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A
I. INTRODUCTION

The general aim of the research under this grant has been the joint
optimization of the coding and modulation systems emploved in telemetry
systems. Particular emphasis has been placed on that research which would
assist in the forﬁulation of the inner and outer coding standards by the
Goddard Space Flight Center.

Section II provides a brief description of the major research achieve=
ments during the first year of this grant, with reference to the technical
reports or other publications where a.detajled description may be found.
Section ILL lists the personnel who have been involved in this research.

An appendix gives a detailed summary of the research done in concatenated

coding systems.

II.. SUMMARY OF RESEARCH PERFORMED

A. Conyolutional Code Construction

Because of the desirability of standardizing as soon as possible

upon a few convolutional codes, either long-constraint—length codes for use
with sequential decoding or short-constraint-length codes for use with
Viterbi decoding, it has become imperative to ensure that presently-known
codes are optimum, or sufficiently close to optimum, so that a marked
improvemen£ would not later be forthcomiﬁg.

Besides the traditional parameter of free distance, dw, as a measure
of code goodnees, rese?rch [1) under the predecessor of this grant has shown
the importance of the distagce profile, 4, particularly for 1ong”co£straint—
length codes used with sequential decoding. Moreover, as pointed out in our
semi~annual status report [2], there are situations in which-long constraint
length systematic codes might be preferable over the non-systematic codes

now routinely employed. Thus, it became important to find optimum long-
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constraint-length systematic codes. This task was carried to completion by
R. Johamnesson. In his report on this research [3], comvolutional -codes
with an optimum distance profile are given at rate 1/2 for aill constraint
lengths‘K_fvﬁl. In:the same report, Johannesson also lists guick-logk—in
rate 1/2 codes (GZ(D) =D+ Gl(D)) with an optimum distance profile fof
K < 51. 'This report also describes simulations which confirmed the principle
investigator's conjecture [2] that systematic'codes-perform equally as well
as non-systematic codes under sequential decoding when the dummy information
zeroes are suppressed in the tail‘of the systematic code.

With the ever—increasing demand for greater reliability in decoded
data, there has been a resurgence of. interest in concatenated coding. A
major effort under this grant has been made to find convolutional codes that
aré optimum, or nearly so, for use with Viterbi decoding-in the immer coding
portion of a concatenated coding system. The concern for the interaction
of the various components in the total coding/modulation system led to the
. discovery by L. Lee [4] of a new type of convolutional code, the unit-memory
code, which is ideal for such inner system usage because of its "byte-oriented"
structure as opposed to the "bit-oriented" structure of conventional con-
volutional codes, Lee found optimum unit—memoré codes for all rates and
constraint lengths of practical interest. We consider the discovery ané
development of this new type of byte—oriented convolutional code to be one
of the principal achievements of this research and one certain to give in=
creased impetus to the use of convolutional codes in concatenated coding
systems.

In conjunction with the search for good long convolutional codes,
simulations of sequential decoding on the deep-space channel have been carried
out to compare direqtlf,yarious convolutional codes thag have been proposed

as ‘candidates for use in various deep-space systems. Detailed comparisons
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of rate 1/2, K = 32 codes have been conducted and reported by the principal
investigator [5]. These simulations support the choice of the so-called

"Massey-Costello" K = 32 quick-look-in code which is made in the proposed

Goddard coding standard,

B, Soft-Decision Demodulation

In earlier work [6], the principal investigator demonstrated the
value of the "cut—off rate" R, of the discrete channel created by the
modulation system as a measure of the qualitf of the modulation system for
use with coding, and he showed how to design an optimum soft-decision demcdu-
lator for this eriterion when binary signalling is used. An important advance
made umder this grant by Lee is the extension of all these results to ron-
binary signalling [7]. Lee's work shows that the optimum soft-decision regions
in likelihood space are always boundeq by hyperplanes. Lee gave an algorithm
for the determination of these optimal regiéns, as well as some heuristic
rules for finding good} but sub-optimum, decision regions directly in signal
5péce. The combination of the resul%s in [6] and [7] provide a sound basis

for the design of modulation systems to be used in conjunction with coding.

c. ‘Syndrome Source Coding

- Some of the research under this grant has been concerned with the
use of error—-correcting codes to perform source coding or "data comp%essidn."
Continuing his earlier work on syndrome source coding [8], Ancheta has during
the past year made aﬁ important innovation which he calls "noiseless universal
syndrome gource coding" (NUSSC) and has demonstrated its robustness in com—
pressing a broad range of sources [9]. Like its parent, NUSSC employs a
very simple sourcé en;oder and hence appears very attractive for use on
board spacecraft; the more complex source decoder being at the ground site.
Ancheta's innovation consists of using several different parity-check matrices

and adaptively choosing the one to use in forming the syndrome according to
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'the particular source output sequence. By cleverly choosing the parity-
check matrices to be those of a nested sequence of error-correcting codes,
Ancheta's NUSSC scheme is almost as simple to implement as plain syndrome
source coding. NUSSC appears to be a very practical method of data com-

pression, and it is currently being applied to real telemetry data supplied

by the Goddard Space Flight Center to confirm its effectiveness.

D. Concatenated Coding Systems
During this year of research, L. Lee has completed a major study

of concatenated coding systems which‘employ convolutional codes in the inner
coding subsystem. This work forms the subject of Lee's doctoral dissertation
[10] which is included as the appendix to this report. Leé describes an
almost bewilldering array of options that are available to the designer of

a concatenated coéing system and performs the valuable service of specifying
the precise gain (in db) which each such option affords. The most sophisti-~
cated systems considered by Lee outperform all previous concatenated coding
systems and represent nearly the ulti?ate in performance. It'is expected

that Lee's work will be the standard in this field for many years to come,

JII. PERSONNEL

The table below lists all personnel who have been involved in the re-
search under the first year of this grant.

We are pleased to refort that Mr. Lin-nan Lee completed the requirements
for the Ph:D. degéee in electrical engineering under this grant in November
1975 and is now a member of the research staff of the Linkabit Corporation

in San Diego, California.
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ABSTRACT

of

"CONCATENATED CODING SYSTMES ‘EMPLOYING UNIT-~MEMORY CONVOLUTIONAL

CODES AND SYMBOL-ORIENTED OPTIMAL DECODING ALGORITHMS"
by

Lin-nan Lee

To achieve very reliable communications in a very noisy
channel with relatively small coding complexity, concatenated co-
ding systems utilizing convolutional codes as the inner code and
the Reed-Solomon (RS) codes as the outeér code have been proposed
by previous investigators. However, there has always been a
"matching” problem between thé bit-oriented convolutiénal inner
codes and the byte-oriented RS outer codes. To use efficiently
the potential of concatenation, we propose, in this dissertation,
to concatenate a byte-coriented unit-memory convolutional code
which has greater. free distance than previously known convo-
lutional codes of the same rate and the same state-complexity
with RS-outer codes of the same symbol size. We also propose
to utilize a Real-Time Minimal-Byte-Error Probability (RTMBEP)
decoding algorithm in conjunction with the feedback from the
outer decoder as the decoder for the inner convolutional code.
The perfofmance of this concatenated coding system is studied,
and the improvement due to each additional feature is calculted.
It is shown by simulation that this concatenateé coding system

out-performs all previously known concatenated coding schemes.
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CHAPTER I

INTRODUCTION

éhannon's celebrated theory of information states
that information can be transmitted with an arbitrarily small
error probability provided that the rate of transmission is below
channel capacity. Commﬁnications.engineers now recognize that
‘this promise of highly reliable communications can be achieve only
by means of coding.

Because the complexity of coded communication systems
grows exponentially with the block length for block codes (or
with the_constraint length for convolutional codes), instead of
directly using very long codes, the idea of éascading two or more
codes of less complexity to achieve higly reliable communications
was first considered by Elias-[l], and later by Forney [2].
Forney's, technique of using two or more block codes over different
alphabets to obtain very low error rate over noisy channels is
known as concatenated coding. Guided by the premise that a con-
volutional code generally. performs better than a block code of
the same complexity, Falconer [3}, and later Jelinek and Cocke {[4]
tried to cascade block codes and convolutional codes. Figure 1.1
shows a general representation of a block-convolutional concatenated
coding systemn.

In thelr schemes, sequential decoding is used for the inner
decodexr. However, the performance of sequential decoding is such
that the probability of error can be reduced very sharply with
slight increment of signal energy if .the rate of transmission is

1
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below the computational cut-off rate, Rcomp’ The primary function
of the outer block code is only to resolve decisions when the
sequential decoder experiences computational-overflow. Therefore,
the over-all coding system can be regarded, more or less, as a
sequantial decoded convolutional coding system.

The implementation and operation of Viterbi decoding
are later found simpler than sequential decoding in a number of
respects. In particular, with a moderate constraint length con-
volutional code, Viterbi decoders can be operated with an erxror
‘rate less than lOM2 at a rate slightly higher than RcOmp' From
Forney's result [2], it is conceivable that a concatenated coding
system with a powerful‘ outer code caﬁ perfofm reasonably well
when its inner decoder is operated with a brobability of error in
the range between 10h2'and 10“3. Odenwalder [51, then, chose a
Viterbi decoder for the inner coding system. We recall that it is
always possible to achieve very low.erxor probability by means of
sequential decoding of long constraint length convolutional codes
at rates slightly below the "cut-off rate®, Rb(Rcomp)' of the
channel if one can toldgrate a certain amount of erasures. There-
fore, in crdex to be an attractive alternative to gequential decoding,
a concatenated coding system has to operate at an overall rate
slightly above the cut-off rate of thé channel. On the other hand,
we can always regard the convolutional encoder-discrete channel-
decocder combinagion in Figure 1.1 as a "super—channel” for the

outer coding system; the function of the inner convolutional coding

system is then to create a better channel for the outer coding system.



Hence it is necessary that the inner convolutional coding system
be operated ét a réte slightly below the channel capacity so that
the super-—channel is at least slightly "“cleaner" than the original
discrete channel. This requirement has thus limited the choices
of outer codes to those cof very high rate. And because it is usually
~difficult to implement Viterbi decoders for high rate convolutional
codes with large enough free distance, high rate block codes are
the only option left for the outer coding system.

Generally, we can reduce the total signal energy per
"information bit required to achieve a certain error probability for
a given channel by employing a lower-rate code and thus spending less
energy in each baud. For example, simulation result in section 5:4
shows a 0.5 dB improvement in the signal-energy—per—information—bit
to one-sided noise-power—spectraildensity ratio when one elects to
use a rate 1/3 convolutional coding system of the same decoder com-—
plexity in place of a rate 1/2 convolutional coding system. But
for a given data rate, the lower rate coding system implies a higher
bqndwidth,'which‘in turn implies the need for a much more sophisti-
cgted signal detecti%n device. The difficulty in operating the phase
locked loop in the detection device increases with the bandwidth‘and
negates the advantage of using very low rate. codes. . Experience
has shown that convolutional codés oﬁ rate 1/2 and 1/3 are the most
attactive candidates for the inner coding system. Furthermore,
because the complexity of Viterbi-like decoders for convolutionél
codes is exponentially dependent on the constraint length of the

convolutional code, the task of finding "good" inner codes for the

concatenated coding system is then focused to the search for rate



1/2 and rate 1/3 convolutional codes of short constraint length -
which are capable of good performance on a very noise channel.

Since the output error patterns of Viterbi~type decoders
for convolutional codes are usually bursty, block codes over a large
alphabet, such that many bits of the inner code fofm one Eymbol of
the outer code, appear very attractive for the outer coding system.

In particular, it appears that the Reed-Solomon (RS} block codes
are the most satisfactory because there are relatively simple de-
coding procedures (such as the Berlekamp-Massey [6], [7]1, algoxithm)
for RS codes and because of the "maximum-distance-separable" pro-

. perty-of the RS.codes. But the lengths of the bursts of errors
made by Viterbi-like decoders are widely distributed so that it is
generally necessary to interleave thé decoder output for the inner
convolutiénal code such fhat errors in the individual RS~-symbols of
one block are independent. Otherwise, we would have to use a very
long block code to operate the system efficiently.

From the above general discussion, we conclude that
Odenwalder's configuration of a block-convolutional concatenated
coding system is generally a sound choise. However, we have ob-
served that we may further improve the performance of this type
of concatenated coding system in several different directions.
Thesejpossible directions of improvement will be studied in the
following chapters of this @issertation..

Because the most-likely burst length of the decoding
error patterens made by the inner decoder are on the order of the

constraint length of the inner convolutional code, Odenwalder chose

P
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the RS symbol to be of the samé size as the constraint length of the
convolutional code. Although this is certainly a reasonable choice,
it can be improved upon. For example, it is very unlikely that the
beginning of a burst is always aligned with the boundary between two
RS symbols; therefore, it is possible that a burst only two bits long
may affect two RS symbols. This fact leads us to the idea of
constructing good conveolutional codes which are symbol—oriented
rather than bit-oriented. 1In Chapter II, we discuss a systematic
approach to constructing such code, and we shall see that the codes
thus constructed generally have free distance better than Odenwaldexr's
convolutional codes of roughly the same complexity in terms of the
Viterbi decoder implementation. In fact, because of this improved
free distance and the symbol oriented nature of these codes, we
obtain an approximately 0.3 4B improvement in the over-all per-—
formance of the concatenated coding system when these. codes replaces
Odenwaldér's codes. .

Another possible improvement is to modify the decoder for _
the convolutional code .such that the decoder emits not only the most—
likely estimated symbol, but also.reliability information about the
es;imated symbol. Based on this reliability information, the outer
decoder is then able to perform either Yerasures-—-and-erroxrs” decoding
or "generalized-minimum~distance"”, (GMD) decoding as suggested by
Forney [2]. Zeoli ISj and Jelinek [9] have proposed.methods of
extracting reliability information from a Viterbi‘decoder. Concep-

tually, their approach is to annex a long tail to the original



convolutional code and to use this added tail to provde an erroxr de-
tection capability for the estimate made by the Viterbi decoder for
the original shorter convolutional code. This approach requires
feadback from previously decoded symbols in the Viterbi decoder
and, more importantly, uses the symbol as corrected by the outer
~decoder to restart the inner Viterbi decoder whenever an error is
corrected by the outer decoder. We find that this feedback from
the outer decoder improves the performance by 0.3 dB, while the exr-~
ror.detecfing capability and the "erasures-and-errors” decoder
provide an additional impro#ement:of 0.2 ds.

' We have also studied algorithms which compute the a

£

posteriori probability of each decoded symbol for the short con-

straint length convolutional code and which use this a posteriori

probability as the reliability information provided to the outer
coding system. Although this technigue proved to bé less powerful
than Z=20l1i's tail annnexation scheme (this erasure scheme improves
the pariormance by only 0.05 48 to 0.1 dB over hard-~decision deco-
éing), its performance is undoubtly optimal among-all the possible
schemss employing only a short constraint length convolutional
code without an annexed tail, because décoding de&isidhs are based

on the a poséeriori probability calculated. Morxeover, in conjection

with the use of the feedback, the a posteriori probability decoding

algorithms seem to perform much better than the Viterbi decoder does

when aided by feedback from the outer decoder (approximately 0,2 as



difference). The algorithm used together with feedback from the
outer decoder, even without the extra tail, offers a slight im-
provement over Zeoli's scheme. Moreover, in this scheme, the inner
encoder and the inner decoder have the same constraint length

and the decoder can return to normal operation a few branches after
-an error event occurs. It\is possible to interleave the output of
the decoder for the convolutional code to create a memoryless super-
channel for the RS decoder. This results a simpler implementation
than that for %eoli's type of system. These algorithms, which

we call the Real-Time Minimal-Byte-Error (RTMBEP) decoding algorithm,
and the Real-Time Minimal-Bit-Error Probability (RTMbEP) decoding
algorithm are described in detail in Chapter III.

Another area of possible improvement which one can
visualize for Odenwalder's system is the area of soft-decision’ de-
modulation. Using the criterion proposed by Wozencraft and Kennedy
‘[10] and by Massey [l1l] we can "optimize" the demodulator by maxi-
ﬁizinq the cut-off rate, R , of the resultant discrete channel.

In chapter IV, we shall show that the decision boundary of the
demodulator maximizing R, are hyperplanes in likelihood space.
Although we are not able to improve the performance of coded com-
munication system very much in the case of binary signaling with
this optimal demodulator because Viterbi decoding is relatively
insensitive to the demodulator design, we believe that the decision
rules for optimal demodulators thus obtained may be useful for
future soft-decision decoding, because, the symbol-oriented decoding

algorithms described in Chapter .III compute the reliability in-



formation not only for the most-likely symbol but also for all
symbols in the coding alphabet and, thereforé, make availablé the
likelihood—raéio vector. Althoﬁgh this aspect of the study has
not been carried very.far and deviates somewhat from the main
line of our research, we summarize in Chapter IV some scattered
results which are related to the subject-of this dissertation.

