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Section 1
NTRODUCTION	 l

JThe aim of the present. analysis is to provide the building blocks for a computer i
program. that can predict the aeroelastic characterisVies of the space shuttle. launch
configuration: tbrough analytic, extrapolation from experimental data, similarly to what
was done for the Apollo-Saturn launch vehicle (Refs. 1-3). The most significant dif-
ference between the present launch vehicle and the Saturn booster is the presence of a
large lifting surface, the arbiter wing. As it is basically a delta wing, analytic means i
are needed for the prediction of the unsteady delta wing aerodynamics, including the
effects of the leading edge vortices. Because of the asymmetric mating of the orbiter
to the booster roll-pitch-yaw coupling effects become of concern and it is essential'
that the yaw-induced rolling moment on the orbiter delta: wing can be predicted.

^t

The. first step towards the development of this needed analytic capability was
taken in References 4, 5 and 6. In the present report this analytic development is

€ taken one step further by including the vortex entrainment effect suggested; in Refer-
ence 5 and by extending the analysis to account for Mach number effects along the

`. Lines discussed in Reference 4. Finally, a critical look is taken at the orbiter wing

Y_. aeroelastic stability characteristics without the complications introduced by the inter-
ference flow field from HO Tank and SRM rockets.

LOCKHEED MISSILES &; SPACE COMPANY, INC.
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This is the "First Approximation' 	 '3shown in g. 1. 'The strip loading normal to
the leading edge is

f;
(1/2) (a CN /d ) y = n' sin 2 a sin.2 SLE/(b/2 co)	 (3)

It was shown in Reference 5 that the potential flow loading on a delta, wing never
exceeded 75%n of the maximum given by slender wing theory. Applying this "ceiling"

f;

changes Eq. (3) to

ar sin 2 a sin  8LE

	

(1/2) (d C /d ^)	 x	 70.	
(4)Na	 Z	 (b 2co)	 0.7 : > 0.7

Integrating Eq. (4) gives

C	 = 0.91 K., sin a cos ceNa

a — - (co	 NaCNa (aCC
0.64 (1 A4aTE)	

(5)

_ sin.r1a sin.. OLE

f

(i7 = 4/3 7r for elliptic loading)
a

'i
KPl is given by Eq, . (2) . The value 0.91 Kp, i s the "Second Approximation" in	 ` 1

Fig. 1 which shows good agreement with potential theory for aspect ratios. up to A 3.

It was also shown in Reference 5 that the vortex induced load distribution on a
sharp-edged delta wing does not have the triangular shape prescribed by the conic flow

i

assumption used in most theories, but has a "ceiling" similar to that for attached flow. 	 ``y
The resulting load distribution for the.70%.. of tha vortex induced loading that is located
at the leading edge was shown to be:

i.^^x.72 7r sin cx:	 .^.
r	

.4

	^.. 1 C ^	 ( 4.685 7r sin2 M	 0.4 f P C 0.9	 (61	 3



and the remaining 30% vortex induced loading produced by the vortex-entrainment
effect over the center wing was shown to have the attached flow type distribution given
below

LMSC-D057194
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Thus, the attached flow unsteady aerodynamics for oscillations in pitch ($) around

CG at =- a^ are given. by slender wing theory in the following form

C	 - co	 2	 2 -'eff.
In $	 (CXa

	 cos ^0 3 . cO	 CG
a	 eff.

	

2	 2
^n	

[cceffCm$ _ - F ^ Na)cos o o	 ECG	 (10)
a	 eff.

	

2	 .a

7rA Jeff .C	 2	 ocND
)ef£

From Eqs. (9) a-ad (10) the center of pressure is obtained as

c

3 f̂. = 0.64 (1 - sine $LE	 --- }	 (11}
n

whereas Eq. (a) gives ti ..

f .	 a = 0.64 (1. - 0.425 sing $LE'	 (12)

That is, the center of pressure is the same for slender wings, sin g Oi E <*^ 1,
as it should. be .

