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A COMPOSITE SYSTEM APPROACH TO
AIRCRAFT CABIN FIRE SAFETY

€ ABSTRACT: The thermochemical and flammability characteristics of two poly-

s meric composites currently in use and seven others being considered for use as

aircraft interior panels are described. The properties studied included:
t

(1) limiting oxygen index of the composite constituents; (2) fire containment

capability of the composite; (3) smoke evolution from the composite; (4) ther-
C

mogravimetric analysis; (5) composition of the volatile products of thermal

degradation; and (6) relative toxicity of the volatile products of pyrolysis.

The performance of high-temperature laminating resins such as bismaleimides is

compared with the performance of phenolics and epoxies. The relationship of

increased fire safety with the use of polymers with high anaerobic char yield

is shown. Processing parameters of one of the bismaleimide composites is

detailed.

INTRODUCTION

The purpose of :his program was to assess the relative flammability and

thermochemical properties of some typical state-of-the-art and candidate

experimental aircraft interior composite panels, and to develop an understand-

ing of the relationship of flammability and thermochemical properties of these

systems.

Composite sandwich panels constitute most of the surface of aircraft

interiors as sidewalls, partitions, ceiling panels, and overhead stowage bins.

Currently used composites meet or exceed regulatory requirements [1] and offer

excellent aesthetic, serviceability, maintenance, and other properties. How-

ever, additional improvements are being sought to reduce ignition susceptibil-

ity, fuel contribution, smoke and toxic fume emission, and to increase fire

containment capability [2-81. Experimental composite panels that could offer

improved fire resistance and smoke reduction in aircraft fires are now being

1
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developed and tested. In this program, nine different types of experimental

composite panels were evaluated In terms of their flanmabllity properties.

Two of these were typical state-of-the-art interior panels and seven were

experimental. The composite panels used by most airframe manufacturers as

interior paneling are sandwich panels that vary slightly in configuration,

component composition, thickness, and density depending on the type of air-

craft in which they are used and the specific application. In general, the

panel consists of polyvinyl fluoride decorative finish bonded to a fiberglass-

resin laminate which is bonded to an aromatic polyamide 'honeycomb core as

shown in Figure 1.

DISCUSSION

Description of Composites

Nine types of composite panels were evaluated. Three types of resin sys-

tems were used for the fabrication of the laminates used in these composites:

•	 epoxy, bismaleimide, and various modifications of phenolic resins. The general

chemical structure of these resins is shown in Figure 2; the composition of the

composites is shown in Tables 1-3. All composites fabricated were 2.54 cm

thick. Composite No. 1-6 had a decorative surface of a polyvinyl fluoride

film printed with an acrylic ink and bonded to a laminate. The laminates con-

sisted of various types of fiberglass preimpregnated with various types of

phenolic resins. The laminates were adhered to the hexagonal-cell aromatic

polyamide honeycomb structure using various types of phenolic resin-fiberglass

adhesive ply. Composite No. 1 was considered a typical state-of-the-art

phenolic resin panel. Resins used in the preparation of the laminates for

composites No. 1-6 were obtained commercially and are designated as phenolic

types A through G. The exact formulation for these resins was not available

2



from the suppliers. The decorative laminates of composites No. 1-6 were

press-bonded to the honeycomb using an adhesive bond ply at 160° C for 12 min

at 689.6 kN/m2 pressure. The sandwich panel was then cured at 123° C for

1 h with 50 mm Hg minimum vacuum bag pressure. Composite No. 7 was composed

of a laminate of bismaleimide-fiberglass adhered to the aromatic polyamide

honeycomb. The processing and composit i on of this type of composiLe was simi-

lar to those of the advanced composite panel described previously 191 except

that a foam produced by heating quinone dioxime was used as the core filler

material [101. Composite No. 8 is a typical state-of-the-art composite panel

consisting of polyvinyl fluoride film bonded to a laminate of epoxy-fiberglass.

