.2.2) 3-20 i
true of date to pseudo body-fixed, (3.3.2.1) 3-18 /

vehicle-fixed to body-centered true of date, (3.3.12) 3-65 _
Covariance, i.

of estimate, (8.2.1)8-8, 8-23 -_

-. of state noise, 8-31, 8-32, 8-42 , :_
Covariance matrix, _

of error, 8-3, 8-4, 8-12, 8-29, 8-30 i\

augmented, 8-44, 8-50
derivation of, (E. 1) E-1 _!

uncertainty (error), 8-5
interpretation, (8.5) 8-50
of state, 8-18 _" C

timewise propagation of, 8-17, 8-24 , ,!
transformations, (8.2.3) 8-15 ,,

i

Cowell method, (5.2)5-8, 4-2, 5-1, 5-3, 5-5, 5-26, 6-1, 6-2, 6-11, 6-20, 6-25
time-regularized, (5.3)5-9, 5-3, 5-5, 5-9, 6-1 _

Critical frequency, 7-49
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Coordinate transformations, (:.>.3) 3-10, 2-18 
body-centered true of date to orbit plane, (3.3.5) 3-39 
body-fixed to geographic, (3.3.6) 3-40 

earth-fixed to geodetic, (3.3.6.3) 3-44 
geodetic to earth-fixed, (3.3.6.2) 3-43 

earth-fixed to topocentric local tangent, (3.3.7) 3-47 
equinoctial to Cartesian, (3.3.9) 3-58 

Cartesian coordinates to equinoctial elements, (3.3. S. 2) 3-60 
equinc·..;tial elements to Cartesian coordinates, (3.3.9.1) 3-58 

Herrick to Cartesian, (3.3.10) 
Cartesian coordinates to Herrick elemen~s, (3.3.10.2) 3-63 
He:rrick elements to Cartesian coordinat~s, (3.3.10.1) 3-62 

Keplerian to Cartesian, (3.3.8) 3-49 
body-centered true of date to Kaplerian elements, (3.3.8.3) 3-55 
Keplerian elements to body-centered true of date. (3.3.8.1) 3-49 

Keplerian to equinoctial and Herrick, (3.3.11) 3-64 
Keplerian to equinoctial elements, (3.3.11.1) 3-64 
Keplerian to Herrick elements, (3.3.12) 3-64 

mean of 1950.0 to true of date, (3.3.1) 3-11 
mean of date to true of date, (3.3.1. 2) 3-14 
mean of 1950.0 to mean of date, (3.3.1. 1) 3-12 

spherical to Cartesian, (3.3.4) 3-34 
Cartesian position and velocity to spherical, (3.3.4.2) 3-36 
spherical position and velocity to Cartesian, (3.3.4.1) 3-34 

selenoc,~ntric true of date to selenographic, (3. 3. 3) 3-26 
true of date to body-fixed, (3.3.2) 3-18 

pseudo body-fixed tv body-fixed, (3.3.2.2) 3-20 
true of date to pseudo body-fixed, (3.3.2.1) 3-18 

vehicle-fixed to bodY-Centered true of date, (3.3.12) 3-65 
Covariance, 

of estimate, (8.2.1) 8-8, 8-23 
of state noise. 8-31, 8-32, 8-42 

Covariance matrix, 
of error, 8-3, 8-4, 8-12, 8-29, 8-30 

augmented, 8-44, 8-50 
derivation of, (E. 1) E-1 
uncertainty (error), 8-5 

interpretation, (8.5) 8-50 
of state, 8·-18 

timewise propagation of, 8-17, 8-24 
t.ransformations, (8.2.3) 8-15 

Cowell method, (i,.:?) 5-8, 4-2, 5-1, 5-3, 5-5, 5-26, 6-1, 6-2, 6-11, 6-20, 6-25 
time-regularized, (5.3) 5-9, 5-3, 5-5, 5-9, 6-1 

Critical frequency, 7 -49 
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Data Management Program, (2.1.8) 2-4
Data Simulation Program, (2.1.6) 2-3
Delaunay elements, (5.5)5-.16, 5-42, 5-43, 5-59 ;

Delaunay-Simi!ar formulation, (5.5)5-16, 2-9, 5-3, 5-4 :_
Density corrections, 4-36, 4-27 _

geomagnetic actfvi_7, 4-36, 4-45
seasonal latitudinal, 4-36, 4-37, 4-45, 4-54 ' :

seasonal latitudinal, helium, 4-37, L'-45
semiannual variation, 4-36, 4-45, 4-54 ._

Differential correction process, 7-1, 7-2
i_ Differential Correction Program, (2.1.1) 2-2

a priori input, 8-19 _

comuutational procedure, (8.2.4) 8-19
oata management, 8-19
estimation computation, 8-22
fnner processing loop, 8-21
outer iteration loop, 8-21
termination of outer iteration loop, 8-22, 8-60

! Differential _<tuations,

class I, 5-2, 5-9, 5-26, 6-1, 6-2 _ ;
class II, 5-2, 5-8, 5-9, 6-1, 6-2 .z

Direction cosines, Minitrack, 7-11

! I_ Dispersion, 8-12 (see also measurement uncertainty)4.

Diurnal bulge, 4-54, 4-56, 4-57

Divergence, filter, 8-36
• DODS variables, 2-14, 4-75 through 4-86, 6-12

• Doppler corrections due to atmospheric refraction, 7-59 through 7-64 _
• Doppler cycle count, 7-15, A-3, A-7, A-11, A-l°., A-13, A-32 _

destruct, 7-27, 7-28, A-32, C-7 i-
• nondestruct, 7-28, A-12, A-32, C-7

Doppler measurements, 2-12, 7-20 _ '_

"',\ __ Doppler observation, (7.3.4) 7-27 through 7-34 _
formulation of, 7-28 through 7-30 '-!
partial derivatives of, 7-30 through 7-34 , ,

i Doppler shift, relativistic, C-3, C-4, C-5, C-6, C-11, C-14
D_uble r-Iteration method, early orbit, (9.1.3)9-14, 2-14, 9-1, 9-2 "_:

Dynamic model compensation, _
advantages of, 8-37

,. procedure, 8-41 _

Dynamic stability, 5-5

I Dynamic weighting factor, D-l,
D-2

i Dynamics, spacecraft, (2.3)2-17, 2-18 ,_
!

_ " I-5
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Data Management Program, (2.1. 8) 2-4 
Data Simulation Pl'ogram, (2.1. 6) 2-3 
Delaunayelements, (5.5) 5--16, 5-42, 5-43, 5-59 
Delaunay-Similar formulation, (5.5) 5-16, 2-9, 5-3, 5-4 
Density corrections, 4-36, 4-37 

geomagnetic act!vity, 4-36, 4-45 
seasonal latitudinal, 4-36, 4-37, 4-45, 4-54 
seasonal latitudinal, helium, 4-37, L!-45 
semiannual variation, 4-36, 4-45, 4-54 

Differential correction process, 7-1, 7-2 
Differential Correction Program, (2.1.1) 2-2 

a priori input, 8-19 
comnutational procedure, (8.2.4) 8-19 
data mana.gement, 8-19 
estimation computation, 8-22 
inner processing loop, 8-21 
outer iteration loop, 8 -21 
termination of outer iteration loop, 8-22, 8-60 

Differential (.quations, 
class I, 5-2. 5-9, 5-26, 6-1, 6-2 
class II, 5-2, 5··8, 5-9, 6-1, 6-2 

