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ABSTRACT

Under a previous contract with the NASA Langley Research Center
(NASA Contract NASl-12668), Raytheon greatly extended en existing computer
program called CARE (Computer Aided Reliability Evaluation), thereby enabling
it to calculate fhe reliability of any dual-mode, sparefswitching computer
system. 'The results of that effort are described in "Reliability Model
Derivatalion of a Fault-Tolercnt, Dual, Spare-Switching, Digi§a1 Computer.

System, Final Report", 25 March 197k, (Raytheon Report No. ERTh-thB).

The emphasis in that report was on the computer program itself; the
mathematical model on which the program wés based was briefly 6utlined but
not described in deail. This document supplements this earliéf report by
providing such & aescription, presenting some illustrative examples, énd
examining the possiaiiiny of ‘extending the computer progrem even further,
ternable ity in'partjcular, To accommodané computer configufations involving

more. than Lwo modes ol operatlon.
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i,3,k,4 ,m Non-negntink"ﬁrte,geru = indiclies of summation.

1',3'k' Biaged summation indicies; e.g. i'=1+ cwithe
a constant. ,

£ Integer (subscript) indiceting mode of operation.

X ' "Integer (subscript) indicating computer stage (e.g.
CPU, I/¢ unit, memory module, etcm;;

Q Number of identical operational units needed at stage x

Xy 4
in mode £ .

r R l if units that were active in mode 1
buﬁ are iﬁitially not needed in mode 2 can be treated
as spares; r = O otherwise (or if Qy,2 2 Qx,1)

S); ‘ The number of spare units initially available to stage x.

tyr, 7' - Time variables

T e Time needed to test & spare at stage x during mode £ .

L&y . .

A ' -Hazard rate for an active unit at stage x.

My Hazard rate for a dormant unit at stage X.

X, Ax/ux = dormancy factor for stage x.

xi ~ ~ Rate of occurrence of "category i" failures; i.e.
tailures that prevent the systex from operating iz
mode 4 for any <1, i = 2,3,..., Lut do not preclude
operation in any mode £21.

Txooo iv ~ HKate of océurrence of’ Lransient failares aiv svage ad

) (l’“'> ’ The probablllty that exaculy i of the Sy spares aJallable

at stage x have been used after t time units of operation
in mode £ . ' :

*The. snl ::ripts on these symbols are appemiel only wnen-it .is necessary to
Afar Prosddon exwpltitly beryeer the "ar‘iﬁ.,::’”zc:e:, stages etvc. - fhus, for
- exam le, the symhol sz is frequently represen‘ted by simply Q. with the
sulo(r —rn \mplled. L S



n(t)f
B‘(t)

t)

(8y,

'nyl

8y(t, 7)

T4(t)
To(t)
Cx, £y1,35k

dX:Z)j

CX;ﬁ:k

1
Cx,l,k

8k, 4,k

System relisbility; i.e. the probability that the
system is still operating successfully at time t.

Probability that the system is still operating at
time t and that it is operating in mode £.

The probability that stage x has operated successfully

in mode 4 for t time units given that Sy operational
gpares were initially a.va.:lia le.

Transition probability density; i.e. probability density
of a failure in stage x resulting in a successful degen-
eration to mode 2 due to the lack of any remaining spares.

Probebility that staege x survives until time 7 in mode
1 and from time + to time t 1in mode 2.

Probability that system successfully enters mode 2 due
to a deficit of spares in some stage and (given no category
three failures) survives in that mode until time t.

Probability that system succeesfully enters mode 2

. following a category two failure ard (glven no cetegory
' three failures) survives in that mode until time %.

The ronditicnal probebilitv that the system can recover
from a fault in stage x during mode £, given that the
fault belongs to fault class J, is detected by detector
i, and that the kth spare for steage x 1s the first spare
found to be operational.

Fraction of faults at stage x belonging to class J during
mode -4 . : :

Coverage (i.e. the conditional recovery probabillby)

for stage x during mode £ given that the xth spere. -
is the first spare found to be operational;

X i.k = 2 dx ﬁ: 3 ‘Cx.vfui:j)k
i,J ‘

Cx,z,l

Cx’l’l/cx’z’,g

The superscript ') on these terms indicates tranéitlonal
coverare parameters: I.e. C' denotes *he coverage in
stage x during mode L when. none of the k~1 remaining spares

are operational and it is honce necessary to degenerate’

to mode £ + 1.
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X58yisd "Xyhydsd - respectlvely.

Px,z,i,J : The probability that a class J fault in stage x during
mode £ would be detected by detector i were it the only
detector operating.

Px, L3312 r, 4,1, J(t) Rate at which detector i would detect category j faults
| ‘ in stage x ?gsing mode £ were it the only detector operating

(ffxyfuinj dv = l)
) ! (t)
n f . t) dt
Fx,i,i,j ( f le"‘“‘)\j
, 0
P .(t) ) Rate at which detector i detects category j faulte

AR -4 .
X’Z’l’a X3£315J in stage x during mode f given that all other relevant

detectors are also in operation.

'

Xy siyd Probability that a category J fault in stage x detected
L <+ by detector i during mode { is successfully isolated to
the faulty unit. :

P

(t) Isolation rate associated with detestor 1 following a
category J fault in stage x during mode £

| (fhx,z,i,g (t) at = 1) .

P X | Probability that & spare can be successfully tested
in stage x during mode £. L >

v o SRR
PX,L_)i:J hx:f',:lnj'

Yxshsisd (ry 7 ) Probability of successful recovery in stage x during
‘mode £ following & c¢lass j fault detected by detector
) i wnen the detection and isolatlon rates are rand

(r)el' . (e

v
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The reliability model implemented in CARE TTI (i.e., the Raytheon
extension to the CARE program) can be described with reference to Figure 1.
The computer system being modeled is assumed segregated into n etages
(1 € n<8) with switchable sp@res,separately provided for each stage.
Two modes of operation are possible. In mode 1, Qp4 identical units must
be functioning at stage i, i = 1,2,..., n , for the system as a whole to be

_ operational in that mode; in mode 2, Qpi units are required at stage 1.

The system begins operation in mode 1 ~ (cf. Figure 1) and continues
in that mode untii a failure occurs that either forces the system into mode
2 or else causes a system failure. The lastter can be caused by a coverage
failure or by a category three hardware failure. This latter term includes
8ll those failures that, by themselves, preclude further operatioh regardless
ol the number of functioning units at any stage. (Category three failures

are frequently referred to as single-point failures..)

Degeneration to mode 2 can be caused either by a category two hardware
failure or by spares exhaustion in any particular stege; i.e. by & failure
in any one of the Qji units needed at scage i arver all of Tne avesi8vic
spares for that ‘stage have already been used. A category’two feilure is
one that prevents further operatlon in meode 1 even thougb ) sufflcient humoer'
o1 uﬁits»is available at eachhstage. (E.s o 11 mode 1 operatlon entalls
"‘the comparlson of fne outputs generateu oy two 1ndependent parallel sys ems,

a railure in the comparator could consziuute a category two failure.)

Similarly, the system will continue to operate in mode 2 until a coverage

railure, a category three failure, or s alxure {ollowing zhe~de*letio& cffall

R 01“‘ QO%Q‘
o
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,‘fi"%gva’ihﬁle;}._’c’or;the stage in question causes the whole aystem to

It will be noted from Figure 1l that both permanent and transient
hardware failures are modeled. Since transient failures by definition do
not permanently disable any hardware, there are only two possible outcomes
of such a failure: either the system recovers from & transient failure and
success{ully resumes the application programs or it does‘not. The latter

case 1s defined as a system failure.