The laminate is adhered to the aromatic polyamide honeycomb using an epoxy-

fiberglass ply. Process description and composition of this composite has been

described in detail previously [9,11,12]. Composite No. 9 was similar to com-

posite No. 7 except that a bismaleimide-fiberglass honeycomb is used that is

partially filled with a mixture of carbon microballoon and bismaleimide resin.

Processing and Fabrication, Composite No. 9

The fabrication process for composite No. 9 is shown schematically in

Figure 3. Processing a typical 30 cm x 30 cm x 2.5 cm composite panel of this

type is done as follows.

FACE SHEET FABRICATION PROCESS.— The face sheet fabrication essentially

consists of resin preimpregnation of the fiberglass (MIL-C-9084C Type 11X)

cloth, and the forming and cure of the prepreg into the required face sheets.

A 50% solution is prepared by sifting bismaleimide resin powder into

N-methyl-2-pyrolidone solvent under vigorous agitation, avoiding resin caking

on the container walls or lump formation; a high-speed agitator is used. The

initial viscosity of a 50% by weight solution is less than 10 P at room

3
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•	 temperature, but the viscosity rapidly increases with aging. Solutions are

prepared immediately prior to use. Under controlled storage conditions, a

maximum use-life of 20 days is projected for the prepared resin solution.

The process used to impregnate the resin into, the fiberglass consists of

passing the dried cloth through the 50% solution of bismaleimide resin.

Further resin impregnation and removal of excess resin is accomplished by pass-

ing the resin wet cloth between a steel roller and a wiper blade.

To achieve uniform impregnation, the glass fabric is pulled through the

impregnator at a constant speed of 0.6 m/min with a constant wiper blade

pressure exerted on the impregnated cloth. The prepregged cloth is then

B-staged in an air-circulation oven for 15 min at 82° C and for 30 min at

93° C. The prepreg thus processed has average resin content and volatile con-

tent of 41.3% and 5.2%, respectively.

The prepreg face sheets are cured using either the autoclave vacuum bag

technique or platen pressure method. In the autoclave vacuum bag technique,

a 33 cm X 33 cm prepreg single layer cloth sandwiched between porous teflon-

coated glass fabric is placed on a 0.6-cm-thick aluminum plate. On top of

this, a glass bleeder cloth is placed against the sandwiched prepreg. This

assembly is vacuum bagged and cured at an external pressure of 345 kN/m 2 and a

temperature of 177° C for 1 h. In the press cure method, the 35 cm X 35 cm

prepreg material is sandwiched between porous teflon-coated fabric and cured

between 0.6-cm-thick aluminum plates treated with a mold release. The prepreg

•	 is cured at 345 kN/m 2 for l h at 177° C. After cure, the face sheets are

visually checked for flaws, voids, thickness uniformity, and resin content.

Thickness of the face sheets fabricated averaged 0.025 cm and the sheets con-

tained 30% to 34% resin.

4
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CORE FABRICATION PROCESS.— The core consists of a bismaleimide-fiberglass

honeycomb filled with carbon microballoons bound with bismaleimide resin. Tile

carbon microballoons are prepared by pyrolyzing phenolic microballoons in a

nitrogen atmosphere. A stainless steel container is filled with phenolic

microballoons and enclosed in a larger stainless steel container with a nitro-

gen inlet to provide an oxygen-free atmosphere. The assembly is placed in a

larger furnace. The pyrolysis cycle is as follows: room temperature to 816° C

in 4 h; hold at 816° C for 4 h; and cool to room temperature in 2 days. Pyro-

lyzed carbon microballoons must be cooled to 38° C, before removal of the

nitrogen blanket, to prevent spontaneous ignition of the carbon microballoons.

After pyrolysis the carbon microballoons are no longer free-flowing and are

agglomerated as large cakes. To break them into smaller agglomerates, the

caked microballoons are placed in a container with isopropanol (ratio of 1 kg

balloons/7 liters solvent) and mixed in a paint shaker for 15 min. The slurry

is then screened through a 20-mesh screen to remove the larger non-separated
E

agglomerates. i'lie screened isopropanol/carbon microballoon slurry is now

ready for core impregnation.