Direction cosines, Minitrack, 7-11 
Dispersion, 8-12 (see also measurement uncertainty) 
Diurnal bulge, 4-54, 4-56, 4-57 
Divergence, filter, 13-36 
DODS variables, 2-14, 4-75 through 4-86, 6-12 
Doppler correctlOns due to atmospheric refraction, 7-59 through 7-64 
Doppler cycle count, 7-13, A-3, A-7, A-Il, A-]~, A-13, A-32 

destruct. 7-27, 7-28, A-32, C-7 
nondestruct~ 7-28, A-12, A-32, C-7 

Doppler measurements, 2-12, 7-20 
Doppler observation, (7.3.4) 7-27 through 7-34 

formulation of, 7-28 through 7-30 
partial derivatives of, 7-30 through 7-34 

Doppler shift, relativistic, C-3, C-4, C-5, C-6, C-Il, C-14 
Deuble r-Iteration method, early orbit, (9.1. 3) 9-14, 2-14, 9-1, 9-2 
Dynamic mcdel compensation, 

advantages oft 8-37 
procedure, 8-41 

Dynamic stability, 5-5 
Dynamic weighting factor, D-1, D-2 
Dynamics, spacecraft, (2.3) 2-17, 2-18 
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Early orbit, angles only methods, (9.1) 9-1 /
Early Orbit Determination Program, (2.1.5) 2-3
Early orbit methods, (Chapter 9)

Double r-Iteration method, (9.1.3)9-14, 2-3, 9-1, 9-2
Gauss method, (9.1.2) 9-6, 2-3, 9-1, 9-14, 9-17

Range and Angles method, (9.2) 9-24, 2-3, 9-1 i
Earth-moon system, (4.4) 4-18

: Editing of observation residuals, (8. _. 2) 8-60
. Electron density profile, 7-49 throug,1 7-52
• Electron density profile parameters, 7-49 through 7-52

Element sets,

' Brouwer Iaean, 5-45
Delaunay-Similar,(5.5)5-16,5-4

equinoctial, (5.7.2)5-33, 5-4, 5-31, 5-38
• Keplerian, 5-4, 5-31, 5-38, 5-45

Kustaanheimo-Stiefel, 5-4

_Y rectangular, 5-4, 5-31, 5-34
' Encke method, 5-58

' i Ephemeris Comparison Program, (2.1.3) 2-2
*_ Ephemeris Generation Program, (2.1.2) 2-2 ,,

: Ephemeris data, 3-74 through 3-80 ../
: polynomial representation of, (3.6) 3-74

Equations of motion, 6-2, 6-8, 8-37

Error analysis,
application, (8.3) fi-22
problems, 8-24 h

Error Analysis Program, (2.1.7) 2-3 i
Error control, (6.9) 6-21
Estimate, '

a priori, 8-3

bias, 8-8
classical equation for best, 8-3

co_arim.ce of error, 8-10, 8-29
m_an, 8-i0 ,
minimnm variance, 8-30

state correction, 8-29

Estimation, (Chapter 8)
Estimation model, (7.8) 7-77 through 7-79
Estimation, sequential, (8.4) 8-27, (Appendix E) E-_I /

process,8-1

Estimator,

advantageof recur..-ive,8-33
algorithm,9-1

gainmatrix, 8-11

I-6 ""

i

1976017203-588

Early orbit, angles only methods, (9.1) 9-1 
Early Orbit Determination Program, (2.1. 5) 2-3 
Early orbit methods, (Chapter 9) 

Double r-Iteration method, (9.1.3) 9-14, 2-3, 9-1, 9-2 
Gauss method, (9.1.2) 9-·6,2-:,1,9-1,9-14,9-17 
Range and Angles method, (9.2} 9-!!4, 2-3, 9-1 

Earth-moon system, (4.4) 4-18 
Editing of observation residuals, (8. S. 2) 8-60 
Electron density profile, 7 -49 throug,l 7 -52 
Electron density profile parameters, 7 -49 through 7-52 
Element sets, 

Brouwer mean, 5-45 
Delaunay -Similar, (5.5) 5-16, 5-4 
equinoctial, (5. ~r .2) 5-33, 5-4, 5-31, 5-38 
Keplerian, 5-4, 5-31, 5-38, 5-45 
Kustaanheimo-Stiefel, 5-4 
rectangular, 5-4, 5-31, 5-34 

Encke method, 5-58 
Ephemeris Comparison Program, (2.1. 3) 2-2 
Ephemeris Generation Program, (2.1. 2) 2-2 
Ephemeris data, 3-'74 through 3-80 

polynomial representation of, (3.6) 3-74 
Equations of motion, 6-2,6-8,8-37 
Error analysis, 

application, (8.3) e-22 
problems, 8-24 

Error Analysis Program, (2.1. 7) 2-3 
Error contr.ol, (6.9) 6-21 
Estimate, 

a priori, 8-3 
l>ias, 8-8 
classical equation for best, 8-3 
c..:o\oarim.ce of error, 8-10, 8-29 
m'3an, 8-10 
minimilm variance, 8-30 
state corI'ection, 8-29 

Estimation, (Chapter 8) 
Estim'ltion model, (7.8) 7-77 through 7-79 
Estimation, sequential, (8.4) 8-27, (Appendix E) E-J 

process, 8-1 
Estimator, 

advantage of re .. ~urf ive, 8-33 
algorithm, 9-1 

gain matrix, 8-11 
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:, Estimator, (cont'd.) ,:
8--.: Ka!man minimum variance, o,_

sequential adaptive, 8-42
sequential weighted least squares, 8-27

_: weighted least squares, 8-1, 8-22
' weighted !east squares variation, _-4

: with respect to consider parameters, 8-25 i-
with respect to dynamic parameters, 8-25

Expected value of deviation, 8-8
; of linearized observation residuals, 8-9

Fast elements, 5-17, 5-31, 5-38, 5-40
: F_gure of the earth, (3.3.6. i) 3-40

. } Filter -,
i | Extended Kalman, (8.4)8-27, 2-3, 2-13 '_

_ derivation of, (8.4.1) 8-28

! nonupdated reference trajectory, 8-33
: prediction formulas o{, 8-31

update equations of, 8-30 /:
J /,S

updated reference trajectory, 8-33, 8-34 ._
Jazwinski, (8.4.3) 8-42, 2-3

derivation of, 8-44
prediction equations, 8-47
update equations, 8-47

Filter Program, (2.1.4) 2-2, 2-3
a priori input, 8-48
computational procedure, (8.4.4) 8 t7 *_

data management, 8-48
data se_ loop, 8-50
processing loop, 8-48 "_

" Filtering,
dynamic model compensation, (8.4.2) 8-37 v
statistical adaptive, (8.4.3) 8-42 .,

Fllght sectioning, 2-18

Gain m_trix, 8-11, 8-30, 8-35, 8-45 ,
2auss method, early orbit, (9.1.2)9-6, 2-14, 9-1, 9-14, 9-17

f :'
Gaussian planetary equation, 5-31

Gaussian VOP formulation, (5.7) 5-30, 5-38 , (
General perturbation method, 2-6, 5-1, 5-3, 5-4 ,"

! Geoid, 7-34 through 7-38 _
Geoidal undulation, 7-36, 7-37, 7-40

Gibbs method, 9-6, 9-11

:
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Estimator, (cont'd.) 
Kalman minimum variance, 8-27 
sequential adaptive, 8-42 
sequential weighted least squares, 8-27 
weighted least squares, 8-1, 8-22 
weighted !P,ast squares variation, 

with respect to consider parameters, 8-25 
with respect to dynamic parameters, 8-25 

