Listings, Dense FORMA Subroutines

May 1976

Expansion and Improvement of the FORMA System for Response and Load Analysis

MARTIN MARIETTA
MCR-76-217

Contract NAS8-31376

EXPANSION AND IMPROVEMENT OF THE FORMA SYSTEM FOR RESPONSE AND LOAD ANALYSIS

Volume IIA - Listings, Dense FORMA Subroutines

May 1976

Author:
Richard L. Wohlen

Approved by:

[Signature]
Richard L. Wohlen
Program Manager

Prepared for: National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Huntsville, Alabama 35812

MARTIN MARIETTA CORPORATION
Denver Division
Denver, Colorado 80201
FOREWORD

This report presents results of the expansion and improvement of the FORMA system for response and load analysis. The acronym FORMA stands for FORTRAN Matrix Analysis. The study, performed from 16 May 1975 through 17 May 1976 was conducted by the Analytical Mechanics Department, Martin Marietta Corporation, Denver Division, under the contract NAS8-31376. The program was administered by the National Aeronautics and Space Administration, George C. Marshall Space Flight Center, Huntsville, Alabama under the direction of Dr. John R. Admire, Structural Dynamics Division, Systems Dynamics Laboratory.

This report is published in seven volumes:

Volume I - Programming Manual,
Volume IIA - Listings, Dense FORMA Subroutines,
Volume IIB - Listings, Sparse FORMA Subroutines,
Volume IIC - Listings, Finite Element FORMA Subroutines,
Volume IIIA - Explanations, Dense FORMA Subroutines,
Volume IIIB - Explanations, Sparse FORMA Subroutines, and
Volume IIIC - Explanations, Finite Element FORMA Subroutines.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>ii</td>
</tr>
<tr>
<td>Contents</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>v</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>I-1</td>
</tr>
<tr>
<td>II. Subroutine Listings (Subroutine Names in Alphabetical Order, Numbers Coming Before Letters)</td>
<td>II-1</td>
</tr>
</tbody>
</table>
ABSTRACT

This report presents techniques for the solution of structural dynamic systems on an electronic digital computer using FORMA (FORTRAN Matrix Analysis).

FORMA is a library of subroutines coded in FORTRAN IV for the efficient solution of structural dynamics problems. These subroutines are in the form of building blocks that can be put together to solve a large variety of structural dynamics problems. The obvious advantage of the building block approach is that programming and checkout time are limited to that required for putting the blocks together in the proper order.

The FORMA method has advantageous features such as:

1. subroutines in the library have been used extensively for many years and as a result are well checked out and debugged;

2. method will work on any computer with a FORTRAN IV compiler;

3. incorporation of new subroutines is no problem;

4. basic FORTRAN statements may be used to give extreme flexibility in writing a program.

Two programming techniques are used in FORMA: dense and sparse.
The editor expresses his appreciation to those individuals whose assistance was necessary for the successful completion of this report. Dr. John R. Admire was instrumental in the definition of the program scope and contributed many valuable suggestions. Messrs. Carl Bodley, Wilcomb Benfield, Darrell Devers, Richard Hruda, Roger Philippus, and Herbert Wilkening, all of the Analytical Mechanics Department, Denver Division of Martin Marietta Corporation, have contributed ideas, as well as subroutines, in the formulation of the FORMA library.

The editor also expresses his appreciation to those persons who developed FORTRAN, particularly the subroutine concept of that programming tool.
I. INTRODUCTION

A listing of the source deck of each dense FORMA subroutine is
given in this volume to remove the "black-box" aura of the subroutines
so that the analyst may better understand the detail operations of each
subroutine.

The FORTRAN IV programming language is used throughout with the
exception of MSFC UNIVAC 1108 systems subroutines used in FORMA sub-
outines START, PLOT1, PLOT2, PLOT3 and ZZBOMB.
II. SUBROUTINE LISTINGS

The subroutines are given in alphabetical order with numbers coming before letters.
SUBROUTINE AAB (ALPHA,A,BETA,B,Z,NR,NC,KR)
DIMENSION A(KR,1), B(KR,1), Z(KR,1)

C MATRIX SUMMATION. (ALPHA * A + BETA * B = Z).
C MATRICES A, Z OR B, Z MAY SHARE SAME CORE LOCATIONS.
C CODED BY RL WOHLLEN. FEBRUARY 1965.

C SUBROUTINE ARGUMENTS
C ALPHA = INPUT SCALAR.
C A = INPUT MATRIX. SIZE(NR,NC).
C BETA = INPUT SCALAR.
C B = INPUT MATRIX. SIZE(NR,NC).
C Z = OUTPUT RESULT MATRIX. SIZE(NR,NC).
C NR = INPUT NUMBER OF ROWS IN MATRICES A, B, Z.
C NC = INPUT NUMBER OF COLS IN MATRICES A, B, Z.
C KR = INPUT ROW DIMENSION OF A, B, Z IN CALLING PROGRAM.

DO 10 I=1,NR
 DO 10 J=1,NC
 10 Z(I,J) = ALPHA*A(I,J) + BETA*B(I,J)
RETURN
END
SUBROUTINE AB1(A,B,Z,NRA,NCA,NCB,KRA,KRB,KRZ)
DIMENSION A(KRA,1),B(KRB,1),Z(KRZ,1)
COMMON /LWRKVI/V(500)
DOUBLE PRECISION SUM,SS,ZERO
DATA ZERO /0.0/

AB1 PERFORMS THE MATRIX OPERATIONS \((Z) = (A)*(B)\).
AB1 CAN ALSO PERFORM THE OPERATIONS
\((Z) = (A)*(A)\) BY CALL AB1(A,A,Z,ETC--)
\((A) = (A)*(B)\) BY CALL AB1(A,B,A,ETC--)

IF NRA IS NEGATIVE AND ABS(NRA) IS EQUAL TO NCB
A SQUARE, SYMMETRIC \((Z)\) IS CALCULATED.

MAXIMUM SIZE NCA=500
INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.

FORMA SUBROUTINE ZZBOMB IS CALLED.
CODED BY JOHN ADMIRE *NASA* JULY 1972.
LAST REVISION BY RL WOHLER MARCH 1976.

ARGUMENTS
A - INPUT MATRIX \((A)\) SIZE(NRA BY NCA)
B - INPUT MATRIX \((B)\) SIZE(NCA BY NCB)
Z - OUTPUT MATRIX \((Z)\) SIZE(NRA BY NCB)
NRA - INPUT ABS(NRA) IS THE NUMBER OF ROWS IN \((A)\)
NCA - INPUT NUMBER OF COLUMNS IN \((A)\)
NCB - INPUT NUMBER OF COLUMNS IN \((B)\)
KRA - INPUT ROW DIMENSION OF \((A)\) IN CALLING PROGRAM
KRB - INPUT ROW DIMENSION OF \((B)\) IN CALLING PROGRAM
KRZ - INPUT ROW DIMENSION OF \((Z)\) IN CALLING PROGRAM

NERROR EXPLANATIONS
1 = SIZE EXCEEDANCE.
2 = NON-SQUARE RESULT ASKED FOR.

NR=AIBS(NRA)
NERROR = 1
IF(NCA .GT. 500 .OR. NR .GT. NCA .OR. NCA .GT. KRA
* .OR. NR .GT. KRZ) GO TO 999
IF(NRA .GT. 0) GO TO 40
NERROR = 2
IF(NR .NE. NCB) GO TO 999
DO 30 I=1,NR
DO 10 K=1,NCA
10 V(K)=A(I,K)
DO 30 J=1,NCB
SUM=ZERO
DO 20 K=1,NCA
SS=V(K)*B(K,J)
20 SUM=SUM+SS
30 Z(I,J)=SUM
DO 33 I=1,NR
DO 33 J=1,NR
33 \(Z(J,I) = Z(I,J) \)
RETURN
40 DO 70 I=1,NRA
DO 50 K=1,NCA
50 V(K)=A(I,K)
DO 70 J=1,NCA
SUM=ZERO
DO 60 K=1,NCA
SS=V(K)*B(K,J)
60 SUM=SUM+SS
70 Z(I,J)=SUM
RETURN
999 CALL ZZBOMB(6HAB1,NERROR)
END
SUBROUTINE AB2(A,B,Z,NRA,NCA,NCR,KRA,KRB,KRZ)
DIMENSION A(KRA,1),B(KRB,1),Z(KRZ,1)
COMMON / LWRKV1 / V(500)
DOUBLE PRECISION SUM,SS,ZERO
DATA ZERO /0.0/

IF (E,) AND (Z) DO NOT SHARE THE SAME STORAGE
IT WOULD BE MORE EFFICIENT TO USE SUBROUTINE
AB1 TO PERFORM THIS OPERATION.

IF NRA IS NEGATIVE AND ABS(NRA) IS EQUAL TO NCR
A SQUARE, SYMMETRIC (Z) IS CALCULATED.

MAXIMUM SIZE NCA=500

INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.

FORMA SUBROUTINE Z2BOMB IS CALLED.
CODED BY JOHN ADKINS *NASA* JULY 1972.
LAST REVISION BY RL WOHLN. MARCH 1976.

ARGUMENTS
A - INPUT MATRIX (A) SIZE(NRA BY NCA)
B - INPUT MATRIX (B) SIZE(NCA BY NCR)
Z - OUTPUT MATRIX (Z) SIZE(NRA BY NCB)
NRA - INPUT ABS(NRA) IS THE NUMBER OF ROWS IN (A)
NCA - INPUT NUMBER OF COLUMNS IN (A)
NCR - INPUT NUMBER OF COLUMNS IN (B)
KRA - INPUT ROW DIMENSION OF (A) IN CALLING PROGRAM
KRB - INPUT ROW DIMENSION OF (B) IN CALLING PROGRAM
KRZ - INPUT ROW DIMENSION OF (Z) IN CALLING PROGRAM

NERROR EXPLANATIONS
1 = SIZE EXCEEDANCE.
2 = NON-SQUARE RESULT ASKED FOR.

NRA=IABS(NRA)

IF(NCA *GT. 500 .OR. NCA *GT. KRB .OR. NR .GT. KRA
* .OR. NR .GT. KRZ) GO TO 999
IF(NRA .GT. 0) GO TO 40

IF(NR .NE. NCB) GO TO 999
DO 30 J=1,NCR
DO 10 K=1,NCA
10 V(K)=B(K,J)
DO 30 I=1,J
SUM=ZERO
DO 20 K=1,NCA
20 SS=A(I,K)*V(K)
30 CONTINUE

NERROR = 1
NERROR = 2
20 SUM=SUM+SS
30 Z(I,J)=SUM
 DO 33 I=1,NR
 DO 33 J=1,NR
33 Z(J,I)=Z(I,J)
 RETURN
40 DO 70 J=1,NCB
 DO 50 K=1,NCA
50 V(K)=B(K,J)
 DO 70 I=1,NRA
 SUM=ZERO
 DO 60 K=1,NCA
 SS=A(I,K)*V(K)
60 SUM=SUM+SS
70 Z(I,J)=SUM
 RETURN
999 CALL ZZBOMB(6HAB2 ,NERROR)
END
SUBROUTINE ABCI(A,B,C,Z,NRA,NCA,NCB,KRA,KRB,KRC,KRZ)
DIMENSION A(KRA,1),B(KRB,1),C(KRC,1),Z(KRZ,1)
COMMON /LWRK1/V(500)
DOUBLE PRECISION SUM,SS

ABCI PERFORMS THE MATRIX OPERATION (Z)=(A)*(B)+(C).
ABCI CAN ALSO PERFORM THE OPERATIONS
(Z)=(A)*(F)+(A) BY CALL ABCI(A,B,A,Z,--ETC--)
(Z)=(B)*(F)+(B) BY CALL ABCI(A,B,B,Z,--ETC--)
(Z)=(A)*(A)+(C) BY CALL ABCI(A,A,C,Z,--ETC--)
(Z)=(A)*(A)+(A) BY CALL ABCI(A,A,A,Z,--ETC--)
(A)=(A)*(F)+(C) BY CALL ABCI(A,B,C,A,--ETC--)
(C)=(A)*(F)+(C) BY CALL ABCI(A,B,C,C,--ETC--)
(A)=(A)*(B)+(A) BY CALL ABCI(A,B,A,A,--ETC--)

IF NRA IS NEGATIVE AND ABS(NRA) IS EQUAL TO NCB
A SQUARE, SYMMETRIC (Z) IS CALCULATED.

MAXIMUM SIZE NCA=500
INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.

FORMA SUBROUTINE ZZBOMB IS CALLED.
CODED BY JCHN ADMIRE *NASA* JULY 1972.
LAST REVISION BY RL WOHLER MARCH 1976.

A - INPUT MATRIX (A) SIZE(NRA BY NCA)
B - INPUT MATRIX (B) SIZE(NCA BY NCB)
C - INPUT MATRIX (C) SIZE(NNA BY NCB)
Z - OUTPUT MATRIX (Z) SIZE(NRA BY NCB)
NRA - INPUT ABS(NRA) IS THE NUMBER OF ROWS IN (A)
NCA - INPUT NUMBER OF COLUMNS IN (A)
NCB - INPUT NUMBER OF COLUMNS IN (B)
KRA - INPUT ROW DIMENSION OF (A) IN CALLING PROGRAM
KRB - INPUT ROW DIMENSION OF (B) IN CALLING PROGRAM
KRC - INPUT ROW DIMENSION OF (C) IN CALLING PROGRAM
KRZ - INPUT ROW DIMENSION OF (Z) IN CALLING PROGRAM

ERRPR EXPLANATIONS
1 = SIZE EXCEEDANCE.
2 = NON-SQUARE RESULT ASKED FOR.

NR=IABS(NRA)

IF(NCA .GT. 500 .OR. NR .GT. KRA .OR. NR .GT. KRC
* .OR. NCA .GT. KRB .OR. NR .GT. KRC) GO TO 999
IF(NRA .GT. 0) GO TO 40

IF(NR .NE. NCB) GO TO 999
DO 30 I=1,NP
DO 10 K=1,NCA
10 V(K)=A(I,K)
DO 30 J=1,NCB
SUM=C(I,J)
30 CONTINUE
DO 20 K=1,NCA
 SS=V(K)*B(K,J)
20 SUM=SUM+SS
30 Z(I,J)=SUM
 DO 33 I=1,NR
 DO 33 J=1,NR
33 Z(J,I)=Z(I,J)
 RETURN
40 DO 70 I=1,NRA
 DO 50 K=1,NCA
50 V(K)=A(I,K)
 DO 70 J=1,NCB
 SUM=C(I,J)
 DO 60 K=1,NCA
 SS=V(K)*B(K,J)
60 SUM=SUM+SS
70 Z(I,J)=SUM
 RETURN
999 CALL ZZBOMB(6HABC1 ,NERROR)
END
SUBROUTINE ABC2(A,B,C,Z,NRA,NCA,NCB,KRA,KRB,KRC,KRZ)
DIMENSION A(KRA,1),B(KRB,1),C(KRC,1),Z(KRZ,1)
COMMON / LWKVI / V(500)
DOUBLE PRECISION SUM,SS

ABC2 PERFORMS THE MATRIX OPERATION \(Z = (A) \times (B) + (C) \).
ABC2 CAN ALSO PERFORM THE OPERATIONS
\((Z) = (A) \times (B) + (C) \) BY CALL ABC2(A,B,B,Z,---ETC---)
\((Z) = (A) \times (A) + (A) \) BY CALL ABC2(A,A,B,A,---ETC---)
\((Z) = (A) \times (A) + (A) \) BY CALL ABC2(A,A,C,Z,---ETC---)
\((Z) = (A) \times (B) + (C) \) BY CALL ABC2(A,B,C,B,---ETC---)
\((C) = (A) \times (B) + (C) \) BY CALL ABC2(A,B,C,B,---ETC---)
\((B) = (A) \times (B) + (B) \) BY CALL ABC2(A,B,B,B,---ETC---)

IF (B) DOES NOT SHARE STORAGE WITH (C) OR (Z) IT WOULD
BE MORE EFFICIENT TO USE ABC1 TO PERFORM THIS OPERATION.

IF NRA IS NEGATIVE AND ABS(NRA) IS EQUAL TO NCB
A SQUARE, SYMMETRIC (Z) IS CALCULATED.

MAXIMUM SIZE NCA=500

INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
FORMA SUBROUTINE ZZGOMR IS CALLED.
CODED BY JOHN ADMIRE *NASA* JULY 1972.
LAST REVISION BY RL WOHLER. MARCH 1976.

ARGUMENTS
A - INPUT MATRIX \((A)\) SIZE(NRA BY NCA)
B - INPUT MATRIX \((B)\) SIZE(NCA BY NCB)
C - INPUT MATPIX \((C)\) SIZE(NRA BY NCB)
Z - OUTPUT MATRIX \((Z)\) SIZE(NRC BY NCB)
NRA - INPUT ABS(NRA) IS THE NUMBER OF ROWS IN \((A)\)
NCA - INPUT NUMBER OF COLUMNS IN \((A)\)
NCB - INPUT NUMBER OF COLUMNS IN \((B)\)
KRA - INPUT ROW DIMENSION OF \((A)\) IN CALLING PROGRAM
KRB - INPUT ROW DIMENSION OF \((B)\) IN CALLING PROGRAM
KRC - INPUT ROW DIMENSION OF \((C)\) IN CALLING PROGRAM
KRZ - INPUT ROW DIMENSION OF \((Z)\) IN CALLING PROGRAM

NERROR EXPLANATIONS
1 = SIZE EXCEEDANCE.
2 = NON-SQUARE RESULT ASKED FOR.

NR=IABS(NRA)

IF(NCA .GT. 500 .OR. NCA .GT. KRB .OR. NR .GT. KRC
* .OR. NR .GT. KRA .OR. NR .GT. KRZ) GO TO 999
IF(NRA .GT. 0) GO TO 40

IF(NR .NE. NCB) GO TO 999
DO 30 J=1,NCP
DO 10 K=1,NCA
10 V(K)=B(K,J)
DO 30 I=1,J
 SUM=C(I,J)
 DO 20 K=1,NCA
 SS=A(I,K)*V(K)
 20 SUM=SUM+SS
30 Z(I,J)=SUM
 DO 33 I=1,NR
 DO 33 J=1,NR
33 Z(J,I)=Z(I,J)
 RETURN
40 DO 70 J=1,NCB
 DO 50 K=1,NCA
50 V(K)=B(K,J)
 DO 70 I=1,NRA
 SUM=C(I,J)
 70 SUM=SUM+SS
60 Z(I,J)=SUM
 RETURN
999 CALL ZZBOM6(6HABC2 ,NERROR)
END
SUBROUTINE ALODI (PP, DIST, CONC, CONVRT, Z, NPP, ND, NC, KD, KC)
DIMENSION PP(1), DIST(KD,1), CONC(KC,1), Z(1)
COMMON /LLINE/NLINE, MAXLIN, MINI
DATA NLT, NOT/5, 6/
C
C REPLACE DISTRIBUTED AND CONCENTRATED LATERAL FORCES ON A BEAM
C WITH REPRESENTATIVE CONCENTRATED FORCES AT THE PANEL POINTS.
C THIS ENTAILS BEAMING BAY FORCE TO ADJACENT PANEL POINTS.
C THE DISTRIBUTED FORCE MAY NOT EXCEED THE PANEL POINT LIMITS.
C THE CONCENTRATED FORCES MAY BE OUTSIDE THE PANEL POINT LIMITS.
C OPTION TO OMIT FORCE DATA BY ND OR NC EQUAL ZERO.
C CALLS FORMA SUBROUTINES PAGEH0, 2ZEBOMB.
C CODED BY RL WOHLER. FEBRUARY 1970.
C LAST REVISION BY WA BENFIELD. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C PP = INPUT VECTOR OF PANEL POINTS. SIZE(NPP).
C DIST = INPUT MATRIX OF DISTRIBUTED FORCE STRAIGHT LINE
C SEGMENT DATA. SIZE(ND,4).
C COL 1 = X AT SEGMENT END 1.
C COL 2 = X AT SEGMENT END 2.
C COL 3 = FORCE AT SEGMENT END 1.
C COL 4 = FORCE AT SEGMENT END 2.
C CONC = INPUT MATRIX OF CONCENTRATED FORCE DATA. SIZE(NC,2).
C COL 1 = X COORDINATE.
C COL 2 = FORCE.
C CONVRT = INPUT CONVERSION SCALAR BY WHICH COLS 3,4 OF DIST AND
C COL 2 OF CONC WILL BE MULTIPLIED.
C Z = OUTPUT VECTOR OF CONCENTRATED PANEL POINT FORCES. SIZE(NPP).
C NPP = INPUT NUMBER OF PANEL POINTS. SIZE OF VECTORS PP, Z.
C ND = INPUT NUMBER OF SEGMENTS (ROWS) IN DIST. CAN BE ZERO.
C NC = INPUT NUMBER OF FORCES (ROWS) IN CONC. CAN BE ZERO.
C KD = INPUT ROW DIMENSION OF DIST IN CALLING PROGRAM.
C KC = INPUT ROW DIMENSION OF CONC IN CALLING PROGRAM.
C
C NERROR EXPLANATION
C 1 = LESS THAN 2 PANEL POINTS.
C 2 = PANEL POINTS NOT IN INCREASING ORDER.
C 3 = INCORRECT DISTRIBUTED DATA.
C
2001 FORMAT (?,/), 30X, 31H SUBROUTINE ALODI USES CONVRT = E15.8, /
* 7X, 33H AND COMPUTES THE TOTAL PROPERTIES /
* 45X, 16H LATERAL FORCE = E15.8, /
* 40X, 21H CENTER OF PRESSURE = E15.8)
2002 FORMAT (/1X, 131(1H-))
C
C CHECK THAT PANEL POINTS ARE IN INCREASING ORDER.
C IF (NPP .LT. 2) GO TO 999
C NERROR = 1
C DO 5 K = 2, NPP
5 IF (PP(K-1) .GE. PP(K)) GO TO 999
C NERROR = 2
C INITIALIZE DATA.
C DO 10 I = 1, NPP
10 Z(I) = 0.0
 NBAYS = NPP-1

C BRANCH TO APPROPRIATE SECTION.
 IF(ND .EQ. 0) GO TO 100
C
C SOLVE FOR DISTRIBUTED INPUT.
 DO 90 I=1,ND
 X1 = DIST(I,1)
 X2 = DIST(I,2)
 F1 = DIST(I,3)*CONVRT
 F2 = DIST(I,4)*CONVRT

 NERROR = 3
 IF (X1 .LT. PP(I)) .OR. X2 .GT. PP(NPP) .OR. X1 .GE. X2) GO TO 999
 IF (X1 .LT. PP(K+1)) GO TO 34
 XP = X1
 FP = F1
 34 XP = X1
 IF (X2 .LE. PP(K+1)) GO TO 38
 XQ = PP(K+1)
 FQ = F1 + (XQ-X1)*(F2-F1)/(X2-X1)
 GO TO 39
 38 XQ = X2
 FK = F2
 39 BAYL = PP(K+1)-PP(K)
 SEGL = XQ-XP
 Z(K) = Z(K) + SEGL*(FP*(3.*(PP(K+1)-XP)-SEGL)
 * +FQ*(3.*(PP(K+1)-XP)-2.*SEGL))/(6.*BAYL)
 Z(K+1) = Z(K+1) + SEGL*(FP*(3.*(XP-PP(K)))+SEGL)
 * +FQ*(3.*(XP-PP(K))+2.*SEGL))/(6.*BAYL)
 IF (X2 .LE. PP(K+1)) GO TO 90
 K = K+1
 XP = XQ
 FP = FQ
 GO TO 36
 90 CONTINUE

C SOLVE FOR CONCENTRATED FORCE.
 100 IF(NC .EQ. 0) GO TO 200
 DO 103 I=1,NC
 XC = CONC(I,1)
 FC = CONC(I,2)*CONVRT
 101 IF (XC .LE. PP(K+1)) GO TO 102
 K = NBAYS
 102 BAYL = PP(K+1) - PP(K)
 Z(K) = Z(K) + FC*(PP(K+1)-XC)/BAYL
 Z(K+1) = Z(K+1) + FC*(XC-PP(K))/BAYL

C COMPUTE AND PRINT TOTAL PROPERTIES.
 200 TF = 0.0
 TP = 0.0
 DO 201 I=1,NPP
 TF = TF + Z(I)
 201 TP = TP + Z(I)*PP(I)
ALODI -- 3/ 3

CP = TP/TF
IF(MINI .NE. 4HMINI) GO TO 300
IF(NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 300
IF(NLINE +9 .GT. MAXLIN) GO TO 300
WRITE(NOT,2002)
NLINE=NLINE+2
GO TO 310
300 CALL PAGEHD
310 WRITE(NOT,2001) CONVRT,TF,CP
NLINE=NLINE+7
RETURN
C
999 CALL ZZBOMB (6HALOD1 ,NERROR)
END
SUBROUTINE ALD2 (PP, DIST, CONC, CONVRT, NPP, ND, NC, KD, KC)

DIMENSION PP(1), DIST(KD, 1), CONC(KC, 1), Z(1)

DATA NIT9NOT / 5.6/

SUBROUTINE ARGUMENTS

C = PP = INPUT VECTOR OF PANEL POINTS, SIZE(NPP).
C = DIST = INPUT MATRIX OF DISTRIBUTED FORCE STRAIGHT LINE
C SEGMENT DATA, SIZE(ND, 4).
C COL 1 = X AT SEGMENT END 1.
C COL 2 = X AT SEGMENT END 2.
C COL 3 = FORCE AT SEGMENT END 1.
C COL 4 = FORCE AT SEGMENT END 2.
C = CONC = INPUT MATRIX OF CONCENTRATED FORCE DATA, SIZE(NC, 2).
C COL 1 = X COORDINATE.
C COL 2 = FORCE.
C = CONVRT = INPUT CONVERSION SCALAR BY WHICH COLS 3, 4 OF DIST AND
C COL 2 OF CONC WILL BE MULTIPLIED.
C = Z = OUTPUT VECTOR OF CONCENTRATED PANEL POINT FORCES, SIZE(NPP).
C = NPP = INPUT NUMBER OF PANEL POINTS, SIZE OF VECTORS PP, Z.
C = ND = INPUT NUMBER OF SEGMENTS (ROWS) IN DIST, CAN BE ZERO.
C = NC = INPUT NUMBER OF FORCES (ROWS) IN CONC, CAN BE ZERO.
C = KD = INPUT ROW DIMENSION OF DIST IN CALLING PROGRAM.
C = KC = INPUT ROW DIMENSION OF CONC IN CALLING PROGRAM.
C = CONVRT = INPUT CONVERSION SCALAR BY WHICH COLS 3, 4 OF DIST AND
C
C NERROR EXPLANATION
C 1 = LESS THAN 2 PANEL POINTS.
C 2 = PANEL POINTS NOT IN INCREASING ORDER.
C 3 = INCORRECT DISTRIBUTED DATA.

2001 FORMAT (3(I), 30X, 37H) SUBROUTINE ALD2 USFS CONVRT = E15.8, /
C "30X, 37HAND COMPUTES THE TOTAL AXIAL FORCE = E15.8"
2002 FORMAT (1X131(1H-))

CHECK THAT PANEL POINTS ARE IN INCREASING ORDER.

IF (NPP .LT. 2) GO TO 999
NERROR = 1

DO 5 K=2, NPP

5 IF (PP(K-1) .GE. PP(K)) GO TO 999
NERROR = 2

initialize DATA

DO 10 I=1, NPP
10 Z(I) = 0.0

initialize DATA

DO 10 I=1, NPP
10 Z(I) = 0.0
NBAYS = NPP-1

C BRANCH TO APPROPRIATE SECTION.
 IF(ND .EQ. 0) GO TO 100

C

C SOLVE FOR DISTRIBUTED INPUT.
 DO 90 I=1,ND
 X1 = DIST(I,1)
 X2 = DIST(I,2)
 F1 = DIST(I,3)*CONVRT
 F2 = DIST(I,4)*CONVRT
 IF (X1 .LT. PP(1) .OR. X2 .GT. PP(NPP) .OR. X1 .GE. X2) GO TO 999
 DO 32 K=1,NBAYS
 32 IF (X1 .LT. PP(K+1)) GO TO 34
 34 XP = X1
 FP = F1
 36 IF (X2 .LE. PP(K+1)) GO TO 38
 XQ = PP(K+1)
 FQ = F1 + (XQ-X1)*(F2-F1)/(X2-X1)
 GO TO 39
 38 XQ = X2
 FQ = F2
 39 Z(K+1) = Z(K+1) + .5*(FP+FQ)*(XQ-XP)
 IF (X2 .LE. PP(K+1)) GO TO 90
 K = K+1
 XP = XQ
 FP = FQ
 GO TO 36
 90 CONTINUE

C

C SOLVE FOR CONCENTRATED FORCE.
 100 IF(NG .EQ. 0) GO TO 200
 DO 103 I=1,NC
 XC = CONC(I,1)
 FC = CONC(I,2)*CONVRT
 IF (XC .LE. PP(1)) Z(1) = Z(1)+FC
 IF (XC .LE. PP(1)) GO TO 103
 DO 101 K=1,NBAYS
 101 IF (XC .LE. PP(K+1)) GO TO 102
 K = NBAYS
 102 Z(K+1) = Z(K+1) + FC
 K = K+1
 XP = XQ
 FP = FQ
 GO TO 103
 200 CONTINUE

C

C COMPUTE AND PRINT TOTAL PROPERTIES.
 TF = 0.0
 DO 201 I=1,NPP
 201 TF = TF + Z(I)
 IF(MIN1 .LE. MINI) GO TO 300
 IF(NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 300
 IF(NLINE +7 .GT. MAXLIN) GO TO 300
 WRITE(NOT,2002)
 NLINE=NLINE+2
 GO TO 310
 300 CALL PAGEHD
310 WRITE(NOT,2001) CONVRT,TF
NLINENLINE+5
RETURN

C
999 CALL ZZBOMB (6HALD02,NERROR)
END
SUBROUTINE ALPHAA (ALPHA, A, Z, NR, NC, KR)
DIMENSION A(KR,1), Z(KR,1)

C SCALAR ALPHA TIMES MATRIX A. (ALPHA * A = Z).
C MATRICES A, Z MAY SHARE SAME CORE LOCATIONS.
C CODED BY RL WCHLEN, FEBRUARY 1965.

C SUBROUTINE ARGUMENTS
C ALPHA = INPUT SCALAR.
C A = INPUT MATRIX. SIZE(NR,NC).
C Z = OUTPUT RESULT MATRIX. SIZE(NR,NC).
C NR = INPUT NUMBER OF ROWS IN MATRICES A, Z.
C NC = INPUT NUMBER OF COLS IN MATRICES A, Z.
C KR = INPUT ROW DIMENSION OF A, Z IN CALLING PROGRAM.

DO 10 I=1,NR
DO 10 J=1,NC
10 Z(I,J) = ALPHA * A(I,J)
RETURN
END
SUBROUTINE ASSEM (A, IRZ, JCZ, Z, NRA, NCA, NRZ, NCZ, KRA, KRZ)

DIMENSION A(KRA,1), Z(KRZ,1)

C MATRIX ASSEMBLY. (MATRIX A INTO MATRIX Z).
C BE SURE MATRIX Z IS DEFINED BEFORE CALLING THIS SUBROUTINE. FOR
C EXAMPLE, CALL ZERO TO CLEAR MATRIX Z.
C CALLS FORMA SUBROUTINE ZZBOMB.
C CODED BY RL WOHLEN. FEB 1969.
C LAST REVISION BY RL WOHLEN. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C A = INPUT MATRIX, SIZE(NRA,NCA).
C IRZ = INPUT ROW NUMBER IN MATRIX Z OF FIRST ROW OF MATRIX A.
C JCZ = INPUT COL NUMBER IN MATRIX Z OF FIRST COL OF MATRIX A.
C Z = OUTPUT RESULT MATRIX, SIZE(NRZ,NCZ).
C NRA = INPUT NUMBER OF ROWS OF MATRIX A.
C NCA = INPUT NUMBER OF COLS OF MATRIX A.
C NRZ = INPUT NUMBER OF ROWS OF MATRIX Z.
C NCZ = INPUT NUMBER OF COLS OF MATRIX Z.
C KRA = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.
C KRZ = INPUT ROW DIMENSION OF Z IN CALLING PROGRAM.
C
C NERROR EXPLANATION
C 1 = MATRIX A EXCEEDS MATRIX Z - ROWS.
C 2 = MATRIX A EXCEEDS MATRIX Z - COLUMNS.
C
IF ((IRZ-1+NRA) .GT. NRZ) GO TO 999
NERROR = 1
IF ((JCZ-1+NCA) .GT. NCZ) GO TO 999
NERROR = 2

DO 10 IA=1,NRA
 IZ = IA + IRZ - 1
DO 10 JA=1,NCA
 JZ = JA + JCZ - 1
10 Z(IZ,JZ) = A(IA,JA)
RETURN

C 999 CALL ZZBOMB (6HASSEM,NERROR)
END
SUBROUTINE AT1(A,Z,NR,NC,KRA,KRZ)
DIMENSION A(KRA,1),Z(KRZ,1)
COMMON / LWRKV1 / V(500)

AT1 PERFORMS THE OPERATION \((Z) = ((A)\text{T}R\text{AN}\text{S}P\text{O}\text{SE})\)
AT1 CAN ALSO PERFORM THE OPERATION \((A) = ((A)\text{T}R\text{AN}\text{S}P\text{O}\text{SE})\) BY CALL AT1(A,A,---ETC---)

MAXIMUM SIZE NC=500

FORMA SUBROUTINE ZZBOMR IS CALLED
CODED BY JOHN ADMIRE NASA JULY 1972

ARGUMENTS
A - INPUT MATRIX (A) SIZE(NR BY NC)
Z - OUTPUT MATRIX (Z) SIZE(NC BY NR)
NR - INPUT NUMBER OF ROWS IN (A)
NC - INPUT NUMBER OF COLUMNS IN (A)
KRA - INPUT ROW DIMENSION OF (A) IN CALLING PROGRAM
KRZ - INPUT ROW DIMENSION OF (Z) IN CALLING PROGRAM

NERROR=1
IF(NC .GT. 500 .OR. NC .GT. KRZ .OR. NR .GT. KRA) GO TO 999
N=NR
IF(NC .LT. NR) N=NC
DO 40 K=1,N
DO 10 J=K,NC
10 V(J)=A(K,J)
DO 20 I=K,NC
20 Z(K,I)=A(I,K)
DO 30 J=K,NC
30 Z(J,K)=V(J)
40 CONTINUE
RETURN
999 CALL ZZBOMR(6HAT1,NERROR)
END
SUBROUTINE ATBI(A,B,Z,NRA,NCA,NCB,KRA,KRB,KRZ)
DIMENSION A(KRA,1),R(KRB,1),Z(KRZ,1)
COMMON / LWPKVI / V(500)
DOUBLE PRECISION SUM, SS, ZERO
DATA ZERO /0.0/
ATBI PERFORMS THE OPERATION (Z)=((A)TRANSPOSE)*(B) .
ATBI CAN ALSO BE USED TO PERFORM THE OPERATIONS
(A)=((A)TRANSPOSE)*(B) BY CALL ATBI(A,B,A,--ETC--)
(Z)=((A)TRANSPOSE)*(A) BY CALL RI(A,A,Z,--ETC--).
IF NRA IS NEGATIVE AND NCA IS EQUAL TO NCB
A SQUARE, SYMMETRIC (Z) IS CALCULATED.
IF (A) DOES NOT SHARE STORAGE WITH (Z); IT WOULD
BE MORE EFFICIENT TO USE ATB2 TO PERFORM THIS OPERATION.
MAXIMUM SIZE NRA=500
INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
FORMA SUBROUTINES ZZBOMB AND AT1 ARE CALLED.
CODED BY JOHN ADIPE *NASA* JULY 1972.
LAST REVISION BY RL WOHLEN. MARCH 1976.

ARGUMENTS
A - INPUT MATRIX (A) SIZE(NRA BY NCA)
B - INPUT MATRIX (B) SIZE(NCA BY NCB)
Z - OUTPUT MATRIX (Z) SIZE(NCA BY NCB)
NRA - INPUT ABS(NRA) IS THE NUMBER OF ROWS IN (A)
NCA - INPUT NUMBER OF COLUMNS IN (A)
NCB - INPUT NUMBER OF COLUMNS IN (B)
KRA - INPUT ROW DIMENSION OF (A) IN CALLING PROGRAM
KRB - INPUT ROW DIMENSION OF (B) IN CALLING PROGRAM
KRZ - INPUT ROW DIMENSION OF (Z) IN CALLING PROGRAM

NERROK EXPLANATIONS
1 = SIZE EXCEEDANCE.
2 = NON-SQUARE RESULT ASKED FOR.

NR=INT(NRA)

IF(NR .GT. 500 .OR. NR .GT. KRA .OR. NR .GT. KRB
* .OR. NCA .GT. KRZ .OR. NCA .GT. KRZ) GO TO 999
IF(NRA .GT. 0) GO TO 40

IF(NCA .LT. NCB) GO TO 999
DO 30 I=1,NCA
DO 10 K=1,NR
10 V(K)=A(K,I)
DO 30 J=1,NCB
SUM=ZERO
DO 20 K=1,NR
SS=V(K)*B(K,J)
20 SUM=SUM+SS
30 Z(J,I)=SUM
 DO 33 I=1,NR
 DO 33 J=1,NR
33 Z(I,J)=Z(J,I)
 RETURN
40 DO 70 I=1,NCA
 DO 50 K=1,NRA
50 V(K)=A(K,I)
 DO 70 J=1,NCB
 SUM=ZERO
 DO 60 K=1,NPA
 SS=V(K)*B(K,J)
 60 SUM=SUM+SS
70 Z(I,J)=SUM
 CALL AT1(Z,Z,NCB,NCA,KNZ,KNZ)
 RETURN
999 CALL ZZBOMB(NHATB1,NEROR)
END
SUBROUTINE ATB2(A,B,Z,NRA,NCA,NCB,KRA,KRB,KRZ)
DIMENSION A(KRA,1),B(KRB,1),Z(KRZ,1)
COMMON /LWRKV1/ V(500)
DOUBLE PRECISION SUM,SS,ZERO
DATA ZERO /0.D/

ATB2 PERFORMS THE OPERATION \((Z) = ((A)\text{TRANSPOSE})*(B)\)
ATB2 CAN ALSO BE USED TO PERFORM THE OPERATIONS
\((B) = ((A)\text{TRANSPOSE})*(B)\) BY CALL ATB2(A,B,B,---ETC---)
\((Z) = ((A)\text{TRANSPOSE})*(A)\) BY CALL ATB2(A,A,Z,---ETC---)

IF NRA IS NEGATIVE AND NCA IS EQUAL TO NCB
A SQUARE, SYMMETRIC \((Z)\) IS CALCULATED.

MAXIMUM SIZE NRA=500
INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.

FORMA SUBROUTINE ZZROMB IS CALLED.
CODED BY JOHN ADMIRE *NASA* JULY 1972.
LAST REVISION BY RL WOHLEN MARCH 1976.

ARGUMENTS
A - INPUT MATRIX \((A)\) SIZE(NRA BY NCA)
B - INPUT MATRIX \((B)\) SIZE(NRA BY NCB)
Z - OUTPUT MATRIX \((Z)\) SIZE(NCA BY NCB)
NRA - INPUT ABS(NRA) IS THE NUMBER OF ROWS IN \((A)\)
NCA - INPUT NUMBER OF COLUMNS IN \((A)\)
NCB - INPUT NUMBER OF COLUMNS IN \((B)\)
KRA - INPUT ROW DIMENSION OF \((A)\) IN CALLING PROGRAM
KRB - INPUT ROW DIMENSION OF \((B)\) IN CALLING PROGRAM
KRZ - INPUT ROW DIMENSION OF \((Z)\) IN CALLING PROGRAM

NEROR EXPLANATIONS
1 = SIZE EXCEEDANCE.
2 = NON-SQUARE RESULT ASKED FOR.

IF(NR -GT. 500 OR. NR -GT. KRB OR. NR -GT. KRA
* OR. NCA -GT. KRZ) GO TO 999
IF(NRA -GT. 0) GO TO 40

DO 30 J=1,NCB
DO 10 K=1,NR
10 V(K)=B(K,J)
DO 30 J=1,J
SUM=ZERO
DO 20 K=1,NR
SS=A(K,1)*V(K)
20 SUM=SUM+SS
DO 33 I=1,NC
DO 30 J=1,NR
30 Z(I,J)=SUM
DO 33 I=1,NC
DO 33 J=1,NR
33 CONTINUE
33 Z(J,I)=Z(I,J)
RETURN

40 DO 70 J=1,NCB
DC 50 K=1,NRA

50 V(K)=R(K,J)
DO 70 I=1,NCA
SUM=ZERO
DO 60 K=1,NRA
SS=A(K,I)*V(K)

60 SUM=SUM+SS
70 Z(I,J)=SUM
RETURN

999 CALL ZZBOMB(6HATB2 ,NERROR)
END
SUBROUTINE ATBC1(A,B,C,Z,NRA,NCA,NCB,KRA,KRB,KRC,KRZ)
DIMENSION A(KRA,1),B(KRB,1),C(KRC,1),Z(KRZ,1)
COMMON / LWRKVI / V(500)
DOUBLE PRECISION SUM,SS
C
ATBC1 PERFORMS THE OPERATION (Z) = ((A)TRANSPOSE) x (B) + (C).
ATBC1 CAN ALSO BE USED TO PERFORM THE OPERATIONS
(Z) = ((A)TRANSPOSE) x (F) + (A) BY CALL ATBC1(A,B,A,Z,...ETC...)
(Z) = ((A)TRANSPOSE) x (F) + (B) BY CALL ATBC1(A,B,B,Z,...ETC...)
(Z) = ((A)TRANSPOSE) x (A) + (C) BY CALL ATBC1(A,A,C,Z,...ETC...)
(Z) = ((A)TRANSPOSE) x (A) + (A) BY CALL ATBC1(A,A,A,Z,...ETC...)
(A) = ((A)TRANSPOSE) x (F) + (C) BY CALL ATBC1(A,B,C,A,...ETC...)
(A) = ((A)TRANSPOSE) x (F) + (B) BY CALL ATBC1(A,B,B,A,...ETC...)
C
IF NRA IS NEGATIVE AND NCA IS EQUAL TO NCB
A SQUARE, SYMMETRIC (Z) IS CALCULATED.
C
IF (A) DOES NOT SHARE STORAGE WITH (Z) OR (C) IT WOULD
BE MORE EFFICIENT TO USE ATBC2 TO PERFORM THIS OPERATION.
C
MAXIMUM SIZE NRA=500
C
INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C
FOPMR SUBROUTINES ZZROMB AND AT1 ARE CALLED.
C
CODED BY JOHN ADMIRE *NASA* JULY 1972.
C
LAST REVISION BY RL WOHLEN. MARCH 1976.
C
ARGUMENTS
A = INPUT MATRIX (A) SIZE(NRA BY NCA)
B = INPUT MATRIX (B) SIZE(NPA BY NCB)
C = INPUT MATRIX (C) SIZE(NCA BY NCB)
Z = OUTPUT MATRIX (Z) SIZE(NCA BY NCB)
C
NRA = INPUT ABS(NRA) IS THE NUMBER OF ROWS IN (A)
C
NCA = INPUT NUMBER OF COLUMNS IN (A)
C
NCB = INPUT NUMBER OF COLUMNS IN (B)
C
KRA = INPUT ROW DIMENSION OF (A) IN CALLING PROGRAM
C
KRP = INPUT ROW DIMENSION OF (B) IN CALLING PROGRAM
C
KRC = INPUT ROW DIMENSION OF (C) IN CALLING PROGRAM
C
KRZ = ROW DIMENSION OF (Z) IN CALLING PROGRAM
C
NERDR EXPLANATIONS
1 = SIZE EXCEEDS MAXIMUM ALLOWED.
2 = NON-SQUARE RESULT ASKED FOR.
C
NR=IABS(NRA)
C
IF(NR > GT 500 OR. NR > GT KPA OR. NCA > GT KRC
C
* OR. NR > GT KRB OR. NCB > GT. KRZ OR. NCA > GT. KRZ) GO TO 999
C
IF(NRA > GT 0) GC TO 40
C
NERDR = 1
C
IF(NCA > GT NCB) GO TO 999
C
DO 30 I=1,NCA
 DO 10 K=1,NR
 10 V(K)=A(K,I)
C
DO 30 J=I,NCA
 SUM=C(I,J)
 DO 20 K=1,NR
 SS=V(K)*P(K,J)
 20 SUM=SUM+SS
30 Z(J,I)=SUM
 DO 33 I=1,NR
 33 Z(I,J)=Z(J,I)
RETURN
40 DO 70 I=1,NCA
 DO 50 K=1,NRA
50 V(K)=A(K,I)
 DO 70 I=1,NCA
 70 Z(I,J)=SUM
 CALL AT1(Z,Z,NCA,NCA,KR2,KR2)
RETURN
999 CALL ZZBOMB(6HATBC1,NERROR)
END
SUBROUTINE ATBC2(A,B,C,Z,NRA,NCA,NCB,KRA,KRB,KRC,KRZ)
DIMENSION A(KRA,1),B(KRB,1),C(KRC,1),Z(KRZ,1)
COMMON / LWKV1 / V(500)
DOUBLE PRECISION SUM,SS

C ATBC2 PERFORMS THE OPERATION (Z)=((A)TRANSPOSE)*(B)*(C).
C ATBC2 CAN ALSO BE USED TO PERFORM THE OPERATIONS
C (Z)=((A)TRANSPOSE)*(B)*(A) BY CALL ATBC2(A,B,A,Z,...ETC--)
C (Z)=((A)TRANSPOSE)*(A)*(B) BY CALL ATBC2(A,B,A,Z,...ETC--)
C (Z)=((A)TRANSPOSE)*(A)+(C) BY CALL ATBC2(A,B,A,C,Z,...ETC--)
C (Z)=((A)TRANSPOSE)*(A)+(A) BY CALL ATBC2(A,A,A,Z,...ETC--)
C (E)=((A)TRANSPOSE)*(B)+(C) BY CALL ATBC2(A,B,B,C,...ETC--)
C (C)=((A)TRANSPOSE)*(B)+(C) BY CALL ATBC2(A,B,C,C,...ETC--)
C (B)=((A)TRANSPOSE)*(B)+(B) BY CALL ATBC2(A,B,B,B,...ETC--)

IF NRA IS NEGATIVE AND NCA IS EQUAL TO NCB
A SQUARE, SYMMETRIC (Z) IS CALCULATED.
MAXIMUM SIZE NRA=500
INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
FORMA SUBROUTINE ZZEMP IS CALLED.
CODED BY JOHN ADMIRE *NASA* JULY 1972.
LAST REVISION BY RL WOHLEN. MARCH 1976.