In Chapter V, we give the performance of various types
of concatenated coding systems as obtained from simulations and
compare the improvement in performance due to each feature employed
in the system. Finally, the results and conclusions are summarized

in Chapter VI.



CHAPTER II

BYTEJdRIENTED CONVOLUTIONAL CODE

In this chapter, we introduce "unit—meﬁory" convolutional
codes which are "byte-oriented" in such a way as to be attractive
for use in concatenated systems. We shall show that (no, ko) con-
volutional codes with unit memory always achieve the largest free
distance.among all codes of the same rate ko/n0 and the same’ number

2Mk

o of encoder states, where M is the encoder memory.

2. 1  BINARY CONVOLUTIONAL CODES

Let the binary k, —tuple a, denote the subblock of
information digits at time t (t =0, 1, 2, ...), and let the binary
n_ - tuple Et denocte the encpded subblock at time t in an (no, ko}

(8]
convolutional code. Then, the encoding equations may be written

Et = E.t GO + _a_t._l Gl e F Et_M GM (t = 0;1(2;---) (2.1)

where each G; is a ko X binary matrix, where M is the code me-

£

mory, where the operations are in GF(2), and where, by way of con-

vention, a_ = 0 for t>0. BAn encoding circuit is shown in Figure

t
2.1. Note that the encoder has 2 ‘o distinct states where the state’
is taken as the -contents of the delay cells in the encoder. We shall
refer to the number Mk of binary state wvariables in the encoder as

the state-complexity of the convolutional code.

The constraint length K {measured in information digits) of

the convolutional code is defined by

K= (M+ 1) ko

* This chapter of the dissertation 1is taken from [28].

10
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The rate of the code is defined by
R= ko/no.
In virtually all past applications of convolutional codes, ko and
n_ have been taken as relatively prime, i.e.; ged (ko, no) = 1 where

o)
"ged" denoted "greatest common divisor"., In fact, the condition

gcd (ko,no) = 1 1s generally tacitly assumed so that speaking,
for instance, of a convolutional code as being of rate R = 1/2
would imply ko= 1 and n0:2 unless the contrary were explicitly
states. As will be seen, however, there can be advantages in

+ T,
taking ged (ﬁo,no) > 1.

For convenience, let b denote the encoded sequence

=fe,t'] _
- - - 1 < t i -
(b,:b, ;¢---3:b,,] Over time units t through t' and let th de

note the entire semi-infinite encoded sequence. Let ar, ..j and
L)

rm)

be similarly defined. The free distance, d& , Of the

free

i{o,m)
convolutional code is the minimum Hamming distance between all

pairs of encoded sequences b resulting from pairs of infor-—
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the linearity of (2.1), it follows that ’

d min W(b (2.2)

= By wy)
free. a0 [0,e)

where W(-) denotes the Hamming weight of the enclosed binary se-
guence and where. the minimization is over all arg @) such that
. - r

50# 0. The code is non-catastrophic {12, 131 when W(EIO m))= o
¥

implies that W(h;, _,)= =, in which case the minimization in (2.2)
,m
reduces to the minimum over all 2rg y such that aO# 0 and
,m -~ —

W{a The restriction to non-catastrophic codes entails

21g,=) 7= -

no loss in the achievable value of 4 for given n_, kX and M,

free fo)

a fortunate situation because the non-catastrophic property is
essential in applications (cf. [12]).

Because df is the primary determiner of decoding error

ree
probability when Viterbi (i.e., maximum likelihood) decoding is

used with a non~catastrophic code, dfree is the usual criterion

of goodness for codes to be used with Viterbi decoders. Because
the number of states of the.viterbi deéoder [14] coincides with
the. number of encoder states, wviz. ZMko, practically dictates a
small state—complexity. The resgion Mkoj 6 appears to be about

the range where Viterbi decoding is attractive in applications.
Thus, for Viterbi decoding applications, we are motiwvated to find,
for a given code rate and a given state*complexify in the above
range, a convolutional code with maximum dfree' In the next
section, we report the results of our search for such codes and
we also derive a useful upper bound on the attainable d

free”

2. 2. UNIT-MEMORY CODES WTTH MAXIMAL dfree

Any (no,ko) convolutional code with memory M can be consi-

dered as an (né= Mn_, k6= Mko) code wi;h M'=1 simply by taking
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Gy Gy ees Gy
G! = 0 So =++ Sy-2
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These two codes are entirely equivalent in the sense éhat the same
semi-infinite binary information seguence produces the same semi-

infinite binary encoded éequence, although the division into time

subblock would be different. Since the state—cqmplexity,is Mk

for both codes, it follows that for a given state-complexity and

given rate, the maximum value of dfr _ _is achieved within the sub-

e
set of convolutional codes with M = 1. Hence, we can restrict our

search for optimal codes, for a given rate and state-complexity,

to codes with unit-memory.

For a unit-memory code, equation {2.1) reduces to

by ='8.Gy + 2, 16,

When a,# 0 is the only non-zero information subblock, then

(£ = 0,1,2,...)- (2.3)

Dro,1)™ 2o 606! (2.4)

is the only possibly-non-zero portion of. b From (2.2), it

[0,e)"

then follows that the attainable 4 of a unit-memory (no,ko)

free

convolutional code is upper-bounded by the largest minimum dis-

tance of an (n =2no, k = kc) block code. We shall call this up-

per .bound the block code upper bound on d and we note that

free’

McEliece and Rumsey [15]have used similar arguments to derive more

elaborate upper bounds on df for codes where M # 1.

ree
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¥

We see that the argument used above to establish the

.block code uppexr bound on 4 suggests the following search

free

procedure for finding a non-catastrophic unit-memory (no, ko)

£

code with maximal 4 H
free

(i) Set d egual to the largest d_. achievable by any
(n=2no, k = ko) block code.
(ii) Chopse [GD:Gl] as the generator matrix of a (n=2n0,

k = ko) block code Wlth'dmin =d. If dfrée = d and the code

is non-catastrophic, stop. Otherwise continue with step -(ii)

until all block codes with dmin = d have been exhausted.

{(iii) Reduce 4 by 1 and return to step (ii).

The above search procedure was carried out to obtain,
for rates 1/4, 1/3, 1/2 and 2/3 (which are the usual rates of
interestlin applications), a non-catastrophic unit-memory con-

volutional code with maximal d for all state-complexities

free

of 6 or less. The values of d obtained are given in

free

Table I where we- also list, for comparison, the largest dfree

attainable by a code of the same state~complexity having

gcd (no, ko) = 1. The block code upper hound on dfree for

each case is also listed.
The codes with ged (no, ko) = 1 that achieve the wvalues

of 4 given in Table 2.1 may be found in Larsen [16] and

free

Paaske [17] The values of the bleck code upper bound on dfreé'

given in Table I, were taken from Calabi énd‘Myrvaagnes [18]

and from Helgert and Stinaff [19]. In Table 2.2 we give the
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matrices G0 and G1 of a non-catastrophic unit-memory code
with maximal df*ee at each place where Table 2.1 shows that
value of exceed the dfree available from the best gecd (no, ko}zl

code having the same state-complexity.

Rate State Complexity Block Code Upper Maximal dfre of Maximal d coo of
(ko/nb) (No. of State Variables) Bound on dfree Unit-Memary Eodes. ged (o, Eo? =1
. Codes
1/4 1 8 7 7
2 10 10 10
3 13 13 13
4 16 16 %6
5 20 20 i8
6 24 24 20
1/3 1
2
3 10 10 10
4 12 12 12
5 15 15 13
6 ié 16 15
1/2 1 4 3 3
2 5 5 S5
3 6 6 6
4 3 3 7
5 9 9 8
& 10 10 10
2 2/3 Z 4 3
4 6
6 8

Table 2,;; Maximal dfre

unit memory convolutional codes and of convolutional

e for a given state—complexity Mko of

codes with gcd (no, ko) =‘l.



Rate n
o
i/2 8
i/2 10
1/3 15
1/3 18
i/4 20
114 24
2/3 6

'k
)

4

Cg

18000111
01001011
00101101
00011110

1000011111
0100001111
0010011110
000610311001
0000110101

100001111011010
010000111161101
001001011110110
000101101101011
000011110110101

111000110100110000
0111.00011010011000
001110001101001100
000111100110000110
100011010011000011
1100011.0100131.00001

10000011111110011000
0100010111031100G1100
00100110110011100110
00010111011001100011 -
00001111101100110001

100000111110111010110000
010000011111011101011000
001000101111101110001100
000100110111010111000110
000010111011101011000011
000001111101110101100001

. 100001,

010010
001011 .
000111

G

10001011
11100010
10111000
11010001

1111111111
1111000000
0010110100
1010011010
0110101001

000111110010300
001101100101010
011001001100101
110000011110010
100010111001001

000011000111001011
000110001110010110
001100011100101100
011000111000011001
110000110601110010
1000011.00011100101

000113110160001100111
0011001101.0110601110
01100101101000111100
1100001.0110011011001
10001101011100010011

001111000101001011030011
011110001010010110100110
111160010100101100001101
111001101000011001011010
110011010001110010110100
100111100010100101101001

111100
116110
010011
101001

16

dfree

15

16

20

24

Table 2.2, The encoding matrices of-some non-catastrophic unit-memory

convolutional codes with free distance greater than the

maximal free distance of ged (no, ko) = ] codes of the same

rate and state complexity.
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2.3; BYTE-ORIENTED NATURE OF UNIT-MEMORY CODES

We now show that shbrt, unit-memory convolutional codes
are “byte—orieﬁted“ in such a way as to be attractive for use,
with Viterbi decoding, as the inner coding component of a con-
catenated coding system.

In general, the state at time t of the convolutional
encoder is the .information sequence é{t—M, =17 = [Et-M:§t~M+l=
~+-:a, 41 over the preceding M time units. 'Note that the suc-
cessor of this state,’iamely, [Et—M+l: .as =§twl=§t}' is already
determined up to the 2 © choices of a.s i.e., each state will
have 2ko successors in the "trellis® defined by the convolutional
code_le]. In the corresponding Viterbi decoder, the "metric"
for the best path to each of the 2Mk° possible states at time
t must be relayed to each of its 2ko successors. Hence, the
value of ké influences the overall complexity of the Viterbi
decoder, although much less strongly then does the state-com-
plexity. Nonetheless, to determine, for instance, whether the
Viterbi decoder for an R = 1/3, M=1, ko = 6 code (state-com~
piexity 6) is simpler than the Viterbi decoder for an R-= .1/3,
M= 17, ko = 1 code {state—complexity 7) would require a detailed
analysis of the specific decoder design.

With Viterbi decoding of convolutional codes, there is a
naturai segmentation of the decoded information digits into bytes
of ko bits, because the information byte a, acts as a unit in

determining the correct state. The typical decoding "erroxr

events " [13] give rise to the incorrect decoding of a small
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number of bytes, wviz., the average number of non-zero information
bytes in an informaticn sequence E[D ) that generates an encoded
[

E[O o) of Hamming weilght d In an M = 1 code, this average
]

free”
is near 1, although there will generally be about ko/z bit errors
per byte. In a code with ko = 1, there will generally be a small
(say, about 3} of byte errors but, since a byte is a bit in this
case, the same number of bit errors. However, if the information
bits with the latter code are gathered into "bytes" of Mk = M
bits, there will generally be about 1 %— "byte" errors per error
event since the bit decoding errors are not synchronized to begin
at the start of these "bytes." Thus, even if both codes have the

same state-complexity and same 4 ;, one would expect the unit-

free
memory code to have a lower byte-erroxr probability for bytes
of Mk bits. .

To test the validity of these observations, we simulated
Viterbi decoding on an additive white Gaussian noise (AWGN) channel
with several values of the energy per information bit to one-sided
noise power spectral density ratio, Eb/NO, for several convolu-
tional codes of rate R = 1/3. The codes tested were (i) the ko= 6
unit~-memory code of Table 2.2, (ii) the ko =1, M= 6 code given
by Larsen [16] and (iii) the k = 1, M = 7 code given by Larsen
[161. The bvte size was 6 bits. The results of the simulation
are given in Table 2.3. The unit-memory code (i) had a decoding
byte-error probability about one-~half thét of the ged (no, ko) = 1

code (ii) with- the same state-complexity (Mko = 6). This super-
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iority of code (i) over code (ii) is due mainly to its greater
free distance, 16 as opposed to‘lS. But we also see from Table
2.3 that the decoding byte-error probability of code (i) is aboug
two—~thirds that of code (iii) which has the same free distance 16
and greater state-complexity, 7 versus 6. This superiority of
code (i) over. code (iii} is due entirely to its byte-oriented
nature.

" We conclude that the unit-memory codes, because cof their

byte-oriented nature, appear attractive for use as the inner code

in concatenated coding systems [2] where the outer code is a

k
o

Reed-Solomon (RS} code over the alphabet Gr({2 “}, i.e. the bytes
of the convolutional code are single digits for the RS code.

For instance, code (i) above would be used with an RS code over
GF{ZG). We shall report in detail on the effectiveness of unit-

menory codes in concatenated coding systems applications in

Chapter V.

Eb/NO M=) (k8,6) code M-6,(3,1) code M=7 (3,1) code

(@R) Byte~ 95% Con-. Byte- 85% Con- Byte~ 95% Con-
Erxror fidence Erroxr fidence Error fidence

i Prob.’ Prob. ' Prob.

1.00 0.03050 +0.00533 0.04875 +0.00681 0,04000 +0.00619

1.25 0.02000 +0.00435 0.03250 +0.00561 0.02250 +0.00469

1.50 0.01175 +0.00329 0.02325 +0.00477 0.01400 +0.00372

1.75 0.00650 +0.00250 0.01275 +40.00350 0.01025 i0.00519

Table 2.3z Byte-exrror probability for Viterbi decoding

of three R=1/3 convolutional codes on a simulated

AWGN channel.



CHAPTER TIT
BYTE~ORIENTED DECODING ALGORITHMS

FOR CONVOLUTTONAL CODE#*

In the previous chapters, the terminology "byte", or
"symbol", has appeared in several places to denote the basic
grouping of digits such that the distance measure between any
two sequences is the number of different "bytes" or "symbols"”
between them. In other words, the byte is defined to be'the
single "super-symbol" for which the Hamming.distance measurement
or the error rate, is concerned. The byte size is determined by
the nature of the application. For example,]28 characters are
included in the standard teletype alphabet, the byte size of
tyletype signals is, then, 7 bits. 1In the case of concatenated
céding, only the symbol ergor rate ‘'of the outer coding system
can be controlled, the byte size is therefore the symbel size
of the outer code. '

For convenience of discussion, we shall assume that the
byte size is integer multiples of ko; ;nd a byte covers m
time -instances. We shall denote an information byte encoded

between time + and t+m-1 as

A [2ir a3pyqr

LI

it

"Et+m~l]’

i

where T (t+m-1)/m is implicitly implied. Further, if the
encoding shift-register is initially loaded with zeros, aftex

which 2y, 250" " a, are encoded, the followed by Mko Zeros,

* Parts of this chapter are extracted from [23] .and [25],

20
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(i. e Br41 = 8.y = 0) to clear the encoder, 1. is called
the frame length. In a frame, we have L' = L/m bytes. The

byte error probability of a frame

;L .
Ppp = P, L. B (AprAg)

is the gquantity used to measure the gquality of information
transmission. The Viterbi decoding algorifhm {201, which is
the maximum likelihood decoding algorithm for a convolutionally

coded frame sent over a discrete memoryless channel, forms as

~

its estimate é{l,L'}

the conditional probability.

the information sequence that maximizes

P ey D Ep, e

based on the sequence r received at the output of the

[1,L+M] ‘
discrete memoryless channel. Hence, this algorithm minimizes

the frame erxor probability,

PFE = PI' (a[l,Ll] 7‘ é[l,L'])

for any interesting channel, it must be true that

lim P = 1
i¥se FE '

so that Pp. is not a meaningful optimality criterion for large

frames. However, since we can write the byte-error-probability

as

1 b -
Pee T L zl Pr Bp 7 2q)s
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it follows that

]
Ppe < Ppg = b 'Ppg-

Hence, when L' is fairly small, it makes little difference whether

BE FE
Viterbi decoding when L' is small). The byte-probability, P

P or P is minimized (which explains the appropriateness of

BE'
is minimized by the decoding rule which, for each T, lﬁiﬁ;‘;

fad

chooses its estimate ET as the byte which maximizes the conditional

probability

P(émfzjl,L+M})‘
When the byte size is one bit, algorithms, similar to Viterbi's
to accomplish this ﬁaximization.have heen proposed independently
by Bahl et al [21], and McAdam et al [22]. If the byte size
is smaller than or equal to the‘size of the memory M, but larger
than a bit, the natural extension of these algorithms making use
of the state property of the convolutional codes is self-evident.
However, these algorithms require receipt of the entire frame
11, 14eM] before decoding begins and so cannot be used without
resynchronization (i.e. cannot be used when IL==), Moreover,
their implementation requires storage which grows linearly in
L and, hence are practical alternatives to Viterbi decbding
only for moderately small L. '

In the following section we derived a recursive procedure
{incorporating the observation of Fritchman and Mixsell [24])
for "real-time minimum~bit-error probability (RTMbEP) decoding
" for (no,l) convolutional codes to minimize Pbﬁ under the cons-
t%aint that the decoding delay be limited to A branches. (Here
we uge the lower—~case letter "b" to remind the reader that the

byte size discussed is one bit.) In section 3.2 we formulate
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the corresponding decoding algorithm and show that its storage
requirements are inéependent of L. We alsc show the necessary
modification needed to minimize the byte~error probability
instead of the bit-error probability. This élgorithm can be ge-
neralized to decode any (no,ko) convolutional code, but, because
of the particular importande‘of unit-memory convolutional codes,
we show a modified version of the RTMBEP decoding algorithm for
(no,ko) unit-memory convolutional codes in section 3.3’yhich is
much more efficient than that for general codes. For comparison
purposes, we alsc formulate a "real-time", modified Viterbi
decoding algorithm in séction 3.4, Section 3.5 reports the results
of using these decoding procedures on a simulated additive White'
Gaussian noise (AWGN) channel. It is concluded that the impro-
vement in Pap for the real-time minimal-byte-error probzbility de-
coding (RTMBEP) algorithm is not enough to justify the édaed com-
plexity compared to Viterbi decoding in hard-decision applications
but, as shown in the later chapters, the new algorithm offers ad-

vanges in soft~decision applications such as concatenated coding.