The equipment illustrated in Figure 4 is used to fill c-he cores of the

fiberglass-bismaleimide honeycomb with the prepared carbon microballoons. A

high density 0.3-cm cell aluminum honeycomb is fitted and restrained on the

bottom inside of the vacuum filling box. A nylon screen (120 mesh) is placed

between the aluminum support honeycomb and the fiberglass reinforced polyimide

honeycomb to retain the microballoons. High vacuum is not required to effec-

tively impregnate the honeycomb, but a high volume of air displacement is

required. A vacuum reservoir chamber is pumped to a vacuum of approximately

k	 10 mm Hg.

5
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To make honeycomb that is completely filled with the microballoons, the

carbon microballoon/isopropanol slurry is poured over the honeycomb. To con-

trol the fill rate, the vacuum applied is regulated by the valve between the

box and solvent recovery trap. The negative pressure causes the microballoons

to be pulled into the cells. This process is repeated several times to fill

all cells. Excess slurry is then removed with a teflon blade.

To make honeycomb that is partially filled with a particular quantity of

microballoons, the following method is used: Prior to plac • ir.g the fine mesh

screen and the fiberglass-bisnLaletmide honeycomb into the vacuum filling box,

the vacuum control valve to the box is closed. The vacuum filling box is

filled with isopropanol to the top edge of the aluminum support honeycomb.

After , Iacement of the fine mesh screen and the fiberglass bismaleimide honey-

comb, the isopropanol-microballoon slurry with the desired microballoon weight

content is poured over the honeycomb. Sufficient iso propanol is used to

achieve good flow and complete coverage of the honeycomb. The vacuum control

valve is then opened to draw the microballoons into the cells, and the s 'vent

is -emoved and contained in the solvent recovery trap. The filled honeycomb

cores, sandwiched between two nylon, fine-mesh screens and between two

aluminum support honeycombs, are dried for 16 h in an air-circulating oven at

93° C. After drying, the microballoon fill is saturated with a 2% solution of

bismaleimidti resin in N-methyl-2-pyrolidone solvent. On cores that are par-

tially filled with the microballoons, the 2% solution-is sprayed into the

Ceres at low air and material pressure. On cores that are completely filled

with microballoons, the spray process will tend to blow out the microballoons;

therefore, the 2% solution is applied by brush. Care must be exercised to

uniformly maintain the filled microballoons within the cells. After saturation

f
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of the microballoons with the 2% biaeialeimide resin solution, the honeycomb is

heated for 2 h at 93' C and for 1 h at 204° C to completely cure the bismalei-

mide binder. Prior to final assembly, the combined weight of the microbal-

loons, bismaleimide resin binder is checked. For the microballoon resin com-

bination, the resin by weight is approximately 4-10X. For a half-filled 2.4 -cm-

thick core, the fill weight should be approximately 145 g/1000 cm2.

SANDWICH STRUCTURE PANEL ASSEMBLY.— The assembly process consists of

forming the airera`t interior panel by bonding the face sheets to the micro-

balloon filled fiberglass bismaleimide honeycomb panel with a polyimide film

adhesive.

Prior to the bonding operation, the face sheets and the microballoon-

filled honeycomb are cleaned. To achieve the required fileting of the film

adhesive to the core, loose microspheres must be removed from the bonding

faces and the faces cleaned with a methyl-ethyl-ketone-soaked cleaning cloth.

The assembly is then placed in a platen press at 204° C and cured for 2 h at

700 kN /V1 2 . Afterward, the panel is cured for 24 h at 254° C to remove volatile

materials and to achieve reduced smoke characteristics.

On completion of the assembly, the panel is weighed and examined for

uniformity of bonding.

.M
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TEST RESULTS AND ANALYSIS

Phermochemical Characterization of Composites

Samples of the nine types of composites were cut to a size of

!.5 cm x 2.5 cm x 2.5 cm and were ground uniform to approximately 250 mesh.