ARGUMENTS
A - INPUT MATRIX (A) SIZE(NRA BY NCA)
B - INPUT MATRIX (B) SIZE(NPA BY NCB)
C - INPUT MATRIX (C) SIZE(NPA BY NCB)
Z - OUTPUT MATRIX (Z) SIZE(NCA BY NCB)
NRA - INPUT ABS(NRA) IS THE NUMBER OF ROWS IN (A)
NCA - INPUT NUMBER OF COLUMNS IN (A)
NCB - INPUT NUMBER OF COLUMNS IN (B)
KRA - INPUT ROW DIMENSION OF (A) IN CALLING PROGRAM
KRB - INPUT ROW DIMENSION OF (B) IN CALLING PROGRAM
KRC - INPUT ROW DIMENSION OF (C) IN CALLING PROGRAM
KRZ - INPUT ROW DIMENSION OF (Z) IN CALLING PROGRAM

NERROE EXPLANATIONS
1 = SIZE EXCEEDANCE.
2 = NON-SQUARE RESULT ASKED FOR.

NR=IAES(NRA)
IF(NR .GT. 500 .OR. NR .GT. KRB .OR. NCA .GT. KRC
* .OR. NR .GT. KRA .OR. NCA .GT. KRZ) GO TO 999
IF(NRA .GT. 0) GO TO 40

IF(NCA .NE. NCB) GO TO 999
DO 30 J=1,NCB
DO 10 K=1,NR
10 V(K)=F(K,J)
DO 30 I=1,J
SUM=C(I,J)
DO 20 K=1,NR
 SS=A(K,I)*V(K)
20 SUM=SUM+SS
30 Z(I,J)=SUM
 DO 33 I=1,NR
 DO 33 J=I,NR
33 Z(J,I)=Z(I,J)
 RETURN
40 DO 70 J=1,NCB
 DO 50 K=1,NRA
50 V(K)=B(K,J)
 DO 70 I=1,NCA
 SUM=C(I,J)
 DO 60 K=1,NRA
 SS=A(K,I)*V(K)
60 SUM=SUM+SS
70 Z(I,J)=SUM
 RETURN
999 CALL ZZBOMB(6HAIBC2,NERROR)
END
C
C SPECIAL MATRIX MULTIPLICATION. A(TRANSPOSE) * B = Z.
C Z WILL BE SYMMETRIC.
C USES TWO MATRIX SPACES. RESULT (Z) IS PLACED IN A.
C A Z MUST BE DIMENSIONED LARGE ENOUGH IN MAIN PROGRAM TO CONTAIN THE
C LARGER OF A OR Z.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SUBROUTINE ZZBOMB.
C THE MAXIMUM SIZE IS
C NCB = 500
C DEVELOPED BY RL WOHLLEN. SEPTEMBER 1972.
C LAST REVISION BY RL WOHLLEN. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C AZ = INPUT 1ST MATRIX. SIZE(NRB,NCR).
C B = OUTPUT RESULT MATRIX. SIZE(NCB,NCR).
C NCB = INPUT NUMBER OF ROWS OF MATRIX B, COLS OF MATRIX A(TRANS).
C NCR = INPUT NUMBER OF COLS OF MATRIX B, ROWS OF MATRIX A(TRANS).
C KB = INPUT ROW DIMENSION OF AZ IN CALLING PROGRAM.
C KAZ = INPUT ROW DIMENSION OF AZ IN CALLING PROGRAM.
C NERRCR EXPLANATION
C 1 = SIZE LIMITATION EXCEEDED.
C NERROR = 1
C
C IF (NCR.GT.500 .OR. NCB.GT.KAZ .OR. NRB.GT.KB) GO TO 999
C
C DO 40 I=1,NCR
C DO 35 J=1,NCR
C S = ZERO
C DO 30 K=1,NRB
C SS = AZ(K,I)*B(K,J)
C 30 S = S+SS
C 35 W(J) = S
C DO 40 J=1,NCR
C 40 AZ(J,I) = W(J)
C DO 50 I=1,NCR
C DO 50 J=1,NCR
C 50 AZ(I,J) = AZ(J,I)
C RETURN
C
C 999 CALL ZZBOMB (6HATXBAI,NERROR)
C END
SUBROUTINE ATXBB (A,BZ,NRAT,NRB,NCB,KA,KBZ)
DIMENSION A(KA,1), BZ(KBZ,1)
COMMON / LPKV1 / W(500)
DOUBLE PRECISION S,SS,ZERO
DATA ZERO /0.D/

C MATRIX MULTIPLICATION. A(TRANSPOSE) * B = Z.
C USES TWO WORK SPACES. RESULT (Z) IS PLACED IN B.
C BZ MUST BE DIMENSIONED LARGE ENOUGH IN MAIN PROGRAM TO CONTAIN THE
C LARGER OF B OR Z.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS SUBROUTINE ZZBOMB.
C THE MAXIMUM SIZE IS
C NRAT = 500
C DEVELOPED BY W A BENFIELD. NOVEMBER 1971.
C LAST REVISION BY RL WOHLER. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C A = INPUT MATRIX. SIZE(NRE,NRAT).
C BZ = INPUT MATRIX. SIZE(NRE,NCB).
C C = OUTPUT RESULT MATRIX. SIZE (NRAT,NCB).
C NRAT = INPUT NUMBER OF ROWS OF MATRICES A(TRANS),Z. MAX=500.
C NRB = INPUT NUMBER OF ROWS OF MATRIX B, COLS OF MATRIX A(TRANS).
C NCB = INPUT NUMBER OF COLS OF MATRICES B,Z.
C KA = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.
C KBZ = INPUT ROW DIMENSION OF BZ IN CALLING PROGRAM.
C
C NERROR EXPLANATION
C I = SIZE LIMITATION EXCEEDED.
C
C IF (NRAT.GT.500 .OR. NRAT.GT.KBZ .OR. NRB.GT.KBZ) GO TO 999
C
DO 40 J=1,NCB
 DO 35 I=1,NRAT
 S = ZERO
 DO 30 K=1,NRB
 SS = A(K,I)*BZ(K,J)
 30 S = S+SS
 35 W(I) = S
 DO 40 I=1,NRAT
 BZ(I,J) = W(I)
RETURN
C
999 CALL ZZBOMB (5HATXBB,NERROR)
END
SUBROUTINE ATXBB1 (A, B, NRB, NCB, KA, KBZ)
DIMENSION A(KA,1), BZ(KBZ,1)
COMMON / LWRKV1 / W(500)
DOUBLE PRECISION S, SS, ZERO
DATA ZERO / 0.0*

C SPECIAL MATRIX MULTIPLICATION. A(TRANSPOSE) * B = Z.
C A IS ASSUMED UPPER TRIANGULAR, SQUARE.
C USES TWO WORK SPACES. RESULT (Z) IS PLACED IN B.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SUBROUTINE ZZBOMB.
C THE MAXIMUM SIZE IS
C NRB = 500
C DEVELOPED BY R L WOHLLEN AND W A RENFIELD. MAY 1972.
C LAST REVISION BY RL WOHLLEN. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C A = INPUT MATRIX. SIZE(NRB, NRB).
C BZ = OUTPUT RESULT MATRIX. SIZE (NRB, NCB).
C NRB = INPUT NUMBER OF ROWS OF MATRIX B, SIZE OF MATRIX A(SQUARE).
C MAX=500.
C NCB = INPUT NUMBER OF COLS OF MATRICES B, Z.
C KA = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.
C KBZ = INPUT ROW DIMENSION OF BZ IN CALLING PROGRAM.
C
C NERROR EXPLANATION
C 1 = SIZE LIMITATION EXCEEDED.
C
IF (NRB.GT.500 .OR. NRB.GT.KBZ) GO TO 999
C
DO 40 J=1, NCB
DO 35 I=1, NRB
S = ZERO
DO 30 K=1, I
SS = A(K, I)*BZ(K, J)
30 S = S+SS
35 W(I) = S
DO 40 I=1, NRB
40 BZ(I, J) = W(I)
RETURN
C
999 CALL ZZBOMB (ATXBB1, NERROR)
END
SUBROUTINE ATXBP2 (A,BZ,NRB,NCB,KA,KBZ)
DIMENSION A(KA,1), BZ(KBZ,1)
COMMON /LWKVI / W(500)
DOUBLE PRECISION S,SS,ZERO
DATA ZERO /0.0/

C SPECIAL MATRIX MULTIPLICATION. A(TRANSPOSE) * B = Z.
C Z WILL BE SYMMETRIC. UPPER HALF CALCULATED, REFLECTED TO LOWER HALF.
C USES TWO WORK SPACES. RESULT (Z) IS PLACED IN B.
C BZ MUST BE DIMENSIONED LARGE ENOUGH IN MAIN PROGRAM TO CONTAIN THE
C LARGER OF B OR Z.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SUBROUTINE ZZBOMB.
C THE MAXIMUM SIZE IS
C NCB = 500
C DEVELOPED BY R L WOhLEN AND W A BENFIELD. MAY 1972.
C LAST REVISION BY RL WOhLEN. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C A = INPUT MATRIX. SIZE(NRB,NCB).
C BZ = INPUT MATRIX. SIZE(NRB,NCB).
C = OUTPUT RESULT MATRIX. SIZE(NRB,NCB).
C NRB = INPUT NUMBER OF ROWS OF MATRIX B, COLS OF MATRIX A(TRANS).
C NCB = INPUT NUMBER OF COLS OF MATRICES B,Z, ROWS OF A(TRANS).
C KA = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.
C KBZ = INPUT ROW DIMENSION OF BZ IN CALLING PROGRAM.
C
C NERROR EXPLANATION
C 1 = SIZE LIMITATION EXCEEDED.
C
C IF (NCB.GT.500 .OR. NCB.GT.KBZ .OR. NRB.GT.KBZ) GO TO 999
C
DO 40 J=1,NCB
 DO 35 I=1,J
 S = ZERO
 DO 30 K=1,NCB
 SS = A(K,1)*BZ(K,J)
 30 S = S+SS
 35 W(I) = S
 DO 40 I=1,J
 BZ(J,I) = W(I)
 40 RETURN

999 CALL ZZBOMB (6HATXBP2,NERROR)
END
SUBROUTINE AXBA1 (AZ, B, NRA, NCA, KAZ, KB)
DIMENSION AZ(KAZ, 1), F(KB, 1)
COMMON / LWRKVI / W(500)
DOUBLE PRECISION S, SS, ZERO
DATA ZERO / 0.0/

C MATRIX MULTIPLICATION. A * B = Z.
C MATRIX P IS ASSUMED UPPER TRIANGULAR, SQUARE.
C USES TWO WORK SPACES. RESULT (Z) IS PLACED IN A.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SUBROUTINE ZZDCMB.
C THE MAXIMUM SIZE IS
C NCA = 500
C DEVELOPED BY P A PHILIPPUS. MAY 1972.
C LAST REVISION BY RL WOHLER. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C AZ = INPUT MATRIX. SIZE(NRA, NCA).
C = OUTPUT RESULT MATRIX. SIZE(NRA, NCA).
C B = INPUT MATRIX. SIZE(NCA, NCA).
C NRA = INPUT NUMBER OF ROWS OF MATRICES A, Z.
C NCA = INPUT NUMBER OF Cols OF MATRICES A, Z, SIZE OF B (SQUARE).
C KAZ = INPUT ROW DIMENSION OF AZ IN CALLING PROGRAM.
C KB = INPUT ROW DIMENSION OF B IN CALLING PROGRAM.
C
C NERROR = EXPLANATION
C 1 = SIZE LIMITATION EXCEEDED.
C
C IF (NCA .GT. 500) GO TO 999
C
DO 40 I = 1, NRA
DO 20 K = 1, NCA
20 W(K) = AZ(I, K)
DO 40 J = 1, NCA
S = ZERO
DO 30 K = 1, J
SS = W(K) * B(K, J)
30 S = S + SS
40 AZ(I, J) = S
RETURN

999 CALL ZZDCMB (6HAXBA1, NERROR)
END
SUBROUTINE AXPA2 (AZ, B, N, KAZ, KB)
DIMENSION AZ(KAZ,1), B(KB,1)
COMMON / LWRKVL / W(500)
DOUBLE PRECISION S, SS, ZERO
DATA ZERO /0.D/
C
C MATRIX MULTIPLICATION. A * B = Z.
C B IS ASSUMED UPPER TRIANGULAR, SQUARE.
C Z WILL BE SYMMETRIC. LOWER HALF CALCULATED, REFLECTED TO UPPER HALF.
C USES TWO WORK SPACES. RESULT (Z) IS PLACED IN A.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SUBROUTINE ZZBOMB.
C THE MAXIMUM SIZE IS
C N = 500
C DEVELOPED BY R L WOHLN AND W A BENFIELD. MAY 1972.
C LAST REVISION BY RL WOHLN. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C AZ = INPUT MATRIX. SIZE(N,N).
C = OUTPUT RESULT MATRIX. SIZE(N,N).
C B = INPUT MATRIX. SIZE(N,N).
C KAZ = INPUT ROW DIMENSION OF AZ IN CALLING PROGRAM.
C KB = INPUT ROW DIMENSION OF B IN CALLING PROGRAM.
C
C NERROR EXPLANATION
C 1 = SIZE LIMITATION EXCEEDED.
C
IF (N .GT. 500) GO TO 999

C
DO 40 I=1,N
DO 20 K=1,I
20 W(K) = AZ(I,K)
DO 40 J=1,I
S = ZERO
DO 30 K=1,J
SS = W(K)*B(K,J)
30 S = S + SS
AZ(J,J) = S
40 AZ(I,J) = S
RETURN

C
999 CALL ZZBOMB (6, AXPA2, NERROR)
END
SUBROUTINE AXBA3 (AZ,R,NRB,NCB,KAZ,KB)
DIMENSION AZ(KAZ,1), B(KB,1)
COMMON / LWPKVI / W(500)
DOUBLE PRECISION S,SS,ZERO
DATA ZERO /0.0/
C
C MATRIX MULTIPLICATION. A * B = Z.
C A IS ASSUMED UPPER TRIANGULAR, SQUARE.
C USES TWO WORK SPACES. RESULT (Z) IS PLACED IN A.
C AZ MUST BE DIMENSIONED LARGE ENOUGH IN MAIN PROGRAM TO CONTAIN THE
C LARGER OF A OR Z.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SURRORUTINE ZZBOMB.
C THE MAXIMUM SIZE IS
C NRB = 500
C DEVELOPED BY R L WOHLEN AND WA BENFIELD. MAY 1972.
C LAST REVISION BY RL WOHLERN. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C AZ = INPUT MATRIX. SIZE(NRB,NRB).
C B = OUTPUT RESULT MATRIX. SIZE(NRB,NCB).
C NRB = INPUT NUMBER OF ROWS OF MATRICES B,Z. SIZE OF MATRIX A(SQUARE).
C NCB = INPUT NUMBER OF COLS OF MATRICES B,Z.
C KAZ = INPUT ROW DIMENSION OF AZ IN CALLING PROGRAM.
C KB = INPUT ROW DIMENSION OF B IN CALLING PROGRAM.
C
C NERROR EXPLANATION
C 1 = SIZE LIMITATION EXCEEDED.
C
C IF (NRB .GT. 500) GO TO 999
C
DO 40 I=1,NRB
DO 20 K=I,NRB
20 W(K) = AZ(I,K)
DO 40 J=1,NCB
S = ZERO
DO 30 K=I,NRB
SS = W(K)*B(K,J)
30 S = S + SS
40 AZ(I,J) = S
RETURN
C
999 CALL ZZBOMB (6:AXBA3 ,NERROR)
END
SUBROUTINE PABT (A,B,Z,NRP,NCB,KA,KB)
DIMENSION A(KA,1), B(KB,1), Z(KB,1)
COMMON /LWPKVI/ W(500)
DOUBLE PRECISION S,SS,ZERO
DATA ZERO /0.0/

SPECIAL TRIPLE MATRIX PRODUCT. B*A*B(TRANSPOSE) = Z
INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
CALLS FORMA SUBROUTINE ZZBOMB.
THE MAXIMUM SIZE IS
NCB = 500
DEVELOPED BY CARL ECLEY. JANUARY 1965.
LAST REVISION BY RL WOHLEN. MARCH 1976.

SUBROUTINE ARGUMENTS
A = INPUT INNER MATRIX. SIZE(NCB,NCB).
B = INPUT OUTER MATRIX. SIZE(NRP,NCB).
Z = OUTPUT RESULT MATRIX. SIZE(NRB,NCB).
NRP = INPUT NUMBER OF ROWS OF MATRIX B. SIZE OF MATRIX Z.
NCB = INPUT NUMBER OF COLS OF MATRIX B. SIZE OF MATRIX A. MAX=500.
KA = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.
KB = INPUT ROW DIMENSION OF B,Z IN CALLING PROGRAM.

NERROR EXPLANATION
1 = SIZE LIMITATION EXCEEDED.

IF (NCB.GT.500 .OR. NCB.GT. KA .OR. NRB.GT. KB) GO TO 999

DO 40 J=1,NRR
 DO 20 L=1,NCB
 S = ZERO
 DO 10 K=1,NCB
 SS = A(L,K)*B(J,K)
 10 S = S+SS
 20 W(L) = S
 DO 40 I=1,NRP
 S = ZERO
 40 Z(I,J) = S
RETURN

999 CALL ZZBOMB (6HBAET ,NERROR)
END
SUBROUTINE BARTA (AZ,B,NRB,NCB,KAZ,KE)
DIMENSION AZ(KAZ,1), B(KB,1)
COMMON /LWKVI/ W(500)
DOUBLE PRECISION S,SS,ZERO
DATA ZERO /0.0/

C SPECIAL TRIPLE MATRIX PRODUCT. B*A*B(TRANSPOSE) = Z.
C USES TWO WORK SPACES. RESULT (Z) IS PLACED IN AZ.
C AZ MUST BE DIMENSIONED LARGE ENOUGH IN MAIN PROGRAM TO CONTAIN THE
C LARGER OF A OR Z.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SUBROUTINE ZZBOMB.
C THE MAXIMUM SIZE IS
C NCB = 500
C DEVELOPED BY CARL POOLEY. JULY 1965.
C LAST REVISION BY RL WOHN. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C AZ = INPUT INNER MATRIX. SIZE(NCB,NCB).
C B = OUTPUT RESULT MATRIX. SIZE(NRB,NRB).
C KB = INPUT OUTER MATRIX. SIZE(NRB,NCB).
C NRB = INPUT NUMBER OF ROWS OF MATRIX B, SIZE OF MATRIX Z.
C NCB = INPUT NUMBER OF COLS OF MATRIX B, SIZE OF MATRIX A. MAX=500.
C KAZ = INPUT ROW DIMENSION OF AZ IN CALLING PROGRAM.
C KB = INPUT ROW DIMENSION OF B IN CALLING PROGRAM.
C
C NERROR EXPLANATION
C 1 = SIZE LIMITATION EXCEEDED.
C
C NERROR=1

IF (NCB.GT.500 .OR. NRB.GT.KAZ .OR. NCB.GT.KAZ .OR. NRB .GT. KB)
 * GO TO 999

 DO 30 I=1,NCB
 DO 10 K=1,NCB
 10 W(K) = AZ(I,K)
 DO 30 J=1,NRB
 S = ZERO
 DO 20 K=1,NCB
 SS = W(K)*B(J,K)
 20 S = S + SS
 DO 60 J=1,NRB
 DO 40 K=1,NCB
 40 W(K) = AZ(I,K)
 DO 60 I=1,NRB
 S = ZERO
 DO 50 K=1,NCB
 SS = B(I,K)*W(K)
 50 S = S + SS
 60 AZ(I,J) = S
 RETURN

999 CALL ZZBOMB (6HBAETA ,NERROR)
SUBROUTINE BTAB (A,B,Z,NRB,NCB,KAB,KZ)
DIMENSION A(KAB,1), B(KAB,1), Z(KZ,1)
COMMON/LWRKVL/W(500)
DOUBLE PRECISION S,SS,ZERO
DATA ZERO/0.0/

TRIPLE MATRIX PRODUCT. BITRANSPOSE) * A * B = Z.
INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
CALLS FORMA SUBROUTINE ZZBOMB.
THE MAXIMUM SIZE IS
NRB = 500
DEVELOPED BY RL WOHLEN. FEBRUARY 1965.
LAST REVISION BY RL WOHLEN. MARCH 1976.

SUBROUTINE ARGUMENTS
A = INPUT INNER MATRIX. SIZE(NRB,NCB).
B = INPUT OUTER MATRIX. SIZE(NRB,NCB).
Z = OUTPUT RESULT MATRIX. SIZE(NRB,NCB).
NRB = INPUT NUMBER OF RCNS OF MATRIX P, SIZE OF MATRIX A. MAX=500.
NCB = INPUT NUMBER OF COLS OF MATRIX P, SIZE OF MATRIX Z.
KAB = INPUT ROW DIMENSION OF A,B IN CALLING PROGRAM.
KZ = INPUT ROW DIMENSION OF Z IN CALLING PROGRAM.

NEROR EXPLANATION
1 = SIZE LIMITATION EXCEEDED.
NERR0R=1

IF (NRB.GT.500 .OR. NRB.GT.KAB .OR. NCB.GT.KZ) GO TO 999

DO 60 J=1,NCB
DO 20 L=1,NRB
S = ZERO
DO 10 K=1,NRB
SS = A(L,K)*B(K,J)
10 S = S + SS

20 W(L) = S
DO 60 I=1,NCB
S = ZERO
DO 30 L=1,NRB
SS = A(L,I)*W(L)
30 S = S + SS

DO 40 I=1,NCB
S = ZERO
DO 30 L=1,NRB
SS = A(L,I)*W(L)
30 S = S + SS

40 Z(I,J) = S
RETURN

CALL ZZBOMB (6BTAB ,NERROR)
END
SUBROUTINE PTA1(A,B,Z,NRB,NCR,KRA,KRB,KRZ)
COMMON / LRKVL / V(500)
DIMENSION A(KRA,1),B(KRB,1),Z(KRZ,1)
DOUBLE PRECISION SUM,SS,ZERO
DATA ZERO /0.0/
PTA1 PERFORMS THE OPERATION \((Z) = ((B)\text{TRANSPOSE})*(A)\text{TRANSPOSE}*(B)\).
PTA1 CAN ALSO PERFORM THE OPERATION
\((A) = ((B)\text{TRANSPOSE})*(A)\text{TRANSPOSE}\) BY CALL PTA1(A,B,A,--ETC--).
IF NRB IS NEGATIVE A SYMMETRIC \((Z)\) IS COMPUTED.
MAXIMUM SIZE NRB=500
INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
FORMA SUBROUTINE ZZPOMB IS CALLED.
CODED BY JOHN ADMIRE *NASA* JULY 1972.
LAST REVISION BY RL WOHNEN. MARCH 1976.

ARGUMENTS

- INPUT MATRIX \((A)\) SIZE(NRB BY NRB)
- INPUT MATRIX \((B)\) SIZE(NRB BY NCR)
- OUTPUT MATRIX \((Z)\) SIZE(NCR BY NCR)
- INPUT ABS(NRB) IS THE NUMBER OF ROWS IN \((B)\)
- INPUT NUMBER OF COLUMNS IN \((B)\)
- INPUT ROW DIMENSION OF \((A)\) IN CALLING PROGRAM
- INPUT ROW DIMENSION OF \((B)\) IN CALLING PROGRAM
- INPUT ROW DIMENSION OF \((Z)\) IN CALLING PROGRAM

NERROR EXPLANATIONS

1 = SIZE EXCEEDANCE

NERROR = 1
IF(NR .GT. 500) OR. NR .GT. KRA OR. NR .GT. KRB
* OR. NR .GT. KRZ OR. NCR .GT. KRB) GO TO 999
IF(NRB .GT. 0) GO TO 70
DO 30 I=1,NR
DC 10 K=1,NR
10 V(K)=A(I,K)
DO 30 J=1,NCR
SUM=ZERO
DO 20 K=1,NR
SS=V(K)*P(K,J)
20 SUM=SUM+SS
30 Z(I,J)=SUM
DO 60 J=1,NCR
DO 40 K=1,NR
40 V(K)=Z(K,J)
DO 60 I=1,J
SUM=ZERO
DC 50 K=1,MR
SS=E(K,1)*V(K)
50 SUM=SUM+SS
60 Z(I,J)=SUM
 DO 63 I=1,NR
 DO 63 J=1,NR
63 Z(J,I)=Z(I,J)
 RETURN
70 DO 100 I=1,NRB
 DO 80 K=1,NRB
80 V(K)=A(I,K)
 DC 100 J=1,NCB
 SUM=ZERO
 DO 90 K=1,NRB
 SS=V(K)*R(K,J)
90 SUM=SUM+SS
100 Z(I,J)=SUM
 DO 130 J=1,NCB
 DO 110 K=1,NRB
110 V(K)=Z(K,J)
 DC 130 I=1,NCB
 SUM=ZERO
 DO 120 K=1,NRP
 SS=R(K,I)*V(K)
120 SUM=SUM+SS
130 Z(I,J)=SUM
 RETURN
999 CALL ZZBOMB(6HBTAB1,NERRCR)
END
SUBROUTINE BTAPA (AZ,P,NRP,NCB,KAZ,KB)
DIMENSION AZ(KAZ,1), B(KB,1)
COMMON /LWRKVI/W(500)
DOUBLE PRECISION S,SS,ZERO
DATA ZERO /0.0/

TRIPLE MATRIX PRODUCT. B(TRANSPOSE) * A * P = Z.
USES TWO WORK SPACES. RESULT (Z) IS PLACED IN A.
AZ MUST BE DIMENSIONED LARGE ENOUGH IN MAIN PROGRAM TO CONTAIN THE
LARGER OF A OR Z.
INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
CALLS FORMA SUBROUTINE Z2EOMB.
THE MAXIMUM SIZES ARE
NRP = 500
NCB = 500
DEVELOPED BY W A BENFIELD. MAY 1972.
LAST REVISION BY PL WOHLER. MARCH 1976.

SUBROUTINE ARGUMENTS
AZ = INPUT INNER MATRIX. SIZE(NRP,NRP).
B = OUTPUT RESULT MATRIX. SIZE(NCB,NCB).
NRP = INPUT NUMBER OF ROWS OF MATRIX B, SIZE OF MATRIX A. MAX=500.
NCB = INPUT NUMBER OF COLUMNS OF MATRIX B, SIZE OF MATRIX Z. MAX=500.
KAZ = INPUT ROW DIMENSION OF AZ IN CALLING PROGRAM.
KB = INPUT ROW DIMENSION OF B IN CALLING PROGRAM.

NERROR EXPLANATION
1 = SIZE LIMITATION EXCEEDED.

IF (NRP.GT.500 .OR. NCB.GT.500 .OR. NRP.GT.KAZ .OR. NCB.GT.KAZ)
* GO TO 999

DO 20 I=1,NRP
 DO 5 K=1,NRP
 W(K) = AZ(I,K)
 DO 20 J=1,NCB
 S = ZERO
 DO 10 K=1,NRP
 SS = W(K)*B(K,J)
10 S = S + SS
20 AZ(I,J) = S

DO 30 J=1,NCB
 DO 27 I=1,NRP
 S = ZERO
 DO 25 K=1,NRP
 SS = B(K,1)*AZ(K,J)
25 S = S + SS
27 W(1) = S
30 AZ(1,J) = W(1)
RETURN
999 CALL ZZBOMB (6HBTA, ERROR)
END

BTABA -- 2/2

SUBROUTINE BTABA2 (AZ, B, N, KA)
DIMENSION AZ(KA,1), B(KA,1)
COMMON / LWRKV1 / W(500)
DOUBLE PRECISION S, S2, ZERO
DATA / 0.0, D/
C
C TRIPLE MATRIX PRODUCT. B(TRANSPOSE) * A * B = Z.
C A MUST BE SYMMETRIC TO GET CORRECT ANSWER.
C B IS ASSUMED UPPER TRIANGULAR.
C Z WILL BE SYMMETRIC. UPPER HALF CALCULATED, REFLECTED TO LOWER HALF.
C USES TWO WORK SPACES. RESULT (Z) IS PLACED IN A.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORM A SUBROUTINE ZZBOMB.
C THE MAXIMUM SIZE IS
C N = 500
C DEVELOPED BY R L WOHLLEN AND W A BENFIELD. MAY 1972.
C LAST REVISION BY RL WOHLLEN. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C AZ = INPUT INNER MATRIX. SIZE(N,N).
C = OUTPUT RESULT MATRIX. SIZE(N,N).
C B = INPUT OUTER MATRIX. SIZE(N,N).
C N = INPUT SIZE OF MATRICES A, B, Z. MAX=500.
C KA = INPUT ROW DIMENSION OF AZ AND B IN CALLING PROGRAM.
C
C NERROR EXPLANATION
C 1 = SIZE LIMITATION OR DIMENSION SIZE EXCEEDED.

IF (N GT 500 OR N GT KA) GO TO 999
C
DO 20 I=1,N
 DO 5 K=1,N
 5 W(K) = AZ(I,K)
 DO 20 J=1,N
 S = ZERO
 DO 10 K=1,J
 SS = W(K)*B(K,J)
 10 S = S + SS
 DO 20 J=1,N
 AZ(I,J) = S

DO 30 J=1,N
 DO 28 I=1,J
 S = ZERO
 DO 25 K=1,I
 SS = B(K,I)*AZ(K,J)
 25 S = S + SS
 28 W(I) = S
 DO 30 I=1,J
 AZ(I,J) = W(I)
30 AZ(J,I) = W(I)
RETURN

999 CALL ZZBOMB (6HBTABA2,NERROR)
END
SUBROUTINE BTABCI(A,B,C,Z,NRB,NCB,KRA,KRB,KRC,KRZ)
DIMENSION A(KRA,1),B(KRB,1),C(KRC,1),Z(KRZ,1)
COMMON / LWRKVL / V(500)
DOUBLE PRECISION SUM,SS,ZER0
DATA ZERO /0.0D/

BTABCI PERFORMS THE OPERATION (Z)=((B)TRANSPOSE)*(A)*(B)*(C)
BTABCI CAN ALSO PERFORM THE OPERATION
(Z)=((E)TRANSPOSE)*(A)*(B)*(C) BY CALL BTABCI(A,B,C,C,--ETC--)
(A)=((E)TRANSPOSE)*(A)*(B)*(C) BY CALL BTABCI(A,B,C,A,--ETC--)

IF NRB IS NEGATIVE A SYMMETRIC (Z) IS COMPUTED.

MAXIMUM SIZE NRE=500
INNERT PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.

FORMA SUBROUTINE Z2BOMB IS CALLED.
CODED BY JOHN ADMIRE *NASA* JULY 1972.
LAST REVISION BY RL WOLLEN. MARCH 1976.

ARGUMENTS
A - INPUT MATRIX (A) *DESTROYED* SIZE(NRB BY NRB)
B - INPUT MATRIX (B) SIZE(NRB BY NCB)
C - INPUT MATRIX (C) SIZE(NCB BY NCB)
Z - OUTPUT MATRIX (Z) SIZE(NCB BY NCB)
NRB - INPUT ARIS(NRB) NUMBER OF ROWS IN (B)
NCB - INPUT NUMBER OF COLUMNS IN (B)
KRA - INPUT ROW DIMENSION OF (A) IN CALLING PROGRAM
KRB - INPUT ROW DIMENSION OF (B) IN CALLING PROGRAM
KRC - INPUT ROW DIMENSION OF (C) IN CALLING PROGRAM
KRZ - INPUT ROW DIMENSION OF (Z) IN CALLING PROGRAM

NERROR EXPLANATIONS
1 = SIZE EXCEEDANCE.

NR=ABS(NRB)
IF(NR .GT. 500 .OR. NR .GT. KRA .OR. NR .GT. KRB .OR. NCB
* .GT. KRC .OR. NCB .GT. KRZ) GO TO 999
IF(NRB .GT. 0) GO TO 70
DO 30 I=1,NR
DO 10 K=1,NR
10 V(K)=A(I,K)
DO 30 J=1,NCB
SUM=ZER0
DO 20 K=1,NR
SS=V(K)*B(K,J)
20 SUM=SUM+SS
30 A(I,J)=SUM
DO 40 J=1,NCB
DO 40 K=1,NR
40 V(K)=A(K,J)
DO 60 J=1,NCB
DO 60 K=1,NR
SUM=C(I,J)
DO 50 K=1,NR
SS=B(K,I)*V(K)
50 SUM=SUM+SS
60 Z(I,J)=SUM
 DO 63 I=1,NR
 DO 63 J=1,NR
63 Z(J,I)=Z(I,J)
RETURN
70 DO 100 I=1,NRB
 DO 80 K=1,NRB
80 V(K)=A(I,K)
 DO 100 J=1,NCB
 SUM=ZERO
 DO 90 K=1,NRB
 SS=V(K)*B(K,J)
 90 SUM=SUM+SS
 100 A(I,J)=SUM
 DO 130 J=1,NCF
 DO 110 K=1,NRB
110 V(K)=A(K,J)
 DO 130 I=1,NCB
 SUM=C(I,J)
 DO 120 K=1,NRP
 SS=B(K,I)*V(K)
 120 SUM=SUM+SS
130 Z(I,J)=SUM
RETURN
995 CALL ZZBOMB(6HETABC1,NERROR)
END
SUBROUTINE BTDB1(D,B,Z,NRB,NCB,KRB,KRZ)
DIMENSION D(I),R(KRB,1),Z(KRZ,1)
COMMON /LRKVI/ V(500)
DOUBLE PRECISION SUM,SS,ZERO
DATA ZERO /0.0/

BTDB1 PERFORMS THE OPERATION (Z) = (B)'TRANPOSE)((-D-)*(B)
WHERE (-D-) IS A DIAGONAL MATRIX AND THE INPUT VECTOR (D)
CONTAINS THE DIAGONAL ELEMENTS.

MAXIMUM SIZE NRB=500
INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.

FORMA SUBROUTINE ZZROMB IS CALLED.
CODED BY JOHN ADMIRE *NASA* JULY 1972.
LAST REVISION BY RL WOHLER, MARCH 1976.

ARGUMENTS
D - INPUT VECTOR CONTAINING THE DIAGONAL ELEMENTS OF (-D-)
B - INPUT MATRIX (B) SIZE(NRB BY NCB)
Z - OUTPUT MATRIX (Z) SIZE(NCB BY NCB)
NRB - INPUT ARS(NRB) NUMBER OF ROWS IN (B)
NCB - INPUT NUMBER OF COLUMNS IN (B)
KRB - INPUT ROW DIMENSION OF (B) IN CALLING PROGRAM
KRZ - INPUT ROW DIMENSION OF (Z) IN CALLING PROGRAM

ERROR EXPLANATIONS
1 = SIZE EXCEEDANCE.

NR=IARS(NRB)

IF(NP GT 500 OR NR GT KRB OR NCB GT KRB) GO TO 999
DO 30 J=1,NCB
DO 10 K=1,NR
10 V(K)=D(K)-B(K,J)
 DO 30 I=1,J
 SUM=ZERO
 DO 20 K=1,NP
 SS=R(K,I)*V(K)
 SUM=SUM+SS
30 Z(I,J)=SUM
 DO 33 I=1,NR
 DO 33 J=1,NR
33 Z(J,I)=Z(I,J)
RETURN
999 CALL ZZROMB(6HBTDB1,NERROR)
END
SUBROUTINE BTDBC1(D,B,C,Z,NRB,NCR,KRC,KRZ)
DIMENSION D(1),B(KRB,1),C(KRC,1),Z(KRZ,1)
COMMON / LWPKVI / V(500)
DOUBLE PRECISION SUM,SS

BTDBC1 PERFORMS THE OPERATION (Z) = (B) * (-D-) * (B) + (C)
WHERE (-D-) IS A DIAGONAL MATRIX AND THE INPUT VECTOR (C)
CONTAINS THE DIAGONAL ELEMENTS.
BTDBC1 CAN ALSO PERFORM THE OPERATION
(C) = (B) * (-D-) * (B) * (C) BY CALL BTDBC1(D,B,C,C,--ETC--) IF NRB IS NEGATIVE A SYMMETRIC (Z) IS COMPUTED.
MAXIMUM SIZE NRB=500
INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
FORMA SUBROUTINE ZDBOMC IS CALLED.
CODED BY JOHN ADAMIR *NASA* JULY 1972.
LAST REVISION BY RL WHALEN MARCH 1976.

ARGUMENTS
D - INPUT VECTOR CONTAINING THE DIAGONAL ELEMENTS OF (-D-)
B - INPUT MATRIX (B) SIZE(NRB BY NCR)
C - INPUT MATRIX (C) SIZE(NCR BY NCR)
Z - OUTPUT MATRIX (Z) SIZE(NCR BY NCR)
NRB - INPUT ABS(NRB) NUMBER OF ROWS IN (B)
NCR - INPUT NUMBER OF COLUMNS IN (B)
KRB - INPUT ROW DIMENSION OF (B) IN CALLING PROGRAM
KRC - INPUT ROW DIMENSION OF (C) IN CALLING PROGRAM
KRZ - INPUT ROW DIMENSION OF (Z) IN CALLING PROGRAM

NERROR EXPLANATIONS
1 = SIZE EXCEEDANCE.
NR=IABS(NRB)

IF(NR .GT. 500) GO TO 999
IF(NRB .GT. 0) GO TO 40
DO 30 J=1,NCR
DO 10 K=1,NR
10 V(K)=D(K)*P(K,J)
DO 30 I=1,J
SUM=C(I,J)
DO 20 K=1,NR
20 SUM=SUM+SS
30 Z(I,J)=SUM
DO 33 I=1,NR
DO 33 J=1,NR
33 Z(J,I)=Z(I,J)
RETURN
40 DO 70 J=1,NCR
DO 50 K=1,NR
50 SUM=SUM+SS
70 CONTINUE
50 V(K) = D(K) * P(K, J)
DO 70 I = 1, NCB
SUM = C(I, J)
DO 60 K = 1, NP
SS = B(K, I) * V(K)
60 SUM = SUM + SS
70 Z(I, J) = SUM
RETURN
999 CALL ZZBOMB (6HBTDBC1, NERROR)
END
SUBROUTINE COLMLT (AVEC, B, Z, NR, NC, KR)
DIMENSION AVEC(1), B(KR,1), Z(KR,1)

C
C MULTIPLY EACH ELEMENT IN COLUMN(J) OF MATRIX B BY
C ELEMENT(J) OF VECTOR AVEC.
C MATRICES B, Z MAY SHARE SAME CORE LOCATIONS.
C CODED BY RL WohlF. FEBRUARY 1965.
C
C SUBROUTINE ARGUMENTS
C AVEC = INPUT VECTOR. SIZE(NC).
C B = INPUT MATRIX. SIZE(NR,NC).
C Z = OUTPUT RESULT MATRIX. SIZE(NR,NC).
C NR = INPUT NUMBER OF ROWS IN MATRICES B, Z.
C NC = INPUT NUMBER OF COLUMNS IN MATRICES B, Z. ELEMENTS IN VECTOR AVEC.
C KR = INPUT ROW DIMENSION OF B, Z IN CALLING PROGRAM.
C
DO 10 I=1,NR
DO 10 J=1,NC
10 Z(I,J) = AVEC(J) * B(I,J)
RETURN
END
SUBROUTINE COMENT
DIMENSION IREMRK(13)
COMMON /LINE/ NLINE, MAXLIN, MINI
DATA NIT,N/NT/5,6/

READ COMMENT CARDS AND PRINT THEM UNDER PAGE HEADING OF FORMA
SUBROUTINE PAGEHD. COMMENT CARDS MAY HAVE ANY KEYPUNCH SYMBOL
IN CARD COLUMNS 1-78.
C IF IT IS DESIRED TO HAVE ANY GIVEN COMMENT CARD PRINT ON A NEW PAGE, SUPPLY THE LETTER P IN COLUMN 80 ON THAT CARD.
C ROUTINE IS ENDED BY SUPPLYING A CARD WITH ZEROS IN COLUMNS 1 THRU 10.
C CALLS FORMA SUBROUTINE PAGEHD.
C CODED BY RF HURDA. MARCH 1966.
C LAST REVISION BY RL WOHLFORD. MARCH 1976.

100 FORMAT (13A6,IX,A1)
200 FORMAT (///)
205 FORMAT (/X,123(1X-))

N = 0
1 READ (NIT,1001) (IREMRK(I),I=1,13),IPGHD
IF (IREMRK(1) .EQ. 6H000000) RETURN
N = N+1
IF (N.NF.1 .AND. IPGHD .NE. 1HP) GO TO 2
IF (MINI .NE. 4HMINI) GO TO 860
IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 800
IF ((NLINE+2) .GT. MAXLIN) GO TO 800
WRITE (NIT,2050)
NLINE = NLINE + 2
GO TO 10
800 CALL PAGEHD
810 WRITE (NIT,2001)
NLINE = NLINE + 3
N = 1
2 IF ((n+8) .EQ. MAXLIN) N = 0
WRITE (NIT,2002) (IREMRK(I),I=1,13)
NLINE = NLINE + 1
GO TO 1
END
SUBROUTINE COMPAR (A,R,NR,NC,NDIG,GTOL,ANAME,RNAME,KA,KR)
DIMENSION A(KA,1), P(KR,1)
COMMON /LLINE/ NLINMAX,LINMIN
DATA EPS/0.0/
DATA NIT,NCT/5,6/
C
C COMPAR - TWO MATRICES ELEMENT BY ELEMENT. PRINT OUT ELEMENT DATA WHEN
C ELEMENTS DO NOT COMPARE TO SPECIFIED NUMBER OF DIGITS (NDIG).
C ELEMENT VALUES BELOW TOLERANCE (GTOL) ARE IGNORED.
C A MAXIMUM OF 1000 NONCOMPARABLE ELEMENTS ARE PRINTED.
C DEVELOPED BY JW ERNST, RL WOHLEN. OCTOBER 1971.
C LAST REVISION BY RL WOHLEN. MARCH 1976.
C
SUBROUTINE ARGUMENTS (ALL INPUT)
C A = MATRIX TO BE CHECKED. SIZE(NR,NC).
C R = MATRIX CONTAINING REFERENCE VALUES. SIZE(NR,NC).
C NR = NUMBER OF ROWS OF MATRICES A,R.
C NC = NUMBER OF COLS OF MATRICES A,R.
C NDIG = NUMBER OF DIGITS TO BE COMPARED BETWEEN (A) AND (F).
C GTOL = GARBAGE TOLERANCE. MATRIX ELEMENTS (ABS) LESS THAN OR
C EQUAL TO THIS VALUE WILL BE IGNORED.
C ANAME = NAME OF MATRIX A.
C RNAME = NAME OF MATRIX R.
C KA = ROW DIMENSION OF A IN CALLING PROGRAM.
C KR = ROW DIMENSION OF R IN CALLING PROGRAM.
C
2001 FORMAT (/ / 10X 34HSUBROUTINE COMPAR COMPARES MATRIX ,A6,
* 21H TO REFERENCE MATRIX ,A6,20H ELEMENT BY ELEMENT.
* /44X H--------, 21X H-------,
* / 10X 25HELEMENTS ARE COMPARED TO ,I2, 10H DIGITS.
* / 24HELEMENTS (ABS) LESS THAN,E10.3,13H ARE IGNORED.
* / 35X 2H----, 35X 9H--------)
2002 FORMAT (/ 15X 40HDISAGREEMENT WAS FOUND AT THE FOLLOWING ELEMENTS
* /15X 1HI, 3X 1HJ, 6X 7HMATRIX ,A6, 5X 11HREF MATRIX ,A6)
2003 FORMAT (15X 214, 2E19.8)
2004 FORMAT (15X 7HMATRIX ,A6, 30H AGREES WITH REFERENCE MATRIX ,A6)
2005 FORMAT (10X 25HEND OF SUBROUTINE COMPAR.)
C
WRITE (NCT,2001) ANAME,RNAME,NDIG,GTOL
NLINE = NLINE + 7
ATOL = 10.*(-NDIG)
NEL = 0
DO 20 J=1,NC
DO 20 I=1,NR
IF (ABS(A(I,J)) .LE. GTOL .AND. ABS(R(I,J)) .LE. GTOL) GO TO 20
IF (ABS(R(I,J)) .LE. EPS) GC TO 10
IF (ABS(A(I,J)-R(I,J))/R(I,J) .LE. ATOL) GO TO 20
10 IF (NEL .EQ. 0) WRITE (NCT,2002) ANAME,RNAME
NLINE = NLINE + 3
NEL = NEL+1
IF (NEL .GT. 1000) GO TO 30
NLINE = NLINE + 1
20 CONTINUE
IF (NEL .EQ. 0) WRITE (NCT,2004) ANAME,RNAME
NLINE = NLINE + 2
30 WRITE (NOL, 2005)
NLINE = NLINE + 2
RETURN
END
SUBROUTINE DB1(D,F,Z,NRP,NCR,KRR,KRZ)
DIMENSION D(1),F(KRR,1),Z(KRZ,1)

DB1 PERFORMS THE OPERATION (Z)=(-1)*F
WHERE F IS A VECTOR THAT CONTAINS THE DIAGONAL ELEMENTS OF (-D-)
DB1 CAN ALSO PERFORM THE OPERATION
(F)=(-D-)*F BY CALL DB1(B,B,,---ETC---)

IF NRP IS NEGATIVE AND ABS(NRP) IS EQUAL TO NCR
A SQUARE, SYMMETRIC (Z) IS CALCULATED.
FORMA SUBROUTINE Z2POMR IS CALLED.
CODED BY JOHN ADAMS *NASA* JULY 1972 .
LAST REVISION BY RL WOHLER. MARCH 1976.