3.1 DERIVATION OF A REAL~TIME MINIMUM-BIT-ERROR PROQABILITY
DECODING PROCEDURE FOR (no,l) CONVOLUTIONAL CODES
As in all previous optimal (in some sense) decoding pro-
cedures for convolutional codes, we shall make important use of
the encoder state which at time t is defined as the contents of
the shift-register in Fig. 2.1, i.e{ the M—-tuple of past informa-
tion bit

5. = [at—l’at~2""at-M] (3.1)
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and where, by our convention, ai=0 for i<0 and i>L. AsS the

term "state" ‘implies, s, completely accounts for the past history

t

of the encoder input in the sense that s, and the input segment

t

uniquely determine the output segment b By condi-

21t,1) 2, LM
tioning of the encoder state, the calculation of the probabilities

required for the decision rule can be simplified,

The decoding rule which minimizes P,.. under the "real~time"

BE

constraint that a be decided from r is that which chooses

=[1,t+4a]

-

& = 0 if

Pla,=0]z s (3.2)

{1, t+&}) 2

and chooses at=l otherwise (where we have arbitrarily resolved

ties in favor of the decision at=0.) Since

P(a,=0/X17 seap)

P(a, =0|r
={1, t+A]
PAZr1, eeal)

and since the probabilities on the righthand side of this latter
equation can be expressed as the summation over all states of

the joint probabilities including the state, we have

2 Pla =0,r; +iny7Sesas1™s)

P(a =0 = *(3.3)

=[1,t+4]
i P(r[l t+A]'St+A+l S)

We now proceed to develop recusive formulas for the two prob-
abilities appearing on the riéhthand side of (3.3).

For any t, t>1, we may write

Zr1,63175¢41) < g Pz

t
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but also

PACry £)78¢-15¢) = P(Eil,t—l]'St)P(Et’st+ll£[l,t—1]’St)

= P{E[ltt—-l]'St)P(£t+l,St)’ {3-5)

where we have made use of the state property and our assumption

that the channel is memoryless. - Writing

P{x = P

£rSer1lsg) (spyylsed Plaglspespyy)y (3,6)

we then use the Ffact seen from (3.1) that the state Spieq™

[at'at—l""'at—m+l] has only two possible predecessors s

tl
namely‘[at_l,....at_m+l,0][at_i,..,at_m+l,l], to write

1l .
7 1F speplsgyy)

P(St+llst) = 15 otherwise ’ : (3.7)

where here and hereafter we write p(s) for the set containing

the two possible predecessors of a state s. Finally, we

note that, for Ste1 and st[ané wa write g(st,st+l) for this

branch ] so that

Pr,l s ,s.,1) = Plzd bisgisg,)) (3.8)

and we note that this quantity is determined by the channel
transition probabilities., Substituting (3.5),(3.6),(3.7) and

(3.8) into (3.4) we have our desired recursion
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(3.9)
1
Pz, e17 542 z 3 Plzplblsprsiyg)) Plzpy o qyes).
SpeP (8y4y)
The starting value P({r +S,) = Plr,s.,) needed to apply .the
recursion is simply
L p(r. |0(0,s,)) if 0eP(s.)
P(r,,s,) ={2 L+ 2 =2 (3.10)
I R 0 otherwise

where we have used the fact tﬁat sl=g.

By an entirely analogous argument whose details we omit, the
following recursion for the other probability on the righthand

side of (3.3) may be obtained:

1
[1, t+1]'st+1+l) - z Z2 P 'I:—i—:.lb(S

Se448P (Sp4549)

Pla,,x ))-

t+i, St+it+l

RACTYEAS IR NCY PLIY (3.11)

lia

which we shall use for M < 1 A. The starting value needed for

this recursion is

Pla 2y, ey Ses) = PUE[, t]’st+M)P(a|r[l £1,St+m
‘ P(r[l t]'5t+M) if a, 1is the last digit of Sy
‘ 2'10 otherwise ,

so that the quanities obtained from the recursion (3.9} directly
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provide the necessary initial conditions (3.12) to be used W;Fh
the recursion (3.11). Hence we have now obtained a complete
recufsive procedure for performing real-time minimum-bit-error
probability decéaing of convolutional codes.
3.2 IMPLEMENTATION THE DECODING ALGORITHM

We now describe an algorithm for implementing the decoding
procedure whose recursive basis was developed in ‘the previous
section. Our algorithm requires the storage of twolreal numbers
for each of the 2™ encoder states. We denote these stored guanti-
ties for state s as f(s) and g{(s). At time ttM-1 (in the algorithm)

the first of these quantities will stofe the wvalue

£ls) = PUZyy tam-1]Seam = S)v (3.14)
and ithe second will store the wvalue
hi{s) = P(at=0, E[l[t+j]' st+j+l = g) {3.15)

when j is indicated from M-through A within the time interval
[t+m-1, t+m] in the algorithm. When j=A, we store the value of

h{s) summed over all states which we denote as H We keep the

1°
previous A-m values of this quantity and denote these stored values

as Hl’ H2,..., HA~m’ that is,
Hy = 2 Plag 170r Zp1,ean-m-i]’ Sesd-m-it1™S) (3.16)

for 1<i<A-M will be the available value at time t+m-1 (in the

algorithm). It follows that HA—M and

(3.17)

ZE(s) = IRAZD g0 Seer T s)

=


http:st+A-M-i+l(3.16

28

are the desired numerator and denominator on the right-hand

side of (3.4) for the decoding of a which is accomplished at

t—A

time t+M-1 (in the algorithm). The only additional storage

required is t?at for the received branches Ty £t+M+l""'£t+A'
The recursions (3.10) and (3.14) directly correspond

to the following:

The RTMbEP Decoding Algorithm

Step 0: Set t=1, set £(s) = 3 P(z,|b(0,s)) for the stored
states s having O as a predecessor; and set £(s)= 0O

for.all other -states. Set G, = 0 for l<i<A-M.
Step 1: For t=1,2,..., M, make the replacements

f(s} = & % 'P(£t|§(S',s)) £{s'), for all s.

step(s)

Step 3: For i= mt+l, m+2, ...A make the replacements

hs) « 1 3 P(Ze

b(s',s)) h(s'), for all s,
s'ep(s) .

Step 4: If t<A, go to step 5; otherwise set a_ ,=0 1f

1
g E(S)/By w2 3

'~ and set A, =1 otherwise.

Step 5: Increase t by 1, make the replacements

- H < 7 for i =m+l’ « sy A""l;

HA—-i-l-l A-i

and set

Hl = z g(s).
s
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Step 6: Make the replac§ment

£(s) « ] - %‘-P(_:_r_ b(s',s) f(s') for all s-
s'ep (s)

and then return to step 2

(Hote: For simplicity we have omitted the obvious "end game”
modifications needed when t>L which, of course, are necessary
only if a finite frame length is used. It should also be pointed
out that our "trick" of storing the A-M past values of the g(s)
summation actually results in a "true" decoding delay of gA—M
branches since we require the use of r_, . in step 4 5£

time t . (in the algorithm) when Ar_a is decoded.
the true decoding delay to & branches requires the storage of

To reduce

A~-HM+2 branches rather than 2 ;eal_numbers-per state since f(s)
must be updated by A-M+l branches and the A~M previous values
of f(s) stored for each state, or, alternatively, the storage
of 3 real numbers and considerable extra computation within
the algorithm).

' The algorithm as given above is directly suited for software
implementation. It should be noted that steps 3,4, and 6 call -

for bhoth addition and multiplication of the computed probzsbilities

that floating point arithmetic would normally be chosen for the
calculation. (This contrasts with the Viterbi algorithm when

fixed arithmetic is normally used as will be seen in section 3.4)

For eacﬁ t, a total of A-M+1l calculations are made in steps 3 and
6, each involving a sum over all 2M states (whereas, as shall see,

only one similar calculation is needed for the Viterbi algorithm.
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A hardware realization of the real-time minimal-bit-error
algorithm could be made employing ZM micro-processors each of
which corresponds to an encoder state s. FEach micro-processor,
would receive f(s') and h(s') froﬁ the two micro-processors
corresbonding to the two states s' which are predecessors of s
and with tpe aid of the received branches as inputs, would com-
pute new values of £(s) and h{s) pass these values on in-turn to
the two microprocessors corresponding to the two states for which
s is a predecessor. Each micro-processor would executeA-M+l
computational c¢ycles for each t (as contrasted to one cycle for
the microprocessors in a hardware Viterbi decoder).

The implementation requires the micro~processor to perform
both multiplication and addition in floating point arithmetic.
Similar to what is doné in the Viterbi decoder, we would still
quantize the logarithm of-éhe probabilities into infegers. The
multiplication of theée probabilities then is performed bf adding
their quantized logarithms, whereas addition in probabilities is
carried out by table look-up. Since the result is relatively in-—
sensitive to the addition bperation and to the quantization, very
little inaccuracy is caused by this technique. ‘With the aid of
Read-Only-Memory (ROM) to store the ;ddition table, this implemen-—
tation of the RTMbEP algorithm, though considerable more complicated
than the Viterbi algorithm, might not be egcessively expensive.

If the symbol size, m, considered is smaller or equal to
the size of the memory of the convolutional code, but larger than

one bit, this algorithm can be modified easily to minimize the symbol -
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error-rate. In this case the decision rule is to choose AT

as the estimate if it maximizes the probability

Pla_, r )
. _ Fqr oy trad
PBplXry, e4a) = ’ fox m < 4

PAy1, een1!

But since there are always, o™ possible éT in each cycle of the

decoding procedure, we obtain very little advantage from calculating
the last possible P(éT}EIl,t+A]) by substracting all other
1 3 3

P(éT'E[l,t+A]) s already ?alculated from P(E{l,t+al)'as we did in
the RTMbEP algorithm. Thus, we shall not store H's. But we re—

. m - - .

ir t . W. h
qulired the storage of 2 real numbers to keep P(QT’E{l,t+AI) hic
we shall denote as H' (Ap) . The modified algorithm is the following:

The RTMBEP Decoding Algorithm (forward)

fstep 0: Set t=l, set f(s) = % P{rib(0,s)) for the,two states
having 0 as é predecessor,‘and set f({s) = 0 for all
other states. |
tep 1: For t=1,2,..., M make the-replaéemeﬂts

£(s) «} % P(r,|b(s',s)) £(s'), for all s.

s'ep (s)
Step 2: For each of all 2" possible Apr set h(s) = f(s)

if the last m-'digit of s are A

Aq andg set h{s)=0

othervise.
Step 3: For i=M+l, M+2,..., A, make the replacements
1 ' b
g(s)«} 5 P(£{+i{gjs ,s) his') for all s.

s'ep (s)

Step 4: Set H' (A,) = ) hi{s),
s
If all the 2™ possible H’(gT) have not been cal-

culated go to step 2. Otherwise, choose §T=§T

such that Hf (ét) is the maximum. Set i=0._
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Step 5: Increase t by 1 and make the replacement

£(s) «) 2

2o )2 P(xib(s',s})) £(s'), for all s.
s'ep(s .

Increase i by 1.
Step 6: If i=m go to step 2, otherwise return to step 5.

We should note here that although we have only 1/m
as may decisions to make in each frame as in the RTMbEP decoding case,

each decision requires the calculation of P(éT, ]}for 2™

L1, t+4
values. of éT' whereas only one calculation is reguired in the bit

case. Thus, the number of calculations can be prohibitively large
for even moderate byte size. Fértunately, we find tha? we can

use a backwards recursion (which will be discussed in the next
section), instead of the forward recursion described above, to handie
the decoding procedure more eff&ciently for all (ns,ko) conveolutional
cods with ko# 1, and most éfficiently for the unit-memory codeé.

But this backwards recursion offers no significant advantage for
decoding (no, 1) convoluticonal codes, and moreover, since the

forward recursion discusged in this section seems to be a natural
approach to set up Yregl—-time" decoders, we feel it warrants the

description given here.



3.3 REAL-TIME MINIMAL-BYTE-ERROR PROBABILITY DECODING ALGORITHM

FOR UNiT—MEMORY CONVOLUTIONAL CODES.

In the previous chapter, we have noted that the unit-
memory (no,ko) convolutional codes always have the largest
minimal free distance among all convolutional codes of the same
state~complexity, and that the state trellis structure of the
unit-memory codes are gquite different.from that of (no,l) con-
volutional coées. Therefore, wé pay particular attention to
implementing decoding procedures for unit-memory codes. As
commented in the last section, we are able to make use of the
fact that every one of the 2ko states of the unit-memory code
can reaéh any particular state at the next clock instant in or-
der to derive a backwards recursive decoding algorithm, which
is much more efficient than the forward recursion algorithm
discussed previously. For. the. backwards algorithm, the‘joinﬁ

probabilities.

Plagr Zry,eea1!

for all the 2k0-possible a, 's can be calculated in a single
cycle of the algorithm.
The decisiori rule for this algorithm is to choose the es-~

timate ay for the information branch

ap = lagqyy atz"""atgol

as the symbol which maximizes the conditional probability
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Py |Zr1,eea1’e

Similar to the approach in the previous section, we have

Plagr Iy, e+a)’
P2y |Ep1,e401) © :

P(Xr; eaa))

¥

or equivalently

P(it'-f-[l,tﬂl) . (3.18)

P (§t|£[1,t+£s] )

g Py iy, c4n?
2y

We shall proceed to derive a recursive algorithm to calculate
the numerator on the righthand side of equation (3.18}) for all
possible gt‘s, and simultaneously obtain their sum as the
denominator on the fighthand side of (3.18). Since

Place Ty, eeay’ See1r Ern,+1” Eresl, t+a]’

= Plspinr Erp,e1) PEreen, eea] | Sesd 2201, €]

and since the channel is memoryless, we have

P ( (3.19)

aerTry,era1) T PEerrZn, ) P Eresn, eaag [Seed)
The last term of equation (3.19) can be expressed as thé summation
over all states of the joint probabilities including the state to

give

P DR Eey) (D PEren, e Sern[fen)) -

t+2

ZerIp1, e4al



35

But
PAC er, 4017 Sgrit1 [Ses1) .
=1 PAipi Drerind, e44]" Stritl St+i+2|st+i) (3.20)
s . .
4142
= Pfy,yr Seqger) (L P pit1, e+A]7 St+i+2lst+i+1))

t+i+2

where here again we have made use of the fact that the channel
is memoryless and of the state property. Then it is clear that

"if we are given the transition probabilities

PUEieir Sprien [Seas) lziz=4 (3-21)

for all possiblé encoded branches, we can obtain the last term
of equation (3.19) by successively applying the recursion of
equation (3.20) for i=a-1, A-2, ....,l1., The first term on the
righthand side of equation (3.19) can be obtained recursively
by

PlsiiyrZpy,e1? = g PlogrZyy po17) PlZprSiys |Se) (3.22)

t

as derived in section 3.1. Hence, we now have cbtained a complete
recursive procedure for RTMBEf decding algorithm for the unit-
memory (no,ko) convolutional codes.