The fidelity'with which this model determines the rellability of an
actual system is highly dependent upon the accuracy with which the various
coverage probabiiities indicated in Figu;e 1 cah be detern@med. That_is,-
riven @ hardware failure of a particular sort, and‘the availability of fhe‘.
necessary spares, what is the conditiOnél probability that computer system
can actually recover and resume 1ts intended function? Because of the
importance of these parameters, a coverags model was alsc postulated and
progranmed as part of the CARE ‘II package. - This nmodel provides & means for
caléula‘ing‘coverage as a function of the type of failure experienced, its
LeLpuLa hasm o Terdes T (s e, s permaqeﬂ* or transient), the numter ¢ spares
the: X%ityle testea tefore'an operational ore is found, the time delars &s~
scciater with the various fault detection and isolation mechahisms, and the
proterZiis) Lhau a éuccessful recovery cern Te achieved gi§¢n :L;;f & ,‘~-":s

wers iordel 5o debect the failure and -t~ seconds needed to isolate 1.

Details of the coverage modelyimplementéd in CARE II are presented in

Segrion TIT. Wi nexs oenwicon :3;-1;:; Tr), however, Tirst descrites the CARE II

reliability model itself. - Some spevi?i:,aimnle coveragés and reliabilivy
prcilc..s are solved analytically in Section IV in aw effort to illustrate

%;Gﬁé@% QZ\S
3!




the generality and flexibility of the CARE II model. Finally, Section
V concludes with a discussion of potential further extensions of the
presently implemented reliability model, including the possibility of

expanding 1t to include systems capable of operating in three or mire

modes.

b
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Reliability /bﬂ’um

”

. CARE TT relisbility model is based on the assumption that each

~ component comprising the comwputer system exhibits a constant failure or

hazard rate A . This assumption, which is almost universally mede in

deriving computer reliability models, is well supported by experimental
evidence., The two major limitations to its validity are due to the "infant
mortality" phenonrion resulting in a decreasing failure rate for new, untested
parts and to wear-out mechanisms (e.z. tungsten evaporation in a incandescent
light-bulb filament) causing the failure rate to increase with age. Since

the infant mortality phenomenon can be (and, in those cases in which reliability
is of concern, presumably would be) eliminated by appropriate screen-and-burn-
in procedures,and since wear-out mechanisms are virtually nonexistant in solid-
state devices, the constant failure-rate assumption appears to be entirely

adequate for the present purpose.

If P(t) denotes the fraction of elements of a particular class operating
at time t, then -P (t)dt, with P'(t) denoting the time derivative of P(t),
indicates the fraction of elements failing in the time interval ( t,t+dt).

The failure rate associated with this class of elements is then:

a(t) = - P iz) (1)
(1.e. the fraction ¢’ presently operating elements failing per unit time).
If A (t) = A 18 ccus'ant, then the solution to eguatic: 1 i e
houtndr, Sopdition that P(O) = 1) is:

g
Further, if an irredundant computer .nl® I: composed o7 ny elements having
fe1lir: rate Ays 3 ° 1yz,+04;N, theti the provafility that thet anit is stiil

operatiry’ a° time t, given that it was operating at time zero, is the probatility

S
siar
22 gﬁQS%;§BCL
e ®
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that all of its component parts are operating at time t; i.e.

N
. o3 0 A =
P(e:)’i"'.l(e "‘1")"1"(12.‘..1““)t s (2)

with A =), DA simply the sum of the failure rates of the unit's
i=1 :

component parts.
Now, if Q of these units are needed for a given computer configuration to

function properly and if i standby spares are provided which can be switched

in to replace any defective units, the probability that exactly i such spares
have been required by time t is simply the probability that exactly i unite out of
a total of Q + 1-1 u:xi.tu in the configuration have failed and that the (Q + 1)th
unit is still functioning. To see this, assign the units used vp to time t
consecutive numbers from 1 to Q + 1, with units 1 through Q representing the
original Q operating units, unit Q + 1 the first spare switched in to replace

a defective unit, unit Q + 2 the second spare switched in, etc. Exactly

i spare units will have been used by time t if and only if exactly 1 cf the

units bearing the numbers 1,2,3,..., Q *1 =1 have failed. Note that the
(g - ¢« )P

g+ 1 wmi+t must stilll te operational since, were it not, at least 1 + 1
spares would have been reguired. But the probebility P(i,n) of exactly i failures
in n chances, when the probability of an individual failure is g = 1 - p is given

by the well-known binominal distribution:

P(1, n) =(?) gy =4

= =



Consequently, the probability @(4,t) that i of Q + 1-1 units
have failed by time t and that the (Q + 1)”‘ unit 4is still functioning
ie P(1, Q + 1 -1) with e"Mehe probability that any one of them

has survived until time t; i.e.:

a(4,t) =(Q*i'1) (1 — '“)i(e '“)Q (3)

Note that this last conclusion implicitiy assumes equal failure rates
for all Q + i units. If, however, the units that are operational but are
not currently being sed are placed in a dormant mode until they are needed
(e.g. the units are not powered until they are actually needed ), this assumption
of identical failure rates may not be valid; the dormant units may well fail
at a rate p significuntly less than the active unit failure rate A . This
added degree of freedom potentially complicates the expression for the prob-
ability that exactly i units are required since the probability that a part=-
icular unit is still operational is now a function of when it was placed in

the active mde which in turn, is determined by the number of pricr failures.

It can be shown*, however, that the probability of using exactly i spares
when Q active units wre needed and the active and standby unit feilure rates are
aand p respectively, is equal to the probatility of using exac:li, i spares wren
AGQ/M active units ar needed for successful operation and the failure rate is

o Por Lotl aculive and standly units.

®J.J. Stiffler, On tie Efficas- of ReOnM T Zundency, IEEE Trans. ot Aeilc.i..>,
April 19(b.
sy, PAGE 10
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That is, from equation (3),

a(1,8) = (m +1-1)(1 -e 't ( - At) (%)

with K = AA;. This observation considerably simplifies the subsequent deriva-

tions.

Note that KQ + i1-1 need not be an integer here. The binomial coeff.-

cient:

(KQ * i°1) = ‘E +1'12 ‘Q +1"22 .o ‘Ez

i il
1s still defined for noninteger values of KQ + 1-1 and equation (L) still

holds.

An additional complication results when the possibility of a coverage
failure is acknowledised since the possibility then exists that the system was
unatle to recover evi:n though a spare was available. Moreover, the probability
of successful recovery may well bte further diminished when one or more of the
spares has already failed by the time it is needed since this presumatly increases
the total time needed to recover. In the CARE II reliability model, the coverage
protatility (determined using the coverage equation: cf., Section II1) is

(k - 1)

expresze~ in the form C8 , with kK the number of spares that must ce
tested tefore an operational one is found., That is, if the first spare teszed
is onera’ ional, ‘-e 'wobatilitv of recovery is C; if the first spare has faile:d

but thne second is functioning, the recovery probutility is diminished by the

-8~
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factor §; if two failed spares are encountered the recovery probability
is decreased by the factor 52 ; ete.

Fortunately, the effect of imperfect coverage can be included in equation
(4) simply by replacing the product KQ by the parameter M = K08~ Q and by
multiplying the result by §1. The resulting probability thus becomes

a(4,t) .(*'1-1) o} (1o ) 1 ¢ -KRNE (5)

A proof of the valility of t!.is recs''l. is ,resented in the appendix to

this report.

Equation (5) represents the probability that the Q-unit ensemble
in question survives until time t given exactly i hard (permanent) failures.

The CARE II model also includes the possibility of transient “eilures. The
coveraze model (ef. Section III) provides a means of determining the prob-
ability Pr of recovering from a transient as well as from a permanent failure.

