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1.0 INTRODUCTION

Axial grooved heat pipe technology has been developed extensively for

fixed conductance applications in the cryogenic through ambient temperature

regime (Refs. 1 through 6). Recently, the axial grooved design has been

adapted for use a passive gas-controlled variable conductance heat pipe for

ambient temperature operation (Ref. 7). This report summarizes the results

of an investigation to adapt axial grocved designs to the gammit of heat

pipe thermal control techniques, with particular emphasis on those suited

for cryogenic applications. In addition to considering both active and

passive gas control, diode designs utilizing liquid or gas blockage or a

liquid trap are evaluated. The use of the liquid trap as a secondary heat

pipe for forward mode operation during diode 	 shutdown is also studied.

This latter function is basically that of a thermal switch. Finally, a

system capable of hybrid functions consisting of gas-controlled variable

conductance and liquid trap diode shutdown or thermal switching is defined.

This report presents both qualative and quantitative assessments

of these various operations. Also, results obtained with a heat pipe bread-

board which was used to demonstrate the various operations with ethane at

185°K are presented.

2.0 ANALYSIS

2.1 Axial Grooved Thermal Control Technology

The general field of heat pipe thermal control can be categorized

into variable conductance, diode, and switching operational modes. By proper

design the axial groove can be adapted to operate in each of these modes.

Some special considerations that apply to the axial groove geometry are as

follows:



1. The individual grooves must be kept non-communicating for

normal operation with conventional designs. When wicked

reservoirs are used for variable conductance operation,

communication between the condenser and reservoir must be

accomplished without causing communication among the grooves.

2. A low "k" feeder tube is required in most gas control VCHP

designs to minimize the reservoir volume. An aluminum/stain-

less steel transition joint is required with present alum-

inum axial groove extrusions.

3. Existing axial groove designs have a relatively large vapor

core. Consequently, optimized gas control VCHP designs should

include a plug in the blocked portion of the condenser. This

will reduce the amount of gas required and correspondingly

the reservoir size.

4. The axial conductance of the ATS aluminum extrusion is 0.20

W -cm	 for the 27 fins alone, without including the wall
°C

thickness. This is too high for most diode applications un-

less the transport length between the evaporator and condenser

is on the order of 50-cm or greater. A stainless steel

axial groove heat pipe would eliminate this problem.

2.2 Variable Conductance Operation

Reservoir size requirements for gas controlled heat pipes are

determined from



V 	 =	 ^0v
v,c ^Rh - ^'RQ

where	 ,0 = p  - 'f0	 p  •- 'ffR

To	
R	 T 

(2-1)

(2-2)

with	 pv	 =	 System vapor pressure.

Partial vapor pressure in blocked condenser or
reservoir.

TO	=	 Sink temperature

T 
	 =	 Reservoir temperature.

Vv'c	 =	 Volume of condenser length blocked at the low
power/low sink condition.

V 	 =	 Reservoir volume.

( ) h	=	 High power/high sink condition.

( )	 =	 Low power/ low sink condition.

The ratio of (VR/Vv'c) is presented as a function of the change in vapor

temperature (AT v ), in Figs. 1	 through 9 for methane, and also ethane

at operating temperatures and sink conditions covering the 100 - 200°K range.

These fluids were selected because they have the best transport and wicking

height factors over this temperature range. Both active and passive control

with a wicked reservoir are considered. The reservoir was assumed equal to

the sink temperature except at the low power / low sink condition with active

control where it was taken to be equal to the vapor temperature. The vapor

temperature difference (AT v ) for the passive case is the change that results

due to variations in heat load and/or sink temperature. An infinite volume

is required to keep the vapor temperature constant. In the active case the

reservoir temperature is regulated to give a vapor temperature which will

result in the desired control, i. e.