Using Lamborne 's results (Ref. 10) it was shown in Reference 5 that the vortex
induced unsteady aerodynam ics could be determined as follows	

i

C0Cm = - CN	[0.,3( ̂a E CG) + 0.7 QV - 
^CG)^

$s	
av

LOCKHEED MISSILES & SPACE COMPANY. INC.
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where, U o /U = 0.75 for oscillations in pitch, and CNaV is given by Eq. (8)3

CIIUV = rr sin 2 60

Fig. 3 shows the predictions by Eqs. (8) - (13) to agree well with experimental
data (Refs. 11 and 12).

2.2 Effect of Leading Edge Roundness

Gersten has shown (Ref. 13) that leading Edge roundness has a large effect on
delta wing aerodynamics (Fig. 4). A large part of the measured decrease in lift and
pitching moment is probably due to the delay of leading edge separation caused by

f	 leading edge roundness. The 12.5% truncation of the wing tip (see sketch in Fig. 4)r
would not have any effect on the delta wing lift and moment according to the present
analytic modelsee inset in. Fig.g. 1). Recent results by LaMar (Ref. 14) .also indicate
that the effect would be negligibly small.

According to Ville (Ref. 15), leading edge separation shoald,in two-dimensional
r

flow,occur at an angle of attack of a2E s f ( c Re) . It is clear that the three-
dimensional flow will delay the separation in the cross flow .plane to an angle of attack
aNs > a2Ds . An estimate of this delay can be made by defining an effective aspect.: 
ratio AN = 4 co/b for half the delta wing in the cross flow plane. It can be assented
that C	 is relatively independent of aspect ratio, (Refs. 16 and Z7). Titus, oneLmax
obtains

aNs	 a2Ls (I + tan OLE)	 (J4)

i
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Experimental. resuiis (Ref, 18) indicate that leading edge -stall on the NACA-0012
airfoil will occur in the angle of attack range 12.5° :5 a2Ds 5 1S° depending upon
the Reynolds number. For the orbiter main wing A = 45°, which in Eq. (15) gives

as _ a2Ds N12_. 'thus, for M. = 0 one obtains 17.7' :s: as :5 25.50.

The Mach number MN normal to the leading edge is simply

1/2
MN = Moo  cos a tang a + sing OLE	 (16)

using the two-dimensional. data for the separated flow boundaries of the NACA
64A 012 airfoil. (See Ref. 19 and Fig. 54) as a guide line, the prediction for ?^'^ a , = 0
can be extended to transonic speeds as is shown in Figure 5b. The bars in PL- ,;,ee 5b
represent oil flow data for the orbiter (Ref. 20). As the pictures were only taken at
every 5 degrees of angle of attack, the bars span over Aa = 5%, with the bottom in-
dicating attached leading edge flow and the top of the bar established leading edge
separation.. Considering all the complications due to three-dimensional flow effects,
which will be discussed later in this report and in more detail in Part 11 (Ref. 21), the
agreement is rather good between predicted and measured separated flow boundaries.
it should be noted that without the aspect ratio correcttizn, Eq. (14), the predicted
as-values would be exactly half of what is shown in Figure 5b. For this reason the
predicted boundary in Figure 18 of Ref. 22 is rnucL too low.

For the test data in Figure 4 a value of a2Ds " 13° is suggested giving a =
3.95 0 . Substituting a with (a - cis) in Egs. (5) and (8) gives the rounded leading
edge effect shown by the difference between the dashed and solid line curves in Fig-
ure 4. Although the predicted effect of leading edge roundness is in the right direc-
tion, it is less than what was observed experimentally. One possible reason for this
is the following: It was discussed in Reference 5 now a slackening of the vortex-induced

-	 j-

i

I

2
_6	

j

i
rt	 1

LOCKHEED MISSILES & SPACE COMPANY. INC.
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load buildup was observed to occur aft of 40% . center chord Q	 0.4). This was

. attributed to a "loosening" of the vortex shedding; i. e., the vortex becomes less con
- centrated. Such an increase of the vortex core could occur for two. possible reasons:

1) the center core axial velocity is decreasing or .2) the vortex shedding men.hanism
from the leading edge has changed. IE the second . reason is the significant one, the
leading edge roundness could be expected to contribute.to further "loosening" of the
vortex shedding with associated loss in vortex-induced lift. However, if the first ?
reason dominates, which would be in accordance with the causative mechanism for
the more severe "loosening" phenomenon called vortex burst (Refs. 23 - 25), the

F leading edge roundness effect should be accounted for by the (a -cis) correction.x
ti,.. This appears to be the case judgng by the good agreement between.predictions and
-, experimental dynamic results ` (Ref. 11) for a delta wing with rounded leading edge

4	

4 (Fig. 6) •

}That this purely static effect of leading edge roundness suffices to explain the
dynamic effects is somewhat surprising in view of. the large. overshoot of static stall
observed in dynamic testing of airfoils (Ref„ 26) . However, it is in agreement. with
the dominance of three-dimensional flow observed by l ambourne (Ref. 10). He
showed that it is the flow conditions at the apex at an earlier time  instant that deter-

L- nine the instantaneous downstream vortex strength.

2.3 Lateral Characteristics

The dominant lateral characteristic of a sideslipping delta wing is the rolling
moment derivative CCp (Fig. 7). At an angle of sideslip, the Effective apex angle
of the windward side is increased by an amount A$LE (see Fig. S).

ABLE	tan	 (tan a/cos a)	 (17) la.	 ,

or for small sideslip angles,
V
r

a

A9LF - (3 sec U 	 (18)

# For the 6% thick wing a2Ds = 12° gives as = 5.'7°

2-7
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J vortex-induced loads near the leading edge, given by Eq. (6), It is only needed to
realize the vortex entr	 effect, Eq. (7). Thus, the windward half of the deli:

- wing has the following increased load due to the sideslip angle (see Fig. 8).

2. C 	 2 CNV (cu, 0) S (a, f3)/S (a,. 0)
(Z3)	 r

S (a, P)/S (ce, 0)	 - 1 +	 see a (cot ILE -- tan ®LE)

That is

dC 	 GNV
2	 dp	 2 co a. (cot ILE	 tan ELE)	 (24)

For the. 70% of the vortex induced load located near the leading edge., Eq. (6), the

Y
effective' lever arm yV for the rolling moment is (see Fig. S).

i

y	 V ca [^V (	 $LE + ^' see q)

(25).
f

sec a cos (f3 sec a)

Fur small sideslip angles 	 the effective dimensionless lever arm for the wind-
ward half of the delta wing is

^V^V1 - 77.Ecot
OLE(YV)

b	 ..7	 2 77.	 cos (2
3

For the 30% of the vortex load caused by entrainment effects the dimensionless
lever arm is

a	 a( yV )b.	 2	 {7)

.j

2-9
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+ 0.3
2	 dp	 b	 .3

Eqs. (24) - (28) define the following rolling moment deriva tive for the vortex in-

duced loads on a delta. wing -^	 f

IdCZV	C	 cot $ E	 U.7	 r(2 - tan2 8L ) T^	 - 1i

	

Vdp	 a^	 2 cos o<	 L	 L
i	 -	 2

+ 0.3 a (1 -. fan	 $LE) a

(29)'

j.

The roll- stability derivative given by Eqs . (22) and (29)  iu combination with .^

Eqs. (5) and (8) is compared with. experimental data (Ref. 27) in Fig.. J. The agree- Y'	 a
went is excellent, substantially better than for Polhamus theory (Refs. 6 and 27):IL

}

2.4 Mach Number Effects

I	 At sonic speed 'ones' slender wing theory (Ref. 8) applies.	 Thus, the whole wing f
is effective, i.e., ATE - 0 and the "plateauing" does not occur. The attached load
distribution along the center chord is as follows for Mco =1.

7r sin 2 U tang $LEI dCNa _

f	 2	 d	 (b 2 eQ)	 0 4	 :51.0	 (30) -
1

-

The corresponding vortex induced load distribution is

d C	 x..72 7r	 sing a	 0 { 	 0.4
[	

9

20.7 2	 d ^	 0.685 7r sib_	 0.4 C	 -51. 0 	 (31)
7

dGNV 	 2
0.3 2	 d	 - ^. 57r	 sin	 a	 :`0^	 {1.0 4

Olt should be noted that the present theory is of semi-empirical nature, whereas
Polha.mus'theory is of the pure v`arety.

