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GRAVITY EFFECTS ON FLAME SPREADING OVER SOLID SURFACES 

by Charles R. Andracchio and Thomas H. Cochran 

Lewis Research Center 

SUMMARY 

An experimental program was conducted to investigate the effects of gravity on 
flame propagation over a combustible solid. Flame spread rates were measured from 
cellulose acetate specimens that were 0.0025, 0.0051, and 0.0122 centimeter thick. 
The specimens were burned in various quiescent environments of pure oxygen, oxygen-
helium, oxygen-argon, and oxygen-nitrogen mixtures in both normal and reduced gravity. 
The mixture concentration ranged from pure oxygen to 40 percent by volume oxygen ­
60 percent by volume diluent at 3.45 newtons per square centimeter (5 psia). The pure 
oxygen tests were also run at 10.14 and 27.6 newtons per square centimeter (14.7and 
40 psia). All  tests were conducted in the Lewis Research Center's 5.0- and 2.25­
second drop tower facilities. 

The results indicate that argon and nitrogen were more effective in retarding the 
flame spread rate under all test conditions. Flame spread rate was found to depend on 
pressure in a minor way (=Po.') in both normal and reduced gravity. A reduced grav­
ity flame spread rate correlation was obtained using a prediction which neglected the 
effects of buoyancy (previously presented in the literature). By extending this model to 
include buoyancy effects, a normal gravity correlation was also determined. 

INTRODUCTION 

In an effort t o  reduce the fire hazard associated with oxygen-enriched atmospheres, 
several  investigators have taken the approach of studying the mechanism of flame 
spreading over a combustible solid. A better understanding of the parameters control­
ling the rate of flame propagation can lead to new developments in fire safety techniques 
(ref. 1). 

In some earlier work (refs. 2 and 3), the addition of a diluent gas to the oxygen r ich 
mixture was found to retard the flame spread rate. These studies also supplied infor­
mation needed to determine the effects of oxygen concentration and pressure on the 



burning process; thickness of material was also found to influence the burning rate. 
With this information, theoretical models were proposed in which the flame spread rate 
was dependent on gas phase properties as well as properties of the solid fuel. In 
DeRis's (ref. 4) model for thermally thin behaving materials (material is considered 
thermally thin when temperature gradients within are negligible), the flame spread rate 
was inversely proportional to the fuel bed thickness and independent of initial pressure. 
Lastrina's thermally thin model (ref. 5) also predicted the thickness effect but showed 
a slight pressure dependency on propagation rate. Other reported findings on flame 
spreading are given in references 6 to  13. 

From the standpoint of fires occurring in space, the effects of gravity become im­
portant considerations. At the Lewis Research Center several programs have been 
conducted to obtain burning characteristics of solid materials in a reduced gravity en­
vironment (refs. 14 to  16). In reference 17 a minor effect of pressure (of the order of 
Po. ') on flame spread rate over a thin material was found to exist in reduced gravity 
as well as in normal gravity. Furthermore, the ratio of normal to  reduced gravity 
spread rates plotted against thickness indicated a definite pattern or correlation exist­
ing between these variables. Other work on gravity effects on fires is presented in 
references 18 to 23. 

This report presents additional data on the burning characteristics of a solid in 
reduced gravity. Gas phase parameters (oxygen concentration, thermal conductivity, 
specific heat, and total pressure) were varied, and specimens of cellulose acetate were 
burned in normal and reduced gravity environments. Comparisons were made with the 
reduced gravity data and the thermally thin model presented by Lastrina (ref. 5). A 
relation for normal gravity was then obtained from an extension of Lastrina's analysis 
to include free convection. 