-3-



ib. i in

To
A t

'0", 	 1

00

Tv	 = 130K
nom

To	 = Tr

Tn	 = 100K

To
h

	

120
	

— 100

1 2'

Ts = 130K + 0

Ts = Tv	 Tr

1 ^	 ^^^`	
Trh 

= 
T Oh

Toz = 100 

0	 4	 8	 12	 16	 20	 24

AT v
	

CC)

Fig. 1 Reservoir requirements for active control with methane (ATs = 0)

I

0, --

0	 4	 8	 12	 16	 20
	

24

ATv	 ('C)

is
Fig. 2 Reservoir requirements for passive control with methane.

-4-



Ts	 = 130+2K

	

201	 To.	 = 100K
To

To 	 = Trn	 h

	

16;	
120--	 1 10	 -100

i

	

121	 -`
U	 %	 ?

y	
^	 i

L	 J

,r	fy

01

	

0	 4	 8	 12	 16	 20	 24	 28

ATV (°C)

	

Fig. 3	 Reservoir requirements for active control with methane (ATs = 4)



1
U

7
7

i	 1

Ts

Ts

	

161	 Trh

i

	

i	 To,

150K + 0

Tv = Tr
z	 Q

Tch

IOOK

f'

0	 4	 8	 12	 16	 20	 24	 28
©Tv(°C)

Fig. 4 Reservoir requirements for active control with methane (ATs = 0)

To
h

a

100f

0	 4	 8	 12	 16	 20	 24	 28

A Tv^0C)

Fig. 5• Reservoir requirements for passive control with methane.

-6-



161

12

mm
T 160 K +0
s

T T	 T
s v	 r

T T
4i

rh
0 
h

T
LOOK

0 4	 8	 12 16	 20	 24 28

ATV(°C)

Fig.	 6 Reservoir requirements for active control with ethane (ATS=O)

161

T

125 T
12

^1 50
v nom	 160K

T T r
0

T	 lOOK
0

i 00

0	 4	 8	 12	 16	 20	 24	 28

AT (*C)
v

Fig. 7 Reservoir requirements for passive control with ethane.



IF	 -

161

t Ts	 =	 200K + 0

12 +,' TS	 =	 7v =	 firl

J Q

190

Trh	

=	 h

^
$ 

f

/ 70

f T	 =	 100Ko 
z

^ 1

r 	T --R .t	 -	 -

4	 h
-_

-
-	 -

E

_-

__	 a

4 ` -

0	 4 8 12	 16	 20 24	 28

AT 	 (°C)

Fig. 8 Reservoir requirements for active control with ethane (AT, = 0)

16	
_ _ T

-	 ° ohm-
1.45-

12 °" 1j90
F

1 Of^

.y

c,

' T	 = 200K

8 vnom
^ 1

L T	 = T ^

o	 r

T	 = 100K4 i 
of

0
0	 4 8 12	 16	 20 24	 28

AT	 (°C)
v

Fig. 9	 Reservoir requirements for passive control with ethane

r



AT 	 = AT - RsAQ
s

where	 Q	 Heat load

Rs	=	 Thermal resistance between the source and heat
pipe vapor.

Ts	=	 Source temperature.

Consequently the larger the swing in vapor temperature required, the larger

the reservoir volume.

The results of the analysis indicate that with a typical volume ratio

3f 10, the vapor temperature variations in the passive system will be l.ss

t`^an VC provided that the maximum reservoir temperature is at least 20°C

below the vapor temperature. In mane cryogenic applications the operating

temperature will run close to the effective sink temperature and therefore

the desired control may be difficult to obtain with a conventional passive

system. Passive feedback or vapor modulation may be adequate, however,

these are not state-of-the -art systems, and the bellows configurations re-

quired may have difficulty containing the pressure associated with cryogenic

fluids.

An active system with the same volume ratio will provide absolute con-

trol of the source under conditions requiring up to a 6°C vapor temperature

swing. This should be more than adequate for most cryogenic applications.

As regards the ATS axial groove geometry, the vapor area is 0.6-cm2.