We now describe an algorithm for implementing the decoding
procedure just deriveéq Assuming the 22ko transition probabilities
indicated in (3.21) are available to us, we find that our algorithm

requires again the storage of two real number for each of the Zkb
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states. We denote these two stored guantities for state s as f(s)
and h(s). Similarly, at time t in the algorithm, the first of

these quantities will store the wvalue

; f(S) = P(E_[l’t]! St= S),

and the other will store the value

h{s) = P(x s }

—[t+j,t+A]l St+g

= g s)

— ] ' _
= é, Plresg, e+a]’ Stej+l St+y”

The only additional storage required is that for the received

branches X, s Ly grecesr Tyiyae

The recursions of (3.21) and (3.22) directly correspond
to the following:

The RTMBEP Decoding Algorithm for Unit-Memory Convolutional

Codes (backwards)

Step O0: Wait until Lir Epreceensk are received, set t=1,

A+1

and set f(s) = P(El, 5({0) for all states s.

= 8} for all states s

= ) = vy =
Step 1. Set h(s) g' P(Eiyar Speas1™ S {Sean

Step 2. For j =f41l,42,...., 1 make the replacements

8) hi{s'"), for all states s.

h(s) +7} P(zyqes’
S'

Step 3. .Put out the estimate

~

a, = {s: s maximizes f(s) his))}

and the reliability indicator
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£ (s=§1_t) h (s=§t)

P(a Ir )
“t|FlL. el J £(s) h(s)
S

Step 4. Make the replacement
f(s) * z P(Et' sls') £(s*')
sl

and then return to step 1.

The obvious "end game" modification is again omitted
here. ‘

It should also be pointed out that this algorithm is computationally
similiar to the RTMbEP decoding algorithm proposed in section 3.1

in the sense that each decision requires only one cycle of the
algorithm, but this algorithm decodes the whole byte each cycle
instead of one bit each time. But the trellis is fully-connected-
and the summation is therefore taken over all states inétead of two
specific predecessors. The backw;rds recursion of step 2 enables

us to calculate P(il_t ]) for all a, at the same time.and,

F{l,tm t

therefore, is more powerful than the forward recursion of step 3

in the RTMBEP (forward}’decoding algorithm. However, if we wish

to minmize bit-error rate, the advantage of the backwards recursion
no lgnger exists. Further, the algorithm shares much the same
difficulty in hardware implementation as the forward RTMBEP

decoding algorithm described in section 3.2, therefore, neither

RTMBEP decoding algorithms are attractive alternatives to Viterbi
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decoding when only hard~decisions are required. But the decoding
delay required for unit-memory convolutional codes is usuallly
much smaller (as counted in branches) than that required for
(no, 1) convolutional codes of moderate momory size so that
the digadvantage of computing A-M branchs of state probabilities
for each of the RTMBEP decisions is relatively minor in the case
of a unit-memory code.

Although we have repeatedly emphasized that the RTMBEP
decoding algorithm rgquires the calculation of A-M branches
of state probabilities, which seems a significant disadvantage
of the RTMBEP decéding algorithm as an alternative to Viterbi
decoding algorithm, this is primarily due to the real-time
constraint of “fixe&“ decoding delay and the fact that the al-
gorithms. are written in siuch a way as to minimize the use of
storage. If we relax this constraint of "fixed" decoding delay
but still perform "real-time" decoding, it is then possible
to reduce the amount of computation by increasing the storage
regquirements. This is particularly true for the unit-memory

convolutional codes because of the short decoding delay they

require, In the following we shall demonstrate this fact.
We note that

P(Et

11,6487 P(Etlifl,t]’ P(Etf£{t+l,t+A])’
and

P(3t+l‘£[l,£+A}) = P(§t+l|£[l,t+l]) P(§t+1|£[t+2,t+a3h
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but P(ét r ]) and P{A

[t+1,t+4A vt+l'£{t+2,t+A]) are calculated

by the same backwards recursion of step 2 in the same cycle.

It is thus possible to store the values of P(§t+l £[t+2,t+A])

while calculatin§ P(Et We can obtain P(a

Eres1,eea7’ Been|Era, eral’
without going through the backwards recursion again. As will

be seen from Table 3.2, any decoding delay greater than 8
branches will perform virtually the same as A=8. We can then
let A greater than 8, (which is now the maximal decoding delay)

and store the values of P(a

tri-1E[eri, tea]) TOT 15 25 3receeny

A-7, while calculating P(3t+l' £[t+l,t+A]l'

be used immediately to estimate §t+l'§t+2""’ §t+A~8.

A-T7 branches of decisions can be made with A branches of back-

These values will

Therefore,

wards recursion. A can be made as large as the size of storage
permits, in the limit, when A équals to the frame length, the
real-time algorithm becomes the algorithm proposed by Bahl et ail.
[21], and the total amount. of computation is about twice that
of the Viterbi decoder. - FPor an example, we 1et‘A=16, and let
the actual decoding delay vary between 8 and 16, for every 8
decoded branches, only 16 passes of the backwards recusion are
required in contrast to the 64 passes regquired in the "fixed"
decoding delay technique.

Natural extensions to implement similar decoders for other

(no,ko) convolutional codes (M#£l) are obvious and are omitted.
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3.4 REAL-TIME VITERBI DECODING
As mentioned in the beginning of this chapter, the Viterbi
decoding algorithm chooses ary L]to be the information sequence
I
which maximizes the conditional probability P(E[l,L] £[1,L+M])'

The following deéoding rule, which we call real-time Viterbi de-

coding (RTV), is the natural modification of this rule to satisfy
the "real-time constraint" that A_ be decoded from r (m <A):
— =[1,t+A]

Choose A, as the byte Ag in the information segment a

A [1,t+4]

-

which maxlélzes the conditional probability P(i[l,t+A]/£{1,t+A])'

In keeping with our previous noﬁation, we let

[st,st+l,...,st.]

Sre,er1 T
denote the sequence of encoder states from time t to time t'
inclusive, and let the (no,ko=l) convolutional codes be first

considered. It follows from (3.1l) that 5[1,t+A+l] and E[l,t+A]

uniguely determine one another and, moreover, that éT is the

first m digits of [S.41s S Hence we May re-

t+2’ - v g St‘+l]-

phrase the real-time Viterbi decoding rules as: Choose A as
T

the first m digits of the state subsequence E{t+1,t'+l] in the
state sequence E[l £+A+1] which maximizes the conditional pro-
'

bability

P(s )

S11,e+0+1] 7502, t4A1

RAZry, eea]’

P(s

[1,e+8+411 (501,401 * (3.23)

Since the denominator on the righthand side of (3.23) is in-

dependent of s we can equivalently maximize the

(1,t+8+1]"
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numerator alone. @
To obtain a recursion for the numerator in (3.23) we use

{
the same arguments as in Section 3.2which, for t > 2 give

P(s = P(s

[1,e+117571,¢]) (1, +175(1, 11 P(5t+1'£{f§[1,t1fﬁ[l,t~1]’

= P(s

S11,e775(1,¢-17 F

Spe1rEel8e)

= PS;y, 67511, t-11 P S [Se) BPlzelsprseyy)

1
= ) if steP(st+l?
0 otherwise (3.24)

Eguation (3.24) is our desired recursion. The initial condition

to be used for t=2 is

) _ P(r b(0,s,})) if 0eP(s,)
Plery,217E0,1)) = 2 T2 2

ISR P

otherwise
Just as for the ordinary Viterbi algorithm, the key tolthe
efficient implementation of real-time Viterbi decoding is the fact
[readily seen from (3.24)1 that the best state sequence [in the
sense of maximizing the joint probability on the lefthand'side
of (3.24 1] Sty t+1] with Si41 = S must be the extension of the

5 - ¥ - " T it
[1,t] with st s' or st s where s' and s

are the predecessors.of s. Hence at each time t the only storage

*best sequence s

required for each state is the best sequence to that state.

Actually, since real-time Viterbi decoding‘requires only knowledge
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of the first digit of the state A states previously along the

sequences: we need store only A-bits per state todether with

the joint probability needed for the recursion in (3.24).

We write Bi(s), 1<i<4s and h{s) for these storxed quantities

which at time t (in tﬁe algorithm) have the values

where g¥*

Bi(s) is the first digit of state s

his) = P{

[1,t+1] —[1,t+1]

81, e+1) Er1,t1’

is the best path s with s =s and

t+1

1 in the patch s*

t+1- [L,&+1]"

Then we may state the following:

The Real-Time Viterbi (RTV) Decoding Algorithm

Step O0:

Step 1:

Step 2:

Set t=1, set h(s)= % P(Ei b{0,s)) for the two states s
having 0 as a predecessor, and set h(s) = ¢ otherwise.

Set Bi(s) = 0 for 1l<i<A and all states s.
If t<A, go to Step 2. Otherwise set

Bpp = Bpem 4105 Bpp 42(8)---By(8)

where s is the state for which h(s) is maximum. Set t'=0.

Increase t by 1. Make the replacement B, ,.,(s)*B, . (s}

for 1 =1, 2, +...,4-1 and for all s. Increase t' by 1.

Step 3: s For each s; make the replaéement his)+ % P(rib(s',s}))h(s')

where s8' is the predecessor of s which maximizes the

replacing quanity, and set

Bl(s) equal to the first digit of s'.



Step 4: If t' = m , go to Step 1; otherwise, return to Step 2.

The algorithm just given is directly suited for software im-
'

plementation. Since the algorithm calls for only multiplication

of the computed probabilities and selection of a maximum, loga-—
rithms may be used with the result that only computer additions

are required and hence fixed-point arithmetic would normally be

chosen for the calculation. For each t, only one maximum over all,

states need be taken, an operation equivalent in complexity to
a sum over all states as is required A+i times in the algorithm
of the pre;eedind section. In a hardware realization of the
real-time Viterbi algorithm, the microprocessor corresponding
to state s woﬁld receive h{(s') from the two microprocessor cor-
responding to the two predecessors s' of s and, with the' aid of
the received branch, would compute the new value of h{(s} and
pass this value on in turn to the .two microprocessors for the
states having s as a predecessor. Each microprocessor would
execute only one computational cycle for each m time units and
would be somewhat simpler than the microprocessor described in
the preceéding éection since only one quanity, h, (rather than
two, £ and h} would be processed and only additions need be
performed.

It should be emphasized that real-time Viterbi decoding may
be used for L=«, i.e, when the convolutional encoder is not per-

iodically resynchronized. Moreover, ordinary Viterbi decoding

43

can'be considered the special case of real-time Viterbi decoding for
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finite L when A=LiM-1. Generalization of the algorithm for

general (no,ko) convolutional codes (ko% 1) is straight~Fforward
and is omitted in the discussion.
3.5 SIMULATION RESULTS

To evaluate the performance of real-time minimum-byte-error
probability decoding (hereafter called RTMBEP deccding}, a rate
1/2, {(2.1) convolutional coding system was implemented for a
simulated additive white Gaussian noise (AWGN) channel with binary
antipodal signaling and with 8-level output quantization for the
bit-By—bit decoding [(RTMbEP). Also implemented was an (18.6)
unit-memory convolutional coding system] (byte size equal to 6}
for the same channel. The results of the simulation for the bit
case are given‘in Table 3.1 where Eb is the energy per information
bit, N, is the one-sided noise power spectral density, and ﬁ=M+l
is the constraint iengh measured in information bits. The results
for the unit-memory convolutional code are given in Table 3.2,
From the tables, we observe very little improvement of P or

BE

P when the RTMBEP or the RTMbEP algorithm is used in place of

b
Viterbi decoding. Approximately 0.1 4B to (0.2 dB of improvement

oy

in Eb/No is observed in the bit case when the channel is very noisy
f Eb/xo = 1) while no improvement is observed when the signal is
strong. Similar but slightly smaller gains are seen in the case
of RTMBEP decoding of a unit~memory convolutional code. Since

it is of no practical interest to operate a coding system in such
2 nolsy channel where the RTMBEP (or RTMbEP) algorithm shows a

) sl}ght advantage over the Viterbi decoding, we conclﬁde éhat the
slightly better performance of thé RTMBEP {or RTMbDEP) deéaqing al-

t

gorithm does not justify the increased decoder complexity required
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P
EE_ k L(bits) No. Frames A 'RTMbEP ReagﬁTime Ordinary
No Decoded Decoding Viterbi Viterbi
0dB 3 2400 1 9 .109 .113 .119
2dB 3 2400 2 . 9 .0Lle5 -018s6 0173
4§B 3 2400 5 g .00083 .00083 .00083
0ds 5 2400 1- 19 .154 . 169
2dB 5 2400 2 19 .0165 .0184
4dB 5 2400 5 19 .00033 .0033

Takle 3.1: Results of Decoding of (2.1) convolutional codes for

a simulated AWGN channel.

) P
E BE

b . No. Frames REMBEP Rezl~-Time
ﬁ; L(bytes) ~ Decoded A Decoding Viterbi
1.008RB 400 10 8 0.0295¢0 0.03050
1.2548B 400 10 8 0.01925 0.02000
1.504B T 400 10 8 0.01150 0.01175

1.75dB 400 10 8 0.00625 0.00650 °

S
Table 3.2: Results of Decoding of the (18.8) unit-memory convolu~—

tional code for a simulated AWGN channel.
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when only hard-decisions are made.

In Tables 3.3 and 3.4, we show the effect of the decoding

delay on P and PB

bE E for the M=2, {2.1l) code and the ({(18.6) unit-
memory code. From this table we see that the error proabilities
decrease as longer decoding delay is employed. However, they
saturate rapidly. From the tables, we.conclude that a decoding
delay (in branches) of about 3(M+1l) to 4(M+l) is sufficient

for near-optimal performance with both the RTMBEP and the RTMbEP

algorithm.
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E

0de 2400 1 4 0.133
0ds 2400 1 5 0.125
0dB 2400 1 7 0.113.
0as 2400 1 9 0.109
08B - 2400 1 19 . 0.106
048 2400 1 29 0.102
2aB 2400 2 4 0.0325
2dB 2400 2 _ 9 0.0165
2dB 2400 2 19 0.0140

Table 3.3: Effect of Decoding Delay for RTMbEP Decoding of the
M=2, (2.1) Convolutional Code for a Simulated

AWGN Channel

No. of frames

EE L&bytes) decoded A {(bytes) -
N ;

o)

1.253B 400 ) 10 4 . 0.02850
1l.25dB 400 19 6 0.02475
1.25dB 400 10 8 0.01925
1l.25d4B 400 10 16 0.01925

Table 3.4: -Effect of Decoding Delay for RTMBEP Decoding of the
(18.6) Unit~Memory Convoluticnal Code for a Simulated

AWGN Channel.
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3.6 REMARKS

We have given a fairly comprehensive treatment of
optimal real-time decoding of convolutional codes and introduced
algorithms to minimize the decoding byte (as well as bit) error
probability. We also stated a real-time Viterbi decoding algorithm
which, although“not previously given in the literature, is pro-
bably the form of the Viterbi algorithm which has actually been
used in many previous investigations.

Our conclusion from simulations of'the RTMBEP decoding

algorithm is that,although it does not reduce P sufficiently

BE
to be a practical alternative to Viterbi decoding in hard-decision
applications, the fact that it provides a direct measure of the

quality of its decoded decisions, makes it an attractive candidate
for the inner decoder in concatenated coding systems, as we shall
see in the later chapters. In particular, in a system which will
be discussed in section 5.2, the. RTMBEP dgcoder receiving feedback

from an outer decoder performs much better than the Viterbi decoder

even in terms of hard-decisions.
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CHAPTER IV

OPTIMAL SOFT-DECISTION DEMODULATION *

In chapter IIL, we derived algorithms which minimize

byte-error~probability and furnish the a posteriori probability

P (A, £[l,t+A]) as the reliability function of the estimated

symbol %T' To make effective use of this reliability information
for the outer decoder in a concatenated coding system, it is
necessary to proéess the infeormation in such a way that the
regquirad complexity of the outer decoder is within practical
limits. In botﬂ the generalized minimum distance (GMD) and the
errors—and—erasures decoding proposed by Forney [2], the're*
liability information is either hard-limited or quantized ac-
cording to certain empirical rules. In practice, it is neceésary
to quantize the reliaﬁility information into a few levels ac—
cording to a set of thresholds. Before studying the feasibility
of optimizing the thresholds analytically, we are motivated to
study In this chapter a similar.but much simpler problem, that is,

the problem of optimizing soft-decision demodulation.