SYMBOLS 

A arrhenius pre-exponential factor 

B empirical constants in correlating equations 

C molar concentration 


C dimensionless molar concentration 


CP specific heat 

E activation energy 

F functional dependence 

G Brokaw factor (ref. 26) 
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acceleration of gravity 


thermal conductivity 


mean molecular weight, g/mole 


pressure 


heat released per unit of fuel burned 


gas constant 


temperature 


characteristic temperature in gas phase, (TAF + To)/2 


T~~ - To 

dimensionless gas phase temperature 


gas phase velocity 

characteristic gas phase velocity 

dimensionless gas phase velocity 

flame spread rate 

mole fraction 

distance perpendicular to solid surface 

dimensionless distance perpendicular to solid surface 

density 

material thickness 

Subscripts: 


AF adiabatic flame 


B solid surface 


f fuel 


g gas 

0 ambient conditions away from flame zone 


ox oxidant 

R reciprocal mole-fraction average for mixture (ref. 26) 

S solid 
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APPARATUS AND PROCEDURE 

Test Facility 

Most of the experimental data presented in this report  were obtained in the Lewis 
Research Center's Zero Gravity Facility. Five seconds of reduced gravity is obtained 
by allowing the experiment to free fall in a vacuum through a distance of 122.5 meters. 
There are no external guide wires or electrical cables used, and the effective maximum 
gravitational acceleration acting on the experiment is estimated to be of the order of 

g's. A complete description of the facility is given in reference 15. 

Experimental Apparatus 

The standard module used in the zero gravity facility in which the experiment and 
supporting equipment are attached is shown in figure l(a). 

The spherical tanks at the top section are part of a C02 fire extinguishment system 
which was used as a safety precaution at the completion of each test. The bulk of the 
experiment is in the central part of the module and consists of a combustion chamber, 
two high speed cameras, a specimen holder and ignitor, an  electrical control box, and 
the plumbing system used to f i l l  and evacuate the chamber. Chamber pressure and tem­
perature were measured and recorded using a telemetry system located in the upper 
cone of the module. 

The combustion chamber was made of stainless steel and had an  internal volume 
of approximately 1x105 cubic centimeters. Two motion picture cameras operating at a 
nominal speed of 400 frames per second were used to  photograph the burning sample, 
one from a vertical view and another from a side view. A timing light generator pro­
vided calibrated traces on the edge of the film in 0.01-second increments. The speci­
men holder shown in figure l(b) was simply four threaded rods mounted to a stainless 
steel base plate. A 5.5 centimeter square specimen was then fastened to the rods at 
each corner as shown in the figure. The nichrome wire ignitor was positioned below the 
specimen making contact near the specimen's geometric center. The base plate located 
in the lower section of the combustion chamber is shown in figure l(c). 

Test Materials 

The fuel specimens used were cellulose acetate samples that were 0.0025, 0.0051, 
and 0.0122 centimeter thick. These materials were clear transparent sheets with a 
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high gloss finish (further identified by MIL SPEC LP-504). 
The gas mixtures were obtained commercially premixed with each component cer­

tified by the manufacturer to  be correct t o  within 0 .5  percent of their nominal values. 
This was verified experimentally with an  analytical mass spectrometer. The water 
vapor in each mixture was also less than 5 ppm. 

Test Procedure 

Prior to each run, the combustion chamber was wiped clean of any residue left from 
the previous run. The material was mounted in the holder and installed in the chamber. 
The chamber was then sealed, evacuated, filled with helium to atmospheric pressure, 
and purged for a short time. Following this, the chamber was reevacuated and filled 
with the desired gas mixture. Gas samples were taken from the chamber to  verify that 
the mixture w a s  within io.5 percent of the required values. 

Data Reduction 

The burning samples were photographed on high speed film which was then examined 
on a motion picture analyzer. Flame spread rates were obtained by measuring the dis­
placement of the flame front from the center, or ignition point of the material, as a 
function of time. Displacement against time curves were drawn, and their slopes were 
calculated to obtain the average flame spread rates. The estimated e r r o r  involved in 
measuring the displacements was *O. 05 centimeter, which resulted in a maximum e r r o r  
in burning rates of 3 percent. The flame spread rates in each direction of travel were 
essentially the same for a specified material and gravity level. 