ARGUMENTS
D - INPUT A VECTOR THAT CONTAINS THE DIAGONAL ELEMENTS OF (-D-)
F - INPUT MATRIX (B) SIZE(NRP BY NCR)
Z - OUTPUT MATRIX (Z) SIZE(NRP BY NCR)
NRP - INPUT ABS(NRP) IS THE NUMBER OF ROWS IN (B)
KRR - INPUT ROW DIMENSION OF (B) IN CALLING PROGRAM
KRZ - INPUT ROW DIMENSION OF (Z) IN CALLING PROGRAM

ERROR EXPLANATIONS
1 = SIZE EXCEEDANCE.
2 = NON-SQUARE RESULT ASKED FOR.

NR=IABS(NRP)

IF(NK .GT. KRR ,OR, NR .GT. KRZ) GO TO 999
IF(NRP .GT. 0) GO TO 20

IF(NR .NE. NCR) GO TO 999
DO 10 J=1,NR
 DO 10 I=1,J
 Z(I,J)=D(I)*F(I,J)
10 Z(J,I)=Z(I,J)
 RETURN

20 DO 30 J=1,NCR
 DO 30 I=1,NRP
 Z(I,J)=D(I)*B(I,J)
30 RETURN

999 CALL Z2POMR(6DB1 ,ERROR)
END
SUBROUTINE DCOM1 (A,Z,N,KR)
DIMENSION A(KR,1), Z(KR,1)
DOUBLE PRECISION DM,DS
DATA EPS/0.0/
DATA NIT,N/NOT/5/6/

C DECOMPOSE MATRIX (A) TO FORM UPPER TRIANGULAR MATRIX (Z) SUCH THAT
C A = Z(TRANS) * Z. CHOLESKI SQUARE ROOT METHOD.
C MATRIX (A) SHOULD BE REAL, SQUARE, SYMMETRIC, POSITIVE DEFINITE.
C UPPER HALF OF MATRIX (A) IS USED.
C MATRICES (A) AND (Z) MAY SHARE SAME CORE LOCATIONS.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SUBROUTINE ZZEBMB.
C CODED BY RL WOHLLEN. OCTOBER 1970.
C LAST REVISION BY RL WOHLLEN. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C A = INPUT MATRIX TO BE DECOMPOSED. SIZE(N,N).
C Z = OUTPUT MATRIX. SIZE(N,N).
C N = INPUT SIZE OF MATRICES A, Z.
C KR = INPUT ROW DIMENSION OF A, Z IN CALLING PROGRAM.
C
C NERROR EXPLANATION
C 1 = MATRIX IS NON-POSITIVE DEFINITE AT A(I,1).
C 2 = MATRIX IS NON-POSITIVE DEFINITE.
C
3001 FORMAT (5H1I = I3)

IF (A(1,1) .LE. EPS) GO TO 999
Z(1,1) = SQRT(A(1,1))
IF (N .EQ. 1) RETURN
DC 5 J=2,N
5 Z(1,J) = A(1,J)/Z(1,1)

DO 30 I=2,N
1 IM1 = I-1
2 IP1 = I+1
3 DO 10 K=1,IM1
4 DM = Z(K,1)**2
5 DS = DS - DM
6 Z(I,1) = DS
8 IF (Z(I,1) .LE. EPS) GO TO 998
9 Z(I,1) = SQRT(Z(I,1))
10 IF (I .EQ. N) GO TO 40
11 DO 30 J=1,IP1
12 DS = A(I,J)
13 DC 20 K=1,IM1
14 DM = Z(K,1)*Z(K,J)
15 20 DS = DS - DM
16 Z(I,J) = DS
18 30 Z(I,J) = Z(I,J)/Z(I,1)
C
40 DO 50 I=2,N
 IM1 = I-1
 DO 50 J=1,IM1
50 Z(I,J) = 0.0
RETURN

C
998 WRITE (NOT,3001) I
999 CALL ZZBOMB (6HDCOM1,ERROR)
END
SUBROUTINE DIAG (AVEC,Z,N,KR)

C DIMENSION AVEC(1), Z(KR,1)

C DIAGONALIZE A VECTOR (ROW OR COLUMN MATRIX) INTO A SQUARE MATRIX.
C CODED BY RL WÖHLEN. FEB 1965.

C SUBROUTINE ARGUMENTS
C AVEC = INPUT VECTOR. SIZE(N).
C Z = OUTPUT RESULT MATRIX. SIZE(N,N).
C N = INPUT SIZE OF MATRIX Z (SQUARE), LENGTH OF VECTOR AVEC.
C KR = INPUT ROW DIMENSION OF Z IN CALLING PROGRAM.

DO 20 I=1,N
 DO 10 J=1,N
 10 Z(I,J) = 0.0

20 Z(I,I) = AVEC(I)
RETURN
END
SUBROUTINE DIFFI (XA,XZ,YA,Z,NXA,NXZ,NCA,KA,KZ)
DIMENSION XA(L),XZ(L),YA(KA,L),Z(KZ,L)

C LINEAR DIFFERENTIATION.
C VALUES OF XZ MAY BE OUTSIDE OF XA. (EXTRAPOLATION).
C CODED BY RF HRUDA. SEPTEMBER 1965.
C
C SUBROUTINE ARGUMENTS
C XA = INPUT VECTOR OF X-COORDINATES FOR ROWS OF YA. MUST BE IN
C INCREASING ORDER. SIZE(NXA).
C XZ = INPUT VECTOR OF X-COORDINATES FOR DERIVATIVES. SIZE(NXZ).
C YA = INPUT MATRIX OF Y-COORDINATES TO BE DIFFERENTIATED.
C SIZE(NXA,NCA).
C Z = OUTPUT MATRIX OF DERIVATIVES. SIZE(NXZ,NCA).
C EACH COLUMN OF Z HAS DERIVATIVES OF THE RESPECTIVE
C COLUMN OF YA.
C NXA = INPUT NUMBER OF XA STATIONS, ROWS OF MATRIX YA.
C NXZ = INPUT NUMBER OF XZ STATIONS, ROWS OF MATRIX Z.
C NCA = INPUT NUMBER OF COLUMN VECTORS IN MATRICES YA,Z.
C KA = INPUT ROW DIMENSION OF YA IN CALLING PROGRAM.
C KZ = INPUT ROW DIMENSION OF Z IN CALLING PROGRAM.
C
DO 30 K=1,NXZ
DO 10 I=1,NXA
IF(XZ(K).LE.XA(I+1).OR. (I+1).EQ.NXA) GO TO 20
10 CONTINUE
20 DO 30 J=1,NCA
30 Z(K,J) = (YA(I+1,J)-YA(I,J))/(XA(I+1)-XA(I))
C
RETURN
END
SUBROUTINE DIFF2 (XA, XZ, YA, Z, NXA, NXZ, NCA, KA, KZ)
DIMENSION XA(1), XZ(1), YA(KA, 1), Z(KZ, 1)

C
C DIPARABOLIC DIFFERENTIATION.
C (PARABOLIC DIFFERENTIATION IN FIRST, LAST BAYS AND OUTSIDE XA).
C VALUES OF XZ MAY BE OUTSIDE OF XA. (EXTRAPOLATION).
C CALLS FORMA SUBROUTINE 22BOMB.
C CODED BY RF HRUDA. FEBRUARY 1965.
C LAST REVISION BY WA BENFIELD. MARCH 1976.
C
SUBROUTINE ARGUMENTS
C XA = INPUT VECTOR OF X-COORDINATES FOR ROWS OF YA. MUST BE IN
C INCREASING ORDER. SIZE(NXA).
C XZ = INPUT VECTOR OF X-COORDINATES FOR DERIVATIVES. SIZE(NXZ).
C YA = INPUT MATRIX OF Y-COORDINATES TO BE DIFFERENTIATED.
C SIZE(NXA, NCA).
C Z = OUTPUT MATRIX OF DERIVATIVES. SIZE(NXZ, NCA).
C EACH COLUMN OF Z HAS DERIVATIVES OF THE RESPECTIVE
C COLUMN OF YA.
C NXA = INPUT NUMBER OF XA STATIONS, ROWS OF MATRIX YA.
C NXZ = INPUT NUMBER OF XZ STATIONS, ROWS OF MATRIX Z.
C NCA = INPUT NUMBER OF COLUMN VECTORS IN MATRICES YA, Z.
C KA = INPUT ROW DIMENSION OF YA IN CALLING PROGRAM.
C KZ = INPUT ROW DIMENSION OF Z IN CALLING PROGRAM.
C
C NERROR EXPLANATION
C 1 = LESS THAN 3 STATIONS.

NEPROR = 1

IF (NXA .LT. 3) GO TO 999

DO 400 K=1, NXZ
 IF (XZ(K) .LE. XA(2)) GO TO 100
 IF (XZ(K) .GE. XA(NXA-1)) GO TO 300
 CD 50 I=3, NXA
 IF (XZ(K) .LE. XA(1)) GO TO 200
 50 CONTINUE

C FIRST BAY OR LEFT EXTRAPOLATION.
100 BAYL = XA(2) - XA(1)
 H = (XZ(K) - XA(1))/BAYL
 D = (XA(3) - XA(1))/BAYL
 DC 102 J=1, NCA
102 Z(K,J) = (YA(I, J) * (2.0 * H - 1.0 - D) / D
 + YA(I, J) * (2.0 * H - D) / (1.0 - D)
 + YA(I+1, J) * (-2.0 * H + 1.0) / (D - D**2)) / BAYL
 GO TO 400

C INTERIOR BAY.
200 BAYL = XA(I) - XA(I-1)
 H = (XZ(K) - XA(I-1))/BAYL
 C = (XA(I-2) - XA(I-1))/BAYL
 D = (XA(I+1) - XA(I-1))/BAYL
 DC 202 J=1, NCA
202 Z(K,J) = (YA(I-2, J) * (3.0 * H**2 - 4.0 * H + 1.0) / (C - C**2)
DIFF2 -- 2/2

* +YA(I-1,J)*(3.0*H**2*(C-D)+2.0*H*(2.0*D-C)-D*(1.0+C))/(C*D)
* +YA(I,J)*(3.0*H**2*(D-C)+2.0*H*(1.0-2.0*D+C)-C*(1.0-D))/
 ((1.0-C)*(1.0-D))
* +YA(I+1,J)*(-3.0*H**2+2.0*H)/(D-D**2) /BAYL
GO TO 400

C

LAST DAY OR RIGHT EXTRAPOLATION.

300 BAYL = XA(NXA)-XA(NXA-1)
 H = (X2(K) -XA(NXA-1))/BAYL
 C = (XA(NXA-2)-XA(NXA-1))/BAYL
 DO 302 J=1,NCA
 302 Z(K,J)=(YA(NXA-2,J)*(-2.0*H+1.0)/(C-C**2)
 * +YA(NXA-1,J)*(2.0*H-1.0-C)/C
 * +YA(NXA,J)*(2.0*H-C)/(1.0-C))/BAYL

C

400 CONTINUE
RETURN

C

999 CALL 7ZBOMB (6HDIFF2 ,NERROR)
END
SUBROUTINE DISA (A, IRA, JCA, Z, NRA, NCA, NRZ, NCZ, KRA, KRZ)

DIMENSION A(KRA,1), Z(KRZ,1)

C
C MATRIX DISASSEMBLY. (MATRIX Z FROM MATRIX A).
C CALLS FOR A SUPROUTINE ZZROMB.
C CODED BY PL WOHLER. FEB 1965.
C LAST REVISION BY WA BENFIELD. MARCH 1976.

C
C SUBROUTINE ARGUMENTS
C A = INPUT MATRIX. SIZE(NRA,NCA).
C IRA = INPUT ROW NUMBER IN MATRIX A OF FIRST ROW OF MATRIX Z.
C JCA = INPUT COL NUMBER IN MATRIX A OF FIRST COL OF MATRIX Z.
C Z = OUTPUT RESULT MATRIX. SIZE(NRZ, NCZ).
C NRA = INPUT NUMBER OF ROWS OF MATRIX A.
C NCA = INPUT NUMBER OF COLS OF MATRIX A.
C NRZ = INPUT NUMBER OF ROWS OF MATRIX Z.
C NCZ = INPUT NUMBER OF COLS OF MATRIX Z.
C KRA = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.
C KRZ = INPUT ROW DIMENSION OF Z IN CALLING PROGRAM.

C
C NERROR EXPLANATION
C 1 = LOOKING FOR DATA OUTSIDE OF MATRIX A ROWS.
C 2 = LOOKING FOR DATA OUTSIDE OF MATRIX A COLUMNS.

C

IF ((IRA-1+NRZ) .GT. NRA) GO TO 999

IF ((JCA-1+NCZ) .GT. NCA) GO TO 999

DO 10 IZ=1,NRZ
IA = IZ + IRA - 1
DO 10 JZ=1,NCZ
JA = JZ + JCA - 1
10 Z(IZ,JZ) = A(IA,JA)

RETURN

999 CALL ZZROMB (6HDISA , NERROR)
END
SUBROUTINE EIGN1 (A,VAL,VEC,NIN,FODIN,KR)
DIMENSION A(KR,1), VAL(1), VEC(KR,1)
DATA NIT, NOT/5,0/
C C CALCULATE EIGENVALUES / EIGENVECTORS OF (A)(VEC) = (VEC)(-VAL-).
C JACOBI METHOD, THRESHOLD VERSION, PROGRESS FROM PIVOT ELEMENT
C (IPIVOT,JPIVOT) TO ELEMENT (IPIVOT,JPIVOT+1) AFTER A PIVOT.
C THE (A) MATRIX SHOULD BE REAL, SYMMETRIC. UPPER HALF IS USED.
C CALLS FORMA SUBROUTINE ZMBORM.
C CODED BY RL WOHLEN. APRIL 1969.
C LAST REVISION BY RL WOHLEN. JANUARY 1975.
C C SUBROUTINE ARGUMENTS
C A = INPUT MATRIX TO BE DIAGONALIZED. SIZE(N,N). *DESTROYED*
C VAL = OUTPUT VECTOR OF EIGENVALUES. SIZE(N).
C VEC = OUTPUT MATRIX OF EIGENVECTORS. SIZE(N,N).
C NIN = INPUT ABS(NIN)=N IS THE SIZE OF MATRICES A,VEC, VECTOR VAL.
C IF NIN IS NEGATIVE, INITIAL VEC MATRIX IS ASSUMED TO
C BE SUPPLIED FROM ARGUMENT.
C FODIN = INPUT FINAL OFF-DIAGONAL VALUE FOR DIAGONALIZED A.
C IF FODIN <LE. 0., FOD=TRACE(A)*10**-21 WILL BE USED.
C KR = INPUT ROW DIMENSION OF A,VEC IN CALLING PROGRAM.
C C ERROR EXPLANATION
C 1 = SUM OF THE DIAGONALS IS NOT POSITIVE.
C 2001 FORMAT (/9(A,18H(SUBROUTINE EIGN1))
2002 FORMAT (/41X,2HFINAL OFF-DIAGONAL (FOD) =E10.3, 8H (INPUT))
2003 FORMAT (/39X,26HFINAL OFF-DIAGONAL (FOD) =E10.3,13H (CALCULATED))
C N = IABS(NIN)
IF (NIN .LT. 0) GO TO 10
C SET INITIAL VEC MATRIX TO UNITY.
DO 6 I=1,N
DO 5 J=1,N
5 VEC(I,J) = 0.0
6 VEC(I,I) = 1.0
C 10 IF (N .EQ. 1) GO TO 60
C C FIND LARGEST OFF-DIAGONAL ELEMENT (THRESH) OF A.
C C CALCULATE SUM OF DIAGONALS (TRACE) OF A.
TRACE = 0.
THRESH = AES(A(1;2))
NM1 = N-1
DO 15 I=1,NM1
15 IF (ABS(A(I;1)) .GT. THRESH) THRESH = ABS(A(I;1))
TRACE = TRACE + A(I;1)
IP1 = I+1
DO 15 J=IP1,N
15 IF (ABS(A(I;J)) .GT. THRESH) THRESH = ABS(A(I;J))
TRACE = TRACE + A(I;J)
FOD = FODIN
IF (FODIN .LE. 0.) FOD=TRACE*1.E-21
WRITE (NOT,2001)
IF (FODIN .GT. 0.) WRITE (NOT,2002) FOD
IF (FODIN .LE. 0.) WRITE (NO1,2003) FOD

IF (FOD .LE. 0.) GO TO 999
IF (THRESH .LE. FOD) GO TO 60

C SCAN UPPER OFF-DIAGONAL ELEMENTS OF MATRIX A BY ROWS UNTIL A VALUE
C GREATER THAN THRESH IS FOUND. PIVOT ON THIS ELEMENT (I*,JP*).
20 THRESH = THRESH/10.
IF (THRESH .LT. FOD) THRESH=FOD

IREDC = 0
DO 41 IP=1,NM1
IPM1 = IP-1
IPP1 = IP+1
DO 40 JP=IPP1,N
IF (ARS(A(IP,JP)) .LT. THRESH) GO TO 40
IREDD = 1

C CALCULATE ROTATION VALUES.
DEL = A(IP,IP) - A(JP,JP)
RAD = SQRT (DEL**2 + 4.*A(IP,JP)**2)
IF (DEL .LT. 0.) RAD=-RAD
TN = (IP* A(IP,JP)) / (DEL + RAD)
CS = 1. / SQRT (1. + TN**2)
SN = TN * CS

C DIAGONALIZE MATRIX (A). ONLY UPPER HALF IS USED.
JPM1 = JP-1
JP1 = JP+1
IF (IP .EQ. 1) GO TO 33
DO 32 I=1,IPM1
A(I,JP) = A(I,IP)*CS + A(I,JP)*SN
A(IP,JP) =-A(IP,IP)*SN + A(I,JP)*CS
32 A(I,IP) = AIIP
33 IF (IP1 .EQ. JP) GO TO 35
DO 34 I=IP1,JPM1
AIIP = A(IP,IP)*CS + A(IP,JP)*SN
A(IP,JP) =-A(IP,IP)*SN + A(I,JP)*CS
34 AIIP1 = AIIP
35 IF (JP .EQ. N) GO TO 37
DO 36 IP1=JPP1,N
AIIP = A(IP1,IP)*CS + A(IP1,JP)*SN
A(IP1,JP) =-A(IP1,IP)*SN + A(JP,JP)*CS
36 AIIP1 = AIIP
37 AIIP1 = A(IP,IP)
AJJPJ = A(JP,JP)
CS2 = CS**2
SN2 = SN**2
ASC = 2.*A(IP,JP)*SN*CS
AIIP1 = AIIP1*CS2 + ASC + AJJPJ*SN2
A(IP,JP) = AIIP1*SN2 - ASC + AJJPJ*CS2
A(IP,JP) = 0.

C CALCULATE EIGENVECTORS.
DO 38 I=1,N
VECIIP = VEC(I,IP)*CS + VEC(I,JP)*SN
VECI(JP) =-VEC(I,IP)*SN + VEC(I,JP)*CS
38 VEC(I,IP) = VECIIP
40 CONTINUE
41 CONTINUE
 IF (IREDO .EQ. 1) GO TO 22
 IF (THRESH .GT. FOD) GO TO 20

C
C PLAC D IGON AL FRO M A INTO VAL (EIGENVALUES).
60 DC 61 I=1,N
61 VAL(I) = A(I,I)
 RETURN

C
999 CALL ZZBOMP (6HEIGN1 ,NERROR)
END
SUBROUTINE EIGNIA (A, VAL, VEC, NIN, CTVIN, KR)
DIMENSION A(KR, 11), VAL(1), VEC(KR, 1)

CALCULATE EIGENVALUES / EIGENVECTORS OF (A)(VEC) = (VEC)(-VAL-).
JACOBI METHOD, THRESHOLD VERSION, PROGRESS FROM PIVOT ELEMENT
(IPIVOT, IPIVCT) TO ELEMENT (IPIVOT, IPIVCT+1) AFTER A PIVOT.
THE (A) MATRIX SHOULD BE REAL, SYMMETRIC. UPPER HALF IS USED.
DEVELOPED BY E WOHLEN. AUGUST 1972.

SUBROUTINE ARGUMENTS
A = INPUT MATRIX TO BE DIAGNOLIZED. SIZE(n,n). *DESTROYED*
VAL = OUTPUT VECTOR OF EIGENVALUES. SIZE(n).
VEC = OUTPUT MATRIX OF EIGENVECTORS. SIZE(n,n).
NIN = INPUT ABS(NIN)=N IS THE SIZE OF MATRICES A, VEC, VECTOR VAL.
CTVIN = INPUT CONVERGENCE TOLERANCE ON EIGENVALUES. CONVERGENCE
Assumed if ABS(EIGENVALUE) LESS THAN CTVIN OR IF
THE EIGENVALUE RATIO OF (CURRENT-PRECEDING)/CURRENT
IS LESS THAN CTVIN.
IF CTVIN .LE. 0. * 10**-6 WILL BE USED.
KP = INPUT ROW DIMENSION OF A, VEC IN CALLING PROGRAM.

N = IAES(NIN)
IF (NIN .LT. C) GO TO 10
!SET INITIAL VEC MATRIX TO UNITY.
DO 6 I=1,N
DO 5 J=1,N
5 VEC(I,J) = 0.0
6 VEC(I,I) = 1.0

10 IF (N .EQ. 1) GO TO 60

SET INITIAL EIGENVALUES, CONVERGENCE TOLERANCE.
DO 12 I=1,N
12 VAL(I) = A(I,I)
CTVAL = CTVIN
IF (CTVIN .LE. 0.) CTVAL=1.E-6

FIND LARGEST OFF-DIAGONAL ELEMENT (THRESH) OF A.
THRESH = ABS(A(1,2))
NM1 = N-1
DO 15 I=1,NM1
IP1 = I+1
15 DO 15 J=IP1,N
15 IF (ABS(A(I,J)) .GT. THRESH) THRESH=ABS(A(I,J))

SCAN UPPER OFF-DIAGONAL ELEMENTS OF MATRIX A BY ROWS UNTIL A VALUE
GREATER THAN THRESH IS FOUND. PIVOT ON THIS ELEMENT (IP, JP).
THRESH = THRESH/10.
22 IREDO = 0
DO 41 IP=1,NM1
IPM1 = IP-1
IPPI = IP+1
22 IF (A(IP, J) .GT. THRESH) THEN
DO 41 JP=IPPI,N
IF (ABS(A(IP,JP)) .LT. THRESH) GO TO 40
IREDO = 1

C CALCULATE ROTATION VALUES.
DEL = A(IP,IP) - A(JP,JP)
RAD = SQRT (DEL**2 + 4.0*A(IP,JP)**2)
IF (DEL .LT. 0.) RAD = -RAD
TN = (2.0 * A(IP,JP)) / (DEL + RAD)
CS = 1.0 / SQRT (1.0 + TN**2)
SN = TN * CS

C DIAGONALIZE MATRIX (A). ONLY UPPER HALF IS USED.
JPM1 = JP-1
JPP1 = JP+1
IF (IP .EQ. 1) GO TO 33
DO 32 I=1,JPM1
 AIIP = A(I,IP)*CS + A(I,JP)*SN
 A(I,JP) = A(I,IP)*SN + A(I,JP)*CS
32 A(I,IP) = AIIP

33 IF (IPP1 .EQ. JP) GO TO 35
DO 34 I=IPP1,JPP1
 AIPI = A(IP,I)*CS + A(I,JP)*SN
 A(I,JP) = -A(IP,I)*SN + A(I,JP)*CS
34 A(IP,I) = AIPI

35 IF (JP .EQ. N) GO TO 37
DO 36 I=JPP1,N
 AIPI = A(IP,I)*CS + A(JP,I)*SN
 A(JP,I) = -A(IP,I)*SN + A(JP,I)*CS
36 A(IP,I) = AIPI

37 AIP1P = A(IP,IP)
 AJPJP = A(JP,JP)
 CS2 = CS**2
 SN2 = SN**2
 ASC = 2.0*A(IP,JP)*SN*CS
 A(IP,IP) = AIP1P*CS2 + ASC + AJPJP*SN2
 A(JP,JP) = AIP1P*SN2 - ASC + AJPJP*CS2
 A(IP,JP) = 0.0

C CALCULATE EIGENVECTORS.
DO 38 I=1,N
 VECIIP = VEC(I,IP)*CS + VEC(I,JP)*SN
 VEC(I,JP) = -VEC(I,IP)*SN + VEC(I,JP)*CS
38 VEC(I,IP) = VECIIP

40 CONTINUE
41 CONTINUE
IF (IREDO .EQ. 1) GO TO 22

C TEST EIGENVALUES FOR CONVERGENCE.
DO 52 I=1,N
 IF (ABS(A(I,I)) .LT. CTVAL) GO TO 52
 IF (ABS((A(I,I)-VAL(I))/A(I,I)) .GT. CTVAL) GO TO 55
52 CONTINUE
GO TO 60
55 DO 56 I=1,N
 VAL(I) = A(I,I)
 GO TO 20

C PLACE DIAGONAL FROM A INTO VAL (EIGENVALUES).
60 DO 61 I=1,N
61 VAL(I) = A(I,I)
 RETURN
C
 END
SUBROUTINE FRI (A,B,C,D,TABW,TABF,W,NX,NW,NRTABF,NTAPE,
 KA,KF,WRK,NTAPE)
DIMENSION A(KA,1),E(KA,1),C(KA,1),D(KA,1),TABW(KF,1),TABF(KF,1),
 W(1),WRK(KA,1),F(80),XR(50),XI(50),CN(50),GND(50),
 PHAS(50),NW(50),IV(50),IRE(50),BIN(50),U(50)
DATA NIT,NOT/5,6/
DATA NLPP / 60 /

C FREQUENCY RESPONSE ROUTINE TO SOLVE THE DIFFERENTIAL EQUATION
C (-W**2*A + I*W*B + C)*X(W) = D*F(W) FOR X(W).
C MATRIX B MUST BE NON-SINGULAR.
C VECTOR F IS OBTAINED BY LINEAR INTERPOLATION USING TABW, TABF.
C THE ANSWERS (F*XREAL,X*IMAG,GAIN,GAIN(DECIBELS),PHASE ANGLE) WILL BE
C WRITTEN ON PAPER AND NTAPE EVERY W (OMEGA).
C CALLS FORMA SUBROUTINES INVI, MULT, MULTB, PAGEHD, ZZBOMB.
C THE MAXIMUM SIZES ARE
C NX = 50
C NRTABF = 80
C CODED BY CARL FODLEY. AUGUST 1965.
C
C SUBROUTINE ARGUMENTS (ALL INPUT)
C A = MATRIX COEF OF -W**2. SIZE (NX,NX) *DESTROYED*
C B = MATRIX COEF OF I*W. SIZE (NX,NX) *DESTROYED*
C C = MATRIX. SIZE (NX,NX) *DESTROYED*
C D = MATRIX COEF OF F. SIZE (NX,NRTABF) *DESTROYED*
C TABW = TABLE OF OMEGAS FOR FORCE IN TABF. SIZE (NRTABF,NCTABF).
C OMEGA IS IN RADIANS/SEC.
C TABF = TABLE OF FORCES AT OMEGA IN TABW. SIZE (NRTABF,NCTABF).
C W = VECTOR OF F*OMEGA AT WHICH EQUATION IS SOLVED. SIZE(NW).
C OMEGA IS IN RADIANS/SEC.
C NX = SIZE OF MATRICES A,B,C,WRK,(SQUARE). NUMBER OF ROWS IN D.
C MAX=50.
C NW = SIZE OF VECTOR W.
C NRTABF = NUMBER OF ROWS IN TABW,TABF. NUMBER OF COLS IN D.
C MAX=80.
C NCTABF = NUMBER OF COLS IN TABW,TABF.
C KA = ROW DIMENSION OF A,B,C,D,WRK IN CALLING PROGRAM.
C KF = ROW DIMENSION OF TABW,TABF IN CALLING PROGRAM.
C WPK = WORKSPACE MATRIX. SZF (NX,NX)
C NTAPE = NUMBER OF TAPE ON WHICH ANSWERS WILL BE WRITTEN. (E.G. 4)

C THE OUTPUT DATA (TO BE WRITTEN ON PAPER AND NTAPE AT EACH OMEGA) IS
C W = OMEGA. SCALAR. RADIANS/SEC.
C F = FORCE OBTAINED BY LINEAR INTERPOLATION ON TABF.
C SIZE(NRTABF).
C XR = X(PREAL). SIZE(NX).
C XI = X(PIMAG). SIZE(NX).
C GN = GAIN (SQRT(XR**2+XI**2)). SIZE(NX).
C GND = GAIN(DECIBELS). SIZE(NX).
C PHAS = PHASE ANGLE (DEGREES). SIZE(NX).

2010 FORMAT (//10X, 7HRECP = F10.4,6H RPS, = ,F10.4,4H CPS)
2015 FORMAT (//10X,4HR*A INVERSION CHECK. MAXIMUM DIAGONAL ERROR =
 * E11.2, 6H AT (+13,1H,+13,1H),
28HMAXIMUM OFF-DIAGONAL ERROR =
11.3, 6H AT (I3,1H3,1H)
2020 FORMAT (/10X,14HAPPLIED FORCES / (10X, 5E16.8))
2030 FORMAT (/10X,3HR0W,9X,7H0X(REAL),13X,7H0X(IMAG),12X,9H0MP RATIO,
* 9X,14H0MP RATIO (DB),6X,11H0HASE (DEG),
* //10X,3H4E20.8,5X,F11.6))
C
IF (NX,GT,50 .OR. NRTABF,GT,80) GO TO 999
C
REWRITE NTAPE
WRITE NTAPE ((A(I,J),I=1,NX),J=1,NX)
A=A
REWRITE NTAPE
C
NERRR=1
READ NTAPE ((A(I,J),I=1,NX),J=1,NX)
A=A
C
REWRITE NTAPE
DO 15 I=1,NX
DO 15 J=1,NX
5 B(I,J)=A(I,J)
READ NTAPE ((A(I,J),I=1,NX),J=1,NX)
A=A
C
REWRITE NTAPE
C
IF (W(L),LT,TABW(I,J)) GO TO 999
DO 22 J=2,NRTABF
NERRCR=2
IF (TABW(I,J-1),GE,TABW(I,J) .AND. W(L),GT,TABW(I,J-1)) GO TO 999
IF (W(L),LT,TABW(I,J)) GO TO 28
22 CONTINUE
NERRCR=3
GO TO 999
C
28 F(I) = TABF(I,J-1) + (W(L)-TABW(I,J-1)) * (TABF(I,J)-TABF(I,J-1))/
1 (TABW(I,J)-TABW(I,J-1))
C
CALL MULT (D,F,XI,NX,NRTABF,1,KA,KF)
DO 30 I=1,NX
DO 30 J=1,NX
30 B(I,J) = C(I,J) - (W(L)**2)*A(I,J)
B=C-A**W2
WRK(I,J) = R(I,J)
CALL MULT (B,XI,XR,NX,NX,1,KA,KA)
DO 40 I=1,NX
40 XI(I) = -W(L)*YI(I)
CALL MULTR (WRK,B,NX,NX,NX,KA,KA)
DO 50 I=1,NX
50 B(I,I) = B(I,I) + W(L)**2
B=B**2
C
BEGIN INVERSION (STATEMENTS FROM INV2).
C
IF (NX,EQ,1 .AND. B(I,1),EQ,0.0) GO TO 999
IF (NX,EQ,1 .AND. B(I,1),NE,0.0) GO TO 153
IT = 1
C
NERROR=5
GO TO 60

55 IT = 2
60 DO 65 I=1,NX
 IRE(I) = 1
65 IV(I) = 1
 NM1 = NX - 1
 DO 75 L2=1,NM1
 SMAX = 0.0
 DO 70 J=L2,NX
 LA = IRE(J)
 I = L2
 K = LA
 IF (IT .EQ. 2) I = LA
 IF (IT .EQ. 2) K = L2
 IF (ABS(B(K,I)) .LE. SMAX) GO TO 70
 JMAX = J
 SMAX = ABS(B(K,I))
 70 CONTINUE
 LS = IRE(L2)
 IRE(L2) = IRE(JMAX)
 75 IRE(JMAX) = LS
 DO 80 L2=1,NX
 LA = IRE(L2)
 BIN(L2) = P(LA,L2)
 IF (IT .EQ. 2) BIN(L2) = B(L2,LA)
 80 IF (BIN(L2) .EQ. 0.0) BIN(L2) = 1.0
 DO 90 L2=1,NX
 LA = IRE(L2)
 I = L2
 K = LA
 IF (IT .EQ. 2) I = LA
 IF (IT .EQ. 2) K = L2
 85 WRK(M,M1) = 0.0
 WRK(I,K) = 1.0/BIN(L2)
 DO 90 B(K,I) = E(K,I) - BIN(L2)
 DO 100 L2=1,NX
 SMAX = 0.0
 100 DO 100 J=L2,NX
 LA = IV(J)
 S = 1.0
 95 S = S + B(LA,K)*WPK(K,LA)
 IF (ABS(S) .LE. SMAX) GO TO 100
 LMAX = J
 SMAX = ABS(S)
 100 CONTINUE
 IF (SMAX .GT. 1.0E-99) GO TO 105
 NERROR=6
 IF (IT .EQ. 2) GO TO 999
 GO TO 125
105 LS = IV(L2)
 IV(L2) = IV(LMAX)
 IV(LMAX) = LS
 LA = IV(L2)
 DO 110 I=1,NX
 WW(I) = 0.0
 DO 110 J=1,NX
110 WW(I) = WW(I) + R(LA,J)*WRK(J,I)
 S = 1.0 + WW(LA)
 DO 115 I=1,NX
115 U(I) = WRK(I,LA)
 DO 120 J=1,NX
 DO 120 J=1,NX
120 WRK(I,J) = WRK(I,J) - U(I)*WW(J)/S
125 DO 130 L2=1,NX
 LA = TRE(L2)
 I = L2
 K = LA
 IF (IT .EQ. 2) I = LA
 IF (IT .EQ. 2) K = L2
130 B(h,?) = B(K,1) - BIN(L2)
 IF (SMAX .LE. 1.0E-99) GO TO 55
 DIAGER = 0.
 IDIAG = 1
 XOFF = 0.0
 IOFF = 1
 JOFF = 1
 DO 150 J=1,NX
 DO 145 I=1,NX
 X = 0.0
 DO 135 K=1,NX
135 X = X + WRK(I,K)*F(K,J)
 IF (I .NE. J) GO TO 140
 IF (APS(X-1.) .LT. DIAGER) GO TO 145
 DIAGER = ABS(X-1.)
 IDIAG = I
 GO TO 145
140 IF (ABS(X) .LT. ABS(XOFF)) GO TO 145
 XOFF = X
 IOFF = 1
 JOFF = J
145 CONTINUE
150 CONTINUE
 GO TO 155
153 WRK(1,1) = 1.0/B(1,1)
 DIAGER = B(1,1)*WRK(1,1) - 1.
 IDIAG = 1
 XOFF = 0.
 IOFF = F
 JOFF = 0
155 CALL MULTP (WRK,X,P,NX,NX,1,KA,KA) XR=XREAL
 CALL MULTP (WRK,X1,NX,NX,1,KA,KA) XI=XIMAG

 GET GAIN, PHASE ANGLE.
 DO 180 I=1,NX
GN(I) = SQRT(XR(I)**2 + XI(I)**2)
GNDB(I) = 0.0
IF (GN(I) .GT. 0.0) GNDB(I)=20.0*ALOG10(GN(I))
PHAS(I) = 0.0
180 IF (XI(I) .NE. 0.0 OR XR(I) .NE. 0.0) PHAS(I)=
 57.29578*ATAN2((XI(I),XR(I))

PRINT ANSWERS ON PAPER. HEAD A NEW PAGE EACH OMEGA.
CALL PAGEHD
FREQ= W(L)/6.283185
WRITE (NOT,2010) W(L), FREQ
WRITE (NOT,2015) DIAGER, IDIAG, IDIAG, XOFF, JOFF, JOFF
WRITE (NOT,2020) (F(I),I=1,NRTABF)
NXS = 1
NXE = NX
NFLN = (NRTABF-1)/5 + 1
IF ((NXE +NFLN) .GT. (NLPP-19)) NXF=(NLPP-19)-NFLN
190 WRITE (NOT,2030) (I,XR(I),XI(I),GN(I),GNDB(I),PHAS(I),I=NXS,NXE)
IF (NX .NE. NXE) GO TO 200
NXS = NXE + 1
NXE = NX
IF ((NXE-NXS) .GT. (NLPP-9)) NXE=NXS+(NLPP-9)
CALL PAGEHD
GO TO 190

WRITE ANSWERS ON NTAP FOR SUBSEQUENT USE (SUCH AS
FREQUENCY RESPONSE ADDITIONAL EQUATIONS OR PLN).
200 WRITE (NTAPE) (F(I),J=1,NRTABF)
WRITE (NTAPE) (XR(I),XI(I),GN(I),GNDB(I),PHAS(I),I=1,NX)

500 CONTINUE
RETURN

999 CALL ZZBOMB (6HFR1 ,NERROR)
END
SUBROUTINE FRAEI (A, STA, ZIDENT, NZ, NX, NW, KA, NXTAPE, NZTAPE)
DIMENSION A(KA,1), STA(1), XR(50), XI(50), ZR(80), ZI(80), GN(80),
* GNDP(80), PHAS(80), ZIDENT(12)
DATA NIT, NCT / 6, 6 /
DATA NLPP / 60 /

C FREQUENCY RESPONSE ADDITIONAL EQUATIONS ROUTINE.
C W=OMEGA, X(W)=(XREAL, XIMAG) IS OBTAINED FROM NXTAPE (OUTPUT OF
C FREQUENCY RESPONSE SUBROUTINE).
C THE ANSWERS (W, ZREAL, ZIMAG, GAIN, GAIN(DECIBELS), PHASE ANGLE) WILL BE
C WRITTEN ON PAPER AND NZTAPE EVERY W=OMEGA OF FREQ RESP SUBRT.
C CALLS FOMA SUBROUTINES PAGEHD, ZZBOMB.
C THE MAXIMUM SIZES ARE
C NZ = 80
C NX = 50
C CODED BY RL WOHLEN. AUGUST 1965.
C
C SUBROUTINE ARGUMENTS (ALL INPUT)
C A = MATRIX COEF OF X(W). SIZE(NZ, NX)
C STA = VECTOR OF STATIONS. SIZE(NZ). (A6 FORMAT).
C ZIDENT = HEADING FOR Z IN OUTPUT DATA. (UP TO 12A6 FORMAT).
C NZ = NUMBER OF ROWS OF MATRIX A. MAX=80.
C NX = NUMBER OF COLS OF MATRIX A. MAX=50.
C NW = NUMBER OF OMegas TO BE READ FROM NXTAPE.
C KA = ROW DIMENSION OF A IN CALLING PROGRAM.
C NXTAPE = NUMBER OF TAPe FROM WHICH W,X WILL BE READ. (E.G. 3).
C NZTAPE = NUmeR OF TAPe ON WHICH W,ZR,ZI,GN,GND,PHAS
C WILL BE WRITTEN (E.G 4). IF NZTAPE=0 BYPASS WRITING ON NZTAPE
C
C THE OUTPUT DATA (TO BE WRITTEN ON PAPER AND NZTAPE EACH OMEGA) IS
C W = OMEGA. SCALAR. RADIANS/SEC.
C ZR = Z(REAL). SIZE(NZ).
C ZI = Z(IMAG). SIZE(NZ).
C GN = GAIN (SORT(ZR**2+ZI**2)). SIZE(NZ).
C GND = GAIN(DECIBELS). SIZE(NZ).
C PHAS = PHASE ANGLE (DEGREES). SIZE(NZ).
C
C 2010 FORMAT (/15X, 12A6, //10X, 7HFFEQ = F10.4,8H RPS, = F10.4,4H CPS)
C 2030 FORMAT (/10X,3HRW,3X,7HSTATION,9X,7HZ(PREAL),13X,7HZ(IMAG),
* 12X,9HAMP RATIO,9X,14HAMP RATIO (DB),6X,11HPHASE (DEG),
* //10X,13,4X,A6,4E20.8,5X,F11.6)
C
IF (NX .GT. 50 .OR. NZ .GT. 60) GO TO 999
REWIND NXTAPE
IF (NZTAPE .GT. 0) REWIND NZTAPE
C
DO 100 IOMEGA = 1, NW
READ (NXTAPE) W
READ (NXTAPE) (XR(I), XI(I), DUM, DUM, DUM, I=1,NX)
DO 10 J = 1, NX
ZR(I) = 0.0
ZI(I) = 0.0
DO 10 J = 1, NX
2R(I) = 2P(I) + A(I,J) * XP(J)
10 ZI(I) = ZI(I) + A(I,J) * XI(J)

C
C GET GAIN, PHASE ANGLE
DO 55 I=1,NZ
 GN(I) = SQRT(ZR(I)**2 + ZI(I)**2)
 GNDB(I) = 0.0
 IF (GN(I) .GT. 0.0) GNDB(I)=20.0*ALOG10(GN(I))
 PHAS(I) = 0.0
55 IF (ZI(I) .NE. 0.0 .OR. ZR(I) .NE. 0.0) PHAS(I)=
 1.0 57.29578*ATAN2(ZI(I),ZR(I))

C
C PRINT ANSWERS ON PAPER. HEAD A NEW PAGE EACH OMEGA.
CALL PAGEDH
 FREQ= W/6.283185
 WRITE (NOT,2010) ZIDENT, W, FREQ
 NZS = 1
 NZE = NZ
 IF (NZE .GT. (NLPP-13)) NZE=NLPP-13
60 WRITE (NOT,2030) (I,STA(I),ZR(I),ZI(I),GN(I),GNDB(I),PHAS(I),
 * I=NZS,NZE)
 IF :NZ .EQ. NZE) GO TO 80
 NZS = NZE + 1
 NZE = NZ
 IF (NZE-NZS) .GT. (NLPP-10)) NZE=NZS-(NLPP-10)
 CALL PAGEDH
 GO TO 60

C
C WRITE ANSWERS ON NZTAPE FOR SUBSEQUENT USE (SUCH AS PLOTTING).
80 IF (NZTAPE .GT. 0) WRITE (NZTAPE) W,(STA(I),ZR(I),ZI(I),GN(I),
 * GNDB(I),PHAS(I), I=1,NZ)

C
100 CONTINUE
RETURN

C
999 CALL ZZBOMB (6HFRAE1 ,NERROR)
END
SUBROUTINE IN (NTAPE, Z, N)
DIMENSION Z(1)

C READ DATA FROM NTAPe INTO CORE SPACE Z.
C CODED BY RL WohLEN, MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C NTAPe = INPUT NUMBER OF TAPE. (EG 10).
C Z = OUTPUT DATA READ FROM TAPE.
C N = INPUT NUMBER OF WORDS OF DATA TO BE READ FROM NTAPe.
C
READ (NTAPE) (Z(1), I=1, N)
RETURN
END
INTAPE

