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Preface

This final report contains only a brief summary of several independent
studies conducted over the last three years on the general topic: stiffness
and damping characteristics of inherently compensated gas film bearings.
The major portion of the work has been presen,^ed in greater detail as
master of science theses by David M. Smith and Ricardo R. Tapia under the
direction of A. Kent Stiffler, principal investigator. All published
material that resulted from this grant is denoted by an astrisk in the
reference section of this report.

Summary

The dynamic characteristics of inherently compensated gas film bearings
have been investigated for small excursion ratios. Both circular and
rectangular cases have been solved for the stiffness and damping as a func-
tion of supply pressure, restrictor coefficient, and squeeze number. The
effect of disturbance amplitude has been studied for the inherently compen-
sated strip. Analytical solutions for the simple gas film damper problem
have established the effect of disturbance amplitude at low squeeze numbers.
These results are applicable to pressurized bearings as limiting case of
the restrictor coefficient.
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Introduction

The dynamic response of a flexible rotor in rigid supports is

certainly not a new problem. However, the solution to the more realistic

problem of elastic rotors in elastic bearing supports is somewhat more

recent. Given the stiffness and damping properties of the supports,

computer programs can be developed to predict the response of unbalanced

rotors with some certainty [1][2]. In general the support stiffness can

serve to reduce the critical speeds below operating conditions and reduce

transmitted forces to the bearings [3]. Support damping can serve to

attenuate the response when operated through critical speeds and to reduce

when operated through critical speeds and to reduce the effect of shock

loading.

Although lubricating oils are commonly employed in bearings and dampers,

they are inadequate for high temperature environments. Thus, there is a

growing interest in air lubricated systems. A limited amount of information

is available to the designer concerned with the dynamic properties of exter-

nally pressurized gas films. A literature review suggests that analyses

pertain to two types of bearings: (a) pocket-type, oritice compensatea

[4-7] and (b) annular-type, inherently compensated [7,8]. Both lumped and

distributed parameter methods are employed. In all cases the analyses are

presented for several one-dimensional bearings. In general, the pocket type

exhibits poor stability and high stiffness while the inherent type exhibits

good stability and low stiffness. It is the superior stability qualities

of the inherently compensated design that has lead to its greater acceptance.
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The purpose of the research effort was to provide more design information

on inherently compensated, gas film bearings and dampers. When the film is

externally pressurized the designation: "bearing" as opposed to "damper"

is generally prevalent in the literature. However, it is understood that

pressurized films may be used primarily as dampers and labeled as such. The

bearings are a thrust type with a series of inherent feed holes. These holes

are usually replaced by a line source. The film gap is displaced periodi-

cally and the resulting forces analyzed. The particular geometries of

interest are shown in Figure 1. The results of this research can be found

in references (9-15]. The following brief summary is presented.

summary

Gas film pressures are described by the non-linear Reynolds equation:

  2
32P2  + a te

2
 = 2a 

a (ph)
ax 	 az2	 h3 at

where the variables are normalized by the ambient pressure p a bearing

characteristic length L mean film thickness h o and the excitation fre-

quency w	 The squeeze number is defined by

Q	
12uw*L*2 	

(2)
h 

*2 *

o pa

and the film disphacement h is given as

h=1 +e sin t .	 (3)

Integration of the pressure field establishes the time dependent load capacity.

The component of force in phase with motion h is defined as the stiffness;

the component of force 90° out of phase with the motion is defined as the

damping.

(1)
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Figure 1. Inherently Compensated, Multiple-Inlet,
Rectangular Thrust Bearing.
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No analytical solutions to Equation (1) exist, even for the one-

dimensional spacial problem. Thus, one must resort to finite-difference

iterative solutions using digital computers. Non-linear, three-dimensional

(time and space) partial differential equations can have iterative conver-

gence problems. Furthermore, the boundary conditions include the time

dependent flow of compressible gases through orifices. The orifice equations

are not only non-linear but during one cycle the flow can switch from sub-

critical to critical and can ewitch directions! Then of course the following

parameters must be investigated: X, ratio of bearing length to width; r,

ratio of central length to characteristic length, p s , supply pressure; Q,

squee-:- number; c, excursion ratio; A, restrictor coefficient, a measure of

the flow resistance through the bearing to the flora resistance through the

bearing to the flow resistance through the orifice. The problem can be

made manageable by (a) parameter perturbation solutions or (b) reducing the

dimensions.