If transient failures occur at the ratey' failures per unit time, nonrecoveratle
failures *hen occur at the rate y= (1-P.)Y'. The probtatility G(i,t) in

equation (5) must, therefore, be multipiied bty the probability e =Yt that nc
nonrecoverable transients occur by time t in order to ottain the protacility

that the Q-unit ensemtle survivesuntil time ¢t using i spares when roth hara

and rtransient failures are taken into a~count. The resulting exprression thus

becomes:
oyt [Mi-1 = '
Ali el i ( ; ).1 (1oe =Bty o -Kamt )

With these preliminaries, we can now ietermine the reliacility R(t)

of the dual-mode computer system. Hirst, let:

R(t) - Ry (t) + R (¢)




in mode 1 and Ry (t) the probability that it survives in mode 2. (That
is, Ry (t) 1s the probability that vie system is still operating at time +
butt that it had to switch to mode 2 sometime prior to time t.)

Let Ry , (sx,") be defined by the expression:
5 ,
Rx,2 (Sx;") =2 : Gx,2 (1,t)
5

with G, , (1,t) as defined in equation (6). (The subscripts £ and x here dencte,
respectively, mode L and stage x, and S, indicates the number of spares avail-
atle at stage x.) Thus, Rx"(sx,t) ie the probability that stage x is able

to survive ir moie 4 until time t using no more than the Sy spares provided
for it, The expression for Rl(t.) is then:

R(t) =.R (S ‘l’,) . e 'lat e -x3t
1 X e SR s (8)

The rroduct over x in equation (8) thus represents the probability that

all s;-azes have survived in mode 1 with none requiring more than its

allot e : number of spares. The two exponentials in equation (8) are

simply tne probabilities of no category two and no category theee failures,

respec-ively.

1:. order *o determine Rg(t) it is con-enient to define some addi-ional

terns., First, note that:

Sl N=pm ey a0 ) =A3t £~

- ™ (+) +he protability that the computer system successfully enters mode 2

ollewins a category 2 failure ana survives in mode 2 until time ¢, ° +) the
protaerilit; that it successfully enters mode 2 due to a spares deficit in some
atp- - it raa ivn mode ° et Y e Taeg - -x?. 3 St T R g B -~

[ad4wmple-r~tv+ ) failurea -10-



How det K, (+) be the transition probability density for stage x; i.c., t {
the probability density of a failure in stage x resulting in a successful
degeneration to mode 2 due to the absence of any remaining operational spares.
Tt follows that:

S .
() =[Q,1 "x] 2: [5,1 (8x - 1,7 >][21 # """)’][ C ('30’] (20)

i=0

The first bracketed factor is simply the rate at which railures afflict thne
Qx1-unit ensemble defining stage x in mode 1. The second factor represents
the probability that all but i of the S, spares for stage x have been used

by time r and that stage x is still operational at that time. The thira
factor is the probatility that the 1 remaining spares have all failed by time
» . The last term is the recovery probability given that i spares must be
Lested and that degeneration to mode 2 is necessary. (The "primes" on the C

é terms indicate that the transitional coverage may be different than the
coverage when no change is needed even though the same number of spares must
be tested in both cases. The coverage model described in Section III provides
& means for determining this differerce by allowing user to specify transitional
parame' «r.) The proiuct of these terms, summed over all i (1 = 0315 sevy 8)

is the desired probavility density.

Further, let S“(t,f) te the probatility that stage x survives until time
A
rin mode 1 and from time r to time t in mode 2. This probatility can te

expressed in the form:

Sx SX-‘ ; T i3 ainf '
S (t‘)7) s [le(‘v")]kux‘j “)(1 -e -"x,) * ’ e . Rx’z(.ﬁ 5 - 9 (11)
% 2 :; 2 :

1 =0 J:(‘

The bracketed ‘actors denote, respectively, the probability that staze x

survives until time r in mode 1 using exactly L spares, the probability that

-]
-11- Go
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2

exactly j of the remaining S,~-f spares are still operational at time r , and
the probability that stage x survives for the remaining t - v in mode 2 given
that J spares were operational at time r (cf. equation 8). The definition
of thg parameter j' depends upon whether or not the Qxl-ng active units that
were needed in mode 1 but are not required in mode 2 are reassigned to the
spares pool. If they are, J' = J + Quq - Q; if they are not J' = j. The
product ol' these terms summed over all combinations of unused and functioning

spares yields the desired probability.*

*This expression for Sx(t,f) assumes that all remaining spares are tested
immediately following degeneration to mode 2. This allows any defective spares
to be discarded at tha' time and hence, if §,,<1, decreases the probability

ot & coverage lailure in muwie c. Ir this is not done S,(t,?) becomes:

Sx
Sxlt,r) - z : 2 : c,,g(i, t -7) Gy,2(2, 7)
=0 1 =
Sx Sx' -8 J
4' -1 . J=1  <(i-A)mxr
+_Z o 2 1(1,7)( )3‘3 (1-e -mxr )1 ¢ -(1-0) xGx’g(i,t-')
g0 1 =4+1 B EE T RE
with
0 Excess active units not usea in Mode Z=.
& S ] - S
L % . {Qxl - Qyo Excess ective units used as spares.

This expression assumes that the reassigned active units are the first to te

used in RO T P e e e e T B SRR T
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We can now express Tp(t) and Ty(t) in terms of previously defined
quantities:

t
1(t) =5 [ | ; sy(t.')][ﬂx(')][nx,a (r.t-f)][e e a2
X Y#X

t

'1'2(1'.) = [[n sy(t,,)][;e Co e-le'] dr
Y

Tre first bracketed factor in the expression for Th(t) is the probability that

each of the stages comprising the computer system except stage x survives in
mode 1 until time r and in mode 2 from time r to time t (cf. equation (11)).

The second factor is the probability density of a degeneration from mode 1 to

mode 2 at time r caused by a spares deficit in stage x (see equation 10).

The third factor is the probability that stage x then survives in mode 2 from

time r to time t given a total of r functioning spares at time r. The

definition of the parameter r, like that of parameter j' in equation 11,

depends on whether the Q. - Qx2'1 former active and still operational units not needed

in mode 2 are reassigred as spares. If they arer = Qxl - Qxe'l; if they are not, r = 0,

he last ractor in the expression for iglv/ is Just the probabiliy; t.a. .. -&ai-

esory two lallures occur befcre the degeneration to mode 2; after that <ine,

o

of course, category two failures are irrelevant. The product of these factors then
is the provabtility Zdor~i*: *ha* +hs gyster as a whole suri-ec +o ~ime r i» mode
1 and thes continues saccessi'ully in moae < until time t. Since the degeneration

can occur at any time r in the range (0,t), this product, integrated over this

entire interval, provides the desired probability T4(t).
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Mhe expremsion for T,(t) differs from that for Ta(t) in that the
cause of the degeneration ies now a category two failure; consequently the
product H*( r) Rx,z (r,t - ), representing the probability density of a
degenerative failure at stage x at time r followed by its successful operation
in mode 2 until time t, is replaced by A,C, e-ha" the probability density of a
recoverable category two failure at time r. The product in the expression
for To(t) is now over all stages, since in this case, none of them is the
cause of the degeneration. That is, for successful operation through a
category two failure, all stages must operate successfully in mode 1 prior

to, and in mode 2 following, this event.

The reliability model implemented in CARE II thus determines the
reliability R(t) defined in equation 7 using the intermediate guantities
defined in equations 8 and 9 through 12, As can be seen, it is & highly
versatile model, allowing arbitrary active and dormant failure rates to be
specified for each of up to eight stages with arbitrary numbei's of spares
assizned to each stage. Furthermore, the concept of coverage is fully
integrated into the model with provision for specifying recovery probatility
as a function of the stage in question, the number of spares that have to
be tested and the mode of operation (mode 1, mode 2, or transitional). Un-
fortunately the CARE II user can rarely, if ever, be expected to be atle
to assian these coverage terms with any degree of confidence. For this reason,

a coverace model was also defined and implemented as part of CARF TT i

0

model, described in the next section, provides & means of determinine these
coveraze parameters in terms of more basic parameters which are presumably
more readilv surrlied, or a* least esslliv - astimp?

user.