SUBROUTINE INTAPE (NTAPE, TAPEID)
COMMON /LLINE/ NLINE, MAXLIN, MINI
DATA IZ1, BUF, ECT/I.O., 3HEOI/
DATA NIT, NOT/5, 6/
C
C INITIALIZE TAPE FOR SUBROUTINE WTAPE.
C CALLS FORMA SUBROUTINE PAGEHD.
C CODED BY RF HRUDA. JULY 1968.
C LAST REVISION BY RL WOHLEN. APRIL 1976.
C
C SUBROUTINE ARGUMENTS (ALL INPUT)
C NTAPE = NUMBER OF TAPE. (E.G. 10).
C TAPEID = TAPE IDENTIFICATION. (E.G. T1234). (A6 FORMAT).
C
2001 FORMAT (/// 14H LOGICAL UNIT 12, 7H, TAPE A6,
* 23H, HAS BEEN INITIALIZED.)
2050 FORMAT (/ 1X 123(1H-))
C
REWIND NTAPE
WRITE (NTAPE) TAPEID, IZ1, ECT, (BUF, I=1, 16)
ENDFILE NTAPE
REWIND NTAPE
IF (MINI .NE. 4+MINI) GO TO 800
IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 800
IF ((NLINE+2+5) .GT. MAXLIN) GO TO 800
WRITE (NOT, 2050)
NLINE = NLINE + 2
GO TO 810
800 CALL PAGEHD)
810 WRITE (NOT, 2001) NTAPE, TAPEID
NLINE = NLINE + 5
C
RETURN
END
SUBROUTINE INVI (A,Z,N,kr)
DIMENSION A(1), Z(1)
COMMON /LPKVI/ G(250), DETR(250)
COMMON /LPKVI2/ IX(250), B(250)
COMMON /LLINE/ NLINE, MAXLIN, MINI
DATA NIT, NOT/5, 6/
C C MATRIX INVERSION (A**-1 = Z). RORDERING METHOD.
C THE DETERMINANT RATIO DET(I+1) / DET(I) IS PRINTED. DET(I) IS THE
C DETERMINANT OF THE FIRST I BY I SUB-MATRIX OF A.
C THE INVERSION CHECK Z*A IS CALCULATED AND PRINTED.
C MATRICES A, Z MAY SHARE SAME CORE LOCATIONS. (Z*A CHECK IS INVALID).
C CALLS FORMA SUBROUTINES PAGEH0, TTEBOM.
C THE MAXIMUM SIZE IS
C N = 250
C DEVELOPED BY BOB DILLON. FEBRUARY 1965.
C LAST REVISION BY RL WOHLER. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
A = INPUT MATRIX TO BE INVERTED. SIZE(N, N).
Z = OUTPUT RESULT MATRIX. SIZE(N, N).
N = INPUT SIZE OF MATRICES A, Z. MAX=250.
KR = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.
C C NEEDED EXPLANATION
1 = SIZE GREATER THAN 250.
2 = FIRST COLUMN IS ZERO.
3 = MATRIX IS SINGULAR.
C
2000 FORMAT (I, 7X, 10X, 1H1, 1H1, 1H1))
2001 FORMAT (I, 10X, 45HSUBROUTINE INVI HAS CALCULATED THE DATA BELOW
* //10X, 44HTHE DETERMINANT RATIOS DET(I+1) / DET(I) ARE
* //10X, (13X, 10F11.3))
2002 FORMAT (10X, 35HTHE (A**-1)*A INVERSION CHECK GIVES
* //10X, (13X, 10F11.6)))
2003 FORMAT (I, 10X, 35HTHE MAXIMUM OFF-DIAGONAL ELEMENT IS
* //10X, (13, 1H1, 1H1, 1H1, 1H1))
2050 FORMAT (I, 132(1H-))
C IF (N .GT. 250) GO TO 999
C DO 160 I=2, N
160 IX(I) = 1
C INVERT FIRST NON-ZERO ELEMENT IN FIRST COLUMN.
DO 190 I=1, N
 IF (A(I) .NE. 0.) GO TO 220
190 CONTINUE
GO TO 999
C START INVERSION WITH ROW 1.
220 DETR(I) = A(I)
Z: (I) = 1. / A(I)
IF (N .EQ. 1) RETURN
IX(I) = 1
IX(J) = 1
C BORDERING LOOP.
DO 630 L=2,N
 K = L
 L1 = L - 1
250 S = 0.
 MIXL = KR * (IX(L) - 1)
 LL = IX(L) + MIXL
 DO 450 I=1,L1
 MIXI = KR * (IX(I) - 1)
 LI = IX(L) + MIXI
 B(I) = 0.
 G(I) = C.
 DO 440 J=1,L1
 MIXJ = KR * (IX(J) - 1)
 IJ = IX(I) + MIXJ
 JL = IX(J) + MIXL
 B(I) = B(I) - Z(IJ) * A''
 JI = IX(J) + MIXI
 LJ = IX(L) + MIXJ
440 G(I) = G(I) - A(LJ) * Z(JI)
450 S = S + A(LJ) * E(J)
 AL = A(LL) * S
 IF (A(LL) .EQ. 0.) GO TO 460
 ALBAR = ABS (AL / A(LL))
 GO TO 490
460 ALBAR = ABS (AL)
490 IF (ALBAR .GE. .1E-6) GO TO 550
C
C INTERCHANGE ROWS AND COLUMNS.
 K = K + 1
 IF (K .GT. N) GO TO 540
 IX L = IX(L)
 IX(L1) = IX(K)
 IX(K) = IX L
 GO TO 250
540 IF (ALBAR .GE. .1E-8) GO TO 550
 GO TO 999
C
550 Z(LL) = 1. / AL
 DETR(L) = AL
 DO 570 I=1,L1
 IL = IX(I) + MIXL
 LI = IX(L) + KR * (IX(I) - 1)
 Z(IL) = B(I) * Z(LL)
570 Z(IL) = G(I) * Z(II)
 DO 570 J=1,L1
 JJ = IX(J) + KR * (IX(J) - 1)
 70 Z(JJ) = Z(JJ) + G(J) * Z(JL)
 CONTINUE
C
C COMPUTE INVERSION CHECK Z'AA.
XOFF = 0.0
DC 720 J=1,N
DC 710 J=1,N
X = 0.0
KJA = KP * (J-1)
DC 703 K=1,N
IK = I + KK*(K-1)
KJ = K + KJA
703 X = X + Z(IK) * A(KJ)
IF (I .NE. J) GO TO 705
G(I) = X
GO TO 710
705 IF (ARS(X) .LT. ARS(XOFF)) GO TO 710
XOFF = X
IOFF = I
JOFF = J
710 CONTINUE
720 CONTINUE

C
C PRINT THE DETERMINANT RATIO AND INVERSION CHECK.
NPL = N/10
IF ((NPL*10) .NE. N) NPL = NPL + 1
NNL = 2*NPL + 21
IF (MIN(I .NE. 4*MIN(I)) GO TO 800
IF (NLINE .LE. 5 .CP. NLINE .GE. MAXLIN) GO TO 800
IF (((NLINE+2+NNL) .GT. MAXLIN) GO TO 800
WRITE (NOT,2050)
NLINE = NLINE + 2
GO TO 810
800 CALL PAGEHD
810 WRITE (NOT,2000) (JC, JC=1,10)
WRITE (NOT,2001) (DETR(I), I=1,N)
WRITE (NOT,2002) (G (I), I=1,N)
WRITE (NOT,2003) XOFF,IOFF,JOFF
NLINE = NLINE + NNL
RETURN
C
999 CALL ZZEO. (6HINV1 ,NERROR)
END
SUBROUTINE INV2 (A,Z,N,KR)
DIMENSION A(KR,1), Z(KR,1), W(250)
COMMON /LWRKV1/ IRE(250), BIN(250)
COMMON /LWRKV2/ V(250), IV(250)
COMMON /LXNV/ NLINF,MAXLIN,MINI
DOUBLE PRECISION DM,DS,ZERO,ONE
DATA ZERO/0.0/, ONE/1.0/
DATA NIT, NCT/5,6/

C C MATRIX INVERSION (A**-1 = Z). RANK ANNHIILATION METHOD.
C ALGORITHM FORMULATED BY C/"L BOOLEY.
C THE INVERSION CHECK Z*A IS CALCULATED AND PRINTED.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SUBROUTINES PAGEHD,ZZBOM.
C THE MAXIMUM SIZE IS
C N = 250
C DEVELOPED BY CARL BOOLEY. JANUARY 1967.
C LAST REVISION BY RL WOHLEN. MARCH 1976.
C C SUBROUTINE ARGUMENTS
C A = INPUT MATRIX TO BE INVERTED. SIZE(N,N).
C Z = OUTPUT RESULT MATRIX. SIZE(N,N).
C N = INPUT SIZE OF MATRICES A,Z. MAX=250.
C KR = INPUT ROW DIMENSION OF A,Z IN CALLING PROGRAM.
C C NERROR EXPLANATION
C 1 = SIZE GREATER THAN 250.
C 2 = MATRIX IS SINGULAR. SIZE = 1.
C 3 = MATRIX IS SINGULAR.
C 2000 FORMAT (///10X,10(7X,1H(12,1H)))
2001 FORMAT (///10X,45H SUBROUTINE INV2 HAS CALCULATED THE DATA BELOW)
2002 FORMAT (///10X,37H THE (A**-1)*A INVERSION CHECK GIVES
* ///10X,25H THE DIAGONAL ELEMENTS ARE /// (13X,10F11.8))
2003 FORMAT (///10X,35H THE MAXIMUM OFF-DIAGONAL ELEMENT IS
* ///F11.3, 2X, 4MAT (I3, 1H, I3, 1H))
2050 FORMAT (// IX 12341H—)

C IF (N .GT. 250) GO TO 999
C IF (N .EQ. 1 .AND. A(1,1) .EQ. 0.0) GO TO 999
C IF (N .EQ. 1 .AND. A(1,1) .NE. 0.0) GO TO 98
C C GENERATE INITIAL ROW IN ICES.
C IT = 1
C GO TO 90
C 91 IT = 2
C 90 DO 5 I=1,N
C IRF(I) = I
C 5 IV(I) = I

C CONDITION A FOR MAXIMUM DIAGONAL ELEMENTS.
C NM1 = N - 1
C GO 6 L=1,NM1
S MAX = 0.0
DO 8 J=L,N
LA = IRE(J)
I = L
K = LA
IF (IT .EQ. 2) I = LA
IF (IT .EQ. 2) K = L
IF (ABS(A(K,I)) .LE. S MAX) GO TO 8
J MAX = J
S MAX = ABS(A(K,I))
8 CONTINUE
LS = IRE(L)
IRE(L) = IRE(J MAX)
6 IRE(J MAX) = LS
DO 7 L=1,N
LA = IRE(L)
BIN(L) = A(LA,L)
IF (IT .EQ. 2) PIN(L) = A(L,L)
7 IF (BIN(L) .EQ. 0.0) BIN(L) = 1.0
C
C GENERATE INITIAL Z AND ABAR.
DO 10 L=1,N
LA = IRE(L)
I = L
K = LA
IF (IT .EQ. 2) I = LA
IF (IT .EQ. 2) K = L
DO 15 J=1,N
M = J
M1 = LA
IF (IT .EQ. 2) M = LA
IF (IT .EQ. 2) M1 = J
15 Z(M,M1) = 0.0
Z(I,K) = 1.0/BIN(L)
10 A(K,I) = A(K,I) - BIN(L)
C
C INVERSION LOOP, USES ROW OF ABAR WITH MAXIMUM S.
DO 35 L=1,N
S MAX = 0.0
DO 23 J =L,N
LA = IRE(J)
DS = ONF
DO 26 K=1,N
DM = A(LA,K)*Z(K,LA)
26 DS = DS + DM
S = DS
IF (ABS(S) .LE. S MAX) GO TO 23
L MAX = J
S MAX = ABS(S)
23 CONTINUE
IF (S MAX .GT. 1.0E-99) GO TO 60
C
C N ERROR=3
IF (IT .EQ. 2) GO TO 999
GO TO 65
60 LS = IRE(L)
IV(L) = IV(LMAX)
IV(LMAX) = LS
LA = IV(L)
DO 25 I=1,N
DS = ZERO
DO 26 J=1,N
DM = A(LA,J)*Z(J,I)
24 DS = DS + DM
25 W(I) = DS
 S = 1.0 + W(LA)
 DO 30 I=1,N
30 U(I) = Z(I,L)
 DO 35 I=1,N
 DO 35 J=1,N
35 Z(I,J) = Z(I,J) - U(I)*W(J)/S
C
C RESTORE A.
65 DO 40 L=1,N
 LA = INF(L)
 I = L
 K = LA
 IF (IT .EQ. 2) I = LA
 IF (IT .EQ. 2) K = L
40 A(K,I) = A(K,I) + BIN(L)
 IF (SMAX .LE. 1.0E-99) GO TO 91
C
C COMPUTE INVERSION CHECK Z.*.
XOFF = 0.0
DO 50 J=1,N
 DO 50 I=1,N
 DS = ZERO
 DO 56 K=1,N
 DM = Z(I,K)*A(K,J)
 56 DS = DS + DM
 IF (I .NE. J) GO TO 47
 U(I) = X
 GO TO 45
47 IF(ABS(X) .LT. XOFF) GO TO 45
XOFF = X
IOFF = I
JOFF = J
45 CONTINUE
50 CONTINUE
C
C PRINT INVERSION CHECK AND MAXIMUM OFF-DIAGONAL ELEMENT.
NPL = N/10
IF ((NPL*10) .NE. N) NPL = NPL+1
NNL = NPL + 17
IF (MINI .NE. 4*MINI) GO TO 800
IF (NLINF .LE. 5.0F .OF. NLINE .GE. MAXLIN) GO TO 800
IF ((NLINF+2*NNL) .GT. MAXLIN) GO TO 800
WRITE (NC7,7050)
NL = NL + 2
GO TO 810
800 CALL PAGEHD
810 WRITE (NOT,2000) (JC, JC=1,10)
 WRITE (NOT,2661)
 WRITE (NOT,2002) (U (I), I=1,N)
 WRITE (NOT,2003) XOFF,IOFF,JOFF
 NLINE = NLINE + NNL
 RETURN
C
98 2(1,1) = 1.0/A(1,1)
 RETURN
C
999 CALL ZZBOMR (6HINV2 ,NERROR)
 END
*
SUBROUTINE INV3 (A,Z,N,CR)
DIMENSION AI(KR,1), Z(KR,1), WI(250)
COMMON /LWPV, W2(250), DETR(250)
COMMON /LLWPV, NLWPV, MAXL, MINI
DOUBLE PRECISION DM, DS, ZER0
DATA ZERO /0.0/
DATA NIT, NPT/5, 6/
C C MATRIX INVERSION (A**-1 = Z). METHOD USES TRIANGULAR DECOMPOSITION
C AND TRIANGULAR INVERSION. MATRIX A SHOULD BE SYMMETRIC, POSITIVE
C DEFINITE. UPPER HALF OF MATRIX A IS USED TO CALCULATE Z. FULL
C MATRICES A, Z ARE USED FOR INVERSION CHECK.
C THE DETERMINANT RATIO DET(I+1) / DET(I) IS PRINTED. DET(1) IS THE
C DETERMINANT OF THE FIRST I BY I SUB-MATRIX OF A.
C THE INVERSION CHECK Z*A IS CALCULATED AND PRINTED.
C MATRICES A, Z MAY SHARE SAME CORE LOCATIONS. (Z*A CHECK IS INVALID).
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SUBROUTINES DCOM1, INV4, PAGEHD, ZZCOMP.
C THE MAXIMUM SIZE IS
C N = 250
C DEVELOPED BY CARL BOOBEY, MARCH 1969.
C LAST REVISIO N BY PL WOHLEN, MARCH 1976.
C C SUBROUTINE ARGUMENTS
C A = INPUT MATRIX TO BE INVERTED. SIZE(N,N).
C Z = OUTPUT RESULT MATRIX. SIZE(N,N).
C N = INPUT SIZE OF MATRICES A, Z. MAX = 250.
C KR = INPUT ROW DIMENSION OF A, Z IN CALLING PROGRAM.
C C NERROR EXPLANATION
C 1 = SIZE GREATER THAN 250.
C 2000 FORMAT (/ 16x,10(7x,1H1,12,1H1))
2001 FORMAT (/ 16x,45SHSUBROUTINE INV3 HAS CALCULATED THE DATA BELOW
* //10x,14HTHE DETERMINANT RATIOS DET(I+1) / DET(I) ARE
* //13x,10E11.3)
2002 FORMAT (/ 10x,37HTHE (A**-1)*A) INVERSION CHECK GIVES
* //10x,75HTHE DIAGONAL ELEMENTS ARE // (13X,10F11.8))
2003 FORMAT (/ 10x,35HTHE MAXIMUM OFF-DIAGONAL ELEMENT IS
* //13x,10F11.8)
2050 FORMAT (/ 1X 123(1H-),
C NERROR=1
C IF (N .GT. 250) GO TO 999
C CALL DCOMDM (A,Z,N,KR)
DO 5 I=1,N
5 DETR(I) = Z(1,I)*Z(1,I)
CALL INV4DM (Z,Z,N,KR)
DO 40 L=1,N
40 IN(I) = Z(1,L)
DO 20 I=1,N
20 WI(I) = Z(I,I)
DO 35 I=1,N
35 DS = ZER0
DO 30 K=1,N
30
DM = Z(I,K)*W1(K)

30 DS = DS + DM

35 W2(I) = DS

JC 40 K=1,N

40 Z(K,1) = W2(K)

C

C CALCULATE INVERSION CHECK Z*A.

XOFF = C.0

DO 120 I=1,N

DO 110 J=1,N

DS = ZERO

DO 105 K=1,N

DM = Z(I,K)*A(K,J)

105 DS = DS + DM

X = DS

IF (I .NE. J) GO TO 108

W1(I) = X

GO TO 110

108 IF (ABS(X) .LT. ABS(XOFF)) GO TO 110

XOFF = X

IOFF = I

JC*F = J

110 CONTINUE

120 CONTINUE

C

C PRINT THE DETERMINANT RATIOS AND INVERSION CHECK.

NPL = N/10

IF ((NPL*10) .NE. N) NPL = NPL+1

NNL = 2*NPL + 21

IF (MINI .NE. 4*MINI) GO TO 860

IF (NLIN .LE. 5 .OR. NLIN .GE. MAXLIN) GO TO 800

IF ((NLIN+2+NNL) .GE. MAXLIN) GO TO 800

WRITE (NOT,2050)

NLIN = NLIN + 2

GO TO 810

800 CALL PAGEHD

810 WRITE (NOT,2000) (JC, JC=1,10)

WRITE (NOT,2001) (DETR(I), I=1,N)

WRITE (NOT,2002) (W1(I), I=1,N)

WRITE (NOT, 002) XOFF, XOFF, IOFF

NLIN = NLIN + NNL

RETURN

C

999 CALL ZZFOMP (6HINV3 ,NERDROP)

END
SUBROUTINE INV4 (A, Z, N, KR)
DIMENSION A(KR, 1), Z(KR, 1)
DOUBLE PRECISION DM, DS
DATA EPS/1.0.E-35/

C MATRIX INVERSION (A**-1 = Z). MATRIX A IS ASSUMED TO BE
C UPPER TRIANGULAR.
C MATRICES A, Z MAY SHARE SAME CORE LOCATIONS.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORM A SUBROUTINE ZZROME.
C CODED BY PL WOHLEN. JANUARY 1971.
C LAST REVISION BY PL WOHLEN. MARCH 1976.

C SUBROUTINE ARGUMENTS
C A = INPUT MATRIX TO BE INVERTED. SIZE(N,N).
C Z = OUTPUT RESULT MATRIX. SIZE(N,N).
C N = INPUT SIZE OF MATRICES A, Z.
C KR = INPUT ROW DIMENSION OF A, Z IN CALLING PROGRAM.

C NERROR EXPLANATION
C 1 = A DIAGNOSTIC ELEMENT IS LESS THAN 1.0.E-35.

C DO 10 I=1,N
IF (ABS(A(I,I)) .LT. EPS) GO TO 999
10 Z(I, I) = 1.0/A(I, I)
 IF (N .EQ. 1) RETURN

C NM1 = N-1
DO 25 I=1,NM1
 IP1 = I+1
 DO 25 J=IP1,N
 Z(I, J) = Z(I, I)*A(I, J)
 IF (J .EQ. IP1) GO TO 23
 JM1 = J-1
 DS = Z(I, J)
 DO 20 K=IP1, JM1
 DM = Z(I, K)*A(K, J)
 20 DS = DS + DM
 Z(I, J) = DS
 23 Z(I, J) = -Z(I, J)*Z(J, J)
 CONTINUE

C DO 30 I=2,N
 IM1 = I-1
 DO 30 J=1,IM1
 Z(I, J) = 0.
 30 RETURN

C CALL ZZROME (6N, INV4, NERROR)
END
SUBROUTINE LTAPE (NTAPE)
DATA NIT, NOUT/5, 6/

C LIST HEADINGS OF MATRICES ON TAPE.
C CALLS FORMA SUBROUTINE PAGEHD.
C REVISED BY RA PHILIPPI. APRIL 1969.

C SUBROUTINE ARGUMENTS (ALL INPUT)
C NTAPE = NUMBER OF TAPE. (E.G. 10).

2001 FORMAT (/36X35HLISTING OF MATRICES ON LOGICAL UNIT13,7H, TAPE A6)
2002 FORMAT (/30X35HLISTING OF MATRICES ON LOGICAL UNIT13,7H, TAPE A6, 1H (CONTINUED))
2003 FORMAT (27X69(1H-1)/27X3HNC,3X7HRUN NO.4X4HNAME5X5HNRWS5X5HNCOLS4X
 4HDAT6X3HNN23X9HPARTITION/
 27X3H---3X6H------4X6H------4X5H------
 4X5H------3X6H------5X3H------3X9H------/)
2004 FORMAT (25Xi5,3X6,4X6,3Xi5,4Xi5,4X6,3Xi5,3Xi4,1H/I4)
2005 FORMAT (/27X12HEND OF LIST.)

C REWIND NTAPF
READ (NTAPE) TAPEID
REWIND NTAPF
L=0

12 CALL PAGEHD:
 IF (L =C. 0) WRITE (NOUT, 2001) NTAPF, TAPEID
 IF (L =NE. 0) WRITE (NOUT, 2002) NTAPF, TAPEID
WRITE (NOUT, 2003)
NLINF=NLINF+1

13 L=L+1
READ (NTAPE) TAPEID, LN, IEOCK, IRUNNO, ANAME, NR, NC, DATE, ITYPE, NN2, NP, NPT
* ICHK = IRUNNO
IF (L =FO. 1) ICHK = IRUNNO
IF (ICHK .FO. IRUNNO) GO TO 15
NLINF=NLINF+1
WRITE (NOUT, 2004)
ICHK = IRUNNO

15 IF (IEOCK .FO. 3HECT) GO TO 36
READ (NTAPE)
 IF (ITYPE =EC. 6HDENSE) WRITE (NOUT, 2004)
 IF (ITYPE .EQ. 6HSPARSE) WRITE (NOUT, 2004)
 IF (ITYPE .EQ. 6HSPARSE) GO TO 20
 IF (ITYPE =EC. 6HSPARSE) WRITE (NOUT, 2004)
 IF (ITYPE .EQ. 6HSPARSE) GO TO 20
 IF (ITYPE .EQ. 6HSPARSE) WRITE (NOUT, 2004)
 IF (ITYPE .EQ. 6HSPARSE) GO TO 20
 WRITE (NOUT, 2004) LN, IRUNNO, ANAME, NR, NC, ITYPE

20 NLINF=NLINF+1
IF (NLINF.G7, 43) GO TO 12
GO TO 13
30 WRITE (NOT,2004) LN,IEOTCK
WRITE (NOT,2005)
REWIND NTAPE
RETURN
END
SUBROUTINE MASS1 (PP,DMASS,DRIN,CONC,CONVRT,Z,NPP,NDM,NDI,NC,
* KDM,KDI,KC,KZ)
DIMENSION PP(NP),DMASS(KDM),DRIN(KDI),CONC(KC),Z(KZ)
COMMON /LINE/NLINE,MAXLINE,MINI
DATA NIT,NCT/N5,6/
C CALCULATE MASS MATRIX FOR A BEAM. ASSUMES LINEAR VELOCITY FUNCTION
C BETWEEN CONSECUTIVE PANEL POINTS.
C TRANSLATION AT EACH PANEL POINT ARE THE GENERALIZED COORDINATES.
C INPUT IS DISTRIBUTED MASS, DISTRIBUTED ROTARY INERTIA, CONCENTRATED
C ITEMS. THE DISTRIBUTED DATA MAY NOT EXCEED THE PANEL POINT LIMITS.
C THE ATTACH POINT FOR CONCENTRATED ITEMS MAY NOT EXCEED THE PANEL
C POINT LIMITS. OPTION TO OMIT DATA BY NDM,NDI, OR NC EQUAL ZERO.
C CALLS FORMA SUBROUTINES PAGEHD,ZZBOMB.
C CODED BY EL WOHLEN. DECEMBER 1965.
C LAST REVISION BY EL WOHLEN. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C PP = INPUT VECTOR OF PANEL POINTS. SIZE(NPP).
C DMass = INPUT MATRIX OF DISTRIBUTED MASS STRAIGHT LINE
C SEGMENT DATA. SIZE(NDM,4).
C COL 1 = X AT SEGMENT END 1.
C COL 2 = X AT SEGMENT END 2.
C COL 3 = MASS AT SEGMENT END 1.
C COL 4 = MASS AT SEGMENT END 2.
C DRIN = INPUT MATRIX OF DISTRIBUTED ROTARY INERTIA STRAIGHT LINE
C SEGMENT DATA. SIZE(NDI,4).
C COLUMNS ARE SIMILAR TO DMass.
C CONC = INPUT MATRIX OF CONCENTRATED ITEM DATA. SIZE(NC,4).
C COL 1 = ATTACH STATION.
C COL 2 = MASS OF ITEM.
C COL 3 = CENTER OF GRAVITY OF ITEM.
C COL 4 = MOMENT OF INERTIA ABOUT CG OF ITEM.
C CONVRT = INPUT CONVERSION SCALAR BY WHICH COL 3,4 OF DMass,DRIN AND
C CONC WILL BE MULTIPLIED.
C Z = OUTPUT MASS MATRIX. SIZE(NPP,NPP).
C NPP = INPUT NUMBER OF PANEL POINTS. SIZE VECTOR PP, MATRIX Z.
C NDM = INPUT NUMBER OF SEGMENTS (ROWS) IN DMass. CAN BE ZERO.
C NDI = INPUT NUMBER OF SEGMENTS (ROWS) IN DRIN. CAN BE ZERO.
C NC = INPUT NUMBER OF ITEMS (ROWS) IN CONC. CAN BE ZERO.
C KDM = INPUT ROW DIMENSION OF DMass IN CALLING PROGRAM.
C KDI = INPUT ROW DIMENSION OF DRIN IN CALLING PROGRAM.
C KC = INPUT ROW DIMENSION OF CONC IN CALLING PROGRAM.
C KZ = INPUT ROW DIMENSION OF Z IN CALLING PROGRAM.
C
C ERROR EXPLANATION
C 1 = LESS THAN Z PANEL POINTS.
C 2 = PANEL POINTS NOT IN INCREASING ORDER.
C 3 = INCORRECT DISTRIBUTED DATA.
C 4 = CONCENTRATED MASS ATTACH STATION OUTSIDE PANEL POINT LIMITS.
C
2001 FORMAT (3F13.4,3X,3I3) SUBROUTINE MASS1 USES CONVRT = E15.8, ///
+ 37X,33X AND COMPUTES THE TOTAL PROPERTIES ///
+ 43X,6HM = E15.8 //45X,6HXC = E15.8 //45X,6HIC = E15.8)
2050 FORMAT (/ 1X 123(IH-))
C CHECK THAT PANEL POINTS ARE IN INCREASING ORDER.
 NERROR = 1
 IF (NPP .LT. 2) GO TO 999
 NERROR = 2
 DO 5 K=2,NPP
 IF (PP(K-1) .GE. PP(K)) GO TO 999
 5 CONTINUE
C C INITIALIZE DATA.
 DO 10 I=1,NPP
 DO 10 J=1,NPP
 10 Z(I,J) = 0.0
 NBayS = NPP-1
C C DISTRIBUTED MASS (MIC=1), DISTRIBUTED ROTARY INERTIA (MIC=2),
C CONCENTRATED ITEM (MIC=3).
 DO 95 MIC=1,3
 NERROR = 1
 IF (MIC .EQ. 1) NSEGS = NDM
 IF (MIC .EQ. 2) NSEGS = ND1
 IF (MIC .EQ. 3) NSEGS = NC
 IF (NSEGS .EQ. 0) GO TO 95
 DO 90 I=1,NSEGS
 GO TO (21,22,70),MIC
 21 X1 = DMass(I,1)
 X2 = DMass(I,2)
 V1 = DMass(I,3) * CONVRT
 V2 = DMass(I,4) * CONVRT
 GO TO 30
 22 X1 = DRIn(I,1)
 X2 = DRIn(I,2)
 V1 = DRIn(I,3) * CONVRT
 V2 = DRIn(I,4) * CONVRT
 30 NERROR = 3
 NERROR = 3
 IF (X1 .LT. PP(1) .OR. X2 .GT. PP(NPP) .OR. X1 .GE. X2) GC TO 999
 DO 32 K=1,NBayS
 IF (X1 .LT. PP(K+1)) GO TO 34
 32 CONTINUE
 34 XP = X1
 VP = V1
 IF (X2 .LE. PP(K+1)) GO TO 38
 XP = PP(K+1)
 VQ = V1 + (XQ-X1)*(V2-V1)/(X2-X1)
 GO TO 30
 38 XC = X2
 VQ = V2
 IF (XP = PP(K+1) - PP(K))
 SEG1 = X6-X5
 HP = (XP-PP(K))/BAYL
 HQ = (XQ-PP(K))/BAYL
 VPVC = VQ + V6
 GO TO (20,60),MIC
C
50 F1 = SEG* VPVC/2.
 F2 = SEG*(VPVC*(HP+HQ) + VP*HP + VQ*HQ)/6.
 F3 = SEG*(VPVC*(HP+HQ)*2 + 2*(VP*HP**2 + VQ*HQ**2))/12.
 GO TO 80

C

60 F1 = 0.
 F2 = 0.
 F3 = SEG*VPVC/(2*RAYL**2)
 GO TO 80

C

70 XA = CONC(I,1)
 NERROP = 5:
 IF (XA .LT. PP(1) .OR. XA .GT. PP(NPP)) GO TO 900
 CM = CONC(I,2) * CONVRT
 GO 72 K=1,NBAYS
 IF (XA .LT. PP(K+1)) GO TO 75
 72 CONTINUE
 K = NBAYS
 75 BAYL = PP(K+1) - PP(K)
 HC = (CONC(I,3) - PP(K))/BAYL
 F1 = CM
 F2 = CM*HC
 F3 = CM*HC**2 + CONC(I,4)*CONVRT/BAYL**2

C

80 L = K+1
 Z(K,K) = Z(K,K) + F1 - 2*F2 + F3
 Z(K,L) = Z(K,L) + F2 - F3
 Z(L,L) = Z(L,L) + F3

C

IF (MIC .LT. 3 .OR. X2 .LE. PP(K+1)) GO TO 90
 K = K+1
 XP = X0
 VP = VQ
 GO TO 36

90 CONTINUE

95 CONTINUE

C

C SYMMETRIZE.
 DO 110 K=1,NBAYS
 110 Z(K+1,K) = Z(K,K+1)

C

C COMPUTE AND PRINT TOTAL MASS PROPERTIES.
 TM = 0.
 TF = 0.
 TI = 0.
 DO 201 J=1,NPP
 DO 201 I=1,NPP
 TM = TM + Z(I,J)
 TP = TP + Z(I,J)*PP(J)

 201 TT = TI + PP(I)*Z(I,J)*PP(J)
 CG = TP/TM
 TI = TI - TM*CG**2
 IF (MINF .LT. 4*HMNNI) GO TO 600
 IF (NLINE .LT. 5 .OR. NLINE .GE. MAXLIN) GO TO 600
 IF ((NLINE+16) .GT. MAXLIN) GO TO 800
WRITE (NOT,2050)
NLINE = NLINE + 2
GO TO 810

CALL PAGEHD

WRITE (NOT,2001) CONVRT,TM,CG, TI
 NLINE = NLINE + 14
RETURN

CALL ZZB0MB (6H, 1, +NERROR)
END
SUBROUTINE MASS2 (PP,DMASS,DRIN,CONC,CONVRT,Z,NPP,NDM,NDI,NC,NZ,
 KDM,KDI,KC,KZ)
DIMENSION PP(1), DMASS(KDM,1), DRIN(KDI,1), CONC(KC,1), Z(KZ,1),
 F(7), F(10)
COMMON /LINE/ NLINE,MAXLIN,MINI
DATA NIT,NOT,5,6/
C
C CALCULATE MASS MATRIX FOR A BEAM. ASSUMES CUBIC VELOCITY FUNCTION
C BETWEEN CONSECUTIVE PANEL POINTS.
C LATERAL TRANSLATION AND ROTATION AT EACH PANEL POINT ARE THE
C GENERALIZED COORDINATES. TRANSLATION COORDINATES ARE GROUPED FIRST
C SIGN CONVENTION IS ROTATION = -D(LATERAL DISP)/D(AXIAL COORDINATE).
C INPUT IS DISTRIBUTED MASS, DISTRIBUTED ROTARY INERTIA, CONCENTRATED
C ITEMS. THE DISTRIBUTED DATA MAY NOT EXCEED THE PANEL POINT LIMITS.
C THE ATTACH POINT FOR CONCENTRATED ITEMS MAY NOT EXCEED THE PANEL
C POINT LIMITS. OPTION TO OMIT DATA BY NOM,NDI, OR NC EQUAL ZERO.
C CALLS FORMA SUBROUTINES PAGEHOZ/EZBOMB.
C CODED BY RL WOHLEN. DECEMBER 1965.
C LAST REVISION BY RL WOHLEN. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C PP = INPUT VECTOR OF PANEL POINTS. SIZE(NPP).
C DMASS = INPUT MATRIX OF DISTRIBUTED MASS STRAIGHT LINE
C SEGMENT DATA. SIZE(NDM,4).
C COL 1 = X AT SEGMENT END 1.
C COL 2 = X AT SEGMENT END 2.
C COL 3 = MASS AT SEGMENT END 1.
C COL 4 = MASS AT SEGMENT END 2.
C DRIN = INPUT MATRIX OF DISTRIBUTED ROTARY INERTIA STRAIGHT LINE
C SEGMENT DATA. SIZE(NDI,4).
C COLUMNS ARE SIMILAR TO DMASS.
C CONC = INPUT MATRIX OF CONCENTRATED ITEM DATA. SIZE(NC,4).
C COL 1 = ATTACH STATION.
C COL 2 = MASS OF ITEM.
C COL 3 = CENTER OF GRAVITY OF ITEM.
C COL 4 = MOMENT OF INERTIA AROUND CG OF ITEM.
C CONVRT = INPUT CONVERSION SCALAR BY WHICH COL 3,4 OF DMASS,DRIN AND
C COL 2,4 OF CONC WILL BE MULTIPLIED.
C Z = OUTPUT MASS MATRIX. SIZE(NZ,NZ).
C NPP = INPUT NUMBER OF PANEL POINTS. SIZE OF VECTOR PP.
C NDM = INPUT NUMBER OF SEGMENTS (ROWS) IN DMASS. CAN BE ZERO.
C NDI = INPUT NUMBER OF SEGMENTS (ROWS) IN DRIN. CAN BE ZERO.
C NC = INPUT NUMBER OF ITEMS (ROWS) IN CONC. CAN BE ZERO.
C NZ = OUTPUT SIZE OF MATRIX Z. (NZ=2*NPP).
C KDM = INPUT ROW DIMENSION OF DMASS IN CALLING PROGRAM.
C KDI = INPUT ROW DIMENSION OF DRIN IN CALLING PROGRAM.
C KC = INPUT ROW DIMENSION OF CONC IN CALLING PROGRAM.
C KZ = INPUT ROW DIMENSION OF Z IN CALLING PROGRAM.
C
C NERROR EXPLANATION
C 1 = LESS THAN 2 PANEL POINTS.
C 2 = PANEL POINTS NOT IN INCREASING ORDER.
C 3 = INCORRECT DISTRIBUTED DATA.
C 4 = CONCENTRATED MASS ATTACH STATION OUTSIDE PANEL
C POINT BOUNDS.
SUBROUTINE MASS2 USES CONVRT = E15.8, ///
* 37X,33HAND COMPUTES THE TOTAL PROPERTIES ///
* 43X,6HM = E15.8,///43X,6HXC = E15.8,///43X,6MIC = E15.8)

C

C CHECK THAT PANEL POINTS ARE IN INCREASING ORDER.

IF (NPP .LT. 2) GO TO 999

DO 5 K=2,NPP
 IF (PP(K-1) .GE. PP(K)) GO TO 999
5 CONTINUE

C

C INITIALIZE DATA.

NZ = 2*NPP
DO 10 I=1,NZ
 DO 10 J=1,NZ
10 Z(I,J) = 0.0

NBAYS = NPP-1

C

C DISTRIBUTED MASS (MIC=1), DISTRIBUTED ROTARY INERTIA (MIC=2),
C CONCENTRATED ITEM (MIC=3).

DO 95 MIC=1,3
 IF (MIC .EQ. 1) NSEGS = NDM
 IF (MIC .EQ. 2) NSEGS = NDI
 IF (MIC .EQ. 3) NSEGS = NC
 IF (NSEGS .EQ. 0) GO TO 95
95 CONTINUE

C

C

DO 90 I=1,NSEGS
 GO TO (21,22,70),MIC

21 XI = DMASS(I,1)
 X2 = DMASS(I,2)
 V1 = DMASS(I,3) * CONVRT
 V2 = DMASS(I,4) * CONVRT
 GO TO 30

22 XI = DRIN(I,1)
 X2 = DRIN(I,2)
 V1 = DRIN(I,3) * CONVRT
 V2 = DRIN(I,4) * CONVRT

30 IF (X1 .LT. PP(I)) OR. X2 .GT. PP(NPP) OR. X1 .GE. X2) GO TO 999
 DC 32 K=1,NBAYS
 IF (X1 .LT. PP(K+1)) GO TO 34
32 CONTINUE

34 XP = X1
 VP = V1
 IF (X2 .LE. PP(K+1)) GO TO 38
 XP = PP(K+1)
 VQ = (XQ-X1)*(V2-V1)/(X2-X1)
 GO TO 39

38 XP = X2
 VQ = V2

39 BAYL = PP(K+1) - PP(K)
 HP = (XP-PP(K)) / BAYL
MASS2 -- 3/5

\[\text{E}_J = \frac{W_1 (\text{H}_q^2 \text{J}_q^2 - \text{H}_p^2 \text{J}_p^2) / \text{R}_j + (\text{V}_1 - \text{W}_1) \cdot (\text{H}_q \cdot \text{J}_q - \text{H}_p \cdot \text{J}_p) / \text{R}_j}{\text{R}_j} \]

\[\text{C} \]

\[\text{D} \]

\[\text{E} \]

\[\text{F} \]

\[\text{G} \]

\[\text{H} \]

\[\text{I} \]

\[\text{J} \]

\[\text{K} \]

\[\text{L} \]

\[\text{M} \]
N = K+NPP+1
P1 = -12.*F(6) + 4.*F(7) + 9.*F(10)
P2 = -7.*F(5) + 7.*F(6) + 2.*F(7) - 3.*F(9) + 6.*F(10)
P3 = -5.*F(6) + 2.*F(7) + 3.*F(10)
BAYL2 = BAYL**2
Z(K,K) = Z(K,K) + F(1)-6.*F(3)+4.*F(4)+P1
Z(K,L) = Z(K,L) + 3.*F(3)-2.*F(4)-P1
Z(K,M) = Z(K,M) + (-F(2)+2.*F(3)-F(4)-P2)*BAYL
Z(K,N) = Z(K,N) + (F(3)-F(4)-P3)*BAYL
Z(L,L) = Z(L,L) + P1
Z(L,M) = Z(L,M) + P2*BAYL
Z(L,N) = Z(L,N) + P3*BAYL
Z(M,M) = Z(M,M) + (2.*F(5)-4.*F(6)+F(7)-F(8)-4.*F(9)+4.*F(10))
1
BAYL2
Z(M,N) = Z(M,N) + (F(5)-3.*F(6)+F(7)-F(9)+2.*F(10)) * BAYL2
Z(N,N) = Z(N,N) + (-2.*F(6)+F(7)+F(10)) * BAYL2
C
IF (MIC .EQ. 3 .OR. XZ .LE. PP(K+1)) GO TO 90
K = K+1
XP = XQ
VP = VQ
GO TO 36
90 CONTINUE
95 CONTINUE
C
SYMMETRIZE.
DO 110 I=1,NZ
DO 110 J=1,NZ
110 Z(J,I) = Z(I,J)
C
COMPUTE AND PRINT TOTAL MASS PROPERTIES.
TM = 0.
TP = 0.
TI = 0.
DO 201 I=1,NPP
K = I + NPP
DO 201 J=1,NPP
L = J + NPP
TM = TM + Z(I,J)
TP = TP + Z(K,J) + Z(I,J)*PP(J)
201 TI = TI + PP(I)*Z(I,J)*PP(J) - 2.*Z(L,I)*PP(I) + Z(K,L)
CG = TP/TM
TI = TI - TM*CG**2
IF (MINI .LE. 4.*MINI) GO TO 800
IF (NLIN .LE. 5 .OR. NLIN .GE. MAXLIN) GO TO 800
IF ((NLIN+16) .GT. MAXLIN) GO TO 800
WRITE (NOT,2050)
NLIN = NLIN + 2
GO TO 810
800 CALL PAGEHD
810 WRITE (NOT,2001) CONVRT,TM,CG,NI
NLIN = NLIN + 14
RETURN
C
999 CALL ZZBOMB (6HMASS2 ,NERROR)
SUBROUTINE MASS2A (PP, DM, S, F, CONVR, Z, NPP, NDM, NZ,
* KDM, KZ)
DIMENSION PP(NP), DM(NDM), S(KZ, I), F(7)
COMMON /LINE/ NLIN, MAXLIN, MINI
DATA B1T, NOT /5.6/

C SUBROUTINE ARGUMENTS
C PP = INPUT VECTOR OF PANEL POINTS. SIZE(NPP).
C DM = INPUT MATRIX OF DISTRIBUTED MASS STRAIGHT LINE
C SEGMENT DATA. SIZE(NDM, 4).
C COL 1 = X AT SEGMENT END 1.
C COL 2 = X AT SEGMENT END 2.
C COL 3 = MASS AT SEGMENT END 1.
C COL 4 = MASS AT SEGMENT END 2.
C DM(1, 2) MUST EQUAL DM(2, 1), ETC.
C SM = INPUT SLOSH MASS. SIZE(NZ, NZ) OF OUTPUT MASS MATRIX.
C F = INPUT FLUID LEVEL. MUST BE WITHIN DMASS LIMITS.
C CONVR = INPUT CONVERSION SCALAR BY WHICH COL 3, 4 OF DMASS WILL BE C MULTIPLIED.
C Z = OUTPUT MASS MATRIX. SIZE(NZ, NZ).
C NPP = INPUT NUMBER OF PANEL POINTS. SIZE OF VECTOR PP.
C NDM = INPUT NUMBER OF SEGMENTS (ROWS) IN DMASS.
C NZ = OUTPUT SIZE OF MATRIX Z. (NZ=2*NPP+1).
C KDM = INPUT ROW DIMENSION OF DMASS IN CALLING PROGRAM.
C KZ = INPUT ROW DIMENSION OF Z IN CALLING PROGRAM.

C NERROR EXPLANATION
C 1 = LESS THAN 2 PANEL POINTS.
C 2 = PANEL POINTS NOT IN INCREASING ORDER.
C 3 = FLUID LEVEL OUTSIDE DISTRIBUTED MASS BOUNDS.
C 4 = DISTRIBUTED MASS HAS GAPS.
C 5 = DISTRIBUTED MASS EXCEEDS PANEL POINT BOUNDS.

C 2001 FORMAT (3(/),30X,13HASSUMES CONVR = E15.8, //
* 49X,13HSLSH MASS = E15.8, //48X,14HFLUID LEVEL = E15.8, ///
* 37X,33HAND COMPUTES THE TOTAL PROPERTIES ///
* 43X,6HM = E15.8, //43X,6HM = E15.8, //43X,6HM = E15.8)
C 2050 FORMAT (/ 1X 123(1H-))
C CHECK THAT PANEL POINTS ARE IN INCREASING ORDER.
NERROR = 1
NERROR = 2

DO 5 K=Z,NPP
 IF (PP(K-1) .GE. PP(K)) GO TO 999
 5 CONTINUE

C

C CHECK DISTRIBUTED MASS MATRIX.

IF (FLEVEL .LT. DMASS(1,1)) .OR. FLEVEL .GE. DMASS(NDM,2)) GO TO 999
IF (NDM .EQ. 1) GO TO 9
NDMM1 = NDM-1

DO 7 I=1,NDMM1
 IF (DMASS(I+2) .NE. DMASS(I+1,1)) GO TO 999
 7 CONTINUE

C

C INITIALIZE DATA.