Clue samples were subjected to the following thermochemical studies in order to

'I) determine the relative thermal stability of the samples under anaerobic

ind oxidative conditions, (2) determine the major volatile products produced	 1

7

-	 -- X7---



from the pyrolysis of the samples in vacuum, and (3) determine the relative

toxicity of the pyrolysis effluents by expo3ing animals to them.

Thermogravimetric Studies

Thermal analyses of the composites were conducted on a DuPont 950 'rherino-

gravimetric Analyzer (TGA) using both nitrogen and air atmospheres with a

sample size of 10 mg. The thermogravimetric analyses data of 10 * C/min heating

rate in nitrogen and in air are shown in Figures 5 and h, respectively.

The pyrolysis of the samples in air and nitrogen atmospheres was conducted

to obtain a relative understanding of the pyrolysis of the samples in the fur-

ndce used to pyrolyze samples for assessing their relative toxicity as

described later in the text. Pyrolysis in an air atmosphere is intende to

,approximate the environment in the pyrolysis tube at the start of the toxicity

test, and pyrolysis in a nitrogen atmosphere is intended to approximate the

environment in the pyrolysis tube during the test after the original air has

been essentially displaced by pyrolysis effluent. The degradation products are

continuously removed from the sample during thermogravimetric analysis, and in

the relative toxicity test apparatus described later they are conveyed only by

normal thermal flow. The TGA data in the nitrogen atmosphere are considered

more relevant, because in the toxicity apparatus the pyrolysis effluents that

evolved at lower temperature have essentially displaced the original air by the

time the temperature has reached 700°

Composite No. 9 is the most stable composite and gives the highest char

yield in nitrogen. All the composites except No. 7 were oxidized completely

in air above 600° C and gave constant weight residues.

8
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Analysis of Volatile Products

Samples of the composites were pyrolyzed using the apparatus shown to

Figure 7. The samples were placed in quartz tubes that were 2.5 mm in diam9ter.

Each sample tube was attached to a manifold and evacuated to 10 -4 torr. There

was a stopcock between the manifold and the sample tube so that the sample tube

could be isolated while gas samples were being collected. An infrared cell,

attached to the manifold via a stopcock, a mercury manometer, and a trap were

also attached to the manifold. At the beginning of a pyrolysis run the stop-

ccck to the vacuum pump was closed and a furnace at 700° C was placed around

the sample tube. At this point a timer was started. The pressure of the Rases

evolved during the pyrolysis was monitored with the pressure gauge. After

5 min the furnace was removed, the stopcock to the sample tube was closed, and

the stopcock leading to the infrared cell was opened allowing the pyrolysis

gases to enter the infrared cell. After a pressure reading was taken, the

stopcock leading from the infrared cell to the gas manifold was -losed. Dry

air was admitted to the infrared cell so that the total pressure was equal to

atmospheric pressure. This was doni so ghat the pyrolysis gases were always

measured at the same total pressure, the main portion of which was dr y air,

thus eliminating the effects of pressure broadening. Infrared spectra were

taken using a Perkin Elmer Model 180 infrared spectrometer. Finally, Ole

sample tube was removed from the manifold, broken open, and the residual cha-

was weighed.

Part of the material that was volatile at 700° C condensed on the sample

tube as it was removed from the furnace; salt plates were made from methanol

solutions of this material. Infrared spectra, obtained from the salt plates,

appeared to be those of a mixture. All infrared spectra displayed a sharp

9
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intense line at 2240 cm-1 . This type of an absorption is characteristic of

organic compounds containing a -CN group.

The results of the analysis of the —iatile species are presented in

Tables 4 and 5. These results were obtained from samples that were pyroiyzed

in vacuum. A considerably different distribution of products might have been

obtained had the samples been pyrolyzed in air, in which case the products

would be a function of the partial pressure of oxygen at the sample, the tem-

perature of pyrolysis, and the time that it took the sample to reach the

pyrolysis temperature.