)k=
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III. Coverage Model Derivation

The purpose of the coverage modei Lo Lo determine Lhe coverage
coefficients associated with the computer system as a function of
the stage afflicted by the failure, the operating mode (mode 1, mode 2,
or transitional), the type of fault (permanent or transient), and the
number of failed spares encountered in the search for & functioning
one. Although the coverage modcl luplemented in CARE II can be used to
evaluate the coefficient Cy, (the coverage given k - 1 failed spares) for any
&, the use of such information would result in a somewhat more complicated
reliability model than that described in the previous section. There
it was assumed that Cx was of the form Cx = Cl(k 5 for all 4 = 1,2,.40s
The coverage model is therefore used to determine C, and Cp only, with

k -
8 defined as the ratio Cp/Cy. Since C3 ( 1)

is presumebly a reasonably
good approximation to Cp for small k (and is exact for k = 1 and 2 when

8 = Cp/C1) and since the likelihoodof several consecutive failed spares
is generally small in any event, the increased computational time that

would be needed to use the more general coverage coefficients Ck was not

felt to be justified.

Conceptually, coverage can be broken down into three basic components:
fault detection, fault isolation, and applications program recovery. Any
one of the following evenis couusiiiutes a coverage failuic. .civ .cimuac
to detect the fault, the failure to isolate it *o the affected unit and
to replace that unit with a functioning spare, or the inability to effect
a timely recovery of the applications program. The mechanism by which
the failure is detected presumatl ctermines the isolation and recovery
procedures; i.e., there is direct linkage, called a LCIR mechanism, from a

~ |y isplptise - 2 recovery rproced

=

v’
.:\_  « A-G' 4{"':‘
- = Al
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complex. m, several different detectors may bo capable of detecting
a certain fault. Which detector actually succeeds is a function of the

computer operation being carried out when the fault becomes manifest. The
CARE II coverage model provides a means of determining the probability that

a fault in any specific class or subclass* is eventually d.tectedAby & given
detector in competition with other detectors as well as the distribution of
the time delay before this detection takes place. This information is tunen
used in combination with user-provided statistics concerning the isolation
and recovery mechanisms associated with that detector to determine a coverage
coefficient for that detector. The summation of the probabilities of these
mutually exclusive coverage events then establishes the coverage for the fault

class in question,

The concept of a fault class is basic to the CARE II coverage model.
It cannot be assumed, for example, that if detector A detects 90% of all
faults in a piven computer stage and detector B also defects 90% of these
faults, that together they detect 1-(1-0.9)2 = 99% of all faults. It may
well be that they both fail to detect the same 10% of the possible faults
and hence that together they are no more effective than either is alone. iu
the CARE II coverage model, this difficulty was circumvented bty requiring

the user to categorize the possible faults afflicting any computer stage.

A fault class is defined as a group of faults whose possitle detection

by any specific detector is statistically independent of its possible detection

v -~ L v =T - e rr mmcdey wdbAn e WA VML DVERRCS e e wan g weeer e --"

*The term fault class is used to denote & category of faults afflicting
e stage; a fault subclass refers to a category of faults pertaining to
a4 oubbtage. For purposes of this discussion this distinction is not
important.
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tectors compete against each oeh.ﬂ'tcrei’t!lu&' clasges; they compete statis-
tically independently, however, within any specific clase. In the previous
example, the totality of pollihl; tin]&i'ib*ihéblciie in question, for ins-
tance, might be divided into four disjoint classes each representing 25%
of the total. If detector A were then capable of detecting 100% of the
faults in the first two classes and 80% of the faults in the third and
fourth classes, and detector B capable of detecting 100% of the faults in
classes 1, 2 and 3 and 60% of the class 4 faults, they both would be able

individually to detect 90% of the faults as before. Together, however, they

would detect:
3/4 + 1/4 (1-(1 - 0.8) (1 - 0.6)) = 98%

of the faults. If in contrast, both detectors were 100% effective in the

rirst three classes and 0% effective in the fourth, so that again both

are 90% effective overall, their combined effectiveness would be:

3/b + 1/4 (1 - (1 - 0.6)%) = 96%

The task of sepregating faults into classes requires careful analysis
of the possible faults that can occur and of the characteristics of the
cvailablc detectors. The success with which this categorization has been
acermplished can be tested by determining for each fault within a given

class, its probability of detection by each of the available detectors.

»
ACP

¥
-17- O




» $ 2l AERUBIAT Rl S R PR b~ - -
. = “;w“ . X '“.,");';.'-‘ ;'\ ‘,“ ?’: pa . o ,*' Mg ?_f,":‘:‘ e )

£T

i chtn o ar chesecion srodbLideto io Sfeskiond for L1 i 1o
any class, a sufficient number of classes has Leen defined; otherwise,
further subdivision or reclassification is needed. Although fault clas-
sification does require detailed knowledge of the types of faults that

can oceur, no coverage model can provide a meaningful measure of coverage,

unless this informetion or its equivalent ie determined.

Once the faults relevant to each computer stage are categorized, the
user must then characterize each detector i1 for each fault class j in each
stage by a detection probability, a detection rate £(t)= fij(t) (es usual, subscripts

will be cmitted in the following discussion unless they are needed for purposes
~f ~?o—**;), and 8 Antantior dclge (f?“ nardware detentors) o» 2 scheduling
rule (for software diagnostics). He must in addition associate with each
detector an isolation procedure (characterized by an isolation probability

and an isolation rate h(t), and a recovery procedure (characterized by the
probatility r (v, *') = r'(r) r'' (r + ¢') with 7 and r' the times needed

for detection and isolation, respectively. (This form for r (r, r'), although
somewnat restrictive, is felt to be sufficiently general to encompass the

vast majority of recovery mechanisms. Factoring r( r, r') in this way implies
that the recovery probability is the product of two terms: (1) an error-
propagation recovery probability which is a function only of the time =

during which the fault condition existed but was undetected; and (2) a
time-lost recovery probability which is a function of the total time -+ 7'
elapsed between the occurrence of the error and its isolation. The reason

or lio*inguishine btetween these tw. .oncitions is that durineg tie error-

propagation period, the effect of the still undetected error could propagate

4
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to other co-putor oh-entc, thercby cqucating recovery and roducing
the provability below that muluu from cum of the totai
"down-time" s + +' alone.

On the basis of this user-supplied information, the coverage model
determines the resulting coverage Cy 3k? (wher k spares have to be tested)
for each fault class j, and detector i, and, for each stage, calculates

the coverage:

Ck=2 dy 2 Cyyy (13)
J i

with dJ the fraction of total faults belonging to class j. That is, Cijk

represents the fault class | coverage associated with the DIR mechanism i.

Since detection by detector i1 precludes detection by any other detector,

the summation over i of these terms represents the total coverage for fault

class ) and the weizhted sum over all fault classes thus determines the

overall coverage [or the stage in question.

Let P1j and P'ij be, respectively, the detection ana isolatiou prota-
vilities associated with detector i operating alone in the presence of &
eclass j fault. Let P"j be the probability of successfully testing a
spare required as a result of a class j fault and let rg represent the

ime needed to complete this test. Finally, let Pij 61J(t) be the prob-
ability density of the detection of a fault in class j by detector i when
“the total fault detector environment is taken into account. (Thus, fjs(t)
is tre detection rate of the detector i when no competing detectors are
present; gij(t) the analogous function when these competing detectors are
2a%% o .
oﬂegg? o
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considered.) It will be shown presently that gu(t) can be expressed
in terms of the set of density functféde:

P‘J f“, (t), L = 1’ 2' “evy 1, e

The coverage term ciJk can be expressed in terms of the functions and parameters
defined in the preceding paragraphes in the form:

C“k = Pi,] Pid (pl 'J)f/‘ij(') rlia('i/hid(" = k',) rnuia(,..,fv) dr'dr (lh)
0

The detection probability density function for the 1% getector is
PiJ“iJ(') and the associated isolation density function is, by definition,

P'ijhiJ(")° If k spares must be checked in order to recover successfully
from a fault, the overall recovery probability is decreased by the factor
(P'* )%, with P'' the probability of successfully checking out a spare, and

the isolation delay is effectively increased by the factor krs. The term

C;,k iz thus equal Lo the conditional probability that the system can still
recover iriven a rt-second detection delay times the detection probability
density function, multiplied by the conditional probability that the system

can recover given that it has survived a r-second detection delay and must

in adiition undergo a total of r + r' seconds down-time, times the corresponding
isolation density function, the whole thing integrated over all r and r'',

and multiplied by (P")k.