NZ = 2*NPP+1
DO 10 I=1,NZ
 DO 10 J=1,NZ
 Z(I,J) = 0.0
 10 CONTINUE
NBAYS = NPP-1

C

DO 15 JM = 1,NDM
 IF (FLEVEL .LT. DMASS(JM,2)) GO TO 16

15 CONTINUE

16 DMJ1 = D MASS(JM,1)
 DMJ3 = D MASS(JM,3)
 DMASS(JM,1) = FLEVEL
 DMASS(JM,3) = DMJ3 + (FLEVEL - DMJ1) * (DMASS(JM,4) - DMJ3)/
 * (DMASS(JM,2) - DMJ1)

C

DO 90 I = JM+NDM
 X1 = D MASS(I,1)
 X2 = D MASS(I,2)
 V1 = D MASS(I,3) * CCNVRT
 V2 = D MASS(I,4) * CONVRT
 IF (X1 .LT. PP(1)) .OR. X2 .GT. PP(NPP) .OR. X1 .GE. X2) GO TO 999

30 CONTINUE

34 XP = X1
 VP = V1

36 IF (X2 .LT. PP(K+1)) GO TO 38
 XQ = PP(K+1)
 VQ = V1 + (XQ-X1)*(V2-V1)/(X2-X1)
 GO TO 39
38 XQ = X2
 VQ = V2
39 BAYL = PP(K+1) - PP(K)
 HP = (XP-PP(K))/BAYL
 HQ = (XQ-PP(K))/BAYL
 W = (VQ-VP)/(HQ-HP)
DO 44 J=1,7
JP1 = J+1
RJ = J
RJP1 = JP1
44 F(J) = (W*(HQ**JP1 - HP**JP1) + (VP-W*HP)*(HQ**J - HP**J)/RJ)
 * * BAYL
C
L = K+1
M = K+NPP
N = K+NPP+1
P1 = 9.*F(5) - 12.*F(6) + 4.*F(7)
P2 =-3.*F(4) + 8.*F(5) - 7.*F(6) + 2.*F(7)
P3 = 3.*F(5) - 5.*F(6) + 2.*F(7)
BAYL2 = BAYL**2
Z(K,K) = Z(K,K) + F(1)-6.*F(3)+4.*F(4)+P1
Z(K,L) = Z(K,L) + 3.*F(3)-2.*F(4)-P1
Z(K,M) = Z(K,M) + (-F(2)+2.*F(3)-F(4)-P2) * BAYL
Z(K,N) = Z(K,N) + (F(3)-F(4)-P3) * BAYL
Z(L,L) = Z(L,L) + P1
Z(L,M) = Z(L,M) + P2*BAYL
Z(L,N) = Z(L,N) + P3*BAYL
Z(M,M) = Z(M,M) + (F(3)-4.*F(4)+6.*F(5)-4.*F(6)+F(7)) * BAYL2
Z(M,N) = Z(M,N) + (-F(4)+3.*F(5)-3.*F(6)+F(7)) * BAYL2
Z(N,N) = Z(N,N) + (F(5)-2.*F(6)+F(7)) * BAYL2
Z(K,NZ) = Z(K,NZ) + F(1)-3.*F(3)+2.*F(4)
Z(L,NZ) = Z(L,NZ) + 3.*F(3)-2.*F(4)
Z(M,NZ) = Z(M,NZ) + (-F(2)+2.*F(3)-F(4)) * BAYL
Z(N,NZ) = Z(N,NZ) + (F(3)-F(4)) * BAYL
Z(NZ,NZ) = Z(NZ,NZ) + F(1)
C
IF (X2 .LE. PP(K+1)) GO TO 90
K = K+1
XP = XG
VP = VO
GO TO 36
90 CONTINUE
C
DMASS(JM,1) = DMJ1
DMASS(JM,3) = DMJ3
C
R = SMAS/2(NZ,NZ)
DO 95 I=1,NZ
95 Z(I,NZ) = Z(I,NZ)*R
Z(NZ,NZ) = SMAS
C
C SYMMETRIZE
DO 110 I=1,NZ
DO 110 J=1,NZ
110 Z(I,J) = Z(I,J)
C
C COMPUTE AND PRINT TOTAL MASS PROPERTIES.
TM = 0.
TP = 0.
TI = 0.
DO 201 I=1,NPP
K = I + NPP
DO 201 J=1,NPP
L = J + NPP
TM = TM + Z(I,J)
TP = TP - Z(K,J) + Z(I,J)*PP(J)
201 TI = TI + PP(I)*Z(I,J)*PP(J) - 2.*Z(L,I)*PP(I) + 2(K,L)
CG = TP/ TM
TI = TI - TM*CG**2
IF (MINI .NE. 4*MINI) GO TO 800
IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 800
IF ((NLINE+20) .GT. MAXLIN) GO TO 800
WRITE (NOUT,2050)
NLINE = NLINE + 2
GO TO 810
800 CALL PAGEHD
810 WRITE (NOUT,2001) CONVRT,SMASS,FLEVEL,TM,CG, TI
NLINE = NLINE + 18
RETURN
C
999 CALL ZSBOMB (6*MASS2A,NERROR)
END
SUBROUTINE MODFI (A, S, W2, W, FREQ, N, FOD, KR, NUT1)
DIMENSION A(KR, 1), S(KR, 1), W2(1), W(1), FREQ(1)
COMM N /LLINE/ NLINE, MAXLIN, MINI
DATA NIT, NOT/5, 6/
C
C CALCULATE MODE SHAPES (PHI) AND NATURAL FREQUENCIES OF
C (A)**-1{S)(PEI) = (PHI)(-WZ-)
C = OUTPUT MODE SHAPES, SIZE(N, N).
C S = INPUT STIFFNESS MATRIX, SIZE(N, N).*DESTROYED*
C W2 = OUTPUT VECTOR OF EIGENVALUES (OMEGA SQUARED), SIZE(N).
C W = OUTPUT VECTOR OF CIRCULAR FREQUENCY (OMEGA), SIZE(N).
C FREQ = OUTPUT VECTOR OF FREQUENCY (OMEGA/2PI), SIZE(N).
C N = INPUT SIZE OF MATRICES A, S AND VECTORS W2, W, FREQ.
FOD = INPUT FINAL OFF-DIAGONAL VALUE FOR DYNAMIC MATRIX.
C KR = INPUT ROW DIMENSION OF A, S IN CALLING PROGRAM.
C NUT1 = INPUT NUMBER OF UTILITY TAPE, (EG 4).

2001 FORMAT (34X, 15H (SUBROUTINE MODFI)
 * 47X, 34H THE FOLLOWING ORTHOGONALITY CHECKS
 * 52X, 23H (MODES)***(MASS)***(MODES)
 * 52X, 23H (MODES)***(STIF)***(MODES)
 * 48X, 32H ARE A RESULT OF THIS SUBROUTINE.)
2002 FORMAT (10X, 107X, 1H1, 2H1, 1H1))
2011 FORMAT (///10X, 39H THE (MODES)***(MASS)***(MODES) CHECK GIVES
 * ///10X, 25H THE DIAGONAL ELEMENTS ARE // (13X, 10F11.8))
2012 FORMAT (///10X, 35H THE MAXIMUM OFF-DIAGONAL ELEMENT IS
 * E11, 3, 2X, 4HAT (I3, I1, I1, I1))
2020 FORMAT (///10X, 28H THE OMEGA SQUARED VALUES ARE // (13X, 10E11.3))
2021 FORMAT (///10X, 39H THE (MODES)***(STIF)***(MODES) CHECK GIVES
 * ///10X, 48H THE ABSOLUTE PERCENT DIFFERENCE IN THE DIAGONAL
 * 31 ELEMENTS FROM OMEGA SQUARED ARE // (13X, 10F11.8))
2022 FORMAT (///10X, 28H THE LARGEST OFF-DIAGONAL ELEMENT IN EACH ROW ARE
 * /// (13X, 10E11.3))
2050 FORMAT (1X, 123(I1, --))
C
IF (MINI .NE. 4) MINI GO TO 810
IF (NLINF .LE. 5 .OR. NLINE .GE. M2YLIN) GO TO 810
IF ((NLINF+?+12) .GE. MAXLIN) GO TO 810
WRITE (NCT, 2050)
NLINE = NLINE + 2
GO TO 811
/ 810 CALL PAGEHD
811 WRITE (NOT,2001)
NLINE = NLINE + 12
C
CALL RWND (NUT1)
CALL OUT (NUT1,A,kr*N)
CALL OUT (NUT1,S,kr*N)
C
CALL DCOM1 (A,A,N,kr)
CALL INV4 (A,A,N,kr)
CALL BMTAB2 (S,A,N,kr)
CALL EIGN1 (S,W2,A,N,FDO,kr)
C
C ALIGN THE CIRCULAR FREQUENCY SQUARED (W2) INTO INCREASING ORDER AND
C THE MODE SHAPES CORRESPONDINGLY.
IF (N .EQ. 1) GO TO 40
NM1 = N-1
DO 35 J=1,NM1
W2MIN = W2(J)
IMIN = J
JP1 = J+1
DO 30 I=JP1,N
IF (W2MIN .LE. W2(I)) GO TO 30
W2MIN = W2(I)
IMIN = I
30 CONTINUE
IF (IMIN .EQ. J) GO TO 35
W2(IMIN) = W2(J)
W2(J) = W2MIN
DO 34 K=1,N
AKJ = A(K,J)
A(K,IMIN) = AKJ
34 A(K,IMIN) = AKJ
35 CONTINUE
C
C MAKE THE FIRST ELEMENT OF EACH MODE SHAPE POSITIVE.
40 DO 45 J=1,N
IF (A(I,J) .GE. 0.) GO TO 45
DO 42 I=1,N
42 A(I,J) = -A(I,J)
45 CONTINUE
C
C CALCULATE (PHI)T*(MASS)*(PHI) ORTHOGONALITY CHECK.
CALL RWND (NUT1)
CALL IN (NUT1,S,kr*N)
CALL BMTAB (S,A,N,FDO,kr)
XOFF = 0.
IOFF = 1
JOFF = 2
DO 54 I=1,N
DO 52 J=1,N
IF (I .EQ. J) GO TO 52
IF (ABS(XOFF) .GE. ABS(S(I,J))) GO TO 52

MODEL -- 2/3

MODE1 -- 3/3

XOFF = S(I,J)
IOFF = I
JOFF = J
52 CONTINUE
54 CONTINUE
NPL = N/10
IF ((NPL*10) .NE. N) NPL = NPL+1
IF (MINI .NE. 4HMINI) GO TO 820
IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 820
IF ((NLINE+2+14+NPL) .GT. MAXLIN) GO TO 820
WRITE (NCT,2050)
NLINE = NLINE + 2
GO TO 821
820 CALL PAGEHD
821 WRITE (NCT,2002) (JC, JC=1,10)
WRITE (NCT,2011) (S(I,I), I=1,N)
WRITE (NCT,2012) XOFF,IOFF,JOFF
NLINE = NLINE + 14 + NPL
C
C CALCULATE (PHI)*[STIF]*[PHI] ORTHOGONALITY CHECK.
CALL IN (NUT1,S,KR*NP) S=STIF
CALL BTABA (S,ATNINT,KR) S=PSP
DO 64 I=1,N
W(I) = 0.
DO 62 J=1,N
IF (I .EQ. J) GO TO 62
IF (ABS(S(I,J)) .GT. ABS(W(I))) W(I)=S(I,J)
62 CONTINUE
64 CONTINUE
IF (MINI .NE. 4HMINI) GO TO 830
IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 830
IF ((NLINE+2+20+3*NPL) .GT. MAXLIN) GO TO 830
WRITE (NCT,2050)
NLINE = NLINE + 2
GO TO 831
830 CALL PAGEHD
831 WRITE (NCT,2002) (JC, JC=1,10)
WRITE (NCT,2020) (W2(I), I=1,N)
NLINE = NLINE + 8 + NPL
DO 68 I=1,N
IF (W2(I) .LE. 0.) GO TO 68
S(I,I) = ABS(S(I,I)-W2(I))*100./W2(I)
68 CONTINUE
WRITE (NCT,2021) (S(I,I), I=1,N)
WRITE (NCT,2022) (W(I), I=1,N)
NLINE = NLINE + 12 +2*NPL
C
DO 72 I=1,N
W(I) = SQRT (ABS(W2(I)))
72 FREQ(I) = .15915494 * W(I)
C
RETURN
END
SUBROUTINE MODE1A (A, S, W2, FREQ, N, FOD, KR, NUT1)
DIMENSION A(KR), S(KR), W2(1), W(1), FREQ(1)
COMMON /LLINE/, NLINE, MAXLIN, MINI
DATA EPS/1.E-30/
DATA NIT,NOT/5,6/

CALCULATE MODE SHAPES (PHI) AND NATURAL FREQUENCIES OF

(C(A)-S)**-1(A)PHI = (PHI)(-1/C+W2) USING METHOD OF JACOBI.
THE MASS (A) MATRIX MUST BE REAL, SYMMETRIC, POSITIVE DEFINITE.
THE STIF (S) MATRIX MUST BE REAL, SYMMETRIC.
THE FIRST ELEMENT OF EACH MODE SHAPE IS MADE POSITIVE.
ORTHOGONALITY CHECKS -- (PHI)* (MASS)* (PHI) AND (PHI)* (STIF)* (PHI) --
ARE CALCULATED AND PRINTED.
CALLS FORM SUBROUTINES BTABA, BTABAT, DCOMI, EIGN1, INV4, PAGEHD, ZZBOMB.
THE MAXIMUM SIZE IS
N = 500 * (BASED ON BTABA, BTABAT).
DEVELOPED BY RL WOHLEN. APRIL 1969.
LAST REVISION BY RL WOHLEN. MARCH 1976.

SUBROUTINE ARGUMENTS
A = INPUT MASS MATRIX. SIZE(N,N). *DESTROYED*
B = OUTPUT MODE SHAPES. SIZE(N,N).
S = INPUT STIFFNESS MATRIX. SIZE(N,N). *DESTROYED*
W2 = OUTPUT VECTOR OF CIRCULAR FREQUENCY SQUARED. SIZE(N).
W = OUTPUT VECTOR OF CIRCULAR FREQUENCY (OMEGA). SIZE(N).
FREQ = OUTPUT VECTOR OF FREQUENCY (OMEGA/2PI). SIZE(N).
FOD = INPUT FINAL OFF-DIAGONAL VALUE FOR DYNAMIC MATRIX.
IF FOD .LE. ZERO, THE VALUE OF FOD WILL BE CALCULATED
AUTOMATICALLY IN SUBROUTINE EIGN1.
KR = INPUT ROW DIMENSION OF A, S IN CALLING PROGRAM.
NUT1 = INPUT NUMBER OF UTILITY TAPE. (EG 4).

2001 FORMAT (3/I) 54X,13H(SUBROUTINE MODE1A)
* 38X,37H(CALCULATED COMBINATION VALUE = E15.8,
* 47X,34H(FOLLOWING ORTHOGONALITY CHECKS
* 52X,23H(MODES)*(MASS)*(MODES)
* 52X,23H(MODES)*(STIF)*(MODES)
* 48X,32HARE A RESULT OF THIS SUBROUTINE.)
2002 FORMAT (///10X,10(7X,1H,12,1H)))
2011 FORMAT (///10X,30H(THE COMBINATION CHECK GIVES
* 10X,25H(DIAGONAL ELEMENTS ARE // (13X,10F11.8))
2012 FORMAT (///10X,35H(THE MAXIMUM OFF-DIAGONAL ELEMENT IS
* E11.3, 2X, 4MAT (13, 1H, 13, 1H)
2020 FORMAT (///10X,28H(THE OMEGA SQUARED VALUES ARE // (13X,10E11.3))
2021 FORMAT (///10X,39H(THE ABSOLUTE PERCENT DIFFERENCE IN THE DIAGONAL
* 31H(ELEMENTS FROM OMEGA SQUARED ARE // (13X,10F11.8))
2022 FORMAT (///10X,48H(THE LARGEST OFF-DIAGONAL ELEMENT IN EACH ROW ARE
* // (13X,10E11.3))
2050 FORMAT (/ 1X 123(1H-)

ANORM = 0.0
SNORM = 0.0
DO 5 I=1,N
DO 5 J=1,N
ANORM = ANORM + ABS(A(I,J))
5 SNORM = SNORM + ABS(S(I,J))
C = SNORM/ANORM
C
IF (MINI NE. 4HMINI) GO TO 810
IF (NLNE LE. 5 OR NLNE GE. MAXLIN) GO TO 810
IF ((NLNE+2+15) GT. MAXLIN) GO TO 810
WRITE (NOT,2050)
NLNE = NLNE + 2
GO TO 811
810 CALL PAGEHD
811 WRITE (NOT,2001) C
NLNE = NLNE + 15
C
CALL RWND (NUT1)
CALL OUT (NUT1,A,KP*N) A=MASS
CALL OUT (NUT1,S,KR*N) S=STIF
C
DO 12 I=1,N
DO 12 J=1,N
12 A(I,J) = S(I,J) + C*A(I,J)
A=SCM
C
CALL DCOM1 (A,A,N,KR) A=U
CALL INV4 (A,A,N,KR) A=U**-1
CALL RWND (NUT1) A=U
CALL IN (NUT1,S,KR*N) A=U
CALL BTABA2 (S,A,N,KR) A=U
CALL EIGN1 (S,WZ,A,N,KR) S=MASS
DO 28 J=1,N
C1 = SORT(WZ(J))
DO 28 I=1,N
28 A(I,J) = A(I,J)/C1
A=PHI
C
C CALCULATE W2.
DO 29 I=1,N
IF (W2(I) LT. EPS) W2(I)=EPS
29 W2(I) = 1./W2(I) - C
W2=W2
C
C ALIGN THE CIRCULAR FREQUENCY SQUARED (W2) INTO INCREASING ORDER AND
C THE MODE SHAPES CORRESPONDINGLY.
C IF (N .EQ. 1) GO TO 40
NM1 = N-1
DO 35 J=1,NM1
W2MIN = W2(J)
IMIN = J
JP1 = J+1
DO 30 I=JP1,N
IF (W2MIN LE. W2(I)) GO TO 30
W2MIN = W2(I)
IMIN = I
30 CONTINUE
IF (IMIN .EQ. J) GO TO 35
W2(IMIN) = W2(J)
W2(J) = W2MIN
C
DO 34 K=1,N
AKJ = A(K,J)
A(K,J) = A(K,IMIN)
34 A(K,IMIN) = AKJ
35 CONTINUE

C
C MAKE THE FIRST ELEMENT OF EACH MODE SHAPE POSITIVE.
C
DO 45 J=1,N
IF (A(I,J) .GE. 0.) GO TO 45
DO 42 I=1,N
42 A(I,J) = -A(I,J)
45 CONTINUE

C
C CALCULATE (PHI)T*(MASS)*(PHI) ORTHOGONALITY CHECK.

C
C CALL RWMD (NUT1)
CALL IN (NUT1,S,KR*N)
CALL BTABA (S,A,N,N,KR,KR)
XOFF = 0*
IOFF = 1
JOFF = 2
DO 54 I=1,N
DO 52 J=1,N
IF (I .EQ. J) GO TO 52
52 CONTINUE
54 CONTINUE
NPL = N/10
IF ((NPL*10) .NE. N) NPL = NPL+1
IF (MINI .NE. 4*HMINI) GO TO 820
IF (NLIDE .LE. 5 .OR. NLIDE .GE. MAXLIN) GO TO 820
820 CALL PAGEHD
821 WRITE (NCT,2002) (JC,JC=1,10)
WRITE (NCT,2011) (S(I,I),I=1,N)
WRITE (NCT,2012) XOFF,IOFF,JOFF
NLIDE = NLIDE + 14 + NPL

C
C CALCULATE (PHI)T*(STIF)*(PHI) ORTHOGONALITY CHECK.

C
C CALL RWMD (NUT1)
CALL IN (NUT1,S,KR*N)
CALL BTABA (S,A,N,N,KR,KR)
DO 64 I=1,N
W(I) = 0.*
DO 62 J=1,N
IF (I .EQ. J) GO TO 62
62 CONTINUE
64 CONTINUE
IF (MINI .NE. 4*HMINI) GO TO 830
IF (NLIDE .LE. 5 .OR. NLIDE .GE. MAXLIN) GO TO 830
830
IF ((NLINE+2+20+3*NPL) .GT. MAXLIN) GO TO 830
WRITE (NOUT,2050)
NLINE = NLINE + 2
GO TO 831

830 CALL PAGEHD

831 WRITE (NOUT,2020) (JC,JC=1,10)
WRITE (NOUT,2020) (W2(I), I=1,N)
NLINE = NLINE + 8 + NPL
DO 68 I=1,N
IF (W2(I) .LE. 0.) GO TO 68
S(I,I) = AES(S(I,I)-W2(I)) * 100. / W2(I)

68 CONTINUE
WRITE (NOUT,2021) (S(I,I), I=1,N)
WRITE (NOUT,2022) (W(I), I=1,N)
NLINE = NLINE + 12 + 2*NPL

C
DO 72 I=1,N
W(I) = SORT (ABS(W2(I)))

72 FREQ(I) = 15915494 * W(I)

C
RETURN
END
SUBROUTINE MODE1B (A,E,W2,W,FREQ,N,FOD,KR,NUTI)
DIMENSION A(KR,1), E(KR,1), W2(1), W(1), FREQ(1)
COMMON /LINE/, NLINE, MAXLIN, MINI
DOUBLE PRECISION S,S,ZERO
DATA E,P,T,E-30/9, ZERO/O, D/
DATA N",\ NOT/5,6/

C CALCULATE MODE SHAPES (PHI) AND NATURAL FREQUENCIES OF
C (E)(A) = (PHI)(-1/I/W2) USING METHOD OF JACOBI.
C THE MASS (A) MATRIX MUST BE REAL, SYMMETRIC, POSITIVE DEFINITE.
C THE FLEX (E) MATRIX MUST BE REAL, SYMMETRIC.
C THE FIRST ELEMENT OF EACH MODE SHAPE IS MADE POSITIVE.
C RIGID BODY MODES WILL BE IN THE LAST POSITIONS.
C ORTHOGONALITY CHECKS = (PHI)*MASS*(PHI) AND
C (PHI)*MASS*FLEX*MASS*(PHI) ARE CALCULATED AND PRINTED.
C CALLS FORM SUBROUTINES BTABA, DCOMI, EIGN1, INV4, MULTA, PAGEHD, (Z2BOMB).
C THE MAXIMUM SIZE IS
C N = 500 (BASED ON BTABA, MULTA).
C DEVELOPED BY RL WOHLEN. APRIL 1969.
C LAST REVISION BY RL WOHLEN. MARCH 1976.

C SUBROUTINE ARGUMENTS
C A = INPUT MASS MATRIX, SIZE(N,N). *DESTROYED*
C E = OUTPUT MODE SHAPES, SIZE(N,N).
C W2 = INPUT FLEXIBILITY MATRIX, SIZE(N,N). *DESTROYED*
C W = OUTPUT VECTOR OF CIRCULAR FREQUENCY SQUARED, (INVERTED
C FREQ = OUTPUT VECTOR OF CIRCULAR FREQUENCY (OMEGA), SIZE(N).
C FOD = INPUT FINAL OFF-DIAGONAL VALUE FOR DYNAMIC MATRIX.
C KR = INPUT NUMBER OF UTILITY TAPE. (EG 4).
C NUTI = INPUT NUMBER OF UTILITY TAPE. (EG 4).

2001 FORMAT (31/) '54X,194(SUBROUTINE MODE1B)
 * // 47X '4THE FOLLOWING ORTHOGONALITY CHECKS
 * // '2X,23H(MODES)*{MASS}*{MODES}
 * // '3X,37H(MODES)*{MASS}*{FLEX}*{MASS}*{MODES}
 * // '48X,32HARE A RESULT OF THIS SUBROUTINE.)
2002 FORMAT ('/10X,101X('12,1H))
2011 FORMAT (13X,10F11.8) CHECK GIVES
 * // (13X,10F11.8)
2012 FORMAT (13X,10F11.8)
2020 F1=MAT (13X,1032H(THE 1/OMEGA SquARED) VALUES ARE (13X,10E11.3))
2021 FORMAT (13X,10F11.8)
 * // (13X,10F11.8)
2022 FJRM,7 (13X,10F11.8)
2040 FORMAT (1X 123(1H-1))
IF (MINI .NE. 4HMINI) GO TO 810
IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 810
IF ((NLINE+2+12) .GT. MAXLIN) GO TO 810
WRITE (NCT,2050)
NLINE = NLINE + 2
GO TO 811

810 CALL PAGEHD
811 WRITE (NCT,2001)
NLINE = NLINE + 12

CALL PWND (NUTI)
CALL OUT (NUTI,A,KR*N)
CALL OUT (NUTI,E,KR*N)

C
C CALL DCOM1 (A,A,N,kr)
C CALCULATE DYNAMIC MATRIX = (U)*(FLEX)*(U**T). STATEMENTS FROM
C SUBROUTINE BATE MODIFIED BECAUSE LOWER (U) IS ZERO AND ONLY
C UPPER HALF OF DYNAMIC MATRIX IS USED IN SUBROUTINE EIGN1.

DO 24 I=1,N
DO 22 J=1,N
S = ZERO
DO 21 K=J+1,N
SS = E(I,K)*A(J,K)
21 S = S + SS
22 W(J) = S
24 E(I,J) = W(J)

DO 28 J=1,N
DO 26 I=1,J
S = ZERO
DO 25 K=I,N
SS = A(I,K)*E(K,J)
25 S = S + SS
26 W(I) = S
28 E(I,J) = W(I)

CALL INV4 (A,A,N,kr)
CALL EIGN1 (E,W2,A,-N,FOD,kr)

C
C CALCULATE W2.
DO 29 I=1,N
IF (W2(I) .LT. EPS) W2(I)=EPS
29 W2(I) = 1./W2(I)

C
C ALIGN THE CIRCULAR FREQUENCY SQUARED W2) INTO INCREASING ORDER AND
C THE MODE SHAPES CORRESPONDINGLY.

IF (N .NE. 1) GO TO 40
NM1 = N-1
DO 35 J=1,NMI
W2MIN = W2(J)
IMIN = J
JP1 = J+1
DO 30 I=JP1,N
IF (W2MIN .LE. W2(I)) GO TO 30
W2MIN = W2(I)
30 CONTINUE
35 CONTINUE

W2=W2
IMIN = 1
30 CONTINUE
IF (IMIN .EQ. J) GO TO 35
W2(IMIN) = W2(J)
W2(J) = W2MIN
DO 34 K=1,N
AKJ = A(K,J)
A(K,J) = A(K,IMIN)
34 A(K,IMIN) = AKJ
35 CONTINUE
C
C MAKE THE FIRST ELEMENT OF EACH MODE SHAPE POSITIVE.
40 DO 45 J=1,N
 IF (A(I,J) .GE. 0.) GO TO 45
 DO 42 I=1,N
42 A(I,J) = -A(I,J)
45 CONTINUE
C
C CALCULATE (PHI)T*(MASS)*(PHI) ORTHOGONALITY CHECK.
CALL OUT (NUT1,A,KR*N)
CALL RWND (NUT1)
CALL IN (NUT1,E,KR*N)
CALL RTABA (E,A,N,KR,KR) E=MASS
XOFF = 0.
IOFF = 1
JOFF = 2
DO 54 I=1,N
DO 52 J=1,N
IF (I .EQ. J) GO TO 52
IF (ABS(XOFF) .GE. ABS(E(I,J))) GO TO 52
XOFF = E(I,J)
IOFF = I
JOFF = J
52 CONTINUE
54 CONTINUE
NPL = N/10
IF (NPL*10) .NE. N) NPL = NPL+1
IF (MINI .NE. 4HMINI) GO TO 820
IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 820
IF ((NLINE+2*14+NPL) .GT. MAXLIN) GO TO 820
WRITE (NOT,2050)
NLINE = NLINE + 2
GO TO 821
820 CALL PAGEHD
821 WRITE (NOT,2002) (JL,JL=1,10)
WRITE (NOT,2011) (E(I,I),I=1,N)
WRITE (NOT,2012) XOFF,IOFF,JOFF
NLINE = NLINE + 14 + NPL
C
C CALCULATE (PHI)T*(MASS)*(FLEX)*(MASS)*(PHI) ORTHOGONALITY CHECK.
CALL RWND (NUT1)
CALL IN (NUT1,E,KR*N)
CALL RTABA (A,PTMEMP)
DO 64 I=1,N
 W(I) = 0.
DO 62 J=1,N
 IF (I .EQ. J) GO TO 62
 IF (ABS(A(I,J)) .GT. ABS(W(I))) W(I) = A(I,J)
62 CONTINUE
64 CONTINUE
 IF (MIN(T,5) .NE. 4HMINI) GO TO 830
 IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 830
 IF ((NLINE+C+70+3*NPL) .GT. MAXLIN) GO TO 830
 WRITE (NOT,2050)
 NLINE = NLINE + 2
 GO TO 831
830 CALL PAGEHD
831 WRITE (NOT,2002) (JC,HJC=1,10)
DO 66 I=1,N
 FREQ(I) = 1./W2(I)
 WRITE (NOT,2020) (FREQ(I),I=1,N)
 NLINE = NLINE + 8 + NPL
DO 68 I=1,N
 A(I,I) = ABS(A(I,I)-FREQ(I))*100./FREQ(I)
 WRITE (NOT,2021) (A(I,I),I=1,N)
 WRITE (NOT,2022) (W(I),I=1,N)
 NLINE = NLINE + 12 +2*NPL
C
CALL IN (NUL1,A,KR*N)
A=PHI

DO 72 I=1,N
 W(I) = SQRT(ABS(W2(I)))
72 FREQ(I) = .15915494 * W(I)
C
RETURN
END
SUBROUTINE MODEIX (A,S,W2,N,CTW2,KR)
DIMENSION A(KR,1), S(KR,1), W2(1)
DOUBLE PRECISION AM,DS

C CALCULATE MODE SHAPES (PHI) AND NATURAL FREQUENCIES OF
C (A)**(-1)(S)(PHI) = (PHI)((-W2-)) USING METHOD OF JACOBI.
C MODIFICATION OF SUBROUTINE MODE1 TO ALLOW NON-POSITIVE DEFINITE MASS
C MATRIX, REMOVE ORTHOGONALITY CHECKS, AND USE W2 CONVERGENCE TOLERANCE.
C THE MASS (A) MATRIX SHOULD BE REAL, SYMMETRIC.
C THE STIFF (S) MATRIX SHOULD BE REAL, SYMMETRIC.
C UPPER HALF OF MATRIX (A) IS USED TO CALCULATE MODE SHAPES AND
C FREQUENCIES. FULL MATRIX (S) IS USED.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SUBROUTINES BABA2,EIGEN1,INVIDEBOMB).
C THE MAXIMUM SIZE IS
C N = 500 (BASED ON BABA2).
C DEVELOPED BY RL WOHLLEN, JANUARY 1972.
C LAST REVISION BY RL WOHLLEN, MARCH 1976.

C SUBROUTINE ARGUMENTS
A = INPUT MASS MATRIX, SIZE(N,N). *DESTROYED*
S = OUTPUT MODE SHAPES, SIZE(N,N).
C = INPUT STIFFNESS MATRIX, SIZE(N,N). *DESTROYED*
W2 = OUTPUT VECTOR OF EIGENVALUES (OMEGA SQUARED), SIZE(N).
N = INPUT SIZE OF MATRICES A,S AND VECTOR W2.
CTW2 = INPUT CONVERGENCE TOLERANCE ON W2. IF CTW2 .LE. C*,
10**-6 WILL BE USED. CONVERGENCE ASSUMED
IF W2 .LT. CTW2 OR IF THE W2 RATIO OF
(CURRENT-PRECEDING)/CURRENT .LT. CTW2.
KR = INPUT ROW DIMENSION OF A,S IN CALLING PROGRAM.

C DECOMPOSE MASS MATRIX (A) = (U)**T * (U).
C MODIFICATION OF SUBROUTINE DCOM1 TO USE SQRT(ABS(A(I,I))) AND A = Z.
A(I,I) = SQRT(ABS(A(I,I)))
IF (N .EQ. 1) GO TO 28
DO 5 J=2,N
 5 A(I,J) = A(I,J)/A(I,I)
DO 18 I=2,N
 IM1 = I-1
 IP1 = I+1
 DS = A(I,I)
 DO 10 K=1,IM1
 DM = A(K,I)**2
 10 DS = DS - DM
 A(I,I) = DS
 A(I,I) = SQRT(ABS(A(I,I)))
 IF (I .EQ. N) GO TO 20
 DO 18 J=IP1,N
 DS = A(I,J)
 DO 15 K=1,IM1
 DM = A(K,I)*A(K,J)
 15 DS = DS - DM
 A(I,J) = DS
 18 A(I,J) = A(I,J)/A(I,I)
20 DO 25 I=2,N
IM1 = I-1
DO 25 J=1,IM1
25 A(I,J) = 0.0

CALL INV4 (A,A+NM,KR)
CALL DTAB2 (S,A+NM,KR)
CALL EIGN1A (S,W2,A,-NM,CW2,KR)

CALL BTARAZ (S,A+NM,KR)

C ALIGN THE CIRCULAR FREQUENCY SQUARED (W2) INTO INCREASING ORDER AND
C THE MODE SHAPES CORRESPONDINGLY.

IF (N .EQ. 1) RETURN
NM1 = N-1
DO 35 J=1,NM1
W2MIN = W2(J)
IMIN = J
JP1 = J+1
DO 30 I=JP1,N
IF (W2MIN .LE. W2(I)) GO TO 30
W2MIN = W2(I)
IMIN = I
30 CONTINUE
IF (IMIN .EQ. J) GO TO 35
W2(IMIN) = W2(J)
W2(J) = W2MIN
DO 34 K=1,N
AKJ = A(K,J)
A(K,IMIN) = AKJ
34 AKJ = A(K,IMIN)
35 CONTINUE

RETURN
END

SUBROUTINE MULT (A, B, Z, NRA, NRB, NCB, KRA, KRB)
DIMENSION A(KRA,1), B(KRB,1), Z(KRA,1)
DOUBLE PRECISION S, SS, ZERO
DATA ZERO/O.O/

MATRIX MULTIPLICATION. A * B = Z.
INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
DEVELOPED BY R.L. WOHLER. FEBRUARY 1965.
LAST REVISION BY RL WOHLER. MARCH 1976.

SUBROUTINE ARGUMENTS
A = INPUT MATRIX. SIZE(NRA, NRB).
B = INPUT MATRIX. SIZE(NRB, NCB).
Z = OUTPUT RESULT MATRIX. SIZE(NRA, NCB).
NRA = INPUT NUMBER OF ROWS OF MATRICES A, Z.
NRB = INPUT NUMBER OF ROWS OF MATRIX B, COLS OF MATRIX A.
NCB = INPUT NUMBER OF COLS OF MATRICES B, Z.
KRA = INPUT ROW DIMENSION OF A, Z IN CALLING PROGRAM.
KRB = INPUT ROW DIMENSION OF B IN CALLING PROGRAM.

DO 20 I=1, NRA
 DO 20 J=1, NCB
 S = ZERO
 DO 10 K=1, NRB
 SS = A(I,K)*B(K,J)
 10 S = S + SS
 20 Z(I,J) = S
RETURN
END
SUBROUTINE MULTA (AZ, B, NRA, NRB, NCB, KAZ, KB)
DIMENSION AZ(KAZ, 1), B(KB, 1)
COMMON / LWRKVI / W(500)
DOUBLE PRECISION S, SS, ZERO
DATA ZERO/0.0/

C MATRIX MULTIPLICATION. A * B = Z.
C USES TWO WORK SPACES. RESULT (Z) IS PLACED IN A.
C AZ MUST BE DIMENSIONED LARGE ENOUGH IN MAIN PROGRAM TO CONTAIN THE
C LARGER OF A OR Z.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SUBROUTINE ZZBOMB.
C THE MAXIMUM SIZE IS
C NRB = 500
C DEVELOPED BY C S RODLEY. JANUARY 1965.
C LAST REVISION BY RL WOHLEN. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C AZ = INPUT MATRIX. SIZE(NRA, NRB).
C = OUTPUT RESULT MATRIX. SIZE(NRA, NCB).
C B = INPUT MATRIX. SIZE(NRB, NCB)
C NRA = INPUT NUMBER OF ROWS OF MATRICES A, Z.
C NRB = INPUT NUMBER OF ROWS OF MATRIX B, COLS OF MATRIX A. MAX=500.
C NCB = INPUT NUMBER OF COLS OF MATRICES B, Z.
C KAZ = INPUT ROW DIMENSION OF AZ IN CALLING PROGRAM.
C KB = INPUT ROW DIMENSION OF B IN CALLING PROGRAM.
C
C NERROR EXPLANATION
C 1 = MORE THAN 500 ROWS IN MATRIX B.
C
C IF (NRB .GT. 500) GO TO 999
C
DO 40 I=1, NRA
 DO 20 K=1, NRB
 S = ZERO
 DO 30 K=1, NRB
 SS = W(K)*R(K, J)
 30 S = S + SS
 DO 40 J=1, NCB

RETURN

999 CALL ZZBOMB (6HMULTA, NERROR)
END
MULTB

SUBROUTINE MULT (A, BZ, NRA, NRB, NCB, KA, KBZ)

DIMENSION AIKA(1), BZ(KBZ, 1)

COMMON /LWRKVL/ W(500)

DOUBLE PRECISION S, SS, ZERO

DATA ZERO/OO/ *"*

MATRIX MULTIPLICATION. A * B = Z.

USES TWO WORK SPACES. RESULT (Z) IS PLACED IN B.

BZ MUST BE DIMENSIONED LARGE ENOUGH IN MAIN PROGRAM TO CONTAIN THE

LARGER OF B OR Z.

INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.

CALLS FORMA SUBROUTINE ZZBOMB.

THE MAXIMUM SIZE IS

NRB = 500

DEVELOPED BY CARL RODLEY. JANUARY 1965.

LAST REVISION BY RL WOHLEN. MARCH 1976.

SUBROUTINE ARGUMENTS

A = INPUT MATRIX. SIZE(NRA, NRB).

BZ = INPUT MATRIX. SIZE(NRB, NCB).

C = OUTPUT RESULT MATRIX. SIZE(NRA, NCB).

NRA = INPUT NUMBER OF ROWS OF MATRICES A, Z.

NRB = INPUT NUMBER OF ROWS OF MATRIX B, COLS OF MATRIX A. MAX=500.

NCB = INPUT NUMBER OF COLS OF MATRICES B, Z.

KA = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.

KBZ = INPUT ROW DIMENSION OF BZ IN CALLING PROGRAM.

NEROR EXPLANATION

1 = SIZE LIMITATION EXCEEDED.

NEROR=1 IF (NRB .GT. 500 .OR. NRA .GT. KBZ .OR. NRB .GT. KBZ) GO TO 999

DO 40 J=1, NCB
DO 20 K=1, NRB
20 W(K) = BZ(K, J)
DO 40 I=1, NRA
S = ZERO
DO 30 K=1, NRB
30 SS = A(I, K) * W(K)
40 S = S + SS

RETURN

999 CALL ZZBOMB (6H, MULTB, NERROR)

END
FUNCTION NAME (NAMEIN,NUMIN)
DIMENSION FMT1(5),FMT2(3)
DATA FMT1/2H(A,1H,2H,I,1H,1H)/
DATA FMT2/2H(I,1H,1H)/

FUNCTION TO MERGE NAMEIN AND NUMIN INTO ONE VARIABLE (NAME) WHICH MAY
BE USED AS AN A6 OUTPUT NAME IN ROUTINES SUCH AS FORMA SUBROUTINES
WRITE, WTAPE, CKSTFl, PLOT1, ETC. (SEE EXAMPLES BELOW.)
NOTE... IF THE SUM OF THE NON-BLANK CHARACTERS IN NAMEIN-MERGED-WITH-
NUMIN EXCEEDS 6, THE RIGHT MOST CHARACTERS OF NAMEIN WILL BE
DROPPED TO MAKE ROOM FOR NUMIN. (THE NUMBER ZERO IS NOT
CONSIDERED A BLANK.)
NOTE... THE INTRINSIC FUNCTION FLD IS USED. IT IS NOT
AVAILABLE ON ALL COMPUTERS.

DEVELOPED BY RF ?UDA APRIL 01, 1972
LAST REVISION BY JOHN ADMIRE NASA JAN 1974.

FUNCTION ARGUMENTS
NAMEIN = INPUT ALPHANUMERIC NAME. MUST BE SUPPLIED IN CALLING
PROGRAM AS A 6H, OR BY A VARIABLE DEFINED
WITH AN A6 FORMAT.
NUMIN = INPUT A POSITIVE INTEGER NUMBER TO BE MERGED INTO NAMEIN.
NAME = OUTPUT ALPHANUMERIC NAME WHICH MAY BE USED IN AN A6
OUTPUT FORMAT.

EXAMPLES,
CALL WRITE (A,9R,NC,NAME(3HABC,69),KA)
WOULD YIELD AN OUTPUT NAME ABC969 (LEFT JUSTIFIED).
CALL WRITE (A,NA,NA,NAME(1HK,NA),KA), WHERE NA = 124,
WOULD YIELD AN OUTPUT NAME K124 (LEFT JUSTIFIED).
DO 5 I=1,N
5 CALL WRITE (A,NA,NA,NAME(4HSTIF,I),KA)
WOULD YIELD OUTPUT NAMES STIF1,STIF2,STIF3,....

4000 FORMAT (1I)

IF (NUMIN.LT.0 OR. NUMIN.GT.999999) RETURN

FIND NUMBER OF DIGITS IN NUMIN.
DO 10 ND=1,6
IF (NUMIN.LT.10**ND) GO TO 20
10 CONTINUE
20 IF (ND.LT.Q.6) GO TO 50

FIND NUMBER OF LETTERS IN NAMEIN.
DO 30 I=1,6
NL = 7-I
NL = (NL-1)**6
IF (FLD(NL,6,NAMEnIN) .NE. 6H(1)) GO TO 40
30 CONTINUE
GO TO 50
40 IF (NL+ND.GT.6) NL = 6-ND

MERGE NAMEIN AND NUMIN INTO NAME.
NAME -- 2/2

NTOT = NL+ND
ENCODE (4000,FMT1(2)) NL
ENCODE (4000,FMT1(4)) ND
ENCODE (FMT1,NAME) NAMEIN,NUMIN
RETURN

C 50 ENCODE (4000,FMT2(2)) ND
ENCODE (FMT2,NAME) NUMIN
RETURN
END
SUBROUTINE ONES (Z,NR,NC,KR)
DIMENSION Z(KR,1)

C
C GENERATE A MATRIX OF ONES.
C CODED BY RL WOHLEN. FEB 1965.
C
C SUBROUTINE ARGUMENTS
C Z = OUTPUT MATRIX GENERATED. SIZE(NR,NC).
C NR = INPUT NUMBER OF ROWS IN MATRIX Z.
C NC = INPUT NUMBER OF COLS IN MATRIX Z.
C KR = INPUT ROW DIMENSION OF MATRIX Z IN CALLING PROGRAM.
C
DO 10 I=1,NR
 DO 10 J=1,NC
 10 Z(I,J) = 1.0
RETURN
END
SUBROUTINE ONRBM (RBDM, AMASS, N, NRBM, K)
DIMENSION RBM(K,1), AMASS(K,1), EVAL(6), EVEC(6,6), B(6,6)

C ORTHONORMALIZES THE RIGID BODY MODE(S).
C Normalization is REM(TRANSPOSE)*AMASS*RBM = UNITY.
C Calls FORMA subroutines BTAB, EIG1, MULTA, PAGEHD, ZZBOMB.
C The maximum sizes are
C N = 250 (BASED ON ETAB)
C NRBM = 6
C Developed by CS Bodley and RF Hruda, December 1965.
C Last revision by WA Benfield, March 1976.
C
C SUBROUTINE ARGUMENTS
C RBM = INPUT ANY RIGID BODY MODES. SIZE(N,NRBM). *DESTROYED*
C AMASS = OUTPUT ORTHONORMAL RIGID BODY MODES. SIZE(N,NRBM).
C N = INPUT SIZE OF MASS MATRIX. NUMBER OF ROWS IN REM. MAX=250.
C NRBM = INPUT NUMBER OF RIGID BODY MODES, COLUMNS IN RBM. MAX=6.
C K = INPUT ROW DIMENSION SIZE OF RBM AND AMASS IN CALLING PROGRAM.
C
C NERROP EXPLANATION
C I = MORE THAN 6 RIGID BODY MODES.
C NERROR = 1

IF (NRBM .GT. 6) GO TO 999

DO 20 J=1,NRBM
 RMAX = ABS(RBM(1,J))
 DO 10 I=2,N
 IF (ABS(RBM(I,J)) .GT. RMAX) RMAX = ABS(RBM(I,J))
 10 DO 20 I=1,N
 20 RBM(I,J) = RBM(I,J)/RMAX

CALL RTAB (AMASS, RBM, B, N, NRBM, K, 6)
CALL EIG1 (B, EVAL, EVEC, NRBM, 1.E-10, 6)
DO 30 J=1,NRBM
 DO 30 I=1,NRBM
 30 EVEC(I,J) = EVEC(I,J)/SQRT(EVAL(J))
CALL MULTA (RBM, EVEC, N, NRBM, NRBM, K, 6)
RETURN

999 CALL ZZBOMB (6HONRBM, NERROR)
END
THIS ROUTINE REORDERS THE ROWS OF A MATRIX ALPHABETICALLY ACCORDING TO THE FIRST NCAL COLUMNS OF THE MATRIX. EACH ELEMENT IN THE FIRST NCAL COLUMNS IS ASSUMED TO CONTAIN SIX CHARACTERS. THE CHARACTERS ARE RESTRICTED TO LETTERS, NUMBERS AND SPACES.

NOTE: IF THE FIRST NCAL COLUMNS ARE THE SAME FOR TWO ROWS THEIR ORDER MAY BE REVERSED AFTER CALLING THIS ROUTINE.

