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\'.'hc purpose of this paper is to summarize
results cbtained fcr the acdartive control of tae
F-8C aircraft usirc the so-called MMAC method.
The discuss.cn ;ncl..es the selection c¢f the per-
formarce criteria for both the lateral and ‘re
longitudinal dyrarics, the desigr of the Kalman
filters for i1ffescnt {lig..t conditions, the
*identif.caticrn” aspects of the design using
hypcthesis testing :deas, and the perforwance of
the closed loop adaptive s‘/s".t!"..'\

. & d ¢ yrre
1. Introduction

The purpose of this paper is Lo presen”
preliminary results on a swudy which involves
the application cof advanced adaptive control
technigues to the desigrn of a stability augmen-
tation syster ir both the longitudinal and
lateral dynarmics of the F-8C aircrafet. MNASA has
beern using the F-8C a.rcraft as a test vehicle
for evaluating different digital-fly-by-wire
(DFBW) contrcl technigues, using the IBM AP-101
as the airborne ccrputer We remark that the
eventual imglerentation ¢! the control algorithms
on the specific a.:rorne computer has had a major
impect upon the yhilosophy adopted for the design
of the control syster in view of the abvious sto-
rage and real-tire computational constraints. In
addition, the desi.n was crucially dependent upon
the sensors that could be utilized in the sense
that sensors that utilized external! aerodynamic
measurements, e.g., airspeed, altitude, angle of
attack and sideslip vanes should not be erployed
in the candidate design. Thus, the design guide-
lines required that the sensors asrociated with
the adaptive contrcl system should he limited to
accelerometers, rate gyros, and rerheos attitude
sensors (although the latter werc deemed undesir-
able in view of their errors wher the aircraft
underwent severe pilot induced mineuvers).

*The theory and initial algorichm development

associatgd with this study were developed with
suppory’ from NASA/Ames Research Center under

grant ‘NGCL-22-009-124 and from AFOSR under grant
72-2273. The specific application to the F-8C

was supported by xA Langley Research Center

under grant. NSG-1

From the viewpoint of modelling, it is ab-
vious tha the dynamic state equations of an air-
craft involve nonlinear differential ejquations
(see Etxin [1]). How wver, the information given
by NASA Langley Fesear h Center (LRC) tc the MIT/
ESL team consisted in the specification of the
uncoupled, linear time-invariant open-loop
longitudinai and lateral dyramics of the F-8C
aircraft associated with equilibrium fliqght.
Table I gives a list of the flight conditions
that were available for the design. 1hus, the
general structure of the ~guations were of the
form #(t)=Ax(t)+Bu(t). The numerical values
of the elements of the A and B matrices can be
found ‘> a report by Gera (2], based upon wind
tunnel tests, and a report by Wooley and Evans
[{3), based upon lincarization of the nonlinear
dynamics employed by NASA/LRC for their nonlinear
simulation of the F-8BC aircraft. We rerark at
this point that the numerical values for the 2
and B matrices given in (2] and [3] are not iden-
tical reflecting the fact that different sources
were used to obtain them., The design reported in
this paper is based upon Gera's report [2].

The fact that the 16 flight conditions span
an extremely wide envelope for operating the
aircraft, with drastic changes in the open-lcop
dynamics, makes the fixed-gain design of the con-
trol system unrealistic. Furthermore, handling
qualities requirements, such as the C* criterion,
indicate that pilots desire different closed-loop
dynamics at different flight conditions. Thus,
some sort of “"adaptive®™ gain-scheduling control
system was required. However, straight-forward
gain schedui.ag based vpon quaniities such as
velocity, altitude, and dynamic pressure was not
permitted in view of the sensor restrictions men-
tioned above. Hence, the adaptive control system
had to .. designed in a novel way.

An additional restriction on the design was
that the sensor noise and wind disturbances had
to be incorporated. This led to the need for
employing Kalwan filters, with constant coeffi-
cients because of the computer memory limitations.

The above problem overview sets the ground
for the specific adaptive control technique which
we selected to investigate in great detail. We
call the adaptive control technique the Multiple-
Model-Adaptive-Control (MMAC) method, and we shall
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discuss 1t in more detuil In Section S of this
paper. It is only one of several techniques
based upon developments in modern control theory
(see the survey article by Athans and Varaiya
(4])) and it has 1ts origins in combining
hypothesis-*esting and stochastic control ideas
(see references (4] to [8)]) It was selected for
this study because of 1ts potential promise in
academic examples [%)-[8], and Lecause its memory
and real-time computatiorial requirements could be
readily assessed in view of its non-iterative
nature.

As explained .n rore detail in Section 5,
the MMAC method requires that a full blown steady
state Linear-Quadratic-Gaussian (LQG) controller
be implemented for each flight condition. This
rnecessitated the development of suitable quad-
ratic performance criteria for both the longitud-
inal and the lateral dynamics; these are
described for the continuous time case [9) in
Sections 2 and 4, respectively. For implementa-
tion, one needs & discrete time LOG controller
[{10). This :s described :n Section 4, together
with the discussio~ cf sensor errors. The MMAC
algorithn is described in tection 5. The simula-
tion results using the nonlinear F-8C dynamics
are described in Section f. Section 7 presents
the major conclusion of our studies so far.