Hence 6-cc of reservoir volume are required for each centimeter of blocked

length to give the 10 to 1 volume ratio. This volume can be reduced by

up to 50% by using a plug in the vapor space with only modest reductions

in transport capability.
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2.3 Diode Operation

There are several methods for affecting diode operation. Those

generally considered are; liquid blockage, liquid trap, and gas blockage.

The important parameters to be considered when evaluating diodes are shut-

down energy, reverse mode conductance, and reservoir size.

2.3.1 Gas Blockage

Reservoir sizes required for gas blockage are generally an order

c-f magnitude greater than those required by either the liquid blockage or

liquid trap techniques. However, when an application requires both var-

iable conductance and diode operation, gas blockage should be considered.

In order to meet the shutdown requirements there must be sufficient gas

charge to block the evaporatcrsection and a "low-k" section between the

condenser and evaporator. The minimum length of the "low-k" section is

dictated by the specified shutdown conductance. In many cryogenic applica-

tions the length of the condenser will be much longer than the evaporator

and "low-K" sections, in which case the reservoir size required for var-

iable conductance operation would be of the same order or greater than that

required for diode shutdown. One potential problem is the amount of energy

that will be required to sweep the gas out of the reservoir and shut off the

pipe. This is one of the parameters that was evaluated in the test program

discussed in the next section.

2.3.2 Liquid Blockage.

Liquid blockage requires blocking the vapor space which in a con-

ventional axial grooved pipe creates conviunication across the grooves. Al-

though this is acceptable and even desireable in diode shutdown, the potent-

ial draining of the grooves that could result in 1-g tests would be mis-

leading, and this technique will not be considered.
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2.3.3 Liquid Trap

A liquid trap which does not communicate with the heat pipe

wick depletes the liquid from the wick during diode reversal. This method

is most promising with an axial groove geometry because this wick type

requires a relatively low fluid inventory. It is particularly useful

when the condenser length is smaller than the evaporator and "low-k"

sections. As discussed in a later section, test results indicate shut-

down energies which are approximately equal to the heat of vaporization

associated with the grooves' liquid inventory.

2.4	 Thermal Switch

One obvious advantage of a liquid trap design is that the trap

can be used as a secondary heat pipe to permit forward mode operation while

the main pipe is shutdown. One of the potential applications for a cryo-

genic heat pipe diode is to interface a detector with a passive radiator.

If the radiator gets hot, (e.g. due to a cyclic solar input), diode re-

versal occurs and the pipe is shutdown. The liquid trap could be used to

transfer the detector load to an alternate sink (e.g. phase change material)

at this time.

Another case would be to use multiple radiators coupled via a

single heat pipe switch. In this situatt ion the fluid inventory is depleted

from the shutdown portion of the system and transferred to the active rad-

iator and pipe via a non-communicating, interconnecting vapor chamber. Here,

there is a combination diode and switching operation. Since an axial groove

heat pipe requires a relatively low fluid inventory, shutdown and switching

can be accomplished quite rapidly.

2.5 Hybrid Operation

A hybrid system consisting of a VCHP and a liquid trap or thermal

switch can be utilized in applications requiring regulated temperature control

i
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TABL7 1. CRYOGENIC THERMAL CONTROL HEAT PIPE DESIGN SUMMARY*

VCHP Configuration

Heat Pipe

Lengths

Evaporator
Transport
Condenser
Inactive section (HTR #3)

Feeder tube

Reservoir

Heat rejection surface

Liquid Trap Configuration

Forward Mode

Reverse Mode

Lengths

Evaporator (HTR #3)
Transport

Heat Source (HTR #1)

Liquid Trap

6063 aluminum - ATS axial groove

extrusion - 27 grooves, vapor
diameter - 0.884

15.2

15.2
20.3
5.1
7.6

304 stainless steel (ss) cylinder

with 200 mesh - 304 ss screen spot-
welded to interior.