The block diagram of a onewway,‘coded communication
syster is given in Figure 4.1l. Comparing Figure 4.1 to Figure 1.1,
which shows a block diagram represantation of a one-way, con—
catenatad coding system; we find that the two problems are si-—
milar in the sense that both systems contain a discrete channel

which emits soft-decision symbols that are fed into a decoder.

*Most of this chapter is taken from [291. A portion of this
chagter was presented orally by the author at the IEEE Inter—
national Symposium on Information Theory, Notre Dame, Indiana,
Cctoher 27-31, 1974,



choder ~—§-w—‘Modulator-

Data U
Source|
Data | g
User

Y, 2

Decoder

s{t)

Waveiorm
Channel

Demodunlator

yd
r(t)

Figurel, 1, A one-way, coded, digital communications system.

Figure-4,2, The variation of the decision regions Da and Db

by transfer of the small region 03

bo

50



51

K

But in the case of soft-decision demadulation, the messages are

assumed to be sen£ independently, which in turn implies that the
signals are received independently provided that the channel is
nemoryless; whereas the messages are not independent in the case
of soft-decision decoding. Although this subject dev;ates some-
what from our main-line of research, we find that it is of practical
interest by itself and also gives guidance to the task of
optimizing soft~decision decoding.

From Figure 4.1, it is apparent that modulation and
coding are both aspects of the "signal design" problem, whereas
demodulation and decoding are both aspects of the "signal de-
tection" problem. The natural question then is how to coordinate
the design of the modulation system and the coding system so as
to produce an efficiegt and effective communications systeﬁ.
. Suﬁpose that the modulator is M-ary; then, without loss
of, generality, we may consider the modulator input alphabet to
be the set {0, 1, 2,..., M-1}. Suppose the demodiulator is
restricted to J different decisions, then we may take its output
alphabet to the {0, 1, 2, ..., J-1}. We say that the demodulator
mzkes "hard-decisions" or "soft-decisions" according as to whether
Jd=M or J>M respectively. Clearly, the "classical" modulation

system design criterion of "error probability" is applicable only
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for hard-decisions. Unfortunately for classicists, the use
of a hard-decision demodulator generally reduces substantitally
the effectiveness of the coding system.

Wozencraft and Kennedy [10] were the first to suggest that
the proper modulatign system design criterion is the "“cut-off
rate," Ro’ of the M-input, J-output discrete memoryless channel
(DMC) presented by the modulation system to the coding system.
This DMC is completely described by the transition probabilities,
P(j|m), that the demodulator decision is j given that the mo-
dulator input was m, 0<j<J, 0<m<M. Mathematically, the cut—-off

rate is given by 1

. J-1 M-
_ | om) BT 14}
Ry = 7109z "o jzo ,Lg (4.1)

where Q is a probability distribution for the channel input letters,
iue-’ Q(m)i O for all m and Q(O) + Q(l) + . &= + Q(I‘E_l) = l
Wozencraft and Kennedy were led to the choice of RO (or

as it was then usually denoted,"R ") because Rojis the

conmp
upper 1imit of code rates for which the average decoding computation
per digit is finite when sequential decoding is used. More recently,
Massey [11] has pointed out -a more persuasive reason for choosing

Ro as a design criterion. Viterbi [20] has shown that, when
convolutional coding is used with maximum likelihood decoding

on the DMC, then the decoding error probability is upper bounded

by
-NR

°, if R<R_, (4.2)
where N is the code constraint length, R is the code rate (number

of data bits per decoded letter), I is the number of bits encoded
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and Cr is an unimportant constant independent of N and L;

Hence, as Massey observed, the single number RO determines both

a range of rates over which reliable operation is possible as
wellvas a measure of the necessary coding complexity to obtain a
specified error prpbability. R, is thus even more informative than
the channel capacity of the DMC which, although it determines the
entire region of rates over which reliable communicationé is
possible, says nothing about the coding complexity needed for

a specified decoding error probability at any given code rate.

In the same paper [11l], Massey established a number of
fundamental results about modulation systems under the Ro cri-
terion. He gave a general expression for R, for unguantized
demodulation (J==), and proved that, for any given M, the M-ary
simplex signal méximizes the unguantized R0 for the additive white
Gaussian noise (AWGN) channel. For bindry modulation (M=2) and
any given J, Massey also gave a necessary condition for thaz
demodulator decision regions to be optimal, and showed how to use
this condition as the basis of an iterative computational technique
for finding the oétimal decision regions.

In this chapter, we extend Massey's necessary gondition for
optimal demodulation to the non-binary (M>2)} case, and we give
an example which shows that the condition is not sufficient even
in the binary case. We show that, in likelihood space, the optimai
demodulator decision regions are always bounded by hyperplanes, and

we give some examples to illustrate the nature of these regions.
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4.1. THE SYMMETRIC CUT-OFF RATE

We define the svmmetric cut-off rate, ﬁo to be the value

of the righthand side of (4.1) when Q is the uniform distribution

[Q(m) = 1/M for O<m<M] rather than the minimizing distribution.
Thus,
" 1 Jg=-1 M-1 2
R, = logZM.—log2 {ﬁ _z [ z YP(3Tm) 17} (4.3)
j=0 m=0
Evidently, §0530° Moreover, ﬁo = RO in the binary case (M=2)

for which the uniform dist;ibution is always the minimizing dis-
tribution, and also ﬁo = RO in most other cases of practical
interest where the modulation signal set and the demodulator
decision regions are reasonably “symmetric". Furthermore, the
bound‘of {4.1) becomes

NE

Pe<cRL2" o, if ﬁ<RO, (4.4)

when the code is such that each letter in the code alphabet
appears in the same fraction of codewords, a situation that
alwa&s occurs in the conventional convolutional codes that would
be used in practice. Thus, both to reflect this practical
sitvation and to obviate the awkward minimization over Q in
(4.1) we henceforth take ﬁo of the resultant DMC as the measuré
of quality for the modulation system.
4.2 A NECESSARY CONDITION FOR OPTIMAL DEMODULATION

Henceforth, we assume that we have made the standard trans-
formation{26] from waveforms to signal space so that s(t) and the
" "relevant" component of ¥ (t) in Figure 1 may be replaced by the

corresponding vectors s and r in n-dimensional Euclidean space.
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We let 8, denote the transmitted signal when the modulation
input is m. Any demodulator then may be viewed as a partition

;90,‘31, ...,55_1 of m-space, where the "decision region' é%j

is the set of all received vectors r that cause the demodulator
to emit the decision j. We now derive a necessary condition
for the decision regions to be gptimal for a given signal set and
channel.

Let p(r|m) be the probability density function, which
we assume to be everywhere continuous, for the received vector
r given that signal 5, is transmitted over the channel. The
transition probabilities of the resultant DMC, for a given de-

modulétor, are then given by

P(j|m) = 06!' Blx|m) dz. » (4.5}

J
Let a and b, a # b, be two output letters of the demodulator

such thatcﬁz and.ét are adjacent regions, i.e. the boundary
between.f% anddéé is hypersurface in n-space, and let p.be any

point on this boundary. WNext, consider transferring from i%

todfi a small region,(ééb, which includes the point p. [We
show this situation in Figure 4.2 for the case n=2]. The resulting
variation in the transitioh probabilities is then seen from

(4.5) to be



§P(jlm) = 1 - p(pim)sv j=a (4.6)

{ + p(p,m)GV j=b
0 otherwise

where we have now assumed that each P(x|m), C<m<M, is continuous

at r=p, and where

is the volume of the small region'éib. If the decision regions
4

are optimal, the resulting variation,aﬁo, of the symmetric cut

off rate, ﬁo' must be 0. As we see from {(4.3) the condition

6&0 = (0 is eguivalent to the condition &85=0.where
J-1 M-1 2
s = ¥ [ ¥ YP(3[m) 1 . (4.7)
j=0 .m=0

We then begin with

J-1  M-1 55
88 = - i
j£0 m£0 6P (3 [m) A

which, with the aid of (4.6) becomes

M-1 - .-

— 85 85
§s = )} I TP EETETET“JP(Dlm)SV' (4.8)

m=0

We next note that direct differentiation in (4.7) gives

M-1 )
55 T 1 :
FGEr C L Yy /PETL ) ———— . (4.9)
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provided that P(jlm) ¥ 0. Then, by using (4.9) in (4.8) we
obtain

Mol LS — 1 e
68 = } [ —=—— ) P(b{i) —  ———— . (a] 1)1

m=0 VP (B[m) i=0 " YBalm i-1

*2 {p |m) 8V
Thus, the condition that §S = {0 for an arbitrary 6V becomes

M-1 1 M~1 ' 1 M-1
[————— '} V/P(b]i) - )

) —_— YP(ali)l plp|m) = 0.
m=0 JP(b[m) i=0 fP(a[m) i=0 )

(4.10)

We have thus proved:
Theorem: The demodulator decision regions é%,l%, ...,193_1 in
signal space can'maximize Ro only iﬁ, for every a and b, a # b,
such that P(b[m) # 0 and P(a|m) # 0 for 0 < m <M, and such that
ﬁz and_é% share a hypersurface boundary, it is the case that (10)
holds at every point r = p on this boundary which is a point of
continuity of P(xr|m) for 0 < m <M.

In the next section we shall give a more illuminating form

of condition (4.10).

4.3 DECISION REGIONS IN LIKELIHOUD SPACE
For the recieved vector xr, we define the waveform channel

likelihood-ratio vector, AX)=[a (@) s A (T veeer By q{x)], DY
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- r pAz]l) p(r|2) (r|M-1)
.“}.(_‘E) = { P(._I_._IO) ’ p(£lo) P o% =y _ETE"W] (4-11)

We note that, as pointed out by Massey [11], the demodulator

can always, at its "front end", map r to A(r) with no loss of
optimality. Thus, it becomes of interest to determine the form
of the decision regions DO' Dl’ ..'.., DM—-l in likelihood space
which correspond to the opil:imal decision regions -786, ¥ r seeay
JSM-—]. in signal space. But, seeing from (4.11) that -(4.10) may,
after division by p(g_lO) (which we now assume to be non-zero) be

rewritten as the linear equation

) YP(b|1i) - —_— YP(ai)14_(p)+
m=1 /P (B][m) i=0 YBlajm) i=0 om
1 M-z‘l 1 Ms:'l
bo— /BB - /Blali) = 0,
/B(B10)  i=0 /B(al0) i=0

(4.12)

we have immediately our main result

Q.
s 9]

Corollary 1l: The demodulator decision regions é%, f%;.....,
in signal space can maximize ﬁo only if, for every a and b,a#b,
such that P(blm) # 0 and P(alm) # 0 for O<m<M and such that

qg-'a and "L’Qb' share a hypersurface boundary, if is the case that
every point r = p on this boundary, which is a point of continuity

of A (r) lies on the hyperplane defined by (4.12)

In other words, the optimal decision regioﬁs- in likelihood
‘'space are always bounded by hyperplanes. This fact has considerable

practical significance as it is difficult to implement circuitry
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which determines to what decision region some vector A{x)

belongs except in the case when the decision regions are bounded

by hyperplanes.

Condition (4.12) can be placed in an even more transparent

form., We note that when (4.12) is satisfied, then

= M'Z_l S TER) 1 Mfl ICVEN
— B iy -~ ali
i=0 YB(ajo)  i=0

1 M-

M~1
J BB - —i—— ] /P(alD)

1
0 fP(a]m)

(4.13)

(provided the denominator is non-zero)} is just the intercept on
the m—th axis in likelihocod space of the boundary hyperplane.

[See Figure 4.3 for a graphical interpretation of Ti']' Thus,

3

we have

Corollary 2: The demodulator decision regions DO' Dl""' DJ—l

in likelihood space can maximize ﬁo only if, for every a and b,
a#b, such that P(alm) # 0 and P(blm) # 0 for 0 < m <M,'and such
that Da and Db share a hypersurface boundary, it is the case that

this boundary is a hyperplane whose intercepts with the coordinate

axes are given by equation (4.13)
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Figure 4.3. A hyperplane boundary in likelihood space
separating the decision regions D
and Dy, for the case M=3.

a
Analogous to our definition of A(r} we now define the
likelihood vector, A(j) = [Al(j), A (3)y eeves Ay (301
of the DMC, which is created by the modulation system,
by

v P{jim)
‘w3 = 5576) (4.14)

where we assume P(jIO) % 0 for 0 < j < Jd. From (4.12)
(4.13) and (4.14) it follows after some tedious algebraic

manipulation that, when the decision regions are optimal

M-1
z ﬂm(b) Am(a)

=1  (4.15)

For the case of binary modulation (M=2), we note that (4.15)
reduces to the necessary condition for optimality,

T = YA(b) i(a) (4.16)

that was given by Massey [111].
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4.4 EXAMPLES AND AN ITERATIVE OPTIMIZATION TECHNIQUE

In this section we give some examples to illustrate the
use of the necessary condition for demodulator optimality given
by Theorem 1 and its corollaries., We begin with a binary
signaling example in which Massev's algorithm [11] based on equal~-
tion (4.16) can be used conveniently to demonstrate effects of
gquantization. In the later examples of non-binary signaling
cases, we also formulate a systematic method for finding the
optimal demodualtor deéision régions by iteration from an initial
guess.

Example 4.1: Binary anti-podal signals in additive white

i

Guassian noise (AWGN). In this case} the signal space may be
taken as one-dimensional. The received signal r may be written
r =8 +n .

where Sq = +vE, $; =YE, B is the signal energy, and n is a
zero-mean Gaussian random variable with wvariance NO/2. NO is
the one-sided noise power spectral density. The likelihood

ratio, A{r) = pl(r|0)/p(x|l), becomes ,

Ar)= & BE/N )T

Because -likelihood space is one-dimensional, the hyperplanes be-
tween decision regions are just points or "thresholds". Because
A(r) is monotonic in r, each such threshold T between decision

regions in likelihood space can identified with the threshold

t=(NO/4/Eiloge(T)



between the corresponding decision regions in signal space.
The demodulator can then be specified b& the J-1 theresholds
£{1), £t{2),..., £{(J-1) in the manner that the demodulator
output is j when t(j)<r < t({j+l) with the convention that
t(0) = —~= and t({(I)= ‘+°° . It truns out to be more convenient
to use the normalized thresholds t'({j)= (V§7ﬁ6) t(3) in order
to weaken the dependence of the optimal thresholds on the
energy-to-noise-power—-spectral-density ratio.

In Table 4.1, we give the normalized threshold values
£'(1), £'(2),..., £'(j-1) that maximize R for the case J=3,
J=4 and J=8 over a wide range of E/No ratios. These optimal
thresholds were determined by Massey's iterative technigque
[11]. The resulting R for each case is given in Table 4.2
where we have included. the value of R0 for an ungquantized
demodulator (J=«=) to show the loss due to guantization. For
comparison, we give also the value of ﬁo’ acheived by using
the heuristically-chosen "good" thresholds given by Jacobs

[27]. For the case J=4, Jacobs normalized thresholds are

t*(3)=—-t'(1)=1 and t'(2)=0; while for J=8 they are t'(7)=-t'(1l)

= 1.5, t"(6)=-t'(2)=1, t*(5)=-t'({3)=0.5 and t'(4)=0. From
Table 4.2, we see that the optimum thresholds offered scant

superiority in ﬁo over Jacobs' thresholds.