Expected value of deviation, 8-8 
of linearized observation residuals, 8-9 

Fast elements, 5-17, 5-31, 5-38, 5-40 
Figure of the earth. (3.3.6.1) 3-40 
Filter 

Extended Kalman, (8.4) 8-27, 2-3, 2-13 
de!'ivation of, (8.4.1) 8-28 
nonupdated reference trajectory, 8-33 
prediction formulas of, 8-31 
up:late equations of, 8-30 
up:lated reference trajectory, 8-33, 8-34 

Jazwinski, (8.4.3) 8-42,2-3 
derivation of, 8-44 
prediction equations, 8-47 
up:late equations, 8-47 

Filter Program, (2.1.4) 2-2, 2-3 
a priori input, 8-48 
computational procedure, \8.4.4) & 17 
data management, 8-48 
data set loop, 8-50 
processing loop, 8-48 

Filtering, 
dynamic model compensation, (8.4.2) 8-37 
statistical adaptive, (8.4.3) 8-42 

Flight sectioning, 2-18 

Gain Ullltrix, 8-1l, 8-30, 8-35, 8-45 
~'auss method, early orbit, (9.1.2) 9-6, 2-14, 9-1, 9-14, 9-17 
Gaussian planetary equation, 5-31 
Gaussian VOP formulation, (5.7) 5-30, 5-38 
General perturbation method, 2-6, 5-1, 5-3, 5-4 
Geoid, 7 -34 through 7 -38 
Geoidal undulation, 7-36, 7-37, 7-40 
Gibbs method, 9-6, 9-11 
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Globaliteration,8-34 ' ]
i Goddard Range and Range-Rate (G_RR) and ATSR systems, A-I throughA-8, :

C-II, C-13, C-14

datasmoothing,A-3
early orbit data, 9-24
functionaldescription,A-l, A-2, A-3 , :
gimbal angles,A-6

< preprocessingdescription,A-4, A-5, A-6
processingcomputationsand interfaces,A-5
range computation,A-6, A-7
range-ratecomputation,A-7, A-8

Greenwich Hour Angle, 3-67L

GTDS overview, (Chapter 2)
GTDS programs, (2.1) 2-1 through 2-4

Data Management, (2.1.8) 2-4
Data Simulation,(2.1.6)2-3, 2-16, 2-17
Differential Correction, (2 1.1) 2-2 2-16, 2-17 _
Early OrbitDetermination,(2.1.5)2-3
Ephemeris Comparison, (2.1.3) 2-2

Ephemeris Generation, (2.1.2)2-2, 2-6, 2-16 t/_
Error Ar.alysis, (2.1.7)2-3, 2-4, 2-17 </ _
Filter, (2.1.4) 2-2, 2-3

GTDS system capabilities, (2.2) 2-4 through 2-17
earlyorbitdetermination,(2.2.4)2-14, 2-15

estimationtechniques,(2.2.3)2-13, 2-14 {
observation modeling, (2.2.2) 2-9 through 2-13 : ;

data preprocessing, 2-10
observation models, 2-12 '_
observation types, 2-10

optional modes of operation, (2.2.5) 2-16, 2-J 7 _ ._
trajectorygeneration,(2.2.I)2-6 through2-8

Hamilton-Jacobidifferentialequations,5-I, 5-60

Hamiltonian,5-17, 5-18

Harris-Priester atmospheric den._ity model, (4.5.6) 4-53 through 4-59, 4-23
partial derivatives, (i. 5.7) 4-57 through 4-59

Index of refraction, 7-44
Indirect oblation perturbation model, (4.4) 4-18 through 4--22
Intermediate Orbit formulation, (5.11)5-58, 2-8, 5-3, 5.-4, 5-5
Interpolation, 6-21

Introduction, 1-1, i-2
•Ionosphere models, (7 6.2) 7-44 through 7-52

mmt
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Global iteration, 8-34 , 
Goddard Range and Range-Rnte (G,ItARR) and ATSR systems, A-I through A-8, 

C-11, C-13, C-14 
data smoothing, A-B 
early orbit data, 9-24 
functional description, A-I, A-2, A-3 
gimbal angles, A-6 
preprocessing description, A-4, A-5, A-6 
processing computations and interfaces, A-5 
range computation, 1.-6, A-7 
range-rate computation, A-7, A-8 

Greenwich Hour Angle, 3-67 
GTDS overview, (Chapter 2) 
GTDS programs, (2. 1) 2 -1 through 2-4 

Data Management, (2. 1. 8) 2-4 
Data Simulation, (2.1. 6) 2-3, 2-16, 2-17 
Differential Correclion, (2.1.1) 2-2, 2-16, 2-17 
Early Orbit Determination, (2.1. 5) 2-3 
Ephemeris Comparison, (2.1. 3) 2-2 
Ephemeris Generation, (2.1. 2) 2-2, 2-6, 2-16 
Error Ar.alysis, (2.1.7) 2-3,2-4,2-17 
Filter, (2.1.4)2-2,2-3 

GTOS system capabilities, (2.2) 2-4 through 2-17 
early orbit determination, (2.2.4) 2-14, 2-15 
estimation techniques, (2.2.3) 2-13,2-14 
observation modeling, (2.2. 2) 2 -9 through 2 -13 

data preprocessing, 2-10 
observation models, 2-12 
observation types, 2 -1 0 

optional modes of operation, (2.2.5) 2-16,2-]7 
trajectory generation, (2.2.1) 2-6 through 2-8 

Hamilton -J acobi differential equations, 5-1, 5-60 
Hamiltonian, 5-17, 5-18 
Harris-Priester atmospheric density model, (4.5.6) 4-53 through 4-59, 4-23 

partial derivatives, (1.5.7) 4-57 through 4-59 

Index of refraction, 7 -44 
Indirect oblation perturbation model, (4.4) 4-18 through 4--22 
Intermediate Orbit formulation, (5.11) 5-58, 2-8, 5-3, 5·-4, 5-5 
Interpolation, 6-21 
Introduction, 1-1, 1-2 
Ionosphere models, (7.6.2) 7-44 t'hrough 7-52 
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_ JPL ephemeris, 3-)4, 3-17 IJacchia-Roberts atmospheric density model, (4.5.4) 4-33 through 4-49, 4-23

partial derivatives, (4.5.5) 4-50 through 4-53 ! _

KS matrix, 5-13 _ }

Kalman gain, 8-30, (see also gain matrix) _
Kalman filter, (see Extended Kalman Filter) }

Kepleris equation, 5-51 ]
Kustaanheimo-Stiefel formulation, (5.4) 5-10, 2-9, 5-3, 5-4 _

_ Laplacian, 4-9
Least squares, weighted, 8-1, 8-6, 8-7
Legendre functions, 4-11
Libration of the z_oon, 4-18
Light time correct:ion, (7.7.1) 7-76
Light time mode]ing, {7.3.2) 7-21
Linear gain, optimal, E-3
Linearity, 8-3, 8- _.. 8-34

Loss h_netion,8-2, 8-3, 8-6, 8-7

i Luni,_olarprecession_md nutation,3-12, 4-18 .y"
# Magneticdip, 7-51

i _ _ ] Matrix identities (sequential estimation), (Appendix E) E-1
_' Matrix inversion,_8.6.i)8-57

Matrix of functional sensitivities, 8-26

i _ Matrix ofpartialderivatives,8-2

_t Mean of estimate,(8.2.118-8, 8-50
_. Measurement model, 8-4_t

Measurement noise, 8-9, 8-12, 8-42, 8.-43 (see also observation noise)