15.2 x 5.08 O.D. x 0.124 wall.

4.45 x 5.08 - 304 ss plate.

Heat pipe with gas reservoir as per
VCHP confiquration. Liquid trap is

attached to normal evaporator end.
Active lengths are changed as per

Fig. 1.

5.1
2.92

15.2

6061 aluminum cylinder 15.2 x 2.54
O.D. x 0.147 wall-threaded with 72.4

grooves/cm. Contains a centrally
located slab wick (0.86 thick) formed
from 100-mesh - 304 stainless steel

screen

* All dimensions in centimeters.
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and also protection from a hot environment. Reservoirs will generally

be required at each end of the heat pipe system to accommodate these

operations. The test system discussed in the next section demonstrated

that these operations could be achieved with a single heat pipe system.

The results show no evidence of synergistic effects during shutdown or

switching due to the presence of the non-condensible gas.

3.0 TEST PROGRAM

The results presented in this section have for the most part been

published in Ref. 8, and are presented here for completeness.

3.1 Heat Pipe Description

A single heat pipe was fabricated which can be configured for oper-

ation a. either a variable conductance heat pipe (VCHP) or a "liquid

trap" diode. Hybrid operation can be H—onstrated with the latter system.

Both configurations are shown in Fig.10. Their detailed designs are summar-

ized in Table 1.

3.1.1 VCHP Configuration

The system's baseline design is that of a conventional gas con-

trolled heat pipe. The heat pipe was fabricated from 6063 aluminum-ATS

axial groove extruded tubing (Ref. 4). A stainless steel cylindrical

reservoir, which provides a 10:1 storage ratio, is interfaced with the

pipe via an aluminum/stainless steel transition piece (feeder tube). The

stainless feeder tube is required to minimize conduction between the heat

pipe and reservoir. This permits optimum gas storage at maximum conditions

and minimum reservoir heater power at the low power/low sink condition.

Liquid communication between the heat pipe and reservoir is accomplished

by several layers of 2!W -<= Ish stainless steel screen which extend from the

grooves through the feeoor	 and are spot-welded over the reservoir's

t'
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interior to provide circumferential liquid distribution. Heater wire is

wrapped around the last 4.45-cm of the reservoir. This heater (HTR #,2)

is manually controlled during operation in the feedback mode. The 5.08

x 4.45-cm stainless flat plate, which serves as the reservoir's heat dis-

sipation surface, is soldered to the bottom of the reservoir near its up-

stream end. Ethane is used as the working fluid and the non-condensible

gas is helium. Because of limited liquid nitrogen cooling capacity as well

as large temperature drops in the test set-up, the operation above 175°K

was required in order to accommodate the maximum heat load ( - 50-W). In

addition to having the best transport properties in this temperature range,

ethane has also demonstrated predictable performance with this groove geometry.

3.1.2	 Liquid Trap Diode Configuration

A liquid trap diode operates on the principle that during re-

versal, fluid evaporated from the normal condenser will condense and accum-

ulate in a non-communicating reservoir therein drying out the heat pipe.

The baseline VCHP design is converted to the liquid trap configuration by

removing the valve at the pipe's fill-tube and using Swagelok fittings to

connect the fill-tube and trap. The I.D. of the interconnecting tube is

0.39-cm which is sufficiently large to prevent any capillary interaction

between the grooves and liquid in the trap. A 0.86-cm wide slab which was

formed by continuous wraps of 100-mesh stainless steel screen is used to

retain the condensed liquid. Circumferential liquid collection is accomplish-

ed by screw thread grooves (72.4/cm) machined into the aluminum reservoir's

I.D. The liquid trap is therefore a separate heat pipe which can be used

during the diode's shutdown to transfer any applied heat loads. This is

basically the function of a thermal switch.

