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Abstract

This study was undertaken with the intent of elucidating
the forest mapping capabilities of ERTS-1 MSS data when ana-
lyzed with the aid of LARS' automatic data processing tech-
niques.	 The site for this investigation was the Great Dismal
Swamp, a 210,000 acre wilderness area located on the diddle

' Atlantic coastal plain.	 Due to inadequate ground truth in-
formation on the distribution of vegetation within the swamp,
An unsupervised classification scheme was utilized. 	 Initially
pictureprints, resembling low resolution photographs, were
generated in each of the tour ERTS-1 channels. 	 Data f.,unn

}	 within rectangular training fields was then clustered into 13
spectral groups and defined statistically. 	 Using a maximum	

f

likelihood ,classification scheme, the unknown data points were
subsequently_ classified into one of the designated training 	 1,
classes.	 Training field data was classified with a high de-
gree of accuracy (greater than 95%), and progress is being
made towards identifying themapped spectral classes.
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Introduction

A great impetus to the field of remote sensing was rea-
lized in July of 1972 with the launch of the Earth Resources
Technology Satellite (ERTS-1; now designated LANDSAT-1).
Since that date, large quantities of digital imagery have
been generated, though the applicability of this satellite
data to specific problems remains to be fully investigated.

i

	

	 Computer-aided analysis of ERTS-1 data, as applied to
forest mapping, has not been extensively investigated and com-
paratively little has been published on this phase of satel-
lite data application.- However, Erb (1973) utilized ERTS-1
data to detect, identify, and measure forest and agricultural
features of interest. In addition, Heath and Parker (1973)
used automatic computer processing techniques ,to map timber
stands and range plants in the Houston, Texas area.

2

This study examines the feasibility of Qpplying ERTS-1
-^

	

	 MSS data and automatic data processing techniques as a means
of mapping forest vegetation. The site for this investiga-
tion is the Great Dismal Swamp, a 210,000 acre forested area
which transects the Virginia-North Carolina border. This re-
gion is of special interest, as it is one of the last large
wilderness areas remaining along the Middle Atlantic coastal
plain (Fig. 1). Due to its unique geographic location, both
northern and southern flora can be found growing there.
Meanly (1973) characterized the Great Dismal Swamp's vege-
tation as having five major plant communities: 1) Hydric or
deep water swamp, 2) Semihydric or nixed swamp forest, 3) Mes
is forest, 4) Atlantic white cedar forest, S) Evergreen shrub
bog or pocosin. To date, application of ERTS-1 data to speci-
fic studies within the swamp is limited to the hydrologic and
vegetational investigations of Carter in 1974.

Being-the-wilderness it is, the Great Dismal Swamp lends
itself well to remote sensing studies. Many interior regions'
are largely inaccessible to ground survey and,_ consequently,
little is known about these areas. Through the use of remote-
ly sensed data, such as ERTS-1, the need for large amounts of
expensive and time consuming ground-obtained data can be mini-
mized.
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Fig. 1 A portion of ERTS image No. 1205-15150 (MSS 5)
acquired on Feb. 13, 1973. (In the current study, August
data was utilized.)
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Materials and Methods

On August 30, 1973, ERTS-1 remotely acquired data of an
area 100 x 100 nautical z.iles on the eastern coast of the
United States.	 Contained within this MSS data was the study
site of this investigation, the Great Dismal Swamp (See Figure r

1).	 Analysis of the spectral data obtained over the swamp was
accomplished through the use of automatic data processing
techniques developed by the Laboratory for Applications of
Remote Sensing at Purdue University. 	 Access to these ADP
techniques was provided by a remote computer terminal located
at the NASA Langley Research Center, Hampton, Virginia.