Flammability Properties

THERMAL EFFICIENCY.- The NASA Ames T-3 thermal test (Fig. 6) 1131 was used

to determine the fire endurance or fire containment capability of the composite

panels. In this test, specimens measuring 25 cm x 25 cm x 2.54 :m thick are

mounted in the chamber and thern.ocoupled on the backface of the specimen. The

flames from an oil burner supplied with approximately 5 lit/h of JP-4 jet

aviation fuel provide heat flux to the front face of the sample in the range

of 10.4-11.9 W/cm2.

The fire endurance capability of the nine composite panels is compared in

Figures 7-9. In these figures, the backface temperature rise of the panel is

plotted as a function of the time in minutes when the sample is suhjected to

this type of fire. It can be seen (Fig. 8) that the backface temperature of

the conventional composite, No. 8, reached 200° C in 2.5 min whereas it took

as long as 8 min for the bismaleimide composites, No. 7 and No. 9, to reach a

comparable backface temperature.

LIMITING OXYGEN INDEX.- The limiting oxygen index (I.OI) of the components

comprising the composites was determined per ASTM D-2863 and are indicated in

10

-J	 _ -Adb,



t

Table 6. The values indicated are for the laminated or composite components

as they are used in the sandwich composite and not for the individual polymers.

The average LOI value shown for each composite structrre is based on the

va:.jes obtained from the components.

SMOKE EVOLUTION.— Smoke evolution from the composites was determined

using NBS-Aminco Smoke density chambers at two la}oratories: laboratory A

and laboratory B. The procedure and test method used were essentially those

described by NFPA 258-T (14). A oetailed description of the NBS smoke chamber

can be found in Reference 15.

The test results obtained with the NBS smoke chamber, modified by the

incorporation of an animal module accessory [16), are pi-es pnted in Table 7.

V,..c.es of specific optical density (Ds) at 1.5 min, 4.0 min, and maximum (Dm)

r •- presented; standard deviations are also given.

Composites No. 1 and 8 represented the state-of-the-art baseline materials.

All the other composites exhibited significantly lower smoke density values,

indicating that the phenolic and bismaleimide o "er the advantage of smoke

reduction.

A comparesson of the Ds values obtained by the two laboratories is nre-

sented in Table 8. Tn addition to possible differences in apparatuses at the

two laboratories, the calculation procedures were slightly different. Jr,

laboratory A, the Ds values are obtained from individual test data and then

averaged. In laboratory B, an average curve is generated by computer from the

data of the individual tests, and the Ds values are obtained frn,m the computer-

averaged curve. The s-noke density of composite panels similar to composite

No. 8 has also been evaluated by other laooratories 117]. Composition of the

11



panel was essentially the same as composite No. 8 except the panel was 0.70 cm

chick. The maximum smoke level, Dm(corr) was 54 whereas the average in the

present studies was Dm 58.7.

RELATIVE TOXICITY. — Efforts to obtain relative toxicity information by

using the NBS smoke chamber with the animal module accessory were unsuccessful.

The mice and rats exposed during the standard smoke tests showed no evidence of

death or even incapacitation [15]. The heat flux of 2.5 W/cm 2 used in the

standard test procedure appears to be incapable of producing sufficient efflu-

ents from these high-performance materials.

To provide an indication of relative toxicity, 1.0 g of each of the

powdered specimens of the composites was pyrolyzed as a heating rate of 40° C/

min in a quartz tube to an upper temperature limit of 700° C, and the effluents

conveyed by natural thermal flow into a 4.2 liter hemispherical chamber con-

taining four Swiss albino male mice. The apparatus (Fig. 12) abd procedure

have been described previously in detail [18,19]. The test was continued for

30 min, unless terminated earlier upon the death of all four animals. The

highest chamber temperature recorded was 29.5° C, indicating that the pyrolysis

gases were tu`equately cooled before enterini, the animal exposure chamber.