91_x0

:

f
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Integration gives the follow. ing aerodynamic characteristics of a delta wing at
Mn =1.0

CNa - 
7r (Al2) sin a cos cx

cam, - - (co/c) CNa (T a - ^C. 2	 2

CNV .	 T spa. a see	 OL	 (32)	 !;i	
_

1C	 =	 (C /a cmy	 O	 )	 NV (	 - ^ CCi._

a = 0.667	 ^V = 0.587

An obvious way to make a smooth transition from M^ = 0 to M^ _ "^ , 0 in
regard to ATE is the following
^ 	 a

ATE 	 (ATE)	 1 - M^	 (33)
_.

M^	 0 -

Applying the same smoothening also to the load distribution gives the following
unified representation of the subsonic longitudinal aerodynamic characteristics of a
delta wing.

ON
	.
_ 7r (A/2) sin a cos a ^^ 0.09	 l - M^ 1

/

:- (^ - sink :0LE	 1 - lVi
A

ma	 4c0r) CNa ( a	 ECG)

2	 2C	 = Tr sin. a sec	 8LE

2 .L^	 o0x-sin B	 -M
34

Cm^ - . -- (co /o) c	 4	 cc^

a = 0.667 - 0.027 . 41 - Mm

1 •-,M	
1

-	 sing	 LEa

V.
=	 0.587" - 0.027	 x - M^ }

x	
4.x. sin.2 6LE	 x ^ M

: LOCKHEEb MissiLES .& SPACE COMPANY, INC.
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Section 3
ORBITER UNSTEADY AERODYNAM[CS

The space shuttle orbiter has a wing of double-delta planform (Fig. .18. An 8011
swept inner delta wing, a strake, is preceding the 45 ° swept main delta wing. It is

fwell Imown that the shake vortex induces a Load on the main wing (See Fig. 19 and
Refs. 31-33). At high angles of attack the Straka and main wing vortices may combine

-- to form one (large-core) vortex (Ref. 32). Iu absence of a fuselage the downstream
strength of the strake vortex, determining the magnitude of the vortex induced loads,
would : be the . integrated result of 1he angle of attack distribution along the strake lead-

ing edge. However, in the presence of the orbiter fuselage (Fig. 18) the flow situa-
tion. changes dramatically. At low angles of attack a corner. separation occurs at the

`	 r wing-fuselage juncture which reaches all the way to the strake apex already at moder-
ate angles of attack. The corner separation is vented via a vortex which affects the

-; lift over the. aft wing. When the separation occurs at the strake apex, the situation is
similar to that for free-body vortices on slender bodies of revolution (Refs. 34, 35,
38 and 39).	 For the shuttle this means that crossflow . at the strake apex determines
the proximity of the vortex core to the aft wing, thereby determining the. aft wing lift.
Thus the situation is very much different from the one dealt with earlier in the pure
delta wing analysis.

3.1 Rigid Body Dynamics
-

a

The rigid body; dynamics of the orbiter (Fig. 18) are computed in the `following
manner. An equivalent. slender wing is defined for computation of the attached. flow j
unsteady aerodynamics, similarly to what was done in the delta wing analysis earher.
The trailing edge of the equivalent wing is located such that the computed slender 4

. wing force derivative CN	at o< = 0 agrees with the measured : C ND.., The voce
E

a

—3 1
` b \^

" ^ ^,d 16i
LOCKHEED MISSILES & SPACE COMPANY, INC.
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-
induced loads aree defitzed as the difference at angle of attack between actually measured

1	 static characteristics (Refs_ 3G and 37) and the computed attached flow characteristics.
7nn, this der the flow complications caused by the fuselage are accounted for in re-
gard to thi- magnitude of the vortex induced loads. In order to obtain the unsteady
aerodynamics one has to determine the phasing of these loads.