Generally, an unsupervised classification scheme, such as
applied in this research, begins by defining as training
fields those areas within the study site that contain repre-
sentative vegetative cover.	 This information is then divided N

into "X" number of clusters based on the distribution of spec-
tral information within the training field data. 	 The reflec-
tivity of each cluster or spectral class is then defined in
terms of its mean vector and covariance matrix. 	 The data
points representing unknown ground features within the area to
be mapped are subsequently classified into one of the user-

defined spectral clas5as by a pattern recognition algorithm.
Final 'analysis centers upon determination of the relationship
between the mapped spectral classes and known surface data,
i.e., ground truth comparison.

Pictureprint.	 The first computer program to be run in
this study was the picture-print function.	 This program pro-
:duces a gray scale printout of the digital data from one

channel of, the ERTS multispectral scanner. 	 Various shades of
gray are represented by specific alphanumeric symbols. ;These'
are assigned so that highly reflective areas are represented
by a symbol which covers a low percentage of the printout,
such as ,.	 ; absorbent terrain is differentiated from"other
areas by assigning a dense appearing symbol, e.g., BBBB. 	 Be-
cause spectral information representing ground terrain will
not be evenly • 'distributed between the highest and lowest re-

flectance values, the data is histogrammed.	 Symbols are then
'	 assigned to radiance values such that each has approximately

the same, probability of being printed.	 As an interpretive
•.	 tool, the pictureprint can be very useful in developing a

grasp of the data's spatial orientation and in locating areas
of known composition.

-Cluster.	 After designating training areas to the

"RETRODIJC, s
i
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computer, the cluster function is run. This program is nec-
essary because the pattern recognition algorithm assumes that
each spectral class can be characterized by a multidimension-
al Gaussian density function.	 The dimensionality of this

' space is the number of distinct spectral bands present in_the
Imagery (ERTS-1 has 4 bands).	 Clustering the training data
gives an indication of whether or not the data tends to be
Gaussian and provides a neaps for dividing it into app oxir"atce
Gaussian sub-classes if the original data is non-Gaussian 3
(Lindenlaub, 1973).	 Options available within the cluster
function allow the researcher to choose any combination of
available spectral bands, as well as the number of cluster
groups to be separated within the data. 	 The cluster function
output, in addition to providing maps of the clustered data,
also provides a listing of the pairwise separability values.
This information is useful in determining the uniqueness of
spectral clusters within the training field data.

C 1	 j

Statistics.	 This . processing function provides an esti-
mate of each training classes' mean vector and covariance ,na-
trix.	 These statistics are usually supplied in the form of

(. punched output cards which are used in later analysis steps.
"`•' Additionally, the statistics function will produce training

class histograms in user-designated channels.	 These histo-
grams serve as a partial check as to whether each training
-classes' data is Gaussian (unimodal) in nature. 	 Serious de-?
parture from a Gaussian distribution may necessitate refine-
ment of the training class data.

Feature selection. 	 The feature selection program assists -'
the analyst in finding the middle ground between greater
classification accuracy and increased computer time. 	 The
program calculates the statistical distance in N-dimensional
space (N=# of_channels) between the training classes provided.:
The requested channel combinations are then ranked in terms
of the average or the minimum pairwise distance between all

'	 a `pairs of classes.	 If the statistical , distance between signi-
ficant spectral class pairs is low, it may be necessary to
repeat some of the previous analysis steps.-'

is L.
Classification.	 Classification of the unknown data is

the last step in the analysis sequence and represents the
culmination of all previous analyses.	 Program inputs include
the statistics deck, the selected combination of channels,
and coordinates of the area to be classified. 	 The pattern
recognition algorithm, as applied in this study, individually
classifies each pixel into one of the statistically defined

.^ training classes on a maximum likelihood basis.	 The output of
r .

t
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the classification function, combined with a printresults
program, results in a classification map with alphanumeric
symbols representing the designated spectral classes.

