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I. INTRODUCTION
 

The general aim of the research under this grant has been the joint
 

optimization of the coding and modulation systems employed in telemetry
 

systems. Particular emphasis has been placed on that research which would
 

assist in the formulation of the inner and outer coding standards by the
 

Goddard Space Flight Center.
 

Section II provides a brief description of the major research achieve

ments during the first year of this grant, with reference to the technical
 

reports or other publications where a-detailed description may be found.
 

Section III lists the personnel who have been involved in this research.
 

An appendix gives a detailed summary of the research done in concatenated
 

coding systems.
 

II.- SUMMARY OF RESEARCH PERFORMED
 

A. Convolutional Code Construction
 

Because of the desirability of standardizing as soon as possible
 

upon a few convolutional codes, either long-constraint-length codes for use
 

with sequential decoding or short-constraint-length codes for use with
 

Viterbi decoding, it has become imperative to ensure that presently-known
 

codes are optimum, or sufficiently close to optimum, so that a marked
 

improvement would not later be forthcoming.
 

Besides the traditional parameter of free distance, d, as a measure
 

of code goodness, research [1] under the predecessor of this grant has shown
 

the importance of the distance profile, d, particularly for long-constraint

length codes used with sequential decoding. Moreover, as pointed out in our
 

semi-annual status report [2), there are situations in which long constraint
 

length systematic codes might be preferable over the non-systematic codes
 

now routinely employed. Thus, it became important to find optimum long
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constraint-length systematic codes. This task was carried to completion by
 

R. Johannesson. In his report on this research [3], convolutional-codes 

with an optimum distance profile are given at rate 1/2 for all constraint 

lengths K < 61. In the same report, Johannesson also lists quick-look-in 

rate 1/2 codes (G2(D) = D + GI(D)) with an optimum distance profile for 

K < 51. This report also describes simulations which confirmed the principle 

investigator's conjecture [2] that systematic codes perform equally as well 

as non-systematic codes under sequential decoding when the dummy information 

zeroes are suppressed in the tail of the systematic code. 

With the ever-increasing demand for greater reliability in decoded
 

data, there has been a resurgence of.interest in concatenated coding. A
 

niajor effort under this grant has been made to find convolutional codes that
 

are optimum, or nearly so', for use with Viterbi decoding in the inner coding
 

portion of a concatenated coding system. The concern for the interaction
 

of the various components in the total coding/modulation system led to the
 

discovery by L. Lee [4] of a new type of convolutional code, the unit-memory
 

code, which is ideal for such inner system usage because of its "byte-oriented"
 

structure as opposed to the "bit-oriented" structure of conventional con

volutional codes. Lee found optimum unit-memory codes for all rates and
 

constraint lengths of practical interest. We consider the discovery and
 

development of this new type of byte-oriented convolutional code to be one
 

of the principal achievements of this research and one certain to give int
 

creased impetus to the use of convolutional codes in concatenated coding
 

systems. 

In conjunction with the search for good long convolutional codes,
 

simulations of sequential decoding on the deep-space channel have been carried
 

out to compare directly yarious convolutional codes that have been proposed
 

as candidates for use in various deep-space systems. Detailed comparisons
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of rate 1/2, K = 32 codes have been conducted and reported by the principal
 

investigator [5]. These simulations support the choice of the so-called
 

"Massey-Costello" K = 32 quick-look-in code which is made in the proposed
 

Goddard c6ding standard.
 

B. Soft-Decision Demodulation
 

In earlier work [6], the principal investigator demonstrated the
 

value of the "cut-off rate" R of the discrete channel created by the
O 

modulation system as a measure of the quality of the modulation system for
 

use with coding, and he showed how to design an optimum soft-decision demodu

lator for this criterion when binary signalling is used. An important advance
 

made under this grant by Lee is the extension of all these results to ion

binary signalling [7]. Lee's work shows that the optimum soft-decision regions
 

in likelihood space are always bounded by hyperplanes. Lee gave an algorithm
 

for the determination of these optimal regions, as well as some heuristic
 

rules for finding good, but sub-optimum, decision regions directly in signal
 

space. The combination of the results in [6] and [7] provide a sound basis
 

for the design of modulation systems to be used in conjunction with coding.
 

C. Syndrome Source Coding
 

Some of the research under this grant has been concerned with the
 

use of error-correcting codes to perform source coding or "data compressidn."
 

Continuing his earlier work on syndrome source coding [8], Ancheta has during
 

the past year made an important innovation which he calls "noiseless universal
 

syndrome source coding" (NUSSC) and has demonstrated its robustness in com

pressing a broad range of sources [9]. Like its parent, NUSSC employs a
 

very simple source encoder and hence appears very attractive for use on
 

board spacecraft; the more complex source decoder being at the ground site.
 

Ancheta's innovation consists of using several different parity-check matrices
 

and adaptively choosing the one to use in forming the syndrome according to
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the particular source output sequence. By cleverly choosing the parity

check 	matrices to be those of a nested sequence of error-correcting codes,
 

Ancheta's NUSSC scheme is almost as simple to implement as plain syndrome
 

source coding. NUSSC appears to be a very practical method of data com

pression, and it is currently being applied to real telemetry data supplied
 

by the Goddard Space Flight Center to confirm its effectiveness.
 

D. 	Concatenated Coding Systems
 

During this year of research, L. Lee has completed a major study
 

of concatenated coding systems which employ convolutional codes in the inner
 

coding subsystem. This work forms the subject of Lee's doctoral dissertation
 

[10] which is included as the appendix to this report. Lee describes an
 

almost bewildering array of options that are available to the designer of
 

a concatenated coding system and performs the valuable service of specifying
 

the precise gain (in db) which each such option affords. The most sophisti

cated systems considered by Lee outperform all previous concatenated coding
 

systems and represent nearly the ultimate in performance. It is expected
 

that Lee's work will be the standard in this field for many years to come.
 

III. 	PERSONNEL
 

The table below lists all personnel who have been involved in the re

search under the first year of this grant.
 

We are pleased to report that Mr. Lin-nan Lee completed the requirements
 

for the Ph.D. degree in electrical engineering under this grant in November
 

1975 and is now a member of the research staff of the Linkabit Corporation
 

in San Diego, California.
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ABSTRACT
 

of
 

"CONCATENATED CODING SYSTMES -EMPLOYING UNIT-MEMORY CONVOLUTIONAL
 

CODES AND SYMBOL-ORIENTED OPTIMAL DECODING ALGORITHMS"
 

by
 

Lin-nan Lee
 

to achieve very reliable communications in a very noisy
 

channel with relatively small coding complexity, concatenated co

ding systems utilizing convolutional codes as the inner code and
 

the Reed-Solomon (RS) codes &s the outer code have been proposed
 

by previous investigators. However, there has always been a
 

"matching!' problem between the bit-oriented convolutional inner
 

codes and the byte-oriented RS outer codes. To use efficiently
 

the potential of concatenation, we propose, in this dissertation,
 

to concatenate a byte-oriented unit-memory convolutional code
 

which has greater free distance than previously known convo

lutional codes of'the same rate and the same state-complexity
 

with RS-outer codes of the same symbol size. We also propose
 

to utilize a Real-Time Minimal-Byte-Error Probability (RTMBEP)
 

decoding algorithm in conjunction with the feedback from the
 

outer decoder as the decoder for the inner convolutional code.
 

The performance of this concatenated coding system is studied,
 

and the improvement due to each additional feature is calculted.
 

It is shown by simulation that this concatenated coding system
 

out-performs all previously known concatenated coding schemes.
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CHAPTER I
 

INTRODUCTION
 

Shannon's celebrated theory of information states
 

that information can be transmitted with an arbitrarily small
 

error probability provided that the rate of transmission is below
 

channel capacity. Communications engineers now recognize that
 

this promise of highly reliable communications can be achieve only
 

by means of coding.
 

Because the complexity of coded communication systems
 

grows exponentially with the block length for block codes (or
 

with the constraint length for convolutional codes), instead of
 

directly using very long codes, the idea of cascading two or more
 

codes of less complexity to achieve higly reliable communications
 

was first considered by Elias [i], and later by Forney [2].
 

Forney's.technique of using two or more block codes over different
 

alphabets to obtain very low error rate over noisy channels is
 

known as concatenated coding. Guided by the premise that a con

volutional code generally performs better than a block code of
 

the same complexity, Falconer [31], and later Jelinek and Cocke [4]
 

tried to cascade block codes and convolutional codes. Figure 1.1
 

shows a general representation of a block-convolutional concatenated
 

coding system.
 

In their schemes, sequential decoding is used for the inner
 

decoder. However, the performance of sequential decoding is such
 

that the probability of error can be reduced very sharply with
 

slight increment of signal energy ifthe rate of transmission is
 

.3
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Figure 1.1: 	 A general representation of the block
convolutional concatenated coding systems.
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below the computational cut-off rate, R The primary4 function
.omp 


of the outer block code is only to resolve decisions when the
 

sequential decoder experiences computational overflow. Therefore,
 

the over-all coding system can be regarded, more or less, as a
 

sequential decoded convolutional coding system.
 

The implementation and operation of Viterbi decoding
 

are later found simpler than sequential decoding in a number of
 

respects. In particular, with a moderate constraint length con

volutional code, Viterbi decoders can be operated with an error
 

rate less than 10- 2 at a rate slightly higher than Rcomp. From
 

Forney's result [2],, it is conceivable that a concatenated coding
 

system with a powerful outer code can perform reasonably well
 

when its inner decoder is operated with a probability of error in
 

-
the range between 10 and 10 . Odenwalder [5], then, chose a
 

Viterbi decoder for the inner coding system. We recall that it is
 

always possible to achieve very low error probability by means of
 

sequential decoding of long constraint length convolutional codes
 

at rates slightly below the "cut-off rate", R (R comp), of the
 

channel if one can toiderate a certain amount of erasures. There

fore, in order to be an attractive alternative to sequential decoding,
 

a concatenated coding system has to operate at an overall rate
 

slightly above the cut-off rate of the channel. On the other hand,
 

we can always regard the convolutional encoder-discrete channel

decoder combination in Figure 1.1 as a "super-channel" for the
 

outer coding system; the function of the inner convolutional coding
 

'systemis then to create a better channel for the outer coding system.
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Hence it is necessary that the inner convolutional coding system
 

be operated at a rate slightly below the channel capacity so that
 

the super-channel is at least slightly "cleaner" than the original
 

di.crete channel. This requirement has thus limited the choices
 

of outer codes to those of very high rate. And because it is usually
 

difficult to implement Viterbi decoders for high rate convolutional
 

codes with large enough free distance, high rate block codes are
 

the only option left for the outer coding system.
 

Generally, we can reduce the total signal energy per
 

information bit required to achieve a certain error probability for
 

a given channel by employing a lower-rate code and thus spending less
 

energy in each baud. For example, simulation result in section 5.4
 

shows a 0.5 dB improvement in the signal-energy-per-information-bit
 

to one-sided noise-power-spectral-density ratio when one elects to
 

use a rate 1/3 convolutional coding system of the same decoder com

plexity in place of a rate 1/2 convolutional coding system. But
 

for a given data rate, the lower rate coding system implies a higher
 

bandwidth, which in turn implies the need for a much more sophisti-
I 
c&ted signal detection device. The difficulty in operating the phase
0 
locked loop in the detection device increases with the bandwidth and
 

negates the advantage of using very low rate.codes. Experience
 

has shown that convolutional codes of rate 1/2 and 1/3 are the most
 

attactive candidates for the inner coding system. Furthermore,
 

because the complexity of Viterbi-like decoders for convolutional
 

codes is exponentially dependent on the constraint length of the
 

convolutional code, the task of finding "good" inner codes for the
 

concatenated coding system is then focused to the search for rate
 



1/2 and rate 1/3 convolutional codes of short constraint length
 

which are capable of good performance on a very noise channel.
 

Since the output error patterns of Viterbi-type decoders
 

for convolutional codes are usually bursty, block codes over a large
 

alphabet, such that many bits of the inner code form one symbol of
 

the outer code, appear very attractive for the outer coding system.
 

In particular, it appears that the Reed-Solomon (RS) block codes
 

are the most satisfactory because there are relatively simple de

coding procedures (such as the Berlekamp-Massey [6], [7], algorithm)
 

for RS codes and because of the "maximum-distance-separable" pro

perty-of the RS.codes. But the lengths of the bursts of errors
 

made by Viterbi-like decoders are widely distributed so that it is
 

generally necessary to interleave the decoder output for the inner
 

convolutional code such that errors in the individual RS-symbols of
 

one block are independent. Otherwise, we would have to use a very
 

long block code to operate the system efficiently.
 

From the above general discussion, we conclude that
 

Odenwalder's configuration of a block-convolutional concatenated
 

coding system is generally a sound choise. However, we have ob

served that we may further improve the performance of this type
 

of concatenated coding system in several different directions.
 

These possible directions of improvement will be studied in the
 

following chapters of this dissertation.
 

Because the most-likely burst length of the decoding 

error patterens made by the inner decoder are on the order of the 

lcontraiht length of- th~ inner -convolutional code, Odenwalder chose 
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the RS symbol to be of the same size as the constraint length of the
 

convolutional code. Although this is certainly a reasonable choice,
 

it can be improved upon. For example, it is very unlikely that the
 

beginning of a burst is always aligned with the boundary between two
 

RS symbols; therefore, it is possible that a burst only two bits long
 

may affect two RS symbols. This fact leads us to the idea of
 

constructing good convolutional codes which are symbol-oriented
 

rather than bit-oriented. In Chapter II, we discuss a systematic
 

approach to constructing such code, and we shall see that the codes
 

thus constructed generally have free distance better than Odenwalder's
 

convolutional 6odes of roughly the same complexity in terms of the
 

Viterbi decoder implementation. In fact, because of this improved
 

free distance and the symbol oriented nature of these codes, we
 

obtain an approximately 0.3 dB improvement in the over-all per

formance of the concatenated coding system when these-codes replaces
 

Odenwalder's codes.
 

Another possible improvement is to modify the decoder for
 

the convolutional code -such that the decoder emits not only the most

likely estimated symbol, but also reliability information about the
 

estimated symbol. Based on this reliability information, the outer
 

decoder is then able to perform either "erasures-and-errors" decoding
 

or "generalized-minimum-distance" (GMD) decoding as suggested by
 

Forney [2]. Zeoli [8] and Jelinek [9] have proposed.methods of
 

extracting reliability infor-mation from a Viterbi decoder. Concep

tually, their approach is to annex a long tail to the original
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convolutional code and to use this added tail to provde an error de

tection capability for the estimate made by the Viterbi decoder for
 

the original shorter convolutional code. This approach requires
 

feedback from previously decoded symbols in the Viterbi decoder
 

and, more importantly, uses the symbol as corrected by the outer
 

decoder to restart the inner Viterbi decoder whenever an error is
 

corrected by the outer decoder. We find that this feedback from
 

the outer decoder improves the performance by 0.3 dB, while the er

ror detecting capability and the "erasures-and-errors" decoder
 

provide an additional improvement of 0.2 dB.
 

We have also studied algorithms which compute the a
 

posteriori probability of each decoded symbol for the short con

straint length convolutional code and which use this a posteriori
 

probability as the reliability information provided to the outer
 

coding system. Although this technique proved to be less powerful
 

than Zeoli's tail annnexation scheme (this erasure scheme improves
 

the performance by only 0.05 dB to 0.1 dB over hard-decision deco

ding), its performance is undoubtly optimal among-all the possible
 

schemes employing only a short constraint length convolutional
 

code without an annexed tail, because decoding decisions are based
 

on the a posteriori probability calculated. Moreover, in conjection
 

with the use of the feedback, the a posteriori probability decoding
 

algorithms seem to perform much better than the Viterbi decoder does
 

when aided by feedback from the outer decoder (approximately 0.2 dB
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difference). The algorithm used together with feedback from the
 

outer decoder, even without the extra tail, offers a slight im

provement over Zeoli's scheme. Moreover, in this scheme, the inner
 

encoder and the inner decoder have the same constraint length
 

and the decoder can return to normal operation a few branches after
 
N 

an error event occurs. It is possible to interleave the output of
 

the decoder for the convolutional code to create a memoryless super

channel for the RS decoder. This results a simpler implementation
 

than that for Zeoli's type of system. These algorithms, which
 

we call the Real-Time Minimal-Byte-Error (RTMBEP) decoding algorithm,
 

and the Real-Time Minimal-Bit-Error Probability (RTMbEP) decoding
 

algorithm are described in detail in Chapter III.
 

Another area of possible improvement which one can
 

visualize for Odenwalder's system is the area of soft-decisionde

modulation. Using the criterion proposed by Wozencraft and Kennedy
 

[10] and by Massey [11] we can "optimize" the demodulator-by maxi

mizing the cut-off rate, R0 , of the resultant discrete channel.
 

In chapter IV, we shall show that the decision boundary of the
 

demodulator maximizing R are hyperplanes in likelihood space.
 