-15-
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A 0.463 kg aluminum block is coupled to the heat pipe and reservoir. This

mass is used during the reverse mode to absorb the shutdown energy, reverse

heat flow, and the heat loads applied to the pipe's evaporator (HTR #1) and

to the liquid trap (HTR #4). Ethane was again used as the working fluid,

but without a non-condensible. Hybrid ope ration was accomplished by includ-

ing a helium charge consistent with the VCHP mode.

3.2 Test Set-Up

The system used to conduct the VCHP and liquid trap tests is indicated

in Fig. 10. The set-up is virtually identical for both modes; only the test

parameters and procedures change. All testing was performed in an ambient

temperature vacuum chamber. A cold plate which was cooled with liquid nit-

rogen is located within the chamber. Heaters inserted into the cold plate

are used to provide control at different operating temperatures.

As shown in Fig. 10, an isothermalizer heat pipe interfaces between

the cold plate and the thermal control heat pipe (TCHP). The isothermal-

izer which is also an axial grooved pipe, is used to provide identical sink

temperatures at the TCHP's gas reservoir and condenser. Aluminum blocks

clamped between the two pipes at these sections provide the thermal coupling.

A thin plastic shim is inserted between the reservoir plate and reservoir

block to simulate a radiative conductance and avoid excessive reservoir

power dissipation during operation in the VCHP mode. Once assembled, each

configuration was instrumented with copper-constantan thermocouples and

covered with a multi-layer insulation blanket.

3.3 Test Results for Gas-Controlled Operation

A series of tests was run to establish the performance of the VCHP

configuration in feedback and passive gas-controlled modes. Passive diode

shutdown via gas blockage was also evaluated.

i
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3.3.1	 VCHP Lehavior

The transient response of the heat pipe's evaporator (TC2)

to step changes from a high power/high sink condition to a low power/

low sink condition and vice versa is shown in Fig. 11. Operation is in

the feedback mode with manual ON/OFF control of the reservoir heater

(HTR. #2). The set point was selected as 185°K. The reservoir heater

was turned ON when TC2 went above 185.5°K and OFF when it dropped below

184.5°K.	 Reservoir power was 6.4 W, which was just sufficient to main-

tain control at the minimum condition with the reservoir at 173°K.

The evaporator heat load was stepped between 8 and 50 Watts

during the tests while the sink temperature varied between 138 and 168°K

as shown in Fig. 11. Steady-state control was attained to within ± 1°C

of the set point. During the transient there was a 3°C overshoot while

the undershoot was only 1.3°C. The undershoot was smaller because the

rate of change in sink temperature in going from maximum to minimum con-

ditions is only 69% as fast as when going to the maximum.

The sharp control attained with this system is du;. to the relatively

large storage ratio (10:1) which permits regulation between the two extremes

with a relatively small change in reservoir temperature. As indicated in

Fig. ll,the reservoir temperature is almost constant. Quasi-steady-

state operation at the minimum condition is attained with the reservoir at

113°K. The reservoir cools to 169°K to allow the pipe to open at the max-

imum condition. Since the heat pipe vapor and ultimately the source temper-

ature (in this case TC2) can recover no faster than the reservoir responds,

the smaller the temperature swing required for the reservoir the better the
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The ratio of reservoir to inactive vapor volume required to provide

± 1°C control at the existing test conditions is shown in Fig. 12 as a

function of the reservoir temperature at the minimum condition (TR ). The
L

predictions are based on "Sharp-Front" theory with the pipe fully open at

the high power/high sink condition. An infinite storage reservoir would

require a 3°C swing in temperature from 168°K at the maximum condition to

171°K at the minimum. At the other extreme, the smallest storage ratio is

2.25 which corresponds to all of the gas being driven out of the reservoir

(i.e. TR L = 184 K). As indicated in Fig. 12, a reservoir temperature slight-

ly greater than 174°K is predicted for the 10:1 storage ratio provided by

the FCHP configuration. Test results show control being attained with the

reservoir at 173°K. This small difference is probably due to thermocouple

calibration errors and/or slight inaccuracy in the calculations.