An option that must be considered prior to actual genera-
tion of classification maps is thresholding. If this option
is not applied, the classification algorithm will classify
every data point into the class it most nearly resembles, even
though the resemblance may be quite remote. Thresholding
allows the researcher to arbitrarily screen out those picture
elements not demonstrating a high degree of correlation with
user-designated spectr•- classes. Thresholded points then
appear as blank spaces on the final classification map.

Results and Discussion

,August 30, 1973

The initial analysis step obtained gray scale printouts
of the study area in all four ERTS-1 channels. These print-
outs were then compared with black and white, color and color
IR aerial imagery of the swamp. Pictureprints of the data in
channels 1 and 2, 0.5	 0.6 pm and 0.6 - 0.7 um respectively, 	 j
produced the best delineation of swamp boundaries with the
Suffolk scarp on the swamp's western edge being clearly de-
fined. In addition, U.S. route 460 and the Norfolk and Wes-
tern railway were discernable cutting east to west across the
northern region of the swamp. Pictureprints produced of {
channels 3 and 4, 0-7 - 0.8 pm and 0.8 - 1.1 pm respectively,
were especially useful in the delineation of water, due to its
high absorbancy in these wavelengths.. Lake Drurmond, located
in the swamp's center was clearly differentiated from the
surrounding forest, however, none of the numerous drainage
ditches located in the swamp could be identified. This is
believed to be due to tree overhang and the characteristic low
water levels of the swamp in August.

In order to determine the distribution of spectral in-
formation taken over the swamp, the clustering algorithm was
run-on eleven training fields (15,894 data points). Cluster
results maps were then; printed which contained alphanumeric
symbols indicating the geographic location of spectrally sim-
ilar materials. Clustering performed with all four wavelength
channels was not found to be optimal for obtaining spectral
separability within the forested training area. Comparison
of the clustermeans and standard deviation values in all four
channels revealed the reason for this less than optimal



MAPPING FOREST VEGETATION WITH ERTS-1 MSS DATA

^j

cluster separability. 	 Within channels 1 and 2 the cluster
radiance means were nearly idenrical, thereby causing a
large amount of data overlap in two of the four clustering
space dimensions.

Through elimination of channels 1 and 2 in the cluster- 	 j

ing process, the number of separable cluster was increased.
This is illustrated by comparing the separability quotient
values for a four channel cluster run versus a two IR channel
cluster run.	 A value of 0.75 is often used as the break-

' through point for cluster separability. 	 upon examination
i of _a "maxclas (12)" cluster run, it was determined that

fifteen of the separability quotient values were less than
0.75.	 However, one value of less than 0.75 resulted from
two IR channel clustering.

Further analysis of the two IR channel clustering
suggested the presence of approximately thirteen spectral
groups which were provided to the statistics processor.
In addition to calculating the mean vector and covariance
matrix for each of the thirteen forest classes, the statistics 	

p

processor was requested to graph histograms of each training
;- class in all four channels. 	 These histograms were printed

so that the distribution of spectral data within Each class

1 could be examined.	 it was found that each class was distri-
buted in an approximate Gaussian manner in all four channels.

i The statistics processor also produced a co:Lncident spectral
1 plot, which illustrated the relative amplitude of each
s classes' spectral response in each of the four ERTS-1

channels.	 Generally, channels 1 and 2 were incapable of1
 differentiating one forest class from another. 	 This was be-

cause the class radiance value distributions overlapped one
another in these two channels.	 Channels 3 and 4, on the(
other hand, contained a wider range of mean spectral values
and, therefore, demonstrated the ability to distinguish
between the thirteen forest spectral classes.

f

The next step of the analysis, feature selection, was	 {

used to determine the combination of available channels that
would, yield the most accurate classification results with a
minimum amount of computer time. The statistical figure of
merit calculated by this function is transformed divergence
(Swain 1973). It is a "measure of the dissimilarity of two
distributions" zad "provides an indirect measure of the
ability of the classifier to discriminate successfully between
them". The strategy utilized was to weight all classes
equally and maximize the pai-rise transformed divergences.