SUBROUTINE ARGUMENTS
IMAT - INPUT MATRIX TO BE REORDERED
NR - INPUT NUMBER OF ROWS IN IMAT
NC - INPUT NUMBER OF COLUMNS IN IMAT
NCAL - INPUT NUMBER OF COLUMNS IN IMAT TO BE USED FOR REORDERING
MAXIMUM VALUE OF NCAL = 30.
IWMAT - MATRIX WORKING SPACE (KR BY KCW)
KR - INPUT ROW DIMENSION IN CALLING PROGRAM FOR IMAT AND IWMAT
KCW - INPUT COLUMN DIMENSION IN CALLING PROGRAM FOR IWMAT
NCW = GE. NCAL

CODED BY JOHN ADHIRE *NASA* DEC 1974.

1108 SYSTEM ROUTINE FLD IS CALLED.
FORMA ROUTINE ZZBOMB IS CALLED.

NCW = NCAL * 6
NERRO = 1
IF (NCW .GT. KCW) GO TO 999
NERRO = 2
IF (NCW .GT. 180) GO TO 999
DO 20 I = 1, NR
DO 20 J = 1, NCAL
DO 20 L = 1, 6
JJ = (J - 1) * 6 + L
II = IARS((L - 1) * 6)
IWMAT(I, JJ) = FLD(II, 6, IMAT(I, J))
DO 10 K = 1, 37
IF (IWMAT(I, JJ) .NE. IVA(K)) GO TO 10
IWMAT(I, JJ) = K
GO TO 20
10 CONTINUE
NERROP = 3
GO TO 999
20 CONTINUE
NRK = NR - 1
DO 100 I = 1, NRM
DO 30 L = 1, NCW
30 IV(L) = IWMAT(I, L)
 II = I
 IP = I + 1
 DO 70 J = IP, NR
 DO 40 L = 1, NCW
 IF (IWMAT(J, L) - IV(L)) 50, 40, 70
40 CONTINUE
 GO TO 70
50 DO 60 L = 1, NCW
60 IV(L) = IWMAT(J, L)
 II = J
70 CONTINUE
 IF (II .NE. J) GO TO 100
 DO 80 L = 1, NC
 IA = IWMAT(II, L)
 IWMAT(II, L) = IWMAT(II, L)
80 IA = IWMAT(II, L)
 DO 90 L = 1, NCW
 IA = IWMAT(II, L)
 IWMAT(II, L) = IWMAT(II, L)
90 IA = IWMAT(II, L)
100 CONTINUE
RETURN
999 CALL ZZBOMB(6HORDALP, NERROR)
END
SUBROUTINE OUT (NTAPE, A, N)
DIMENSION A(1)

WRITE DATA FROM CORE SPACE A OUT TO NTAPE.
CODED BY RL WOHLLEN. MARCH 1976.

SUBROUTINE ARGUMENTS (ALL INPUT)
NTAPE = NUMBER OF TAPE. (EG 10).
A = DATA TO BE WRITTEN ON NTAPE.
N = NUMBER OF WORDS OF DATA TO BE WRITTEN ON NTAPE.

WRITE (NTAPE) (A(I), I=1,N)
RETURN
END
SUBROUTINE PA(P,A,Z,NR,NC,KRA,KRZ)
DIMENSION A(KRA,1),Z(KRZ,1)
C
PA PERFORMS THE OPERATION (Z)=P*(A)
WHERE (Z) AND (A) ARE MATRICES AND P IS A SCALAR.
PA CAN ALSO PERFORM THE OPERATION
(A)=P*(A) BY CALL PA(P,A,A,--ETC--)
C
IF NR IS NEGATIVE AND ABS(NR) IS EQUAL TO NC
A SQUARE, SYMMETRIC (Z) IS COMPUTED USING THE UPPER HALF OF (A).
C
FORMA SUBROUTINE ZZBOMB IS CALLED.
CODED BY JOHN ADAMIE *NASA* JULY 1972.
LAST REVISION BY RL WOHLER* APRIL 1976.
C
ARGUMENTS
P - INPUT SCALAR P
A - INPUT MATRIX (A) SIZE(NR BY NC)
Z - OUTPUT MATRIX (Z) SIZE(NP BY NC)
NR - INPUT ABS(NR) IS THE NUMBER OF ROWS IN (A)
NC - INPUT NUMBER OF COLUMNS IN (A)
KRA - INPUT ROW DIMENSION OF (A) IN CALLING PROGRAM
KRZ - INPUT ROW DIMENSION OF (Z) IN CALLING PROGRAM
C
NERROR EXPLANATIONS
1 = SIZE EXCEEDS DIMENSIONS.
2 = NON-SQUARE (Z) WANTED.
C
N=IABS(NR)
C
IF(N .GT. KRA .OR. N .GT. KRZ) GO TO 999
IF(NR .LT. 0) GO TO 40
C=ABS(P-1.)
IF(C .GT. 1.0E-7) GO TO 20
DO 10 I=1,NR
DO 10 J=1,NC
10 Z(I,J)=A(I,J)
RETURN
C
DO 30 I=1,NR
DO 30 J=1,NC
30 Z(I,J)=P*A(I,J)
RETURN
C
IF(N .NE. NC) GO TO 999
C=APS(P-1.)
IF(C .GT. 1.0E-7) GO TO 60
DO 50 I=1,N
DO 50 J=I,N
Z(I,J)=A(I,J)
50 Z(J,J) = Z(I,J)
RETURN
C
DO 70 I=1,N
DO 70 J=I,N
Z(I,J)=P*A(I,J)
70 Z(J,J) = Z(I,J)
RETURN
C
999 CALL Z2BOM(6HPA, NERROR)
END
SUBROUTINE PAGEHD
COMMON /LSTART/ IRUNNO,DATE,NPAGE,UNAME(3),TITLE1(12),TITLE2(12)
COMMON /LLINE/ NLINE,MAXLIN,MINI
DATA NI,N0T/5,6/

C BRINGS UP NEW PAGE AND PUTS HEADING AT TOP.
C INCREASES PAGE NUMBER BY ONE AND SETS LINE NUMBER EQUAL TO FIVE.

C INTERNAL VARIABLES
C IRUNNO = RUN NUMBER (A6 FORMAT)
C DATE = DATE (A6 FORMAT)
C NPAGE = PAGE NUMBER
C UNAME = USERS NAME (3A6 FORMAT)
C TITLE1 = FIRST TITLE (12A6 FORMAT)
C TITLE2 = SECOND TITLE (12A6 FORMAT)
C NLINE = LINE NUMBER
C MAXLIN = MAXIMUM NUMBER OF LINES PER PAGE
C MINI = PRINT OPTION (A4 FORMAT)
C
C MODIFIED AUG 1973 BY JOHN ADMIRE *NASA*
C
2001 FORMAT(9H1RUN NO. A6,32X,5HDATE A6,12H CPU TIME=I4,
 4H SEC,32X,9HPAGE NO. I4,55X7HRUN BY 3A6//10X,
 12A6/10X,12A6)
C
CALL CPUTIM(ISEC)
ISec=ISec/1000000
NPAGE=NPAGE+1
NLINE=5
WRITE (NOT,2001) IRUNNO,DATE,ISec,NPAGE,UNAME,TITLE1,TITLE2
RETURN
END
SUBROUTINE PAQB(P,A,Q,B,Z,NR,NC,KRA,KRB,KRZ)
DIMENSION A(KRA,1),B(KRB,1),Z(KRZ,1)

PAQB PERFORMS THE OPERATION (Z)=P*(A)+Q*(B)
WHERE (A),(B) AND (Z) ARE MATRICES AND
P AND Q ARE SCALARS.
PAQB CAN ALSO PERFORM THE OPERATIONS
(A)=P*(A)+Q*(B) BY CALL PAQB(P,A,Q,B,A,--ETC--)
(P)=P*(A)+Q*(B) BY CALL PAQB(P,A,Q,B,--ETC--)
(Z)=P*(A)+Q*(A) BY CALL PAQB(P,A,Q,A,Z,--ETC--)
(A)=P*(A)+Q*(A) BY CALL PAQB(P,A,Q,A,A,--ETC--)

IF NR IS NEGATIVE AND ABS(NR) IS EQUAL TO NC
A SQUARE, SYMMETRIC (Z) IS COMPUTED USING THE UPPER HALF OF (A),(B).
FORMA SUBROUTINE ZZGOMB IS CALLED.
CODED BY JOHN ADMIRE *NASA* JULY 1972.
LAST REVISION BY RL WOHLKEN APRIL 1976.

ARGUMENTS
P - INPUT SCALAR P
A - INPUT MATRIX (A) SIZE(NR BY NC)
Q - INPUT SCALAR Q
B - INPUT MATRIX (B) SIZE(NR BY NC)
Z - OUTPUT MATRIX (Z) SIZE(NR BY NC)
NR - INPUT APS(NR) IS THE NUMBER ROWS IN (A), (B) AND (Z)
NC - INPUT NC IS THE NUMBER OF COLUMNS IN (A), (B) AND (Z)
KRA - INPUT ROW DIMENSION OF (A) IN CALLING PROGRAM
KRB - INPUT ROW DIMENSION OF (B) IN CALLING PROGRAM
KRZ - INPUT ROW DIMENSION OF (Z) IN CALLING PROGRAM

NERRO R EXPLANATIONS
1 = SIZE EXCEEDS DIMENSIONS.
2 = NON-SQUARE (Z) WANTED.
3 = NON-SQUARE (Z) WANTED.

N=IABS(NR)
IF(N .GT. KRA .OR. N .GT. KRB .OR. N .GT. KRZ) GO TO 999
CP=ABS(P-1.)
CQ=ABS(Q-1.)
IF(CP .GT. 1.E-7 .OR. CQ .GT. 1.E-7) GO TO 40
IF(NR .LT. 0) GO TO 20
DO 10 I=1,NP
10 Z(I,J)=A(I,J)+B(I,J)
RETURN

20 IF(N .NE. NC) GO TO 999
DO 30 I=1,N
DO 30 J=1,N
Z(I,J) = A(I,J) + B(I,J)
30 Z(J,I) = Z(I,J)
RETURN

40 IF(NR .LT. 0) GO TO 60
\begin{verbatim}
999 CALL Z25GOM(G,HPAGB,NEROR)
RETURN
Z(J,J'=J(I,J')) = Z(J,J')
Z(J,J') = Z(J,J') + Z(J,J')
DO 70 J=1,N
 DO 70 I=1,N
 IF(NE.* NC) GO TO 999
 RETURN
70 RETURN
50 Z(I,J') = Z(I,J') + G*Z(I,J')
DO 50 J=1,N
 DO 50 I=1,N
\end{verbatim}
SUBROUTINE PLOT1 (XVEC, YMAT, NR, NC, IXNAME, IYNAME, ITITLE, IFCURV, K)
COMMON /START/, IRUNNO, DATE, NPAGE, UNAME(3), TITLE1(12), TITLE2(12)
DIMENSION XVEC(1), YMAT(K, 1), IXNAME(1), ITITLE(1), ITITL(12)
DATA NR, NOT/5, 6/
EQUIVALENCE (IDATE, DATE)

PLOTS FROM 1 TO 3 VECTORS PER FRAME. X-AXIS AND Y-AXIS ARE LINEAR.
CALLS FORMA SUBROUTINES PLOTSS, ZBBOMB.
THE MAXIMUM SIZE IS
NC=3
CODED BY RF HRUDA 01, JULY 1968
MODIFIED FOR CONTRACT NAS8-25922, MAY 1971.

NOTE... FORTRAN STATEMENT - CALL IDENT (1) - MUST BE IN LOGIC OF MAIN
PROGRAM PRIOR TO CALLING THIS ROUTINE. IT MUST BE EXECUTED ONLY
ONCE (INDEPENDENTLY OF NUMBER OF TIMES MAIN BODY OF THE PROGRAM
IS EXECUTED).

FORTRAN STATEMENT - CALL ENDDO- MUST BE IN LOGIC OF MAIN PROGRAM
SUBSEQUENT TO CALLING THIS ROUTINE. IT MUST BE EXECUTED ONLY ONCE.

SUBROUTINE ARGUMENTS (ALL INPUT)
XVEC = VECTOR OF X-AXIS COORDINATES. SIZE(NR).
YMAT = SET OF NC VECTORS TO BE PLOTTED SIMULTANEOUSLY. SIZE(NR, NC).
NR = NO. OF ROWS IN YMAT (AND XVEC)
NC = NO. OF COLS (OR VECTORS) IN YMAT
IXNAME = AN A6 NAME FOR X-AXIS
IYNAME = A 12A6 NAME FOR Y-AXIS
(CAN BE READ IN MAIN PROGRAM WITH A FORMAT (12A6))
ITITLE = A 6A6 DEFINED IN THE CALLING PROGRAM WHICH WILL BE
ASSEMBLED WITH IRUNNO AND DATE TO FORM TITLE. TITLE WILL
APPEAR AT BOTTOM OF PLOT SHEET.
IFCURV = 1 IF CONNECTED CURVE PLOT IS DESIRED
= 0 IF DOT PLOT IS DESIRED
K = ROW DIMENSION SIZE OF YMAT IN MAIN PROGRAM

ERROR EXPLANATIONS
1 = MORE THAN 3 COLUMNS IN (YMAT).
2 = IFCURV IS NOT 0 OR 1.

CHECK ON NO. OF VECTORS
IF (NC.GT.3) GO TO 999

FORM TITLE FROM ITITLE AND COMMON.
ITITL(1) = IXNAME
ITITL(2) = 6H
ITITL(3) = IRUNNO
ITITL(4) = 6H
ITITL(5) = IDATE
ITITL(6) = 6H
DO 5 I=1,6
5 ITITL(I+6) = ITITLE(I)
FIND MAX. AND MIN. OF YMAT, XVEC

YMAX = YMAT(1,1)
YMIN = YMAT(1,1)
XMAX = XVEC(1)
XMIN = XVEC(1)

DO 10 I=1,NR
 IF (XVEC(I) .GT. XMAX) XMAX = XVEC(I)
 IF (XVEC(I) .LT. XMIN) XMIN = XVEC(I)

10 IF (YMAT(I,J) .GT. YMAX) YMAX = YMAT(I,J)
 IF (YMAT(I,J) .LT. YMIN) YMIN = YMAT(I,J)

C FIND TOP AND BOTTOM VALUES FOR PLOT FRAME (YT AND YB)
 CALL PLOTSS (YMAX,YMIN,YT,YB)

C

NP=0
IF (IFCURV .EQ. 0) NP=NR
IF (IFCURV .EQ. 1) NP=-NR
IF (IFCURV .EQ. 0) JI=40
IF (IFCURV .EQ. 1) JI=61

IF (NP .EQ. 0) GO TO 999
NEWGRD = -1
DO 20 I=1,NC
 IF (I .GT. 1) NEWGRD=0
20 CALL QUIK3L (NEWGRD,XMIN,XMAX,YB,YT,JI,ITITL,INAME,NP,XVEC,*
 YMAT(1,1))
RETURN

999 CALL ZWBOM (6HPLOT1,NERROR)
END
SUBROUTINE PLOT2 (XVEC, YMAT, NR, NC, IXNAME, IYNAME, ITITLE, IPLOT,
* YTOP, YBOT, XLEFT, XRIGHT, KR)
COMMON /LSTRT/ IRUNNO, DATE, NPAGE, UNAME(3), TITLE1, TITLE2, NC
DIMENSION XVEC(NR), YMAT(NR, NC), ITITLE, ITITLE2, IRC(10)
DIMENSION IYNAME(1)
DATA NIT, NOT/5, 6/
DATA INC /2H 1, 2H 2, 2H 3, 2H 4, 2H 5, 2H 6, 2H 7, 2H 8, 2H 9, 2H 10 /
EQUIVALENCE (DATE, IDATE)

SUBROUTINE PRODUCES LOG-LOG, SEMILOG-LINEAR, LINEAR-SEMILOG PLOTS.
WILL PLOT UP TO 10 CURVES PER GRID. ALL CURVES WILL BE PLOTTED
VERSUS XVEC AND WILL BE PLOTTED WITH THE SAME Y AXIS SCALE.

NOTE...FORTRAN STATEMENT CALL IDENT (?$- MUST BE IN LOGIC OF MAIN
PROGRAM PRIOR TO CALLING THIS ROUTINE. IT MUST BE EXECUTED ONLY
ONCE (INDEPENDENTLY OF NUMBER OF TIMES MAIN PROGRAM IS
EXECUTED).

FORTRAN STATEMENT CALL EINDJOB- MUST BE IN LOGIC OF MAIN PROGRAM
SUBSEQUENT TO CALLING THIS ROUTINE. IT MUST BE EXECUTED
ONLY ONCE.

THE MAXIMUM SIZE IS
NC = 10
CALLS FORM A SUBROUTINE ZIBOMB.
CODED BY R L FERRY, MAY 1969.
MODIFIED FOR CONTRACT NAS8-25922, MAY 1971.

SUBROUTINE ARGUMENTS (ALL INPUT)
X' C = VECTOR OF X-AXIS COORDINATES. SIZE(NR).
YMAT = MATRIX OF Y-AXIS COORDINATES TO BE PLOTTED. SIZE(NR, NC).
 MAY BE DESTROYED.
NR = NUMBER OF ROWS IN XVEC AND YMAT.
NC = NUMBER OF COLUMNS IN YMAT. MAX=10.
IXNAME = AN 8 CHARACTER NAME FOR X-AXIS COORDS.
IYNAME = A 12 CHARACTER NAME FOR Y-AXIS COORDS.
ITITLE = A 6 CHARACTER NAME FOR THE PLOT TITLE.
 WHICH WILL BE
 ASSEMBLED WITH IRUNNO AND DATE TO FORM TITLE. TITLE
 WILL APPEAR AT BOTTOM OF PLOT SHEET.
IPLOT = THE TYPE OF PLOT DESIRED.
 = 1 ESTABLISHES A SEMI-LOG MAPPING WITH Y-AXIS LINEAR.
 = 2 ESTABLISHES A SEMI-LOG MAPPING WITH X-AXIS LINEAR.
 = 3 ESTABLISHES A LOG-LOG MAPPING.
YTOP = MAXIMUM VALUE OF Y-AXIS SCALE.
 IF .LE. 0. AND LOG AXIS, MAXIMUM VALUE WILL BE COMPUTED.
YBOT = MINIMUM VALUE OF Y-AXIS SCALE.
 IF .LE. 0. AND LOG AXIS, MINIMUM VALUE WILL BE COMPUTED.
XLEFT = MINIMUM VALUE OF X-AXIS SCALE.
 IF .LE. 0. AND LOG AXIS, MINIMUM VALUE WILL BE COMPUTED.
XRIGHT = MAXIMUM VALUE OF X-AXIS SCALE.
 IF .LE. 0. AND LOG AXIS, MAXIMUM VALUE WILL BE COMPUTED.
KR = ROW DIMENSION OF YMAT IN CALLING PROGRAM.

NERROF EXPLICATIONS
1 = MORE THAN 10 COLUMNS IN (YMAT).
CHECK SIZE LIMITATION OF PROGRAM—NUMBER OF VECTORS TO BE PLOTTED

NERROR=1

IF (NC .GT. 10) GC TO 999

C

C FORM TITLE FROM ITITLE AND COMMON

ITITL(1) = IXNAME
ITITL(2) = 6H
ITITL(3) = IRUNNO
ITITL(4) = 6H
ITITL(5) = IDATE
ITITL(6) = 6H
DO 5 I=1,6
5 ITITL(I+6) = ITITL(I)

C

C FIND MAX AND MIN OF YMAT, XVEC.

XMAX=XVEC(1)
XMIN=XVEC(1)
YMAX=YMAT(1,1)
YMIN=YMAT(1,1)
DO 12 I=1,NR
 IF(XVEC(I).GT. XMAX) XMAX=XVEC(I)
 IF(XVEC(I).LT. XMIN) XMIN=XVEC(I)
DO 12 J=1,NC
 IF(YMAT(I,J).GT. YMAX) YMAX=YMAT(I,J)
 IF(YMAT(I,J).LT. YMIN) YMIN=YMAT(I,J)

12 CONTINUE

XL = XLFFT
XR = XRIGHT
YE = YBOT
YT = YTOP
If (IPLT .EQ. 2) GC TO 60

C

C X LOG SCALE DETERMINATION SECTION.

IF (XLFFT.GT.0) GO TO 50
 X = ALOG10 (XMIN)
 IF (X .LT. 0.) GO TO 45
 I = X + 1.
 GO TO 48
45 I = 1.
 IF (X-Y .GE. 1.) I = I+1
48 XL = 10. **(I - 1)
50 IF (XRIGHT .GT. 0.) GC TO 60
 X = ALOG10 (XMAX)
 IF (X .GE. 0.) GO TO 52
 I = X
 GO TO 53
52 I = X + 1.
 Y = 1.
 IF (Y-X .GE. 1.) I = 1 - 1
53 XR = 10. **I

C

C Y LOG SCALE DETERMINATION SECTION

60 IF (IPLT .EQ. 1) GC TO 13
IF (YTOP .GT. 0.) GC TO 70
X=ALOG10(YMAX)
IF (X,GE.6.) GC TO 103
I=X
GO TO 104
103 I=X+1.
Y=1
IF (Y-X,GE.1.) I=I-1
104 YT=10.***I
70 IF (YBOT .GT. 0.) GO TO 13
X = ALOG10 (YMIN)
IF (X,LT. 0.) GO TO 75
I = X + 1.
GO TO 80
75 I = X
Y = I - 1
IF (X-Y,GE.1.) I=I+1
80 YB = 10.**{(I-1)}
C
C PRODUCE APPROPRIATE GRID
13 IF (IPLCT .EQ. 1) CALL SMXYV (1,0)
IF (IPLCT .EQ. 2) CALL SMXYV (0,1)
IF (IPLCT .EQ. 3) CALL SMXYV (1,1)
DO 130 I=1,NR
IF (XVEC(I) .GT. XR) XVEC(I) = XR
IF (XVEC(I) .LT. XL) XVEC(I) = XL
DO 130 J=1,NC
IF (YMAT(I,J) .GT. YT) YMAT(I,J) = YT
130 IF(YMAT(I,J) .LT. YB) YMAT(I,J)=YB
C
C PLOT CURVES
NEWGRD = -1
DO 40 I=1,NC
CALL XSCLV1 (XVEC(I),IXRAS,IXERR)
CALL YSCLV1 (YMAT(I,1),IYRAS,IYERR)
CALL PRINTV (2,IND(1),IXRAS,IYRAS)
CALL XSCLV1 (XVEC(NR),IXRAS,IXERR)
CALL YSCLV1 (YMAT(NR,1),IYRAS,IYERR)
CALL PRINTV (2,IND(1),IXRAS,IYRAS)
IF (I,GE.1) NEWGRD = 0
40 CALL QULKLOG (NEWGRD,XL,XR,YB,YT,61,ITITL,LYNAME,-NR,XVEC, *
YMAT(I,1))
C
C RETURN TO MAIN PROGRAM
CALL SMXYV `(0,0)
RETURN
999 CALL ZZBOMB (6H,PLOT2 ,NERROR)
END
C

SUBROUTINE PLOT3 (CLOC, MLOC, COELOC, VPLOC, RANGE, CANGLE, EED,
 * IFJNUM, LREYE, NVIEW, IFFA, ITITLE, NC, NM, KC, KM)
C
COMMON /LSTAR/ IFUNNO, DATE, NFAGE, UNAME(3), TITLE1(12), TITLE2(12)
 * CLOC(KC,1), MLOC(KM,1), COELOC(11), VPLOC(11), ITITLE(11)
 * DIMENSION AGE (3), AC1E(3), AC2E(3), EA (3), EAE (3), EB (3), EBE (3),
 * UX (3), UY (3), UZ (3), ITITLE(13)
 * DIMENSION NUMBER (100), IDATA (3)
 * DATA NIT, NCT /5, 6/
 * DATA TCLRC /1.E-08 /
 * DATA NUMBER /3H 1,3H 2,3H 3,3H 4,3H 5,3H 6,3H 7,3H 8, *
 * 3H 9,3H 10,3H 11,3H 12,3H 13,3H 14,3H 15,3H 16, *
 * 3H 17,3H 18,3H 19,3H 20,3H 21,3H 22,3H 23,3H 24, *
 * 3H 25,3H 26,3H 27,3H 28,3H 29,3H 30,3H 31,3H 32, *
 * 3H 33,3H 34,3H 35,3H 36,3H 37,3H 38,3H 39,3H 40, *
 * 3H 41,3H 42,3H 43,3H 44,3H 45,3H 46,3H 47,3H 48, *
 * 3H 49,3H 50,3H 51,3H 52,3H 53,3H 54,3H 55,3H 56, *
 * 3H 57,3H 58,3H 59,3H 60,3H 61,3H 62,3H 63,3H 64, *
 * 3H 65,3H 66,3H 67,3H 68,3H 69,3H 70,3H 71,3H 72, *
 * 3H 73,3H 74,3H 75,3H 76,3H 77,3H 78,3H 79,3H 80, *
 * 3H 81,3H 82,3H 83,3H 84,3H 85,3H 86,3H 87,3H 88, *
 * 3H 89,3H 90,3H 91,3H 92,3H 93,3H 94,3H 95,3H 96, *
 * 3H 97,3H 98,3H 99,3H 100 /
 * EQUIVALENCE (DATE, IDATE)
C
PLOTS PERSPECTIVE OR STEREO-PAIR VIEW(S).
CODED BY R F KRUDA, OCTOBER 1968.
MODIFIED FOR CONTRACT NAS8-25922, MAY 1971.

NOTE...FORTRAN STATEMENT -CALL IDENT (1)- MUST BE IN LOGIC OF MAIN
 PROGRAM PRIOR TO CALLING THIS ROUTINE. IT MUST BE EXECUTED
 ONLY ONCE (INDEPENDENTLY OF THE NUMBER OF TIMES THE MAIN
 PROGRAM IS EXECUTED).

FORTRAN STATEMENT -CALL ENDCO- MUST BE IN LOGIC OF MAIN
 PROGRAM SUBSEQUENT TO CALLING THIS ROUTINE. IT MUST BE EXECUTED
 ONLY ONCE.

THIS ROUTINE CALLS FORMA SUBROUTINES VCROSS, VDOT, ZZBOMB.

SUBROUTINE ARGUMENTS (ALL INPUT)
 CLOC = NC-BY-3 MATRIX. THE I-TH ROW WOULD DEFINE THE XY, Z
 COORDINATE LOCATION OF THE I-TH JOINT OF A STRUCTURE.
 MLOC = NM-BY-2 MATRIX. THIS MATRIX SPECIFIES WHICH COORDINATES
 IN THE CLOC ARE TO BE CONNECTED BY A STRAIGHT LINE PLOT.
 (I.E. PLOT FROM CLOC(MLOC(I,1)) TO CLOC(MLOC(I,2))).
 COELOC = A VECTOR DEFINING THE XY, Z COORDINATES OF THE
 CENTER-OF-EYES-LOCATION IN THE REFERENCE COORDINATE SYSTEM.
 WHERE YOU VIEW THE OBJECT FROM.
 VPLOC = A VECTOR DEFINING THE XY, Z COORDINATES OF THE
 VIEW-POINT-LOCATION. (A POINT YOU WISH TO LOOK AT
 FROM THE COELOC.)
 RANGE = ROLL-ANGLE (IN DEGREES) YOU WISH TO ROLL YOUR HEAD ABOUT
 THE LINE OF SIGHT PRESCRIBED BY COELOC AND VPLOC.

CANGLE = CONE ANGLE OF VISION. (A SCALING TYPE OF VARIABLE THAT IS DEPENDENT ON THE VIEWER. FOR MOST VIEWERS ABOUT 60 DEGREES IS USED. IF NO Viewer IS USED, ABOUT 20 DEGREES IS ACCEPTABLE.) MAX = 80 DEGREES.

CEED = EYE-TO-EYE DISTANCE (USUALLY 3.0 INCHES). A VARIATION OF THIS PARAMETER WILL CAUSE A DEPTH PERCEPTION DISTORTION.

IFJNUM = 0, NO JOINT NUMBERS WILL APPEAR ON THE STRUCTURE.

= 1, JOINT NUMBERS WILL BE PUT ON THE STRUCTURE.

LREYE = 1, A PERSPECTIVE (LEFT EYE) VIEW WILL BE PRODUCED.

= 2, COMPANION RIGHT EYE VIEW FOR STEREO WILL BE PRODUCED.

NVIEW = 1, THE PLOTTED IMAGE WILL BE FULL SIZE, AND ONLY ONE VIEW WILL APPEAR ON ONE PLOT FRAME.

= 2, THE PLOTTED IMAGE WILL BE HALF-SIZE SUCH THAT BOTH VIEWS OF A STEREO PAIR MAY BE PUT ON ONE PLOT FRAME.

(ITC BE USED IN CONJUNCTION WITH LREYE AND IFJNUM. FOR A STEREO PAIR, THE LEFT EYE VIEW MUST BE PLOTTED FIRST.)

IFFA = 0, FRAME ADVANCE WILL NOT BE EXECUTED AFTER PLOTTING A FRAME.

= 1, FRAME ADVANCE WILL BE EXECUTED AFTER PLOTTING IS COMPLETED. (MUST USE IFFA=1 ON LAST PLOT EXECUTION IN EACH FRAME.)

ITITLE = 13A6 PLOT TITLE. (CANNOT USE TITLE1 OR TITLE2 FROM SUBROUTINE START)

NC = NC OF ROWS IN CLOC.

NM = NC OF ROWS IN MLOC.

KC = PCW DIMENSION SIZE IN CALLING PROGRAM OF MATRIX CLOC.

KM = ROW DIMENSION SIZE IN CALLING PROGRAM OF MATRIX MLOC.

NERROR EXPLANATIONS

1 = CONE ANGLE GREATER THAN 80 DEGREES.

2 = EYE-TO-EYE DISTANCE LESS THAN 1.E-8.

3 = JOINT NUMBER OPTION (IFJNUM) MUST BE 0 OR 1.

4 = PERSPECTIVE OR STEREO OPTION (LREYE) MUST BE 1 OR 2.

5 = VIEW OPTION (NVIEW) MUST BE 1 OR 2.

6 = FRAME ADVANCE OPTION MUST BE 0 OR 1.

7 = CENTER OF EYES IS TOO CLOSE TO VIEW POINT.

8 = MATRIX (MLOC) DATA EXCEEDS MATRIX (CLOC) SIZE.

IF (CANGLE .GT. 80.) GO TO 999

IF (CEED.LE.TOLRNC) GO TO 999

IF (IFJNUM.NE.0 .AND. IFJNUM.NE.1) GO TO 999

IF (LREYE.NE.1 .AND. LREYE.NE.2) GO TO 999

IF (NVIEW.NE.1 .AND. NVIEW.NE.2) GO TO 999

NERROR=1

NERROR=2

NERROR=3

NERROR=4

NERROR=5

NERROR=6

NERROR=7

NERROR=8
IF (IFFA_EQ.0 .AND. IFFA_EQ.1) GO TO 999

ERROR=6

C FORM SINES AND COSINES.
DX = VPLOC1-CELOC1
DY = VPLOC2-CELOC2
DZ = VPLOC3-CELOC3
OPM = SQRT(DX**2+DY**2+DZ**2)

IF (OPM LE. TOLRNC) GO TO 999
THETAX = RANGLE/57.2957
THETAY = ATAN2(-DZ, SQRT(DX**2+DY**2))
THETAZ = 0.
IF (ABS(DY).GT. TOLRNC OR ABS(DX).GT. TOLRNC) THETAZ = ATAN2(DY, DX)
S1 = SIN(THETAZ)
S2 = SIN(THETAY)
S3 = SIN(THETAX)
SEYE = SIN(THETA1(.5*EED/OPM))
SCONE = SIN(.5*CANGLE/57.2957)
C1 = COS(THETAZ)
C2 = COS(THETAY)
C3 = COS(THETAX)
CEYE = COS(THETA1(.5*EED/OPM))
CCONE = COS(.5*CANGLE/57.2957)

C FORM CONVERSION FACTOR (UNIT RASTERS/LENGTH).
IF (NVIEW.EQ.1) SCALE = 0.4399
IF (NVIEW.EQ.2) SCALE = 0.2499
CONVRT = SCALE/(OPM/CEYE)*TAN(.5*CANGLE/57.2957))

C SET UP DATA FOR PLOTTING TITLES.
DC 100 I=1,13
100 ITITLX(I) = ITITLE(I)

C PLOT TITLE DATA.

103 CALL RITY2V (10,912,1024,180,1,14,1,1DATA,IFPR)
CALL PRINTV (78,ITITLX,203,107)
CALL PRINTV (30,3AH'CENTER OF EYES LOCATION',203,82)
CALL PRINTV (38,3AH'VIEW POINT LOCATION ROLL ANGLE =.443,82)
CALL LABLV (RANGLE,747,82,6,1,3)
CALL PRINTV (3,3HDEG,803,82)
CALL PRINTV (6,6H'X =203,61)
CALL LABLV (CELOC1,259,61,6,1,1)
CALL PRINTV (3,3HX =.451,61)
CALL LABLV (VPLOC1,486,61,-6,1,1)
CALL PRINTV (19,19H'COE ANGLE =.595,61)
CALL LABLV (CANGLE,747,61,6,1,3)
CALL PRINTV (3,3HDEG,803,61)
CALL PRINTV (6,6H Y = 203,41)
CALL LABEL (COELOC(2),259,41,-6,1,1)
CALL PRINTV (3,3H IN.803,41)
CALL LABEL (VPLOC(2),486,41,-6,1,1)
CALL PRINTV (19,19H EYF TO EYE = 595,41)
CALL LABEL (EED,747,41,6,1,3)
CALL PRINTV (3,3H IN.,803,41)
CALL PRINTV (6,6H Z = 203,20)
CALL LABEL (COELOC(3),259,20,-6,1,1)
CALL PRINTV (3,3H Z = 451,20)
CALL LABEL (VPLOC(3),486,20,-6,1,1)
CALL PRINTV (10,10HRUN NO. = 203,4)
CALL PRINTV (6,IRUNNO,284,4)
CALL PRINTV (17,17H DATE = 364,4)
CALL PRINTV (6,DATE,500,4)

105 CONTINUE

C TRANSFORM VECTORS FROM COE SYSTEM TO REFERENCE SYSTEM AND TAKE
C ADVANTAGE OF ZEROS IN ORIGINAL VECTORS.

SIGN = +1.0
IF (LREYE,FC.2) SIGN = -1.0
EC(1) = SIGN*.5*EED*(C1*S2*S3-S1*C3)
EC(2) = SIGN*.5*EED*(S1*S2*S3+C1*C3)
EC(3) = SIGN*.5*EED*(C2*S3)
EP(1) = OPM*(C1*C3)+E0(1)
EP(2) = OPM*(S1*C2)+E0(2)
EP(3) = OPM*(-S2)+E0(3)
RE(1) = COELOC(1)-E0(1)
RE(2) = COELOC(2)-E0(2)
RE(3) = COELOC(3)-E0(3)
CALL VCROSS (EO,EP,UX,EOM,EPM,UXM,SINAB)
CALL VCROSS (EP,UX,UY,EPM,UYM,SINAB)
CALL VCRSS (UX,UY,UZ,UXM,UYM,UZM,SINAB)
DO 140 N1=1,3
UX(N1) = SIGN*UX(N1)/UXM
UY(N1) = SIGN*UY(N1)/UYM
140 UZ(N1) = +1.0*UZ(N1)/UZM
EPE(1) = 0.
EPE(2) = 0.
EPE(3) = EPM

C LOOP FOR PLOTTING THE NM MEMBERS.

DO 330 NMEM=1,NM
C SET UP VECTORS FROM EYE TO MEMBER ENDS.
NA = MLOC(NMEN,1)
NB = MLOC(NMEN,2)
IF (NA.GT.NC .OR . NB.GT.NC) GO TO 999
DO 160 N1=1,3
EA(N1) = CLOC(NA,N1)-RE(N1)
160 EB(N1) = CLOC(NB,N1)-RE(N1)
EAE(1) = UX(1)*EA(1)+UX(2)*EA(2)+UX(3)*EA(3)
EAE(2) = UY(1)*EA(1)+UY(2)*EA(2)+UY(3)*EA(3)
EAE(3) = UZ(1)*EA(1)+UZ(2)*EA(2)+UZ(3)*EA(3)
PLOT3 -- 5/7

\[\text{EBE}(1) = UX(1) \cdot EB(1) + UX(2) \cdot EB(2) + UX(3) \cdot EB(3) \]
\[\text{EBE}(2) = UY(1) \cdot EB(1) + UY(2) \cdot EB(2) + UY(3) \cdot EB(3) \]
\[\text{EBE}(3) = UZ(1) \cdot EB(1) + UZ(2) \cdot EB(2) + UZ(3) \cdot EB(3) \]

C CHECK IF BOTH ENDS ARE BEHIND THE EYE.
IF \((\text{EAE}(3) \leq \text{TOLRC} \text{ AND } \text{EAE}(3) \leq \text{TOLRC})\) GO TO 330

C CHECK IF BOTH ENDS ARE IN CONE OF VISION.
CALL VDOT \((\text{EPE}, \text{EAL}, \text{PRODUCT}, \text{EPEM}, \text{EAM}, \text{COSPA})\)
CALL VDOT \((\text{EPE}, \text{EEM}, \text{PRODUCT}, \text{EPEM}, \text{EBEM}, \text{COSP})\)
IF \((\text{EAM} \leq \text{TOLRC} \text{ OR } \text{EBEM} \leq \text{TOLRC})\) GO TO 330
IFNUM = 0
IF \((\text{COSPA} \lt \text{CONE} \text{ OR } \text{COSPB} \lt \text{CONE})\) GO TO 170
IFNUM = 1
\[
\begin{align*}
\text{PAX} &= (\text{EPEM} / \text{COSPA}) \cdot (\text{EAE}(1) / \text{EAM}) \\
\text{PAY} &= (\text{EPEM} / \text{COSPA}) \cdot (\text{EAE}(2) / \text{EAM}) \\
\text{PHX} &= (\text{EPEM} / \text{COSPB}) \cdot (\text{EAE}(1) / \text{EBEM}) \\
\text{PBY} &= (\text{EPEM} / \text{COSPB}) \cdot (\text{EAE}(2) / \text{EBEM})
\end{align*}
\]
GO TO 320

C FIND INTERSECTION OF LINE AND CONE AND DETERMINE WHICH SOLUTIONS ARE VALID FOR POINTS TO BE PROJECTED ONTO VIEWING PLANE.
170 CALL VCROSS \((\text{EAE}, \text{EKE}, \text{ECE}, \text{EAE}, \text{EBEM}, \text{ECE}, \text{SINAB})\)
IF \((\text{ECEM} \geq \text{TOLRC})\) GO TO 330
CALL VDOT \((\text{EPE}, \text{ECE}, \text{PRODUCT}, \text{EPEM}, \text{ECEM}, \text{COSPC})\)
C9MC = COS \((90.0 - 5 \cdot \text{CANGLE}) / 57.2957\)
C9PC = COS \((90.0 + 5 \cdot \text{CANGLE}) / 57.2957\)
IF \((\text{COSPC} \geq \text{C9MC} \text{ OR } \text{COSPC} \lt \text{C9MC})\) GO TO 330
BETA = ATAN2 \((\text{ECE}(1), \text{ECE}(2))\)
SINPPB = \((-1.0 / \text{TAN}(1.5 \cdot \text{CANGLE} / 57.2957))\)*
\[
\left(\frac{\text{ECE}(3)}{\text{SORT}(\text{ECE}(1)**2 + \text{ECE}(2)**2)} \right)
\]
IF \((\text{SINPPB} \lt 0.995)\) GO TO 330
DENOM = SORT \((1.0 - \text{SINPPB}**2)\)
PHI1 = ATAN2 \((\text{SINPPB} + \text{DENOM}) - \text{BETA}\)
PHI2 = ATAN2 \((\text{SINPPB} - \text{DENOM}) + \text{BETA}\)
DO 180 N1 = 1, 3
180 ARE\((\text{N1}) = \text{EBE}(\text{N1}) - \text{EAE}(\text{N1})\)
IFUSE1 = 1
IFUSE2 = 1
R1 = 0.
R2 = 0.
IF \((\text{ABS}(\text{ECE}(2)) \cdot \text{GT} \cdot \text{ABS}(\text{ECE}(1)))\) GO TO 190
DENOM1 = ABE(3) \cdot \text{SCONE} \cdot \text{SIN}(\text{PHI1}) - ABE(2) \cdot \text{CONE}
DENOM2 = ABE(3) \cdot \text{SCONE} \cdot \text{SIN}(\text{PHI2}) - ABE(2) \cdot \text{CONE}
IF \((\text{ABS}(\text{DENOM1}) \leq \text{TOLRC})\) IFUSE1 = 0
IF \((\text{ABS}(\text{DENOM2}) \leq \text{TOLRC})\) IFUSE2 = 0
IF \((\text{IFUSE1} \cdot \text{EQ} \cdot 1)\) R1 = ECE(1) / DENOM1
IF \((\text{IFUSE2} \cdot \text{EQ} \cdot 1)\) R2 = ECE(1) / DENOM2
GO TO 200
190 DENOM1 = ABE(1) \cdot \text{CONE} - ABE(3) \cdot \text{SCONE} \cdot \text{COS} \cdot \text{PHI1}
DENOM2 = ABE(1) \cdot \text{CONE} - ABE(3) \cdot \text{SCONE} \cdot \text{COS} \cdot \text{PHI2}
IF \((\text{ABS}(\text{DENOM1}) \leq \text{TOLRC})\) IFUSE1 = 0
IF \((\text{ABS}(\text{DENOM2}) \leq \text{TOLRC})\) IFUSE2 = 0
IF \((\text{IFUSE1} \cdot \text{EQ} \cdot 1)\) R1 = ECE(2) / DENOM1
IF \((\text{IFUSE2} \cdot \text{EQ} \cdot 1)\) R2 = ECE(2) / DENOM2
200 IF \((\text{R1} \leq \text{TOLRC})\) IFUSE1 = 0
IF \((\text{R2} \leq \text{TOLRC})\) IFUSE2 = 0
IF (IFUSE1.EQ.0 .AND. IFUSE2.EQ.0) GO TO 330

FORM VECTORS FROM EYE TO PROJECTED POINT AND FORM X,Y COMPONENTS IN THE P-SYSTEM.

IF (IFUSE1.EQ.0) GO TO 210
EQ1E(1) = RI*COS(PHI1)*SCONE
EQ1E(2) = RI*SIN(PHI1)*SCONE
EQ1E(3) = RI*CCONE

210 IF (IFUSE2.EQ.0) GO TO 220
EQ2E(1) = R2*COS(PHI2)*SCONE
EQ2E(2) = R2*SIN(PHI2)*SCONE
EQ2E(3) = P2*CCONE

220 IF (IFUSE1.EQ.0 .AND. IFUSE2.EQ.1) GO TO 260

IF (COSPA.LE.CCONE .AND. COSPB.LE.CCONE) GO TO 230
IF (IFUSE1.EQ.0) GO TO 230
EQ1EM = SQRT(EQ1E(1)**2+EQ1E(2)**2+EQ1E(3)**2)
PAX = (EPM/CCONE)*(EQ1E(1)/EQ1EM)
PAY = (EPM/CCONE)*(EQ1E(2)/EQ1EM)
GO TO 240

230 EQ2EM = SQRT(EQ2E(1)**2+EQ2E(2)**2+EQ2E(3)**2)
PAX = (EPM/CCONE)*(EQ2E(1)/EQ2EM)
PAY = (EPM/CCONE)*(EQ2E(2)/EQ2EM)

240 IF (COSPA.LT.CCONE) GO TO 250
PBX = (EPM/COSPA)*(EAE(1)/EAEM)
PBY = (EPM/COSPA)*(EAE(2)/EAEM)
GO TO 320

250 PBX = (EPM/COSPB)*(EAE(1)/EAEM)
PBY = (EPM/COSPB)*(EAE(2)/EAEM)
GO TO 320

TWO INTERSECTION POINTS.

SEE IF BOTH ARE INSIDE OR BOTH ARE OUTSIDE OF AB.

260 DO 270 N1=1,3
AQ1E(N1) = EQ1E(N1)-EAE(N1)
270 AQ2E(N1) = EQ2E(N1)-EAE(N1)
CALL VDOT (ABE,AQ1E,AEQ1,ABEM,AQ1EM,COSAQ1)
CALL VDOT (ABE,AQ2E,ABQ2,ABEM,AQ2EM,COSAQ2)
RATIO1 = AQ1E/ABEM**2
RATIO2 = AQ2E/ABEM**2
IF ((RATIO1.GE.1.0 .AND. RATIO2.GE.1.0) .OR.*
 * (RATIO1.LE.0.0 .AND. RATIO2.LE.0.0)) GO TO 330
IF ((RATIO1.GT.0.0 .AND. RATIO1.LT.1.0) .AND.*
 * (RATIO2.GT.0.0 .AND. RATIO2.LT.1.0)) GO TO 310

ONE POINT INSIDE AND ONE POINT OUTSIDE OF AB.