62
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E/No J=3 }k@ J=8 *
(AB) Fe'(2)=t' (L) je' (3)=-t" (1) ] £* (2) S NGO I -LN O A 7y{5) t''(4)
~5.0 0.6247] 0.9973 0.0 1.7636 | 1.057 0.504 {0.0
-4.0 0.6280f 1.0015 0.0 .| 1.7678 | 1.060 [0.505 {0.0
<3.0 0,6322] 1.006 0.0 1.773 1.062 §0.506 0.0
~2.0 0.6374] 1.013 0.0 -} 1.779 1.065 {0.507 0.0
-1.0 0.6440] 1.021 0.0 1.788 1.070 [0.5069 0.0
+0.0 0.6523] 1.032 0.0 1.799 | 1.075 fo.511 [o.o0
1.0 0.6628 1.045 0.0 1.819 1.081 l0.514 0.0
2.0 0.6760] 1.061 0.0 1.829 1.090 {0.518 [0.0
3.0 f 0.6924 1.082 0.0 1.850 1.100 fJo.522 Jo.o
4.0 j 0.7130f 1.108 0.0 1.876 1.113 {0.528 (0.0
5.0 § 0.738¢ 1.141 0.0 1.903 1.126 {0.532 (0.0
PN () =" (7)), £T(2) = ~£'(6) and £"(3) = - t'(5)

Table 4.1

A

The normalized thresholds for J-ary demodulation,

maximizing
through the BweN.

for binary antipodal signals transmitted
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E, /NO J=2 J=3 g4 J=8 =
#jDB) Optimal{ Optimal| Optimal {Jacobs |Optimal § Jacobs - {Unquantized
-5.0 {0.1364110.17195 0.18657 }0.1865710.20298 § 0.20298 0.21015
—-4.0 ]0.16905 0.2125% 0.2302% j0.2302910.25015 | 0.25015 0.25878
~3.0 10.20864j0.26133 0.28272 §0.28272] 0.30645 } 0.30645 0.31670
-2.0 §0.25615;0.31929 0.34467 | 0.344664 0.37258 { 0.37258 0.38451
-1.0 }0.3124010.38692 0.41643 J0.41640] 0.44853 | 0.44853 0.46208
+0.0 }0.37786}0.46396 0.49740 §0.49730{ 0.53320 § 0.53320 0.54806
+1.0 |0.45230|0.54899% 0.58553 1 0.58533§ 0.62385 ] 0.62385 0.63940
+2.0 |0.53445]0.63894 0.67697 10.67659} 0.71572 } 0.71572 0.73100
+3.0 }0.62165§0.72888 0.76593 j 0.76528 0.80227 ) 0.80227 0.81607
+4.0 §0.7096110.81238 0.84547 10.84449 0.87633} 0.87633 0.88748
+5,.0 j0.7927310.88287 0.90927 } 0,50799% 0.93234 } 0.93234 0.94109

Table 4.2: Values of ﬁ for the DMC obtained by optimally guan-

tizing the 8utput of AWGN channel for binary anti-
podal signals eﬁploying the thresholds listed in Table
Q

4.1; wvalues of

chosen thresholds are listed for comparison.

obtained using Jacob’s heuristically-
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Example 4.2: Hard-decision demodulation (i.e., J=M) for M-ary
phase modulation in additive white Gaussian noise (AWGN). In this
case, the signal space is 2-dimensional and the signal vector,

Sq for<0<m M, may be taken as the point on the circle of radius
YE{where E is the signal energy) at an angle of (2«/M)m. The’

ternary (i.e., M=3) case is shown in Figure 4. The heavy lines

in this figure are the boundaries of the decision regions for

S
=1
‘r’—-—-.__\
o
'S
s \
! .
f A
s
{ ' =0
! 1
% !
Al )
N\ s
\Q LY ‘circle of
~~—~~"\ _ radius /E
s
=2

¥ igure 4.4: Maximum Likelihood Demodulation of ternary phase;modulated
signals.

a maximum likelihood (ML) -demodulator which, of course, is the
hard-decision demodulator that minimizes errors probability when

the signals are equally likely.
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We now show that the ML demodulator for phase modulation
is also the hard-decision demodulator which maximizes ﬁo' Let
Sa and 5p be any two adjacent signals, i.e, their phase dif-
ference is '27/M. By the symmetry of the signal set and by the
spherical symmetry 6f the additive white Gaussian noise, it
follows that the ML demodulator causes the probabilties P(b[0),
P(b|1),..., P(b|M-1) to be a permutation of P(al0), P(all), ...,
P(a|M-1), and also that for each m such that P(bjm) # P(a|m)
there is a corresponding m' such that P(bjm) = P(a|m'), P(a|m)=
P(bjm') and plp|m) = p(p|m')yfor p on the boundary between.ég and
Q

&y -

(4.10) either vanish singly [when P(b|m) = P(a|m)] or cancel in

Thus, the terms in the summation on the lefthand side of

pairs. Thus, the ML decision regions satisfy the necessary
‘condition for maximizing ﬁo given by Theorem 1. Symmetry con>-
siderations indicate this is the only locél maximum of ﬁo and
hence is the global maximum.

As a specific numerical example, we take the M=3 case
of Figure 4.4 where E/N0 =1, N, being the one-sided noise power
spectral density so that the variance of the noise in each di-
mension of signal space is NO/Z. The value of Ro yvielded by
. the optimal hard-decision demodulator is 0.3971. The unguantized
ﬁé for this case can be found from Massey's results [ll] to
be 0.6254 so that the penalty fbr hard-decisions is 1.87 dB.

Example 4.3: Quaternary demodulation (J=4) for ternary

phase modulation (M=3) in AWGN. Symmetry considerations suggest
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that the optimal decision regions will consist of three regions,
£%’ éﬁ, and é}é, having 120° rotational symmetxry and céntaining
the signals Sgr 51 and s, respectively, together with an "erasure"
regioncgz containing the origin in signal space. In this case,
there will be probabilities p and g such that Plalm) = g for all
m, P(j|m) = p for j # mand j ¥ 3, and P(j|m) = 1-2p ~ q for j = m.
Substituting these parameters into the necessary condition for
optimality (4.13) we findh?hat the resulting optimal intercepts

correspond to the straight lines.

—hy tehy =1
where ‘

c =2/5// 1=2p=g
Thus, the optimal decision regions in likelihood space are known
up to the parameter .c. By trying various choices of ¢ for the
specific case E/No = 1 and calculating RO for the DMC resulting
from the demodulator corresponding to these decision reg}ons, we
find that, for the optimal decision regions, c= .486 and the
attained value of RO is 0.4402 which is a 0.45 dB improvement over
hard decisions. 'In Figure 4.5 {(a), we show the optimal decision
regions in likelihood space, while in Figure 4.5 (b) we show the

corresponding regions in signal space.
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0.486
{a)

Figure 4.5:

(b)

Ooptimal decision regions for quaternary -
demodulation of ternary phase modulation

in AWGN with E/Ny= 1 shown (a) in likelihood
space, and (b) in signal space.
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We now describe a general iterative procedure that may

be used to find the optimal decision regions for J-ary demodulator
given a particular M-ary signal set and a given channel. The basic
idea is guite simple. Given decision reéions Dyr Pysececrer Dy g
Eounded by hyperplanes, we note that, for some a#b such that Da

and D, are adjacent regions, the intercepts of the bounding
hyperplane with the coordigate aXes in likelihood space will satify
(4.13) if the decision regions are optimal. If they are not optimal,
we can use the numbers determined by (4.13) as the intercepts of

a hyperplane which will be a better approximation to the optimal

bounding hyperplane between D, and Db. Our procedures may be stated

ag:

Iterative Demodulator Optimization:

(1) (1)
] Dl r J_l ¥

for the optimal hyperplane-bounded decision regions in likelihood

Step 0Q: Make an initial guess, Dél) verag D
space. Set k=1.

Step 1: Calculate P(j|m), 0<j<J-and O<m<M, for the DMC

created by the decision regions Dék), ka),..., DJ_ékz
Steg 2: Choose an a and b, a#b, such that D;k) and Dék)
are adjaéent and calculate T£k+l), Ték+l),..., ?M_l(k+l) from

equation (13). [Note: If the decision regions are optimal,

then these T's will be the intercepts of the boundary between
(k) (k) ‘

Da and Db with the coordinate axes.]

Step 3: Take the boundary between Dék+l) and Dék+l) as
the hyperplane whose intercepts with the coordinate axes are
T(k+1) T(k+l) {k+1)

o A R e .
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Step 4: Repeat steps 2 and 3 until all such pairs a

and b have been considered.

{k+1) D(k+1)
o 71
stop and take the former decision regions

Step 5: If D

(k) (%) (k)
DO r Dl r J""'l'

as the result of this optimization method. Otherwise, increase k

are "sufficiently close" to

...'D

by 1 and return to step 1.

Two remarks about the above iterative method are in order.
- First, the most time-consuming part of the procedure is the cal-

culation of the transition probabilities P(j|m) in step 1. This

would ordinarily be done by mapping from the decision regions Dék),

(k) (k)
Dy ' seeeer Dy

regions l%(k), ‘éa(k)""' é%;l(k) in signal space, then evalu-

ating the intergral in (4.5) either analytically or numerically.

in likelihood space to the corresponding decision

Secondly, we note that when M=2, the above iterative procedure
requires more calculation than the iterative method given by
Massey [11]} which is based on eguation (4.16}, Unfortunately,
Massey's method does not generalize to cases where M>2,

We now give two examples to illustrate the use of the
above iterative optimization method. The first of these is a
"hard-decision" case which serves also to illustrate the fact that,
when the signal set is not sufficiently symmetric, even in this
case the decision regions which minimize demodulator error
probability may not maximize ﬁo'

Example 4.4: Hard-decision demodulation for the two-dimen-

. sional signal set 5 = (0,01, =h =[2f0] and s, = [0,2] in

AWGN with variance N0/2 = 1/2 in each component. [The average
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signal-energy-to-noise-power-spectral-density-ratio, E/NO, is
2.67 (or 4.26 dB).] 1In this case, the received §ector r = [x,¥}

has a likelihood ratio vector

Ak£)= [Al’A2] - [ 94}{_4, e4y—4]

-

Thus, the boundary straigﬁtwline {or hyperplane in two-dimensiocnal

space)

corresponds to the curve

1 o 4x-4 1 _4y-4
T T,

"1

=1 (4.17)

in signal space,

As the boundaries betweer decision regions in the initial-
ization step 0 of the algorithm, we choose those which minimize
demodulator error probability, viz.,, the straight lines Al= i,

Ay =f, shown in Figure 4.6 (), Note that the boundary between D,

and D, is a reflection around the line A, =A

2
DO and Dl’

of the algorithm because of the corresponding symmetry of the

1 2 of that between

This symmetry is preserved at successive iteration

signal set about the line x=y and the symmetry of the AWGN. Thus,
it suffices to determine the boundary between Do and Dl’ Tetting
(Tl' T2) be the intefcepts of this boundary with the Al:and.Az

axes, respectively, and taking (l,—lOG) as an approximation to
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FPigure 4.6:

x = 00,9636

(c}

flard decision demodulation of ternary signals: |

(a} The initial decislion regions in likelihood space,
(b} the optimal decision regions in likelihood space,
(c) the optimal decision regions in signal space.
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the initial (1,-=), we find, from application of the interative

procedure in which we use (4.17) to determine the region over

which the integral in (4.5). is to be evaluated numerically, the

following succession of intercepts:

(lf "106)

(0.8307,
(0.8145,

(0.8252,

(0.8646,

up to the point

ficant digit on

-0.5732)

"—-0.4030)

~-0.3501)

-0.3100)

initialization
lst iteration
2nd iteration

3rd lteration

-15th iteration

”

where there is no further change in the 4th signi-

further iteration.

In Figures. 4.6 (b) and

4.6 (c}, we show the optimal decision regions for this example,

as found by the iterative optimization procedure, in likelihocod

space and in signal space, respectively.

The values of ﬁo obtained as successive iterations were

as follows:
0.6388
0.6462
0.6476

0.6480

0.6482

initialization
1lst iteration
2nd iteration

3rd iteration

15th iteration
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The optimal value of ﬁo-is about 1.5% (ox .06 dB) above that
obtained for the hard-decision demodulator which minimizes error
probability. We see also that, for this example, the iterative
procedure converged rapidly to the optimal demodulator--after
only one iteration the resulting demodulator was effectively
optimal.

As can be seen from Figure 4.6 (c), the optimal decision
boundaries havé asymptotes which are étraight lines (hyperplanes
in two-dimensional épace}. These asymptotes are shown by the dashed
lines in the figure. If one uses these asymptotes as the boundaries,
of the decision regions for a sub-optimal demodulator, one finds
the resultant R, to be 0.6459 which is only .015 dB inferior to
the optimal hard~decision demodulator. We shall later discuss the
practical significance of the near-optimality of these asymptotic.
linear boundaries in signal space.

Example 4.5: Quaternary demodulation (J=4) for the same

ternary_signal set (M=3) and noise as in example 4.3.

In Figure 4.7 (a), we show the J=4 decision regions used
to initiate the i;erative optimization procedure. The.optimal
decision regions in likelihood space and in signal space are shown
in Figures 4.7 (b) and 4.7 (c), respectively. Convergence to
four significant digits of accuracy in the intercepts of the
boundary lines with the-coordinate axes required 25 iterations.

4, .
The values of RO at successive steps were as follows:

0.6535 initialization
0.6986 l1st iteration
0.7045 . 2nd iteration

0.7057 3rd iteration
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0.7662 ?5th.iteration
Ve see that the decision regions after only two iterations were
effectively éptimal. The optimal value of RO for quaternary
demodulation is about 82 (or 0.34 dB) abo%e that for optimal
ﬂard—decision demodulation.

In Figure 4.7 {c), the dashed lines (or hyperplanes in
two-dimensional spaée) again are the asymptotes to tﬁe optimal
decision boundaries in sggnal space. If these asymptotes are
used as the actual boundaries betwen the decision regions in .
signal space, we find R, of the resultant demodulator to be
-7031 which is only .02 dB below optimal.

In Examples 4.3 and 4.5 we have seen that the linear
(hyperplane)asymptotes to the optimal decision regions in signal -
space themselves bound the decision regions for a demodulator
-which is virtually optimal. The practical significance of this
fact is that the resulting sub-optimal decision rule can be as
easily implemented difectly in signal space as can the opt;mal
decision rule iu 1ikelihood space. There is no need for the con-
version from signal space to 1ikelihood spéce in orxrder to obtain
converiently-implemented decision regions with linear (hyperplane)
boundaries.

In fact, it can bé shown generally, foi AWGN in an n-dimensional
signal space, that the optimal demodulation regions in signal space
are such that each bounding hypersurféce has {at most) 2n~l hy-
perplane asymptotes. We conjecture that these hyperplane asymptotes
form the boundaries of decision regionsrfor a demodulator that is
virtually optimuam, and hence that the mapping from éignal séace

to likelihood space is not necessary to obtain virtually optimal
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‘Az A2 D2
Dy . Slope 7.868
- - 1.4361
1.0.
Dy
Dy
. Slope 0.1271
. D
. \\\? 1.4361 by :
e T
0 1 :
- : - 0.2400 1.0

(a)

-y = 1.0905

i
[
(9%

x = 0,6432
% =1.0905

(c) ~
Figure 4.7: Quarternary demodulation of ternary signals:
{a) the initial decision regions likelihood space,
{b} the optimal decisicen reglons in likelihood space,
{c) the optimal decision regions in signal space.
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demodulation together with an easily-implemented decision rule.

4.5 A COUNTEREXAMPLE TO THE SUFFICIENCY OF OPTIMALITY CONDITION

(4.10).

A5 we have pointed out.above, condition (10) i1s actually
the condition for an extremum of Rb} and hence not in general
a sufficient condition for optimal demodulation. In the examples
which we have studied wherein the noise was additive with a “smooth”
density function, there has generally been only one set of decision
regions satisfying (10) so that the extremum was necessarily the
global maximum of ﬁo' We now give an example to show, however,
that it is possible for {10) to be satisfied for decision regions
that define only a local maxinmum, or even a local minimum, of

Example 4.6: Hard-decision demodulation for binary signals

such that the conditional dénsity functions for the likelihood ratio

A are
0.25 0 <« A <0.3
‘ (A) = 2,75 0.9 < A < 1.1
PO -
1 0.25 1.1 < A < 2.0
0 2.0 < A
and pl(h) = pO(A) when the signals R and 5, are transmitted,

respectively. [These are valid choices for these conditional

density functions as they satisfy the constrains

jf Po(h)ah= fpl(.m)d.\;sl

0 0
and _
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that are the only ones that must be observed in the binary
casel.
For hard-decision demcdulation with binary signalling,

condition (4.10) reduces toc Massey's condition (4.16) namely,

T = YA{1)A(0) (4.18)

-

Where T-is the threshold between decision regions in likelihood
space.