From the earlier discussion it appears reasonable to lump the crossflow effects
on the strake--fuselage vortex to the strake apex. That is, the strake-faselage vortex 	 ;.	 f
is life a free body. vortex (Refs. 3 4, 35, 38. and 39), or. .a: partial span vortex (Refs. 4
and 40), and one can assume that U = U^ Thus, the lift generated by the strake-
fuselage vortex at a station x-xA downstream of strake apex is determined by the 	 --
cross flow at the strake apex a time instant At earlier, whe re At = (x-x )/U	 -

A co

This analysis is carried out in detail in Part 11 of the present report Ref. 21). The
I	 dynamic characteristics . computed in this manner are shown in Figures 20 a: id 21.

The agreement with experimental results (Ref. 41) is good, not only at subsonic speeds
(Fig. 20) but also in the transonic speed region (Fig. 21). Note the opposite effects on
dynamic and static stability of the separation induced loads. in the transonic speed
region (Fig. 21) shock.-boundary layer interactions complicate the picture. However,
also the shock-induced flow separation is to a large extent controlled by the strake-
fuselage vortex (Ref. 21). Thus, the cross flow at the strake apex determines also 	 j
the shock-induced separated flow effects on the vehicle dynamics.

3.2 Aeroelastic Characteristics

The rigid food dynamic data for the orbiter shavvixgi . Y Yn	22 far Mgure	 : ^ = 1.2
reveal that a. dramatic change of flow pattern occurs at c se 8°. The measured large
increase of dynamic stability and corresponding moderate .decrease of static stability 	 -

I_
axe typical for nonlinear, possibly discontinuous, aerodynamic cl3aracteristics which

4

	

i	 I 

_	
'	 J3-2.	 a
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are associated with suddenly increased Amw separation, such as has been observed on
slender cone-cylinder bodies (Ref. 42). Th.-,s accounted for the 1% (of critical) loss of

-	 damping measured on the Saturxz-Jupiter nose shroud (See Fig. 23 and Refs. 42 and
43). Whether this sudden increase of the flog separation will increase or decrease
elastic vehicle damping depends entirely on the anode shape. Figure 24a shows how one
of the candidate straight wings for the early space shuttle configuration experienced_
undampi.ng (negative damping)' art Mc.	 0.85 (Ref; 44) . Figure 24b shows the meas-

r

ured vibration response for a slightly different wing. * However, on the swept wing
of a high, performance aircraft a sudden change of. the. shock--induced.separation pat-
term causes increased clamping (Fig. 25 and Ref. 46).	 That the wing bending response
still increases in this case is the result of the increased forcing function, the buffet
input. It is the combined effect of the fcroing fan.ction and the change of aerodynamic
damping that determines the buffet response (Ref. 47)

Figure 26 shows the similar effects of sudden separation on cone-cylinder bodies
(Ref. 48) and two-dimensional airfoils (Ref. 19). A force couple is generated together
with a net negative normal Force,. which may be-more pronounced in the two-dimensional
flow ease. Flg%ire 27 Mustrates how this net negative force would produce a statically
destabilizing and hence damping effect on the rigid body orbiter, oscillating in pitch,
all in agreement with the results shown in 11gure 23. The effect for the elastic mode
sketched mi Figure 27 will be the opposite with the force couple providing a statically
restoring and hence uudamping moment. It should be. noted that it is the force couple

_	 that does the damage. to the aeroelastic damping. 2'hus, if the resultant net force had
been of negligible magnitude the rigid body dynamic data would not have given any
warning about this possibility of aeroelastic instability. 	 The question is then, whether
or not the , actual. orbiter can experience such large adverse aeroelastic effects. Flow
visualization photographs (Ref. 49) indicate that this can indeed be the case. 	 The
nodal line for the first torsional anode, as obtained from Reference 50' x , is delineated

*Actually the fin for the same straight wing space shuttle configuration, (Ref. 45).
The peak response is, tberefore, at M	 = 0.90 and not at M	 = 0. 85.IL	 co

''Note that the flutter investigation in Reference 50 was performed at a<	 0' and 4
a=3°, i.e._, far from the critical a-range for sudden separation changes.