We remark that in this paper we shall only
focus our attention to the regulation aspects of
the problem, i.e., return to equilibrium flight
from some initial conditions and in the pre-
sence of stochastic wind disturbances. In our
study we are considering the proper way of incor-
porating human pilot inputs for beth the longi-
tudinal and lateral case. However, we shall not
present in this paper any of the approaches and
prelimirary results for the pilot input case.

2. Longitudinal Dynamics
2.1 Introduction

In this section we present an overview of
the LQG philosophy adopted for designing the reg-
ulator for the loncitudinal dynamics. Attention
is given in the development of the gquadratic per-
formance index and the subsequent model simplifi-
cation using a short period approximation. The
main concept that we wish to stress is that the
quadratic performance criteria employed changed
in a natural way with each flight condition. The
surprising result was that the short period poles
of the resultant longitudinal closed-loop system
were characterized for all flight conditions by
two constant damping ratios, one associated with
all subsonic flight conditions and one associated
with all supersconic flight conditions.

2.2 The Longitudinal State Description

Because of a rate constraint saturation on
the elevator rate, the control variable selected
was the time rate of change of the commanded
elevator rate (8,.(t)). This was integrated to
generate the actual commanded elevator position

"IISJI'IOI/H.'!'A. LTy SeLEs
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{6y (t)) which was introduced to a first order
servo with a time conutant of 1/12 seconds to
pouu the actual deviation of the elevator

(t) from its trimmed valus. The elevator was
I‘a related to the four “"natural” longitudinal
state variables namely pitch rate, q(t) (rad/sec),
velocity error vit) (ft/sec), perturbed angle of
attack from its trismed value, alt) (rad), and
pitch attitude deviation from its trimmed value
A(t) (rad), [2). In addition, a wind disturbance
state wit) was included (see Appendix A). Thus
the state vector x(t) for the longitudinal dynam-
ics was characterized by seven components

1‘(t)elq(t). vit), a(r), 6(t), 5.(!).
G.C(t). wit)]

(2.1)

and the control variable u(t) was the commanded
elevator rate

A
2.20 wivr=d (o)
This led to a linear-time invariant characteriza-
tion for each flight condition of the form
(2.3) x(t)=A x(t)+Bu(t)+L.E(t)
where f(t) was zero mean white noise, generating
the wind disturbance and accountine for random
actuator errors. The elements of A; and L;
changed with each flight condition while

(2.4) B=[0000010]"

2.3 The longitudinal Cost Functional

In order to apply the standard steady state
1QG procedure [9) a quadratic performance index
has to be selectcd. The general structure of the
index was

(2.5) =X () x(t)+u (IR u(E)AE

Note that the weighting matrices Qi' !‘ had to be
different from flight condition to flight condi-
tion reflecting in a natural way that the pilot
wants different handling qualities as the speed
(an? dynamic pressure) changes.

In the initial design it was decided that
one should relate the maximum deviations of

o pitch attitude, fmax

o pitch rate, gmax

© normal acceleration, a, max .

© maximum commanded elevator rate, 6“.-:
resulting in the following structure of
the performance criterion

50t gy et | Sec!®
(2.6) J, !u T_" h# m#xz:;dt

The normal acceleration a,,(t), in g's, was not
used as a state variable. However, it is linearly
related ¢o some of the longitudinal state vari-
ables according to the formula

2.7 a“(e)-"f‘}. v(e)oxm(e)mc.(t] in g's

e e e o - _p - TP ——
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Ve being the equilibriun speed. The constants
k3, k3, ky can be calculated from the open loop
A matrices, and hence change with flight condi-
aon. Effectively the structure of the criterion
(2.6) implies that if at t=0 the maximum values
of acceleration, pitch rate, or pitch attitude
occutred, then one would be willing to saturate
the elevator rate to remove them, For the pre-
liminary desiyn the following nuserical values
were selected (vith the help of T. Elliott and
J. Gera)

(2.8) a =69's, gqmax=10q9/Ve, Qm-QIv.on
N =0.435 rad/sec

where ay) is the (3,3) element of the open loop
longitudinal l_t‘ matrix.

Roughly speaking, this criterion means that
one 1s willing to saturate the c¢levator rate
(0.435 red/sec for the F-8C) 1f a normal accel-
eration of 69 was felt, or a pitch rate equiva-
lent to 10g's, or a pitch .rror which if
translated to angle of attack would also generate
a 6g normal acceleration.

The above numecrical values were translated
into the appropri«te Q{ matrix (non diagonal pos-
itive semidefinite) which changed frem flignt
condition to flight condition, while R =P=1/
(0.435)7 for all flight conditions. mnco, the
resulting LG problem could be solved using
avallable computer subrou®ines (lil].