In Fiqure 4.8 (a), we show the conditional density
functions for the likelihood ratio A, -and in Figure 4.8 (b)
we show YX(1)x(0) as a function of the threshold T between
the decision regions in likelihood space. We see that condition
(4.18) , the necéssary condition for optimal demodulation, is
satisfied at three places, viz., 0.56, 1.06, and 1.16; the
corresponding values of ﬁo are 0.0123, 0.0066, and 0.0069,
respectivliey. The third of these corresponds to a 1ggal, but
not global, maximum of ﬁo. The second corresponds to a local
minimum of ﬁo; while the first corresponds to the desired global
maximum of ﬁo' That is, ‘T=0.56, is the threghold between decision

regions in likelihood space for the optimal demodulator.
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4.6 SUMMARY

In this chapter, we have derived a necessary condition
for optimal J~-ary demodulation of M-ary signals, where optimality
is taken to mean maximality of the symmetric. cut-off rate, ﬁo
of the resulting discrete memoryless .channel. By means of a coun-
terexample;_we have shown that this-condition is not in generail
sufficient for optimality. We. have also used this necessary con-
dition for optimality as the foundation for an iterative optimization
method to find the optimal demodulator decision regions from an
initial "good guess".

In general, the optimal demodualtor decision regions are
bounded by hyperplanes in likehood space. For the important case
of additive white Gauusian noise, the corresponding optimal decision L
regions in éignal space have hyperplane asymptotes. In some examples
we have shown that the regions in signal space bounded by these
asymptotic hypérplane define demodulator decision regions which
are virtually optimal, and we conjectured that this happy state of
affairs (which permits near optimal performance with a decision
rule that can be simply-implemented directly in signal space) holds
in general.

In regards to the application of this results to the problem
of soft-decision decoding for the éoncatenated separate\coding system,
we note here that the super-channel of Figure 1.1, is again processed
by a decoder; therefore, the-briterion of optimality of maximizing
ﬁo of the resultant discrete channel is still valid. Unfortunately,
since this super-channel is no longer memoryless, the analysis ap-

pears to be extremely difficult and we shall not pursue it further.


http:terexample,.we

CHAPTER V

PERFORMANCE OF CONCATENATED CODING SYSTEMS

ON A SIMULATED AWGN CHANNEL

In this chapter, the perfofmance of several RS-convolu-
tional concatenated coding systems utilizing the unit-memory codes
found in Chapter II will be compared with similar systems utilizing
the usual (no,l) éonvolutional codes. The first or basic system
is the hard-decision Viterbi decoded concatenated system with no
feedback between the inner and outer decoders as proposed by
Odenwalder [5]. In the second system studied, the Viterbi decoder
is replaced by a RTMBEP decoder while the RS "errors—only”{[2]
decoder is replaced by an "erasures-and-errors" [2] decodexr. 1In the
third, fourth, and fifth systems, the innexr decoder are restarted
whenever the outer decoder céﬁrects an error and feeds back the
correction to the inner decoders. In the sixth and final system,
we annex a tall to the unit-memory code (the code is, then, no
longer of "true" unit memory) to enhance the capability of the
Viterbhi decoder to detect unreliable decoded symbols as was
p;oposed by Zeoli [8] and Jelinek [9] for the (no, 1) convolutional
code. The various systems studied are summarized in Table 5.1.

In each case, we choose the (18.6) unit-memory code as the inner
code because it has practically minimum complexity in terms of
decoder implementation and because of its reasonably large free

distance (4 16}. We choose the Reed-Solomon codes over

free
GF(26) with block length 63 symbols as the outer codes so that the

symbol size of the RS code is matched to the byte-size of the

81



Inner Outer FPeed~ . Inner Code
SYSTEM Decoder Decoder] back Erasure fail Annexa-—’
tion

I Viterbi EQ NO NO NO

1T RTMBEP EE NO YES NO

II | Viterbi EO YES NO NO

Iv RTMRBEP EO YES NO NO

v RTMBEP. . BB . YES - YES NO

Vi Viterbi EE . YES YES YES
* EO: Errors Only Decoders

EE: Erasures and Erros Decoders

Table 5.1: Various Block*Coﬂvolutional Concatenated Coding

Systems Studied in Chapter 5.
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information sequence of the unit-memory code. We also assume

the interleaving to be "perfect”. In other words, we assume

that the decoded symbols at the‘output of the gcrambler are
statistically independent. With this assumption, we can calculgte
the error probability of the Reed-Solomon block by means of

the statistics for the inner decoder which we obtain from

_simulations. Figure 5.1 shows an encoder and a Viterbi decoder

for the unit~memory code interleaved to degree.N. Note that the
interleaving is done on a byte-by-byte basis, so that it "destroys
information” to a much less extent than if it been done on a bit-
by-bit basis. lFurther, we make use of the fact that almost all

the incorrectly decoded RéednSolomon_codewords are dmin symbols
away from the correct codewords to estimate the byte-error pro-
bability of the over-all system; where dmin is the minimum distance
of the RS code. (We assume that the outer decoder always decodes,

i

even when two codewords are equally likely.)
5.1. ODENWALDER'S CONCATENATED CODING SYSTEM AND SOFT-DECISTION

MODIFICATION WITH &HE RTMBEP, DECODING ALGORITHM.
The concatenated coding system. proposed by Odenwalder [5]
is shown in Figure 1.1. His oriéinal scheme employéd a hard—dgcision
Vitérbi decoder as the inner convolutional decoder and a t-erxor

correcting "errors-only" RS decoder as the outer block decoder.
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"Then, the probability of error of a Reed-Solomon block is

given by
63 63 . :
. i 631
Ppgrs = L (3 ) p (1-p) ' (5.1)
i=t+1

where p is the byte~error probability of the Viterbi decoder

and t = (dmin -1)/2. Then, the byte-error probability of the

concatenated coding system assuming complete maximum likelihood
(ML} decoding is given by

PBERS (5.2)

_ 2+l

BE 63

The byte-error-probability of the inner convolutional coding
system. at signal energy per informa@ion bit to one~sided noise-
power—spectral«densitj ratios for the inner coding system,
(Eb/NO)I, equal to 1.0 4B, 1.25 4B, 1.50 dB, and 1.75 dB are

given in Table 2.3, which in turn correspond to signal-energy'

per inner channel digit to one—sided noise-power-spectral-density
ratios ES/NO, of -3.77 4B, -3.52 @8, -3.27 dB, and -3.02 dB.

This simulation result is used to determine the performance of the
system. For (Eb/NO)I = 1.25 4B, we show in Figure 5.2 the cal-

culated error probability versus the over-—all signal-energy per

information hit to one-sided noise-power—spectral-density, which

is given by

1 1
(B /N )} == (E /N ) = = (E_/N) (5.3)
b oo RRS b o'l RRSRCON 5 O
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Concatenated with
4—error-correcting
RS code ’

6~error~correcting
Rs code

8-error-correcting
RS code

Viterbi Decocding for
(18.6) Unit-memory
Convolutional Code
System I with M=6, (3.1)
code

System I with M=7,
{3.1) code

System I with {18.6)
Unit-memory code

System II with (18.6)
unit-memory code

’
1
b 1 ‘] t

i ] I
) i + t t - I

1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 (Eb/NO)O
dB

Figure 5.2: The Performance of Concatenated Coding Systems
I and II with different RS code for a simulated
AWGN channel with E /N = - 3.52 4B, and the
performance of Vite%biodecoding for the (18.86)
unit-memory code without concatenation.
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where RRS and,RCON

volutional code, respectively.

are the rates of the RS code and the con-

Also plotted in Figure 5.2 are the performance curves
at the same (Eb/NO)I for similar concatenated coding systems
using the M=6 (3.1l) convolutional code and the M=7, {3.1)
convolutional code as inner codes._ The performance of the coding
systems employing these three convoltional codes concatenated
with a 6~error correcting Reed-Solomon code is shown-in‘Figure
5.3. From both Figures, an'approximatley 0.3 dB advantage in
(Ey/N,) for the (18.6) unit-memory code, consistent with the
result shown in Table 2.3 is observed. ﬁﬁt the performance of
concatenated systems is, in general very sensitive to (Eb/No)o’
this 0.3 dB advantage corresponds to a factor of 10 to 100
advantage in the error rate of the outer decoder, which, of
course, should not be neglected. Even when we compare the
performance of the-unit-memory code to that of the M=7, (3.1)
code which is of the same frée distance as the unit-memory code
approximately 0.1dB to 0.15 dB advantage can be observed due
_ to the byte-oriented structure of the unit memory qode.

We now replace the Viterbi decoder by a ;Real—Time Minimal-
Byte—~Error Probability" decoder in_the concatenated coding systen.
When the reliability func£ion~of the decoded symbol P(a, /r

[1,t+4])
is less than certain threshold, T, the decoder emits an erasure.
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\
\

\Nf M=7, (3.1l) code

A (18.6}) unit-memory code

1 L]

1.9 2.0

Figure 5.3:

2.1 2.2 2.3 2.4 2.5 2.6 aB(E,/N_),

The performance of concatenated coding
system I empolying 3 different convolutional
codes and a 6-—error correcting RS code with
"errors—only" decoder for a simulated AWGHN

channel with -3.77 dB<E_/N_<-3.02 dB.
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An erasures-~and—errors Reed-Solomon decoder which can correct

t errors and e erasured provided
2tte<d

is used as the outer decoder. Then the probability of error

of a Reed-Solomon block, assuming complete ML decoding, 1s given

by

63 d'/2 63 L @
d =dmint=0 t,e
e=d'~-2t

where p is again the probability of byte-error of the inner decoder
and g is the probability of erasure of the inner decoder, and
N ) N1

(t’e) = tzéz(ﬁ—t—e)i

Here again, we assume that the decoder always decodes and in case
of a tie ié always nakes an error. Then, the byte-—errox probability
of the overall system is again obtained from (5.2).

The byte*érror—probability p and the erasure probability
q depend on the particular ﬁhreshold, 7, selected. The optimal
threshold is a function of Ebeo and the minimum distance, dmin
of the Reed-Solomon code. Roughly speaking, foxr a given block

length, when dmin

gets larger, the over-all block error probability
is minimized at a higher erasure r;te. But there is no simple way
to determine the optimal threshold analytically. We then find the
p and g for T = 0.5, 0.7, and 0.8 by simulation and use these values
of p and g to calcululate the byte-errox probability of the coding

system.
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In Table 5.2, we show the result of this calculation.
We see that for (Eb/NO)I in the range between 1.25 dB and 1.75 4B,
T = 0.7, is the best threshold among the tﬁree candidates. The
performance of this concatenated coding sy;tem with T=0.7 is also

plotted in Figure 5.2. The improvement of the performance due to

the erasure scheme, as observed from Figure 5.2, is dependent on

the error correcting capability of the outer coding system as well

as {Eb/No)I and is approximately 0.1 dB. This slight improvement

is probably not significant enough to Justify the increased com-
as we shall see

vlexity of the convolutional decoder. However,

in the later sections, the RTMBEP decoder coupled with a "erasures-—
and-error" block decoder performs much better than the Viterbi
deccder when feedback from the outer decoder is available.

(Eb/ﬁo)iT

(aB)

Qver-all
é=9

0.735+107
0,740%1 07
0.677x107

Symbol-Error Probability

P q a=117 a7

0.8774107°
0.128<10° %
0.213c107% -

0,407x1077
0.477x1079
0.555<03

0.80 0.01000 0.05000
.20 0.01325 0.04150
0.50 0.C2100 ©.01950

2
1.00 2
2

£ 0.80

1.25

1.50

JL.75

Table. 5.2:The effect of erasing thresholds T
error probability of the over-all concatenated coding

0.70
0.50
0.80
0.70
0.50
0.80
0.70
0.50

0.00675
0.00800
0.01350
0.00425
0.00525
0.00900
0.00250
0.00250
0.00400

0.03L00
0.02650
0.01125
0.02125
0.01625
0.00400

.0.01.050

0.00825
0.00250

0.123%107%
0.902+:1073
0.107x10"%
0.112<107>
0.981¢10"%
0.113x1073
0.416%107>
0.2&9:10’5
0.336%1075

0.193¢10°¢

0.149x10'6

0.481x10°%
0.173410™8

0.20kx1078

0.774x1070

0.b16x1071t
0.334¢10"8 5.196<10"1L
0.816<107% 0.927x10711
on the symbol-

10.244£10"4
0.179<10™%
0.332<10 %
O.691<10'6
0.684¢10™%
0.13641077
0,636x10~8

systems for various{Eb/No&yith various outer codes,
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5.2 FEEDBACK FROM THE QUTER DECODER TO THE INNER DECODER

Because‘of.the nature of the convolutional code and
the Viterbi decoding algorithm, once an “error event" occurs
the decoder often makes a number of closely spaced erroneous
estimations before it recovers to correct operation. Since
the outer decoder of a concatenated coding system is design-—
ed in such a way that it is able to detect and correct almost
all of the errors made by the inner decoder, it is then of
gignifiéant advantage if the corrected estimatioq of. the
outer decoder 1s feédback to restart the inner decoder to
avold these "bursts" of errors. Figure 5.4 illustrates the

general concept of such concatenated coding systems.

— ] .
{  Data | 'Block s {Inter- . Convol. N “
| Source, : Encod. ” Jleaving' Encod. 7——{Modulator
— e, | I ———a ) .
. Waveform
i—- e — e e -'— -——---'—.--F-ee—g-bale ——— 4{ Channel
I ..
I } }_J Decpdex , Deinter- , Decoder | bemodulator iz
| usEr =~ for <~ leaving f"“?‘? for < {
L 1Block Codef | | * iConvol Code |

Figure 5.4. 'A typical Concatenated Coding System with

Feeback from Outer Decoder to Inner Decoder
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We have implemented a software Viterbi decoder and
a software RTMBEP decoder which can be restarted with feed-
back. We carried out the simulations for this type conca-
tenated coding system by assuming that the outer decoder
always makes correct decisions. (This.is a valid assump-
tion since the probability of byte-error for the over-all
system is negligible compared to that of the inner cbnvolu-
tional decoder.) We summarize the resultg of this simula-
tion for the (18,6) unit-memory convolutional code at an
(Eb/NO)I of 1.25 dB in Table 5.3. We see that the RTMBEP
decoder performs much better. than the Viterbi decoder in
this case. That is, the feedback from the outer decoder
plays a much more important role in helping the RTMBEP
‘decéder to recover from the error than it does for the‘
Viterbi decoder. In Figure 5.5, we show the perfoimance
of these two systems concatenated with the "errors-only”
block decoder. From the figure, wé conclude that the
improvement in performance due to the feedback is ;ppro—
ximately 0.3 dB for the Viterbi decoder and about 0.5 dB for
the RTMBEP decoder. Also listed in Table 5.3 is the error
probability obtained for the M=7, (3,1) convolutional code
{which has the same free distance as the (18,6) unit-memory
code) with the same kind of Vitérbi decoder with feedback.
From Figure 5.5, we see this 0.1 dB difference in perform-

" ance between the unit-memory code and the M=7, (3,1) code
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Decoding

RTMBEP
‘Decoding

Table 5.3:

Erasure
Crite-
rion
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Byte-Error-Probability 95% Con- Byte-Error 25% Con-
for (18,6) Unit-Memory fidence Prob. for fidence

Code Interval M=7, {(3,1) Interval
Code
0.0110 +0.0023 0.01325 ii0.0025
0.0075 +0.0075

The Performance of Viterbi Decoder and RTMBEP
Decoder for the (18,6) Unit-Memory Code and the
M=7, (3,1} convolutional Code when Feedback from
Outer Decoders 1s Employed for a Simulated AWGN
Channel with (Eb/NO)I at 1.25 4B and A=8. The

Data are Taken from a Sample of 8000 Bytes.

Error-Prob. of overall system

4-error 6-erroxr 8—-error

a correcting correcting correcting
T=0.6 0.00388 0.01138 1.891x10 > 6.387x10° 0 9.416x10 1t
T=0,7  0.00288 0.01763  2.498x10 > 7.122x10"° 8.207x10” T
T=0.8 _ 0.00163 0.02575 3.725x107° 8.138x107° g.173x10 +%
T=0.9  0.00125 0.03413 1.178x10° % 3.554x107 ' 3.283x107+C

Table 5.4:

The performance of over all concatenated coding
system employing a RTMBEP decodexr, which is re-~
started when feedback from the outer decoder is-
received, and a "erasures-and-errors" Reed-Solomon
decoder for the (18,6) unit-memory code for a
siqulated AWGN channel with (Eb/NO)I = 1.25 dB.
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%ystem IV with unit
memoxry code

System VI with unit-
memory code

System V with unit-
memory code
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Figure 5.5: Performance of Concatenated Coding Systems
_Employing the Unit-~-Memory, (18.6) Convolutional
are Compared to that of similar coding systems.
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is consistent with the previous observation made about
Figures 5.2 and 5.3. We can further make use of ghe reli-
ability information put out by the RTMBEP decoder to erase
some -less reliable bytes decoded by the inner decoder as

we did in last section. The byte-error~probability, p,
erasure probability, g, and the over-all byte-erroxr ra?e

for the concatenated gsystem are calculated and listed in
Table 5.4 for thresholds equal to 0.6, 0.7, 0.8 and 0.9._
The perxformance for T=0.8 is also plotted in Figure 5.5.
Here, we observe nearly a 0.1 dB improvement, which is again

consistent with the result of Section 5.1.