Although we are not able to improve the performance of coded com

munication system very much in the-case of binary signaling with
 

this optimal demodulator because Viterbi decoding is relatively
 

insensitive to the demodulator design, we believe that the decision
 

rules for optimal demodulators thus obtained may be useful for
 

future soft-decision decoding, because, the symbol-oriented decoding
 

algorithms described in Chapter III compute the reliability in
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formation not only for the most-likely symbol but also for all
 

symbols in the coding alphabet and, therefore, make available the
 

likelihood-ratio vector. Although this aspect of the study has
 

not been carried very far and deviates somewhat from the main
 

line of our research, we summarize in Chapter IV some scattered
 

results which are related to the subject of this dissertation.
 

In Chapter V, we give the performance of various types
 

of concatenated coding systems as obtained from simulations and
 

compare the improvement in performance due to each feature employed
 

in the system. Finally, the results and conclusions are summarized
 

in Chapter VI.
 



CHAPTER II
 

BYTE-ORIENTED CONVOLUTIONAL CODE
 

In this chapter, we introduce "unit-memory" convolutional
 

codes which are "byte-oriented" in such a way as to be attractive
 

for use in concatenated systems. We shall show that (n0 , k0 ) con

volutional codes with unit memory always achieve the largest free
 

distance-among all codes of the same rate k /n and the same'number
 
- 0 0 

2Mko of encoder states, where M is the encoder memory.
 

2. 1 BINARY CONVOLUTIONAL CODES
 
Let the binary k -tuple at denote the subblock of
 

information digits at time t (t = 0, 1, 2, ...), and let the binary
 

n - tuple bt denote the encoded subblock at time t in an (n0 , ko)
 

convolutional code. Then, the encoding equations may be written
 

+
b t Go -1 G, + - + 0tM(t = 0,1,2,...) (2.1)
 

where each Gi is a k x n0 binary matrix, where M is the code me

mory, where the operations are in GF(2), and where, by way of con

vention, at = 0 for t>O. An encoding circuit is shown in Figure
 

2.1. Note that the encoder has 2MKo distinct states where the state'
 

is taken as the -contents of the delay cells in the encoder. We shall
 

refer to the number Mko of binary state variables in the encoder as
 

the state-complexity of the convolutional code.
 

The constraint length K (measured in information digits) of
 

the convolutional code is defined by
 

K = (M +1) k
 

This chapter of the dissertation is taken from [28].
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The rate of the code is defined by
 

R= 
ko/no . 

In virtually all past applications of convolutional codes, k0 and 

n have been taken as relatively prime, i.e., gcd (ko , no) = 1 where 

"gcd" denoted "greatest common divisor". In fact, the condition
 

gcd (k0 n0 ) = 1 is generally tacitly assumed so that speaking,
 

for instance, of a convolutional code as being of rate R = 1/2
 

would imply ko= 1 and no
0=2 unless the contrary were explicitly
 

states. As will be seen, however, there can be advantages in
 

taking gcd (ko,n0) > 1.
 

For convenience, let btt,]denote the encoded sequence
 

[bt:b .:bt] over time units t through t' and let b 0 ,m) de

note the entire semi-infinite encoded sequence. Let a[t,t'] and
 

*f0,-) be similarly defined. The free distance, dfree' of the
 

convolutional code is theminimum Hamming distance between all
 

pairs of encoded sequences bf0 resulting from pairs of infor

mation sequences-a that differ in their time 0 subblock. By
 

1
 

2 	 binary unit delay 

k*	 - - a -o0° 	 0C 

multiply by 
matrix Gi 

1
0 1 

> 2 

Figure 2.1. 	 An encoding circuit for an (no, ko) convolutional 
code with memory M. 0 0 
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the linearity of (2.1), it follows that
 

S = min W(b [0) (2.2)

free a0
 

where W(-) denotes the Hamming weight of the enclosed binary se

quence and where.the minimization is over all a[0,.) such that
 

03 0. The code is non-catastrophic [12, 131 when W(a[0,)
 

implies that W(b[0))=0, in which case the minimization in (2.2)
 

reduces to the minimum over all a[0,.) such that a0$ 0 and
 

W(a[0,-))= The restriction to non-catastrophic codes entails
 

no loss in the achievable value of dfree for given n0 , k0 and M,
 

a fortunate situation because the non-catastrophic property is
 

essential in applications (cf. [121).
 

Because dfree is the primary determiner of decoding error
 

probability when Viterbi (i.e., maximum likelihood) decoding is
 

used with a non-catastrophic code, dfree is the usual criterion
 

of goodness for codes to be used with Viterbi decoders. Because
 

the number of states of the Viterbi decoder [14] coincides with
 

the.number of encoder states, viz. 2Mko, practically dictates a
 

small state-complexity. The region Mk0 6 appears to be about
 

the range where Viterbi decoding is attractive in applications.
 

Thus, for Viterbi decoding applications, we are motivated to find,
 

for a given code rate and a given state-complexity in the above
 

range, a convolutional code with maximum dfree* In the next
 

section, we report the results of our search for such codes and
 

we also derive a useful upper bound on the attainable dfree*
 

2.2. UNIT-MEMORY CODES WTTH MAXIMAL dfree
 

Any (n0 ,ko) convolutional code with memory M can be consi

dered as an (no= Mno, k'= Mko) code with M'=l simply by taking
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Go...f0 	 13_ 
Go	 ' o 

10 	 0fl G 0 

and
 

M 0 ... 0 

GMGj 	 GM -1 ..0
 
G1 G2 GM
 

These two codes are entirely equivalent in the sense that the same
 

semi-infinite binary information sequence produces the same semi

infinite binary encoded sequence, although the division into time
 

subblock would be different. Since the state-complexity is Mko
 

for both codes, it follows that for a given state-complexity and
 

given rate, the maximum value of dfree is achieved within the sub

set of convolutional codes with M = 1. Hence, we can restrict our
 

search for optimal codes, for a given rate and state-complexity,
 

to codes with unit-memory.
 

For a unit-memory code, equation C2.l) reduces to
 

,ht=atG0 + at-iGl (t = 0,1,2,...). (2.3)
 

When a0 is the only non-zero information subblock, then
 

=
L[0,i) 0 [G0:GI] 	 (2.4)
 

is the 	only possibly-non-zero portion of[0,). From (2.2), it
 

then follows that the attainable dfree of a unit-memory (no,ko )
 

convolutional code is upper-bounded by the largest minimum dis
tance 	of an (n =2no , k = k ) block code. We shall call this up

per..bound the block code upper bound on dfree, and we note that
 

McEliece and Rumsey [15]have used similar arguments to derive more
 

elaborate upper bounds on dfree for codes where M 1.
 



14 

We see that the argument dsed above to establish the
 

block code upper bound on dfree suggests the following search
 

procedure for finding a non-catastrophic unit-memory (n0 , ko)
 

code with maximal dfree:
 

i) Set d equal to the largest dmin achievable by any
 

(n=2n, k = k0 ) block code.
 

(ii) Choose [G0 :GI] as the generator matrix of a (a2n, 

k = ko ) block code with.dm = d. If dfr = d and the code 

is non-catastrophic, stop. Otherwise continue with step (ii) 

until all block codes with di = d have been exhausted. 

(iii) Reduce d by 1 and return to step (ii).
 

The above search procedure was carried out to obtain,
 

for rates 1/4, 1/3, 1/2 and 2/3 (which are the usual rates of
 

interest in applications), a non-catastrophic unit-memory con

volutional code with maximal dfree for all state-complexities
 

of 6 or less. The values of dfree obtained are given in
 
Table Z where we-also list, for comparison, the largest d
 

free 

attainable by a code of the same state-complexity having 

gcd (no, ko) = 1. The block code upper bound on dfree for 

each case is also listed. 

The codes with gcd (n , ko) = 1 that achieve the values 

of dfree given in Table 2.1 may be found in Larsen [16] and 

Paaske [17] The values of the block code upper bound on dfre6, 

given in Table I, were taken from Calabi and Myrvaagnes [18] 

and from Helgert and Stinaff [19]. In Table 2.2 we give the 
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matrices 	G0 and G1 of a non-catastrophic unit-memory code
 

with maximal 	dfree at each place where Table 2.1 shows that
 

0o)0
value of 	exceed the dfree available from the best gcd (no , k )=I

code having the same state-complexity.
 

Rate State Complexity Block Code Upper Maximal d of Maximal d eof 
(k In (No. of State Variables) Bound on d Unit-Memorye odes gcd (n , Ie= 1 

free 	 Codes
 

1/4 	 1 8 7 7
 

2 10 10 10
 

3 13 13 13
 

4 16 16 16
 

5 20 20 18
 

6 24 24 20
 

1/3 	 1 6 5 5
 

2 8 8 8
 

3 10 10 10
 

4 12 12 12
 

5 	 15 15 13 

6 16 16 15
 

1/2 1 4 3 3
 

2 	 5 5 5 

3 	 6 6 6
 

4 8 8 .7 

5 9 9 8 

6 	 10 10 10
 

2 2/3 	 2 4 3 3
 

4 6 6 5
 

6 8 7 7
 

Table 2.1± 	Maximal dfree for a given state-complexity Mk of 

unit memory convolutional codes and of convolutional 

codes with gcd (no , ko) = 1. 
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Rate n0 k 	 dfree
 

1/2 8 4 	10000111 10001011 8
 
01001011 11100010
 
00101101 10111000
 
00011110 11010001
 

1/2 10 5 	1000011111 1111111111
 
0100001111 1111000000 9
 
0010011110 0010110100
 
0001011001 1010011010
 
0000110101 	 0110101001
 

1/3 15 5 	100001111011010 000111110010100 15
 
010000111101101 001101100101010
 
001001011110110 011001001100101'
 
000101101101011 110000011110010
 
000011110110101 	 100010111001001
 

1/3 18 6 	111000110100110000 000011000111001011 16
 
011100011010011000 000110001110010110
 
001110001101001100 001100011100101100
 
000111100110000110 011000111000011001
 
100011010011000011 110000110001110010
 
110001101001100001 100001100011100101
 

1/4 20 5 	10000011111110011000 00011110100001100111 20
 
01000101110111001100 00110011010110001110
 
00100110110011100110 01100101101000111100
 
00010111011001100011 11000010110011011001
 
00001111101100110001 10001101011100010011
 

1/4 24 6 	100000111110111010110000 001111000101001011010011 24
 
01000001111i011101011000 011110001010010110100110
 
001000101111101110001100 111100010100101100001101
 
000100110111010111000110 111001101000011001011010
 
000010111011101011000011 110011010001110010110100
 
000001111101110101100001 100111100010100101101001
 

2/3 6 4. 100001. 111100 	 6
 
010010 110110
 
001011 010011
 
000111 101001
 

Table 2.2. The encoding matrices of-some non-catastrophic unit-memory
 

convolutional codes with free distance greater than the
 

maximal free distance of gcd (no, ko) = 1 codes of the same 

rate and state complexity.
 



17 

2.3. BYTE-ORIENTED NATURE OF UNIT-MEMORY CODES
 

We now show that short, unit-memory convolutional codes
 

are "byte-oriented" in such a way as to be attractive for use,
 

with Viterbi decoding, as the inner coding component of a con

catenated coding system.
 

In general, the state at time t of the convolutional
 

encoder is the information sequence a[t-M, t-l]= [1t-M: t-m+l:
 

:at, over the preceding M time units. Note that the suc

,
cessor of this state, namely, [at-M+l: ".. :at lat] is already
 
k
 

determined up to the 20 choices of at, i.e., each state will
 
k
 

have 2 0 successors in the "trellis" defined by the convolutional
 

code [12]. In the corresponding Viterbi decoder, the "metric"
 
Mk
 

for the best path to each of the 2 0 possible states at time
 
k
 

t must be relayed to each of its 2 0 successors. Hence, the
 

value of ko influences the overall complexity of the Viterbi
 

decoder, although much less strongly then does the state-com

plexity. Nonetheless, to determine, for instance, whether the
 

Viterbi decoder for an R = 1/3, M=l, kO = 6 code (state-com

.
plexity 6) is simpler than the Viterbi decoder for an R-= 1/3,
 

M = 7, kO = 1 code (state-complexity 7) would require a detailed
 

analysis of the specific decoder design.
 

With Viterbi decoding of convolutional codes, there is a
 

natural segmentation of the decoded information digits into bytes
 

of k0 bits, because the information byte at acts as a unit in
 

determining the correct state. The typical decoding "error
 

events " [13] give rise to the incorrect decoding of a small
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number of bytes, viz., the average number of non-zer6 information
 

bytes in an information sequence a [0,) that generates an encoded
 

of Hamming weight dfree* In an M = 1 code, this average
 

is near 1, although there will generally be about k0 /2 bit errors
 

per byte. In a code with k° = 1, there will generally be a small
 

(say, about 3) of byte errors but, since a byte is a bit in this
 

case, the same number of bit errors. However, if the information
 

bits with the latter code are gathered into "bytes" of Mk° = M
 

bits, there will generally be about 1 "byte" errors per error
 

event since the bit decoding errors are not synchronized to begin
 

at the start of these "bytes." Thus, even if both codes have the
 

same state-complexity and same dfree' one would expect the unit

memory code to have a lower byte-error probability for bytes
 

of Mko bits.
 

To test the validity of these observations, we simulated 

Viterbi decoding on an additive white Gaussian noise (AWGN) channel 

with several values of the energy per information bit to one-sided 

noise power spectral density ratio, Eb/No , for several convolu

tional codes of rate R = 1/3. The codes tested were (i) the ko= 6 

unit-memory code of Table 2.2, (ii) the kO = 1, M = 6 code given 

by Larsen [161 and (iii) the k. = 1, M = 7 code given by Larsen 

[161. The byte size was 6 bits. The results of the simulation 

are given in Table 2.3. The unit-memory code (i) had a decoding 

byte-error probability about one-half that of the gcd (n0 , ko ) = 1 

bode (ii) with the same state-complexity (Mk° = 6). This super
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iority of code (i) over code (ii) is due mainly to its greater
 

free distance, 16 as opposed to 15. But we also see from Table
 

2.3 that the decoding-byte-error probability of code (i) is about
 

two-thirds that of code (iii) which has the same free distance 16
 

and greater state-complexity, 7 versus 6. This superiority of
 

code (i) over code (iii) is due entirely to its byte-oriented
 

nature.
 

We conclude that the unit-memory codes, because of their
 

byte-oriented nature, appear attractive for use as the inner code
 

in concatenated coding systems [2] where the outer code is a
 
k
 

Reed-Solomon (RS) code over the alphabet GF(2 °), i.e. the bytes
 

of the convolutional code are single digits for the RS code.
 

For instance, code (i) above would be used with an RS code over
 

GF(26). We shall report in detail on the effectiveness of unit

memory codes in concatenated coding systems applications in
 

Chapter V.
 

Eb/N° 	 M=1 (k8,6) code M-6,(3,1)_ code M=7 (3,1) code
 

(dB) 	 Byte- 95% Con-. Byte- 95% Con- Byte- 95% Con-

Error fidence Error fidence Error fidence
 
Prob.' Prob. Prob.
 

1.00 0.03050 ±0.00533 0.04875 ±0.00681 0.04000 +0.00619
 

1.25 0.02000 ±0.00435 0.03250 ±0.00561 0.02250 +0.00469
 

1.'50 0.01175 ±0.00329 0.02325 ±0.00477 0.01400 +0.00372
 

1.75 0.00650 ±0.00250 0.01275 +0.00350 0.01025 +0.00319
 

Table 	2.3-: Byte-error probability for Viterbi decoding
 
of three R=1/3 convolutional codes on a simulated
 
AWGN channel.
 



CHAPTER III
 

BYTE-ORIENTED DECODING ALGORITHMS
 

FOR CONVOLUTIONAL CODE*
 

In the previous chapters, the terminology "byte", or
 

"symbol", has appeared in-several places to denote the basic
 

grouping of digits such that the distance measure between any
 

two sequences is the number of different "bytes" or "symbols"
 

between them. In other words, the byte is defined to be the
 

single "super-symbol" for which the Hamming-distance measurement
 

or the error rate, is concerned. The byte size is determined by
 

the nature of the application. For example,128 characters are
 

included in the standard teletype alphabet, the byte size of
 

tyletype signals is, then, 7 bits. In the case of concatenated
 

coding, only the symbol error rate'of the outer coding system
 

can be controlled, the byte size is therefore the symbol size
 

of the outer code.
 

For convenience of discussion, we shall assume that the
 

byte size is integer multiples of ko and a byte covers m
 

time instances. We shall denote an information byte encoded
 

between time t and t+m-! as
 

AT =[t a=[t+l'1'" t+m-i]
 

where T = (t+m-l)/m is implicitly implied. Further, if the 

encoding shift-register is initially loaded with zeros, after 

which al, a2 "'" ' a are encoded, the followed by Mko zeros, 

* Parts of this chapter are extracted from [23] and [25] 

20
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(i. e aL+I = aL+M = 0) to clear the encoder, L is called
 

the frame length. In a frame, we have L' = L/m bytes. The
 

byte error probability of a frame
 

PBE =P (A-TA--T)

T=I
 

is the quantity used to measure the quality of information
 

transmission. The Viterbi decoding algorithm [20], which is
 

the maximum likelihood decoding algorithm for a convolutionally
 

coded frame sent over a discrete memoryless channel, forms as
 

its estimate A[I,L'] the information sequence that maximizes
 

the conditional probability.
 