2.4 Reduced longitudinal Design

The design was modified for two reasons.
First the gain from the velocity steste variable
v(t) was extremely small. Second, it was decir-
able to avoid using the pitch sensor. The pitch
0(t) is weakly observable from the system dynam-
ics so that even if a Kalman filter was used in
the absence of pitch measurements, large estima-
tion errors would be obtained which would adversly
affect the performa, the control system since
there is significant .cew.ack from the estimated
pitch attituds. At any rate, since a pilot would
fly the aircraft he would be able to control
pitch himself.

This led us to eliminating the velocity error
v(t) and pitch O(t) from the state equati®ns and
obtaining the "short period" apprcximation (5
state variables). Since pitch did not appear the
criteria (2.6) was modified to

2 2
a “(t) 2 6% (v)

(2.9) 32 - ._";_.Sri_:_l‘ ec dat
-t nzmax 3 ecmax

and the resultant LOG problem was resolved.
2.4 Sumary of Results

From the viewpoint of transient responses to
the variables of interest (normai acceleration,
pitch rate, anqle of attack) the transient re-
sponses to initial conditions were almost identi-
cal for both designs. Thus, the short period
motion of the aircraft was dominated by the rela-

tive tradec!f between the max:imum normal accelera~
tion, a, oy &nd mexisum pitch rate, . This
is consistent with the C* criterion llZl.

When the short-pericd closed-looy poles were
evaluated for both designs using the numerical
values given by 15..), we found the unexpected
1t that the ratio was constant (0, 48&)

constant (0.361) for all the supe: sonic fligrt
conditions. The closed-loop naturally freguency

increased with dynamic piescure.

Since no pole-placement technigues were em-
ployed (i.e., the mathematics were not told to
place the closed-loop poles on a constant damp-
ing ratio line), we constructed a tradeoff by
changing (Jecreasing) the maximum pitch rate

. This would increase the pitch rate penalty
in the cost functional, and one would expect a
higher damping ratio. The following values of
Qmax Were employed

(2.10) q___=10g9/Vy, 8g/Ve, 69/Ve, 49/Vs

Once more the constant damping ratio phenomenon
was observed, i.e., for each value ol Apax the
short period closed loop poles for all u‘somc
flight conditions fell cn a constant damping ratio
line, and similarly for all supersonic flight
conditions. This was further verified by consid-
ering an additional 13 different flight condi-
tions.

The numerical results are presented in Table
II. The reason for this regularity of the solu-
tion of the 1Q problem is under investigation.

3. Lateral Dynamics
3.1 Introduction

In this section we present the parallel
philosophy for the development of the control
system for the lateral dynamics. In this case
the development of a performance criterion was
not as straight-forward as in the casc of the
longitudinal dynamics. For an extensive discus-
sion see the 5.M. thesis by “reene [13).

3.2 The Lateral Dynamics State Model

The control variables selected for lateral
control were

(3.1) wu, (t)-s.c(t)-co-n«hd aileron rate
(rad/sec)

(3.2) wyit)=d _(t)=commanded rudder rate
rc
(rad/sec)
50 that the control vector is defined to be

(3.3) w')=[u(t) wp(z))

The sesvomechanics were taken into account. The
commanded aileron and rudder rates were integrat-
ed to generate the commanded aileron (§,.(t)) and
rudder (§,..(t)) positions, respectively. For the



F-8C at-craft the commanded aileron rate 6“,(!)
drives a first order lag servo, with a time con-
struct of 1/30 seconds, tc generate the actual
atleron position & (v (rade).

The commanded rudder rate &, (t) (rads) drives
a first order lag servo, with a time constant of
1/25 seconds, to gene:ate the actual rudder posi-
tion 8, (t) (rads). The actual aiieron and rudder
positior, ¢, (t) and ¢ (r), then excite the four
"natural” lateral ¢ynarics state variables, name-
ly roll-rate j(t) (rad sec), yaw-rate r(t) (rad/
sec), sideslip angle rit)(rad), and bank anjle
¢(t') ‘rad). In adcition, a wind disturbance state
vari ble wit), see Appendix 2, drives the equa-
tions in the same way as the sideslip variable.