5.3 ZEQLI'S CONCATENATED CODING SYSTEM AND ZEOLI'S MODI~

FICATION ON THE UNIT~MEMORY CONVOLUTIONAL CODE.

In [8], Zeocli has proposed a concatenated coding
system, which employs a rather long constraint length (K=32)
convolutional code obtained by annexing a long tail to the
M=7, (3,1) convolutional code. While the state complexity
of the Viterbi decoder remains the same as that for the qu,

(3,1) code, the annexed tail has absolutely no effect on the

hard-decision decoding error-preobability until after an error

has been made. But the tail provides excellent error-detec-

t+tion once the Viterbi decoder starts to make mistakes. Since
the decoder constraint length is much smaller than that of’
the encoder, the encodgd branches in the Viterbi decoder

assume the previous several hard-decisions as part of the
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encoder state (See [8]). The state metrics of the Viterbi
decoder must become extremely ominous after a few branches
once a decoding exrror pccurs. We are able to make use of
this phenomenon to impleﬁent excellent erasure rules for
the inner decoder. However, once the decoder makes one
mistake, the decoder assumes an incorrect encoder state
which leads to endless errors. The feedback from the—outer
decoder is, therefore, a necessity in order to reset the de-~
coder into correct state sequence and to terminate the error
propagation.

Motivated by the success of Zeoli's concatenated coding
system, wé annexad fhe unit-memory convolutional code with a
three-branch-long "randém,tail“ such that the resanltant code
is truely an M = 4, (18,6) convolutional code. Thé encoding
matrices of this conveolutional code‘are-shown in Table 5.5.
The length of the tail is chosen to be compatible in memory
to that required for Zeoli's M = 31, {3,1) code. Since thé
decoder is still a Viterbi decoder for the (18,6) unit-memory
convolutional coﬁe, the decoder is going to make endless mis-
takes once an erxror occurs if the decision Sf the outer decod-
er is not fed back to the Viterbi decoder; it makes no differ—
ence whether the annexed M = 4, (18,6) code is non—~catastrophic
[12] or not. A software Viterbi decoder similar to the one
described in last section is implemented to evaluate the per-
formance of this system for the same AWGN channel. We chose
the logarithm of the conditional probability P(StIE[l,t]) as

the state metric for state s,. The reliability information
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is derived from the difference of state metrices bet&een
states A+l branches apart. The average of this quantity for
correctly decoded state sequences as well as the standard de-—
viation of this quantity may then be calculated. The erasure
rule is to erase the decoded byte when the metric di%ferenqe“
for A+1 brances is larger than T standard deviations away from
the average. Because of the law of large numbers, we expect
to erase very few corxrrectly decoded bytes but to erase most of
the incorrectly decoded pytes. The resultant byte-error-—
probability, p, and_erasure probability, g, and the calculated
byte~error-probability for the over-all concatenated coding
ﬁystem for T=1.5, T=1.8 and T=2.0, are listed in Table 5.6.
It is seen that the system performs best when the threshold
is set at T=1.80. If the metrics were Gaussian, as the central
l1imit theorem would suggest since the number of digit metrics
added is large, this threshold of 1.80 coxrrespond to an erasure
probability of 3.6% for correct bytes; we see ac%ually that the
fraction erased correct bytes is 2%,. somewhat less than Gaﬁssian
estimate. We also include the performance of this system with
P=1.8 in Figure 5.5. The performance of Zeoli's originally
proposed system is directly taken fxom [8]. We observe about
0.2 @B improvement over Viterbi decoding with feedback for the
unit-memory code in the last section compared to the same

system with Zeoli's modification. This improvement isg

again consistent with that observed from the Viterbi decoding
with feedback For the M=7, (3,1) code compared to Zeoli's

original system which makes us confident of ouf use of Zeoli's



111000 110100 110000 000011 000111 001011
011100 011010 011000 000110 001110 010110
G = 001110 001101 001100 G. = 001100 011100 101100
0" 000111 100110 000110 1 7 011000 111000 011001
100011 010011 000011 110000 110001 110010
110001 101001 100001 100001 100011 100101
000110 000001 101111 011000 111001 011000
100011 ©00011 010011 110001 110010 110000
G. = 110001 100110 100001 G. = 100011 100101 100001
2 111000 110101 001000 .3 000111 000011 001011
011000 011010 011100 000110 001110- 010110
001100 011100 110110 001100 011100 161100
111111 010100 000000
000111 111010 100000
000000 111111 010100
) G, = 100000 000111 111010
010100 000000 111111
111010 100000 000111
Table 5.5: The encoding matrices of a M=4, (18,6) convolu-

T P

tional code obtained by anfnexing a random tail
to the (18,6) unit-memory convolutional code

Byte-Error-Probability of Over-all
Concatenated Coding System

4~erroy 6-error 8-error
q correcting correcting correcting
1.50 0.00125 0.03788 2.095x10°%  8.175x107'  9.465x10 +°
1.80 0.00263 0.02088 3.602x10°° 1.074x10"7  1.245x10~10
2.00 0.00425 0.01450 4.168x10™°  1.899x10"’  3.708x10 L0

Table 5.6:

The performance of Zeoli's type of concatenated
coding system employing the M=4, (18,6) convolu-
tional code and a Viterbi decoder with feedback
for the (18,6) unit-memory code for different

erasing thresholds for .a simulated AWGN channel
at (Eb/NO)0 = 1,25 dB. The data are taken from

a sample of 8000 bytes, and the decoding delay
for the Viterbi decoder is 8.

98
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data without checking it by our own simulations.

We also point out that our use of the "neormalized”
thresholds in terms of mean and standard deviations of the
incremant oI branch metric is much more convenient and makes
much more sense as an erasure criteiion than Zeoli's choice
of the stata metric itself, since our choice of the thresholds
are independent of the particular metric which the Viterbi

decoder emplovs.
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5.4 . DEGRADATICON OF PERFORMANCE FOR EMPLOYING HIGHER RATE

INNER CODES.

We have extensively studied block;convoiutional
concatenated coding systems employing rate 1/3 convolutional
codes and Reed-Solomon codes over GF (26). However, it is
sometimes desired in practice to operate the inner convolu-
tional codes at a Eigher rate, rate 1/2 in particular, in
order to ease'the bﬁrden imposed on the phase locked loops
in the receiver. We shall illustrate a heuristic approach
to es?imate the perfofmance of similar concatenated coding
systems with rate 1/2 coding syStems.

From past experience, the performanée of rate 1/2
convolutional coding system is about 0.5 dB inferior to
tha£ of rate 1/3 convolutional coding system of the same
complexity. We therefore tested the performance of a soft-
ware Viterbi decoder (without feedback) for the M=6, (2.1)
convolutional code in an AWGN channel at (Eb/NO)I = 1.75 dB
or, equivalently, E_/N_ = -1.25 dB. The results of ‘this
simulation and the calculated overall byte-erroxr-probabi-
-lity when it is concatenated with the ReedHSdlomen codes

are listed in Table 5.7. Comparing the results of Table
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Byte-Error-Prob. Byte-Error-Prcbhability of the Over-all

of the Viterbi ' Concatenated Coding System
bDecoder” 4-error- 6-error- 8—erroxr- 10-exrroxr~
correcting correcting correcting correcting
- ‘_ ’ — — _6
0.0305  6.168x107° 6.287x107° 3.285x107°  1.006x10

Table 5.7: *The Performance of Viterbi Decoder for a M=6, (2,1)
Convolutional -Code in a Simulated AWGN Channel at
(Eb/NO}I = 1.75 dB. The data are taken from a

sample of 400 bytes and the decoding delay is 438
branches.

5.7 To those given in Table 2.3 for M=6, .(3.1l) code and the
(18,6) unit-memory code, we find that the performanée of rate
1/2 code operated at (Eb/NO)I = 1.75 dB is almost equivalent
to that of the ﬁni# memory code operated at (Eb/No)I = 1.0 dB
or that of the M=6, (3,1) code operated at (Eb/NO)I egual to
somewhere above '1.25 dB. This is consistent with thé past
experience. The performance of the concatenated coding
systems using the three codes are plotted in Figure 5.6. Once
‘again the difference between the M=6, (3,1) coding system and
the M=6, (2.1) is about 0.5 dB. This is obvious because
for the two coding systems to have the same error probability,
it is necessary that the two inner decoders have exactly
the same errpr—probability.

Uﬁfortunately, the (12,6) unit-memory convolutional
code has exactly thé same free distance as the M=6, (2,1) code

(See Table 2.1). Therefore, there is no distance advantage in
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utilizing the unit-memory convolutional code.

In conclusion, a penalty of approximately 0.5 dB
is paid when a (3,1) convolutional code is replaced by a (2,1)
convolutional code of the same state-complexity; and a unit-
memory code which has a free distance one greater than an
(no, 1) convolutional code of the same state-—complexity has
. 0.3 dB advantage compared to this (no, 1) convolutional code.
In the case we studied, a sum of about 0.8 dB is sacrified when
we choose a rate 1/2 convolutional code to replace the rate
1/3 unit-memory code. In the case where the byte-size is 5
bits, from Table 2.1, we see the free distances of {15,5)
and ﬂlO,S) unit-memory codes are 15 and 9 which are 2 greater
and 1 greater than the (3,1) and (2,1) codes of the same
complexity; we expect again an approximately 0.8 dB loss when
we choose the (10,5) code in place of the (15,5) unit memory
code. But, when the byte~size is 4, on the other hand, we
see that there is no distance advantage for the (12,4) unit-
meméry code compared to the (3,1) code; while, on the contrary,
the free distance of the (8,4) unit-memory code is one greater
than the (2,1) code; therefore the 0.5 dB loss due to the
increase of rate should be somewhat compensated by the better
free distance of the (8,4) uni%—memory convolutional code.

Therefore, we might expect only a 0.2 dB degradationt
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The performance of various block-convolutional concatenated
coding systems over a simulated AWGN channel was studied and com-
pared in the previous sections. The fact that the overall byte-
error rate is calculated from the byte-error rate of the inner
decoders makes it possible to carry out the simulations with a
moderate size of samples. Assuming that the decoder makes a error
with probability PBE for each byte-decision, the number of byte
errors within n byte-decisions is a binomial random variable with

parameters n and PBE' Then, the mean value of this random variable,

is, nPBE’ ?nd the standard deviation is /hPBE(lﬁPBE). If n is
sufficiently large, this binomial random variable can be approximated
by a Gaussian random variable with the same mean and variance.

since 95% of the samples of a Gaussian random variable are within the
interval specified by the mean and twice of the standard deviation,

we are coniident that with more than 95% probability, the ac£ual byte-

error rate for the inner decoder is in the interval specified by

(P, =2 /nPBEu—D ), P

Pog +2 /nPBE(lePBE) ). These 95% confidence

BE BE
intervals are indicated in Table 2.3.

The performances of System I using the M=6, (3.1) code and
M=1, (18.6) unit-memory code corresponding the upper and lower limits
of these intervals are calculated and shown in Figure 5.7. We conclude
with!95% confidence that the actuai performance of the concatenated
coding system deviates no more than 0.1 dB from our simulation results
Moreover, since all the simulation reéults are obtained £hr6ugh the
same pseudo-~random number sequencé, the relative difference in per—

formance among various systems are, in fact, much more acturate than

the 0.1 dB confidence interval observed here.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

In Chapter V, we have extensively studied block-
convolutional concatenated coding systems with various modi-
fications. It appears that the advantage of employing unit-
memory convolutional codes can improve the performance nearly
0.3 dB. The feedback from the outer decoder to restart the -
Viterbi decoder also contributes about 0.3 dB. But, surprising-
1y, the feedback from the outer decoder to restart the RTMBEP
decoder offers approximately 0.5 dB advantage, which is 0.2 dB
more than the same feedback is able to help the Viterbi decoder.
As a result, this might be the principal occasion where the
use of RTMBEP decoding is justified. Another unexpected re-
sult is that soft-decisions by the inner decoder in conjunction
with an erasures—and-errors outer decoder only improves the
overall performance by about (.05 dB to 0.1 4B for RTMBEP
decoding. Even with Zeoli's modification which provides the
best error detection capability, soft-decisions in conjunction
with an erasures-and-errors outer decoder can improve the
performance by only approximately 0.2 dB. We summarize the
effects of each feature discussed above on the performance
of the block—conf@lutional concatenated coding system in
Figure 6.1. The figure is drawn in terms of a dB scale. As
a communications engineer starts to choose a coding system,
the first question'he faces is whether his phase-locked~loop

can tolerate the burden of a rate 1/3 coding system, if the
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108

answer is positive, he gains 0.5 dB. Then, he is to decide
‘which inner code to employ, to choose the M=7, (3,1) code gives
0.2 @B advantage over the M=6, (3,1l) code but twice the number
of states in the decodef is required; whereas to choose the
M=1, (18,6) code has 0.3 4B advantage with the number of states
required kept the same, but more branch connections are required.
The third question is whether he allows the decisions of the
outer decoder to feedback to the inner decoder; if not the
obvious choice is Viterbi decoding; otherﬁise,'he can gain
0.3 dB or 0.5 dB depends on whethér the Viterbi decoder or
‘the RTMBEP decoder is utilized. And finally, if soft-decisions
are desired, he can gain 0.2 dB tyrough Zeoli's.type of erasure
scheme if he use a Viterbi decoder, or gains only 0.05 dB if
the plain RTMBEP erasure scheme is employed.

As we observed from Figure 5.5, the leading conéenders
for. a good concatenated system are the spphistiéated schemes
of (1) Zeoli's‘modification-with the unit-memory code, {2)
hard-decision or (3) the soft-decision RTMBEP decoding with
feedback from the outer decoder for the unit-memory code.
Among them, the soft-decision RTMBEP‘decoder with Ffeedback
performs the best. In terms of hardware implementation,
Zeoli's modification with the unit-memory code and the

hard-decision RTMBEP decoder are approximately of the same
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complexity. However, since the operatlion of the Viterbi decoder for
the Zeoli's system depends on the correct feedback from the outer
decoder, there is alway; a slim chance that the outer decoder fails

to provide correct decisions to the Viterbi decoder. 8ince the

encoder constraint length is much larger than the decoder constraint
length, this can cause endless errors as if a catastrophic convolutional
code were used. Thus, it is necessary to send synchronization signals
periodically to reset the Viterbi decoder to guérantee restoration of -
normal operatién. Thé RTMBEP decoder has the same constraint length

as that of the encoder, therefore, the decoder is able to recover

from errors in a few branches by itselfwwithout feedback. The feedback
from the outer decoder only speeds this process up; therefore, when

an error is fed back, the most damage it can cause is for. the RTMBEP
decoder to make a few more errors before it recovers by itself. This
is certaihly a very desirable advantage for a concatenated coding
system.

Moreover, because the decoder can restore its normal operation
quickly, the degree of interleaving required for this scheme is con-
siderably less than the Reed-Sclomon block length regquired for the
Zeoli's scheme. - ‘

As microprocessors are mass-produced, we foresee this as a pro-
mising practical scheme to achieve very reliable communication on a
very noisy channel. Moreover, in our gimunlations. We have studied
only the case when the outer decoder sends a corrected feedback to
the inner decoder when an error was detected by the outer decoder.

It is conceivable that one might improve the performance of the
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concatenated coding system by employing the feedback from the
outer decoder whenever the decision of the inner decoder is erased.
This scheme requires further_siﬁulation results for different
thresholds to determine its performance, but it is certainly a
promising direction for future researéh.

Finally, as an interesting reminder to iﬁformation theorists,
‘we note that for the RTMBEP decoder with feedback system employiﬁg
the unit-memory code concatenéted with the {63 53), 6-error-correcting

7 _ -
at ES/NO 3.25

RS code, we can achieve a byte-error—probability of 10~
4B (Or(Eb/NO)I = 1,25 dB). The cut-off rate, R, of this 8-level
gquantized AWGN channel is 0.275, and the channel capacity is 0-44
-whereas the over-all rate of our concatenated coding system is 0.27.
It seems that the cut-off rate is still the practical limit of rate

for reliable communications, even for a very sophisticated con-

catenated coding system.
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