J. Messmore, G. E. Copeland and G. F. Levy

1

Table I gives a summary of three computer experiments.

TABLE I
ERTS CHANNELS USED	 TRANSFOR,lILED DIVERGEr'CE	 MINIMUM

AVERAGE

1, 2, 3, 4	 1960	 1204

	

3, 4	 •1954	 1169

	

1, 2	 432	 18

Even though the final classification used all four ERTS
bands, clearly the IR bands alone would produce essentially

(	 the same classification. Once again, the redundant informa-
tion content of channels 1 and 2 clearly indicate failure for
spectral classification schemes based wholly on these bands
for this application.'

In the last step of the analysis sequence, the classi-
fication algorithm, in conjunction with the printre.sults^
function, generated a map-like display. Each spectral class 	 x
was depicted by a user-defined alphanumeric symbol. These
symbwls were changed_ throughout the study in an attempt to
bring about easier visual pattern detection. Overall train-	 ,

ing field classification performance was 96.0%; a figure that
indicates the pattern recognition algorithm encountered very
little confusion in the mapping of training field data.
Application of an arbitrary threshold value (2.0) easily
differentiated materials dissimilar to the mapped forest
classes. Lake Drummond, located in the swamp's interior,
was correctly thresholded, as well as US route 460 and
agricultural fields which delimit the swamp on the east, west
and south.

Subsequent analysis of the classification map neces-
sarily centered upon determination of the correspondence
between spectrally similar ground cover (the map symbols) and
categories of informational value, e.g., deciduous or coni-
ferous forest, stand density, etc. Spectral class thirteen,
exhibiting the most absorbent qualities of the napped
spectral classes, corresponded closely with dense, mono-
specific stands of Atlantic white cedar ( Ch.maecyaaris
thyoides). Misclassifications did occur, however, and these
were observed primarily in two different areas. Several
solitary incorrect mappings were noted around the shores of
Lake Drummond, a phenomena which can be attributed to pixel

r
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averaging the reflectance of water ;r-i forested terrain.
Hisclassifications also occurred within agricultural fields

'	 adjacent to the swamp. 	 These igcorrect mappings may be due
to the presence of standing water in the fields at the time
of satellite data acquisition.	 Spectral class twelve most
closely corresponded to forest stands dominated by Atlantic

r

white cedar, but interspersed with a mixture of hardwoods
(mostly Red maple, Acer rubrum, and Sw^ . c gum, Liquidambar
styraciflua).	 By mapping the combination of spectral classes
twelve and thirteen, a good representation of Atlantic white
cedar present in the swamp has been attained. 	 (See Figure

2)

Further research concerning correspondence between the
remaining eleven spectral classes and actual forest cover is
progressing, though some problems have been encountered.
Unlike the Atlantic white cedar stands which occur as mono-
specific communities, other plant communities within the.
swamp are characterized by the presence of several tree and/
or shrub species. 	 This leads to a situation of complexity
and natural randomness that makes classification into mean-
ingful categories difficult. 	 Problems have also been en-
countered in attempting to locate, with any degree of cer-
tainty, the position of specific forested areas in the ERTS
digital data.	 This is primarily due to: 	 (1) the northeast-
southwest skew contained in ERTS-1 MSS data; (2) a Tack of
large, identifiable land, features within the swamp (except
Lake Drummond); (3) rectangular computer output format.
These problems have been solved to a degree, in that loca-
tions`in the ground scene can now be generated by an affine
mapping transformation developed by Blais (1975).,

Another difficulty inherent in mapping diverse vegeta-
tion with low resolution scanner data includes pixel averag-
ing.	 Because tree and shrub species that comprise the swamp's
plant communities are much smaller than the 80 meter square
pixel size, and are unevenly distributed, spectral charac-
teristics recorded by the scanner will not always be an
accurate indicator of a specific species composition.	 Hypo-
thetically, at certain times of the year, a pixel containing
a mixture of 25% Loblolly pine ( Pinus taeda), and r'S% Red
maple may have average reflectance characteristics identical

}to a pixel avera ing the reflectances of '50% Yellow poplar
(Liriodendron tuliaifera), and 50% Sweet gum

.