IF (RATIO2.GT.0.0 .AND. RATIO2.LT.1.0) GO TO 280
EQ1EM = SQRT(EQ1E(1)**2+EQ1E(2)**2+EQ1E(3)**2)
PAX = (EPM/CCONE)*(EQ1E(1)/EQ1EM)
PAY = (EPM/CCONE)*(EQ1E(2)/EQ1EM)
GO TO 290

280 EQ2EM = SQRT(EQ2E(1)**2+EQ2E(2)**2+EQ2E(3)**2)
PAX = (EPM/CCONE)*(EQ2E(1)/EQ2EM)
PAY = (EPM/CCONE)*(EQ2E(2)/EQ2EM)

290 IF (COSPA.LT.CCONE) GO TO 300

PBP = (FPM/COSPA)*(EAE(l)/EAEM)
PBY = (FPM/COSPA)*(EAE(2)/EAEM)
GO TO 320

300 PBP = (FPM/COSPB)*(EBE(1)/EBEM)
PBY = (FPM/COSPB)*(EBE(2)/EBEM)
GO TO 320

C

C BOTH POINTS INSIDE OF AB
310 EQ1EM = SQRT(EQ1E(1)**2+EQ1E(2)**2+EQ1E(3)**2)
EQ2EM = SQRT(EQ2E(1)**2+EQ2E(2)**2+EQ2E(3)**2)
PAX = (EPM/CCONE)*(EQ1E(l)/EQ1EM)
PAY = (EPM/CCONE)*(EQ1E(2)/EQ1EM)
PBP = (EPM/CCONE)*(EQ2E(l)/EQ2EM)
PBY = (EPM/CCONE)*(EQ2E(2)/EQ2EM)

C

C CONVERT TO 0.-TO-1. GRID VALUES, AND PLOT.
320 CONTINUE
IF (NVIEW.EQ.1) BIAS = 0.500
IF (NVIEW.EQ.2 .AND. LREYE.EQ.1) BIAS = 0.250
IF (NVIEW.EQ.2 .AND. LREYE.EQ.2) BIAS = 0.750
PAX = PAX*CONVRT+0.560
PAY = PAY*CONVRT+RIAS
PBP = PBP*CONVRT+0.560
PBY = PBY*CONVRT+RIAS
IPAX = PAX * FLOAT (1024)
IPAY = PAY * FLOAT (1024)
IPBX = PBP * FLOAT (1024)
IPBY = PBY * FLOAT (1024)
CALL LINEV (IPAY,IPAX,IPBY,IPBX)
IF (IFNUM.EQ.0 .OR. IFNUM.EQ.0) GO TO 330
IF (NA.GT.100 .OP. NB.GT.100) GO TO 330
CALL PRINTV (3,NUMBER(NA),IPAY,IPAX)
CALL PRINTV (3,NUMBER(NB),IPBY,IPBX)

330 CONTINUE

C

C CLEAR PLOT BUFFER FOR THE FRAME JUST COMPLETED.
C IF (IFFA.EQ.1) CALL FRAMEV (3)
C
C
RETURN

999 CALL ZZPOM6 (6HPLRT3 ,NERROR)
END
SUBROUTINE PLOTSS (YMAXIN,YMININ,YTOP,YBOT)

SELECT PLOT SCALE AND CALCULATE TOP, BOTTOM VALUES OF 10 SQUARE
LINEAR PLOT GRID FROM YMAXIN,YMININ.
CALLS FORMA SUBROUTINE Z2BOMB.
CODED BY RF HRUDA. SEPTEMBER 1967.
LAST REVISION BY WA BENFIELD. MARCH 1976.

SUBROUTINE ARGUMENTS
YMAXIN = INPUT MAXIMUM VALUE TO BE PLOTTED.
YMININ = INPUT MINIMUM VALUE TO BE PLOTTED.
YTOP = OUTPUT TOP LIMIT OF GRID.
YBOT = OUTPUT BOTTOM LIMIT OF GRID.

NERROR EXPLANATION
1 = YMAX IS LESS THAN YMIN.
2 = SCALE CANNOT BE CALCULATED.

YMAX = YMAXIN
YMIN = YMININ

IF (YMAX .LT. YMIN) GO TO 999
IF (YMAX .GT. YMIN) GO TO 21
11 IF (YMAX .LT. 0.00) GO TO 13
 YMAX = 1.001*YMAX
 YMIN = .999*YMIN
 GO TO 15
13 YMAX = .999*YMAX
 YMIN = 1.001*YMIN
15 IF (YMAX .NE. 0.) GO TO 21
 YMAX = +.3
 YMIN = -.3

21 VALUE = (YMAX-YMIN)/10.
 IF (VALUE .LT. ABS(YMIN/100000.)) GO TO 11
 DO 23 I=1,166
 DO 23 J=1,3
 SCALE = 2.**(J-2) *10.**(I-33)
 IF (SCALE .GE. VALUE) GO TO 31
 CONTINUE
GO TO 999

31 NSTEPS = YMIN/SCALE
 YBOT = FLOAT(NSTEPS)*SCALE
32 IF (YMIN) 34,38,36
33 YBOT = YBOT-SCALE
34 IF (YBOT .LE. YMIN) GO TO 38
 GO TO 33
35 YBOT = YBOT+SCALE
36 IF (YBOT-YMIN) 35,38,37
37 YBOT = YBOT-SCALE
38 YTOP = YBOT+10.*SCALE
 IF (YTOP .GE. YMAX) RETURN
 IF (J .LT. 3) GO TO 39
\begin{verbatim}
J = 0
I = I+1
39 J = J+1
 SCALE = 2.**{(J-2)} *10.**{(I-33)}
 GO TO 32
C
999 CALL ZZBUMB (6HLOTSS, NERROR)
 END
\end{verbatim}
SUBROUTINE PUNCAN(IA,NR,NC,ANAME,KR)

DIMENSION IA(KR,1)

C PRODUCES PUNCHED CARD OUTPUT USABLE FOR SUBROUTINE READAN.
C CODED BY JOHN ADMIRE *NASA* OCT 1974.
C
C SUBROUTINE ARGUMENTS (ALL INPUT)
C IA = MATRIX TO BE PUNCHED. SIZE (NR,NC).
C NR = NUMBER OF ROWS IN MATRIX A.
C NC = NUMBER OF COLS IN MATRIX A.
C ANAME = MATRIX IDENTIFICATION. (A6 FORMAT).
C KR = ROW DIMENSION OF A IN CALLING PROGRAM.

C
C PUNCH 4010, ANAME, NR, NC
C
DO 60 1=1,NR
JS = 1
10 JE = JS+9
IF (JE .GT. NC) JE=NC
C SEE IF ELEMENTS ARE ZERO.
DO 20 J=JS,JE
20 IF(IA(I,J) .NE. 6H) GO TO 35
GO TO 40
35 PUNCH 4020, I,JS,(IA(I,J), J=JS,JE)
40 IF (JE .EQ. NC) GO TO 30
JS = JS+10
GO TO 10
60 CONTINUE

C
PUNCH 4030
RETURN
END
SUBROUTINE PUNCH (A, NR, NC, ANAME, KR)
DIMENSION A(KR,1)

C PRODUCES PUNCHED CARD OUTPUT USABLE FOR SUBROUTINE READ.
C Coded by RL WOLLEN. DECEMBER 1966.
C
C SUBROUTINE ARGUMENTS (ALL INPUT)
C A = MATRIX TO BE PUNCHED. SIZE (NR, NC).
C NR = NUMBER OF ROWS IN MATRIX A.
C NC = NUMBER OF COLS IN MATRIX A.
C ANAME = MATRIX IDENTIFICATION. (A6 FORMAT).
C KR = ROW DIMENSION OF A IN CALLING PROGRAM.
C
4010 FORMAT (A6, I4, I5)
4020 FORMAT (2I5, 4E17.8)
4030 FORMAT (10H000000000000)
C
PUNCH 4010, ANAME, NR, NC
C
DO 60 I=1, NR
 JS = 1
10 JE = JS+3
 IF (JE .GT. NC) JE = NC
 IF (JE .EQ. NC) GO TO 60
 JS = JS+4
 GO TO 10
 IF (A(I,J) .NE. 0.) GO TO 35
20 JS = JS+2
 GO TO 10
 PUNCH 4020, I, JS, (A(I,J), J=JS, JE)
35 PUNCH 4020, I, JS, (A(I,J), J=JS, JE)
40 JS = JS+4
 GO TO 10
60 CONTINUE
C
PUNCH 4030
RETURN
END
SUBROUTINE PUNCHO (A, NR, NC, ANAME, KR)

DIMENSION A(KR,1)

C PRODUCES PUNCHED CARD OUTPUT IN OCTAL, USABLE FOR SUBROUTINE READO.
C CODED BY CHRIS CHASE. MARCH 1969.
C
C SUBROUTINE ARGUMENTS (ALL INPUT)
C A = MATRIX TO BE PUNCHED. SIZE (NR,NC).
C NR = NUMBER OF ROWS IN MATRIX A.
C NC = NUMBER OF COLS IN MATRIX A.
C ANAME = MATRIX IDENTIFICATION. (A6 FORMAT).
C KR = ROW DIMENSION OF A IN CALLING PROGRAM.
C
4010 FORMAT (A6, I4, 15)
4020 FORMAT (2I5, 3(3X, O12))
4030 FORMAT (10H0000000000)
C
PUNCH 4010, ANAME, NR, NC
C
DO 60 I=1, NR
 JS = 1
10 JF = JS + 2
 IF (JF .GT. NC) JE = NC
 C SEE IF ELEMENTS ARE ZERO.
 DO 20 J=JS, JE
20 IF (A(I, J) .NE. 0.) GO TO 35
 GO TO 40
 35 PUNCH 4020, I, JS, (A(I, J), J=JS, JE)
 40 IF (JE .EQ. NC) GO TO 60
 JS = JS + 3
 GO TO 10
60 CONTINUE
C
PUNCH 4030
RETURN
END
SUBROUTINE PUNCIM(IA, NR, NC, ANAME, KR)
DIMENSION IA(KR, 1)

C PRODUCES PUNCHED CARD OUTPUT USABLE FOR SUBROUTINE READIM.
C CODED BY JOHN ADMIRE *NASA* OCT 1974.
C
C SUBROUTINE ARGUMENTS (ALL INPUT)
C IA = MATRIX TO BE PUNCHED. SIZE (NR, NC).
C NR = NUMBER OF ROWS IN MATRIX A.
C NC = NUMBER OF COLUMNS IN MATRIX A.
C ANAME = MATRIX IDENTIFICATION (A6 FORMAT).
C KR = ROW DIMENSION OF A IN CALLING PROGRAM.
C
4010 FORMAT (A6, I4, 15)
4020 FORMAT (I5)
4030 FORMAT (1CH000000000000)
C
PUNCH 4010, ANAME, NR, NC
C
DO 60 I=1, NR
 JS = 1
10 JE = JS + CE
 IF (JE.GT. NC) JE = NC
C SEE IF ELEMENTS ARE ZERO.
C
DO 20 J=JS, JE
20 IF (IA(I, J) .NE. 0) GO TO 35
 GO TO 40
35 PUNCH 4020, I, JS, (IA(I, J), J=JS, JE)
40 IF (JE.EQ. NC) GO TO 60
 JS = JS + 14
 GO TO 10
60 CONTINUE

C
PUNCH 4030
RETURN
END
SUBROUTINE RBTG1 (XYZ, XYZREF, JDOF, JVEC, RBT, NNODES, NRRBT, NCRBT, *
 XXJ, KR)

 DIMENSION XYZ(KXJ, 11), XYZREF(11, 11), JDOF(KXJ, 11), JVEC(11), RBT(KR, 11), *
 IVEC(6), W(6, 6)

C Generates a rigid-body-transformation in Cartesian Coordinates.
C Calls subroutines REVADD, Z2BOM6.
C Developed by CF Hruday, April 1969
C Last revision by WA Benfield, March 1976.

C Subroutine arguments
C
C XYZ = Input matrix of X, Y, Z coordinate locations for each node
C
C XYZREF = Input vector of X, Y, Z coordinate locations for the
C reference point. Size(3).
C
C JDOF = Input matrix. Each row is used as an IVEC to REVADD X, Y, Z,
C TX, TY, TZ node degrees of freedom into rows of RBT. Each
C of these degrees of freedom are assumed to be in the
C same direction as its corresponding reference degree
C of freedom. A negative value in JDOF causes the corres-
C ponding row of RBT to be zero. Size (NNODES, 6).
C
C JVEC = Input vector. Used as a JVEC to REVADD X, Y, Z, TX, TY, TZ
C reference degrees of freedom into columns of RBT. Negative signs
C enables change from assumed right hand system to one you
C wish to specify. Size (6).
C
C RBT = Output rigid-body-transformation matrix. Size(INPRT, NCRBT).
C
C NNODES = Input number of nodes. Row size of matrices XYZ, JDOF.
C
C NRRBT = Output number of rows in RBT. Equal to non-zeros in JDOF.
C
C NCRBT = Output number of cols in RBT. Equal to non-zeros in JVEC.
C
C XXJ = Input row dimension of XYZ, JDOF in the calling program.
C
C KR = Input row dimension of RBT in the calling program.
C
C NERROR = Error explanation, 1 = Number of non-zeroes in matrix IMAT exceeds
C row dimension of matrix RBT.
C
C
C NRRBT = 0
C NCRBT = 0
C DO 10 J = 1, 6
C 10 IF (JVEC(J) .NE. 0) NCRBT = NCRBT + 1
C DO 20 I = 1, NNODES
C DO 20 J = 1, 6
C 20 IF (JDOF(I, J) .NE. 0) NRRBT = NRRBT + 1
C IF (NRRBT .GT. KR) GO TO 999

C DO 30 J = 1, NRRBT
C DO 30 I = 1, NCRBT
C RBT(I, J) = 0.0
C DO 40 I = 1, 6
C DO 40 J = 1, NCRBT
C
C DO 50 I = 1, 6
C DO 50 J = 1, 6
C W(I, J) = 0.0
C 50 W(I, J) = 1.0
C DO 60 I = 1, NNODES
C 60 W(I, 1) = 1.0
C DO 60 J = 1, 6
C W(I, J) = (XYZ(I, 3) - XYZREF(3))
W(1,6) = -(XYZ(I,2)-XYZREF(2))
W(2,4) = -(XYZ(I,3)-XYZREF(3))
W(2,6) = (XYZ(I,1)-XYZREF(1))
W(3,4) = (XYZ(I,2)-XYZREF(2))
W(3,5) = -(XYZ(I,1)-XYZREF(1))
DC 70 J=1,6
IVEC(J)=JDCF(I,J)
IF (IVEC(J),LT,0) IVEC(J)=0
IF (JVEC(J),LT,0) IVEC(J) = -IVEC(J)
70 CONTINUE
80 CALL REVADD (I,,W,IVEC,JVEC,RBT,6,6,NRRBT,NCRBT,6,KR)
RETURN
C
999 CALL ZZBOMS (6HRBTG1 ,NERROR)
END
SUBROUTINE RBTG2 (XRT, XYZREF, JDOF, JVEC, RBT, NNODES, NRRBT, NCRBT,
 * KXJ, KR)
DIMENSION XRT(KXJ,1), XYZREF(1), JDOF(KXJ,1), JVEC(1), RBT(KR,1),
 * IVEC(6), W(6,6)
NCRBT = 0
DO 10 J=1,6
10 IF (JVEC(J) .NE. 0) NRRBT = NRRBT+1
DO 20 I=1,NNODES
DO 20 J=1,6
20 IF (JDOF(I,J) .NE. 0) NRRBT = NRRBT+1
 IF (NPRET .GT. KR) GO TO 999
C C DO 40 I=1,NRRBT
DO 40 J=1,NCRBT
40 RBT(I,J) = 0.0
DO 50 I=1,6
DO 50 J=1,6
50 W(I,J) = 0.0
C RPD = 3.1415926535898 / 180.
YO = XYZREF(2)
ZO = XYZREF(2)
C
DO 80 I=1,NNODES
XD = (XRT(I,1) - XYZREF(1))
RI = XRT(I,2)
SI = SIN(XRT(I,3)*RPD)
CI = COS(XRT(I,3)*RPD)
C
W(1,1) = 1.
W(1,5) = (SI*RI) -ZO
W(1,6) = -(CI*RI) +YO
W(2,2) = CI
W(2,3) = SI
W(2,6) = -(SI*YO) +(CI*ZO)
W(2,5) = -(SI*XD)
W(2,6) = CI*XD
W(3,2) = -SI
W(3,3) = CI
W(3,4) = -(CI*YC) -(SI*ZD) +RI
W(3,5) = -(CI*XD)
W(3,6) = -(SI*XD)
W(4,4) = 1.
W(5,5) = CI
W(5,6) = SI
W(6,5) = -SI
W(6,6) = CI
C
DO 70 J=1,6
IVEC(J)=JDOF(I,J)
IF (IVEC(J).LT.0) IVEC(J)=0
IF (IVEC(J).LT.0) IVEC(J) = -IVEC(J)
70 CONTINUE
80 CALL REVADD (1.,W,IVEC,JVEC,RBT,6,6,NRRBT,NCRBT,6, KR)
RETURN
C
999 CALL ZZBOME (6HRBTG2 ,NERROR)
END
SUPROUTINE READ (A,NR,NC,KR,KC)
DIMENSION A(KR,N),X(4),IREMRK(N)
COMMON / ILINE/ NLINE,MAXLIN,MINI
DATA NIT,NCT/5,6/

READ -- 1/4

SUPROUTINE READ (A,NR,NC,KR,KC)
DIMENSION A(KR,N),X(4),IREMRK(N)
COMMON / ILINE/ NLINE,MAXLIN,MINI
DATA NIT,NCT/5,6/

READ MATRIX OF REAL NUMBERS FROM CARDS OR TAPE AND PRINT IT. WRITE
MATRIX ON TAPE IF SC INDICATED (BY HAVING THE WRITE-TAPE NUMBER IN
COLUMNS 79-80).
THE EXPLANATION OF FORMATS USED BELOW IS ...
A - DENOTES ANY KEY PUNCH SYMBOL. (EG. A1/#C).
I - DENOTES AN INTEGER NUMBER. (EG. 436).
E - DENOTES A REAL NUMBER. (EG. 24.963).

***** CARD INPUT ****
FIRST CARD - MATRIX NAME, NUMBER OF ROWS, NUMBER OF COLUMNS
WITH A6,14,15 FORMAT.
- REMARKS IN COLUMNS 16-69. A-TYPE FORMAT.
- $ IN COLUMN 72 FOR WRITE-TAPE INITIALIZATION.
- WRITE-TAPE CONTROL IN COLUMNS 73-78. MAY BE BLANK, OR
 THE WORDS REWIND OR LIST, OR (WHEN $ IN COLUMN 72)
 THE WRITE-TAPE-ID (EG. T1234).
- WRITE-TAPE NUMBER IN COLUMNS 79-80. (EG, 21).
MIDDLE CARDS - DATA WITH FORMAT (215, 4F17).
- 1-ST IS THE ROW NUMBER.
- 2-ND IS THE COL NUMBER OF THE NEXT E17 FIELD.
- NEXT 4E17 ARE ELEMENTS OF THE MATRIX.
LAST CARD - TEN ZEROS IN COLUMNS 1-10.

***** TAPE INPUT ****
ONE CARD - MATRIX NAME, ZERC OR MINUS THE LOCATION NUMBER OF MATRIX
ON READ-TAPE, READ-TAPE NUMBR (IF MINUS, NO PRINTOUT),
MATRIX RUN NUMBER WITH A6,14,15,46 FORMAT.
- READ-TAPE CONTROL IN COLUMNS 22-27. MAY BE BLANK, OR THE
 WORDS REWIND OR LIST.
- REMARKS IN COLUMNS 28-69. A-TYPE FORMAT.
- $ IN COLUMN 72 FOR WRITE-TAPE INITIALIZATION.
- WRITE-TAPE CONTROL IN COLUMNS 73-78. MAY BE BLANK, OR
 THE WORDS REWIND OR LIST, OR (WHEN $ IN COLUMN 72)
 THE WRITE-TAPE-ID (EG. T1234).
- WRITE-TAPE NUMBER IN COLUMNS 79-80. (EG, 21).
CALLS FCPRA SUPRoutines INTAPE, LTAPE, PAGEHD, RTAPE, WRITE, WTAPE, ZZBOMB.
CODED BY RF HRUDA. JULY 1968.
MODIFIED FOR CONTRACT NAS8-25922, OCTOBER 1970.
MODIFIED BY JOHN ADMIRP *NASA* SEPT 1973
LAST REVISION BY RL WOHLER. APRIL 1976.

SUPROUTINE ARGUMENTS
A = OUTPUT MATRIX READ FROM CARDS OR TAPE.
NF = OUTPUT NUMBER OF ROWS IN MATRIX A.
NC = OUTPUT NUMBER OF COLS IN MATRIX A.
KR = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.
KC = INPUT COL DIMENSION OF A IN CALLING PROGRAM.

NERROR EXPLANATION
1 = ROW SIZE EXCEEDS ROW DIMENSION OR
 COLUMN SIZE EXCEEDS COLUMN DIMENSION.
2 = ROW OR COLUMN VALUE OF ELEMENT EXCEEDS MATRIX SIZE.
READ -- 2/4

C 3 = DATA ON CARD PAST MATRIX COLUMN SIZE.
C 4 = LOCATION ON TAPE PAST END-OF-TAPE MARK.
C 5 = LOCATION ON TAPE PAST END-OF-TAPE MARK.
C
1001 FORMAT (A6, I4, I5, 9A6, 2XA1, A6, I2)
1002 FORMAT (215, 4E17.0)
2001 FORMAT (//19H CARD INPUT MATRIX A6, 2X 1H(I4,2H X I4,2H)
* 2X 9A6, 2X A1, A6, I4//)
2002 FORMAT (//19H CARD INPUT MATRIX A6, 2X 1H(I4,2H X I4,2H)
* 3X 9H CONTINUED //)
2003 FORMAT (/ 1X A6, I4, I5, 5X 9A6, 2X A1, A6, I4)
2004 FORMAT (1X 215, 1P4E17.0)
2005 FORMAT (13H END OF READ.)
2006 FORMAT (25H SIZE OF MATRIX READ IS (I4,2H X I4,2H))
2007 FORMAT (//, 1X, 123(1H-1))
C
READ IN HEADER CARD.
READ (NIT, 1001) ANAME, N1, N2, IREMrk, IZ1, IZ2, NWTAPE
NR = N1
NC = N2
C
IF(N1 .GT. 0) GO TO 50
IF(MINI .NE. 4HMINI) GO TO 40
IF(NLINE .LE. 5) GO TO 40
IF(NLINE+9 .GT. MAXLIN) GO TO 40
WRITE(NOT, 2007)
NLINE=NLINE+2
GO TO 200
40 CALL PAGEHD
GO TO 200
C
CARD READING SECTION.
50 IF(MINI .NE. 4HMINI) GO TO 60
IF(NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 60
NBC=NC/4
IF(4*NBC .NE. NC) NBC=NBC+1
NN=9+NR*NPC
IF(NN+NLINE .GT. MAXLIN) GO TO 60
WRITE(NOT, 2007)
NLINE=NLINE+2
GO TO 70
60 CALL PAGEHD
70 CONTINUE
WRITE (NOT, 2001) ANAME, NR, NC, IREMk, IZ1, IZ2, NWTAPE
NLINE=NLINE+5
NERROR = 1
IF(NR .GT. KR .OR. NC .GT. KC) GO TO 999
DO 105 I=1, NR
DO 105 J=1, NC
105 A(I, J) = 0.
110 READ (NIT, 1002) I, JS, X
IF (I, EQ. 0 .AND. JS, EQ. 0) GO TO 300
NERROR = 2
IF (I, LE. 0 .OR. I.GT. NR .OR. JS, LE. 0 .OR. JS, GT. NC) GO TO 998
JE = JS+3
READ -- 3/4

IF (JE .LE. NC) GO TO 115
JX = NC - JS + 2

DO 112 J = JX, 4
112 IF (ABS (X(J)) .ST. 0.) GO TO 998
JF = NC

115 N = 0
DO 120 J = JS, JE
N = N + 1

120 A(I, J) = X(N)
IF (NLINE + 1 .LE. MAXLIN) GO TO 125
CALL PAGEHD
WRITE (NCT, 2002) ANAME, NR, NC
NLINE = NLINE + 5
NLINE = NLINE + 1
GO TO 110

C
C TAPE READING SECTION.

200 WRITE (NCT, 2003) ANAME, N1, N2, IREMRK, IZ1, IZ2, NWTAPE
NLINE = NLINE + 3
NRTAPE = IABS (N2)
IF (IREMRK(2) .EQ. 6) REWIND NRTAPE
IF (IREMRK(2) .EQ. 4) CALL LTAPE (NRTAPE)
IF (N1 .EQ. 0) GO TO 250

C POSITION NRTAPE.
READ (NRTAPE) TID, LN, IEOCK
NUM = LN + N1
IF (NUM) 205, 220, 225

205 IF (IEOCK .EQ. 3) GO TO 997
READ (NRTAPE) DUM
NUM = -NUM - 1
IF (NUM .EQ. 0) GO TO 240
DO 210 L = 1, 100
READ (NRTAPE) TID, LN, IEOCK
IF (IEOCK .EQ. 3) GO TO 997
210 READ (NRTAPE) DUM
GO TO 240

220 BACKSPACE NRTAPE
GO TO 240

225 READ (NRTAPE) DUM
NUM = (-N1 - 1)*2
IF (NUM .EQ. 0) GO TO 240
DO 230 L = 1, NUM
230 READ (NRTAPE) DUM

240 IF (IREMRK(1) .NE. 6) GO TO 250
READ (NRTAPE) TID, LN, DUM, IREMRK(1), ANAM
NERROR = 6
IF (LN + N1 .NE. 0) GO TO 999
NERROR = 7
IF (ANAM .NE. ANAME) GO TO 999
BACKSPACE NRTAPE

250 CALL RTAPE (IREMRK(1), ANAME, A, NR, NC, KR, KC, NRTAPE)
WRITE (NOT, 2006) NR, NC
NLINENL + 2
IF (N2 .GT. 0) CALL WRITE (A, NR, NC, ANAME, KR)

C
TAPE WRITING SECTION.
300 IF (NWTAPE .LE. 0) GO TO 400
IF (IZI .EQ. 1H$) CALL INTAPE (NWTAPE, IZ2)
IF (IZ2 .EQ. 6HREWIND) REWIND NWTAPE
CALL WTAPE (A, NR, NC, ANAME, KR, NWTAPE)
IF (IZ2 .EQ. 4HLIST) CALL LTAPE (NWTAPE)

C
400 WRITE (NOT, 2005)
NLINENL + 2
RETURN

C
997 CALL LTAPE (NRTAPE)
GO TO 999
998 WRITE (NOT, 2004) I, JS, X
999 CALL ZZ6OMB (6HREAD, NERROR)
END
SUBROUTINE READAN (IA, NR, NC, KR, KC)
DIMENSION IA(KR,1), IX(10), IREM(9)
COMMON / LLINE/ NLINE, MAXLN, MINI
DATA NIT, NPT/ 5, 6/
C
C READ MATRIX OF ALPHA-NUMERIC CHARACTERS (A6) FROM CARDS OR TAPE AND
C PRINT IT. WRITE MATRIX ON TAPE IF SO INDICATED (BY HAVING THE
C WRITE- TAPE NUMBER IN COLUMNS 79-80).
C THE EXPLANATION OF FORMATS USED BELOW IS ...
C A - DENOTES ANY KEY PUNCH SYMBOL (EG, AI/#C).
C I - DENOTES AN INTEGER NUMBER (EG, 436).
C **** CARD INPUT ****
C FIRST CARD - MATRIX NAME, NUMBER OF ROWS, NUMBER OF COLUMNS
C WITH A6,14,15 FORMAT.
C - REMARKS IN COLUMNS 16-69. A-TYPE FORMAT.
C - $ IN COLUMN 72 FOR WRITE- TAPE INITIALIZATION.
C - WRITE- TAPE CONTROL IN COLUMNS 73-78. MAY BE BLANK, OR
C THE WORDS REWIND OR LIST, OP WHEN $ IN COLUMN 72
C THE WRITE- TAPE-ID (EG, T1234).
C - WRITE- TAPE NUMBER IN COLUMNS 79-80. (EG, 21).
C MIDDLE CARDS - DATA WITH FORMAT (215, 10A6).
C - 1ST IS THE ROW NUMBER.
C - 2ND IS THE COLUMN NUMBER OF THE NEXT 15 FIELD.
C - NEXT 10A6 ARE ELEMENTS OF THE MATRIX.
C LAST CARD - TEN ZEROS IN COLUMNS 1-10.
C **** TAPE INPUT ****
C ONE CARD - MATRIX NAME, ZERO OR MINUS THE LOCATION NUMBER OF MATRIX
C ON READ- TAPE, READ- TAPE NUMBER (IF MINUS, NO PRINTOUT),
C MATRIX RUN NUMBER WITH A6,14,15, A6 FORMAT.
C - READ- TAPE CONTROL IN COLUMNS 22-27. MAY BE BLANK, OR THE
C WORDS REWIND OR LIST.
C - REMARKS IN COLUMNS 28-69. A-TYPE FORMAT.
C - $ IN COLUMN 72 FOR WRITE- TAPE INITIALIZATION.
C - WRITE- TAPE CONTROL IN COLUMNS 73-78. MAY BE BLANK, OR
C THE WORDS REWIND OR LIST, OR WHEN $ IN COLUMN 72
C THE WRITE- TAPE-ID (EG, T1234).
C - WRITE- TAPE NUMBER IN COLUMNS 79-80. (EG, 21).
C CALLS FORMA SUBROUTINES INTAPE, LTAPE, PAGEHD, RTAPE, WRITAN, KTAPE, ZBOMB.
C CODED BY JOHN ADMIRE *NASA* OCT 1974.
C LAST REVISION BY RL WOHLN, APRIL 1976.
C
C SUBROUTINE ARGUMENTS
C IA = OUTPUT MATRIX READ FROM CARDS OR TAPE.
C NR = OUTPUT NUMBER OF ROWS IN MATRIX IA.
C NC = OUTPUT NUMBER OF COLS IN MATRIX IA.
C KC = INPUT COL DIMENSION OF IA IN CALLING PROGRAM.
C KR = INPUT ROW DIMENSION OF IA IN CALLING PROGRAM.
C
C ERROR EXPLANATION
C 1 = ROW SIZE EXCEEDS ROW DIMENSION OR
C COLUMN SIZE EXCEEDS COLUMN DIMENSION.
C 2 = ROW OR COLUMN VALUE OF ELEMENT EXCEEDS MATRIX SIZE.
C 3 = DATA ON CARD PAST MATRIX COLUMN SIZE.
C 4 = LOCATION ON TAPE PAST END-OF- TAPE MARK.
C 5 = LOCATION ON TAPE PAST END-OF- TAPE MARK.
READAN-- 2/ 4

1001 FORMAT (A6, I4, I5, 9A6, 2X A1, A6, I2)
1002 FORMAT (215, 10A6)
2001 FORMAT (//33H CARD INPUT ALPHA-NUMERIC MATRIX A6,
 * 2X 1H(I4, 2H X I4, 2H)
 * 2X 9A6, 2X A1, A6, I4//)
2002 FORMAT (//33H CARD INPUT ALPHA-NUMERIC MATRIX A6,
 * 2X 1H(I4, 2H X I4, 2H)
 * 3X 9H CONTINUED //)
2003 FORMAT (// 1X A6, I4, I5, 5X 9A6, 2X A1, A6, I4)
2004 FORMAT (1X 215, 10A6)
2005 FORMAT (15H0END OF READAN-)
2006 FORMAT (25H0SIZE OF MATRIX READ IS (I4, 2H X I4, 2H))
2007 FORMAT (//, 1X, 123(1H-))

C
C READ IN HEADER CARD.
READ (NIT, 1001) ANAME, N1, N2, IREMRK, IZ1, IZ2, NTAPE
NR = N1
NC = N2

C
IF(N1 .GT. 0) GO TO 50
IF(MINI .NE. 4HMINI) GO TO 40
IF(NLINE .LE. 5) GO TO 40
IF(NLINE+9 .GT. MAXLIN) GO TO 40
WRITE(NOT, 2007)
NLINE=NLINE+2
GO TO 200
40 CALL PAGEHD
GO TO 200
50 IF(MINI .NE. 4HMINI) GO TO 60
IF(NLINE .LE. 5 OR. NLINE .GE. MAXLIN) GO TO 60
NBC=NC/10
IF(10*NBC .NE. NC) NBC=NBC+1
NN=9+NR*NBC
IF(NN +NLINE .GT. MAXLIN) GO TO 60
WRITE(NOT, 2007)
NLINE=NLINE+2
GO TO 70
60 CALL PAGEHD
70 CONTINUE

C
C CARD READING SECTION.
WRITE (NOT, 2001) ANAME, NR, NC, IREMRK, IZ1, IZ2, NTAPE
NLINE=NLINE+5

 IF (NR .GT. KR .OR. NC .GT. KC) GO TO 999
 DO 105 I=1, NR
 DO 105 J=1, NC
 IA(I, J) = 6H
 105 READ (NIT, 1002) I, JS, IX
 IF (1.EQ.0 .AND. JS.EQ.0) GO TO 300
 NERROR = 1
 IF (I.EQ.0 .OR. I.GT. NR .OR. JS .GT. LE .OR. JF .GT. NC) GO TO 998
 JF = JS+O
 IF (JF.LE. NC) GO TO 115
 JX = NC-JS+2
NERROR = 3

DO 112 J=JX,10
112 IF (IX(J) .NE. 6H) GO TO 998
 JE = NC
115 N = 0
 DO 120 J=JS,JE
 N = N+1
120 IAI(I,J) = IX(N)
 IF(NLINE+1 .LE. MAXLIN) GO TO 125
 CALL PAGEHD
 WRITE (NOT,2002) ANAME,NR,NC
 NLINE=NLINE+5
125 WRITE (NOT,2004) I,JS,(IAI(I,J),J=JS,JE)
 NLINE=NLINE+1
 GO TO 110

C TAPE READING SECTION.
200 WRITE (NOT,2003) ANAME,N1,N2,IREMRK,IZ1,IZ2,NRTAPE
 NLINE=NLINE+3
 NRTAPE = IABS(N2)
 IF (IREMRK(2) .EQ. 6HREWIND) REWIND NRTAPE
 IF (IREMPK(2) .EQ. 4HLIST) CALL LTape (NRTAPE)
 IF (NR .EQ. 0) GO TO 250

C POSITION NRTAPE.
 READ (NRTAPE) TID,LN,IEOTCK
 NUM = LN+N1
205 IF (NUM) 205,220,225
 IF (IEOTCK .EQ. 3HEOT) GO TO 997
 READ (NRTAPE) DUM
 NUM = -NUM-1
 IF(NUM .EQ. 0) GO TO 240
 DO 210 L=1,NUM
 READ (NRTAPE) TID,LN,IEOTCK
 IF (IEOTCK .EQ. 3HEOT) GO TO 997
210 READ (NRTAPE) DUM
 GO TO 240
220 BACKSPACE NRTAPE
 GO TO 240
225 REWIND NRTAPE
 NUM = (-N1-1)*2
 IF (NUM .FC. 0) GO TO 240
 DO 230 L=1,NUM
230 READ (NRTAPE) DUM
235 IF(IEMRK(1) .NE. 6H) GO TO 250
 READ(NRTAPE) TID,LN,DUM,IEMRK(1),ANAM
 NERROR=6
 IF(LN+N1 .NE. 0) GO TO 999
 NERROR=7
 IF(ANAM .NE. ANAME) GO TO 999
 BACKSPACE NRTAPE
250 CALL PTAPE (IEMRK(1),ANAME,IA,NR,NC,KR,KC,NRTAPE)
 WRITE (NOT,2006) NR,NC
 NLINE=NLINE+2

IF (N2.GT.0) CALL WRITAN (IA,NR,NC,ANAME,KR)

C TAPE WRITING SECTION.
300 IF (NWTAPE.LE.0) GO TO 400
 IF (IZ1 .EQ. 1H$) CALL INTAPE (NWTAPE,IZ2)
 IF (IZ2 .EQ. 6HREWIND) REWIN3 NWTAPE
 CALL WTAPE (IA,NR,NC,ANAME,KR,NWTAPE)
 IF (IZ2 .EQ. 4HLIST) CALL LTAPE (NWTAPE)

400 WRITE (NOT,2005)
 NLINE=NLINE+2
 RETURN

C
997 CALL LTAPE (NRTAPE)
 GO TO 999
998 WRITE (NGT,2004) I,JS,IX
999 CALL ZZBOMB (6HREADAN,NERROR)
END
SUBROUTINE READIM (IA,NR,NC,KR,KC)

DIMENSION IA(KP, I, IX(14)), IREM(9)

COMMON /LLINE/ NLINE, MAXLINE, MINI

DATA NIT, NOT/5,6/

READ MATRIX OF INTEGER NUMBERS FROM CARDS OR TAPE AND PRINT IT. WRITE
MATRIX ON TAPE IF SO INDICATED (BY HAVING THE WRITE-TAPE NUMBER IN
COLUMNS 79-80).

THE EXPLANATION OF FORMATS USED BELOW IS ...

A - DENOTES ANY KEY PUNCH SYMBOL. (EG, A1*4L).
I - DENOTES AN INTEGER NUMBER. (EG, 436).

**** CARD INPUT ****

FIRST CARD - MATRIX NAME, NUMBER OF ROWS, NUMBER OF COLUMNS
WITH A6, I4, I5 FORMAT.
- REMARKS IN COLUMNS 16-69. A-TYPE FORMAT.
- $ IN COLUMN 72 FOR WRITE-TAPE INITIALIZATION.
- WRITE-TAPE CONTROL IN COLUMNS 73-78. MAY BE BLANK, OR
 THE WORDS REWIND OR LIST, OR (WHEN $ IN COLUMN 72)
 THE WRITE-TAPE-ID (EG, 11234).
- WRITE-TAPE NUMBER IN COLUMNS 79-80. (EG, 21).

MIDDLE CARDS - DATA WITH FORMAT (215, 1415).
- 1-ST IS THE ROW NUMBER.
- 2-ND IS THE COL NUMBER OF THE NEXT 15 FIELD.
- NEXT 15 ARE ELEMENTS OF THE MATRIX.

LAST CARD - TEN ZEROS IN COLUMNS 1-10.

**** TAPE INPUT ****

ONE CARD - MATRIX NAME, ZERO OR MINUS THE LOCATION NUMBER OF MATRIX
ON READ-TAPE, READ-TAPE NUMBER (IF MINUS, NO PRINTOUT),
MATRIX RUN NUMBER WITH A6, I4, I5, A6 FORMAT.
- READ-TAPE CONTROL IN COLUMNS 22-27. MAY BE BLANK, OR THE
 WORDS REWIND OR LIST.
- REMARKS IN COLUMNS 28-69. A-TYPE FORMAT.
- $ IN COLUMN 72 FOR WRITE-TAPE INITIALIZATION.
- WRITE-TAPE CONTROL IN COLUMNS 73-78. MAY BE BLANK, OR
 THE WORDS REWIND OR LIST, OR (WHEN $ IN COLUMN 72)
 THE WRITE-TAPE-ID (EG, 11234).
- WRITE-TAPE NUMBER IN COLUMNS 79-80. (EG, 21).

CALLS FORMA SUBROUTINES INTAPE, TAPE, PAGEHD, RTAPE, WRITIM, WTAPE, ZZBOMB.

CODED BY PF HRUDA. JULY 1968.
MODIFIED BY JOHN ADMIRER *NASA* SEPT 1973
LAST REVISION BY RL WOHLEN. APRIL 1976.

SUBROUTINE ARGUMENTS
IA = OUTPUT MATRIX READ FROM CARDS OR TAPE.
NR = OUTPUT NUMBER OF ROWS IN MATRIX IA.
NC = OUTPUT NUMBER OF COLS IN MATRIX IA.
KR = INPUT ROW DIMENSION OF IA IN CALLING PROGRAM.
KC = INPUT COL DIMENSION OF IA IN CALLING PROGRAM.

ERROR EXPLANATION
1 = ROW SIZE EXCEEDS ROW DIMENSION OR
 COLUMN SIZE EXCEEDS COLUMN DIMENSION.
2 = ROW OR COLUMN VALUE OF ELEMENT EXCEEDS MATRIX SIZE.
3 = DATA ON CARD PAST MATRIX COLUMN SIZE.
4 = LOCATION ON TAPE PAST END-OF-TAPE MARK.
C * = LOCATION ON TAPE PAST END-OF-TAPE MARK.