)P(A[1L ] I£1LM 

based on the sequence r[lL+M] received at the output of the
 

discrete memoryless channel. Hence, this algorithm minimizes
 

the frame error probability,
 

P = Pr (AA
 

for any interesting channel, it must-be true that
 

lim PFE =1,
 

so that PFE is not a meaningful optimality criterion for large 

frames. However, since we can write the byte-error-probability 

as 

PPBE ~ L'P t1 Pr (A A-- 'T 
T=I
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it follows that
 

PBE < PFE -
L'PBE'
 

Hence, when L' is fairly small, it makes little difference whether
 

PBE or PFE is minimized (which explains the appropriatehess of
 

Viterbi decoding when L' is small). The byte-probability, PBE'
 

is minimized by the decoding rule which, for each T, l<T<L',
 

chooses its estimate AT as the byte which maximizes the conditional
 

probability
 

P(AT £[I,L+M]) "
 

When the byte size is one bit, algorithms, similar to Viterbi's
 

to accomplish this maximization have been proposed independently
 

by Bahl et al [21], and McAdam et al [22]. If the byte size
 

is-smaller than or equal to the size of the memory M, but larger
 

than a.bit, the natural extension of these algorithms making use
 

of the state property of the convolutional codes is self-evident.
 

However, these algorithms require receipt of the entire frame
 

[[l,L+M] before decoding begins and so cannot be used without
 

resynchronization (i.e. cannot be used when L=-). Moreover, 

their implementatioh requires storage which grows linearly in
 

L and, hence are practical alt/rnatives to Viterbi decoding
 

only for moderately small L.
 

In the following section we derived a recursive procedure
 

(incorporating the observation of Fritchman and Mixsell [24])
 

for "real-time minimum-bit-error probability(RTMbEP) decoding
 

for (n ,l) convolutional codes to minimize PbE under the cons
0 b
 

traint that the decoding delay be limited to A branches. (Here
 

we use the lower-case letter "b" to remind the reader that the
 

byte size discussed is one bit.) In section 3.2 we formulate
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the corresponding decoding algorithm and show that its storage
 

requirements are independent of L. We also show the necessary
 

modification needed to minimize the byte-error probability
 

instead of the bit-error probability. This algorithm can be ge

neralized to decode any (n0 ,ko ) convolutional code, but, because
 

of the particular importance of unit-memory convolutional codes,
 

we show a modified version of the RTMBEP decoding algorithm for
 

(no,k ) unit-memory convolutional codes in section 3.3 which is
 

much more efficient than that for general codes. For comparison
 

purposes, we also formulate a "real-time", modified Viterbi
 

decoding algorithm in section 3.4.Section 3.5 reports the results
 

of using these decoding procedures on a simulated additive White
 

Gaussian noise (AWGN) channel. It is concluded that the impro

vement in PBE for the real-time minimal-byte-error probability de

coding (RTMBEP) algorithm is not enough to justify the added com

plexity compared to Viterbi decoding in hard-decision applications
 

but, as shown in the later chapters, the new algorithm offers ad

vanges in soft-decision applications such as concatenated coding.
 

3.1 	 DERIVATION OF A REAL-TIME MINIMUM-BIT-ERROR PROBABILITY
 

DECODING PROCEDURE FOR (n ,l) CONVOLUTIONAL CODES
 

As in all previous optimal (in some sense) decoding pro

cedures for convolutional codes, we shall make important use of
 

the encoder state which at time t is defined as the contents of
 

the shift-register in Fig. 2.1, i.e, the M-tuple of past informa

tion bit
 

= [at_,at-2,. atM] 	 (3.1) 
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and where, by our convention, a= for i<0 and i>L. As the 

term "state" implies, st completely accounts for the past history 

of the encoder input in the sense that s and the input segment 

a[t, uniquely determine the output segment b t,L+M] By condi

tioning of the encoder state, the calculation of the probabilities 

required for the decision rule can be simplified. 

The decoding rule which minimizes PBE under the''"real-time"
 

constraint that at be decided from £[lt+A] is that which chooses
 

at = 0 if
 

P(at=OIElt AI) 3 (3.2)
 

and chooses at=l otherwise (where we have arbitrarily resolved
 

ties in favor of the decision at=O.) Since
 

P(at=O, [l,t+A] )
 

P(at=Ol[l,t+A]) = 
)'-[1, t+A] 

and since the.probabilities on the righthand side of this latter
 

equation can be expressed as the summation over all states of
 

the joint probabilities Including the state, we have
 

Z P(at=0,r [l,t+A], St+A+l=S)
 

=
P(at=O r t o(3.3)

E P(r [l,t+A],St+A+l~s )
 

s 

We now proceed to develop recusive formulas for the two prob

abilities appearing on the righthand side of (3.3).
 

For any t, t>l, we may write
 

P([lilt],S t+l) E P(rlilt], stst+l)r (3.4)
 
s
t
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but also
 

p ( l t - l ] ' s t p r t s t l £ l t - l ] ' s t )(£[l't]'St-l'St) = 

= P [lit-l] 'st)P(rt+lI St), (3.5) 

where we have made use of the state property and our assumption
 

that the channel is memoryless.- Writing
 

( t l s P(K t ~ s t + I I s t ) = P (st+ l Ist) P 
t , t+ 1 )r (3.6) 

we then us- the fact seen from (3.1) that the state s
 

[at, at_!, ....at-m+l] has only two possible predecessors st,
 

namely [at_ 1 ,....at m+l,0][at_1i,..rat_m+l,l], to write
 

1stl=f) if stSPst+(Stt+3 ) (3.7) 
= otherwise 

where here and hereafter we write p(s) for the set containing
 

the two possible predecessors of a state s. Finally, we
 

note that, for st+ l and st[and we write b(stst+ ) for this
 

branch ] so that
 

P(r_t st,st+l) = P(r Ib(s t s t + l )), (3.8) 

and we note that this quantity is determined by the channel
 

transition probabilities. Substituting (3.5),(3.6),(3.7) and
 

(3.-8) into (3.4) we have our desired recursion
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(3.9) 
p (r[lPt],St~l) = £ 1 p r tlil]tl st(st's~l)t~ l P([l,t-1] 'st) 

The starting value P(r11 1 1,s 2 ) = P(r,s 2) needed to apply the 

recursion is simply 

1 P(lb(O,s2)) if OsP(s2 ) (3.10) 
P(LIs 2 ) ={0 otherwise 

where we have used the fact that s
 

By an entirely analogous argument whose details we omit, the
 

following recursion for the other probability on the righthand
 

side of (3.3) may be obtained:
 

P(at,[l,t+i],t+i+l)= P(Lt+i±J(st+ijst+i+l)).
 
st+iep(st+i+
1 )
 

P(at'[l,t+i-l] 'St+i) (3.11)
 

which we shall use for M < i < A. The starting value needed for
 

this recursion is
 

P(att = P([l t]St+M)P(ajL(l'tlSt+M) 

P (r[lilt]'St+M) if at is the last digit of st+M 

0 otherwise) 

so that the quanities obtained from the recursion (3.9) directly
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provide the necessary initial conditions (3.12) to be used with
 

the recursion (3.11). Hence we have now obtained a complete
 

recursive procedure for performing real-time minimum-bit-error
 

probability decoding of convolutional codes.
 

3.2 IMPLEMENTATION THE DECODING ALGORITHM
 

We now describe an algorithm for implementing the decoding
 

procedure whose recursive basis was developed in the previous
 

section. Our algorithm requires the storage of two real numbers
 

for each of the 2m encoder states. We denote these stored quanti

ties for state s as f(s) and g(s). At time t+M-l (in the algorithm)
 

the first of these quantities will store the value
 

f(s) 	=P(r[l,t+M-l],St+M = s), (3.14)
 

and the second will store the value
 

h(s) = P(at=O, r[llt+j' t+j+ s (3.15)
 

when j is indicated from M through A within the time interval
 

[t+m-l, t+m] in the algorithm. When j=A, we store the value of
 

h(s) summed over all states which we denote as HI . We keep the
 

previous A-mvalues of this quantity and denote these stored values
 

as Hl H2,... HA-m, that is,
, 

= s)  
H i = 	 Z P(at-l=0, [l,t+A-M-i]" st+A-M-i+l (3.16) 

s 

for 1<i<A-M will be the available value at time t+m-l (in the
 

algorithm). It follows that HAM and
 

Zf(s) 	= P([!,t] s+ 1 =ss) (3.17)
 
s s 

http:st+A-M-i+l(3.16
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are the desired numerator and denominator on the right-hand
 

side of (3.4) for the decoding of a tA which is accomplished at
 

time t+M-l (in the algorithm). The only additional storage
 

required is that for the received branches rt+M, rt+M+l'... t+A .
 

The recursions (3.10) and (3.14) directly correspond
 

to the following:
 

The RTMbEP Decoding Algorithm
 

Step 0: 	 Set t=l, set f(s) P(rl lb(O,s))for the stored 

states s having 0 as a predecessor, and set f(s)= 0 

for all other states. Set Gi = 0 for l<i<A-M. 

Step 1: 	 For t=l,2,..., 2, make the replacements
 

f(s) -	 1 P(rtb(s',s)) f(s'), for all s. 

s'ep(s) 

Step 3: 	 For i= m+l, m+2, ...A make the replacements 

h(s) 1 tP(+iL(ss)) h(s'), for all s 

s' Ep (s) 

Step 4: If t<A, go to step 5; otherwise set atA=0 if
 

[ f(s)/HAM >2 
s 

and set at A 1 otherwise.
 

Step 5: 	 Increase t by 1, make the replacements
 

H A + HAi, for i m+l, ...,A-1;
 

and set
 

H = [g (s) 
s 
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Step 6: 	 Make the replacement 

f(s) + X 1prtb(s',s) f(s') for all s-
s'I sp s) 2l
 

and then return to step
 

(Note: For simplicity we have omitted the obvious "end game"
 

modifications needed when t>L which, of course, are necessary
 

only if a finite frame length is used. It should also be pointed
 

out that our "trick" of storing the A-M past values of the g(s)
 

summation actually results in a "true" decoding delay of 2A-M
 

branches since we require the use of rt+AM in step 4 at 

time t- (in the algorithm) when atA is decoded. To reduce
 

the true decoding delay to A branches requires the storage of
 

A-M+2 branches rather than 2 real numbers -per state since f(s)
 

must be updated by A-.-4+1 branches and the A-M previous values
 

of f(s) stored for each state, or, alternatively, the storage
 

of 3 real 	numbers and considerable extra computation within
 

the algorithm).
 

The algorithm as given above is directly suited for software
 

implementation. It should be noted that steps 3,4, and 6 call
 

for both addition and multiplication of the computed probabilities
 

that floating point arithmetic would normally be chosen for the
 

calculation. (This contrasts with the Viterbi algorithm when
 

fixed arithmetic is normally used as will be seen in section 3.4)
 

For each t, a total of A-M+l calculations are made in steps 3 and
 

6, each involving a sum over all 2M states (whereas, as shall see,
 

only one similar calculation is needed for the Viterbi algorithm.
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A hardware realization of the real-time minimal-bit-error
 

algorithm could be made employing 24 micro-processors each of
 

which corresponds to an encoder state s. Each micro-processor,
 

would receive f(s') and h(s') from the two micro-processors
 

corresponding to the two states s' which are predecessors of s
 

and with the aid of the received branches as inputs, would com

pute new values of f(s) and h(s) pass these values on in-turn to
 

the two microprocessors corresponding to the two states for which
 

s is a predecessor. Each micro-processor would exec-teA-M+l
 

computational cycles for each t (as contrasted to one cycle for
 

the microprocessors in a hardware Viterbi decoder).
 

The implementation requires the micro-processor to perform
 

both multiplication and addition in floating point arithmetic.
 

Similar to what is done in the Viterbi decoder, we would still
 

quantize the logarithm of the probabilities into integers. The
 

multiplication of the probabilities then is performed by adding
 

their quantized logarithms, whereas addition in probabilities is
 

carried out by table look-up. Since the result is relatively in

sensitive to the addition operation and to the quantization, very
 

little inaccuracy is caused by this technique. With the aid of
 

Read-Only-Memory (ROM) to store the addition table, this implemen

tation of the RTMbEP algorithm, though considerable more complicated
 

than the Viterbi algorithm, might not be excessively expensive.
 

If the symbol size, m, considered is smaller or equal to
 

the size of the memory of the convolutional code, but larger than
 

one bit, this algorithm can be modified easily to minimize the symbol



31 

error-rate. In this case the decision rule is to choose AT
 

as the estimate if it maximizes the probability
 

I (AT' r[!'t+A) for m < A 
PCTIlt+A 
 P (r [fo+A ] ) 

But since there are always, 2In possible AT in each cycle of the 

decoding procedure, we obtain very little advantage from calculating 

the last possible P(Apr[It+A]) by substracting all other 

P(ATr[t )'s already calculated from P(r ) as we did in
ZZTI-[it+Al_[l,t+A]I 

the RTt4BEP algorithm. Thus, we shall not store H's. But we re

quired the storage of 2m real numbers to keep P(AT r[lt+AI) which 

we shall denote as H' (AT). The modified algorithm is the fbllowing: 

The RT.IBEP Decoding Algorithm (forward) 

Step 0: Set t=l, set f(s) I P(r b(0,s)) for the two states 

having 0 as a predecessor, and set f(s) = 0 for all 

other states. 

Step 1: For t=1,2,..., M make the replacements 

f(s) 1 P(rt b(s',s)) f(s'), for all s. 

sp (s) 

Step 2: For each of all 2m possible AT , set h(s) = f,(s) 

if the last mwdigit of s are AT and set h(s)= 

otherwise. 

Step 3: For i=M+l, M+2,..., A, make the replacements
1 

g (s)+[1 P(rt+ilb(s',s) h(s') for all s. 

s' Ep (s) 

Step 4: Set H' (At' = Y h(s), 
s 

m
If all the 2" possible H' (AT) have not been cal

culated go to step 2. Otherwise, choose AT=A 

such that H' (At) is the maximum. Set i=0
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Sten 5: Increase t by 1 and make the replacement
 

f(s) 1P(Xjb(s',s)) f(s'), for all s.

s'E (s)
 

Increase i by 1.
 

Step 6:. If i=m go to step 2, otherwise return to step 5.
 

We should note here that although we have only 1/m
 

as may decisions to make in each frame as in the RTMbEP decoding case,
 

each decision requires the calculation of P(%T, r[l,t+A])for 2m
 

values of A., whereas only one calculation is required in the bit
 

case. Thus, the number of calculations can be prohibitively large
 

for even moderate byte size. Fortunately, we find that we can
 

use a backwards recursion (which will be discussed in the next
 

section), instead of the forward recursion described above, to handle
 

the decoding procedure more efficiently for all (no,k0 ) convolutional 

code with ko 1, and most efficiently for the unit-memory codes. 

But this backwards recursion offers no significant advantage for 

decoding (n , 1) convolutional codes, and moreover, since the 

forward recursion discussed in this section seems to be a natural 

approach to set up "real-time" decoders, we feel it warrants the 

description given here. 



33 

3.3 	 REAL-TIME MINIMAL-BYTE-ERROR PROBABILITY DECODING ALGORITHM
 

FOR UNIT-MEMORY CONVOLUTIONAL CODES.
 

In the previous chapter, we have noted that the unit

memory (n ,k ) convolutional codes always have the largest
 

minimal free distance among all convolutional codes of the same
 

state-complexity, and that the state trellis structure of the
 

unit-memory codes are quite different from that of (no,l) con

volutional codes. Therefore, we pay particular attention to
 

implementing decoding procedures for unit-memory codes. As
 

commented in the last section, we are able to make use of the
 

fact that every one of the 2ko states of the unit-memory code
 

can reach any particular state at the next clock instant in or

der to derive a backwards recursive decoding algorithm, which
 

is much more efficient than the forward recursion algorithm
 

discussed previously. For the backwards algorithm, the. joint
 

probabilities,
 

P ( t' r[I,t+A] ) 

for all the 2ko-possible at's can be calculated in a single
 

cycle of the algorithm.
 

The decision rule for this algorithm is to choose the es

timate a for the information branch
 

- = 	[atl, at2 .... atk
 

as the symbol which maximizes the conditional probability
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P (at Ill t+ A]. 