3-3
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in Figure 28. One notices that the separation line moves from a position aft of the
nodal Brie to a position far forward of the nodal line when the angle of attack is in-
creased from a - 5 1' to a 1:0

When combining the information presented in Figures 22 through-28 one becomes	
T.

y a—r'luced that large adverse aProelastic effects will be experienced by the orbiter
wing at certain critical eombinatie.ns of-angle-of::attac .1c and-Mach.  number. , _rime 29 r'
shows how this critical angle of attack varies with Mach number and cone angle for
cone--cylinder bodies (Refs. 47 and 48). Within the a• range shown the flow alter-crit
noted between the two separated flow patterns. This would indicate that the adverse
aeroelastic effect can be realized for a range of angles of attack. o! = a	 f A.a<crit	 crit
as is. also verified by the results obtained with the Jupiter nose shroud (Fig. 23)•
acrit and, in particular, Aarcrzt are very sensitive to Reynolds number. One. can, ^.
of course, expect the critical angle of attack region for the orbiter wing to be . equally

sensitive to Reynolds number. Th addition, elevon deflection. vi:1l strongly influence
a	 for the orbiter.crit

The orbiter wing with its Highly swept leading edges is subject to strong three--
dimensional flow effects. How the wing sweep affects fhe shock-boundary layer in-
teraction has been studied thoroughly (See Ref. 51). 	 The similarity with the flow.
pattern on the orbiter wing_ (Ref. 49) is apparent in Figure 30. Th addition to this #
triple-shock .-complication, the wing sweep also introduces a unique boundary layer r f
transition behavior with associated decisive effects on the flow separation patterns.
The spanwise flow, with its propensity for the development of an inflexiou point in its
boundary layer profile. (Ref. 52), causes the flow, to become turbulent on the outer wing
panel while it is still laminar inboard. For some ranges of Mach number and angle
of attack this causes the outboard wing to have a region of attached leading edge flow-
with retarded shock induced separation (see M*g.	 31 and Ref. 53). At a certain angle
of attack the separation jumps to the leading edge causing a dramatic change of the
flow field over ffie. complete wing. flow this ca^itical angle of attack varies with ]sad-
ing edge sweep for TACT--F111 (Refs. 54 and 55) is shown: in Figure 32. ' The F111:

li 

wing with Its supercritical airfoil and built-in 4 degrees "wash-out" at the wing tips
does exper`^ence the flow. pattern shown in Figure 31:, whereas the orbiter with its j

3-4
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more conventional airfoil shape does not. (Fig. 28). That is, on the orbiter the
separation does not jump all the way to the leading edge when a exceeds acrxt`
Otherwise, acrit for the orbiter fits into the general.. trend shown by the TACT-FII.1
(See Fig. 32).
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Section 4
CONCLUSIONS

A study of the steady and unsteady aerodynamics of the space shuttle orbiter has
given the following results.

o The effect of Mach number for a subsonic leading edge is accounted for by a
simple modification. of Jones' slender wing theory for the attached flow loads
and by a reformulation of Polhamus theory for the vortex induced loads.

The effect of leading edge roundness is largely accounted for by considering
the delay of leading edge sepa ation in the cross flow plane due to leading
edge roundness.

® The effect of trailing edge sweep (forward or back) is well predicted by use
of two equivalent delta wings, one for the attached flow loads and another for
the vortex induced loads.

• Both patch and roll stability derivatives, determined by the presented closed
form solutions, are in excellent agreement with available experimental data..

• The slender wing analysis can be extended to the orbiter wing with its double-
delta plan form wing by defining two equivalent wings.

The attached flow loads are given by an equivalent slender wing that
gives the measured CND at a= 0..

The vortex induced loads are defined as the difference at a > 0 between
measured total loads and computed attached flow loads. The cross flow
at the strake apex is controlling the unsteady effects of the vortex in-
ducedloads

® The unsteady aerodynamics of the orbiter computed in this manner are ir_
good agreement with measured dynamic characteristics in the whole Mash
number range investigated, 0.3 { M 25 1.2.