.	 Of course,
temporal scanner data obtained during subsequent seasons of
the year may remove this spectral signature ambiguity.
Heller (1973), using photogrammetric techniques, reported

r	 r
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Fig. 2	 Classification nap of the Great Dismal Swamp (dark
regions indicate Atlantic white cedar, thresholed ?ixels
occur as blank areas). 	 Lake Drtmmtond is the central oval
feature.	 North is towards the top,
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., that forest discrimination with ERTS-1 data was poorest'
during the summer months (the season during which this
study's data was taken) and yielded the best results during
spring, fall, and winter).	 This lends support to the idea
that accurate classification of the swamp's vegetational.
communities will require analysis of data acquired during
two or more seasons of the year.

*Seasonal Analysis (Aug. 30, 1973 and Oct. 10, 1972)

Even though ERTS is in a sun-synchronous orbit, illu-
mination of the ground scene does change seasonally due to
motion of the sun on the ecliptic and variations in the sun-
earth distance.	 :loreover, the spectral reflectivities of
different ground features change with many variables, 	 .e.,,
temperature, moisture content, time in growing season,
meterological visibility, etc.. Additionally, since the

• solar elevation angle changes, the scattering angle changes.
All of these factors, contribute to changes in scene-to-

E	 ' scene radiance values of any one ground feature. t.

As a first attempt at modeling this complex phenomena,
it was deemed desirable to calculate the undepleted insola-
tion at image time.	 Using the method described by Smart
(1965) a computer program was written to provide the un-
depleted insolation (top of atmosphere) for any location j
on the earth as a function of time in a year at image time
for the ERTS passes. 	 Additionally, the total daily insola- x-<'vi
tion curve for each location is provided. 	 Figure three gives
these results for the Dis=mal Swamp at 1515 GMT as a function
of days past perihelian passage (Jan. 4, 1973). 	 The Aug. y
30, 1973 date is noted.

'
Since ERTS MSS sensors have sensibly square response

functions over they active spectral range, the signals ob-
tained b	 each .b and for 	 bite viewing scene is then justY	 g	 J

a

the integral of the solar black body over the response
function.	 Assuring a 5750:K solar black body, this integra-
tion of the Planck function leads to the values listed in
Table II for the energy flux in each sensor.

3
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Table II
Band Wavelength	 % of a 57500K	 Maximus i Radiance

Microns	 Bla;A Body	 MW/cm2-SR

.5 - .6	 12.9	 2.48
i .6 4	 .7	 11.4	 2.00

r .7 - .8	 9.5	 1.76
.8 - 1.1	 18.5	 4.60

'	 a
The field of view is constant for all sensors, and thus

the signal outputs for a viewing surface whose albedo is one
(total reflection) will fall into those ratios.

In an attempt to determine seasonal fluctuations of
LARS statistics, two ERTS images were examined (August 30,
1973 frame number 1403-15132 and October 10, 1972 frame
number 1079-1514).	 Identical trai;;,ing fields were used and
the radiance means and standard deviations were generated
for six forest spectral classes for those two dates.	 Table
III gives the means for each date, band, and class, as well
as the average over classes of the standard deviations for

F

each band. y
u Table III

Forest Spectral Class Statistics

Aug 20, 1973	 Oct 10, 1972
Band

Class	 1	 2	 3	 4	 1	 2	 3	 4

1	 26.61	 15.91	 43.43	 25.78	 19.83	 10.91	 35.04 22.48
2	 26.14	 15.44	 42.33	 24.09	 18.98	 10.98	 33.32 20.72
3	 26.06	 15.17	 41.06	 24.14	 19.69	 10.71	 31.54 21.37 }
4	 26.13	 15.61	 38.94	 22.50	 19.87	 11.06	 30.50 19.41
5	 26.46	 15.60	 40.18	 23.00	 19.42	 10.88	 28.88 18.26<
6	 26.47	 16.91	 37.62	 21.12	 19.'21	 10.82	 26.29 16.94