Steady-state axial profiles for the feedback mode are compared

to those obtained during passive "cold-reservoir" operation in Fig. 13.

With passive control the heat source varies from 183 to 163°K as compared

to the 185 + 1°K control obtained with feedback. A brief study of Fig. 13

will explain the difference in control provided by the two modes. By reg-

ulating the reservoir temperature via a feedback controlled heater, the

location of the gas-vapor interface and therefore the condenser conductance

is adjusted as necessary to give the desired control. The pipe goes essen-

tially from "Full-ON to Full-OFF"as conditions change from maximum to min-

imum. In a passive system the reservoir follows the sink temperature and

the system's control is derived from adjustment by the vapor temperature.

Since mass and energy balances require a decrease in vapor temperature

corresponding to decreases in heat load and/or sink conditions, source temp-

erature control becomes poorer as the minimum condition is approached.

-19-
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As indicated in Fig. 13, the passive system has gas blockage extending

through about half of the transport section, and the vapor temperature

has dropped to 163°K. The feedback system, on the other hand, because

it has the reservoir heated, is shut-off up to the evaporator and nearly

perfect steady-state control is achieved.

3.3.2	 Gas-Controlled Diode Behavior

Diode shutdown via gas blockage has generally been discounted

because the storage volume will be an order of magnitude larger than that

required by an equivalent liquid blockage or liquid trap system. However,

there are potential applications where both variable conductance and diode

operation are required. Since a gas reservoir will be provided for VCHP

operation, an increase in its size to accommodate diode shutdown may be

acceptable. Consequently, tests were conducted with the FCHP configuration

to evaluate diode behavior using gas blockage.

The diode test consisted of starting from a "Full-ON" condition

in the feedback mode at approximately 185°K and then going to shutdown with

the reverse mode evaporator (TC 13) and gas reservoir temperature (TC 17)

increased to approximately 305°K. Axial profiles for the system are shown

in Fig. 14 at different times during the reverse mode operation. Once steady-

state operation at the maximum condition was attained, the liquid nitrogen

and evaporator heater (HTR #1) were turned OFF, and heater #3 was turned ON.

An average of 4-Watts was applied throughout the remainder of the test by

this heater to establish a reverse mode evaporator. Also, the condenser

block temperature (TC 21) was continuously increased so that it was at least

VC above the reverse mode evaporator. This was done to prevent the condens-

er block from becoming the heat sink.

-21-



t

Reference to fig. 14 shows gas blockage in the normal mode

condenser with a heat piping action from both ends of the pipe at time

00:31 minutes. As time progresses and the condenser block warms above

TC 13, the gas slug craves into the normal mode evaporator region. A

close review of the data shows that gas blockage at the opposite end of

the pipe begins at 00:39. At 00:57 there is gas blockage into part of

the transport section and a 7°C gradient exists across the pipe with

TC 13 at 205°K. This gradient increases to a maximum at 01:33 as more

gas is swept from the reservoir. Gas blockage covers approximately 40 cm

and extends into the normal mode condenser region. The maximum temperature

drop is 16°C with TC 13 at 222°K.

Continuous application of heater power causes the reverse mode

condenser to rise and correspondingly all other heat pipe temperatures in-

crease. When all of the gas is swept from the reservoir, further increases

in the temperature of TC 13 result in compression of the gas-plug and re-

duced diode shutdown. This is evidenced by the smaller (9°C) gradient that

exists across the pipe at 02:09. At this time the gas blockage is across

only part of the transport section, and TC 13 has risen to 272°K. This trend

continues until the reverse mode eva porator approaches the critical temper-

ature and then "dry-out" occurs (e.g. 02:49 in Fig. 14).

The test results just described are preliminary to the extent that

they provide only a qualitative evaluation of gas-blocked diode behavior.