Thus, the state equations for the lateral
dynamics are characterized by a Y-dimensional
state vector x(t) with components

(3.4) x"(e)=(p(t) rie) £(e) 3te) &, (v) 6 ()

6 (t) & () wit))
ac e

and the overall lateral dynarics take the form

(3.5) x(t)=A xit)eh u(t)-L L(t)

- a4 - -3
where the zerc mean white noisc vector £(t) gen-
erates the wind disturbarce and compensates for
modelling errors. OUnce rmore the matrices Aj, Lj
change with flight conditions (2], [13) while

.fooooco100
(3.8 5'[000000010]

3.3 The Lateral Cost Functional

The lateral performance index used (after
several iterations) veignted the following
variables:

o lateral acceleration, a (t) (in g's)
o roll rate, p(t) (in rad/sec)
o sideslip angle, 2(t) {in rad)
o bank angle, ¢(t) (in rad)

vs .
o commanded aileron rate, z.c(t)
o commanded rudder rate, relt)

The lateral acceleration, a_(t), is not a state
variable. However, for sma!l perturbations from
equilibrium flight, it can be express=d as a
linear comtination of the lateral state variables
and the trim angle of attack, ap, by the following
relation

(3.7 a ()= ((Ki-a0)p()+ (Kas1)x (t) +kaBle)
0k~0(t)0k56r(t)l-¢-(t)

where the constants kj,..., ks can be found from

the lateral open loop A; matrix, and change with

the flight condition.

The following structure of the quadratic
performance criterion was established:

e pli) L Bl ? (e
(3.8) g _ = . g|—— . p—-L *
1AT. .y-u P’ max max .-
‘: gn
ac(t) 5 reit) at
32 ‘l
acmax rcoax

Th: following maximum values were used
Maximum lateral acceleration, u,-..-O.?Sq'-

Maximum roll rate, p_.—‘—v’- (a,,~-as)

V10g

Maximum sideslip angle, F

31
-n'“ %33

V109
Maximum bank angle, 0_“-0.0 rad (=45°)
Maximum cosmanded aileron rate=1.63 rad/sec
Maximum commanded rudder rate=1.22 rad/sec

See [13]) for an extensive discussion of how this
performance criterion was derived; aj; and a;;
are obtained from the open loop A; matrices

There is no nztural way of arriving at a
simplified model for the lateral dynamics, as was
the case with the longitudinal dynamics. Hence
the bank angle cannot be eliminated. Although a
bank angle sensor was deemed undesirable, the
weak observability of the bank angle caused large
state estimation errors, using Xalman filters, in
the bank angle and the sideslip angle if a bank
angle sensor was not included. For these reasons,
it was decidsd to employ a bank angle sensor and
to penalize bank angle deviation, because bank
angles larger than 20° can introduce significant
nonlinearities through trigonometric functions
.

Once more, the 1Q can be solved. Notice that
the use of the performance criterion (3.8) results
in a state weighting matrix (non-diagonal)
which changes vith flight tion.

3.4 Summary of Results

The above performance criterion gave reason-
able responses for a variety of initial conditions.
Its main characteristic is to reduce any lateral
accelerations (by forcing the aircraft to go in
coordinated turns) and to null out bank angle
errors in a slower manner.

Once more we observed a constant damping
ratio ( .515 ) for all supersonic conditions and
a relatively constant damping ratio ( .625 ) for
all subsonic flight conditions. No additional
tradeoff studies were conducted by changing the
weights in the cost functional.



4. Sensors, Yalman Filters and
Discrete LQG Compensators

4.1 Introduction

The digital implementation of the control
system requires the discrete-time solution of the
QG problem [10]. As we shall see )n the next
section, the MMAC approach requires the construc-
tion of a bank of 1QC controllers, each of which
contains a cdiscrete Kalman filter (whose resid-
uals are used in probability calculations and
whose state estimates are used to generate the
adaptive control signals). Hence, in this section
we present an overview of the issues involved in
the design of the 1QC controllers based upon the
NOisy sensor measurements.

4.7 The Sampling Interval

A sampling rate of 8 measurements/second
was established. Such a slow sampling rate was
selected so as to be able to carry out in real
time the multitude of real time operations re-
quired by the MMAC method.

4.3 Sensors and Noise Characteristics

As explained in the introduction, the guide-
lines for design exclucded the use of air data
sensors. Thus, measurements of altitude, speed,
angle of attack, and sideslip angle were not
available. After some preliminary investigations
it was decided that sentcors that depend on trim
variables (elevator angle and pitch attitude)
should not be used so as to avoid estimating trim
paramcters. Table III lists the sensors and their
accuracy characteristics that were used in this
study. We stress that the sensors measure the
true variables every 1/8 seconds in the presence
of discrete-zerc mean white noise with the stan-
dard deviations given in Table III.

Finally, we remark that in this study we
assumed that all sensors were located at the C.G.
of the ircraft.

4.4 The Desijn of Kalman Filters

For each flight condition the steady-state
discrete-time Kalman filter, with constant gains
was calculated, for both the longitudinal
and lateral dynamic models. The level of the
plant white noise associated with the wind dis-
turbance generation was selected so that we
assumed that the aircraft was flying in cumulus
clouds. (See Appendix A.)

The decision to use steady state constant
gain Kalman filters was made so as to minimize
the computer memory requirements.

Finally, we remark that in view of the slow
sampling rate, the continuous time filtering
problem was carefully translated into the equiva-
lent discrete problem [ 13) to [15].