<Q>	 0.23	 0.61	 2.15	 1.58	 0.36	 0.12	 3.13	 2.06

Seasonal differencesare traceable to many variables. 1
' A major difference for sce-ies imaged on different dates is

` the solar illumination.	 The ra tio of the undepleted insola-
tion at image times for the two dates was determined to be
(i = ,August 30, 1973; j = October 10, 1972). •	 ;X:

•	 Ii _ 1.244	 (eq.'1)

This is also the ratio of the cosines of the solar elevation
angles at image tine.	 Calculation of percent differences of
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the forest class -leans at the two dates to the insolation
ratio, yields a first estimate of class changes between

.	 image time.	 Table IV lists this ratio

1.244)/1.244) X 100	 (eq.	 2)

'	 `or each class and band.	 If this percentage is positive, the
August 30 image is brighter than the insolation corrected
October 10 image.

Table IV
Per Gent Difference

Band
Class •	 1	 2	 3	 4

1	 +7.8	 +1.7.2	 -0.4	 -7.8
2	 10.7	 13.0	 +2.1	 -6.54
3	 6.4	 13.9	 4.6	 -9.2
4	 5.71	 13.4	 2.6	 -6.8
5	 9.5	 15.3	 11.8	 +1.3 ,.

'	 6	 10.7	 25.6	 15.0	 +0.65

In order to :r. g timate the magnitude of seasonal diff-
erences, a know,;_;^ of some environmental parameters is
required (sae 'Aae V) .	 :Meteorological data is from Norfolk
Regional Airport located about 25 km ATE of the training
fields,	 the optical depth,- T, is calculated from the work °.
of Potter and Shelton (1974) for the IcnoFm visibility. 	 The

' precipitable water layer is deduced from radiosonde
and the TSTSP (Total sun target satellite path water amount)
is determined in the method of Pitts, McAllum and Dillinger
(1974).

Table V

Environmental Parameters

n	 Oct. 10, 1972	 Aug. 30, 1973

Optical Depth (0.5 u )	 0.30	 .49
Dew Point (°C)	 5	 25

`	 Tempert._ure ( oC)	 13.9	 31.1
Absolute Humidity (9-11/m3 )	 6.6	 22.6
Visibility (kn)	 24.1	 1.6Fog
Percipitat a water layer (cm) 	 2_0	 5.8
Coefficient of Haze (cobs)	 0.6
Wind	 azimuth (0)	 10	 10

Speed (tints)	 15	 4
Solar Elevation	 400	 520
TSTSP (cm)	 5.11	 13.2
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Effects of Haze^

Potter and Shelton have done a study on the effects of
atmospheric haze and varying sun angles on the LARS classi-
fica4ion accuracy for corn and so ,moans. 	 Since both
Raleigh and ?fie scattering are inversely proportional to the
fourth power of wavelengths, it is to be expected that for

i fixed solar angles, the scattering activity of atmospheric
s haze will increase the radiance of ERTS scenes most in MSS

band 4 and least in MSS 7.	 Examination of their results
for optical depth with neteoro?,ogical visibility, yields a
value of T = 0.3 for October 10, 1972. 	 Calculation of T
for August 30, 1973 from visibility is not useful, since a
fog bank was adjacent to the airport.