., _ covariance, 8-9 ; _, "
\ _ expected value, 8-9

"_i Measurement urocess,statisticala_sumptionof,8-3, 8-4

Measurement residuals,8..7,8-9
Measurement uncertainty, 8-12, 8-30

•_ Meridian,

f "_'oca;, 3_,2prime, 3-2
Minimization,nonlinear,8-.2 " ;

Minitracksystem, A-14 thrm._ghA-27
ambif_itydata, A-20

ambiguity rosolution, A-24
antenna fiel,_ corrections, A-26

data lineari_ ation and smoothing, A-19

. _' I-9
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JPL ephemeris, 3-14, 3-17 
Jacchia-Roberts atmospheric density model, (4.5.4) 4-33 through 4-49, 4-23 

partial derivatives, (4.5.5) 4-50 through 4-53 

KS matrix l 5-13 
Kalman gain, 8-30, (see also gain matrix) 
Kalman filter, (see Extended Kalman Filter) 
Kepler's equation, 5-51 
Kustaanheirnf\-Stiefel formulation, (5.4) 5-10, 2-9, 5-3, 5-4 

Laplacian, 4-t) 
Least squares, weighted, 8-1, 8-6, 8-7 
Legendre functions, 4-11 
Libration of the moon, 4-18 
Light time oorrecdon, (7.7.1) 7-76 
Light time modeJing, (7.3.2) 7-21 
Linear gain, optimal, E-3 
Linearity, 8-3, 8- 5: 8-34 
Loss n.nction, 8-2, b-3, 8-6, 8-7 
Luni.;olar precession 'l."ld nutation, 3-12, 4-18 

Magnetic dip. 7-51 
Matrix identities (sequential estimation), (Appendix E) E-l 
Matrix inversion, (8.6.1) 8-57 
Matrix of functional sens.ltivities. 8-26 
Matrix of partial derivati ves, 8-2 
Mean of estimate, (8.2.1; 8-8, 8-50 
Measurement model, 8-4~1 

Measu rement nOise, 8-9, 8-12, 8-42, 8·-43 (see also observation noise) 
covariance, 8-9 
expected value. 8-9 

Measurement procE' SS, statistical assumption of, 8-3, 8-4 
Measuremtlnt residuals, 8··7, 8-9 
Meast.!!'ement unccrtRinty, 8-12, 8-30 
Meridian, 

prime, 3-2 
Minimization, nonlinear, 8··2 
Minitrack system, A-14 thrnugh A-27 

8.mbig'Uity data, A-20 
ambiguity l'osolution, A-24 
antenna field corrections, A-26 
data linearh ation and smoothing, A-19 
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Minitrack system, (cont'd.)
fine baseline data, A-21, A-22

functional description, A-14
preprocessing description, A-17

: processor considerations, A-27
time adjustment and zenith calibration, A-22, A-23, A-24 #

Model parameters, uncertain, 8-18
Multistep integration methods, 6-1

• Near real-time operation, 2-19
/ Newton-Raphson iteration, 5-41

Newtonian interpolation, 6-5
Nonspherical gravitational effects, (4.3) 4-9 through 4-18, 2-17

associated partial derivatives, (4.3.2) 4-14 through 4-18
perturbation model, (4.3.1) 4-9 through 4-14

Normal matrix, 8-3, 8-14, 8-59
Numerical integration methods, (Chapter 6)

_ corrector-only, 6-9 throuvh 6-14
: multistep methods, 6-1 through 6-16

_ predict-pseudo-correct, 6-7 through 6-9' r

predictor-corrector, 6-2 through 6-6 ...-_
Runge-Kutta, 6-16 through 6-18

_ starting procedures, 6-19 through 6-22
Numerical stability, 5-2, 5-3, 6-2, 6-7, 6-9
Nutation, 3-12, 3-14, 3-15

Obliquity of the ecliptic, 3-12, 3-14, 3-15
Observation equation, nonlinear, 8-14
Observation _n_clc!, GTDS: 7-2

'_ Observationmodels, (Chapter7)
additional corrections, (7.7) 7-76, 7-77

. atmospheric effects, (7.6) 7-43 through 7-75
\ estimation model, (7.8) 7-77 through 7-79

gener_ description of, (7.1) 7-1 through 7-4
ground-based tracker models, (7.2) 7-4 through 7-1_
radar altimeter model, (7.4) 7-34 through 7-41
,_atellite-to-satellite tracking model, (7.3) 7-18 tbrou_h 7-41
Very Long Baseline Interferometer, (7.5) 7-4!, 7-42

Obser_ration noise, 8-1, 8-4, 8-41, (see also mew3urement noise)
Observation pertial derivatives, (8.2.2) 8-12

with respect to consider variables, 8-15
with respect to solve-for variables, 8-14

Observation vector, linearized, 8-2

1-10
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MtJIitrack system, (contld.) 
fine baseline data, A-21, A-22 
functional descriptions A-14 
preprocessing description, A-17 
processor consideratl.ons. A-27 
time adjustment and zenith calibration, A-22, A-23, A-24 

Model parameters, uncertain, 8-18 
Multistep integration methods, 6-1 

Near real-time operation, 2-19 
Newton-Rapnson iteration, 5-41 
Newtonian interpolation, 6-5 
Nonspherical gravitational. effects, (4.3) 4-9 through 4-18, 2-17 

associated partial d.::rivatives, (4.3.2) 4-14 through 4-18 
perturbation model, (4.3.1) 4-9 through 4-14 

Normal matrix, 8-3, 8-14, 8-59 
Numerical integration methods, (Chapter 6) 

corrector-only, 6-9 throup-h 6-14 
multistep methods, 6-1 through 6-16 
predict-pseudo-correct, 6-7 through 6-9 
predictor-corrector, 6-2 through 6-6 
Runge-Kutta, 6-16 through 6-18 
starting procedures, 6-19 through 6-22 

Numel'ical stability, 5-2, 5-3, 6-2, 6-'/, 6-9 
Nutation, 3-12, 3-14, 3-15 

Obliquity of the ecliptic, 3-12, 3-14, 3-15 
Observation equation, nonlinear, 8-14 
ObservatIon model, GTDS~ 7-2 
Observation models, (Chapter 7) 

additional corrections, (7.7) 7-76, 7 -77 
atmospheric effects. (7.6) 7-43 through 7 -75 
estimation model, (7. 8) 7-77 through 7-79 
gener!il description of, (7.1) 7-1 through '1-4 
ground-based tracker models, (7.2) 7-4 through 7-1't 
radar altimeter model, (7.4) 7-34 through 7 -41 
satellite-to-satellite tracking model, (7.3) 7-18 through '1-41 
Very Long Baseline Interferometer, (7.5) 7 -4J., 7-42 

Observation noise, 8-1, 8-4, 8-41, (see also mea:.iurement nOise) 
Observation pa.rtial derivatives, (8.2.2) 8-12 

with respect to consider variables, 8-15 
with respect to solve-for variables, 8-14 

Observation vector, linearized, 8-2 
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_ Observational model parameters, 7-2

_ Optimal linear gain, derivation of, (E. 2) E-3 ,iOrbit estimation problem, 8-1, 8-27 _i
Orbit generation methods, (Chapter 5) "_

_'.,eraged equinoctial, (5.8.3) 5-40 iil
averaged Keplerian, (5.8.4) 5-40
Brouwer, (5.9) 5-42 through 5-50