Similar to the approach in the previous section, we have 

P(a-tir[lt+A]) = P(at' El,t+A]), 

P (r[lt+A]) 

or equivalently
 

Pa r) (at's [1,+A])
=P .(3.18)
P(at r l't+Ali)
 
p >r[1 1t+A]P(at , 


At
 

We shall proceed to derive a recursive algorithm to calculate
 

the numerator on the righthand side of equation (3.18) for all
 

possible t Is, and simultaneously obtain their sum as the
 

denominator on the righthand side of (3.18). Since
 

P(t' E[lt+A]) = P(st+l, r [1,t]' r[t+l, t+A] )
 

= P(St+l' r4l,t]) P(r[t+l,t+A] Ist+l'ri,t]) 

and since the channel is memoryless, we have
 

P(at ,rfl,t+A] )= P (s t l r ~l t ) P (r t ! t A Ist! (3.19)
 

The last term of equation (3.19.) can be expressed as the summation
 

over all states of the joint probabilities including the state to
 

give
 

Par[l,t+A ]) = (tl [l1t ] ) ( t+ P[t+l,t+A],st+2 Ist+i))
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But
 

P (r[t+l,t+A]" st+i+l St+l) 

Y PP(Et+i'r[t+i+l,t+A]' st+i+l' st+i+2Ist+i ) (3.20)
st+i+2 

t+i+i) P(r[rt+i+l,+A]" st+i+2 jst+i+l))
-P(LtQ±S 

t+i+2
 

where here again we have made use of the fact that the channel
 

is memoryless and of the state property. Then it is clear that
 

if we are given the transition probabilities
 

P(rt+i, st+i+l st+i) 1 < i < A (3.21)
 

for all possible encoded branches, we can obtain the last term
 

of equation (3.19) by successively applying the recursion of
 

equation (3.20) for i=A-1, A-2. ..... ,i. The first term on the
 

righthand side of equation (3.19) can be obtained recursively
 

by
 

P(S t+r[!it]) = 1 ,t- ]) P(rt,st+l st) (3.22)P(str[ 1
 
st
 

as derived in section 3.1. Hence, we now have obtained a complete
 

recursive procedure for RTMBEP decding algorithm for the unit

memory (no,k O ) convolutional codes.
 

We now describe an algorithm for implementing the decoding
 

procedure just derived, Assuming the 22ko transition probabilities
 

indicated in (3.21) are available to us, we find that our algorithm
 

requires again the storage of two real number for each of the 2ko
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states. We denote these two stored quantities for state s as f(s)
 

and h(s). Similarly, at time t in the algorithm, the first of
 

these quantities will store the value
 

f(s) = P(r l,t]" st= s), 

and the other will store the value 

h(s) = P( [t+j,t+AP i st+j= s 

= X, P( 	[t+j,t+A]" st+j+l sst+j= s) 

The only additional storage required is that for the received
 

branches .t+l Et+2 ..... " t+A"
 

The recursions of (321) and (3.22) directly correspond
 

to the following:
 

The RTMBEP Decoding Algorithm for Unit-Memory Convolutional
 

Codes (backwards)
 

Step 0: Wait until 1, 2.......tA+I are received, set t=l, 

and set f(s) = P(r1, £ ) for all states s. 

Step 1. Set h(s) = [ P(t+A' t+A+l= s'st+A= s) for all states s; 

Step 2. 	For j =A-I, A-2 ..... , 1 make the replacements
 

h(s)- I P(rt+j,s' s) h(s'), for all states s.
 
S i 
 I 

Step 3. 	Put out the estimate
 

a t = {s: s maximizes f(s) h(s))) 

and the reliability indicator
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h (s=at)f (s=at)A(t 1K[l't+A]) I f(s) h(s) 
s 

Step 4. Make the replacement
 

l'
fs(S X Es ' 

and then return to step 1.
 

The obvious "end game" modification is again omitted
 

here.
 

It should also be pointed out that this algorithm is computationally
 

similiar to the RTMbEP decoding algorithm proposed in section 3.1
 

in the sense that each decision requires only one cycle of the
 

algorithm, but this algorithm decodes the whole byte each cycle
 

instead of one bit each time. But the trellis is fully-connected

and the summation is therefore taken over all states instead of two
 

specific predecessors. The backwards recursion of step 2 enables
 

us to calculate P( t I[lt+Aj) for all at at the same time and,
 

therefore, is more powerful than the forward recursion of step 3
 

in the RTMBEP (forward) decoding algorithm. However, if we wish
 

to minmize bit-error rate, the advantage of the backwards recursion
 

no longer exists. Further, the algorithm shares much the same
 

difficulty in hardware implementation as the forward RTMBEP
 

decoding algorithm described in section 3.2, therefore, neither
 

RTMBEP decoding algorithms are attractive alternatives to Viterbi
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decoding when only hard-decisions are required. But the decoding
 

delay required for unit-memory convolutional codes is usuallly
 

much smaller (as counted in branches) than that required for
 

(no, 1) convolutional codes of moderate momory size so that
 

the disadvantage of computing A-M branchs of state probabilities
 

for each of the RTMBEP decisions is relatively minor in the case
 

of a unit-memory code.
 

Although we have repeatedly emphasized that the RTMBEP
 

decoding algorithm requires the calculation of A-M branches
 

of state probabilities, which seems a significant disadvantage
 

of the RTMBEP decoding algorithm as an alternative to Viterbi
 

decoding algorithm, this is primarily due to the real-time
 

constraint of "fixed" decoding delay and the fact that the al

gorithms.are written in such a way as to minimize the use of
 

storage. If we relax this constraint of "fixed" decoding delay
 

but still perform "real-time" decoding, it is then possible
 

to reduce the amount of computation by increasing the storage
 

requirements. This is particularly true for the unit-memory
 

convolutional codes because of the short decoding delay they
 

require. In the following we shall demonstrate this fact,.
 

We note that
 

P(at I[l,t+A] ) = P(atl lt]) P(t Ir[t+l,t+A] ) 

and 

P (at+1 E[l,t+A]) = P(St+l [l,t+l] ) P( t+l I£[t+2,t+A] ) , 
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but P(AtIr[t+l,t+A]) and PN(t+! I[t+2,t+A) are calculated 

by the same backwards recursion of step 2 in the same cycle. 

It is thus possible to store the values of P(at+1 E[t+2,t+A]) 

while calculating P(at t[t+lt+A]). We can obtain P(at+iIr.[l,t+A]) 

without going through the backwards recursion again. As will 

be seen from Table 3.2, any decoding delay greater than 8 

branches will perform virtually the same as A=8. We can then 

let A greater than 8, (which is now the maximal decoding delay) 

and store the values of P(at+_l, [t+it+A]) for i= 2, 3 ...... 

A-7, while calculating P(at+, r t+l,t+A] These values will 

be used immediately to estimate at+lat+2 ,..., t+A-8. Therefore, 

A-7 branches of decisions can be made with A branches of back

wards recursion. A can be made as large as the size of storage 

permits, in the limit, when A equals to the frame length, the 

real-time algorithm becomes the algorithm proposed by Bahl et al. 

[21], and the total amount of computation is about twice that
 

of the Viterbi decoder. For an example, we let A=16, and let
 

the actual decoding delay vary between 8 and 16, for every 8
 

decoded branches, only 16 passes of the backwards recusion are
 

required in contrast to the 64 passes required in the "fixed"
 

decoding delay technique.
 

Natural extensions to implement similar decoders for other
 

(no,k0 ) convolutional codes (M34) are obvious and are omitted.
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3.4 REAL-TIME VITERBI DECODING
 

As mentioned in the beginning of this chapter, the Viterbi
 

decoding algorithm chooses a [,L]to be the information sequence
 

which maximizes the conditional probability P(a[I,L] I [I,L+M]).
 

The following decoding rule, which we call real-time Viterbi de

coding (RTV), is the natural modification of this rule to satisfy
 

the "real-time constraint" that AT be decoded from [l ,t+A] (m <A):
 

Choose A as the byte in the information segment a[1,t+A]
_T 


which maximizes the conditional probability P(a[,t+A]/rhlt+A]).
 

In keeping with our previous notation, we let
 

£[t,t']= [st'st+l''..'st ']
 

denote the sequence of encoder states from time t to time t'
 

inclusive, and let the (no,ko=l) convolutional codes be first
 

considered. It follows from (3.1) that s[l,t+A+l] and a[l,t+A]
 

uniquely determine one another and, moreover, that k is the
 

first m' digits of [st+, st+2' ..., s Hence wafmay re

phrase the real-time Viterbi decoding rules as: Choose A as
 
T
 

the first m digits of the state subsequence s[t+l,t'+lj in the
 

state sequence 5 [lt++l] which maximizes the conditional pro

bability
 
P(a[I,t+A+I]',t+]
 

P(-[l,t+A+l] 1E[l,t+A] P r ) (3.23)
 

Since the denominator on the righthand side of (3.23) is in

dependent of s[lt+A+l]' we can equivalently maximize the
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0
 

numerator alone. 

To obtain a recursion for the numerator in (3.23) we use 

the same arguments as in Section 3.2 which, for t > 2 give 

P(a[l,t+l]' l,t,) = ( P(St+l'£t f±,t]'E[1t-i])
 

= P([,t'!t-1 P(st+l'Itlst)
 

"
Ist ' t+l )
 = P(fi[i,t]fi,t-l )P(st+iIst) P Cft


fl P(tIb(stst+l)) P(s
 

if st P(st 1 )
 

0 otherwise (3.24)
 

Equation (3.24) is our desired recursion. The initial condition
 

to be used for t=2 is
 
1
 

p(s [1,2], [1,1]) 12{P(rL, b(0,s 2) if EP(s2)
 

0 
 otherwise
 

Just as for the ordinary Viterbi algorithm, the key to the
 

efficient implementation of real-time Viterbi decoding is the fact
 

[readily seen from (3.24)] that the best state sequence [in the
 

sense of maximizing the joint probability on the lefthand'side
 

of (3.24,] s[l,t+l] with st+1 = s must be the extension of the
 

'best sequence s[l't] with st = s' or st = sU where s' and s"
 

are the predecessors of s. Hence at each time t the only storage
 

required for each state is the best sequence to that state.
 

Actually, since real-time Viterbi decoding requires only knowledge
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of the first digit of the state A states previously along the
 

sequencef we need store only A-bits per state together with
 

the joint probability needed for the recursion in (3.24).
 

We write Bi (s), l<i<A and h(s) for these stored quantities
 

which at time t (in the algorithm) have the values
 

h(s) = P(s* r 

where s* 	lt+l] is the best path s[lt+l] with st+l=S and
 itte ptc
-- [ll 

B.(s) is the first digit of state st+l_! in the patch s*
 

Then we may state the following:
 

The Real-Time Viterbi (RTV) Decoding Algorithm
 

Step 0: Set t=l, set h(s)= 1 P(rI b(0,s)) for the two states s
 

having 0 as a predecessor, and set h(s) = 0 otherwise. 

Set Bi (s) = 0 for l<i<A and all states s. 

Step 1: If t<A, go to Step 2. Otherwise set 

-t-A BA-rm +1(s) BA-m +2 (s) ... A 

where s is the state for which h(s) is maximum. Set t'=O.
 

Step 2: 	 Increase t by 1. Make the replacement BA-i+l(s)+BAi(s) 

for i = 1, 2, ... ,A-1 and for all s. Increase t' by 1. 

Step 3: lFor,each s, make the replacement h(s)-- p(rb(s',s))h(s') 

where s' is the predecessor of s which maximizes the 

replacing quanity, and set 

B1 (s) equal to the first digit of s'.
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Step 4: If t' = m , go to Step 1; otherwise, return to Step 2.
 

The algorithm just given is directly suited for software im-

I 

plementation. Since the algorithm calls for only multiplication
 

of the computed probabilities and selection of a maximum, loga

rithms may be used with the result that only computer additions
 

are required and hence fixed-point arithmetic would normally be
 

chosen for the calculation. For each t, only one maximum over all,
 

states need be taken, an operation equivalent in complexity to
 

a sum over all states as is required A+i times in the algorithm
 

of the preceeding section. In a hardware realization of the
 

real-time Viterbi algorithm, the microprocessor corresponding
 

to state s would receive h(s') from the two microprocessor cor

responding to the two predecessors s' of s and, with th aid of
 

the received branch, would compute the new value of h(s) and
 

pass this value on in turn to the two microprocessors for the
 

states having s as a predecessor. Each microprocessor would
 

execute only one computational cycle for each m time units and
 

would be somewhat simpler than the microprocessor described in
 

the preceeding section since only one quanity, h, (rather than
 

two, f and h) would be processed and only additions need be
 

performed.
 

It should be emphasized that real-time Viterbi decoding may
 

be used for L=-, i.e, when the convolutional encoder is not per

iodically resyndhronized. Moreover, ordinary Viterbi decoding
 

can-be considered the special case of real-time Viterbi decoding for
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finite L when A=L+M-1. Generalization of the algorithm for
 

general (no,k0 ) convolutional codes (ko0 1) is straight-forward
 

and is omitted in the discussion.
 

3.5 SIMULATION RESULTS
 

To evaluate the performance of real-time minimum-byte-error
 

probability decoding (hereafter called RTMBEP decoding), a rate
 

1/2, (2.1) convolutional coding system was implemented for a
 

simulated additive white Gaussian noise (AWGN) channel with binary
 

antipodal signaling and with 8-level output quantization for the
 

bit-by-bit decoding [(RTMbEP). Also implemented was an (18.6)
 

unit-memory convolutional coding system] (byte size equal to 6)
 

for the same channel. The results of the simulation for the bit
 

case are given in Table 3.1 where Eb is the energy per information
 

bit, No is the one-sided noise power spectral density, and K=M+l
 

is the constraint lengh measured in information bits. The results
 

for the unit-memory convolutional code are given in Table 3.2.
 

From the tables, we observe very little improvement of PBE or
 

PbE when the RTM4BEP or the RTMbEP algorithm is used in place of 

Viterbi decoding Approximately 0.1 dB to 0.2 dB of improvement 

in Eb/N° is observed in the bit case when the channel is very noisy 

Eb/No = 1) while no improvement is observed when the signal is 

strong. Similar but slightly smaller gains are seen in the case 

of RTMBEP decoding of a unit-memory convolutional code. Since
 

it is of no practical interest to operate a coding system in such
 

a noisy channel where the RTMBEP (or RT tEP) algorithm shows a
 

slight advantage over the Viterbi decoding, we conclude that the
 

slightly better performance of the RTMBEP (or RTMbEP) decoding al

gorithmn does not justify the increased decoder complexity required
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PbE
 

Eb k L(bits) No. Frames A RTMbEP Real-Time Ordinary
 
N Decoded Decoding Viterbi Viterbi
 

o 

OdB 3 2400 1 9 .109 .113 .119
 

2dB 3 2400 2 9 .0165 .0186 .017.3
 

4dB 3 2400 5 9 .00083 .00083 .00083
 

OdB 5 2400 11 19 .154 .169
 

2dB 5 2400 2 19 .0165 .0184
 

4dB 5 2400 5 19 .00033 .0033
 

Table 3.1: Results of Decoding of (2.1)- convolutional codes for
 

a simulated AWGN channel.
 

PBE
 
Eb No. Frames REMBEP Real-Time
Nb0 	 L(bytes) Decoded A Decoding Viterbi
 

1.00dB 400 10 8 0.02950 0.03050
 

1.25dB 400 10 8 0.01925 0.02000
 

1.50dB 400 10 8 0.01150 0.01175
 

1.75dB 400 10 8 0.00625 0.00650
 

A 

Table 3.2: 	 Results of Decoding of the (18.6) unit-memory convolu

tional code for a simulated AWGN channel.
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when only hard-decisions are made.
 

In Tables 3.3 and 3.4, we show the effect of the decoding
 

delay on PbE and PBE for the M=2, (2.1) code and the (18.6) unit

memory code. From this table we see that the error proabilities
 

decrease as longer decoding delay is employed. However, they
 

saturate rapidly. From the tables, we conclude that a decoding
 

delay (in branches) of about 3(M+l) to 4(M+I) is sufficient
 

for near-optimal performance with both the RTMBEP and the RTMbEP
 

algorithm.
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E 	 NLobits)No.
of frames
 

N Decoded A (bits) PbE
 

0dB 2400 1 4 0.133
 

OdB 2400 1 5 0.125
 

0dB 2400 1 7 0.113
 

0dB 2400 1 9 0.109
 

0dB 2400 1 19 -0.106
 

0dB 2400 1 29 0.102
 

2dB 2400 2 4 0.0325
 

2dB 2400 2 9 0.0165
 

2dB 2400 2 19 0.0140
 

Table 3.3: 	 Effpect of Decoding Delay for RTMbEP Decoding of the
 

M=2, (2.1) Convolutional Code for a Simulated
 

AWGN Channel
 

E Iy No. of frames 
b L(bytes) decoded A (bytes) PBE 
N0
 

1.25dB 400 10 4 0.02850
 

1.25dB 400 10 6 0.02475
 

1.25dB 400 10 8 0.01925
 

1.25dB 400 10 16 0.01925
 

Table 3.4: 	 Effect of Decoding Delay for RTMBEP Decoding of the
 

(18.6) Unit-Memory Convolutional Code for a Simulated
 

AWGN Channel.
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3.6 	 REMARKS 

We have given a fairly comprehensive treatment of 

optimal real-time decoding of convolutional codes and introduced
 

algorithms to minimize the decoding byte (as well as bit) error
 

probability. We also stated a real-time Viterbi decoding algorithm
 

which, although not previously given in the literature, is pro

bably the form of the Viterbi algorithm which has actually been
 

used in many previous investigations.
 