Quantitative results require attachment of a large thermal mass or calorimeter

to the normal mode evaporator in order to determine shutdown energy and "OFF-

conductance". Although the results are preliminary they do indicate what may

be the major drawback to gas-blocked diodes. It apparently took 79 minutes

from the start of the reverse mode (HTR 03 ON at 00:14) for complete shutdown
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to be realized. If this long period is indeed required to sweep all of the

gas out of the reservoir, the energy back flow would be prohibitive.

3.3.3 Liquid Trap Test Results

A serie_; of tests were conducted with the liquid trap configur-

ation to establish the performance using this diode technique. Tests were

also run to demonstrate the use of the liquid trap as a second heat pipe

when the diode heat pipe is shutdown. The test procedure used in these

tests is essentially the same as with the gas diode. Once steady-state

forward mode operation is attained using heater#1, the liquid nitrogen

is turned OFF and heater #3 is turned ON to initiate reverse mode shutdown.

Again the condenser block is maintained above TC 13 via separate heater

control.

Transient test results for three different tests are shown in

Fig. 15 where the temperatures of the reverse mode evaporator (TC 13) and

the thermal mass (TC 31) are plotted versus time. The three test conditions

can be summarized as follows:

Test #10 - Baseline diode test, only heater #3 applied during re-

verse mode operation.

Test #7 - Same as #10, except that heater #1 is also applied during

the reverse mode.

Test #8 - Thermal switch test, heater #4 which is attached to the

liquid trap is applied throughout the reverse mode.

al profiles are also presented for each of these tests at different times

Figs. 16, 17 and 18.

The reverse mode behavior is essentially the same for each test.
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Within minutes ( - 6) after 4 Watts are applied by heater #3, a gradient

bagins to develop across tho pipe as the reverse mode evaporator drys

out. The temperature gradient continues to grow with an increasing rate

until a#, of the fluid is accumulated in the trap. At this time the rate

of rise of TC 13 becomes almost constant as indicated in Fig 15 by its

linear temperature increase. The rate tends to slow down near the end of

the test due to an increase in the backflow conduction associated with the

increasing temperature gradient. The temperature response of TC 31 is also

indicative of the system behavior. When shutdown is initiated its rate of

rise is relatively high due to the reverse flow heat piping action. The rate

decreases and reaches a minimum when shutdown is completed and the pipe is

dried out. After that time, the rate continuously increases due to the

increasing backflow conduction.

Shutdown times and the shutdown energies estimated from the results

are listed in Table 2. The shutdown time (t 
SD)is defined as the time when

the rate of increase of TC 31 is a ;;,inimum. The shutdown energy is defined as

QSD	 (mcp)TM(TSD - T0)

where	 (mcp)TM -	 Heat capacitance of thermal mass and liquid trap

To z 	Temperature of thermal mass (TC 31) at the start

of reversal.

TSD	 Temperature of thermal mass at the time of shutdown.
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TABLE 2. LIQUID TRAP SHUTDOWN CHARACTERISTICS

_ Test No.	 Shutdown Time	 Shutdown Energy
(Min)	 W-HR

10	 24	 1.05

7	 16	 1.22

8	 16	 1.52

The shutdown time and energy have been adjusted for diode test #10

to include the 5 minute interval where TC 13 tends to level off following

initial shutdown (Cf. Fig.	 15, t = 34 - 39 min.)	 This second plateau may

be associated with a small amount of fluid being removed from the reservoir.

The heat pipe is charged with a total of 18.5 grams of ethane.

Its corresponding latent heat energy is 2.5 w-hr at 190°K. 	 Only 5.6 grams

are required to fill the axial grooved pipe. 	 The remaining inventory fills

the reservoir and provides a slight exc:: s.	 Since the energies listed in

Tdble 2 are only about half of the total 	 latent 'peat, the pipe apparently

shuts down with the reservoir wick remaining saturatcj.	 Also, since the

shutdown energy is at most twice the latent heat associated with the axial

grooves'	 inventory ,	 the backflow due to heat pipin	 during reversal	 is

small.	 This backflow could be further reduced by increasing the conduct-

ance between the liquid trap and thermal mass.