RESULTS AND DISCUSSION 

Flame Spread Rate Data 

A summary of the data obtained is presented in table I. The initials NT indicate 
the conditions for which no test was conducted, while NL indicates transient flame 
spreading results. In the latter, measurements of flame displacement as a function of 
time indicated a nonlinear behavior over the duration of the tests. There also were 
several  tests where a stable flame could not be established. Rather, after ignition and 
an  initial flash the fire was extinguished. These cases are designated on the table by 
NB. 
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In general, the data indicate that the flame spread rate decreases as gravity is de­
creased, fuel thickness is increased, pressure is decreased, and oxygen mole fraction 
is decreased. A closer examination of the effect of the particular dilutent gas on the 
flame spread rate is shown in figure 2 for the 0.0051-centimeter-thick material in both 
normal and zero gravities. It can be seen that all the diluents contributed to  retarding 
the flame spread rate. Nitrogen was the most effective retardant, helium the least 
effective, and argon was intermediate between the two. Similar normal gravity results 
reported in the literature attribute the retarding effect to  the properties of the diluent 
gas. Of primary interest here, however, is that the change in the spreading behavior 
with diluent in zero gravity is the same as in normal gravity. 

Data Correlation 

Flame spread theories. - There are presently two major predictions for the rate at_ _ _ _  

which a flame spreads on a solid surface. Magee and his coworkers (ref. 24) have 
derived expressions for both thin (V = F ( T ) )  and thick (V f F ( T ) )  materials considering 
both solid and gas phase processes. A transient conduction problem is treated in the 
solid, while in the gas attention is focused on an "ignition region" which is dominated 
by diffusion and chemical reaction. A rigorous solution of the governing coupled differ­
ential equations was not attempted. Rather, a local heat balance approach was adopted 
which resulted in a solution which predicts the general functional dependence of flame 
spread rate on solid and gas phase parameters. DeRis (ref. 4) has also considered this 
problem but from a slightly different point of view. The process he has modeled is a 
diffusion flame propagating over a solid against an  air stream. Assuming the flame is 
diffusion controlled isolates the combustion processes to a sheet and permits an exact 
solution of the governing equations. Although there are considerable conceptual differ­
ences in the gas phase between the models proposed by Magee and DeRis, Magee 
(ref. 24), with a few assumptions, has shown the derived expressions for thin and thick 
materials, respectively, to be equivalent. Magee's prediction for a thermally thin 
material, which is applicable to  this work, is 

A s  is obvious from equation (1)by the absence of a gravity term, the affects of buoyancy 
driven convection on flame spread rate were not considered in the model. 

Effects of pressure. - The authors in an earlier report  investigated the effects of_ _  

pressure on flame spread rate in normal and zero gravity in pure oxygen environments. 
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It was experimentally determined that the effect of pressure in zero gravity was the 
same as in  normal gravity. Using equation (1)as a basis for correlating the data, it 
was argued that V 9r F(P)/(TB - To) only. The rationale behind this was that the same 
material was burned in all the tests (Qc/pscp,s = constant), that all the tests were con­
ducted in 100 percent oxygen (Xox = l), and that the ratio k /c was approximatelyg p , g
the same, assuming it was evaluated at the same mean temperature between the flame 
temperature and the surroundings. A graph of V(TB - To) against pressure is shown 
in figure 3 for both normal and zero gravity. In addition to the data from reference 17, 
the tests conducted at 27.6 newtons per square centimeter (40psia) in the present work 
are also presented. 