The constant covariance matrices of the
Kalman filter residuals, denoted by Sjyon, SjiraT

for the longitudinal models and lateral models
were computed for each flight condition denoted
by i. As we shall see these are impoctent in the
generation of the MMAC variables.

4.5 The Design of the Discrete LOG Compensators

Through the use of the separation theorem ane
can design the discrete LOG compensators. This
implied that the 10 problem defined in continuous
time in Sections Z and 3 had to be correctly
transformed into the equivalent discrete-time
problem in view of “he slow measurement rate.
Effectively, we heve used the transformations
given in referen . {11), [13) to [1S).

4.6 Recapitulation

For each flight condition, indexed by i, a
complete discrete-time, steady state, LOG compen-
sator was designed for both the longitudinal and
lateral dynamics. Each compensator generated
every 1/8 recond the optimal contrcl, namely the
optimal commanded elevator rate ec(t) for the
longitudinal amics, and the optY-{l ccrmanded
aileron rate €, (t) and rudder rate ¢  (t), based
upon the noisy measurements of the appropriate
sensors (See Table III) every 1/8 second.

Because of the appropriate tra.sformations
of the continuous time LQGC problem tc the discrete
one, we noted no significant degradation in per-
formance at this low sampling rate.

The need for adaptive contrcl is obvious be-
cause if we assume that the aircraft is in flight
condition i, but we use the LOG compensator ob-
tained for flight condition j for feedback con-
trol, this mismatching may generate either an
unstable system or, often, a system with degraded
performance .

5. The MMAC Methcd
$.1 Introduction

In this section we present the basic idea
behind the MMAC method, and discuss how it was
wead in the F-8C context. In particular, we
demonstiate how the information generated by the
lateral and longitudinal sensors is blended to-
gether. Finally we make some remarks associated
with the MMAC method and its general applicability
to the design of adaptive control systems.

5.2 The 3Basic Idea

Surpose one has N linear, discrete-time
stochastic time-invariant dynamic systems, indexed
by i=1, 2, ..., N, generating discrete-time
measurements corrupted by white noise
Suppose that at t=0 "nature" selects one of these
systems and places it inside a "black box." The
true system generates a discrete set of measure-
ments z (t). The objective is to apply a control
signal y (t) to the trve model.

e e il L




The version of the MMAC method employed is
o8 follows: one corstructs a discrete-time steady
state QG controller for each model; thus, one
has a bank of N LG compersators, As shown in
Figure 1, ecach LQC compensator is driven by the
@ctual control applied to the system, uit), and
driven by the actual noisy measurement wvector,
2(t). There are two signals of interest that
each 1QC compensator gererates at time t

(1) the control vector y (t), which would be
the optimal control 1f indeed the system
in the black box (viz. aircraft) was
identical to the i-th model

(2) the residual or innovations vector
Iy (t) generated Ly each Kalman filter
(which 1s insicde the i-th 1QG compensator)

It turns out that (see raferences [(4), [S),
[6), (7], [B) for example) that from the residuals
of the Falman filters one can recursively generate
N discrete tire sequences dencted ty ¥  (t), i=],
2 .., N, t=0, 1 2, ..., vhich under ‘uttablc
assumptions are the conditicnal probabilities at
time t, given the past measurements z(1), T<t
and controls u(J), C<t-1, that the i-th model is
the true one.

Assuming then that these probabilities are
generated on-line (the formula will be given
later) ané given that each LQG compensatovr gen-
erates the control vector y;(t), then as shown in
Figure 1, the MMAC method computes the adaptive
control vector u(t), which drives the true system
(viz. sircraft) and each of the Kalman filters
inside the LG compernsators, by probabilistically
weighting the controls u; (t) by the associated
prebabilities, i.e.,

N
(5.1) 2(!)-!‘:-11"(“2‘(0

$.3 Calculation of the Frobakilities P‘(t)

We assume that at t=0, i.e., before any
measurements are obtained, one has a set of prior
probabilities

N
(5.2) P (0), ..., P (O}, P (0)>0, I P (0)=1
N 1 - =l i

that represent our “"best guess” of which model is
indeed the true one.

In our version of the MMAC me.hod we have
available t'.e steady-state (constant) covariance
matrix S; of the residuals associated with the
i-th Xalman filter. These N residual covariance
matrices are precomputable. lLet r denote the
number of sensors; then we can precompute the
2 scalars

Brisi® -1/72
(5.3) B, *=((2m)"det 5]

From the residual vector rj(t) generated by each
Kalman filte: we generate on-linc the N scalars

. o
(5.4) li(t,QL‘ (:)g‘ -‘1(')

Then the probabilities at time t, P (), i=1, 2,
vsss N ave computed recursively from the probabil-
ities at time t-1, P;(t-1;, by the formula

P, (t-1) "'QQ(--J(N/I)

L
I », (¢-1)8 *expl-m (t)/2)

with the iritial probabilities, P _10) given. It
has been ciaimed that [5), 16), (8], under suit-
able assumptions that asymptoticaily the true
mode]l is identified with probability 1.