_ Brouwer-Lyddane, (5.10) 5-51 through 5-57

_, Chebyshev-Picard, (5.6) 5.-26 through 5-29
. _ Cowell, (5.2) 5-8

Cowell, time regularized, (5.3) 5-9
Delaunay-Similar, (5.5) 5-16 through 5-26

_ Intermediate Orbit, (5.11) 5-58
Kustaanheimo-Stiefel, (5.4) 5-10 through 5-15
Vinti, (5.12)5-59, 5-60
VOP - equinoctial, (5.7.2) 5-33

_ VOP - Keplerian, (5.7.1) 5-31, 5-32 :
VOP - rectangular, (5.7.3) 5-34 through 5-36 i_

Orbit generators, characteristics of, (Table 5-1) 5-6, (Table 5-2) 5-7

Orbital equations of motion, (Chapter 5) /_
Origin of coordinates, 3-2 _ _

Overview of GTDS, (Chapter 2)

J "f

Partial derivatives, !.

of acceleration due to nonspherical gravitational effects, (4.3.2) 4-14
through 4-32

of acceleration due to attitude-control effect, (4.7.2) 4-66 !
of acceleration due to nonspherical gravitational effects, (4.3.2) 4-14

through 4-18 _

of acceleration due to point mass effects, (4.2.2) 4-8 ! _
of acceleration due to solar radiation pressure, (4.6.2) 4-63

_ analytic, (4.10) 4-75 through 4-86 "
of atmc_spheric density,

Harris-Priester model, (4.5.7) 4-53 through 4-59
" Jacchia-Roberts r,lodel, (4.5.5) 4-50 through 4-53
! cf Cartesian state with respect to DODS variables, 4-80 through 4-83

of Doppler measurement, 7-30 through 7-34
of expected range, 7-15
of geodetic coordinates with respect to body-fixed coordinates, 3-47
of gimbal angles, 7-7 through 7-10 !
of indirect oblateness effects, 4-20, 4-21

Keplerian to Cartesian, (3.3.8.2) 3-53
of Keplerian with respect to C_rtesian, 3-58

"19760"17203-,593

Observ~tior.al model parameter~, 7-2 
Optimallillear gain. derivation of, (E.2) E-3 
Orbit estimation problem, 8-1, 8-27 
Orbit generation methods, (Chapter 5) 

n','eraged equinoctial, (5.8.3) 5-40 
averaged Keplerian, (5.8. 4} 5-40 
Brouwer, (5. 9) 5-42 through 5-50 
Brouwer-Lyddane, (5.10) 5-51 through 5-57 
Chebyshev-Picard, (5.6) 5,-26 through 5-29 
Cowell, (5.2) 5-8 
Cowell, time regularized, (5.3) 5-9 
Delaunay-Similar, (5.5) 5-16 through 5-26 
Intermediate Orbit, (5.11) 5-58 
Kustaanheimo-Stiefel, (5.4) 5-10 through 5-15 
V inti , (5.12) 5-59, 5-60 
VOP - equinoctial, (5.7.2) 5-33 
VOP - Keplerian, (5.7.1) 5-31, 5-32 
VOP - rectangular, (5.7.3) 5-34 through 5-36 

Orbit generators, characteristics of, (Table 5-1) 5-6, (Table 5-2) 5-7 
Orbital equations of motion, (Chapter 5) 
Origin of coordinates, 3-2 
Overview of GTDS, (Chapter 2) 

Partial derivatives, 
of acceleration due to nonsp~erical graVitational effects, (4.3.2) 4-14 

through 4-32 
of acceleration due to attitude-control effect, (4.7.2) 4-66 
of acceleration due to nonspherical gravitational effects, (4.3.2) 4-14 

through 4-18 
of acceleration due to poillt mass effects, (4.2.2) 4-8 
of acceleration due to solar radiation pressure, (4.6.2) 4-63 
analytic, (4.10) 4-75 through 4-86 
of atmospheriC density, 

Harris-Priester model, (4.5.7) 4-53 through 4-59 
Jacchia-Roberts model, (4.5.5) 4-50 through 4-53 

of C::trtesian state with respect to DODS variables, 4-80 through 4-83 
of Doppler measurement, 7-30 through 7-34 
of expected range, 7 -15 
of geodetic coordinates with respect to body-fixed coordinates, 3-47 
of gimbal angles, 7-7 through 7-10 
of indirect oblateness effects, 4-20, 4-21 
Keplerian to Cartesian, (3.3.8.2) 3-53 
of Keplerian with respect to CRrtesian, 3-58 
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Partial derivatives, (cont'd.) I

_ mapping of, (6.5) 6-15
of Minitrack direction cosines, 7-11

_ of nonspherical potential with respect to r, _, and k, 4-10
of observation measurements, 7-4
of observation measurements in local tangent coordinates, 7-6

I

of radar altimeter observations, 7-49, 7-41
of range observation, 7-25 through 7-27
of range rate (average), ';-18
of range rate (i_s_antaneous method), 7-17

;. of range rate (iterative method), 7-16
of USB expected range, 7-14 _:
of VLBI measurements, 7-42

: Perturbation methods,
general, 5-1
special, 5-1

4
: . _ Perturbation models, (Chapter 4)
: _ aerodynamic and atmospheric models, (4.5) 4-22 througb 4-60

: indirect oblation perturbation model, (4.4) 4-18 through 4-22
model parameters, 4-3 ,,
N-pointmasses model, 4-5 ./

nonspheric_t gravitational effects, (4.3) 4-9 through 4-18
point mass effects, (4.2) 4-4 through 4-8 I i

total perturbation model, (4.1) 4-2 through 4-4
Perturbing accelerations, (Chapter 4)

aerodynamic force effects, (4.5) 4-22
analytic partial derivatives, (4.10) 4-75 t

atmospheric effects, (4.5) 4-22
attitude control effects, (4.7) 4-64 ,_

earth-moon indirect oblation effects, (4.4) 4-18
nonspherical gravitational effects, (4.3) 4-9 i

{

point mass effects, (4.2) 4-4 :,
%

replacement acceleration, (4.9) 4-73
solar radiation pressure, (4.6) 4-60
thrust effects, (4.8) 4-66

Picard iteration method, (5.6) 5-26
Pomcare variables, 5-4, 5-59

Point mass effects, (4.2) 4-4 through 4-8
associated partial derivatives, (4.2.2) 4-8
N-point masses perturbation m_lel, (4.2.1) 4--5 through 4-8 ,' '

Poisson's equation, 4-9

Polar motion, 3-18, 3-20, 3-21, 3-22, 3-23, 3-24 :
Polar motion coefficients, (Table 3-1) 3-25

1-12 '_ :
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Partial derivatives, (cont'd.) 
mapping of, (6.5) 6-15 
of Minitrack direction cosines, 7-11 
of nonspherical potential with re~pect to r, q" and A, 4-10 
of observation measurements, 7-4 
of observation measurements in locu tangent coordinates, 7-6 
of radar altimeter observations, 7 -4 '), 7 -41 
of range observation, 7-25 through 7-~:7 
of range rate (average), ';-18 
of range rate (w!3tantaneous method), i -17 
of range rate (iterative method), 7-16 
of USB expected range, 7 -14 
of VLBI measurements, 7 -42 