‘"he only term in equation (14) not immediately attainable from the

*formation provided by the user is the ccndi+ional density function rf-(f).

*20=
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for this term s a fumction, not just of the detector 1, but of the entire
ensemble of det@abers and their interrelationships. (Note that the same
compe*itive }rehtion does not exist betwosn isolation and recovery procedures
sifce these Jroceduies are uniquely determin.d by the outcome of the competition
among the detectars.) In order to define 513(’)’ it will be useful to introe
duce some new terminology. (For notational convenience, the subscript ) denoting
the fault class in guestion will be dropped in the ensuing discussion.) Let

T = “1T be the periodicity with which software diagnostic program i is scheduled,
let n, be the least common multiple of the nj, and let n.T be defined as the
major cycle. Let ty, ty + Aty b the start and finish times for detector or
diagnostic program i measured with respect o the occurrence of a fault for
hardware detectors, and relative to the start of a major cycle for software

disgnostics.

Let tJL = ty4 (1) be the maximum value (with respect to v ) not exceeding
ty + Ty of the expression (tj + vTj - (£-1)Ty); that is, let tJ"+ (- 1) T, be
the time of the last occurrence of diagnostic prosram j in the interval separating

the (2 - 1)5% and the 2%h occurrence of diagnostic program i. Finally let:

0 7<0
ORI n
Orggﬁqbp Fe(n) = f fy(a) da 0<7<A i
1200405'&9 0
%’ 1 n> Aty

- ~

ard let Fy () =1 - F; (7). (Note thot £4(t) is & normalized detection
probability density; its integral over the Aty - second detection interval

is unity. Note, too, that the detection delay ty is treated here as an explicit
parameter. Thus the detection probability density associated with the 1P de-

tector is of the form Pyf(t - ty) with £(t) nonzero only over the interval

0<t<Atis)
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SOFTWARE DIAGNOSTIC SCHEDULING
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We next observe that the dctection rtu of the gth software Mﬂc
1mqmnwnuuﬂhumpmhw‘ﬁtuumMr&umnucimcu-1oﬁr,

Py

v.‘gsns:‘r,_
ne/ny Aty
ny(r) = —TZ / [1 J (-.1- re T4t - t.Jl)] £4(7) an  (15)
£=10 J#1

and is identically zero elsewhere. The product here is taken over all j
representing other software diagnostic programs. This expression is most
easily explained with reference to Figure 2. The crossed-hatched rectangle

there indicates the .ime interval during which the ith diagnostic routine is

run for thel(f + 1)st time during a major cycle. If this routine i: .. Jeciect
a fault which occurred exactly r seconds earlier, all other diagnositc
prorams which were run between these two instances of time (shown as
dashed lines in Fipure ) must have failed to detect the fault. The prob=-
atility of this event is riven by the product over j in equation (15). (It
ic ussumed herc Lhat il a ['ault occurs while the Jth routine is being run,

< provavbility tnat that iault is detected before the routine is concluded
At ; =2
is F{‘[ . f)(r) dr = PJF(t), with t the time the fault occurred relative to
‘ne bepirning of the routine in question.) This product multiplied by the
deteetion rate £5(n) of the 1*P diagnostic routine and integrated over all 7

/ields tne conditional detection rate of the it software diagnostic test during

it (2 + 1)st execution in a major cycle. It remains only to sum this =~ wee=?n-

over all runs in each major cycle to obtain the desired detection rate.

ORIGINAL! PAGR
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The condition detection rates for software detectors when competing with
j.
both hardware and other software detectors can then be expressed in the form:

wr-a[ w009

with the product taken over all k corresponding to competing hardware detectors.
‘Mhat is,:;ij(r) is simply equal to g'“('r) times the probability that none of the

competing hardware detectors has detected the fault first.

Similarly, the conditional detection rate of the 1*h hardware detector in

the presence of its competitive hardware and software detectors is:

215(*) =k"#i[l - PR (7 - tk)][l -ZJ': PJ!83|(n) dq]fi(r- 21 0D

The product here, taken over all k representing competitive hardware
dctectors, is again the probability that none of these detectors has

already succeeded in detecting the fault. The second bracketed term
maltiplies this probability by the probability that none of the software
detectors has been successful either. (The summation is over all j'
competin: software detectors. Note that the 8'15(') functions represent
mitually exclusive events; hence their weighted sum is indeed the prorability

density function of interest.)

Tiese expressions for gu(r) (equations 16 and 17) are used in equation
(14) to determine the coverage terms Cy4k for all i, §, and k. These terms
are usei in equation (13) to calculate a coverage probability, for each stage

and fault type, as a function of the numb~~ o€ gpares that have to bLe tested.

-2l
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The resulting coverage probabilities are then used in the reliability calculations
described in Section II. The examples presented in the following section are

intended Lo illustrate this procedure more fully.

Oome Examples

We first consider two examples involving the reliability model presented
in Oeclion IT, Both examples are sufficiently simple that they can be solved
analytically; each is intended to illustrate the significance of a subset of

Lhw various parameters defining the model.

In the first ezample we postulate a computer system consisting of only one stage

with & spares. Also, in order to concentrate on the parameters of greatest interest,

we agsune Lhat! the calegory two and category three failure rates, Ap &nd A3, and

tt rate of occurrence ¥ of nonrecoverable transient failures are all negligible.

We then have, f‘rom equation 5,

gt ) - (M+ ;i = l) (1 - ¢ '“t)iti e b

Al

witit M - KCQC-l.

FaPLHE TS RS S Wt A

: 1
Av W TV b v o 8 - ‘, Conditiv.u, N

senerall;, hold at least approximately, we have, from equation 10,

o
~

8 et -w e R e
H(r) ulacz: (Ml*ﬁ : 1)(i-e e = o

- e o
‘ = CHRR;UV
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and from equation 8,

S
Ry(e) = 9 ("1 = l) G . o 8y e

i=0
and,

I \
. i 1 AR Bt -T

Ry,2 (I‘,t-?)‘E (y9+11 l\(i-e"‘(t' N2

1=0

On substituting the expression for Rx,g(r,t -7) into equation 12, we

obtain:
t
n (=) mf»\--/ e B (vt o) e
- a g
0
r
= i t
My + 3 S+i + § %3 a5 % T i - g .
-ulkc(lfl )2;3 (MQ i )/(l-e Py g Pt 1r)) e Wiy =5 Fos
1= o
u? O - -1 d
lsins =« rinomial expansion for (1 - e Y arafs u(t ﬁ\ . we

can easily carry out the integration overr, ottaining:

= 8 & &£+3

: My + S TR N\/S\/f1i
HA.f:):QlKC(lS )2;2: ;;3 ( =1 )(a)(,:);’.
: a=0 B=

i=0

s £ 'Bl‘t = -(“ - Q*KCA_-KC:'\“O. ea

i s

T (e - Bt KRy " K ) .

