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Subject: Evaluation of TILS for Use as the Orbiter Landing NAVAID

1.0 Summary

An evaluation of the Tactical Instrument Landing System (TILS)

for use in the Orbiter Autoland System has been mEde. It has

been found that with certain modifications, the TILS can satisfy

Orbiter Autoland requirements. These modifications, include (1)

addition of DME equipment, (2) expansion of elevation coverage

from 0-10° to 0-30°, and (3) expansion to redundant systems with

associated qround monitors. Additional modifications that are not

necessary to meet the Orbiter requirements, but that can enhance

performance margin are (1) tightening of elevation antenna

beam width from 1.3° to 0.5° and (2) Split site configuration to

provide azimuth and range coverage through rollout.

2.0 Introduction

The baselined radio frequency ground-based navaid for the Shuttle

approach and landing  i s the Microwave  Scanning Beam Landing

System (MSBLS). The function of the MSBLS is to provide the

onboard receivers navigation information in the form of range,

elevation, and azimuth data relative to the ground transmitter.

The data is used to update the vehicle state vector which is in turn

used to compute vehicle energy and position.

The presently accepted baseline MSBLS ground system is scheduled

for delivery in December 1976, to support the Orbiter Aavroach and

Landing Test (ALT). The present delivery re q uirement for MSBLS ground



1.3-DN-CO103-002
Page 2 of 17

equipment to support the Shuttle Training Aircraft (STA) is

December 1975. In the interest of commonality between the Orbiter

and STA, and the delivery schedule conflict, it has become

necessary to investigate the availability of other microwave

scanning beam equipment that could satisfy the STA delivery date

requirement and still be acceptable for use with Orbiter airborne

MSBLS receivers. Of the available scanning beam systems, the most

promising is the TILS.

It is the purpose of this memorandum to compare the performance

of the TILS, a currently available production scanning beam sys-

tem,to the baseline MSBLS.

3.0 Discussion

As previously stated, the basic requirement of the MSBLS ground

system is to provide navigation information to the Orbiter during

approach and landing. The autoland system touchdown requirements

(Ref 1), are shown in Figure 1 which depicts the approach end

of the runway, the nominal touchdown point ie., 2700 feet from

threshold, the 3 0 Glideslope Intercept Point, and the 3 Q'

k

touchdown requirements footprint.

A pictorial description of the baseline MSBLS ground station is

shown in Figure 2. This configuration is capable of providing an

azimuth signal of ±20° relative to the runway centerline and an

elevation angle from 0° to 30°. The DME function will provide range



1.3-DN 0103-002

Page 3 of 11

from 12,000 feet altitude through touchdown and rollout. In the

practical application, the elevation angle signal is not useable

lower than one signal beam width to preclude masking and ground

clutter. Thus, the baseline elevation signal is available down

to 0.50 . The Level II requirement for autoland states that the

automatic system shall be capable of executing fully automatic

landings in "0-0" weather conditions with an all-up system (Cate-

gory IIIC Requirement). The baseline design reflects an inter-

pretation of these requirements to mean full MSBLS coverage through

autoland and rollout. To provide this type covers^	 P	 YP	 a it was d,-Pmed9

necessary to split the scanner sites as shown in Figure 2. The

elevation scanner is 200 feet normal to the centerline and 4000 feet

down the runway from the approach end to provide unrestricted

elevation coverage through touchdown. The azimuth scanner and DME

antennas are located on the centerline beyond the stop end of the

runway, approximately 12,000 feet from the elevation scanner, and

provide coverage through rollout. In the split site configuration

it is necessary to physically connect the two sites with a cable

to provide a synchronizing link between the two antennas.

TILS at the Baseline Position - The standard TILS provides elevation

and azimuth functions to airborne vehicles during final phases of

landing and touchdown. A pictorial de:,cription of the TILS ground,

station, at the baseline position, is shown in Figure 3. The con-

kv as A...00
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figuration is capable of providing an azimuth signal of +150 relative

to the runway centerline, and an elevation angle from 0 to 100.

In the practical application, the elevation angle signal is not useable

below 1.30.

Baseline MSBLS/TILS Elevation Coverage - Figurer 4 & 5

graphically depict both MSBLS and TILS elevation coverage from

the baseline position for the final and initial flare ranges

respectively. The basic MSBLS elevation co verage is from 0.5° to

30° as opposed to the TILS elevation coverage of 1.3° to 10°.