Lastrina in reference 5 has indicated that for thermally thin cellulosic materials 
there is a slight (-P 0.1)effect of pressure on the flame spread rate. The results in 
figure 3 show this same general pressure dependence for the tests conducted at the 
lower pressures (<27.6N/cm 2). Lastrina also determined (in ref. 5) that for a given 
specimen in a specific environment an increase in pressure results in a change in the 
flame spreading behavior from a thermally thin to a thermally thick material. This is 
reflected, according to  the models, in a change in the pressure dependence of the flame 
spread rate. For cellulosic materials, Lastrina found the change to be from V - Po* 
to v - Po.63. Similarly, Magee (ref. 24) experimentally determined that the flame 
spread rate on thick cellulose acetate specimens depended on pressure to the 0.72 power 
(V - The dotted curves in figure 3, which have been faired between the low 
pressure and supercritical data, also indicate this general behavior. That is, the ex­
ponent of the pressure term P increases from 0.1 to some larger value as evidenced 
by the increasing scope of the faired lines as pressure increases. 

In summary, the low pressure data indicate that the flame spread rate is varying 
with pressure in both normal and zero gravity only slightly (V - Po' ') as would be ex­
pected for a thermally thin material. The results for the supercritical environment 
show a greater dependence on pressure, suggesting the transition to a thermally thick 
behavior. 

Reduced gravity correlation. - The equations for  flame spread rate which have been 
developed to date are actually zero gravity predictions because buoyancy has been ig­
nored in these models. The data herein, therefore, provide the first test of the ade­
quacy of these equations. Since the same material was burned in all the tests, and con­
sidering only the low pressure data, the terms &,, ps, cp, s, and TB - To remain 
essentially constant in equation (1). The term F(P,Xox) can also be further simplified 
to Po' 'F(XOx) based on the previous discussions on the effects of pressure. Equa­
tion (1) becomes 
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In evaluating the terms in this equation, the fluid properties were assumed to be those 
of the surrounding environment and were evaluated at ambient temperature. Details on 
the fluid properties calculations are presented in the appendix. 

A least squares analysis of all the data was carried out using equation (2) t o  deter­
mine the power dependence of the oxygen mole fraction Xox, o; it was found to be X,, 1.3o. 
A cross plot of the reduced-gravity flame spread rate against the correlating param­
eters in equation (2) is presented in figure 4. The solid line is the least squares curve 
through the data. 

The correlation is generally adequate. Examination of figure 4 reveals, however, 
a small  effect of thickness that has not been completely accounted for in the correlation. 
The data points for the 0.0025-centimeter-thick specimens are consistently above the 
correlating line. A further check on this behavior was made by plotting the flame 
spread rate against the thickness for the 3.45 newtons per square centimeter (5 psia) 
data. Results for the pure oxygen and oxygen-nitrogen data are presented in figure 5. 
The dashed line represents a 7-l relation that has been faired through the pure oxygen 
data while the solid lines indicate an approximate T- 3/2 dependence. The graph indi­
cates that a 7-l relation adequately describes the behavior of the two thickest materials. 
However, the regularity with which the thinnest specimen shows a greater dependence 
cannot be ignored. Certainly, more zero gravity data with very thin specimens are 
required to investigate this deviation from the predicted thermally thin behavior. How­
ever, since the primary objective of this study is a better understanding of gravity ef­
fects, the acceptability of equation (8) in generally representing the zero gravity be­
havior will be assumed. 

Gravity effects. - An assessment of the gravitational effects can be made by com­
paring the reduced and normal gravity flame spread rates. The term indicative of these 
effects is the fractional change in flame spread rate between reduced and normal grav­
ity: 

Vlg - vog (3) 

A correlation of this term is sought as a function of a parameter characteristic of the 
buoyancy effects. This parameter can be obtained from the governing equations for the 
gas phase. If the equations from reference 5 are used with added convection terms, the 
energy equation is 
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The variables can be nondimensionalized in te rms  of characteristic quantities such that 

- Tu =--U , t --;- y = - ,Y. Cf =- cf 
9 
. 