Our conclusion from simulations of the RTMBEP decoding
 

algorithm is that,althou5h it does not reduce PBBE sufficiently
 

to be a practical alternative to Viterbi decoding in hard-decision
 

applications, the fact that it provides a direct measure of the
 

quality of its decoded decisions, makes it an attractive candidate
 

for the inner decoder in concatenated coding systems, as we shall
 

see in the later chapters. In particular, in a system which will
 

be discussed in section 5.2, the-RTMBEP decoder receiving feedback
 

from an outer decoder performs much better than the Viterbi decoder
 

even in terms of hard-decisions.
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CHAPTER IV
 

OPTIMAL SOFT-DECISION DEMODULATION *
 

In chapter I1, we derived algorithms which minimize
 

byte-error-probability and furnish the a posteriori probability
 

P(ATIL[1,t+A]) as the reliability function of the estimated 

symbol ?T. To make effective use of this reliability information 

for the outer decoder in a concatenated coding system, it is
 

necessary to process the information in such a way that the
 

required complexity of the outer decoder is within practical
 

limits. In both the generalized minimum distance (GMD) and the
 

errors-and-erasures decoding proposed by Forney [2), the re

liability information is either hard-limited or quantized ac

cording to certain empirical rules. In practice, it is necessary
 

to quantize the reliability information into a few levels ac

cordinc to a set of thresholds. Before studying the feasibility
 

of optimizing the thresholds analytically, we are motivated to
 

study in this chapter a similar but much simpler problem, that is,
 

the problem of optimizing soft-decision demodulation.
 

The block diagram of a one-way, coded communication
 

syste_ is given in Figure 4.1. Comparing Figure 4.1 to Figure 1.1,
 

which shows a block diigram representation of a one-way, con

catenated coding system; we find that the two problems are si

milar in the sense that both systems contain a discrete channel
 

which emits soft-decision symbols that are fed into a decoder.
 

*Most of this chapter is taken from [29]. A portion of this
 
chapter was presented orally by the author at the IEEE Inter
national Sn.,posiu:n on Information Theory, Notre Dame, Indiana,
 
October 27-31, 1974.
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[T~T] '"Ucd rot s(t) 

DataatoDecoder
 

Data Demodulator r(t)
 

Figur-4.j* A one-way, coded, digital communications system.
 

Dab
 

Figure -4.2. The variation of the decision regions D and D 

by transfer of tha small region Va 3 
ab 
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But in the case of soft-decision demodulation, the messages are
 

assumed to be sent independently, which in turn implies that the
 

signals are received independently provided that the channel is
 

nemoryless; whereas the messages are not independent in the case
 

of soft-decision decoding. Although this subject deviates some

what from our main-line of research, we find that it is of practical
 

interest by itself and also gives guidance to the task of
 

optimizing soft-decision decoding.
 

From Figure 4.1, it is apparent that modulation and
 

coding are both aspects of the "signal design" problem, whereas
 

demodulation and decoding are both aspects of the "signal de

tection" oroblem. The natural question then is how to coordinate
 

the design of the modulation system and the coding system so-as
 

to produce an efficient and effective communications system.
 

Suppose that the modulator is M-ary; then, without loss
 

of,generality, we may consider the modulatr input alphabet to
 

be the set {o, 1, 2,..., M-1}. Suppose the demodulator is
 

restricted to J different'decisions, then we may take its output
 

alphabet to the t0, 1, 2, 
... , J-l1. We say that the demodulator 

makes "hard-decisions" or "soft-decisions" according as to whether 

J=M or J>M respectively. Clearly, the "classical" modulation 

system design criterion of "error probability" is applicable only 
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for hard-decisions. Unfortunately for classicists, the use
 

of a hard-decision demodulator generally reduces substantitally
 

the effectiveness of the coding system.
 

Wozencraft and Kennedy [10] were the first to suggest that
 

the proper modulation system design criterion is the "cut-off
 

rate," RO, of the M-input, J-output discrete memoryless channel
 

(DMC) presented by the modulation system to the coding system.
 

This DMC is completely described by the transition probabilities,
 

Pjjlm), that the demodulator decision is j given that the mo

dulator input was m, Oj<J, O<m<M. Mathematically, the cut-off
 

rate is given by J-l M-I
 
h{in X I Y Q(m) V]2} (4.1) 

0 = -log 2 j=0 m(.0 

where Q is a probability distribution for the channel input letters, 

i.e., Q(m)> 0 for all m and Q(O) + Q(1) + . .. + Q(M-l) = 1 

Wozencraft and Kennedy were led to the choice of R0 (or
 

as it was then usually denoted,"R m") because R0 is the
 

upper limit of code rates for which the average decoding computation
 

per digit is finite when sequential decoding is used. More recently,
 

Massey [11] has pointed out-a more persuasive reason for choosing
 

R as a design criterion. Viterbi [20] has shown that, when
o 

convolutional coding is used with maximum likelihood decoding 

on the DMC, then the decoding error probability is upper bounded 

by 
-NR 

Pe < cRL2 , if R<R , (4.2) 

where N is the code constraint length, R is the code rate (number
 

of data bits per decoded letter), L is the number of bits encoded
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and cR is an unimportant constant independent of N and L.
 

Hence, as Massey observed, the single number R determines both
0 

a range of rates over which reliable operation is possible as
 

well as a measure of the necessary coding complexity to obtain a
 

specified error probability. R is thus even more informative than
 

the channel capacity of the DMC which, although it determines the
 

entire region of rates over which reliable communications is
 

possible, says nothing about the coding complexity needed for
 

a specified decoding error probability at any given code rate.
 

In the same paper [ll], Massey established a number of
 

fundamental results about modulation systems under the R cri

terion. He gave a general expression for RO for unquantized
 

demodulation (J=o), and proved that, for any given M, the M-ary
 

simplexsignal maximizes the unquantized R for the additive white
 

Gaussian noise (AWGN) channel. For binary modulation (M=2) and
 

any given J, Massey also gave a necessary condition for th3
 

demodulator decision regions to be optimal, and showed how to use
 

this condition as the basis of an iterative computational technique
 

for finding the optimal decision regions.
 

In this chapter, we extend Massey's necessary condition for
 

optimal demodulation to the non-binary (M>2) case, and we give
 

an example which shows that the condition is not sufficient even
 

in the binary case. We show that, in likelihood space, the optimal
 

demodulator decision regions are always bounded by hyperplanes, and
 

we give some examples to illustrate the nature of these regions.
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4.1. 	 THE SYMMETRIC CUT-OFF RATE
 

We define the symmetric cut-off rate, to be the value
 

of the righthand side of (4.1) when Q is the uniform distribution
 

[Q(m) = 1/M for O<m<M] rather than the minimizing distribution.
 

Thus,
 
iJ-1 M-I2
 

log 2M-log 2 {M = mXj0 (4.3)
 

Evidently, RoCR O. Moreover, RO = RO in the binary case (M=2) 

for which the uniform distribution is always the minimizing dis

tribution, and also Ro = R0 in most other cases of practical 

interest where the modulation signal set and the demodulator
 

decision regions are reasonably "symmetric". Furthermore, the 

bound of (4.1) becomes 

Pe<CRL2 o,aif R<R o, (4.4) 

when 	the code is such that each letter in the code alphabet
 

appears in the same fraction of codewords, a situation that
 

always occurs in the conventional convolutional codes that would
 

be used in practice. Thus, both to reflect this practical
 

situation and to obviate the awkward minimization over Q in
 

(4..1) we henceforth take o of the resultant DMC as the measure
 

of quality for the modulation system.
 

4.2 	 A NECESSARY CONDITION FOR OPTIMAL DEMODULATION
 

Henceforth, we assume that we have made the standard trans

formation[26] from waveforms to signal space so that s(t) and the
 

"relevant" component of r(t) in Figure 1 may be replaced by the
 

corresponding vectors s and r in n-dimensional Euclidean space.
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We let s denote the transmitted signal when the modulation
 
-m
 

input is m. Any demodulator then may be viewed as a partition 

50 S-i ... , of m-space, where the "decision region! v(9 . 

is the set of all received vectors r that cause the demodulator
 

to emit the decision j. We now derive a necessary condition
 

for the decision regions to be optimal for a given signal set and
 

channel.
 

Let p(rjm) be the probability density function, which
 

we assume to be everywhere continuous, for the received vector
 

r given that signal s is transmitted over the channel. The
 

transition probabilities of the resultant DMC, for a given de

modulator, are then given by
 

P(j 1m) f P(rjm) dr. (4.5) 

Let a and b, a 3 b, be two output letters of the demodulator
 

-
such thatO 5a ando b are adjacent regions, i.e. the boundary 

between , and~ b is hypersurface in n-space, and let p.be any
 

point on this boundary. Next, consider transferring fromk a
 

tov b a small region, &b, which includes the point p. [We
ba
 

show this situation in Figure 4.2 for the case n=2]. The resulting
 

variation in the transitioh probabilities is then seen from
 

(4.5) to be
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+ P (p Jm) V j=b
pf(jlm) = ( Im)SV j=a (4.6) 

0 otherwise 

where we have now assumed that each P(rlm), O<m<, is continuous 

at r=p, and where 

6V fdr 

ab 

is the volume of the small region S9ab. If the decision regions
 

are optimal, the resulting variation,SR 0, of the symmetric cut
 

off rate, A, must be 0. As we see from (4.3) the condition
 

SW0= 0 is equivalent to the condition SS=O.where
 

J-1 M-1 2
 
s = [ X rP(-jjm) ] . (4.7) 

j=O .m=O
 

We then begin with 

J-1 M-i 65 
as = m) 

j=0 m=O I 

which, with the aid of (4.6) becomes
 

=N1 
 6S aS ]pl)6 (486S= [ [Sp(b m) 6P(ajm)]pp) V (.8M-IO
 
m=O0 

We next note that direct differentiation in (4.7) gives
 

as M-I 
=P(jjm) /rPji) (4.9)[ j

NO(j (ir)) 
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provided that P (j jm) # 0. Then, by using (4.9) in (4.8) we 

obtain 

M- N-M-1 M-1M-1	 1 N-]. 
s: 	 X [ (ai) 

m=0 fP(bjm) i=o /P(a) i-i 

•P 	(P Im)6V 

Thus, the condition that 6S 0 for an arbitrary 6V becomes
 

M-I 1 M-1 	 M-I
 
I [ .X - P(b) 1 /P(afi)] p(pjm) 0. 

m=0 P(blm) i=O /P(alm) i=0 

(4.i0)
 

We have thus proved:
 

Theorem: The demodulator decision regions d , , "'sJ-I in
 

signal space can maximize R only if, for every a and b, a 3 b,
o 

such that P(bfm) / 0 and P(alm) # 0 for 0 < m <M, and such that 

e9 and b share a hypersurface boundary, it is the case that (10) 

holds at every point r = p on this boundary which is a point of 

continuity of P(rlm) for 0 < m <m. 

In the next section we shall give a more illuminating form
 

of condition (4.10).
 

4.3 DECISION REGIONS IN LIKELIHOOD SPACE
 

For the recieved vector r, we define the waveform channel
 

likelihood-ratio vector, A(r)=[AI(r),A2r),... AMj(r)], by
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P p(r 2) (r I -1)1p(r l) 

'.p.r
A(r) p(r[O) ' p(r 0) 0 (4.11)

-

We note that, as pointed out by Massey [11], the demodulator
 

can always, at its "front end", map r to A(r) with no loss of
 

optimality. Thus, it becomes of interest to determine the form
 

of the decision regions Do , Dl ,. .. . , DMl in likelihood space
 

which correspond to the optimal decision regions 4,_1.....
 
9M- in signal space. But, seeing from (4.11) that (4.10) may,
 

after division by p(PI0) (which we.now assume to be non-zero) be
 

rewritten as the linear equation
 

M-1 1 M-1 1 M-1
 
S1 /P(bli) 
 /P aji)IAm(p)+ 

m=l (bm) i-O a i=O 

____ I 11 v_ M-1r---o, N -o 

/P(b 10) i=o /P(aJ0) i=0
 

(4.12)
 

we have immediately our main result
 

Corollary 1: The demodulator decision regions ...... 

in signal space can maximize R only if, for every a and b,a4b,
 
0such that P(bIm) $ 0 and P(aIm) $ 0 for 0 m<M and such that 

b,
S)and share a hypersurface boundary, if is the case that
 

every point r = p on this boundary, which is a point of continuity
 

of r) lies on the hyperplane defined by (4.12)
 

In other words, the optimal decision regions in likelihood
 

space are always bounded by hyperplanes. This fact has considerable
 

practical significance as it is difficult to implement circuitry
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which determines to what decision region some vector A(r)
 

belongs except in the case when the decision regions are bounded
 

by hyperplanes.
 

Condition (4.12) can be placed in an even more transparent
 

form. We note that when (4.12) is satisfied, then
 

1 M-1 
1 

M-1 
'/ P (bjIi) - __ X /P(ai) 

T P(bJo) i=O P(aO) i=O 

1 M-I 1 M-1
 
I /P(bji) 1 X P(aliJ 

4( i0 V(am) i=O 

(4.13)
 

(provided the denominator is non-zero) is just the intercept on
 

the m-th axis in likelihood space of the boundary hyperplane.
 

[See Figure 4.3 for a graphical interpretation of Ti.]. Thus,
 

we have
 

Corollary 2: The demodulator decision regions D0 , Dl,.-., Dj_1
 

in likelihood space can maximize Ro only if, for every a and b, 

a/b, such that P(alm) $ 0 and P(blm) / 0 for 0 < m <M, and such 

that Da and Db share a hypersurface boundary, it is the case that 

this boundary is a hyperplane whose intercepts with the coordinate 

axes are given by equation (4.13) 
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D
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1 1
D 	 A + - A 

T 1 T)A
 

Figure 4.3. 	A hyperplane boundary in likelihood space 
separating the decision regions D 
and b for the case M=3. 

Analogous to 	our definition of A(rI we now define the
 

likelihood vector, X(j) = [1(j), X2 (j)1 .... , M l ( 

of the DMC, which is created by the modulation system, 

by 

m (j) P(j m) 	 (4.14)
 

where we assume P(jiO) + 0 for 0 < j < J. From (4.12)
 

(4.13) and (4.14) it follows after some tedious algebraic
 

manipulation that, when the decision regions are optimal
 

M-M1 /Tm(b) -mXa - 1 	 (4.15) 

m=l T
 
m 

For the case of binary modulation (M=2), we note that (4.15)
 

reduces to the necessary condition for optimality,
 

T = /X(b) X(a) (4.16) 

that was given by Massey [11]. 
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4.4 EXAMPLES AND AN ITERATIVE OPTIMIZATION TECHNIQUE
 

In this section we give some examples to illustrate the
 

use of the necessary condition for demodulator optimality given
 

by Theorem 1 and its corollaries. We begin with a binary
 

signaling example in which Massey's algorithm [11] based on equal

tion (4.16) can be used conveniently to demonstrate effects of
 

quantization. In the later examples of non-binary signaling
 

cases, we also formulate a systematic method for finding the
 

optimal demodualtor decision r6gions by iteration from an initial
 

guess.
 

Example 4.1: Binary anti-podal signals in additive white
 

Guassian noise (AWGN). In this case, the signal space may be
 

taken as one-dimensional. The received signal r may be written
 

r~s+n
 

where so = +/E, sI =VE, E is the signal energy, and n is a
 

zero-mean Gaussian random variable with variance N /2. No is
 

the one-sided noise power spectral density. The likelihood
 

ratio, A(r) = p(rfo)/p(rJl), becomes 

A(r)= e(4/E/N )r 

Because -likelihood space is one-dimensional, the hyperplanes be

tween decision regions are just points or "thresholds". Because
 

A(r) is monotonic in r, each such threshold T between decision
 

regions in likelihood space can identified with the threshold
 

t=(No/4) loge (T)
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between the corresponding decision regions in signal space.
 

The demodulator can then be specified by the J-1 theresholds
 

t(l), t(2),..., t(J-l) in the manner that the demodulator
 

output is j when t(j)<r < t(j+l) with the convention that
 

t(O) - and t(J)= +- It truns out to be more convenient
 

to use the normalized thresholds t'(j)= (v2/1N O ) t(j)in order
 

to weaken the dependence of the optimal thresholds on the
 

energy-to-noise-power-spectral-density ratio.
 