=
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Since we will be interested in the limiting case in which the dormancy

tactor K = A/w —» ® (i{.e. in which p—#0), we observe that G(1,t)

becomes, under these conditionms,

K- =
Kp = A

1im  6(1,t) = (cat)t . -Qat
il

(Not.: Lhat in this event G(i,t) is independent of § . This is due to the fact

that with p= O the first tested spare is guaranteed to be functioning.)

When K —» @, p —» 0 (with Ku = A ) the above expressions thus become:

H(r) - QyAC (cayar)” e Lad

St
r
1=0 :
& cu)i
Ry (t) -z: (“L.“ e ~At

and

S+ 1 = i : === :
R (1) - (CN ((zCA) S i : =
‘ = p— r (t -7) e e * ase —F
St - . c
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The integral in this last expression can be evaluated by again using the

binomial expansion with the result that:

iy Bt 8a 1
c Q ~(Qy -@p )AL Qo )At, At
Ry(t) - 2:2: T )MFI? ( ¢)( s [ 1% Zﬁ_&f]e'ﬁe

1=0 a=0 (i-a)!

In cither of these cases, of course, the total reliability is just

Ry(t) + Ry(t).

In order to reduce these results to a more tractable form, consider the
special case in which Q; = 3, Qo =1, S = 2. This corresponds to the silualiovu
in which the system begins operating in mode 1 with three active units and two
sparcs. It switches to mode 2 after the third failure and operates using only
one active unit. The remaining active unit that was still functioning in mode 1
and is no lorger needed in mode 2 mey be either discarded (r = 0) or reassigned
to the spares pool and used in the event of a subsequent failure (r=1). To
emphasize the relative importance of the various parameters influencing the
system reliability, we limit consideration to the following cases:
¥ 7' (dormant units are as likely to fail as active units) end K = ® (dormant
units never fail); 6§ = 1 (coverage is independent of the number of failed spares
that have to be tested prior to recovery) and §= O (recovery is possible only
if’ no spares have feiled). The resulting expressions are tatulated in Table 1
as a function of P = e'*t, the probability that a single unit survives until
time t, and the coverage C. Several of these expressions are tnen tabulated in

Tat,1r 2 as a funclion of P for various values of C.

The preceding example considered tihe effect of various pertire:

(e.r. K,5,C) on the reliability of a single-stage system. We now consider a

«28-
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PARAMETERS
cC=1
K-1
5«13
‘u=¢‘)
K=1
i-1
C 1
k<3
-0
cC=1
K— @

v asualraly

O.k
0.6
0.8

O.9

NUMERICAL RELIABILITIES

51912
0579
317k
826
9k21

. ”lh

.0509
.2828
6219

.9622

.1843
.2138
.1210
.02u45

.0037

L1212
3755
1708
.0287

.0040

-30-

614k
6048
.3072
0576

.0085

JLBhT
k632
+2373
.Okko

2765
2721
.1383
0259

.0038

092k

1962
.0304

371k
6547
.8322
9334

2345
L4967
7517
9359
.98k2

6723

5156
«TL60
.8592
9357
.9688

.3267
.5550
.7690
9373
.98L3




multi-stage system but with some of these parameters restricted in order to
keep the analysis reasonably tractable. In particular, we assume that each of
the n stages has the same failure rate A, that Q4 =2, Q,», =1, S, = 1, and

Ay = Ax A for all stages. As before, we also assume that v = A5 = a3 = O.

Under the conditions just specified, equation 8 becomes

n
Ry (t) = P2°[1 +2¢ (1 - P)]

A

vith P=¢ ~ . the reliability of a single stage in the n-stage system. It

is also readily verified that equations 10, 11, and 8 become, respectively,

H(r) = 2aC (2c +8) (1 -e ) e st
S, (t,7) = &g+ a8, e A a, e 2ar
and
Re,2 (0 t =7) =P o™
with
ao=rCP2(£f26__P-l-2C)
ay=(1+rC) (1+2€)P+C(r-pr-1-1C)F
a, = C (1L+r-1xg+ %§ c)P
2
A~ Fufave, the parameter r = 1 1f anv nrneaded 'mite ohis} yere active in

mode 1 ant are still functioning are to be used as spares in mode Z and r = O

e



otherwise. (It is assumed that either r = 1 for all stages, or r = 0 for
all stages.) Thus, from equation 12,since all stages have identical parameters,

t
R2(t) = :?d(t) =xZ[o y'}x sx (t:') Hx \') sz (O, t ") dr

= - - AT =-2AT
AT ae 2xf)n 1 (e

= bnpk (ao + aye B ) dr

with b = 2€C (2C +8), Using the trinomial expansion

2.0 = 1 o
(ap + alx +ayx ) = E i?-lgt . .01 ,13 n21& gd* 2k
1’J’k . - .
i+j+k=n-1

and carryirz out the integration, we obtain:

+2k+1 2
R9(t)=bp§ ai R 19 & D2l B
e TR v T I sie T+ 2k + 2
2J2
it j+k=n-1l

When n = 2, for ¢xample, we find from the above that:

R(t)

]

Rl(t) + Rg(t)

ph[1+ 2c (1 - P)]2

]

+ C(2€ +8) |5 + 3¢ + a) - 2(C + P-6(1+2C-a)p?
: [( +) (c 2d) 6(1+ )

+2 (2+9C -2a) P3 - (7C - &) P“]P‘?

with 4 = (1 + C/2 +8/2) »C

-32=



This result is tabulated in Table 3 as a function of P, the probability
that a two-stage nonredundant system would have survived until time t, for

various values of the parameters C,8 , and r.

TABLE 3
NUMERICAL RELIABILITIES
TWO-STAGE CONFIGURATION

Q2-1,Q1=2,S-1

TRREDUNDANT Ry(t) Ry(t) TOTAL TOTAL

PARAMETERS SYSTEM RELIABILITY 51_(_1:_)_ r=0 r=1 r=0 r=1
1 0.2 773 4387 5134 .6160 .6901
1 0.4 L4817 .3923 k215 .87L0 .9032
0.6 7577 .2133 .2195 .9701 9772

0.8 .9388 .0585 .0588 .9973 .9976

0.9 .98L8 0149 0149 .9997 9997

= 0.9 0.2 1592 .3511 L0LO .5103 .5632
- 1 0.k TS i 3171 .3378 . 7588 JT795
0.6 L7114 L1743 1787 .8857 .8901

0.8 L9064 LOL8L .0L86 L9548 9550

0.9 9666 L0124 012k .9790 .9790

1 0.2 1773 .2925 .3360 L1698 .5133
=9 0.4 4817 .2615 .2786 7432 .7603
0.6 57T L1422 L1458 8999 .9035

0.8 .9388 .0390 .0392 9778 ,a780

0.9 9848 .0099 .0100 L9947 .99L8



To illustrate the use >f the coverage model, consider a set of three
software tests and two hardware detectors designed to detect faults in a
given category. Let the three software tests have detection probabilities

P,, 1 =1, 2, 3, and detection rates,

i’

1 0S 7 £ Aty
aty
11(') =
isnl], 2,3 0 Otherwise

Further, let test 1 lie run every minor cycle (i.e. every T seconds ), test

2 every other minor iycle, and test 3 every third minor cycle, and let them

te scheduled as shown in Figure 3 . Then, with reference to equation 15, we
have ny = 1, ny = 2, ng = 3, n, = lem (1, 2, 3) = 6. It is convenient to assume
Lhat. Lthe f.ime separal.ion between the 1P ang Jt‘h software tests exceeds the

duration of bLoth (i.e. that t,.,> &t; + At,) since this condition considerably
ij i J

simpliries the resulting expressions for g¢' (7).

FIGURE 3
DIAGNOSTIC TEST SCHEDULES
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Making this assumption, definimg ...