'otter and Shelton give tabular results for the varia-
tion of class means u, with optical c?^:-)th, ,, for corn and
soybeans for each ERTS band.	 Fitting their results 'ill a
least squares linear regression yields

• 1

U (corn) = 17.86 T+22.18
_

x

(soybeans) = 17.35 T+23.30 	 (Eq. 3)

over the range T = 0 to 0.4.- If we assume that the average
of the slopes (17.51) is appro priate for our forest classes,
and using T = 0.3 for the October 10 optical csepth, then the
haze free values of the October 10 class means is given by
(MSS 4)

p
3
	(haze free) = uj - 5.25 (eq.	 4')

Correzting for insolztion differences, we deduce the August
optical depth (MSS 4) Lo be

Ti = u; - 1.244 u3	 (haze free;-	 (Eq. 5)
17.51

This assumes that the reflectance is constant in time for a
given spectral class. 	 Calculations for each class, however,
yield,almost identical values of Ti (0.49 •= 0.03). 	 Using
an empirical relationship between coefficient of haze a

(oohs), mass loading, and visibility, indicates T for this
date as 0.5.	 Similar results are possible for other ERTS
bands but the effect is progressively smaller with increas-
ing band number.	 `^	 a

p€
f
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Examination of Table IV (MSS 4) for all six forest
classes,, thus indicates the increased radiance can nearly
all be accounted for by an increased optical depth, i.e.,

' aerosol loading.	 This is quite realistic since:	 the air is
of maritime origin; the relative humidity is high (77%); air
temperature is 88oF; and contrast in the MSS 4 imagery is
reduced over October imagery.	 )

r
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Effects of Water Vapar
7 ,

Pitts, 'McAllum and Dillinger (1974) have discussed
the effects of atmospheric water vapor on the classifica-
tion accuracy of LABS o:hen used on ERTS data.	 A major
problem exists with XSS 7 (.8 to 1.1 microns), where water
absorption bands occur. 	 Th ey calculated the atmospheric
transmission function, including 2070 compressed water vapor

t

lines, in a ten layer transmission model normalized to the
response function of 'MSS 7.	 Using their results of average

jtransmission versus total atmospheric water content perci-
pitable (vertical loading), it is possible to "correct" for
water vapor absorption.

j
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Radiosonde data from Wallops Island, Va.; Cape
Hatteras, N.C.; and Washington, D.C. were used to calculate
thepercipitable water load for August 30, 1973. 	 This
yielded 5.8 cm in vertical and a transmission of 78%. 	 Since
the 'solar flux traveled a slant path (incoming) as w7ll
as a vertical path (outgoing) , the total transmission for
thin: date was 64%.	 No radiosonde soundings were available
for October 10, 1972, but a realistic estimate for that date
yields a total transmission of 75%.

If one multiplies the insolation ratio by the ratio
of total transmission coefficients for those dates, then
this may be used to normalize the ratios of mean radiances
of training fields for those image dates. 	 For example:

Ui	 (.64)(1.244)
_ -	 (eq. 6)

uj	 .75•

Calculations of percent difference for the quantities,
yields the data shown in Table VI for water and sun angle
corrected radiance ratios of 6 forest spectral classes. !	 ,
Positive values indicate increased reflectance.

Table VI

Water - Sun Angle Corrected Radiance Ratios
r

Forest spectral Class	 1	 2	 3	 4	 5	 6	 i

Percent Differences	 +8.2	 +9.7 +6.6 +9.3 18.9 +17.6

Note that all forest classes are brighter in August.
Classes 5 and 6 show the largest increase (about 19%) since
these areas were logged between image dates.

COtiCLUSION

Application of the Lt_RS system in an unsupervised
forest classification procedure using cRTS data has indicated
that-this procedure can successfully identify some plant
communities in the Great Dismal Swamp.	 Forest spectral
class means in ;ASS bands 4 and '5 are of little use in classi-
fication of the ground cover since those means are not

- sufficiently dissimilar.	 Classification depends almost en-
tirely on analysis of NSS 6, 7.	 Seasonal changes in forest
spectral statistics may be deduced from the effects of

-i
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varying sun angle, aerosol loading, and water vapor absorp-
tion, if sufficient environmental parameters are available.
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