In Table 4.1, we give the normalized threshold values
 

t'(2),..., t'(j-l) that maximize for the case J=3,
 

J=4 and J=8 over a wide range of E/N ratios. These optimal
 

thresholds were determined by Massey's iterative technique
 

[11]. The resulting R for each case is given in Table 4.2
 

where we have included the value of R for an unquantized
 

demodulator (J=-) to show the loss due to quantization. For
 

comparison, we give also the value of Ro, acheived by using
 

the heuristically-chosen "good" thresholds given by Jacobs
 

[27]. For the case J=4, Jacobs normalized thresholds are 

t' (3)=-t' (l)=l and t' (2)=O; while for J=8 they are t' (7)=-t' (1) 

= 1.5, t' (6)=-t'(2)=l, t' (5)=-t'(3)=O.5 and t' (4)=O. From 

Table 4.2, we see that the optimum thresholds offered scant 

superiority in % over Jacobs' thresholds. 
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E/N J3 1J4 	 .. J8 * 
[T7 (7)(dB) t' (2)=t' (1)' t (3)=-t' (1) t' (2) 	 t' (6) "(5) t (4) 

-5.0 0.6247 0.9973 0.0 1.7636 1.057 0.504 0.0
 

-4.0 0.6280 1.0015 0.0 1.7678 1.060 0.505 0.0
 

-3.0 0,6322 1.006 0-.0 1.773 1.062 0.506 0.0
 

-2.0 0.6374 1.013 0.0 1.779 1.065 0.507 0.0
 

-1.0 0.6440 1.021 0.0 1.788 1.070 0.509 0.0
 

+0.0 0.6523 1.032 0.0 1.799 1.075 0.511 0.0
 

1,0 0.6628 1.045 0.0 1.819 1.081 0.514 0.0
 

2.0 0.6760 1.061 0.0 1.829 1.090 0.518 0.0
 

3.0 0.6924 1.082 0.0 1.850 1.100 0.522 0.0
 

4.0 0.713C 1.108 0.0 1.876 1.113 0.528 0.0
 

5.0 0.7386 1.141 0.0 1.903 1.126 0.532 0.0
 

t' (1)= -t-' (7), t' (2) = -t'(6) and t" (3) = - t'(5) 

Table 4.1 	The normalized thresholds for J-ary demodulation,
 
maximizing W for binary antipodal signals transmitted
 
through the RWGN.
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__=__E /N0 J=2 J=3 J=4 ___J=8 

(DB) Optimal Optimal Optimal Jacobs Optimal Jacobs Unquantized 

-5.0 0.13641 0.17195 0.18657 0.18657 0.20298 0.20298 0.21015
 

t4.0 0.16905 0.21251 0.23029 0.23029 0.25015 0.25015 0.25878
 

-3.0 0.20864 0.26133 0.28272 0.28272 0.30645 0.30645 0.31670
 

-2.0 0.25615 0.31929 0.34467 0.34466 0.37258 0.37258 0.38451
 

-1.0 0.31240 0.38692 0.41643 0.41640 0.44853 0.44853 0.46208
 

+0.0 0.37786 0.46396 0.49740 0.49730 0.53320 0.53320 0.54806
 

+1.0 0.45230 0.54899 0.58553 0.58533 0.62385 0.62385 0.63940
 

+2.0 0.53445 0.63894 0.67697 0.67659 0.71572 0.71572 0.73100
 

+3.0 0.62165 0.72888 0.76593 0.76528 0.80227 0.80227 0.81607
 

+4.0 0.70961 0.81238 0.84547 0.84449 0.87633 0.87633 0.88748
 

+5.0 0.79273 0.88287 0.90927 0.90791 0.93234 0.93234 0.94109
 

Table 4.2: Values of R for the DMC obtained by optimally quan
tizing the output of AWGN channel for binary anti
podal signals e ploying the thresholds listed in Table
 
4.1; values of w obtained using Jacob's heuristically
chosen thresholds are listed for comparison.
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Example 4.2: Hard-decision demodulation (i.e., J=M) for M-ary
 

phase modulation in additive white Gaussian noise (AWGN). In this
 

case, the signal space is 2-dimensional and the signal vector,
 

s forcO<r< M, may be taken as the point on the circle of radius
-- m 

/E(where E is the signal energy) at an angle of (2D/M)m. The
 

ternary (i.e., M=3) case is shown in Figure 4. The heavy lines
 

in this figure are the boundaries of the decision regions for
 

circle o f 

radius /E
 

F igure 4.4: Maximum Likelihood Demodulation of ternary phase-modulated
 
signals.
 

a maximum likelihood (ML)-demodulator which, of course, is the
 

hard-decision demodulator that minimizes errors probability when
 

the signals are equally likely.
 



66
 

We now show that the ML demodulator for phase modulation
 

is also the hard-decision demodulator which maximizes R. Let
 

s and , be any two adjacent signals, i.e, their phase dif-a 

ference is 2w/M. By the symmetry of the signal set and by the 

spherical symmetry Of the additive white Gaussian noise, it 

follows that the ML demodulator causes the probabilties P(bIO), 

P(bjl),..., P(bjM-I) to be a permutation of P(afO), P(all), 

P(ajM-I), and also that for eachm such that P(bjm) 4 P(alm) 

there is a corresponding m' such that P(bfm) = P(alm'), P(alm)= 

P(blm') and p(pjm) = p(pjm')for p on the boundary between 0a and 

b Thus, the terms in the summation on the lefthand side of 

(4.10) either vanish singly [when P(bjm) = P(alm)] or cancel in
 

pairs. Thus, the ML decision regions satisfy the necessary
 

condition for maximizing ko given by Theorem 1. Symmetry con

siderations indicate this is the only local maximum of o and
 

hence is the global maximum.
 

As a specific numerical example, we take the M=3 case 

of Figure 4.4 where E/N ° = 1, No being the one-sided noise power 

spectral density so that the variance of the noise in each di

mension of signal space is N /2. The value of RO yielded by 

the optimal hard-decision demodulator is 0.3971. The unquantized 

for this case can be found from Massey's results [11] to
 
0
 

be 0.6254 so that the penalty for hard-decisions is 1.97 dB.
 

Example 4.3: Quaternary demodulation (J=4) for ternary
 

phase modulation (M=3) in AWGN. Symmetry considerations suggest
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that the optimal decision regions will consist of three regions,
 
and &2 , having 120' rotational symmetry and containing
 

the signals s0 ' 1i and s2 respectively, together with an "erasure" 

region &3 containing the origin in signal space. In this case, 

there will be probabilities p and q such that P(alm) = q for all 

m, P(jim) = p for j / m and j / 3, and P(jjm) = l-2p - q for j = m. 

Substituting these parameters into the necessary condition for 

optimality (4.13) we find that the resulting optimal intercepts 

correspond to the straight lines. 

A1 + A2 c
 

cA1 - A = 1
 

-A1 4 = 1 

where 

c 

Thus, the optimal decision regions in likelihood space are known
 

up to the parameter -c. By trying various choices of c for the
 

specific case E/N° = 1 and calculating R for the DMC resulting
 

from the demodulator corresponding to these decision regions, we
 

find that, for the optimal decision regions, c= .486 and the
 

attained value of R 0 is 0.4402 which is a 0.45 dB improvement over
 

hard decisions. 'In Figure 4.5 (a), we show the optimal decision
 

regions in likelihood space, while in Figure 4.5 (b) we show the
 

corresponding regions in signal space.
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optimal decision regions for quaternary
Figure 4.5: 

demodulation of ternary phase modulation
 
in AWGN with E/NO= 1 shown (a) in likelihood
 

space, and (b) in signal.space.
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We now describe a general iterative procedure that may
 

be used to find the optimal decision regions for J-ary demodulator
 

given a particular M-ary signal set and a given channel. The basic
 

idea is quite simple.. Given decision regions D0, D ,......... J_1
 

bounded by hyperplanes, we note that, for some a7b such that D
 a
 

and Db are adjacent regions, the intercepts of the bounding
 

hyperplane with the coordinate axes in likelihood space will satify
 

(4.13) if the decision regions are optimal. If they are not optimal,
 

we can use the numbers determined by (4.13) as the intercepts of
 

a hyperplane which will be a better approximation to the optimal
 

bounding hyperplane between Da and D Our procedures may be stated
 

as:
 

Iterative Demodulator Optimization:
 
) l
Step 0: Make an initial guess, D , .. , D (1) 

0 1 J-1 

for the optimal hyperplane-bounded decision regions in likelihood
 

space. Set k=l.
 

Step 1: Calculate P(jfm), 0<j<J-and O<m<M, for the DMC
 

created by the decision regions D(k), D(k) D (k)
 
o 1 '"' 1 

Step 2: Choose an a and b, a#b, such that Da and D(k) 

are adjacent and calculate T(k+l) T(k+l) T (k+l) 
c ' 2n ca ua-1 from 

equation (13). [Note: if the decision regions are optimal, 

then these T"s will be the intercepts of the boundary between
 

D(k) and D(k) with the coordinate axes.]
a b 
(k±1) and D (k-l) as 

Step 3: Take the boundary between Da a b 
the hyperplane whose intercepts with the coordinate axed-are
 

TT ( k+l) Tk+l)

,2 _ 
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Step 4: Repeat steps 2 and 3 until all such pairs a
 

and b have been considered.
 

Step 5: If D k + l ) , D k + l ) are."sufficiently close" to
 

0 D '.." D'J, stop and take the former decision regions
 

as the result of this optimization method. Otherwise, increase k
 

by 1 and return to step 1.
 

Two remarks about the above iterative method are in order.
 

First, the most time-consuming part of the procedure is the cal

culation of the transition probabilities P(jIm) in step 1. This
 

would ordinarily be done by mapping from the decision regions D(
k )
 

0
 

D(k) ...... DI (k) in likelihood space to the corresponding decision

1 J-1
 

regions k(k), 0 l(k) (k) in signal space, then evalu

ating the intergral in (4.5) either analytically or numerically.
 

Secondly, we note that when M=2, the above iterative procedure
 

requires more calculation than the iterative method given by
 

Massey [11] which is based on equation (4.16). Unfortunately,
 

Massey's method does not generalize to cases where M>2.
 

We now give two examples to illustrate the use of the
 

above iterative optimization method. The first of these is a
 

"hard-decision" case which serves also to illustrate the fact that,
 

when the signal set is not sufficiently symmetric, even in this
 

case the decision regions which minimize demodulator error
 

probability may not maximize W .
o
 

Example 4.4: Hard-decision demodulation for the two-dimen

* sional signal set s0 = [0,01, s1 =[2,0] and j2 = [0,2] in
 

AWGN with variance N /2 = 1/2 in each component. [The average
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signal-energy-to-noise-power-spectral-density-ratio, E/No, is
 

2.67 (or 4.26 dB).] In this case, the received vector r = Ix,y] 

has a likelihood ratio vector 

4
e4x - , e4y-4.
Atr)= [AI,A2] = [ 

Thus, the boundary straight-line (or hyperplane in two-dimensional
 

space)
 

11 A 1
 
2=
T1 1 T2 

corresponds to the curve
 

1 e4x-4 1 e4y-4
T + 2 = 1 (4.17) 

in signal space.
 

As the boundaries between decision regions in the initial

ization step 0 of the algorithm, we choose those which minimize
 

demodulator error probability, viz., the straight lines AI= 1,
 

A1 A2 shown in Figure 4 .6 (a). Note that the boundary between D0
 

and D is a reflection around the line A1 =A2 of that between
 

D and D This symmetry is preserved at successive iteration
 

of the algorithm because of the corresponding symmetry of the
 

signal set about the line x=y and the symmetry of the AWGN. Thus,
 

it suffices to determine the boundary between D and D1. Letting
 

(Ti, T2 ) be the intercepts of this boundary with the and A2
A1 


axes, respectively, and taking (1,-106) as an approximation to
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Figuxe 4.6: Hard decision demodulation of ternary signals: 

(a) The initial decision regions in likelihood space,
 
(b) the optimal decision regions in likelihood space,
 
(c) the optimal decision regions in signal spaee.
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the initial (l,-c), we find, from application of the interative
 

procedure in which we use (4.17) to determine the region over
 

which the integral in (4.5). is to be evaluated numerically, the
 

following succession of intercepts:
 

(1, -10 6 ) initialization 

(0.8307, -0.5732) Ist iteration 

(0.8145,--0.4030) 2nd iteration 

(0.8252, -0.3501) 3rd iteration 

(0.8646, -0.3100) 15th iteration
 

up to the point where there is no further change in the 4th signi

ficant digit on further iteration. In Figures. 4.6 (b) and
 

4.6 (c), we show the optimal decision regions for this example,
 

as found by the iterative optimization procedure, in likelihood
 

space and in signal space, respectively.
 

The values of 4 obtained as successive iterations were
 

as follows:
 

0.6388 initialization
 

0.6462 1st iteration
 

0.6476 2nd iteration
 

0.6480 3rd iteration
 

0.6482 15th iteration
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The optimal value of Ro is about 1.5% (or .06 dB) above that
 

obtained for the hard-decision demodulator which minimizes error
 

probability. We see also that, for this example, the iterative
 

procedure converged rapidly to the optimal demodulator--after
 

only one iteration the resulting demodulator was effectively
 

optimal.
 

As can be seen from Figure 4.6 (c), the optimal decision
 

boundaries have asymptotes which are straight lines (hyperplanes
 

in two-dimensional space). These asymptotes are shown by the dashed
 

lines in the figure. If one uses these asymptotes as the boundaries
 

of the decision regions for a sub-optimal demodulator, one finds
 

the resultant R to be 0.6459 which is only .015 dB inferior to
 

the optimal hard-decision demodulator. We shall later discuss the
 

practical significance of the near-optimality of these asymptotic.
 

linear boundaries in signal space.
 

Example 4.5: Quaternary demodulation (J=4) for the same
 

ternary signal set (M=3) and noise as in example 4.3.
 

In Figure 4.7 (a), we show the J=4 decision regions used
 

to initiate the iterative optimization procedure. The optimal
 

decision regions in likelihood space and in signal space are shown
 

in Figures 4.7 (b) and 4.7 (c), respectively.' Convergence to
 

four significant digits of accuracy in the intercepts of the
 

boundary lines with the coordinate axes required 25 iterations.
 

The values of R at successive steps were as follows: 

0.6535 initialization 
0.6986 ist iteration 
0.7045 2nd iteration 
0.7057 3rd iteration 
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0.7062 25th iteration
 

Ile see that the decision regions after only two iterations were
 

effectively optimal. The optimal value of R for quaternary
0 

demodulation is about 2% (or 0.34 dB) above that for optimal
 

hard-decision demodulation.
 

In Figure 4.7 (c), the dashed lines (or hyperplanes in
 

two-dimensional space) again are the asymptotes to the optimal
 

decision boundaries in signal space. If these asymptotes are
 

used as the actual boundaries betwen the decision regions in
 

signal space, we find R of the resultant demodulator to be
 

.7031 which is only .02 dB below optimal.
 

In Examples 4.3 and 4.5 we have seen that the linear
 

(hyperplane)asymptotes to the-optimal decision regions in signal
 

space themselves bound the decision regions for a demodulator
 

-which is virtually optimal. The practical significance of this
 

fact is that the resulting sub-optimal decision rule can be as
 

easily implemented directly in signal space as can the optimal
 

decision rule in likelihood space. There is no need for the con

version from signal space to likelihood space in order to obtain
 

conveAiently-implemented decision regions with linear (hyperplane)
 

boundaries.
 

in fact, it can be shown generally, for AWGN in an n-dimensional
 

signal space, that the optimal demodulation regions in signal space
 

are such that each bounding hypersurface has (at most) 2 n- 1 hy

perplane asymptotes. We conjecture that these hyperplane asymptotes
 

form the boundaries of decision regions-for a demodulator that is
 

virtually optim/nn, and hence that the mapping from signal space
 

to likelihood space is not necessary to obtain virtually optimal
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Figure 4.7: Quarternary demodulation 'of ternary signals:
 

(a) the initial decision regions likelihood space,
 
(b) the optimal decision regions in likelihood space, 
(c) the optimal decision regions in signal space.
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demodulation together with an easily-implemented decision rule.
 

4.5 A COUNTEREXAMPLE TO THE SUFFICIENCY OF OPTIMALITY CONDITION
 

(4.10).
 

As we have pointed out above, condition (10) is actually
 

the condition for an extremum of Ro, and hence not in general
 

a sufficient condition for optimal demodulation. In the examples
 

which we have studied wherein the noise was additive with a "smooth"
 

density function, there has generally been only one set of decision
 

regions satisfying (10) so that the extremum was -necessarily the
 

global maximum of 0. We now give an example to show, however,
 

that it'is possible for (10) to be satisfied for decision regions
 

that define only a local maximum, or even a local minimum, of
 

R.
0
 

Example 4.6: Hard-decision demodulation for binary signals
 

such that the conditional density functions for the likelihood ratio
 

A are
 

0.25 0 < A < 0.9
 

(A 2.75 0.9 < A < 1.1
 

0.25 	 1.0 < A < 2.0
 

0 2.0<A
 

and pl(k) P0 (A) when the signals so and £1 are transmitted,
 

respectively. [These are valid choices for these conditional
 

density functions as they satisfy the constrains
 

=P0 (A )dA / Pi (A)d = 1 

0 0 

and A= P(A)/ P o (A) 
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that are the only ones that must be observed in the binary
 

case].
 

For hard-decision demodulation with binary signalling,
 

condition (4.10) reduces to Massey's condition (4.16) namely,
 

T = /A(1)X(0) (4.18) 

Where T-is the threshold between decision regions in likelihood 

space. 

In Figure 4.8 (a), we show the conditional density
 

functions for the likelihood ratio A, and in Figure 4.8 (b)
 

we show /A(!)A(O) as a function of the threshold T between
 

the decision regions in likelihood space. We see that condition
 

(4.18), the necessary condition for optimal demodulation, is
 

satisfied at three places, viz., 0.56, 1.06, and 1.16; the
 

corresponding values of are 0.0123, 0.0066, and 0.0069,
 

respectivley. The third of these corresponds to a local, but
 

not global, maximum of Wo" The second corresponds to a local
 

minimum of RO , while the first corresponds to the desired global
 

maximum of RO . That is, 'T=0.56, is the threshold between decision
 

regions in likelihood space for the optimal demodulator.
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Figure 4-.: 	 The binary, hard-decision, demodulation situation 
used to demonstrate the Insufficiency of optimality 
condition (10). 
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4.6 SUMMARY
 

In this chapter, we have derived a necessary condition
 

for optimal J-ary demodulation of M-ary signals, where optimality
 

is taken to mean maximality of the symmetric,cut-off rate, 
0 

of the resulting discrete memoryless.channel. By means of a coun

terexample,.we have shown that this-condition is not in general
 

sufficient for optimality. Wehave also used this necessary con

dition for optimality as the foundation for an iterative optimization
 

method to find the optimal demodulator decision regions from an
 

initial "good guess".
 