(5.9 " (c)

5.4 Important Remarks

1) It has been shown by Willner [8), that
the MMAC method, i.e., generating the control via
(5.1) is not optimal (it is optimal under suitable
assumptions for the last stage of the dynamic
programming algorithm) .

2) The MMAC algorithm is appealing in an ad-
hoc way because of its fixed structure and becaume
its real-time and memory requirements are readily
computable.

3) In the version uscd in this study, because
we use steady-state Kalman filters, rather than
time-varying Kalman filters, the
P, (t) are not exactly the conditional

obabilities.

4) We have heen unable to find in the cited
literature a rigorous proof of convergence cf the
claim that indeed the probability associated with
the true model will asymptotically converge to
unity.

S) From a heuristic point of view, the re-
cursive probability formula (5.5) makes sense with
respect to idemtification. If the system is sub-
ject to some sort of persistent exitation, then
one would expect that the residuals of the Kalman
filter associated with the correct model, say the
i-th one will be "small,” while the residuals of
the mismatched Kalman filters (3¢i, §=1, 2, ...,
N) will be "large.” Thus, if i indexes the
correact model we would expect

(5.6) l‘(t)“.’ (t)
If such a condition presists over several measure-
ments, the analysis of (5.5) shows that the
"correc!:" probability P; (t) will increase while
the "mismatched model"™ probabilities will decrease.
To see ‘his one can rewrite the formula (5.5) as
follows

all i

N
5.7 P, (t-1)= - =
(5.7 P (t)-P, (t-1) [:1”“ 1)B3exp{-m, m/z)] l

P, (t-1) [u-rt (t-2)) Bgexp(-m, m/zl]

-’: : 5 (t-l)l;up(-’ (t)/2)

Under our assumptions




(5.8) up(--‘m/n‘:n

(5.9 .-p(--)m/z;'ao

Nence the correct probability will grow according
to

lf‘(bl)ll-l"(t-llﬁ.'
(5.10) r.(n—rlu-n‘ M >0

LrF (t=1)8_ *expl-m_(t)/2)
yul ) )

which demonstrates that as I’y (tj*l, the rate of
growth slows Jown.

On the other hand, for the incorrect models,
indexed by /i, the same assumjptions yield

-p (:-nv‘(z-nal'
(5.11) P (0)-P (t-1)% d <0

N
L Pk(t-l)ﬁioxp(-ll(t)/Zl
k=1

$0 that the probabilities decrease.

The same conclusiors aold 1f we rewrite
(5.7) in the torm
N
(5.12) P _(2)-P (z-u-[ I P (t=1)Brexpi{-m (:)/2}]'*
i 1 je1 ) ) b)
- P - 1.
[p‘(z D LR “(‘; exp{m, (t)/2}

bl gt
-a)-.-ﬂ--)(:)/z})]

The above discussion points out that this "identi-
fication” scheme is crucially dependent upon the
regularity of the residual behavior between the
"matched” and "mismatched” Falman filters.

(6) The “"identificat.on" scheme, in terms of
the dyramic evolution of the residuals will not
work very well if for whatever reason (including
errors in the selection of the ncise statistics)
the residuals of the Xalman filters do not have the
above reqgularity ascsumptions. Tobe specific, sup-
pose that for a prolonged sequence of measurements
the Xalman filter residuals turn cut to be such
that

(5.13) my(t)em; (t)-...-n'(t)

Then

(5.14) exp(- -1(:)/z)= a for all i
Under these conditions and (5.12), we can see

that

P (t-1) L P (t-l)(Bt‘-Bj')c

(5.15) P (0)-p, (-1~ gpi )
N

I P,(t-1)B,%
j=1 b b}

ot bt o at 3 s i it i atats “ » .

"(t-l) I (l"-l,'n’u-n

B
Lp (t-1)8,*
j=1 b b}

Suppose that it turns out that one of the £ *'s,
and to be specific B,*, is dominant, i.e.,
(5.16) d.->0" all ik

In this case, the FHS of eq. (5.1%) will be nega-
tive for all ik, which means that all the P (t)
will decrease while the probability P, (assocCiated
with the dominant B,*) will increase. This be-
havior is very important, expecially when one lies
to the mathermatics, and it has not been discussed
previously in the literature to the best of our
knowledge.

5.5 Application to the F-8C

The MMAC method can be used in a straight
foerward manner using either the longitudinal or
lateral dynamics of the F-8C aircraft since we
have designed both longitudinal and lateral LQC
compensators for the available flight conditions,
as we remarked in Section 4,

On the other hand, we obtain independent
information from the longitudinal and lateral
systems for the same flight condition (i.e., mode]l)
index~d by i. Hence, it should be possible to
blend this comhined information into a set of sin-
gle probabilities.