Jy
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- o	 In the transonic speed region, 0.9 zs Mco :1.2, the space shuttle orbiter
I	 is subject to Vortex-shock-boundary layer interactions which cause highly

nonlinear or discontinuous changes of the aerodynamic loads when a critical. Y
angle of attack is exceeded. It is found that this could have a strongly ad- F^
verse effect on the aeroelastic stability of the wing in its lowest torsional {

mode. This flow phenomenon can also have a dramatic effect on the vehicle ',I

dynamics, with the possibility of snap roll being of some concern. V'

e	 The vortex-shuck-boundary layer interaction: is extremely sensitive to model
surface roughness and free stream Reynolds number, and it appears impossi-
ble to simulate it in a wind tunnel test unless full scale Reynolds number can
be reached.	 This is not possible with present ground test facilities, at least '=
not with the size model needed for the complicated space shuttle. For these
reasons the following approach is suggested.

Obtain consistent static and dynamic data for a "nominal current" con-
figuration including. "current" OMS-pods and the operational range of

I	 control deflections.

Conduct parametric tests to determine incremental effects of geometric
changes, control deflection, sideslip, etc. as well as of surface rough-
ness and Reynolds number.

Develop analytic means by which the wind tunnel test results can be
predicted thereby ensuring confident analytic extrapolation to full scale !
conditions.

.. Obviously the investigation outlined above should be broad enough to enable
the analyst to find "fixes" as needed to ensure structural integrity and
acceptable vehicle dynamics. f

}

E	 44.2 I	 s
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Appendix A
NOMENCLATURE

1

1

Li
A aspect ratio, A = b2 /S

a speed of sound

ATE inefficient wing area at M = 0 (F`i.g. X)

b wing span

C
i

reference length	 j

co slender wing root chord

L Mach number parameter, Eq. (36) !
i Kp, KV potential flow and vortex lift factors, Eq. (1)

KPl. first approximation of KP
i L lift: coefficient CL = L/(per U' /2)S

rolling moment: coefficient Cz _ ^,/(per U2 /2)Sb

,f M ATach number: M = U/a

M pitching moment- coefficient Cm =M (P 	U2 /2)Sc
P P	 CO

N normal force: coefficient CN = N/(per U^/2) S (Mg. S)

P static pressure: coefficient Cp = (p - pJ/(pOO U20/2)

q pitch rate

rN airfoil nose radius

Re Reynolds number

S reference area (= projected wing area)

s local semi.-span
t J '

r--
F	 ^ A-
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t	 time	 -

U	 horizontal velocity	 J

U	 convection velocity	 µ }
^i

X	 axial body--fixed coordinate (see inset in Fig. 1)

y	 spanwise body-fixed coordinate (see inset in Fig. 1)	 LL I I

a	 angle of attack (Fig. 6)
i

BYO	trim angle of attack	 wa

(3	 sideslip angle (Fig. 6) i

6 (x, t)	 elastic vehicle deflection, b (x, t) = O(x) q(t)

damping, fraction of critical damping
i^

77	 dimensionless y-coordinate, n y/s
I

9	 angular perturbation in pitch 	
y

8c	cone half angle

$LE	 apex half angle (see inset in Mg. 1)

e TE	 trailing edge sweep angle (Fig. 12)

A	 leading edge sweep angle, A= 7r/2- e LE

14	 Mash angle, !L = cosec 	 f ,

dimensionless x--coordinate, = (xA - x)/co ^i
'^ 1

p	 air density

o	 wing tip acceleration

(x)	 x--distribution of normalized bending deflection, 6(x, t) 	 q(t)

W	 free-free bending frequency and rigid body pitching frequency

w	 reduced frequency] w = w co/UM
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Subscripts

A apex

'	 LJ
a attached flow

- CG center of gravity

1 Grit critical

'l
d downstream

eff. effective

3 LE leading edge

max maximum

Nor Z normal to leading edge

A	 } s separated flow

TE ding edge

V vortex

2D two-dimensional flow

co freestream conditions

Superscripts

( trailing edge coordinate,

barred quantities denote
aerodynamic loads

r-z

l..:J
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Eq. (39).

integrated mean values, e.g., centroid of

k	 .3

i
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