Perturbation methods, 
general, 5-1 
special, 5-1 

Perturbation models, (Chapter 4) 
aerodynamic and atmospheric models, (4.5) 4-22 througb 4-60 
indirect ,>blation perturbation model, (4.4) 4-18 through 4-22 
model parameters, '1-3 
N-point masses model, 4-5 
nonspheric~l. gravitational effects, (4.3) 4-9 through 4-18 
point mass effects, (4.2) 4-4 through 4-8 
total perturbation model, (4.1) 4-2 through 4-4 

Perturbing accelerations, (Chapter 4) 
aerodynamic force effects, (4.5) 4-22 
analytic partial derivatives, (4.10) 4-75 
atmospheric effects, (4.5) 4-22 
attitude control effects, (4.7) 4-64 
earth-moon indirel~t oblation effects, (4.4) 4-18 
nonspherical gravithtional effects, (4.3) 4-9 
point mass effects I (4·.2) 4-4 
replacement acceleration, (4.9) 4-73 
solar radiation pressure, (4.6) 4-60 
thrust effects, (4.8) 4-66 

Picard iteration method, (5.6)1)-26 
Poincare variables, 5-4, 5-59 
Peint mast. effects, (4.2) 4-4 through 4-8 

associated partial derivatives, (4.2.2) 4-8 
N -point masses perturbation model, (4.2.1) 4--5 through 4-8 

Poisson's equation, 4-9 
Polar motion, 3-18, 3-20, 3-21, 3-22, 3-23, 3-24 
Polar motion coefficients, (Table 3-1) 3-25 

1-12 



J:i

: 1

: i

Postflight processing, 2-19 "
' Precession, 3-12 _

_ Predictor-corrector integration methods, 6-1, 6-2, 6-7 <
J Predietor-pseudo-corrector methods, (6.2) 6-7 _

Preproccssing, (Appendix A)A-l, 7-1, A-4, A-5, A-6, A-8, A-10, A-17,

-_ A-18, A-19, A-27, A-29, A-30 j I_
_'_ Preprocessor/processor interfaces, A-l, A-5, A-17, A-18 _
i Prime Meridian, 3-2 '_

Greenwich, 3-2

: lunar, 3-2 _
Principal ,_irections, 3-3
Probabiliti,_s,

hyperellipse, (8.5.2) 8-51, (Table 8-1) 8-53
hyperrectangle, (8.5.3) 8-54, (Table 8-2) 8-55

" Probability deasity function, 8-51 _,

Proper time, C-6, C-7, C-10

', Radar altimeter model, (7.4) 7-34 through 7-41
•_ measurement equation, (7.4.2) 7-38 through 7-40 _,

partial derivatives, (7.4.3) 7-40, 7-41 _
surface model, (7.4.1) 7-34 through 7-38 _._/"

• . Radar altimeter system, A-29, A-30 i
; _ L Range (GRARR, ATSR, USB, and C-Bsnd), 7-11 through 7-15

instantaneous meth_xi, 7-14
iterative method, 7-12 through 7-14 _.

1! Range ambiguity, A-3, A-6, A-11, A-33
Rango and Angles method, early orbit, (9.2)9-24, 2-14 _

• Range difference, C-10 "_

Range observation, (7.3.3) 7-21 through 7-27 '
. Range rate (GRARR, ATSR, USB), 7-15 thrcugh 7-18

• j

" '. average range rate, 7-17, 7-18
\ instantaneous range differene_ method, 7-17

iterative range difference method, 7-16 •
: Range-rate formulas, (Appendix C) C-I _

Range sum calculation, 7-24, 7-25
Range sum measurement, 7-19

' Re_d-time operation, near, 2-19
Reference ellipsoid, 7-35 through 7-38 ._:

Reference planes, 3-2 e.
Reference trajectory, 8-32, 8-33 '

Reference trajectory, a prior_, 8-23 i'
Refraction (see atmospheric effects) ,
Refraction difference vectors, C-3

1976017203-595

Postflight processing, 2 -19 
Precession, 3-12 
Predicto:r-corrector integration methods, 6-1, 6-2, 6-7 
Predictor-pseudo-corrector methods, (6.2) 6-7 
Preprocessing, (Appendix A) A-I, 7-1, A-4:, A-5, A-6, A-a, A-10, A-17, 

A-18, A-19, A-27, A-29, A-30 
Preprocessor/processor interfaces, A-I, A-5, A-17, A-iS 
Prime Meridian, 3-2 

Greenwich, 3-2 
lunar, 3-2 

Princi}Jal directions, 3-3 
Probabiliti,es , 

hyperellipse, (8.5.2) 8-51, (Table 8-1) 8-53 
hyperredangle, (8.5.3) 8-54, (Table 8-2) 8-55 

Probability de.llBity M'.ction, 8-51 
Proper time, C-6, C-'{, C-10 

Radar altimeter model, (7.4) 7-34 through 7 ·-41 
measurement \~uaUon, (7.4.2) 7 -38 through 7 -40 
partial derivatives, (7. 4. 3) 7 -40, 7-41 
surface model, \7. 4. 1) 7 -34 through 7 -38 

Radar altimeter system, A-29, A-30 
Range (GRARR, AT~R, USB, and C-Band), 7-11 through 7-15 

instantaneous method, 7-14 
iterative method, 7-12 through 7-14 

Range ambiguity, A-3, A-'l, A-ll, A-33 
Rango and Angles method, l,arlyorbit, (9.2) 9-24, 2-14 
Range difference, C-I0 
Range observation, (7.3.3) 7-21 through 7-27 
Range rate (GRARR, ATSR, USB), 7-15 thrcugh 7-18 

average range rnte, 7 -17 I 'I' -18 
instantaneous range differanc8 method, 7 -17 
iterative range dlfferenc-e method, 7-16 

Range-rate formulas, (Appendix C) C-l 
Range sum calculation, 7-24, 7-25 
Range sum measurement, 7-19 
Real-time operation, near, 2-19 
Reference ellipsoid, 7-35 throul{h 7-38 
Reference planes, 3-2 
Reference trajectory, 8-32, 8-33 
Reference trajectory, a priori, 8-23 
Refra(~tion (see atmospheric effects) 
Refraction difference vectors, C-3 
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_' Refraction effects, C-3, C-6, C-8, C-11, C-13, C-14
Regressionequation,nonlinear,_.-i,8-7 •

"_ Regularization, (6.10)6-22, 5-4, 5-10
Relativistic Doppler frequency shift, C-3, C-4, C-5, C-6, C-11, C-.14
Relativistic signal propagation, _Appendix C) C-1 _;

Replacement acceleration, (4.9) 4-73 through 4-75, 2-18
acceleration model, (4.9.1) 4-73 i

partial derivatives, (4.9.2) 4-74, 4-75
Residual error, predicted measurement, 8-32
Residual u_certatnty, predicted measurement, 8-32
Runge-Kutta integration method, (6.6) 6-16, 6-1

starter for multi-step integraticn methods, 6-20

SateUite-to-sateHite tracking (SST) model, (7.3) 7-18 through 7-34
Satellite-to-satellite tracking (SST) system, A-30 through A-33, C-14
Schur identity, 8-57
Sensor systems (see trajectory sensor systems)

_ Solar/Lunar/Planetary File, 3-17
Solar radiation pressure, (4.6) 4-60 through 4-63, 2-18

partial derivatives, (4. _.2) 4-63 j_
i _"=! perturbation mcxiel, (4.6.1) 4-60 through 4-63 _/