In general, the optimal demodualtor decision regions are
 

bounded by hyperplanes in likehood space. For the important case
 

of additive white Gauusian noise, the corresponding optimal decision
 

regions in signal space have hyperplane asymptotes. In some examples
 

we have shown that the regions in signal space bounded by these
 

asymptotic hyperplane define demodulator decision regions which
 

are virtually optimal, and we conjectured that this happy state of
 

affairs (which permits near optimal performance with a decision
 

rule that can be simply-implemented directly in signal space) holds
 

in general.
 

In regards to the application of this results to the problem
 

of soft-decision decoding for the concatenated separate coding system,
 

we note here that the super-channel of Figure 1.1, is again processed
 

by a decoder; therefore, the criterion of optimality of maximizing
 

k of the resultant discrete channel is still valid. Unfortunately,
 

since this super-channel is no longer memoryless, the analysis ap

pears to be extremely difficult and we shall not pursue it further.
 

http:terexample,.we


CHAPTER V
 

PERFORMANCE OF CONCATENATED CODING SYSTEMS
 

ON A SIMULATED AWGN CHANNEL
 

In this chapter, the performance of several RS-convolu

tional concatenated coding systems utilizing the unit-memory codes
 

found in Chapter II will be compared with similar systems utilizing
 

the usual (n ,l) convolutional codes. The first ot basic system
 

is the hard-decision Viterbi decoded concatenated system with no
 

feedback between the inner and outer decoders as proposed by
 

Odenwalder [5]. In the second system studied, the Viterbi decoder
 

is replaced by a RTMBEP decoder while the RS "errors-only"[2]
 

decoder is replaced by an "erasures-and-errors" [2) decoder. In the
 

third, fourth, and fifth systems, the inner decoder are restarted
 
I 

whenever the outer decoder corrects an error and feeds back the
 

correction to the inner decoders. In the sixth and final system, 

we annex a tail to the unit-memory code (the code is, then, no 

longer of "true" unit memory) to enhance the capability of the 

Viterbi decoder to detect unreliable decoded symbols as was 

proposed by Zeoli [8] and Jelinek [9] for the (n , 1) convolutional0
 

code. The various systems studied are summarized in Table 5.1.
 

In each case, we choose the (18.6) unit-memory code as the inner
 

code because it has practically minimum complexity in terms of
 

decoder implementation and because of its reasonably large free
 

distance (dfree=16). We choose the Reed-Solomon codes over
 

GF(2 6) with block length 63 symbols as the outer codes so that the
 

symbol size of the RS code is matched to the byte-size of the
 

81
 



82 

Inner Outer Feed- Inner Code 
SYSTEM Decoder Decoder back Erasure rail Annexa

tion 

I Viterbi EO NO NO NO
 

II RTMBEP EE NO YES NO
 

Il Viterbi EO YES NO NO
 

IV RTMBEP EO YES NO NO
 

V RTMBEP EE YES YES NO
 

VI Viterbi EE YES YES YES
 

* 	 EO: Errors Only Decoders 

EE: Erasures and Erros Decoders 

Table 5.1: 	 Various Block-Convolutional Concatenated Coding
 

Systems Studied in Chapter 5.
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information sequence of the unit-memory code. We also assume
 

the interleaving to be "perfect". In other words, we assume
 

that the decoded symbols at the output of the scrambler are
 

statistically independent. With this assumption, we can calculate
 

the error probability of the Reed-Solomon block by means of
 

the statistics for the inner decoder which we obtain from
 

simulations. Figure 5.1 shows an encoder and a Viterbi decoder
 

for the unit-memory code interleaved to degree.N. Note that the
 

interleaving is done on a byte-by-byte basis, so that it "destroys
 

information" to a much less extent than if it been done on a bit

by-bit basis. Further, we make use of the fact that almost all
 

the incorrectly decoded Reed-Solomon codewords are dmin symbols
 

away from the correct codewords to estimate the byte-error pro

bability of the over-all system, where dmin is the minimum distance
 

of the RS code. (We assume that the outer decoder always decodes,
 

even when two codewords are equally likely.)
 

5.1. 	ODENWALDER'S CONCATENATED CODING SYSTEM AND SOFT-DECISION
 

MODIFICATION WITH THE RTMBEP,DECODING ALGORITHM.
 

The concatenated coding system.proposed by Odenwalder [51
 

is shown in Figure 1.1. His original scheme employed a hard-decision
 

Viterbi decoder as the inner convolutional decoder and a t-error
 

correcting "errors-only" RS decoder as the outer block decoder.
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1 2 N
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Figure 5.1 (a) A convolutional encoder, (b) a Viterbi decoder,
 
for the (n , k ) unit-memory convolutional code in
terleaved °to 8 egree N.
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Then, the probability of error of a Reed-Solomon block is
 

given by 

63 63 j 63-i 

-BERS X (X(5.1) i) pi(1-p) 
i=t+l 

where p is the byte-error probability of the Viterbi decoder
 

and t = (dmin -1)/2. Then, the byte-error probability of the
 

concatenated coding system assuming complete maximum likelihood
 

(ML) decoding is given by
 

pBE 2t+I pBERS (5.2)
 
63
 

The byte-error-probability of the inner convolutional coding
 

systemnat signal energy per information bit to one-sided noise

power-spectral-density ratios for the inner coding system,
 

(Eb/No)I equal to 1.0 dB, 1.25 dB, 1.50 dB, and 1.75 dB are
 , 


given in Table 2°3, which in turn correspond to signal-energy
 

per inner channel digit to one-sided noise-power-spectral-density
 

ratios EsIN, of -3.77 dB, -3.52 dB, -3.27 dB, and -3.02 dB.
 

This simulation result is used to determine the performance of the
 

= 
system. For (Eb/N0)I 1.25 dB, we show in Figure 5.2 the cal

culated error probability versus the over-all signal-energy per
 

information bit to one-sided noise-power-spectral-density, which
 

is given by
 

(Eb/No)o R1 (E-b/No) R 1 (Es/N) (5.3)

bRS RSRCON
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PBE
 

Concatenated with
 
O 4-error-correcting
 

RS code
 
2
o10- A 	 6-error-correcting
 

Rs code
 

0 8-error-correcting
 
RS code
 

10 3
 

x Viterbi Decoding for 
104 (18.6) Unit-memory
 

Convolutional Code
 
System I with M=6, (3.1)
uj code 

- 5
0

10-s 

System I with M=7,
 
(3.1) code
 

-10-6 	 System I with (18.6)
f Unit-memory code
 

\ System II with (18.6) 
10 unit-memory code 

S i I I 	 t I 
1.9 2.0 2.1 2.2 2.3 2.4 2.5. 2.6 (Eb/No) ° 

dB
 

Figure 5.2: 	 The Performance of Concatenated Coding Systems 
I and II with different RS code for a simulated 
AWGN channel with E /N = - 3.52 dB, and the 
performance of Viterbi0 decoding for the (18.6)
 
unit-memory code without concatenation.
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where RRS and RCON are the rates of the RS code and the con

volutional code, respectively.
 

Also plotted in Figure 5.2 are the performance curves 

at the same (Eb/N ) for similar concatenated coding systems 

using the M=6 (3.1) convolutional code and the M=7, (3.1) 

convolutional code as inner codes. The performance of the coding 

systems employing these three convoltional codes concatenated 

with a 6-error correcting Reed-Solomon code is shown in Figure 

5.3. From both Figures, an approximatley 0.3 dB advantage in
 

(Eb/No)o for the (18.6) unit-memory code, consistent with the
 

result shown in Table 2.3 is observed. But the performance of
 

concatenated systems is, in general very sensitive to (Eb/No)o,
 

this 0.3 dB advantage corresponds to a factor of 10 to 100
 

advantage in the error rate of the outer decoder, which, of
 

course, should not be neglected. Even when we compare the
 

performance of the unit-memory code to that of the M=7, (3.1)
 

code which is of the same free distance as the unit-memory code
 

approximately 0.1dB to 0.15 dB advantage can be observed due
 

to the byte-oriented structure of the unit memory code.
 

We now replace the Viterbi decoder by a "Real-Time Minimal

Byte-Error Probability" decoder in the concatenated coding system.
 

When the reliability function-of the decoded symbol P( t/r[l,t+A])
 

is less than certain threshold, T, the decoder emits an erasure.
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0-41
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-7:
 

M=6, (3.1) code
 

b=7, (3.1) code 

A (18.6) unit-memory code
 

fI I 
1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 dB(Eb/No)o 

Figure 5.3: The performance of concatenated coding
 
system I empolying 3 different convolutional
 
codes and a 6-error correcting RS code with
 

* "errors-only" decoder for a simulated AWGN
 
channel with -3.77 dB<E /N <-3.02 dB.
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An erasures-anderrors Reed-Solomon decoder which can correct
 

t errors and e erasured provided
 

2t+e<d
 

is used as the outer decoder. Then the probability of error
 

of a Reed-Solomon block, assuming complete ML decoding, is given
 

by
 

PBE 63 d 63 ) p6tqe3lp-q ) 63-t-e (5.4) 

d=dmintO t,e
mle=d,-2t
 

where p is again the probability of byte-error of the inner decoder
 

and q is the probability of erasure of the inner decoder, and
 

N N!
 

t!e!(N-t-e)!
te 


Here again, we assume that the decoder always decodes and in case
 

of a tie it always makes an error. Then, the byte-error probability
 

of the overall system is again obtained from (5.2).
 

The byte-error-probability p and the erasure probability
 

q depend on the particular threshold, T, selected. The optimal
 

threshold is a function of Eb/N and the minimum distance, dmin
 

of the Reed-Solomon code. Roughly speaking, for a given block
 

gets larger, the over-all block error probability
length, when dmin 


But there is no simple way
is minimized at a higher erasure rate. 


to determine the optimal threshold analytically. We then find the
 

p and q for T = 0.5, 0.7, and 0.8 by simulation and use these values
 

of p and q to calcululate the byte-error probability of the coding
 

system.
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In Table 5.2, we show the result of this calculation.
 

We see that for (Eb/No)I in the range between 1.25 dB and 1.75 dB,
 

T = 0.7, is the best threshold among the three candidates. The
 

performance of this concatenated coding system with T=0.7 is also
 

plotted in Figure 5.2. The improvement of the performance due to
 

the erasure scheme, as observed from Figure 5.2, is dependent on
 

the error correcting capability of the outer coding system as well
 

as (Eb/No)I and is approximately 0.1 dB. This slight improvement
 

is probably not significant enough to justify the increased com

plexity of the convolutional decoder. However, as we shall see
 

in the later sections, the RTMBEP decoder coupled with a "erasures

and-error" block decoder performs much better than the Viterbi
 

decoder when feedback from the outer decoder is available.
 

(E]NQ)ITTq 	 Over-all Symbol-Error Probability 
d=9 d-i3 d=i?(dB) 

0080 0.01000 0.05000 0.?35AI0-2 o.4o7!o 3 O.87710-5
 
- -	 -4


1.00 	0.70 0.01325 0.04150 0.740110 2 o.477<10
3 0.128<10


- - 4

0.50 0.02100 0.01950 0.677r10	2 0.555%40 3 0.213K10
 

0.80 0.00675 0.03400 0.12391-10 0.244 $0-4 0-193-10 - 6
 

- 3 -4 -6

1.25 0..70 0.00800 0.02650 0.90200 0.179<10 0.149410


-2 -4 -6 
0.50 0.01350 0.01125 0.107-10 0.332,10 0.481i0 


-3 - 6
0.80 0.00425 0.02125 0.112ti0 0.691<10 0.173U10 -8
 

- 6 -8
 O.68410 0.2044i0
1.50 0.70 0.00525 0.01625 0.981K10 
4 


- 5 0.7?4x10-8
0.50 0.00900 0.00400 0.11310-3 0.136i0l


0.80 0-002500M01050.0.416'10 - 5 0.636ri0 -8 0.416-<01- 1
 

- 5 -8
.1.75 0.70 0.00250 0.00825 0.249,10 0.334<10 0.196'10 -1
 
-8
0.50 0.00400 0.00250 0.336-10 5 0.81610 0.92T I1"
 

Table.5.2:The effect of erasing thresholds T on the symbol

error probability of the over-all concatenated coding
 

systems for various (Eb/No)jtith various outer codes.
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5.2 EEEDBACK FROM THE OUTER DECODER TO THE INNER DECODER
 

Because of the nature of the convolutional code and
 

the Viterbi decoding algorithm, once an "error event" occurs
 

the decoder often makes a number of closely spaced erroneous
 

estimations before it recovers to correct operation. Since
 

the outer decoder of a concatenated coding system is design

ed in such a way that it is able to detect and correct almost
 

all of the errors madeby the inner decoder, it is then of
 

signifidant advantage if the corrected estimation of-the
 

outer decoder is feedback to restart the inner decoder to
 

avoid these "bursts" of errors. Figure 5.4 illustrates the
 

general concept of such concatenated coding systems.
 

!ooodModulator,Data L1 Fiock ter7 Convol. 
source, Encod. --- leaving' Encod. 

Waveform
 

Feedback
 

I Decoder Deinter- I jDecoder 
-!USER for leaving f- for Demodulator 

Block Code L . iConvol Code 

Figure 5.4. 'A typical Concatenated Coding System with
 

Feeback from Outer Decoder to Inner Decoder
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We have implemented a software Viterbi decoder and
 

a software RTMBEP decoder which can be restarted with feed

back. We carried out the simulations for this type conca

tenated coding system by assuming that the outer decoder
 

always makes correct decisions. (This-is a valid assump

tion since the probability of byte-error for the over-all
 

system is negligible compared to that of the inner convolu

tional decoder.) We summarize the results of this simula

tion for the (18,6) unit-memory convolutional code at an
 

(Eb/No)I of 1.25 dB in Table 5.3. We see that the fTMBEP
 

decoder performs much better than the Viterbi decoder in
 

this case. That is, the feedback from the outer decoder
 

plays a much more important role in helping the RTMBEP
 

decoder to recover from the error than it does for the
 

Viterbi decoder. In Figure 5.5, we show the performance
 

of these two systems concatenated with the "errors-only"
 

block decoder. From the figure, we conclude that the
 

improvement in performance due to the feedback is appro

ximately 0.3 dB for the Viterbi decoder and about 0.5 dB for
 

the RTMBEP decoder. Also listed in Table 5.3 is the error
 

probability obtained for the M=7, (3,1) convolutional code
 

(which has the same free distance as the (18,6) unit-memory
 

code) with the same kind of Viterbi decoder with feedback.
 

From Figure 5.5, we see this 0.1 dB difference in perform

ance between the unit-memory code and the M=7, (3,1) code
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Byte-Error-Probability 95% Con- Byte-Error 95% Con
for (18,6) Unit-Memory fidence Prob. for fidence
 

Code Interval M=7, (3,1) Interval
 
Code
 

Viterbi
Decoding 0.0110 	 +0.0023 0.01325 +0.0025
 

RTMBEP0.0075 +0.0075
 
Decoding
 

Table 5.3: 	 The Performance of Viterbi Decoder and RTMBEP
 
Decoder for the (18,6) Unit-Memory Code and the
 
M=7, (3,1) convolutional Code when Feedback from
 
Outer Decoders is Employed for a Simulated AWGN
 
Channel with (Eb/No)I at 1.25 dB and A=8. The
 

Data are Taken from a Sample of 8000 Bytes.
 

Erasure Error-Prob. of overall system 
Crite- 4-error 6-error 8-error 
rion p q correcting correcting correcting 

T=0.6 0.00388 0.01138 1.891x10- 5 6.387x10- 8 9.416x10-1 1 

T=0.7 0'00288 0.01763 2.498x10 5 7.122x10 - 8 8.207xi0 -1 1 

T=0.8 0.00163 0.02575 3.725xi0 5 8.138x10- 8 6.173x10-l l 

T=0.9 0.00125 0.03413 1.178x!0-4 3.554x10- 7 3.283x10-1 0 

Table 5.4: 	 The performance of over all concatenated coding
 
system employing a RTMBEP decoder, which is re
started when feedback from the outer decoder is
received, and a "erasures-and-errors" Reed-Solomon
 
decoder for the (18,6) unit-memory code for a
 
simulated AWGN channel with (EbIN0) = 1.25 dB.
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is consistent with the previous observation made about
 

Figures 5.2 and 5.3. We can further make use of the reli

ability information put out by the RTMBEP decoder to erase
 

some -less reliable bytes decoded by the inner decoder as
 

we did in last section. The byte-error-probability, p,
 

erasure probability, q, and the over-all byte-error rate
 

for the concatenated system are calculated and listed in
 

Table 5.4 for thresholds equal to 0.6, 0.7, 0.8 and 0.9.
 