_ As regards the switching operation 	 (Test #8), the slightly higher

shutdown energy determined in this test indicates that the o peration of

the liquid trap as a heat pipe may impede the shutdown slightly.	 The heat

applied at the trap effectively reduces the coupling between the thermal

_ -
-27-

i



R

j

mass and the trap. In the present configuration, the heat piping action in

the trap causes a vapor flow which is opposed to that coming from the axial

grooves. In a configuration such as required for a dual radiator, this

would not be the case and there would be no impedance from the "Turned ON" pipe.

One final word is appropriate in regard to the reverse mode con-

ductance. The high conductivity of aluminum and the heavy wall extrusion

yield an axial conductance of 0.130 W/°C for the 15-cm length between the

condenser (TC 7) and TC 5 located in the transport section. Test X10 which

does not have any power applied by heater #1 provides a good measure of the

reverse mode heat conduction. The rate of increase at the end of the test

of TC 31 corresponds to a backflow of 7.78 Watts. There is a 58°C differ-

ence between TC's 5 and 7, which corresponds to a backflow of 7.54 Watts.

The close agreement indicates that the estimates are accurate. Since only

4 watts are being applied by heater #3, the remaining head load must be due

to heat inputs from the condenser block.

3.3.4 Hybrid Operation

Preliminary tests were conducted with the liquid trap config-

uration charged with helium gas as in the VCHP mode. The tests consisted of

running the heat pipe at various power levels and sink conditions in the feed-

back mode, and then shutdown from the high power/high sink condition to liquid

trap diode operation. The preliminary results are essentially identical to

those obtained previously in the liquid trap tests. Shutdown energies and

times are virtually the same. There are no apparent synergestic effects due

to the gas impeding the vapor flow during diode reversal.

4.0 SUMMARY

Cryogenic gas-controlled variable conductance operation has been

:.;ionstrated in both passive-cold reservoir and feedback controlled modes
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with an ATS axial grooved aluminum extrusion. Temperature control to

within + 1°C was obtained with feedback versus + 10% with the same

system operating in a passive mode. The sharp transient control ob-

tained with feedback was due to a relatively large storage ratio (10:1)

which minimized the temperature swing required by the reservoir.

Passive gas diode operation was also demonstrated with this

configuration. Although this technique would only be applicable where

gas control VCHP operation is also required, the relatively long trans-

ient required to sweep the gas out of the reservoir may be prohibitive.

Further examination of this method is required.

Test results obtained with the system reconfigured to include

a liquid trap showed that this method gives substantially better diode

performance. The highest shutdown time was 24 minutes with 4 W applied

to the reverse mode evaporator. Therefore at most 1.6 W-hrs went into

shutdown. This energy is approximately twice the latent heat associated

with the inventory required to fill the axially grooved pipe and indicates

that the backflow due to heat piping during shutdown is minimal.

The operation of a thermal switch was also demonstrated using

the liquid trap as a second heat pipe. The simultaneous heat piping act-

ion by the liquid trap had a negligible effect on the diode's shutdown.

Further tests with the liquid trap configuration are desireable.

Finally, hybrid operation consisting of feedback gas control and

liquid trap shutdown was achieved with no detectable synergistic effects

due to the gas prohibiting vapor condensation in the liquid trap.
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In summary each of the various thermal control modes have

been demonstrated at cryogenic temperatures. Where quantitative results

could be attained they were consistent with theory. Axial grooved wick

designs are suitable for the various TCHP operations, however, stainless

steel tubing will be required to provide satisfactory "OFF-conductance"

for most diode applications. In addition to a "low-k" section which

would be provided by a stainless design, an optimized axial grooved

VCHP should contain a plug to reduce the vapor space.
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