Solve-for variable_, 2-13

a priori values, 8-6, 8-7, 8-24 [
• best estim_,te of, 8-8

$

_ Solve-for vector, 8-6, 8-12, 8-13, 8-27, 8-32
Spacecraft dynamics, (2.3) 2-17, 2-18
Space-time matrix, C-1 through C-3
Special pe_urbations method, 2-6, 5-1, 5-2, 5-3, 5-4
Stability,

dynamic, 5-5, 5-]0
numerical, 5-2, 5-3

\ Standarddeviations,a priori,D-I, D-2
_" Start_.ngprocedures, (6.7)6-19, 6-20 ,

Statecorrectionvector,E-I ,
State noise, 8-31, 8-32, 8-40, 8-42 '

State transition mztrlx, 2-18, 4-1, 6-15, 6-16, 8-35
_ugmented, 8-44

_ elements, 4-72 through 4-81
• State vector,

augmented, 8-38, 8-43, 6-50
' expanded, 8-15

Statistical _daptive filtering, (8.4.3) 8-42
Statistics, weighted least squares and filter, (8.6.4) 8-61

confidence interval for group mean, 8-63

t
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Refraction effects, C-3, C-6, C-8, C-ll, C-13, C-14 
Regression equation, nonlinear, 8-1, 8-7 
Regularization, (6.10) 6-22, 5-4, 5-10 
Relativistic Doppler frequency shift, C-3, C-4, C-5, C-6, C-ll, C··14 
Relativistic signal propagation, ~Appendix C) C-1 
Replacement acceleration, (4.9) 4-73 through 4-75, 2-18 

acceleration model, (4.9.1) 4-73 
partial derivatives, (4.9.2) 4-74, 4-75 

Residual error, predicted measurement, 8-32 
Residual u"certainty, predicted measurement, 8-32 
Runge-Kutta integration method, (6.6) 6-16, 6-1 

starter for mUlti-step integration methods, 6-20 

Satellite-to-satellite tracking (SST) model, (7.3) 7 -18 through 7 -34 
Satellite-to-satellite tracking (SST) system, A-30 through A-33 t C-14 
Schur identity, 8-57 
Sensor systems (sec trajectory sensor systems) 
Solar/Lunu/Planetary File, 3-17 
Solar radiation pressure, (4.6) 4-60 through 4-63, 2-18 

partin! derivatives, (4.3.2) 4-63 
perturbation meJdel, (4.6.1) 4-60 through 4-63 

Solve-for variable~, 2-13 
a priori valv.es, 8-6, 8-7, 8-24 
best estimr .. te of, 8-8 

Solve-for vectJr, 8-6, 8-12, 8-13, 8-27, 8-32 
Spacecraft dynamics, (2.3) 2-17, 2-18 
Space-ti!Ile matrix, C-1 through C-3 
Special perturbations method, 2-6, 5-1, 5-2, 5-3, 5-4 
Stability , 

dynamic, 5-5, 5-10 
numerical, 5-2, 5-3 

Standard deviations, a priori, D-1, D-2 
Starting procedures, (6.7) 6-19. 6-20 
State correction vector. E-l 
State noise, 8-31, 8-32, 8-40, 8-42 
State tran~ition matrix, 2-18, 4-1, 6-15, 6-16, 8-35 

augmented, 8-44 
elements, 4-72 through 4-81 

State vector, 
augrnented, 8-38, 8-43, 6-50 
expanded., 8-15 

Statistical adaptive filtering, (8.4.3) 8-42 
Statistics, weighted least squares and filter, (8.6.4) 8-61 

confidence interval for group mean, 8-63 
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Statistics, weight.'d _ast E ,.,a_ _s _Jd f_.lter, (cont'd.)
group me_,, 8-_2
observationresidualgroups, 8-63 *
rootmean squar_error: 8-62 ,_
sample standarddeviation,8-63

_6 _, I _sum of squares aboutmea_, _- _
Stepsizeregulation,2-8, 5-5, 5-10, 6-1, 6-2, 6-21, 6-22

St_rmer-Cowellintegrationformulas, 5-8, 5-9, 6-1, 6-6

System capabilities,(seeGTDS system capabilities)

Thrust effects,(4.8)4-66 through4-72, 2-18

acceleration model, (4.8.1) 4-67 through 4-69
partial derivatives, (4, 8.2) 4-69 through 4-72

Time,
coordinate,C-6, C-8, C-9, C-10 C-!2 _'
proper, C-6, C-7, C-10

Time correlationcoefficients,8-38

Time dependencyo! solve-forand considervariables,8-1z
Time differencecoefficients,(Table3-2)3-74

Time element, 5-10, 5-11 /,
Time regularization,(6.10)6-22,2-9, 2-18 .>I

Time regularizedCoweiimethod, (5.._)5-9, 2-9, 5-3, 5-5, 6-1, 6-20

i Time systems, (3.4) 3-66_ atomic time, A. 1, (3.4.3) 3-67

ephemeris time, ET, (3.4.I)3-67 :

il station time, ST, (3.4.8) 3-71-. transformationbetween, (3.5)3-71 (
uncorrected un_Tersal time, UT0. (3.4.4) 3-69 _

_ universal time, u'r, (3.4.3) 3-67 i :'

universal time, UT1, (3.4.5) 3-69 !_ -_
i universal time UT2 (3.4.6) 3-70| t

-_ universaltime coordinated,UTC, (3.4.7)3-70

_, Time tag, A-2, A-4, A-9, A-11, A-17, A-20, A-21, A-30, A-31, A-32_.
ii Timewise propagationof estimate,covariancematrix, 8-17 _: ,
!_; Tracker models, ground based, (7.2) 7-4 through 7-17 ,_ ,

Tracking modes, 7-19
coherentmode, 7-19

!i crystalmode, 7-19
phase-lockedmode, 7-19

Tracking process, (7.2.1) 7-4

_ Tracking stations,
_ ATSR, A-2
!', C-Band, A-9 _,}
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Statisti(.s, weigh1.,'O Least l.t'\"~I;.;S mid fH~ft;·, (cont'd.) 
gl'oup mee~ •• cl-C2 
observati:>n residual groupE!. 8-63 
-root mean squal"~ e!'l.'')r.' t 8-132 
sample standard dS"lfir.tiorl. 8-63 
sum of squares about mealJ I &-6~ 

Stepsize regulation, 2-8, 5-5, 5-10, 6-1, 6-2, 6-21, 6-22 
stOrmer-Cowell integration formulas, 5-8, 5-9, 6-1, 6-6 
System capabilities, (see G'fDS system capabilities) 

Thrust effects, (4.8) 4-66 through 4-72, 2-18 
acceleration model, (4.8. 1) 4-67 through 4-69 
partial derivatives, (4,8.2) 4-69 through 4-72 

Time, 
coordinate, C-6, C-8, (-9, C-10, C-1.2 
proper, C-6, C-7, C-10 

Time correlation coefficients, 8-38 
Time dependency ot solve-fol.' and consider variables, d-l~ 
Time difference coefficients, (Table 3-2) 3-74 
Time element, 5-10, 5-11 
Time regularization, (6.10) 6-22, 2-9, 2-18 
Time regularized Cowell method, (5.0$) 5-9, 2-9, 5·-3, 5-5, 6-1, 6-20 
Time syst~ms, (3.4) 3-66 

atomic time, A.1, (3.4.3) 3-67 
ephemeris time, ET, (3.4.1) 3-67 
station time, ST, (3.4.8) 3-71 
transformation between, (3.5) 3-71 
uncorrected un~ Iersal time, UTa, (3.4.4) 3-69 
universal time, U'f, (3.4.3) 3-67 
universal time, UTI, (3.4.5) 3-69 
universal time, UT2, (3.4.6) 3-70 
universal time coordinated, UTC, (3.4.7) 3-70 