Some condensation of higher-boiling vapors in the connecting tube was observed,

and some of the effluent gases entered the animal exposure chamber as visible

heavy vapors, iwiicating that some higher-boiling compounds did reach the

animals and were not lost entirely by cooling. The lowest oxygen concentration

recorded was 12%, indicating that hypoxia was not a significant factor in

anir.al r p rro —_ Table 9 shows the relative toxicity to mice of the degcada-

tior, products `_rom the powdered composites when heated in this manner.

12
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During the 30-min exposure period, composite No. 9 caused no deaths in

the test animals. The other composites, that is, No. 1-8 caused death to

•	 the animals at times ranging from 19.65 min to 28.31 min.

The test time-to-death was judged as the time elapsed at cessation of

movement and re3piration, as judged by the observer. Time to incapacitation

was judged as the time to the first observation of loss of equilibrium,

collapse, or convulsions, whichever came first. As a comparison, 1.0 g of

wool fabric causes death to four mice in appre'.mately 9.5 min when tested in

a similar manner.

EFFECT OF CHAR YIELD ON SMOKE EVOLUTION AND OXYGEN INDEX.— Previous

studies [20] have shown a correlation between the flammability properties of

polymers and their char yield. A decrease in ease of ignition and smoke evolu-

tion :► is observed with high char yield polymers. The same relationship seems

to exist with composites consisting of polymers and inorganic reinforcements.

Figure 13 compares the smoke density and relative anaerobic char yield of

those composites when they are tested in the NBS smoke chamber. It can be seen

that in general composites with high char yield have fairly low smoke evolution.

Figure 14 compares the limiting oxygen index of these composites with

their relative anaerobic char yield. It can be seen that in general composites

with very high char yield exhibited a high limiting oxygen index.

Thermophysical Characterization of Composites

The thermal conductivity of panels No. 8 and No. 9 were determined in

accordance with ASTM C-177-45. The thermal conductivity of composite No. 8

was significantly higher than that of composite No. 9, probably due to the

absence of any insulative material in the honeycomb; the data are presented in

•	 Table 12. The flatwise tensile strength of the laminates to the honeycomb was

13
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determined per ASTM C-307; as shown in Table 10, composite No. 9 has a slightly

lower tensile strength than the state-of-the-art composite No. 8. In addition

to these properties, the flammability properties of these composites are com-

pared in Table 10.

CONCLUSIONS

Composite No. 9, consisting of bismaleimide-fiberglass/bismaleimide

honeycomb with carbon microballoons, exhibited the highest fire containment

capability. Similarly, composite No. 7 exhibited high fire containment capa-

bility.

Advanced composite panels consisting of PVF/phenolic-fiberglass/aromatic

polyamide honeycomb/phenolic-fiberglass (composites No. 2-6) and composites

No. 7 and 9 exhibited lower smoke evolution than the state-of-the-art

composite No. 8.

The relative toxicity of the pyrolysis products of composite No. 9 was

the lowest, as measured using the methodology indicated, of all the composites

tested. It had also the highest anaerobic char yield of all the composites

tested.

A correlation was established between the anaerobic char yield of the

composites and their relative limiting oxygen index and smoke evolution.

Generally, composites consisting of polymers with high anaerobic char yield,

had a high limiting oxygen index and low smoke evolution.

No definite correlation was found between the concentration of the toxic

pyrolysis products of the composites and their relative toxicity to animals

indicating possibly that additional toxic species may be present both in the

volatile gases, which accounted for only 18% of the degradation products, and

in the solid particulates. Additional studies should be conducted using gas

14



chromatography-mass spectometry to identify these compounds and their relative

concentrations.
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TABLE 6.- LIMITING OXYGEN INDEX FOR COMPOSITE COMPONENTS.

COMPOSITE COMPOSITE COMPONENTNO.