cox --- cox 

'a T 7 cxox cxox 

Inserting equations (5) into equation (4) yields 

Assuming that conduction and convection effects are of equal order of magnitude, 

Equation (6) simplifies to 

One would expect the conduction effects to  be important in this process (see ref. 5). 
The fact that the buoyancy processes are equally as important, at least for the present 
tests,  is borne out by investigating the numerical value of equation (3) (i.e., it ranges 
between 0.20 and 1.65). A value for the characteristic velocity Ua can be obtained by 
considering the momentum equation in Boussinesq form in which inertia and gravita­
tional terms are assumed to be of equal order of magnitude or  

ua2 
= 

r g A T ~ ~-
T 

Inserting this into equation (7) together with C = p /M and rearranging terms such that 
g

the source terms are of unit order of magnitude result  in 
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For the tests conducted, g, Qc, and A remained fixed. Temperature measurements 
in the flame were not made so  an  accurate calculation for TAF is difficult. Therefore, 
ATAF is assumed to be approximately the same for  all tests With these simplifi­
cations, the correlating parameter becomes 

The results of the correlation are presented in figure 6. It is apparent from this figure 
that there is a definite trend in the data with the correlating parameter. Considering 
that the term ATAF was assumed constant and that the fluid properties were evaluated 
at ambient conditions rather than at some mean temperature, the results are very 
promising. In order to determine the power dependence of the correlating parameter, a 
least squares analysis was conducted and found to  be approximately 2/3. The least 
squares line representing this dependence is shown in figure 6. Therefore, the general 
form of the correlating equation is 

Normal gravity -correlation. - In seeking a correlation of the normal gravity data,-._ 

an equation of the form 

is used. This type of equation has been used to  correlate results for other burning 
processes such as droplets (ref. 25). The success of equation (10) in correlating the 
gravity effects also substantiates this approach since it can be transposed to the same 
form. Substituting equation (2) into equation (11)and assuming F(g) may be represented 
by equation (9) gives the result  
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The constants B1 and B2 were obtained from figures 4 and 6. Figure 7 shows the 
measured normal gravity flame spread rates plotted against equation (12). There is a 
small  size effect, as would be expected, since the reduced gravity correlation showed 
that tendency. However, the overall adequacy of the correlation is apparent. 

SUMMARY OF RESULTS 

Flame propagation test results were obtained by burning cellulose acetate speci­
mens (sheet thicknesses, 0.0025, 0.0051, and 0.0122 cm) in quiescent mixtures of gas­
eous oxygen, oxygen- helium, oxygen-argon, and oxygen-nitrogen over a pressure range 
of 3.45 to 634 newtons per square centimeter. The specimens were burned in both 
normal (1 g) and reduced (0 g) gravity environments. The results are as follows: 

1. In both normal and reduced gravity the effect of adding an inert gas to  a pure 
oxygen environment to minimize flame spread showed helium to be less effective than 
argon or  nitrogen; nitrogen appeared to be most effective in retarding the burning rate. 
The observed differences between the three inert gases was less than 1 order of magni­
tude. 

2. In both normal and reduced gravity the flame spread rate over a thin material 
varies with pressure of the order of Po’’. 

3. The reduced gravity data for flame spread rate was adequately correlated using 
Lastrina’s thermally thin model which neglected the effects of buoyancy. The resulting 
equation is 

PO.1 1 .3  
VOg % g j o  xox, 0 

Cp, g, oT 

4. A parameter indicative of the importance of gravity effects was obtained from 
the governing equations: 
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The fractional increase in flame spread rate between normal and gravity conditions was 
successfully correlated in terms of a form of this parameter or 

Vlg - VoP E /(“p,g,o”)” 7 T” 
voP xox, 0 kg, 0 

5. The normal gravity data were successfully correlated by an equation of the form 

where 

vog = Constant X 
C p, g, o7 

and 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 25, 1976, 
506-21. 
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APPENDIX - PROCEDURE FOR CALCULATING GAS MIXTURE PROPERTIES 

Table II presents the fluid properties used to  evaluate the correlating equations. 
These values were calculated for each property as follows. 

Thermal Conductivity 

The equation for the thermal conductivity of a gaseous mixture (from ref. 26) is 

k = G L  + (1 - G)kRg 

where 

and G is tabulated in reference 26. The values of kox and kdiluent are also ob­
tained from references 26 and 27. 