: r £ ti,j-‘ti

.S EL(' - (b ,_“1))2 tyy -8t S T < tyy
Ati

tiJ "'Ati S T

ani letting pij' (7) ve similiarly defined but with tij replaced everywhere bty ti3+ T,
we can carry out the integration in equation 15 obtaining:

o<r<T
“1'('):{ 2 (24 p31 (M) (2 + Pz (1) .
0
g (') :{ '—Cl'r— Plz (')(1 2 P3Z (') + P32' (f)) 02<TL<' o
and < 0 | Foit
(v) - { 2 r23 (D(rg () + 0y (7)) 55
Now

sappose the two hardware derectors can both te modeled as impulse

: 3 g = AR
jetcetors, one with a det<c'ion lelg, of t, seconds and ‘the

t. sccond delay. It then follows from equation 16, that:

g;'(7) ocr<ty
gy (1) =
1i=58 3 (I'Ph)gi'(') <7< 5
(l-kh) (.L—i-sj & iy b s b s gl
INAL'P
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3

ty
g (r) =1 '; PJ-[ gyt (9) anf 4 (v - t))
= 0

3 tg
g (r) = (1 -P) 1-2 PJ/O gy' (n) anf 8(r - t5)
=1

with 8 (t) the Dirac delta function.

Suppose further that the isolation procedure associated with each of these
doteclors requires exactly vy seconds (i.e. hy (7) =8 (r - vr4), all 1), that
the amount of time needcd to test a spare is rg seconds, and that total recovery

iz possible il and only if the fault is both detected and isolated within 7, seccnds

> &

f its occurrence (i.e. ry (r,7') =1 -u(r +7' - r.) with u (r) a unit step

unetion: u (*) =0, v< O3 u () =1, *>0). Then, from equation 1i, we have::

w o«
Clk liPi' Pl|k/ i (7)/ 6(7' -k""d)[l-U(f'O' g _,r)] drdr
(e] o}

Ts . 'r -td- k’.
= ' pt1k
&}

Allhougn we could continue witn this example at the present level of zererality,

results are more reac'ly interpretable if we add some additional constreints. In

vartienlar,

P; = R Pl Po=P



6, = /2
v, - 31/2
v, - T/H
rg - /4

The above expression for Cjy then becomes:

-_-p(l-'z.'z_ P+_§%P2-u/9p3+_1181>l‘)

‘1 35
P(;&/’l—‘_fLP+£‘_1_.P2-_l_l_.P3* Ph)

T2 T2 T2

e
ml"‘

E oln e a3 -
Coq P/,(l —ég‘P+2P2-5/bp ¢%p)

B - B/3R3/E - ')5? P+P°-1/3F +1/36 Ph)

- P/6 (2 45 P 8 P . n p3 . 1 pl‘)

‘1 (o] (o) 3

= 2 L
. IEEY P . ¢ -
- 12 12 T 12

Chy = G2 = l'(l - 1} P)



Numerical values of these coverage coefficients are tabulated in Table U as

a runction of the probability P that any one of the detectors would by itself

eventually detect the fault in the absence of any competition.

o

.99
45
<9
.90

.30
B0

50

40
0

20

I

n

-

ny

P = n

d

C1k

2500
«2500
2495
2494
elheh
WP
2452
2443
2415
.2380
2327
.2193
208
1837
<1hkO

117X

Cok

1250
.1250
1242
1242
.1210
1209
.1172
L1171
1106
.1101
.1013
097k
0917
.0823
L0670

OshA

TABLE 4

COVERAGE COEFFICIENTS

0705
0647

.0Ls8
0361

Cux

..5h17
L5417
5408
5408
536k
5364
.5288
.5288
5067
5067
4350
k350
3267
3267
3817

1817
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0133
.0133
0279
0279
0597
<0597
1221
1224
1584
1584
1317

«1317

3 = C2/C*

1.0000

1.0000

0.9997

0.9989

0.9957

qraR

+9530



Several observations can be made concerning this particular example.
It will be noted, for example, that the hardware detector having the T/L-second
devection delay is generally the most effective device although its adventage
decreases with decrcasing P. The relative effectiveness of the software diag-
nostic programs is highly correlated to the frequency with which these programs
are run and is comparatively independent of the order in which they are scheduled.
These conclusions, however, are strongly influenced by the fact that the detection
and isolation procedures must be completed in a relatively short time in this

example for the recovery process to be successful.



V. EXTENSION TO THREE AND MORE MODES

The CARE II reliability model can readily be extended to include three
or more modes of operation although the complexity of the resulting analytical
expressions increases correspondingly. (The CARE II coverage model allows
coveraze to be determined as a function of the mode of operation, so it already
is sufficient to model an arbitrary number of modes.) This increased complexity
is due in part to the fact that two or more mode changes are now possible and
in part to the increased number of ways in which this sequence of mode changes
can be instigated. (E.g. & spares depletion in stage i could cause & change
f'rom mode 1 Lo mode 2 followed by a spares depletion in stage J causing a
deprencrat.ion to mode 3 with both 1 = j and 1 £ ) as distinct possibilities.)
Nevertheless, the appropriate reliability expressions are straightforward

extensions of these described in Section II.

Consider first the case of three modes. In analogy with the category
two and category three failures defined earlier, let a category three failure

te redel'ined as a failure that, by itself, prevents operation in mode 1 or

2 but not in mode 3, and let a category four failure be one precluding all
vopation (i.e., & ingle-point failire for the three-mode system). Then
tne reliatility off he three-mode configuration can ce written:
oX: T ,
R(e) = (R (8) + Ro(t) + Ry(t))e ~Ab (18)

with Ry(t) and Ry(t) exactly as defined in Section II, R3(t) the probarility

tnat the system survives until time t having degenerated to mode 3 sometime
-Aut
rrior to t, and e Ay the probability that no category fow faiiwes, occurring
&L & rue A, failur<s per unit time, have taken place by time t.
wl WAL' -ty -
Pogp ¢ Fa
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Since expressions for il-(t') and R,(t) heve already been derived it
remaihs only to determine Ds(t). To this end we observe that there are six

nm;mli; exclusive ‘c.tinoi'i;i of fault sequences that can result in a degen-
eralion to mode 3: (1) A fault in stege x causes degeneration to mode 2
and a subsequent faull in stage z causes degeneration to mode 3, with x £ z.
(#) 'The previous fault sequence takes place but with x = z. (3) A category
two fault causes dnpngﬂtion to mode 2 and & subsequent failure in stage x
causes degeneration to mode 3. (4) A failure in stage x causes degeneration
to mode 2 and a catoé;ry three failure causes degeneration to mode 3. (5)

A category two failure causes degeneration to mode 2 and a category three
failure causes deieneration to mode 3. (6) A category three failure forces
Lhe syslem to degenerate directly from mode 1 to mode 3. (It is implicitly
uassumed by this verbal description that the number of operational units re-
qulircd tor any stuge in mode 1 is at least one greater than that required for
operstlon Iln modé ) tor 1<). Thus, no single failure in any stage can by
itacll cause degeneration from mode 1 to mode 3. The expressions to be derived,
however, will remain valid even if this assumption is violated provided the

proper limiting conditions are observed.)