Time tag, A-2, A-4, A-9, A-ll, A-171 A-20, A-?l, A-·30, A-3I, A-32 
Timewise propagation of estima~e, covaria:.1ce matrix, 8-17 
Tracker models, ground based, (7.2) 7-4 through 7-17 
Tracking modes, 7-19 

coherent mode, 7-19 
crystal mode, 7-19 
phase-locked mode, 7-19 

T racking process, (7. 2. 1) 7-4 
Tracking stations, 

ATSR, A-2 
C-Band, A-9 
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Tracking stations, (conl'd.)
; GRARR, A-2, A-8 J_

Minitrack,A-i4
, USB, A-10

?-:.ackingsystem datatypes,7-1, 7-2 !,, _:

_ 'frajectoD"sensor systems, (AppendixA) A-I i .:
'_ ATSR, A-I throughA-8 >

;_ C-Band radar,A-9, A-J0 4'
GRARR, A-I throughA-8 _,

" Minitrack,A-14 throughA-27
i radar sit,meter, A-29, A-30 7
._... satellite-to-satellite,A-30 throughA -33 _,

<, USB, A-10 through A-13 ,.
VLBI, A-27 through A-29

Transformations, ::
i_ from Brouwer mean elementstooscui_ItingKepler,an elements, (5.9 2)

ii 5-46, (5.10.2) 5-52 _
from C-Band, GRARR, and USB data vectors to local tangent coordinates, "

9-24 _'

_: from Cartesian position and velocity t:_ DS eleraents, (5.5.2) 5-20 i#_.
' from Cartesian position anJ velocity to KS elemp.nts, (5.4.2) 5-13 '-_

from DS elements to Co._'_ian posRion and velocity, (5.5.3) 5-25 _
from KS parametrtc variables to Carte3ian position and velocity, (5.4.3) _ :

". i
: 5-15

+,

from osculating orbital elements to averaged elements, (5.8.5) 5-40
from osc,:lating orbitvl elements to Brouwer mean elements, (5.9.1) 5-45,

(_. 10.1) 5-52
from topocentric glmbal angles to inertial coord[t]ates, (9.1.1) 9-2 _

Transformations betweer_ time systems, (3. _) 3-71, 3-72 _'

' by standard formulg, (3.5. i)3-71 _ ._
by time polyaomial_:_, (3.5.2) 3-72 _

"<\ Transponder delay correction, (7.7.3) 7-77 _:
"- Troposphere model (7 6.1) 7-43, 7-44 _"

t UnifiedS-Band (USB)£'_stem,A-10 throughA-13, C-10, C-ll _I
earlyorbitdata, 9-24

functionala¢scril)tion,A-10, A-11, A-lZ

preprocessing description, A-13 , .
Uniformization, 5-2, 5-3, 5-5, 5.0, 5-16 [_r

$

: Variance, D-1 ?
Variance estimatiow, 8-26 __

s Variance for each c,bservution, 8-5, 8-30 -'-

I-!6
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Tracking stations, (cont'd.) 
GRARR, A-2, A-8 
Minitrack, A-14 
USB, A-IO 

'} ':'acking system data types, 7-1, 7-2 
'frajectory sensor systems, (Appendix A) A-I 

ATSR, A-I through A-8 
C ·Band radar, A-9, A-10 
GRARR, A-I through A-a 
Minitrack, A-14 through A-27 
radar altimeter, A-29, A-30 
satellite-to-satellite, A-30 through A -33 
USB, A-10 through A-13 
VLBI, A-27 through A-29 

Transformations, 
from Brouwer mean elements to osculllting Keplerian elements, (5.9.2; 

5-46, (5.10.2) 5-52 
from C-Band, GRARR, lUld USB data vectors to local tarJgent coordinates, 

9-24 
from Cartesian position ane velocity L DS eler.'lents, (5.5.2) 5-20 
from Cartesian position anJ velocity to KS elemAnts, (5.4.2) 5-13 
from DS elements to ~art.::&ian position and velocity. (5.5.3) 5-25 
from KS parametrtc variables to Cartesian position and velocity, (5.4.3) 

5-15 
from osculating orbitaJ elements to averagEjd elements, (5.8.5) 5-40 
from oscillating orbital elements to Brouwer mean elementa, (5.9.1) 5-45, 

(E'.10.1) 5-52 
from topocentric gimbal angles to inertial coordinates, (9.1.1) 9-·2 

'f:r.ansformations between time systems, (3.~) 3-71, :1-72 
by standard formula, (3.5.1) 3-71 
by time polynomialE:" (a. 5. 2) 3-72 

Transponder delay correction, (7.7.3) 7-77 
Troposphere model, (7.6.1) 7-43, 7-44. 

Unified S-Band (USB) f3ystem, A-10 through A-13, C-10, c-u 
early orbit data, 9-24 
functional Qc:scription, A-10, A-1l, A-l~ 
preprocessing d<'scription, A-13 

Uniformization, 5-2,5-3,5-5, 5··n, 5·'6 

Variance, 0-1 
Variance estimatiolll, 8-26 
Variance for each CrbRerv~tion, 8-5, 8-30 
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t. w Variation of estimator with resFect to consider parameters, 8-25
Variation of parameters formulations, 2-8, 4-7, 5-2, 5-4, 5-11, 5-16, 5--17,

5-20. 5-31, 5-38, 5-58, 6-1, 6-9
i Variation of qtate with respect to consider dynamic parameters, 8-25

Variation of transformed state with respect to consider variables, 8-26
Variational equat_.ons, (Chapter 4)4-1, 4-3, 4-4, 6-2, 6-11, 6-12, 6-14, 6-20,

8-14, 8-24
regularized, 6-24

" Vehicle-fixed to body-censer'e2 true of date transformations, (3.. 3.12) 3-65
' " Vermd equinox, 3-3

Very Long Baseline Interferometer (VLBJ_ model, (7.5) 7-41, 7-42
Ve_, Long Baseline Interferometer (VLBI) System, A-27 through A-29
Vinti theory, (5.12) 5-59

: Von Zeipel method, 5-2, 5-42

.; _ Weighting factors, dynamic, D-l, D-2
/ _ Weigh','ng matrix, 8-2 8-4, 8-14, 8-63

Weighting, observation, D-1
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Variation of estimator with l'esrect to consider parameters J 8-25 
Variation of parameters forrr..ulations, 2-8, 4-7, 5-2, 5-4, 5-11, 5-16, 5--17, 

5-20. 5-31, 5-38, 5-58, 6-1, 6-9 
Variation of qtate '"vith respect to consider dym~mic parametel's, 8-25 
V L-riation of trans~Clrmed sLate with respect to consider variables, 8-26 
Variational equaHons, (Chapter 4) 4-1, 4-3, 4-4, 6-2, 6-11, 6-12, 6-14, 6-20, 

8-14, 8-24 
regularized. 6-24 

Vehicle-fixed to body-centeH;':! true of dat~ transformations, (3" 3.12) 3-65 
Vernal equinox, 3-3 
Very Long Baseline Interferometer (VLBli model) (7.5) 7-41,7-42 
Very Long Baseline Interferometer (VLBI) System, .1'.-27 through A-29 
Vinti theory, (5.12) 5-5:) 
Vorl Ze\pel method, 5-2, 5-42 

Wp.lghting factors, dynamic. D-1, D-2 
Weighf.:ng matrix, 8-2, 8-4, 8-14, 8-63 
Weighting, observation, D-1 
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