The performance for T=0.8 is also plotted in Figure 5.5.
 

Here, we observe nearly a 0.1 dB improvement, which is again
 

consistent with the result of Section 5.1.
 

5.3 	ZEOLI'S CONCATENATED CODING SYSTEM AND ZEOLI'S MODI-


FICATION ON THE UNIT-MEMORY CONVOLUTIONAL CODE.
 

In [8], Zeoli has proposed a concatenated coding
 

system, which employs a rather long constraint length (K=32)
 

convolutional code obtained by annexing a'long tail to the
 

M=7, (3,l) convolutional code. While the state complexity
 

of the Viterbi decoder remains the same as that for the M=7,
 

(3,1) code, the annexed tail has absolutely no effect on the
 

hard-decision decoding error-probability until after an error
 

has been made. But the tail provides excellent error-detec

tion once the Viterbi decoder starts to make mistakes. Since
 

the decoder constraint length is much smaller than that of
 

the encoder, the encoded branches in the Viterbi decoder
 

assume the previous several hard-decisions as part of the
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encoder state (See [8]). The state metrics of the Viterbi
 

decoder must become extremely ominous after a few branches
 

once a decoding erroroccurs. We are able to make use of
 

this phenomenon to implement excellent erasure rules for
 

the inner decoder. However, once the decoder makes one
 

mistake, the decoder assumes an incorrect encoder state
 

which leads to endless errors. The feedback from the outer
 

decoder is, therefore, a necessity in order to reset the de

coder into correct state sequence and to terminate the error
 

propagation.
 

Motivated by the success of Zeoli's concatenated coding
 

system, we annexed the unit-memory convolutional code with a
 

three-branch-long "random tail" such that the resultant code
 

is truely an X = 4, (18,6) convolutional code. Th6 encoding
 

matrices of this convolutional code are shown in Table 5.5.
 

The length of the tail is chosen to be compatible in memory 

to that required for Zeoli's M = 31, (3,1) code. Since the 

decoder is still a Viterbi decoder for the (18,6) unit-memory 

convolutional code, the decoder is going to make endless mis

takes once an error occurs if the decision of the outer decod

er is not fed back to the Viterbi decoder; it makes no differ

ence whether the annexed M = 4, (18,6) code is non-catastrophic
 

[12] or not. A software Viterbi decoder similar to the one
 

described in last section is implemented to evaluate the per

formance of this system for the same AWGN channel. We chose
 

the logarithm of the conditional probability P(stI[lt]) as
 

the state metric for state st. The reliability information
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is derived from the difference of state metrices between
 

states A+1 branches apart. The average of this quantity for
 

correctly decoded state sequences as well as the standard de

viation of this quantity may then be calculated. The erasure
 

rule is to erase the decoded byte when the metric difference

for A+I brances is larger than T standard deviations away from
 

the average. Because of the law of large numbers, we expect
 

to erase very few correctly decoded bytes but to erase most of
 

the incorrectly decoded bytes. The resultant byte-error

probability, p, and erasure probability, q, and the calculated
 

byte-error-probability for the over-all concatenated coding
 

system for T=1.5, T=l.8 and T=2.0, are listed in Table 5.6.
 

It is seen that the system performs best when the threshold
 

is set at T=l.80. If the metrics were Gaussian, as the central
 

lim-it theorem would suggest since the number of digit metrics
 

added is large, this threshold of 1.80 correspond to an erasure
 

probability of 3.6% for correct bytes; we see actually that the
 

fraction erased correct bytes is 2%,. somewhat less than Gaussian
 

estimate. We also include the performance of this system with
 

T=.8 in Figure 5.5. The performance of Zeoli's originally
 

proposed system is directly taken from [81. We observe about
 

0.2 dB improvement over Viterbi decoding with feedback for the 

unit-memory code in the last section compared to the same
 

system with Zeoli's modification. This improvement is
 

again consistent with that observed from the Viterbi decoding
 

with feedback for the N,=7, (3,1) code compared to Zeoli's
 

orig.iaal system which makes us confident of our use of Zeoli's
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111000 110100 110000 000011 000111 001011 
011100 011010 011000 000110 001110 010110 
001110 001101 001100 G 001100 01il00 101100 

G0 = 000111i100110 000110 G1 011000 111000 011001-

100011 010011 000011 110000 110001 110010
 
110001 101001 100001 100001 100011 100101
 

000110 000001 101111 011000 111001 011000
 
100011 000011 010011 110001 110010 110000
 

G 110001 100110 100001 G 100011 100101 100001
 
=
2 11000 110101 001000 G3 000111 000011 001011
 

011000 011010 011100 000110 001110-010110
 
001100 011100 110110 001100 011100 101100
 

111111 010100 000000 
000111 111010 100000 
000000 111111 010100 

G = 100000 000111 111010010100 000000 111111
 
111010 100000 000111
 

Table 5.5: 	 The encoding matrices of a M=4, (18,6) convolu
tional code obtained by annexing a random tail
 
to the (18,6) unit-memory convolutional code
 

Byte-Error-Probability of Over-all
 
Concatenated Coding System
 

4-error 6-error 8-error 
T p q correcting correcting correcting 

1.50 0.00125 0.03788 2.095xi0 -4 8.175x10- 7 9.465x10-1 0 

1.80 0.00263 0.02088 3.602x10-5 1.074x10- 7 1.245x10-1 0 

2.00 0.00425 0.01450 4.168x10- 5 1.899xi0- 7 3.708x!0 -1 0 

Table 5.6: 	 The performance of Zeoli's type of concatenated
 
coding system employing the =4, (18,6) convolu
tional code and a Viterbi decoder with feedback
 
for the (18,6) unit-memory code for different
 
erasing thresholds for a simulated AWGN channel
 
at (Eb/N)O = 1.25 dB. The data are taken from
 

a sample of 8000 bytes, and the decoding delay
 
for the Viterbi decoder is 8.
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data without checking it by our own simulations.
 

We also point but that our use of the "normalized"
 

thresholds in terms of mean and standard deviations of the
 

increment of branch metric is much more convenient and makes
 

much more sense as an erasure criterion than Zeoli's choice
 

of the state metric itself, since our choice of the thresholds
 

are independent of the particular metric which the Viterbi
 

decoder employs
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5.4 	 DEGRADATION OF PERFORMANCE FOR EMPLOYING HIGHER RATE
 

INNER CODES.
 

We have 	extensively studied block-convolutional
 

concatenated coding systems employing rate 1/3 convolutional
 

cpdes -and Reed-Solomon codes over GF (26). However, it is
 

sometimes desired in practice to operate the inner convolu

tional 	codes at a higher rate, rate 1/2 in particular, in
 

order to ease the burden imposed on the phase locked loops
 

in the 	receiver. We shall illustrate a heuristic approach
 

to estimate the performance of similar concatenated coding
 

systems 	with rate 1/2 coding systems.
 

From past experience, the performance of rate 1/2
 

convolutional coding system is about 0.5 dB inferior to
 

that of 	rate 1/3 convolutional coding system of the same
 

complexity. We therefore tested the performance of a soft

ware Viterbi decoder (without feedback) for the M=6' (2.1)
 

convolutional code in an AWGN channel at (Eb/No)I = 1.75 dB 

or, equivalently, Es/N = -1.25 dB. The results of this 

simulation and the calculated overall byte-error-probabi

-lity when it is concatenated with the Reed-Solomon codes
 

are listed in Table 5.7. Comparing the results of Table
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Byte-Error-Prob. Byte-Error-Probability of the Over-all 
of the Viterbi Concatenated Coding System 

Decoder 4-error- 6-error- 8-error- 10-error
correcting correcting correcting correcting 

0.0305 
'-3

6.168xi0 
'-3

6.287x10 
-5

3.285x10 
-

1.006x10 6 

Table 5.7: 'The Performance of Viterbi Decoder for a M=6, (2,1)
 
Convolutional-Code in a Simulated AWGN Channel at
 
(Eb/No)I = 1.75 dB. The data are taken from a
 

sample of 400 bytes and the decoding delay is 48
 
branches.
 

5.7 To those given in Table -2.3 for 14=6, -(3.1) code and the
 

(18,6) unit-memory code, we find that the performance of rate
 

1/2 code operated at (Eb/No)I = 1.75 dB is almost equivalent
 

to that of the unit memory code operated at (Eb/No)i = 1.0 dB
 

or that of the M=6, (3,1) code operated at (Eb/No) equal to
 

somewhere above l.25 dB. This is consistent with the past
 

experience. The performance of the concatenated coding
 

systems using the three codes are plotted in Figure 5.6. Once
 

'again the difference between the M=6, (3,1) coding system and
 

the M=6, (2.1) is about 0.5 dB. This is obvious because
 

for the two coding systems to have the same error probability,
 

it is necessary that the two inner decoders have exactly
 

the same error-probability.
 

Unfortunately, the (12,6) unit-memory convolutional
 

code has exactly the same free distance as the M=6, (2,1) code
 

(See Table 2.1). Therefore, there is no distance advantage in
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Figure 5.6: 	 Performance of the concatenated system I described in section 5.1.
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utilizing the unit-memory convolutional code.
 

In conclusion, a penalty of approximately 0.5 dB
 

is paid when a (3,1) convolutional code is replaced by a (2,1)
 

convolutional code of the same state-complexity; and a unit

memory code which has a free distance one greater than an
 

(n0, 1) convolutional code of the same state-complexity has
 

0.3 dB advantage compared to this (no, 1) convolutional code.
 

In the case we studied, a sum of about 0.8 dB is sacrified when
 

we choose a rate 1/2 convolutional code to replace the rate
 

1/3 unit-memory code. In the case where the byte-size is 5
 

bits, from Table 2.1, we see the free distances'of (15,5)
 

and (10,5) unit-memory codes are 15 and 9 which are 2 greater
 

and 1 greater than the (3,1) and (2,1) codes of the same
 

complexity; we expect again an approximately 0.8 dB loss when
 

we choose the (10,5) code in place of the (15,5) unit memory
 

code. But, when the byte-size is 4, on the other hand, we
 

see that there is no distance advantage for the (12,4) unit

memory code compared to the (3,1) code; while, on the contrary,
 

the free distance of the (8,4) unit-memory code is one greater
 

than the (2,1) code; therefore the 0.5 dB loss due to the
 

increase of rate should be somewhat compensated by the better
 

free distance of the (8,4) unit-memory convolutional code.
 

Therefore, we might expect only a 0.2 dB degradation.
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The performance of various block-convolutional concatenated
 

coding systems over a simulated AWGN channel was 'studied and com

pared in the previous sections. The fact that the overall byte

error rate is calculated from the byte-error rate of the inner
 

decoders makes it possible to carry out the simulations with a
 

moderate size of samples. Assuming that the decoder makes a error
 

with probability PBE for each byte-decision, the number of byte
 

errors 	within n byte-decisions is a binomial random variable with
 

parameters n and PBE* Then, the mean value of this random variable,
 

is, nPBE, and the standard deviation is VnPBE(I-PBE). If n is
 

sufficiently large, this binomial random variable can be approximated
 

by a Gaussian random variable with the same mean and variance.
 

sinci95% of the samoles of a Gaussian random variable are within the
 

interval specified by the mean and twice of the standard deviation,
 

we are confident that with more than 95% probability, the actual byte

error rate for the inner decoder is in the interval specified by
 

(PBE -2 /nPBE(-PBE), PBE +2 /nPBE(lPBE) ).These 95% confidence
 

intervals are indicated in Table 2.3.
 

The performances of System I using the 1=6, (3.1) code and
 

M=l, (18.6) unit-memory code corresponding the upper and lower limits
 

of these intervals are calculated and shown in Figure 5.7. We conclude
 

with 95% confidence that the actual performance of the concatenated
 

coding 	system deviates no more than 0.1 dB from our simulation results
 

Moreover, since all the simulation results are obtained through the
 

same pseudo-random number sequence, the relative difference in per

formance among various systems are, in fact, much more acturate than
 

the 0.1 dB confidence interval observed here.
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of System I with M=6, (3.1) Convolutional Code
 
and (18.6) Unit-Memory Code.
 



CHAPTER VI
 

SUMMARY AND CONCLUSIONS
 

In Chapter V, we have extensively studied block

convolutional concatenated coding systems with various modi

fications. It appears that the advantage of employing unit

memory convolutional codes can improve the performance nearly
 

0.3 dB. The feedback from the outer decoder to restart the
 

Viterbi decoder also contributes about 0.3 dB. But, surprising

ly, the feedback from the outer decoder to restart the RTMBEP
 

decoder offers approximately 0.5 dB advantage, which is 0.2 dB
 

more than the same feedback is able to help the Viterbi decoder.
 

As a result, this might be the principal occasion where the
 

use of RTMBEP decoding is justified. Another unexpected re

sult is that soft-decisions by the inner decoder in conjunction
 

with an erasures-and-errors outer decoder only improves the
 

overall performance by about 0.05 dB to 0.1 dB for RTMBEP
 

decoding. Even with Zeoli's modification which provides the
 

best error detection capability, soft-decisions in conjunction
 

with an erasures-and-errors outer decoder can improve the
 

performance by only approximately 0.2 dB. We summarize the
 

effects of each feature discussed above on the performance
 

of the block-convolutional concatenated coding system in
 

Figure 6.1. The figure is drawn in terms of a dB scale. As
 

a communications engineer starts to choose a coding system,
 

the first question he faces is whether his phase-locked-loop
 

can tolerate the burden of a rate 1/3 coding system, if the
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Figure 6.1. The relative dB gains among the concatenated.
 
Coding Systems studied.
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answer is positive, he gains 0.5 dB. Then, he is to decide
 

which inner code to employ to choose the M=7, (3,1) code gives
 

0.2 dB advantage over the M=6, (3,1) code but twice the number
 

of states in the decoder is required; whereas to choose the
 

M=l, (18,6) code has 0.3 dB advantage with the number of states
 

required kept the same, but more branch connections are required.
 

The third question is whether he allows the decisions of the
 

outer decoder to feedback to the inner decoder; if not the
 

obvious choice is Viterbi decoding; otherwise, he can gain
 

0.3 dB or 0.5 dB depends on whether the Viterbi decoder or
 

the RTMBEP decoder is utilized. And finally, if soft-decisions
 

are desired, he can gain 0.2 dB through Zeoli's type of erasure
 

scheme if he use a Viterbi decoder, or gains only 0.05 dB if
 

the plain RTMBEP erasure scheme is employed.
 

As we observed from Figure 5.5, the leading contenders
 

for. a good concatenated system are the sophisticated schemes
 

of (1) Zeoli's modification-with the unit-memory code, (2)
 

hard-decision or (3) the soft-decision RTMBEP decoding with
 

feedback from the outer decoder for the unit-memory code.
 

Among them, the soft-decision RTMBEP decoder with feedback
 

performs the best. In terms of hardware implementation,
 

Zeoli's modification with the unit-memory code and the
 

hard-decision RTMBEP decoder are approximately of the same
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complexity. However, since the operation of the Viterbi decoder for
 

the Zeoli's system depends on the correct feedback from the otter
 

decoder, there is always a slim chance that the outer decoder fails
 

to provide correct decisions to the Viterbi decoder. Since the
 

encoder constraint length is much larger than the decoder constraint
 

length, this can cause endless errors as if a catastrophic convolutional
 

code were used. Thus, it is necessary to send synchronization signals
 

periodically to reset the Viterbi decoder to guarantee restoration of

normal operation. The RTMBEP decoder has the same constraint length
 

as that of the encoder, therefore, the decoder is able to recover
 

from errors in a few branches by itself without feedback. The feedback
 

from the outer decoder only speeds this process up; therefore, when
 

an error is fed back, the most damag& it can cause is for the RTMBEP
 

decoder to make a few more errors before it recovers by itself. This
 

is certainly a very desirable advantage for a concatenated coding
 

system.
 

Moreover, because the decoder can restore its normal operation
 

quickly, the degree of interleaving required for this scheme is con

siderably less than the Reed-Solomon block length required for the
 

Zeoli's scheme.
 

As microprocessors are mass-produced, we foresee this as a pro

mising practical scheme to achieve very reliable communication on a
 

very noisy channel. moreover, in our simulations. We have studied
 

only the case when the outer decoder sends a corrected feedback to
 

the inner decoder when an error was detected by the outer decoder.
 

It is conceivable that one might improve the performance of the
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concatenated coding system by employing the feedback from the
 

outer decoder whenever the decision of the inner decoder is erased.
 

This scheme requires further simulation results for different
 

thresholds to determine its performance, but it is certainly a
 

promising direction for future research.
 

Finally, as an interesting reminder to information theorists, 

we 'note that for the RTMBEP decoder with feedback system employing 

the unit-memory code concatenated with the .(63 53), 6-error-correcting 

RS code, we can achieve a byte-error-probability of 10 -7 at EsINo =-3.25 

dB (or(Eb/No)I = 1.25 dB). The cut-off rate, R0 , of this 8-level 

quantized AWGN channel is 0.275, and the channel capacity is 0.44 

-whereas the over-all rate of our concatenated coding system is 0.27.
 

It seems that the cut-off rate is still-the practical limit of rate
 

for reliable communications, even for a very sophisticated con

catenated coding system.
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