Under the assumption that the longitudinal
and lateral dynamics are decoupled K~P Dunn de-
rived the following relation.

et E‘ LON and !1 LAT denote the residual
covariance matrices of the Kalman filters, for
the i-th flight condition, associated with the
longitudinal and lateral dynamics respectively.
Define

TLON -1/2
(5.1 B, =lm &N, o

r -
(s.18) 8+ =l(m 20s V2

i LaT =i LAT

where r and r are th: nurber of longitudinal
and 1.:.‘%1 ..-m Let r; (t) and r; ;an(t)
denote the Kalman filter residual vectors at time
t, for flight condition i, associated with the
longitudinal and lateral dynamics respectively.
Define

- -1
(5.19) u, lue-r-i 1551 Lowts Low®

(5.20) m )

A - - |
AT 5 war S ks war®
Then the overall probability that the aircraft is

in flight condition i at time t, is generated by
the recursive formula



R
LON" LLAT

- 72) -
exp m w2 len -luf(t)/ﬂ]/
N

[,E;' (8-1183, 003 0

- e .
(5.21) r‘(n [.'lu nn‘

- ) { -
exp I’w(t)IZ,clp( -)u,m/z)]

The £* dominance effect discussed above now refers
to the relative magnitude of

| J
(5.22) 8,°%5, % owfi’1at
Obviously tne method should be expected to work
well when both longitudiral and lateral Kalman
filters are correctly designed so that the resid-
uals of the "matched” ¥alman filters are smaller
than those of the "mismatched” ones.

$.6 Discussion

It should be 1mmediately obvious, that if the
MMAC mcthod i1s applied for the control of the F-8C
aircraft (cr any cther physical system for that
matter), one viclates a multitude of theoretical
assumptions. The effect of these upon the perform-
ance of the overall system 1s difficult to estab-
lish on an analytical basis, because the MMAC
system, in spite of 1ts simple structure, repre-
sents an extremely nonlinear system, MHence, one
has to rely on extensive simulation results in
order to be able to make a judyment of the per-
formances of the overall algcrithm.

Since the aircraft never coincides with the
mathermatical models (recall the discussion on the
differences in the data given in references [2)
and (3], the P;(t) are not truly postericr proba-
bilities. FRather they should be inte '‘preted as
time sequences that have a reasonable physical
interpretation. Hence, in our opinion, the eval-
uation of the MMAC method solely by the detailed
dynamic evolution of the Pj(t) is wrong. Rather
it should be judged by the overall performance of
the control system. In the case of the regulator,
this is easy since ore can always compare the
response of the MMA. system with that which was
designed explicitly for that flight condition and
compars the results.

We remark that such a comparison is much more
complex when one attacks tie case of pilot inputs
which result in several commanded maneuvers.

These aspects are still under investigation,

There are several unresolved problems as yet
which pertain to the total number of models to be
used at cach instant of time, how these models are
to be selected, how they should be scheduled in
the absence of any ai: data, and how one can arrive
at a final design that meets the speed~-memory lim-
itations of the IRM AP-101 computer whicii is used
in the NASA F-8C DFBW program.

We hope that some of the simulation results
and discussion presented in the sequel can

contribute some understending upon the MMAC methad
as & design concept .

w Simulation Results
6.1 Introduction

A variety of simulations have been done using
both a linear model and nonlinear model of the
F-8C aircraft, These simulations results are ty-
pical. They are selected such that they can des~
onstrate

1) the speed of identification of the
MMAC algorithm;

2) the overall performance of the MMAC
system; and

3) the B* dowinant behavior discussed in
Section 5.

Some remarks about the MMAC method are given in
the conclusions.

6.2 The Simulation Results

The simulations were conducted &t a high al-
titude (40,000 ft), supersonic (Mach ! 4) flight
condition (F/C #i9 in Table I). No plant noise
was introduced. All models available in the MMAC
contreoller were given equal a priori probabilities
being the true model.

Experiment #1:

Tnis is a set of linear simulations with two
degree sideslip angle ( a B-gust) at time t=0.
No sensor ncise was introduced and the Kalman
filters were set at the correct initial conditions.

Figure 2 shows the probability changes while
the set of models available in the MMAC controller
were F/C 8, 14, 18, 19 and 20. Note that the
true filght condition was included in the con-
troller. The correct model is initially chosen
with high probability within a very short period
of time (less than 1 sec.) and than switches to
another model slowly after a few seconds. Lateral
acceleration is removed within about one second,
while roll rate and sideslip angle are reduced to
szero almost as fast. With no noise perturbing the
system, the states of the .ystem have settled to
near zero after about five seconds. Thus the
residuals in all the mismatch stable filters
approach zero. In this case the B* dominant be-
havior discussed in Section 5 occurred. Figure 3
shows <‘he probability changes when the true model
(F/C #19) was not included (which was substitutsd
by 7/C #17). We observed the same B* dominant
behavior after about five seconds. The most impor-
tant point to note is that -csponses of the MMAC
system are almost idzatical. Figure 4 shows the
responses of iateral acceleration with and without
F/C #19 in the controller, respectively.