Parameter Perturbation

Both the circular [ 9] and the rectangular [10][11] shaped bearings have

been solved by seeking a solution in the form:

p(x,z,t) = p l (x,z) + cp 2 (x,z 9 0 ,	 (4)

The effect of the perturbed solution in c is to linearize the equations

although the solution is valid only for "small" excursion ratios. A brief

account is given for the rectangular bearing since it is more complete.

When Equations (3) and (4) are substituted into Equation (1), two

equations are obtained from the terms of order 0(1) and 0 (E), respectively:

3 2 2	 2 2

0(1)	 p2	
a

+	 p 2	 0	 (5)
ax	 aZ
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0(E) _n +	 = p1 [P 12 cost + a ]	 (6)
ax

where

9(x,z,0 = P lp2 .	 (7)

The load disturbance is assumed to be periodic. Thus, time may be eliminated

from Equation (6) by assuming the solution:

g = 91 (x,2) sint + 92 (x,z) cost .	 (8)

The equations to be solved are coupled linear second order partial differen-

tial equations in gl and g2 subject to the appropriate boundary conditions

[10].

The dynamic load is defined by

W2	 Jj p 2 (x,z,t)dxdz	 (9)

and can be written in the forsa

W2 = C sint + B cost .	 (10)

If the bearing executes small harmonic motion,

CW2*  -K *y* - D*dy*/dt	 (11)

where K and D are the stiffness and damping constants, respectively and

	

y = Cho sin w t	 Thus,

W	 K h	 D h w

W2	 -*)2*  = -	 * °* 2 sint -	 *° * 2 cost	 (12)

	

pa (L 	 Xpa (L )	 apa (L)

a dimensionless stiffness and damping can be defined by

*

KC	
K h°

s	
Ps-1
	

Xpa*(L
*)2(ps-1)	

(13)
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D=-
  

12B =	 D

a	 XL*(L*/ho)3u

Typical results are shown in Figures 2-5. The restrictor coefficient

6CdNtrd0p(2g0kRT)1/2

A pa*psho*2F(k-1)1/2

where F - .83, 3.48, 8.44 for r - .4, .6, .8 respectively. Experimental

studies of this bearing configuration have been reported by Cunningham [16].

Simue ry and Optimum Design

The first decision to be made in the design of the bearing is the cho'ce

bet.,reen optimum stiffness and optimum damping. Stiffness is usually the

first choice since a load disturbance can lead to closure of the bearing

if it is too "soft". Furthermore, natural frequencies of the bearing-load

system, which depend on the stiffness, must be avoided. However, damping

is necessary when disturbances are present, and many bearings are designed

primarily as film dampers. The design procedure is as follows:

1. For maximum stiffness, select a restrictor coefficient in the range

1 < A < 2. Generally, a larger ratio of central length to bearing length r

and a higher supply pressure increase stiffness, but these choices must be

weighed against the supply requirements associated with the increased mass

flow and against stability considerations.

2. The choice of damping is dependent upon the minimum allowable stiff-

ness. Low supply pressures (p r = 1.5,2) provide high damping for low values

of the restrictor coefficient; however, there is a considerable decrease in

stiffness. At high supply pressures, damping increases for larger values

of the restrictor coefficient. Supply pressure has little effect on

damping at higher values of restrictor coefficient, but a higher supply

pressure will improve the corresponding stiffness. There are two choices

of damping which can be made:

(14)
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(a) if low values of stiffness are acceptable, choose a low

supply pressure and a restrictor coefficient in the range

1<A<2;
(b) if higher values of stiffness are needed, choose a high

supply pressure and the restrictor coefficient, A = S.

3. The choice of restrictor coefficient fixes the dimensionless load

capacity. Once the load is specified, the supp-, pressure determines the

bearing dimensions.

It is observed that the dimensionless stiffness and damping are a

function of the film thickness. The actual stiffness and damping are

improved by the selection of small film thicknesses. Thus, for a fixed

restri t.)r coefficient the film thickness can be made arbitrarily small

by reducing the inlet area of the orifices. In this respect the designer

is limited by the minimum allowable clearance for the bearing.