Let T31(t) denote the probability that the 1*" event itemized in the previous

paracraph actually takes place. Then:

6
R3(t) =Z 'r31(t) (19)
i=1

In order to derive cxpressions for the T31(t) terms, it is convenient to define

some additional terms analogous to those used in Section II. Specifically, let
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Uy ('1"2’t) =

2

J -
- (7 - T ) ~ag B =
Z Z Hxl(fl) GX2(r1 - J, 7? - 71)('2) (l e B o) 1 )j < ”x (,2 'l)'

X Ry3(i', t - 7p)

(20)
e (ry2 700 t) =
8 B-1 oy .
J =0 k=0

(21)
We (7107 1) - Hyy(ny) Hyp(ry, % = 1)) Rys(rp, t - 3) (22)
and let
S S, = J
X X
Sy =] h?y, S J =K kur
Sy (,l,'e ,t)— E E le( ,?1)( k ) (l-e x1) X X1
J=0k=0
k' K'- j
-3 Wit P ] Kt w J =1
xz: 2: Gx‘;(“’,;_)—'l)( i )(l-e X 1) X
j=01i=0
(23)
% N
. (7, = %) =8

al}iP=



)

These expressions denote the probability (density) that stage x survives

in mode 1 and until time ry, in mode 2 until time L2 and in mode 3 until

time t. They differ in that Ux('l,ﬂgat) represents the case in which the
first mode change is due to a depletion of spares in stage x itself,

Vx('l’ "5, t) the case in which x causes the second mode change, wx('l y "oy t )
the case in which it causes both changes, and 8,(ry »™,t) the case in which
neither of the changes is due to a spares deficiency in stage x. These
expressions are entirely analogous to those described in Section II. As there,
these expressions also assume that all spares not already known to be defective
are tested at each mode change. The terms H,,(7), G,,(i,7), R, (1, t) etc. are
as defined in Section II (the second subscript refers to the mode), and
Hyy(1,7) = Hy,(7) with S, replaced by 1. (When ¢ = 2 here, the coverage terms
become C,'' and 8,'', the double "primes" indicating that the mode 2 to mode 3
transilional values of these terms are to be used.) Again, as in Section II,
the "prime" on an integer indicates that this parameter is to be

incremented ac appropriate if active units are reassigned to the spares pool.
(B.g. in the expression for Ux('l, T2, t), i'=1 if units are not reassigned
and 1'=1 + Q.5 - Qu3 if they are. Similarly, k' =k + Q, - Qo in the
expression for Vx('l)72; t) if the active units of stage x are reassigned at
the time Ty and k' = k otherwise.) The parameter r, is also as previously
defined and r, i the corresponding term when the transition is from mode 2

to mode 3: r, = 0 if units are not reassigned; r, = Qs - Qx3 - 1 if they

are.

The probabilities T3;(t) can now be expressed in terms of these functions:

=43
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I wha?
T3,,(t)=3303z‘/;/; ylﬂlx sy('l"2’t)ux('1"2’t)e e
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t
'Pj‘,(t) - ¢\3 C3‘/; ? sy('l, fl,t) e ‘Aa'l = "A371 ary

e extension to four and more modes 1is straightforward but the resulting

expressions become correspondingly more complex. For four modes the reliesbility
assune:s the form

- + N
h(r) = (Ry(e) + R(t) + Ry(t)) e e Th51Y L e (25)

and f-r five modes

-y, *+ xs + ) ¢t '“5 +2g)

a(n)  (Ru(t) + Ra(t) + Ry(t)) e + Ry(t) e

Ll -



etc. The terms Rl(t), R,(t), and R3(t) are as previously defined. Tae
probability R, (t) involves twenty-two terms similar to the '1'31(t) terms just
defined but with many of these terms triple integrals; Rs(t) requires seventy-

three such terms many of which are quadruple integrals.

While the CARE II program could in principle be extended to include more
than two modes, it is apparent from the preceding discussion that the time
required to calculate R(t) for any particular set of parameters is an ex-
ponentially increasing function of the number of modes allowed. If additional
restrictions were imposed on the model, however, the time needed to complete a
computation could be brough* back to reasonable values. If, for example, it
could he establish:d that failures of category two and higher were sufficiently
unlikely to be ignored, the complexity of the computation could decrease dram-
atically. Only two of the six '1'31(t) terms required in the evaluation of R3(t),
I'or cxample,would remain; Rh(t) would involve only five triple integrals and
Rg(t) fifteen quadruple integrals rather than the seventy-three previously men-
tioned. In addition, the number of terms would reduce still further (and the
resulting terms wo :ld te simpler) if the number of stages comprising the comp-
uter system were r-stricted. (In the above discussion it was assumed that the
number of stages was at least as great as the number of modes minus one (i.e.
three stages in a i-mode configuration, etc.) If only two stages were allowed,
for example, the number of terms needed to evaluate Rs(t) would be reduced
further from fifteen to eight; and only one such term is required to model

a single-stage system.
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VI. CONCLUSIONS AND RECOMMENDATIONS

The CARE II program as it currently exists is an extremely versatile
tool for modeling the reliability of a dual-mode computer system. The computer
can be segregated into as many as eight different stages each with its own
coverage parameters, active and dormant failure rates, and its own complement
of spares. A mode change can result upon the exhaustion of spares in any
stage or from the inability to operate in a dual mode even when adequate units

are available at each stage (category two failures).

As discuseed in Section V, the extensioﬁ of this model to include systems
capable of operating in three or more modes is conceptually straight forward.
Unfortunately, the resulting computational time can become excessive unless
some restrictions are placed on the generality of the model. Several possi-

bilities were identified in this regard.

Two approaches suggest themselves for implementing this extended version
of CARE II (with or without these additional restrictions). The otvious approach
is to use the present CARE II to calculate Rl(t) and Ra(t) and augment it with
new subroutines to determine R3(t), R,(t), ete. The major difficulty with this
approach is tne excessi?e time required to evaluate the resulting multiple integrals.
(In general, an %-mode model involves (2-1)-fold integrals.) An alternative
approach using Leplace transforms to eliminate the need for any integration
appears promising. PFurther investigation is needed to determine the ease with
which the consequent inverse transforms can be evaluated ty computer and to
estimate the complexity of the resulting program as a function of the number

of modes in the reliability model.

In any event, the extended program would consist primarily of a subroutine
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for evaluating Ry(t) with i the maximum number of modes likely ever to be

required (e.g. 1 = 5). The terms Ri-l(t)’ Ri-a(t) could then be determined

by repeatedly using this same subroutine with appropriate substitutions.

.

That is, suppose a subroutine were written to calculate:

6

REles £

i=1
with the '1'31(t) terms as defined in equation 24. Then:
1 1 -x t
Ry(t) =(T31' (t) + Tyy' (t))e ™3

where T3y ' (t) = T3y (t) with E V,(ry572, t) replaced by Sy('l’ *os t)8(ry - -
z

Similar substitutions would yield Rl(t) and the desired result would te obtained

after three (or,in general, 1) successive iterations using this same subroutine.

UT=-



The recursion

m t = = =
G(l*l,t)sZ[m“G(i,')(l-e.‘").-ie-”'c‘.-iem’(t )dv (z1]
i=0 s

follows directly from the definition of G(i,t). That is, exactly m + 1 spares are
used by time t if a faeilure occurred in the infinitesimal time interval (r,r+ dr)
(an event having probability KQu .ir ) s if exactly i spares had been used up to

that point (G 5, v)), if the first m - i1 spares tested are def‘ective(( )
but the (m - 1 + 1)t spare is operational (e™"), if recovery is possible under
these conditions (C8 ™ = 1) and if the system survives for the remaining t - r
units of time without any additiomal fatlures (e ¥ (¢ ")). Integrating the
resulting probability density over all 7, 0<7<¢t, yields the conditional
probability that exactly m + 1 spares are used given that m - i1 + 1 spares

had to be tested during recovery from the last failure in that interva.. Since,
for eny m 2 O, 1 must be an integer in the range O£ i€ m, since these ev=nts

are rmu-ually exclu:ive for different integers i, and since at least one fallure
must have occurred for any m»0O, the sum of these probabilities over all i,

0€i€m, must equal. G( m+ 1, t).

Now assume that equation (5) 1s true for all G(i, t) with 0€iSm., Then
substituting this expression for G(i, t) into equation (27) and rearranging
termns, we ottain:

3m+1,t)=

m t
M+i-l m = = i 1.
_\'QuCE ( 1 )0[ (I-A_‘")m:“' ._JCKO#
0
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Thus, since equation (5) is obviously true for i = 0, it is also true,

by recursion, for all integers i >0.
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