Similar results wer: obtained with other ini-
tial conditions. Howevs:i, the speed with which
the B* starts tc dominate varies grea.ly. For
example, with a roll rate initial condition, it




et Gty s

d much sconer. lowever, there is very
little degradation in the overall systes perfor-
mance .

Experiment 94

Thas is & set of ponlinear simulaticns with
an initial six degree anqgle of attack (ar a-gust).
Sensor noise was introduced and the Kalman filters
were set at zero initial conditions,

Fiqure 5 shows the (hange of probebilities
when the set of models available in the MMAC con~
troller were F/C 14, 17, 1%, and 20 and wher the
true flight condition (F'C 19 was included. The
probabilities are more active tnan those we have
seen in Experiment 1. It :: believed that the
fast variation of these yrobanilities 1g due to
8 combination of the tiansient response of the
syster and the noise sequences on the sensors.
Mowever, the true fligit condition is identifies
in about 1 second. The angle of attack returas
to its trimmed value «ithin about ! seconds, while
pitch rate and normal acceleration are reduced to
gero almost as fast. Ir this case the £* dominant
behavior onl, occurs for a very short period of
time. Because of the sensor noise, it is not
certain if the drifting of probabilities are
mainly due to the domirant [*., Figure €& shows
the probability changes when F/C 219 (true) was
substiiuted by F/C #l6 in the MMAC controller.
Again, the responses of the "MAC system are
almost identical. Figure 7 shows the responses
of the angle of attack with and without F/C #19
in the controller, respectively.

7. Conclus:ons

Based upon many simulations us.ng both a
linear model and a nonlinear model «f the F-8C
aircraft, there are several h.nds of probabilities
responses that one can guess Lefore simulation,
such as during the transient period the MMAC al-
gorithm tends to pick F/7's which are mismatch
stable while during the equilibrium condition the
§* dominant behav.or tends to occur. However, a
rigorous statement or the precise nature of the
probability responses 1s still an open question.
Other than the mode! identification problem, the
overall performance of the MMAC method system is
very good. Although poorly selected F/C's in the
bank of Kalman filters may degrade the performance,
the MMAC method seems to stabilize the system
quite well. The £* dominant problem is basically
the same problem as in most parameter identifi-
cation problems when there is lack of information.
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PROBADILITIES

Figire 2 Probebilities Versus Time (true F/C #19 included)
from lateral Dynamics
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Pigure 5 Probabilities Versus Time (true F/C €19
included) from Longitudiral Dynamics
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Appendix A

Wind Discurba~ ¢ Model

As resarked in Sections 2 and 3, a continuous
time wind disturbance modcl was included for both
the lateral and longitudinal dynamics, corres-
ponding to a state variable wit)., In this appen-
dix we give the mathematical details of this model
which was hindly provided Ly Mr. J. Elliott of
MNASA/LRC, as a reasonable approximation to the von
Karman model and the Haines approximation. It is
important to realize that the wind disturbance
model changes from flight condition to flight
condition. The jower spectral density of the
wind disturbance 1is givern by

2
(A.l) . .o—.k. ._‘___7
q ﬂvo 4+ _a)
(v N
o

where L, the scale langth, is

‘ 200 ft at sea level

2500 ft when altitude > 2500 ft
linearly interpolated : . ' tween

(A.2) L=

Vg 18 the speecd of aircraft in 7. sec, w in
rad/sec, and
‘ 6 fr/sec normal
15 ft/sec in cumulus clouds
30 ft/sec in thunderstorms

(A.3) o=

To obtain a state variable model, a normal-
ized state variable w(t) (in rad) is used as the
wind state for both lateral and longitudinal
dynamics. The sta’e variable w(t) is the output
of a first order ysstem driven by ccntinuous
white noise £(t) with zero mean. Thus the dynam-
ics of the wind disturbance model are give by

. v 20
(A.4) wit) = -z(f)um + E(t)
\/WI.V°

where [ (t) is zero mean white noise with unity
covariance function

(.5 E {cmcm} - &(t-1)

The design was obtained for the intermediate case
0 = 15 (cumulus clouds).

For the longitudinal dynamics the wind state
w(t) influences the dynamics in the same manner as
the angle of attack. Thus, in the longitudinal
state equations the wind state w(t) enters the
equations as follows

‘ ?(t) e A wit)

vit) = ....... + a w(t)
23

*.6)
' ale) = ..cueen + A wit)
3

where .". a". c” can be found from the open

loop longitudinal A matrix [2).

In the lateral dynamics the wind state w(t)
influences the dynamics in the same manner as the
sideslip angle. Thus, in the lateral state
equations the wind state w(t) enter:c the equa-
tions as follows

plt) = .vuuns !
‘ plt) 0¢“v(t

(A.7) F(t) = coovuus # & wit)
2
l Blt)  covvnne v 0 wit)
"
where a". n“. u" can be found from the open

loop lateral A matrix (2]).
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