1 PVF, PHENOLIC A/7581 GLASS, PHENOLIC 8/120 GLASS
AROMATIC POLYAMIDE PAPER
PHENOLIC A/7581 GLASS, PHENOLIC B/120 GLASS
AVERAGE

2 PVF, PHENOLIC C/7581 GLASS, PHENOLIC D/120 GLASS
AROMATIC POLYAMIDE-PAPER
PHENOLIC C/7581 GLASS. PHENOLIC D/120 GLASS
AVERAGE

3 PVF, PHENOLIC C/7581 GLASS, PHENOLIC C/120 GLASS
AROMATIC POLYAMIDE•PAPER
PHENOLIC E/120 GLASS (2 PLIES)
AVERAGE

4 PVF, PHENOLIC E/7581 GLASS, PHENOLIC F/120 GLASS
AROMATIC POLYAMIDE PAPER
PHENOLIC E/120 GLASS (2 PLIES)
AVERAGE

5 PVF, PHENOLIC F/7581 GLASS, PHENOLIC F/120 GLASS
AROMATIC POLYAMIDE-PAPER
PHENOLIC F/120 GLASS (2 PLIES)
AVERAGE

6 PVF, PHENOLIC G/7581 G:	 SS, PHENOLIC G/120 GLASS
AROMATIC POLYAMIDE '.PER
PHENOLIC G/120 GLASS (z PLIES)
AVERAGE

7 BISMALEIMIDE/120 GLASS/POLYIMIDE
AROMATIC POLYAMIDE-PAPER
QUINONE DIOXIME FOAM
BISMALEIMIDE/120 GLASS/POLYMIDE
AVERAGE

8 PVF, EPDXY H/181 E GLASS, EPDXY H/120 GLASS
AROMATIC POLYAMIDE PAPER
EPDXY H/181 GLASS, EPDXY H/120 GLASS
AVERAGE

9 BISMALEIMIDE/181E GLASS/POLYIMIDE
BISMALEIMIDE/GLASS
CARBON MICROBALLOONS/BISMALEIMIDE
BISMALEIMIDE/181 GLASS/POLYIMIDE
AVERAGE

LOI@23 C
021( N 2 + 02)

27
32
26
28.3

45
32
32
36.3

38
32
33
34.3

47
32
30
35.3

44
32
32
36

74
32
36
47.3

99
32

100
99
82.5

29
32
28
29.6

62
58
85
62
66.7

1 j

, M
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TABLE 9.- RELATIVE TOXICITY OF PYROLYSIS PRODUCTS FROM COMPOSITE PANELS.

1\

(1.09 POWDERED SPECIMENS PYROLYZED AT 40 C/min TO 700 C.
4 SWISS ALBINO MICE IN 4.2 LITER EXPOSURE CHAMBER, 30 min EXPOSURE)

PANEL NO.	 TEST NO.	 TIME TO INCAPACITATION, TIME TO DEATH,
min min

1	 1	 18.1 28.31	 1.67
2	 21.9 25.21	 3.51
3	 16.3 25.83	 1.02
4	 18.9 22.90	 1.42

MEAN	 18.8
I

25.56	 2.76

2	 1	 20.9 26.74	 0.89
2	 21.0 24.90	 0.11

MEAN	 21.0 25.82	 1.13

3	 1	 19.0 24.52	 0.69•
f	 2	 22.1 2535	 0.97

MEAN	 20.6 24.94	 0.90

4	 1	 20.5 24.17	 3.01
2	 19.3 23.48	 0.31

MEAN	 19.9 23.82	 2.01

5	 1	 20.3 26.18	 1.83
2	 19.7 22.48	 0.52

MEAN	 20.0 24.33	 1.17
I

6	 1	 17.1 19.65	 0.31
2	 20.9 22.90	 0.96

MEAN	 19.0 21.28	 0.63

7	 1	 22.8 27.40	 1.46
2	 24.8 28.28	 0.70

MEAN	 23.8 27.84	 1.16	 l

8	 1	 18.5
i

27.50	 1,86	 I

9	 1	 8.7 N.D.
2	 N. 1. N.D.	 +

N. 1. - NO INCAPACITATION OBSERVED
N.D. - NO DEATHS
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Figure 2.- Chemical Structure of Laminating Resins.
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