The three orbiter trajectories shown in Figure 5 were obtained from

Ref 1 and represent trajectories with headwind, no wind, and

tailwind conditions. As shown in Figures 4&5, the present TILS

configuration located at the baseline position will not provide

full elevation coverage during the steep glide slope approach and

prior to the final flare for the headwind trajectory. Figure 6

shows the planview of both elevation coverages in the baseline

position. It is apparent that elevation coverage is not provided

to touchdown in all cases described by the touchdown requirements.

In order that TILS satisfies the elevation requirements, the

elevation coverage must be raised from 10° to 30° and the eleva-

tion scanner must be located 2500 feet from the approach end

and 200 feet normal to the centerline of the runway as shown in

Figure 1. This move is made necessary by the 1.3° elevation
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restriction imposed by the standard TILS elevation scan. Figure 8

shows the planview coverage of the modified TILS at 2500 feet from

threshold and indicates that 15 0 width of the elevation scan

causes loss of signal in most cases described by the touchdown

requirements ellipse. However, for the headwind, nominal, and tail-

wind trajectories described in Figure 7, the data dropout

occured at 3, 4, and 5 seconds prior to touchdown. These

times-to-go correspond to 25, 32.5 ,and 40 feet in altitude

respectively and elevation coverage below these altitudes would

not be provided. However, elevation to touchdown is not a

necessity since altitude information from 400 to 100 feet

altitude is a blend of MSBLS and Radar Altimeter data and below

100 feet altitude, the information is provided entirely

by the Radar Altimeter. Furthermore, the IN could provide the

necessary azimuth and altitude information required for final

flare, touchdown, and rollout.

The other change that must be implemented, is the addition of the

DME function to the TILS. This is necessary in order that range

measuring capability accurate enough to meet the autoland

requirements is available for state 'vector u pdate. The

only other navaid which provides range information is the TACAN,

which has an accuracy of + 400 feet. The ± 400 ft accuracy

provided by the TACAN is equivalent to the 1 Q" tolerance of the

autoland requirements which is the tolerance for the total GN&C

system. Thus it is obvious that a more accurate DME than is

^+'`^^	 ^• #. ill s...«	 :Il ` ^	 ^ i	 —



1.3-DN-00103-002
Page 6 of 17

provided by TACAN is necessary (Ref 3). With the above mentioned

changes, and the addition of DME, the modified TILS will be able
1

to satisfy the basic Orbiter ground navaid requirements with 	 +

only a small amount of system degradation.

Rollout Coverage - As noted in Figure 3, the TILS is a colocated

scanning beam system. Given that the elevation scanning beam must

be located 2500 feet from threshold, a colocated system provides

azimuth and DME coverage to the Orbiter down to approximately

0-5 seconds prior to touchdown. The tradeoff implied is that

of cost savings of a colocated site versus the necessity of

azimuth and DME data during touchdown and rollout. Analysis

indicates that rollout guidance can be provided by using inertial

data from the IMU.

Figure 9 shows a comparison of the touchdown and rollout accuracies

of the baseline MSBLS and modified TILS.

The touchdown errors are shown both with and without Radar Alti-

meter to indicate the difference between the all-up system and

the failed Radar Altimeter case, which requires altitude to

be derived from MSBLS range and elevation angle.

The inertial contributions represent a 0.5 ft/sec velocity

error in each axis. This is based on a previously performed analysis

(Ref 4).
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The final set of errors shown in Figure 9, represents the

total error at full stop in the basellne MSBLS due to MSBLS

system accuracy, and the TILS which includes both system

accuracy and the error contirbutions from the inertial

system during touchdown and rollout.

S
4.0 Conclusion

From the described analysis, it can be concluded that the TILS

can satisfy Orbiter Autoland system requirements with the following

requirements:

1. Addition of DME equipment.

2. Expansion of the elevation coverage

3. Expansion to redundant systems with

Additional modifications that would

the Orbiter requirements, but would

of performance are tightening the e

width from 1.30 to o.50 and a split

from 0-100 to 0-300.

associated monitors.

not be necessary to meet

contribute to the margin

levation antenna beam

site configuration to

provide azimuth and range information coverage through

completion of rollout.
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