Amplitude Effects

The effect of excursion amplitude ratio E on gas thrust type bearings

similar to Figure 1 is not understood. In fact the non-linear nature of

the Reynolds equation has prevented a complete analytical solution for the

simple non-pressurized gas film damper. Salbu [171 investigated the mean

load capacity of an unpressurized disk subjected to large excursions in

film thickness. The time dependent load for any shape damper approaches

	

*	 (1 + 3 E)1/2

W(t) _	 * t) =	 2	 - 1	 (19)
pa Area	 h

as the squeeze number a - - [17). It was only recently that the author [12]

solved the case in which CT << J. For the strip

.2 
Q2

(20)
1 h	 A hh^

	

h	 t^	 h

The above results are important since they provide limits (0 + A - -) to the
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damping performance of externally-pressurized gas bearings [141.

In order to understand the effect of disturbance amplitude on the

dynamic performance of inherently compensated gas bearings, a study of

Equation (1), as it pertains to the one-dimensional strip, was undertaken,

Figure 6. It was necessary to retain the non-linear form of Equation (1)

together with the non-linear boundary conditions associated with the severe

gas flow switching sequences referred to previously. These non-linearities

produced converge difficulties for the finite difference methods used; thus,

excursion ratios were limited to e < 0.5.

The time dependent load capacity is given by

W(t) _ f[p(x,t) - lldx
	

(21)

The load capacity as a function of time can be expressed in the form of

the Fourier series:

W(t) - A  + Al cost + B1 sint + A2 cos 2t + B2 sin 2t + ...	 (22)

Using the orthogonality properties the coefficients are given by

27T
Ao = 2_W(t)dt

0
1 2Tr

AN = Tr f W(t) cos(Nt)dt
0	

(23)

2n
BN=	 j W(t) sin(Nt)dt

0

These coefficients are determined by numerical integration of Equations

(21)(23) over space and time. The results are tabulated in reference [13].

Important parameters in design are the linearized stiffness and damping

defined by Equation (11). The results for low squeeze numbers are presented

in Figures 7-12 as a function of supply pressure and restrictor coefficient
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*

A	
24C 	 w ( 1-a) [2g0kRT]1/2

	

*2 *	 k-1
ha pa ps

The dimensionless stiffness and damping are defined by

* *
K h

0
KS
	

2w*L*pa*(Ps-1)

D
* (1-e 2 3/2

D	 )

- 2uL*(w**) 3

h0

The main results are as follows:

(1) the dimensionless plots are essentially independent of the

excursion ratios e - 0.1, 0.3, 0.5. There is a slight shift of

the minimum damping point away from the maximum stiffness point,

A = 1, as the ratio increases; thus, the restrictor coefficient

is somewhat dependent on amplitude;

(2) the strip is stable for all parameters investigated;

*
(3) the actual stiffness, K is not dependent on the amplitude;

(4) the actual damping, D * , is inversely proportional to (1-E 2 3/2)	 ;

thus amplitude increases the damping without affecting the

stiffness.

Conclusions

The dynamic characteristics of inherently compensated gas film bearings

have been investigated for small excursion ratios. Both the circular and

the rectangular cases have been solved for the stiffness and damping as a

function of supply pressure, restrictor coefficient, squeeze number, and

geometry variations [9-11]. The effect of disturbance amplitude has been

studied for the inherently compensated strip [13][14]. These results can
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be generalized and extended to the two-dimensional problem. Analytical

solutions for the gas film damper problem have established the effect of

disturbance amplitude at low squeeze numbers [12]. Thesa results are

applicable to limiting cases (restrictor coefficient approaching zero or

infinity) of the inherently compensated bearing. All of the above informa-

tion can be of immediate use to the designer of gas bearings.

The non-linear character of the Reynolds equation and the corresponding

boundary conditions has forced the solutions technique away from analytical

means to finite difference schemes with the digital computer. The method

of linear equations are not available to ascertain iterative converge

criteria. It has been the principal investigators experience that solution

converge times can be quite long even when trial and error methods are

successful. When parameter extremes were studied, converge failed more

often than not. In these types of problems the situation is compounded by

the large number of parameters which require independent study. The

results must be abridged and presented in graphical form. It is this

writer's opinion that alternate methods of solution should be explored

together with the finite difference approach so that their accuracy can be

deduced for future application. Such methoc;s should be partially analyti-

cal not only to reduce computer time but to condense multi-parameter

presentation. They could include:

(1) lumped parameter methods. This technique is certainly not

new, but it has been rarely compared with computer solutions

so that its net usefulness is not yet established. The

method has been successfully applied by the author to the

above one-dimensional strip [14];

(2) approximate methods such as Galerkin [15).
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