Specific Heat 

The equation for the specific heat of a gaseous mixture (from ref. 28) is 

The values of cp,ox and C~,di luent  are zero pressure values also obtained from 
reference 28. 

Molecular Weight 

The equation for the molecular weight of a gaseous mixture (from ref. 29) is 

M = XoxMox + (1 - Xox)Mdiluent 
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TABLE I. - SUMMARY O F  FLAME SPREAD RATE DATA 

Gaseous mixtures Flame spread rate, 

Constituents Specimen thickness, cm 
VOl  96 

0.0025 0.0051 

Normal leduced Vormal Reduced Vormal 
Travity Cravity yavi ty  gravity Lravity

-_ ~. - __ 
l0OO2

I 
6.70 
7 .0  
7.63 

10.2 

5.58 
5.5 
6.33 
9.7 

3.03 
3 .2  
4.02 
7 .8  

2.04 
2 .0  
2.40 
4.9 

1. 72 
1 . 9  
N T ~  
3.35 

8002-20He 6.47 4.73 2.79 1.92 1. 56 
8002-2OA 5.80 4.73 2.66 1.76 1.34 
8002- 20N2 5.82 4.32 2.63 1.62 1.37 
6002-40He 5.36 3.92 2.34 1.52 1.28 
6002-40A 4.72 3.28 2.20 1.27 .86 
6002-40N2 4. 89 3.17 2.00 1. 17 NL 
5002-50N2 NT NT 1.98 .79 N B ~  
4002-60He 4.44 NB 2.24 NT NB 
4002-60A 3.33 1.69 1.5 NL NB 
4002-60N2 3.11 1.43 1.43 .54  NT 

.­

aData from ref. 17. 
bNot tested, NT. 
'Nonlinear, NL. 
dNo burn, NB. 

Reduced 
gravity 

0.90 
1 .2  
NT 
1. 76 
.90  
. 7 8  
.79 
.55 

NL' 
.45 

NT

I 




l1l1l11lllII I I1 I I I I1 

Environmental 
constituents, 

vol % 

l0OO2 
1om2 
l0OO2 

80O2-20He 
6002-40He 
4002-60He 
8002-2 OAr 
6002-40Ar 
4002-60Ar 
8002-2 ON2 
6002-40N2 
5002- SON2 
4W2-60N2 

TABLE 11. - FLUID PROPERTIES 

[All properties evaluated at 20’ C.] 
~~ -

Moleculai Specific heat : 

-~ 
1Thermal conduc 

weight, 

g/mole 
MO cal/g-K

P,g, 0’ 
C tivity, 

cal/cm -sec-K
kg, 0’ 

.. 

32.00 0.219 6 . 2 7 ~ 1 0 - ~  
32.00 .219 6.28 
32.00 .219 6.32 
26.40 .250 9.21 
20.80 .299 12.95 
15.20 .380 18.10 
33.58 .196 5.78 
35.16 .176 5.31 
36.74 .157 4. 88 
31.20 .225 6.24 
30.40 .230 6.22 
30.00 .233 6.20 
29.60 .236 6. 19 

~ . .  
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(a) re$ rig. (bJ Specimen holder. 

(c)Holder positioned in combustion chamber. 
Figure 1. - Experimental apparatus. 
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Figure 2. - Flame spread rate as funct ion of oxygen concentra­
t ion for  0.0051-centimeter-thick specimen. 
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(b) Zero gravity. 

Figure 3. - Effect of total pressure on flame spread rate in normal and zero gravity. 
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Figure 4. - Zero gravity correlation of flame spread rate 

for thermally thin materials. 
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Figure 5. -Effect of thickness on flame spread rate in  zero 
gravity for  oxygen and nitrogen-oxygen environments. 
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Figure 6. - Effect of gravity on flame spread rate 
for thermally thin materials. 
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Figure 7. - Normal gravity correlation of flame spread 
rate for thermally thin material. 
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