C
1001 FORMAT (A6,14,15,9A6, 2XA1,A6,12)
1002 FORMAT (1615)
2001 FORMAT (//27H CARD INPUT INTEGER MATRIX A6, 2X 1H(I4,2H X I4,2H)
 * 2X 9A6,2X A1A6,14//)
2002 FORMAT (//27H CARD INPUT INTEGER MATRIX A6, 2X 1H(I4,2H X I4,2H)
 * 3X 9HCONTINUED //)
2003 FORMAT (// 1XA6,14,15,5X 9A6,2X A1A6,14)
2004 FORMAT (1X 1615)
2005 FORMAT (1X0END OF READIM.)
2006 FORMAT (25HOSIZE OF MATRIX READ IS (I4,2H X I4,2H)
2007 FORMAT (/1X,123(1H-1))
C
C READ IN HEADER CARD.
READ (NIT,1001) ANAME,N1,N2,IREMRK,IZ1,IZ2,NWTAPE
NR = N1
NC = N2
C
IF(N1 .GT. 0) GO TO 50
IF(MINI .NE. 4HMINI) GO TO 40
IF(NLINE .LE. 5) GO TO 40
IF(NLINE+9 .GT. MAXLIN) GO TO 40
WRITE (NOT,2007)
NLINE=NLINE+2
GO TO 200
40 CALL PAGEHD
GO TO 200
50 IF(MINI .NE. 4HMINI) GO TO 60
IF(NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 60
NBC=NC/14
IF(14*NBC .NE. NC) NBC=NBC+1
NN=9+NR*NBC
IF(NN +NLINE .GT. MAXLIN) GO TO 60
WRITE (NOT,2007)
NLINE=NLINE+2
GO TO 70
60 CALL PAGEHD
70 CONTINUE
C
C CARD READING SECTION.
WRITE (NOT,2001) ANAME,NR,NC,IREMRK,I21,I22,NWTAPE
NLINE=NLINE+5
NERROR = 1
IF(NR.GT.KR .OR. NC.GT.KC) GO TO 99
DO 105 I=1,NR
 IF(I.EQ.0 .AND. JS.EQ.0) GO TO 998
DO 105 J=1,NC
105 IA(I,J) = 0
110 READ (NIT,1002) I,JS,IX
 IF(I.EQ.0 .AND. JS.EQ.0) GO TO 300
 IF(JE.LE.NC) GO TO 115
NEP.ROR = 3

DO 112 J=JX,14
112 IF (IX(J) .NE. 0) GO TO 998
JE = NC
115 N = 0
DO 120 J=JS,JE
N = N+1
120 IA(I,J) = IX(N)
IF(NLINE+1 .LE. MAXLIN) GO TO 125
CALL PAGEHD
WRITE (NOT,2002) ANAME,NR,NC
NLINE=NLINE+5
125 WRITE (NOT,2004) I,JS,(IA(I,J),J=JS,JE)
NLINE=NLINE+1
GO TO 110

C
C TAPE READING SECTION.
C
200 WRITE (NOT,2003) ANAME,N1,N2,IREMRK,IZ1,IZ2,NRTAPE
NLINE=NLINE+3
NRTAPE = IABS(N2)
IF (IREMRK(2) .EQ. 6)REWIND NRTAPE
IF (IREMRK(2) .EQ. 4)CALL LTape (NRTAPE)
IF (N1 .EQ. 0) GO TO 250

C POSITION NRTAPE.
READ (NRTAPE) TID,LN,IEOTCK
NUM = LN+N1
IF (NUM) 205,220,225
205 IF (IEOTCK .EQ. 3)GO TO 997
READ (NRTAPE) DUM
NUM = -NUM-1
IF(NUM .EQ. 0) GO TO 240
DO 210 L=1,NUM
READ (NRTAPE) TID,LN,IEOTCK
IF (IEOTCK .EQ. 3) GO TO 997
210 READ (NRTAPE) DUM
GO TO 240
220 BACKSPACE NRTAPE
GO TO 240
225 REWIND NRTAPE
NUM = (-N1-1)*2
IF (NUM .EQ. 0) GO TO 240
DO 230 L=1,NUM
230 READ (NRTAPE) DUM
240 IF(IREMRK(1) .NE. 6) GO TO 250
READ(NRTAPE) TID,LN,DUM,IREMRK(1),ANAM
NERROR=6
IF(LN+N1 .NE. 0) GO TO 999
NERROR=7
IF(ANAM .NE. ANAME) GO TO 999
BACKSPACE NRTAPE
250 CALL NRTAPE (IREMRK(1),ANAME,IA,NR,NC,KR,KC,NRTAPE)
WRITE (NOT,2006) NR,NC

NERRO R = 3

NERRO R = 4

NERRO R = 5

NERRO R = 3
nlne=nlne+2
if (n2.gt.0) call writim (ia,nr,nc,aname,kr)

c

tape writing section.
300 if (nwtape.le.0) go to 400
 if (iz1 .eq. 1hs) call intape (nwtape,iz2)
 if (iz2 .eq. 6*hrewind) rewind nwtape
 call wtape (ia,nr,nc,aname,kr,nwtape)
 if (iz2 .eq. 4*hlst) call ltape (nwtape)

400 write (not,2005)
lne=nline+2
return

c

997 call ltape (nrtape)
go to 999
998 write (not,2004) i,js,ix
999 call zzbomb (6*readim,nerror)
end
SUBROUTINE READO (A,NR,NC,KR,KC)
DIMENSION A(KR,1),X(3),IREMRK(9)
!
C C READ MATRIX OF OCTAL NUMBERS FROM CARDS (PUNCHED BY SUBROUTINE
C PUNCH) AND PRINT IT SIDE BY SIDE IN OCTAL AND DECIMAL.
C THE EXPLANATION OF FORMATS USED BELOW IS
C A - DENOTES ANY KEY PUNCH SYMBOL. (EG, A1/#C).
C I - DENOTES AN INTEGER NUMBER. (EG, 436).
C C - DENOTES AN OCTAL NUMBER.
C **** CARD INPUT ****
C FIRST CARD - MATRIX NAME, NUMBER OF ROWS, NUMBER OF COLUMNS
C WITH A6,14,15 FORMAT.
C - REMARKS IN COLUMNS 16-60. A-TYPE FORMAT.
C MIDDLE CARDS - DATA WITH FORMAT (215,3(3X,O12)).
C - 1-ST 15 IS THE ROW NUMBER.
C - 2-ND 15 IS THE COL NUMBER OF THE NEXT 012 FIELD.
C - NEXT 3 012 ARE THE ELEMENTS OF THE MATRIX.
C LAST CARD - TEN ZEROS IN COLUMNS 1-10.
C CALLS FORMA SUBRoutines PAGEHD,2260MB.
C CODED BY CHRIS CHASE. MARCH 1969.
C MODIFIED FOR CONTRACT NASB-25922, OCTOBER 1970.
C LAST REVISION BY RL WOHLLEN. APRIL 1976.
C
C SUBROUTINE ARGUMENTS
C A = OUTPUT MATRIX READ FROM CARDS.
C NR = OUTPUT NUMBER OF ROWS IN MATRIX A.
C NC = OUTPUT NUMBER OF COLS IN MATRIX A.
C KR = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.
C KC = INPUT COL DIMENSION OF A IN CALLING PROGRAM.
C
C NERROR EXPLANATION
C 1 = ROW SIZE EXCEEDS ROW DIMENSION OR
C COLUMN SIZE EXCEEDS COLUMN DIMENSION.
C 2 = ROW OR COLUMN VALUE OF ELEMENT EXCEEDS MATRIX SIZE.
C 3 = DATA ON CARD PAST MATRIX COLUMN SIZE.
C
1001 FORMAT (A6,14,15,9A6)
1002 FORMAT (215,3(3X,O12))
2001 FORMAT (/19H CARD INPUT MATRIX A6, 2X 1H(14,2H X 14,2H)
* 2X 9A6//)
2002 FORMAT (/19H CARD INPUT MATRIX A6, 2X 1H(14,2H X 14,2H)
* 3X 9CONTINUED //)
2014 FORMAT (1X 215, 3X,O12, 35X, 2X,1PE10.3)
2024 FORMAT (1X 215,2(3X,O12),20X,2(7X,1PE10.3))
2034 FORMAT (1X 215,3(3X,O12), 5X,3(2X,1PE10.3))
2054 FORMAT (14H END OF READ0.)
C
C READ IN HEADER CARD.
READ (NIT,1001) ANAME,NR,NC,IREMRK
CALL PAGEHD
WRITE (NOT,2001) ANAME,NR,NC,IREMRK
CALL PAGEHD

IF (NR.GT.KR .OR. NC.GT.KC) GO TO 999
NERROR = 1
NLINE = 0
DO 105 I=1,NR
DO 105 J=I,NC
105 A(I,J) = 0.
110 READ (NIT,1002) I,JS,X
 IF (I.EQ.0 .AND. JS.EQ.0) GO TO 400
 IF (I.LE.0 .OR. I.GT.NR .OR. JS.LE.0 .OR. JS.GT.NC) GO TO 998
 JE = JS+2
 IF (JF.LE.NC) GO TO 115
 JX = NC-JS+2
 DO 120 J=JX,JE-1
 IF (X(J) .NE. 0.0) GO TO 998
 JF = NC
115 N = 0
 DO 120 J=JS,JF
 N = N+1
120 A(I,J) = X(N)
 NLINE = NLINE+1
 IF (NLINE.LE.47) GO TO 125
 CALL PAGEHD
 WRITE (NIT,2002) ANAME,NR,NC
 NLINE = 1
125 NF = JE+1-JS
 IF (NF.EQ.1) WRITE(NOT,2014)I,JS,(A(I,J),J=JS,JE),(A(I,J),J=JS,JE)
 IF (NF.EQ.2) WRITE(NOT,2024)I,JS,(A(I,J),J=JS,JE),(A(I,J),J=JS,JE)
 IF (NF.EQ.3) WRITE(NOT,2034)I,JS,(A(I,J),J=JS,JE),(A(I,J),J=JS,JE)
 GO TO 110
C
400 WRITE (NIT,2005)
 RETURN
C
998 WRITE (NIT,2034) I,JS,X,X
999 CALL ZZBOMB (6HREADC,NERROR)
END
SUBROUTINE REVADD (ALPHA,A,IVEC,JVEC,Z,NRA,NCA,NRZ,NCZ,KRA,KRZ)
DIMENSION A(KRA,1), IVEC(1), JVEC(1), Z(KRZ,1)

C REARRANGE AND ADD ROWS AND COLUMNS OF ALPHA * MATRIX A INTO
MATRIX Z.
C BE SURE MATRIX Z IS DEFINED BEFORE CALLING THIS SUBROUTINE. FOR
EXAMPLE, CALL ZERC TO CLEAR MATRIX Z.
C CALLS FORMA SUBROUTINE ZZBOMB.
C CODED BY RF HRUDA. JULY 1965.
C LAST REVISION BY WA BENFIELD. MARCH 1976.

C SUBROUTINE ARGUMENTS
C ALPHA = INPUT SCALAR THAT MULTIPLIES MATRIX A.
C A = INPUT MATRIX TO BE ARRANGED AND ADDED. SIZE(NRA,NCA).
C IVEC = INPUT VECTOR. SIZE(NRA).
C IVEC(I) = ROW POSITION OF A(ROW I) IN Z.
C IF IVEC(I) IS PLUS, Z = Z(ROW IVEC(I)) + ALPHA*A(ROW I).
C IF IVEC(I) IS MINUS, Z = Z(ROW IVEC(I)) - ALPHA*A(ROW I).
C IF IVEC(I) IS ZERO, A(ROW I) IS OMITTED IN Z.
C JVEC = INPUT VECTOR. SIZE(NCA).
C JVEC(J) = COL POSITION OF A(COL J) IN Z.
C IF JVEC(J) IS PLUS, Z = Z(COL JVEC(J)) + ALPHA*A(COL J).
C IF JVEC(J) IS MINUS, Z = Z(COL JVEC(J)) - ALPHA*A(COL J).
C IF JVEC(J) IS ZERO, A(COL J) IS OMITTED IN Z.
C Z = INPUT/OUTPUT MATRIX TO WHICH ALPHA*A IS ADDED. SIZE(NRZ,NCZ).
C NRA = INPUT NUMBER OF ROWS IN MATRIX A.
C NCA = INPUT NUMBER OF COLS IN MATRIX A.
C NRZ = INPUT NUMBER OF ROWS IN MATRIX Z.
C NCZ = INPUT NUMBER OF COLS IN MATRIX Z.
C KRA = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.
C KRZ = INPUT ROW DIMENSION OF Z IN CALLING PROGRAM.

C NEWROP EXPLANATION
C 1 = ROW LOCATION OUTSIDE MATRIX Z.
C 2 = COLUMN LOCATION OUTSIDE MATRIX Z.

DO 30 IA=1,NRA
IZ = IABS(IVEC(IA))
IF (IZ .EQ. 0) GO TO 30
NERROR = 1
IF (IZ .GT. NRZ) GO TO 999
DO 25 JA=1,NCA
JZ = IAPS(JVEC(JA))
IF (JZ .EQ. 0) GO TO 25
NERROR = 2
IF (JZ .GT. NCZ) GO TO 999
SIGN = +1.
IF (IVEC(IA).LT.0 .AND. JVEC(JA).GT.0 .OR.
 IVEC(IA).GT.0 .AND. JVEC(JA).LT.0) SIGN=-1.
 Z(IZ,JZ) = Z(IZ,JZ) + SIGN*ALPHA*A(IA,JA)
25 CONTINUE
30 CONTINUE
RETURN

999 CALL ZZBOMB (6,REVADD,NERROR)
SUBROUTINE REV1(JAZ, IVEC, JVEC, NRA, NCA, NRZ, NCZ, KRAZ)
DIMENSION A(IKRAZ), IVEC(1), JVEC(1)
COMMON /LWRK1 / V(500)

REARRANGE AND ADD ROWS AND COLUMNS OF MATRIX (A) INTO
MATRIX (Z). BOTH MATRIX (A) AND (Z) SHARE THE SAME STORAGE.
MATRIX (Z) IS SET EQUAL TO ZERO INITIALLY BY THE ROUTINE.
CALLS FORMA ROUTINE ZZBOMB.

SUBROUTINE ARGUMENTS
AZ - INPUT MATRIX (A) TO BE ARRANGED AND ADDED TO MATRIX (Z).
AZ - OUTPUT MATRIX (Z) RESULT OF ARRANGING AND ADDING (A) TO (Z).
IVEC - INPUT INTEGER VECTOR (NRA)
AJS(IVEC(I))=ROW OF (Z) TO WHICH ROW I OF (A) IS ADDED.
IF(IVEC(I) NEGATIVE) THE SIGNS IN ROW I OF (A) ARE
CHANGED BEFORE BEING ADDED INTO (Z).
IF(IVEC(I) ZERO) THE ROW I IN (A) IS OMITTED FROM (Z).
JVEC - INPUT INTEGER VECTOR (NCA)
ABS(JVEC(J))=COLUMN OF (Z) TO WHICH COLUMN J OF (A) IS ADDED
IF(JVEC(J) NEGATIVE) THE SIGNS IN COLUMN J OF (A) ARE
CHANGED BEFORE BEING ADDED INTO (Z).
IF(JVEC(J) ZERO) THE COLUMN J IN (A) IS OMITTED FROM (Z)
NRA - INPUT NUMBER OF ROWS IN MATRIX (A)
NCA - INPUT NUMBER OF COLUMNS IN MATRIX (A)
NRZ - OUTPUT NUMBER OF ROWS IN MATRIX (Z)
NCZ - OUTPUT NUMBER OF COLUMNS IN MATRIX (Z)
KRAZ - INPUT ROW DIMENSION OF AZ IN CALLING PROGRAM

NERROR=1
IF(KRAZ .GT. 500 OR. NRA .GT. KRAZ OR. NCA .GT. 500) GO TO 999
NRZ=0
NCZ=0
DO 10 I=1,NRA
 IF(IABS(IVEC(I)) .GT. NRZ) NRZ=IABS(IVEC(I))
 10 CONTINUE
DO 20 J=1,NCA
 IF(IABS(JVEC(J)) .GT. NCZ) NCZ=IABS(JVEC(J))
 20 CONTINUE
NEQKRAZ=0
IF(NRZ .GT. KRAZ OR NCZ .GT. 500) GO TO 999
MAXI=NRA
MAXJ=NCA
IF(NRZ .GT. NRA) MAXI=NRZ
IF(NCZ .GT. NCA) MAXJ=NCZ
DO 70 J=1,NCA
 DO 30 I=1,NRA
 XI=IABS(IVEC(I))
 30 CONTINUE
 IF(XI .GT. KRAZ) GO TO 999
 70 CONTINUE

V/I)=A2(I, J)
DO 40 I=1, MAXI
 40 AZ(I, J)=0.
DO 70 I=1,NRA
 IF(IABS(IVEC(I)) .GT. 500) GO TO 999
 IF(IVEC(I))50,70,60
 50 AZ(I, J)=AZ(I, J)-V(I)
 60 IF(KRAZ .GT. 500) GO TO 999
 70 CONTINUE
GO TO 999
60 AZ(I,J) = AZ(I,J) + V(I)
70 CONTINUE
 DO 120 I = 1, NRZ
 DO 80 J = 1, NCA
80 V(J) = AZ(I,J)
 DO 90 J = 1, MAXJ
90 AZ(I,J) = 0.
 DO 120 J = 1, NCA
 JJ = IABS(JVEC(J))
 IF(JVEC(J))100,120,110
100 AZ(I,JJ) = AZ(I,JJ) - V(J)
 GO TO 120
110 AZ(I,JJ) = AZ(I,JJ) + V(J)
120 CONTINUE
RETURN
999 CALL ZZBOMB(6,REVIJ,NERROR)
END
SUBROUTINE ROWMLT (AVEC, B, Z, NR, NC, KR)
DIMENSION AVEC(1), B(KR,1), Z(KR,1)

MULTIPLY EACH ELEMENT IN ROW(I) OF MATRIX B BY ELEMENT(I) OF VECTOR AVEC.
MATRICES B, Z MAY SHARE SAME CORE LOCATIONS.
CODED BY RL WOHLEN. FEBRUARY 1965.

SUBROUTINE ARGUMENTS
AVEC = INPUT VECTOR. SIZE(NR).
B = INPUT MATRIX. SIZE(NR,NC).
Z = OUTPUT RESULT MATRIX. SIZE(NR,NC).
NR = INPUT NUMBER OF ROWS IN MATRICES B, Z. ELEMENTS IN VECTOR AVEC.
NC = INPUT NUMBER OF COLS IN MATRICES B, Z.
KR = INPUT ROW DIMENSION OF B, Z IN CALLING PROGRAM.

DO 10 I=1,NR
 DO 10 J=1,NC
 10 Z(I,J) = AVEC(I) * B(I,J)
RETURN
END
SURROUTINE RTAPE (IARUNO, IANAME, A, NRA, NCA, KR, KC, NTAPE)
DIMENSION A(KR, 1)
DATA NIT, N/5, 6 /
C
C READ MATRIX A FROM TAPE BY IDENTIFICATION OF IARUNO, IANAME.
C CALLS FORMA SUBROUTINES LTPE, PAGEHD, ZZBOMB.
C CODED BY WA PENFIELD. JUNE 1966.
C REVISED BY RF HRUDA. JULY 1968.
C REVISED BY R A PHILIPPUS. APRIL 1969.
C MODIFIED FOR CONTRACT NAS8-25922, OCTOBER 1970.
C
C SUBROUTINE ARGUMENTS
C IARUNO = INPUT RUN NUMBER OF MATRIX A. (A6 FORMAT).
C IANAME = INPUT MATRIX IDENTIFICATION. (A6 FORMAT).
C A = OUTPUT MATRIX READ FROM TAPE. SIZE(NRA, NCA).
C NRA = OUTPUT NUMBER OF ROWS OF MATRIX A. WILL BE READ FROM TAPE.
C NCA = OUTPUT NUMBER OF COLS OF MATRIX A. WILL BE READ FROM TAPE.
C KR = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.
C KC = INPUT COL DIMENSION OF A IN CALLING PROGRAM.
C NTAPE = INPUT NUMBER OF TAPE. (E.G. 10).
C
C NERRCR EXPLANATION
C 1 = MATRIX REQUESTED IS NOT DENSE.
C 2 = ROW OR COLUMN SIZE EXCEEDS DIMENSION SIZE.
C 3 = MATRIX/RUNNO REQUESTED NOT FOUND ON TAPE.
C
3001 FORMAT (29HTAPE CANNOT FIND RUNNO = A6 / * 21X BNAME = A6 / 29X 6H------)
C
NTIME = 0
C
SEARCH TAPE FOR CORRECT HEADING.
5 READ (NTAPE) TAPEID, LN, IECOCK, ITRUNC, ITNAME, NRA, NCA, NAME, TYPE, NNZ
IF (ITRUNC .EQ. IARUNO .ANB. ITNAME .EQ. IANAME) GO TO 10
IF (IECTOK .EQ. 3HEOT) GO TO 20
READ (NTAPE) DUM
GO TO 5
C
MATRIX HAS BEEN FOUND.
10 IF (ITYPE .NE. 5HFDENSE .ANB. NNZ .NE. 0) GO TO 999
NERROR = 1
IF (NRA.GT.KR .OR. NCA.GT.KC) GO TO 999
READ (NTAPE) (A(I, J), I=1, NRA), J=1, NCA
RETURN
C MATRIX CANNOT BE FOUND. SEARCH TAPE ONCE MORE.
20 NTIME = NTIME + 1
IF (NTIME .GE. 2) GO TO 988
REWIND NTAPE
GO TO 5
998 WRITE (NO7, 3001) IARUNO, IANAME
CALL LTPE (NTAPE)
999 CALL ZZBOMB (6HTAPE, NERROR)
END
SUBROUTINE RWND (NTAPE)

C REWIND TAPE.
C CODED BY RL WOLLEN. MARCH 1976.
C
C SUBROUTINE ARGUMENT (INPUT)
C NTAPE = NUMBER OF TAPE. (EG 10).
C
REWIND NTAPE
RETURN
END
SUBROUTINE SIGMA (Z,N,KR)
 DIMENSION Z(KR,1)
 C
 C GENERATE A MATRIX OF ONES ON AND BELOW THE DIAGONAL.
 C CODED BY RL WOHLEN. FEB 1963.
 C
 C SUBROUTINE ARGUMENTS
 C Z = OUTPUT MATRIX GENERATED. SIZE(N,N).
 C N = INPUT SIZE OF MATRIX Z (SQUARE).
 C KR = INPUT ROW DIMENSION OF MATRIX Z IN CALLING PROGRAM.
 C
 DO 10 I=1,N
 DO 10 J=1,N
 Z(I,J) = 0.0
 10 Z(J,I) = 1.0
 RETURN
 END
SUBROUTINE SKPR (NTAPE,NREC)
;
C SKIP NREC LOGICAL RECORDS (FORWARD OR BACKWARD) ON NTAPE.
C CODED BY RL WHLEN. MARCH 1976.
C
C SUBROUTINE ARGUMENTS (ALL INPUT)
C NTAPE = NUMBER OF TAPE. (EG 10).
C NREC = NUMBER OF LOGICAL RECORDS TO SKIP (FORWARD OR BACKWARD).
C
IF (NREC .EQ. 0, RETURN
IF (NREC .LT. 0) GO TO 20
DO 15 IREC=1,NREC
15 READ (NTAPE)
RETURN
C
20 LREC = IAES(NREC)
DO 25 IREC=1,LREC
25 BACKSPACE NTAPE
RETURN
END
SUBROUTINE SMEQ1 (A,B,Z,N,KR)

DIMENSION A(KR,1),B(1),Z(1)

DATA TOL/1.E-15/

C SOLUTION OF LINEAR SIMULTANEOUS ALGEBRAIC EQUATIONS, A*Z = B.
C GAUSS ELIMINATION METHOD. FORWARD SOLUTION TRANSFORMS ORIGINAL SYSTEM
C INTO TRIANGULAR FORM. BACK SOLUTION THEN GIVES RESULT.
C LARGEST PIVOTAL DIVISOR IS USED TO AVOID DIVISION BY SMALL NUMBERS.
C THE ROWS ARE INTERCHANGED WHEN NECESSARY TO ACCOMPLISH THIS.
C IF NO PIVOT CAN BE FIND NOT EXCEEDING 1.E-15, THE MATRIX IS CONSIDERED
C SINGULAR AND THE PROGRAM STOPPED.
C CALLS FORM SUBROUTINE Z2ZBOMB.
C DEVELOPED BY CARL POOLEY. AUGUST 1968.
C LAST REVISION BY WA BENFIELD. MARCH 1976.

C SUBROUTINE ARGUMENTS
C A = INPUT SQUARE MATRIX OF COEFFICIENTS. SIZE(N,N). *DESTROYED*
C B = INPUT RIGHT HAND SIDE VECTOR. SIZE(N). *DESTROYED*
C Z = OUTPUT RESULT VECTOR. SIZE(N).
C N = INPUT NUMBER OF EQUATIONS.
C KR = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.

C NERRDR EXPLANATION
C 1 = MATRIX IS NON-POSITIVE DEFINITE FOR SIZE = 1.
C 2 = MATRIX IS NON-POSITIVE DEFINITE.

IF (N .GT. 1) GO TO 5

IF (ABS(A(1,1)) .LE. TOL) GO TO 999
Z(1) = B(1)/A(1,1)
RETURN

C FORWARD SOLUTION.
5 DO 25 L=1,N
AMAX = TOL
DO 10 I=L,N
IF (ABS(A(I,L)) .LT. ABS(AMAX)) GO TO 10
AMAX = A(I,L)
IMAX = I
10 CONTINUE

IF (ABS(AMAX) .LE. TOL) GO TO 999
DO 15 J=L,N
SAVE = A(IMAX,J)
A(IMAX,J) = A(L,J)
15 A(L,J) = SAVE/AMAX
CSAVE = B(IMAX)
B(IMAX) = F(L)
B(L) = CSAVE/AMAX
IF (L .EQ. N) GO TO 40
LP1 = L + 1
DO 25 I=LP1,N
DO 20 J=LP1,N
20 A(I,J) = F(I,J) - A(I,L)*A(L,J)
25 B(I) = B(I) - A(I,L)*B(L)

5 25 40 CONTINUE

999 ECAP

40 RETURN
BACK SOLUTION.
40 Z(N) = E(N)
 NM1 = N - 1
 DO 45 L=1,NM1
 I = N - L
 Z(I) = E(I)
 IP1 = I+1
 DO 45 J=IP1,N
45 Z(I) = Z(I) - A(I,J)*Z(J)
 RETURN

C
999 CALL ZZBOMB (6HSMEQ1 ,NERROR)
END
SUBROUTINE SRED1 (A, R, T, N, NR, IFT, KART)
DIMENSION A(KART,1), R(KART,1), T(KART,1)
DATA EPS/1.0E-15/

C C REDUCE STIFFNESS MATRIX (A) TO FORM REDUCED STIFFNESS MATRIX (R) AND
C REDUCING TRANSFORMATION (T).
C DEGREES OF FREEDOM TO BE REDUCED MUST BE POSITIONED LAST IN MATRIX A.
C MATRIX (A) SHOULD BE POSITIVE DEFINITE, SYMMETRIC. LOWER HALF OF
C MATRIX (A) IS USED.
C MATRIX (T) MAY BE A SCALAR ARGUMENT IF THE REDUCING TRANSFORMATION
C IS NOT FORMED.
C MATRICES (A), (R), AND (T) MAY SHARE THE SAME CORE LOCATIONS IN ANY
C COMBINATIONS. POSSIBLE COMBINATIONS OF INPUT ARGUMENTS ARE SHOWN
C BELOW WITH THE RESULTING OUTPUT FROM THE SUBROUTINE.
C *CALLING ARGUMENTS* *RESULTING OUTPUT*
C CALL SRED1 (A, R, T, N, NR, I, KART) A=A, R=R, T=T
C CALL SRED1 (A, A, T, N, NR, I, KART) A=A, T=T
C CALL SRED1 (A, T, N, NR, I, KART) A=T
C CALL SRED1 (A, R, A, N, NR, 1, KART) R=R, A=T
C CALL SRED1 (A, R, T, N, NR, 0, KART) A=R
C CALL SRED1 (A, A, T, N, NP, 0, KART) A=T
C CALLS FORMA SUBROUTINE ZZPOM6.
C DEVELOPED BY CS BODLEY AND WA BENFIELD. OCTOBER 1971.
C LAST REVISION BY WA BENFIELD. MARCH 1976.

C SUBROUTINE ARGUMENTS
C A = INPUT STIFFNESS MATRIX TO BE REDUCED. SIZE(N,N).
C R = OUTPUT REDUCED STIFFNESS MATRIX. SIZE(NR,NR).
C T = OUTPUT REDUCING TRANSFORMATION MATRIX. SIZE(N,NR).
C N = INPUT SIZE OF MATRIX A.
C NR = INPUT SIZE OF REDUCED MATRIX R.
C IFT = INPUT =0, TRANSFORMATION MATRIX T WILL NOT BE CALCULATED AND
C T NEED NOT BE DIMENSIONED IN CALLING PROGRAM.
C =1, TRANSFORMATION MATRIX T WILL BE CALCULATED.
C KART = INPUT ROW DIMENSION OF A, R, T IN CALLING PROGRAM.
C
C NEPPOR EXPLANATION
C 1 = MATRIX IS NON-POSITIVE DEFINITE.

DO 5 I=1,N
DO 5 J=1,I
5 P(I,J) = A(I,J)
NRPT = NR+1

C CALCULATE REDUCED STIFFNESS MATRIX.
DO 10 L=NRPT,N
K = N-L+NRPT
KM1 = K-1
IF (P(K,K) .LT. EPS) GO TO 999
DO 10 I=1,KM1
S = R(K,I)/R(K,K)
DO 10 J=1,K
10 R(I,J) = R(I,J) - S*R(K,J)
DO 15 I=1,NR

999 NERROR=1

DC 15 J=I,NR
15 R(I,J) = R(J,I)

C CALCULATE REDUCTION TRANSFORMATION MATRIX.
 IF (IFT .EQ. 0) RETURN
 DO 29 L=NRPI1,N
 S = R(L,L)
 DO 25 K=I,NR
25 R(L,K) = R(L,K)/S
 IF(L .GE. N) GO TO 29
 LP1 = L+1
 DO 27 I=LP1,N
 DO 27 J=I,NR
27 R(I,J) = R(I,J) - R(I,J)*R(L,J)
29 CONTINUE
 DO 35 I=1,NR
 DO 32 J=1,NR
32 T(I,J) = 0.0
35 T(I,I) = 1.0
 DO 45 I=NPP1,N
45 T(I,J) = -R(I,J)
 RETURN

C 999 CALL Z2BOM2 (6HSRED1 ,NERROR)
END
REDUCE STIFFNESS MATRIX (A) TO FORM REDUCED STIFFNESS MATRIX (R) AND REDUCING TRANSFORMATION (T).

DEGREES OF FREEDOM TO BE REDUCED MUST BE POSITIONED FIRST IN MATRIX (A).

MATRIX (A) SHOULD BE POSITIVE DEFINITE, SYMMETRIC. UPPER HALF OF

MATRIX (A) IS USED.

MATRIX (T) MAY BE A SCALAR ARGUMENT IF THE REDUCING TRANSFORMATION IS NOT FORMED.

MATRICES (A), (R), AND (T) MAY SHARE THE SAME CORE LOCATIONS IN ANY COMBINATIONS. POSSIBLE COMBINATIONS OF INPUT ARGUMENTS ARE SHOWN BELOW WITH THE RESULTING OUTPUT FROM THE SUBROUTINE.

CALLING ARGUMENTS *RESULTING OUTPUT*

CALL SRED2 (A,R,T,N,NR,IFT,KART) A=A, R=R, T=T
CALL SRED2 (A,A,T,N,NR,1,KART) A=A, T=T
CALL SRED2 (A,A,T,N,NP,1,KART) A=A
CALL SRED2 (A,A,A,N,NR,1,KART) A=A
CALL SRED2 (A,A,A,N,NR,0,KART) A=A, R=R
CALL SRED2 (A,A,A,T,N,NP,0,KART) A=A
CALL SRED2 (A,A,A,T,N,NP,1,KART) A=A

CALLS FORM SUBROUTINE ZREDGE.

DEVELOPED BY CC BIDDLE AND WA BENFIELD, JUNE 1972.

LAST REVISION BY WA BENFIELD, MARCH 1976.

ERROR EXPLANATION

1 = MATRIX IS NON-POSITIVE DEFINITE.

ND = N - NP
DO 5 I=1,N
DO 5 J=1,N
5 R(I,J) = A(I,J)
NDP1 = ND+1

CALCULATE REDUCED STIFFNESS MATRIX.

DO 11 L=1,ND
IF (APS(K2(L,L))) .LT. EPS) GO TO 999
IF (L .GE. N) GO TO 11
LP1 = L+1
DO 10 J=LP1,N
S = R(L,J)/R(L,L)
DO 10 J=1,N
R(I,J) = R(I,J) - S*R(L,J)

11 CONTINUE

999 CONTINUE

ERROR=1
10 CONTINUE
11 CONTINUE
 IF (IFT .EQ. 0) GO TO 50

C
C CALCULATE REDUCTION TRANSFORMATION MATRIX.
C
DO 20 L=1,ND
 S = R(L,L)
 DO 15 K=L,N
 R(L,K) = R(L,K)/S
 IF (L .LT. 1) GO TO 20
 LM1 = L-1
 LP1 = L+1
 DO 16 J=LM1,LP1
 DO 15 I=L-1,LM1
 K(I,J) = R(I,L) - R(I,L)*R(L,J)
 CONTINUE
 DO 20 I=ND,L-1,1

20 CONTINUE
DO 29 J=1,AR
29 T(I,J) = 0.0
IMND = I - ND
30 T(I,IMND) = 0.0
DO 60 J=1,AR
 T(I,J) = -R(I,L)
60 CONTINUE
RETURN

C SYMMETRIZE R AND START IN 1,1 LOCATION.
C
DO 65 K=NP1,1
 I = K - ND
 IF (I .GT. J) GO TO 66
 R(I,J) = R(K,L)
 GC TC 65
66 R(I,J) = R(L,K)
65 CONTINUE

C START T IN 1,1 LOCATION.
C
IF (IFT .EQ. 0) GO TO 66
DO 67 I=1,ND
 T(I,J) = -R(I,L)
67 CONTINUE
RETURN

C
999 CALL ZZBCMB (6HSRED2 ,NERRCR)
END
SUBROUTINE SRED3 (A,IV,R,T,N,NR,IFT,KAPT)
DIMENSION A(KART,1), R(KART,1), T(KART,1), IV(1)
COMMON /LWPKV/ W(500)
DATA EPS/1.E-15/

SUBROUTINE SRED3 (A,IV,R,T,N,NR,IFT,KAPT) TO FORM REDUCED STIFFNESS MATRIX (R) AND REDUCING TRANSFORMATION (T).
ROWS AND COLUMNS TO BE REDUCED OUT MAY BE ANYWHERE IN (A) AND ARE SPECIFIED BY THE INTEGER VECTOR (IV).
THE ORIGINAL NUMBER OF ROWS AND COLUMNS IN (A) ARE THE SAME FOR (P) WITH ZERO ROW AND COLUMN ELEMENTS FOR THE REDUCED ROWS AND COLUMNS.
THE REDUCING TRANSFORMATION (T) LIKewise WILL BE SQUARE.
MATRIX (A) SHOULD BE POSITIVE DEFINITE, SYMMETRIC.
ALL OF MATRIX (A) IS USED.
MATRIX (T) MAY BE A SCALAR ARGUMENT IF THE REDUCING TRANSFORMATION IS NOT FORMED.
MATRICES (A), (R), AND (T) MAY SHARE THE SAME CORE LOCATIONS IN ANY COMBINATIONS. POSSIBLE COMBINATIONS OF INPUT ARGUMENTS ARE SHOWN BELOW WITH THE RESULTING OUTPUT FROM THE SUBROUTINE.

CALLING ARGUMENTS *RESULTING OUTPUT*
CALL SRED3 (A,IV,R,T,N,NR,IFT,KAPT) A=A, R=R, T=T
CALL SRED3 (A,IV,R,T,N,NR,IFT,KAPT) A=R, T=T
CALL SRED3 (A,IV,R,T,N,NR,IFT,KAPT) R=R, A=T
CALL SRED3 (A,IV,R,T,N,NR,IFT,KAPT) A=T
CALL SRED3 (A,IV,R,T,N,NR,IFT,KAPT) A=A, R=R
CALL SRED3 (A,IV,R,T,N,NR,IFT,KAPT) A=R

CALLS FOR SUBROUTINE ZZ5DBEM.
DEVELOPED BY WA BENFIELD, JANUARY 1974.
LAST REVISION BY WA BENFIELD, MARCH 1976.

SUBROUTINE ARGUMENTS
A = INPUT STIFFNESS MATRIX TO BE REDUCED. SIZE(N,N).
IV = INPUT INTEGER ROW MATRIX CONTAINING THE ROW-COLUMN LOCATIONS TO BE REDUCED. SIZE(NR).
R = OUTPUT REDUCED STIFFNESS MATRIX. SIZE(N,N).
T = OUTPUT REDUCING TRANSFORMATION MATRIX. SIZE(N,N).
N = INPUT SIZE OF MATRICES A,R,T. MAY=500.
NR = INPUT NUMBER OF ROW-COLUMNS TO BE REDUCED.
IFT = INPUT =0, TRANSFORMATION MATRIX T WILL NOT BE CALCULATED AND T NEED NOT BE DIMENSIONED IN CALLING PROGRAM.
IFT = 1, TRANSFORMATION MATRIX T WILL BE CALCULATED.
KART = INPUT ROW DIMENSION OF A,R,T IN CALLING PROGRAM.

ERROR EXPLANATION
1 = ROW NUMBER IS NEGATIVE.
2 = MATRIX IS NON-POSITIVE DEFINITE.

DO 5 I=1,N
DO 5 J=1,N
5 R(I,J) = A(I,J)
DO 35 K=1,NR
IR = IV(K)
IF (IR .LE. 0) GO TO 999
NERROR=1
SRED3 -- 2/ 2

NERRO=$=2$

IF (R(IR,IR) .LT. EPS) GO TO 999
C = R(IK,IR)
DO 10 J=1,N
10 R(IR,J) = P(IR,J)/C
DO 30 I=1,N
IF (I .EQ. IR) GO TO 30
C = R(I,I)
DO 20 J=1,N
20 R(I,J) = R(I,J) - C*R(IR,J)
30 CONTINUE
35 CONTINUE
DO 90 I=1,N
DO 37 K=1,N
37 W(K) = R(I,K)
DO 40 K=1, NR
IF (IV(K) .EQ. I) GC TO 60
40 CONTINUE
IF (IFT .EQ. 0) GO TO 90
DO 50 J=1,N
50 T(I,J) = 0.0
T(I,I) = 1.0
GO TO 90
60 DO 70 J=1,N
R(J,J) = 0.0
70 R(I,J) = 0.0
IF (IFT .EQ. 0) GC TO 90
DO 75 J=1,N
75 T(I,J) = -W(J)
T(I,I) = 0.0
90 CONTINUE
RETURN
999 CALL ZZEOM3 (6HSRED3 ,NERRO)
END
SUBROUTINE START
COMMON /LASTT/IRUNNO,DATE,NPAGE,UNAME(3),TITLE1(12),TITLE2(12)
COMMON /LINES/NLINE,MAXLIN,MINI
DATA NIT,NLT,5,6

C
C EACH TIME THIS ROUTINE IS CALLED THE COMPUTER IS INTERROGATED TO
C OBTAIN THE DATE, TIME OF DAY, AND THE CPU TIME. TIME OF DAY AND CPU ARE
C PRINTED ON A NEW PAGE. NPAGE AND NLINE ARE THEN SET EQUAL TO ZERO.
C CARD 1 IS READ NEXT TO OBTAIN IRUNNO, MINI, AND UNAME.
C IF IRUNNO=4 STOP IF PROGRAM IS STOPPED AT THIS POINT.
C IF IRUNNO=6 RETURN A RETURN IS MADE TO THE CALLING PROGRAM.
C IF IRUNNO IS NOT EQUAL TO STOP OR RETURN TWO ADDITIONAL CARDS ARE READ.
C CARD 2 IS READ NEXT FOR TITLE1.
C CARD 3 IS READ NEXT FOR TITLE2.
C LAST A RETURN IS MADE TO THE CALLING PROGRAM.
C
C CARD INPUT
C ,RUNNO,MINI,UNAME FORMAT (A6,A4,3A6)
C TITLE1 FORMAT (12A6)
C TITLE2 FORMAT (12A6)
C
C DEFINITIONS
C IRUNNO = RUN NUMBER
C DATE = DATE
C NPAGE = PAGE NUMBER
C UNAME = USER'S NAME
C TITLE1 = FIRST TITLE
C TITLE2 = SECOND TITLE
C NLINE = LINE NUMBER
C MAXLIN = MAXIMUM NUMBER OF LINES PRINTED PER PAGE
C MINI = PRINT OPTION (IF MINI=0 OTHER FORMA ROUTINES WILL
C ATTEMPT TO MINIMIZE THE NUMBER OF PAGES PRINTED BY PRINTING
C MORE THAN ONE SET OF DATA PER PAGE)
C
C MODIFIED AUG. 1973 BY JOHN ADMIRE *NASA*
C
1001 FORMAT (A6,A4,3A6)
1002 FORMAT (1OA6)
2002 FORMAT (1HI 6/) 55X 10HSHFET / 38X 45(IH-1) //
 * 38X 30H CURRENT TIME OF DAY IN H,M,S = A 6 //
 * 38X 26H TOTAL CPU TIME USED TO NOW = 15, 9H SECONDS. //)
2003 FORMAT (36HEND OF INPUT DATA HAS BEEN REACHED.)

C
CALL SCLOCK (DATE,TIME,SEC,E60SEC)
CALL CPUTIM (ICTIME)
ICTIME=ICTIME/100000
WRITE (NLT,2002) TIME,ICTIME

C
NPAGE=0
NLINE=0
MAXLIN=52

READ (NIT,1001) IRUNNO,MINI,UNAME
IF (IRUNNO .NE. 4) STOP .AND. IRUNNO .NE. 6) RETURN GO TO 10
WRITE (NLT,2003)
IF (IRUNNO .EQ. 4) STOP
IF (IRUNNO .EQ. 6) RETURN RETURN

C
10 READ (NIT, 1002) TITLE1
READ (NIT, 1002) TITLE2
RETURN
END

START -- 2/2

SUBROUTINE STIF (PP,DAE,Z,NPP,NDAE,KDAE,KZ)
DIMENSION PP(1), DAE(KDAE,1), Z(KZ,1)

CALCULATE STIFFNESS MATRIX (FREE-FREE) FOR A LONGITUDINAL ROD.
ASSUMES CONSTANT FORCE BETWEEN CONSECUTIVE PANEL POINTS.
TRANSLATION AT EACH PANEL POINT ARE THE GENERALIZED COORDINATES
INPUT IS DISTRIBUTED STIFFNESS (AE).
SUBROUTINE IS ALSO APPLICABLE FOR TORSIONAL ROD. THEN ROTATION AT
EACH PANEL POINT ARE THE GENERALIZED COORDINATES, DISTRIBUTED
STIFFNESS IS GJ.
CALLS SUBROUTINE ZZBOMB.
CODED BY C. LOOLEY. FEBRUARY 1966.
LAST REVISION BY WA BENFIELD. MARCH 1976.

SUBROUTINE ARGUMENTS
PP = INPUT VECTOR OF PANEL POINTS. SIZE(NPP).
DAE = INPUT MATRIX OF DISTRIBUTED STIFFNESS STRAIGHT LINE
SEGMENT DATA. SIZE(NDAE,4).
COL 1 = X AT SEGMENT END 1.
COL 2 = X AT SEGMENT END 2.
COL 3 = STIFFNESS AT SEGMENT END 1.
COL 4 = STIFFNESS AT SEGMENT END 2.
Z = OUTPUT STIFFNESS MATRIX. SIZE(NPP,NPP).
NPP = INPUT NUMBER OF PANEL POINTS. SIZE OF VECTOR PP, MATRIX Z.
NDAE = INPUT NUMBER OF SEGMENTS (RCWS) IN DAE.
KDAE = INPUT ROW DIMENSION OF DAE IN CALLING PROGRAM.
KZ = INPUT ROW DIMENSION OF Z IN CALLING PROGRAM.

ERROR EXPLANATION
1 = LESS THAN 2 PANEL POINTS.
2 = PANEL POINTS NOT IN INCREASING ORDER.
3 = DISTRIBUTED DATA MUST START AND END ON FIRST
AND LAST PANEL POINTS.
4 = DISTRIBUTED DATA HAS GAPS.
5 = NEGATIVE STIFFNESS IS NOT ALLOWED.

CHECK THAT PANEL POINTS ARE IN INCREASING ORDER.
ERROR = 1
IF (NPP .LT. 2) GO TO 999

ERROR = 2
DO 5 K=2,NPP
 IF (PP(K-1) .GE. PP(K)) GO TO 999
5 CONTINUE

ERROR = 3
IF (DAE(1,1) .NE. PP(1) .OR. DAE(NDAE,2) .NE. PP(NPP)) GO TO 999

INITIALIZE DATA.
DO 10 I=1,NPP
 D10 J=1,NPP
10 Z(I,J) = 0.0
NEWST = NPP-1
X2SAVE = DAE(1,1)
DO 90 I=1,NDAE
X1 = DAF(I,1)
X2 = DAF(I,2)
V1 = DAF(I,3)
V2 = DAF(I,4)

NERRORE = 4
IF (X1 GE X2 . OR . X1 . NE. X2SAVE) GO TO 999

IF (V1 LE 0. . OR . V2 LE 0.) GO TO 999
X2SAVE = V2
DO 32 K=1,NBAYS
IF (X1 LT PP(K+1)) GO TO 34
32 CONTINUE
34 XP = X1
VP = V1
36 IF (X2 LE PP(K+1)) GO TO 38
XQ = PP(K+1)
VQ = V1 + (XQ-X1)*(V2-V1)/(X2-X1)
GO TO 39
38 XQ = X2
VQ = V2
39 B = (VQ-VP)/(XQ-XP)

C IF (B EQ 0.) GO TO 55
Z(K,K) = Z(K,K) + ALOG(VQ/VP) / B
GO TO 70
55 Z(K,K) = Z(K,K) + (XQ-XP)/VP
C
70 IF (X2 LE PP(K+1)) GO TO 90
K = K+1
XP = XQ
VP = VQ
GO TO 3.
90 CONTINUE
C
STOR2 = Z(I,1)
Z(I,1) = 0.0
DO 120 K=1,NBAYS
L = K+1
STOR1 = 1./STOR2
STOR2 = Z(L,L)
Z(K,K) = Z(K,K) + STOR1
Z(K,L) = -STOR1
Z(L,K) = -STOR1
120 Z(L,L) = STOR1
RETURN
C
999 CALL ZZBOM (6HSTF1 ,NERRORE)
END
SUBROUTINE STIF2 (PP, DKAG, DEI, Z, NPP, NDKAG, NDEI, N2, KDKAG, KDEI, K2)
DIMENSION PP(1), DKAG(NDKAG, 1), DEI(KDEI, 1), Z(K2, 1)

C CALCULATE STIFFNESS MATRIX (FREE-FREE) FOR A PFAM. ASSUMES CONSTANT
C SHEAR AND LINEARLY VARYING BENDING MOMENT BETWEEN CONSECUTIVE PANEL
C POINTS. LATERAL TRANSLATION AND ROTATION AT EACH PANEL POINT ARE THE
C GENERALIZED COORDINATES. TRANSLATION COORDINATES ARE GROUPED FIRST
C FOLLOWED BY ROTATION COORDINATES.
C SIGN CONVENTION IS ROTATION = -D(LATERAL DISP)/D(AXIAL COORDINATE).
C INPUT IS DISTRIBUTED FLEXURE STIFFNESS, FI, AND ON OPTION
C (NDKAG .GE. 6) DISTRIBUTED SHEAR STIFFNESS, KAG.
C CALLS FORMA SUBROUTINE ZZEMOM.
C CODED BY C ROOLEY. FEBRUARY 1966.
C LAST REVISION BY WA BENFIELD. MARCH 1976.

C SUBROUTINE ARGUMENTS
C PP = INPUT VECTOR OF PANEL POINTS. SIZE(NPP).
C DKAG = INPUT MATRIX OF DISTRIBUTED SHEAR STIFFNESS STRAIGHT : "NF
C SEGMENT DATA. SIZE(NDKAG, 4).
C COL 1 = X AT SEGMENT END 1.
C COL 2 = X AT SEGMENT END 2.
C COL 3 = STIFFNESS AT SEGMENT END 1.
C COL 4 = STIFFNESS AT SEGMENT END 2.
C DEI = INPUT MATRIX OF DISTRIBUTED FLEXURE STIFFNESS STRAIGHT LINE
C SEGMENT DATA SIZE(NDEI, 4).
C COLUMNS ARE SIMILAR TO DKAG.
C Z = OUTPUT STIFFNESS MATRIX. SIZE(N2, N2).
C NPP = INPUT NUMBER OF PANEL POINTS. SIZE OF VECTOR PP.
C NDKAG = INPUT NUMBER OF SEGMENTS (ROWS) IN DKAG. CAN BE ZERO.
C NDEI = INPUT NUMBER OF SEGMENTS (ROWS) IN DEI.
C N2 = OUTPUT SIZE OF MATRIX 2. (N2=2*NPP).
C KDKAG = INPUT ROW DIMENSION OF DKAG IN CALLING PROGRAM.
C KDEI = INPUT ROW DIMENSION OF DEI IN CALLING PROGRAM.
C K2 = INPUT ROW DIMENSION OF Z IN CALLING PROGRAM.

C NERROR EXPLANATION
C 1 = LESS THAN 2 PANEL POINTS.
C 2 = PANEL POINTS NOT IN INCREASING ORDER.
C 3 = DISTRIBUTED DATA MUST START AND END ON FIRST
C AND LAST PANEL POINTS.
C 4 = DISTRIBUTED DATA HAS GAPS.
C 5 = NEGATIVE STIFFNESS IS NOT ALLOWED.
C
C CHECK THAT PANEL POINTS ARE IN INCREASING ORDER.

IF (NPP .LT. 2) GO TO 999

IF (PP(K-1) .GE. PP(K)) GO TO 999
5 CONTINUE

C CHECK FIRST AND LAST POINTS OF DISTRIBUTED STIFFNESS MATRICES.

IF (NDKAG .EQ. 0) GO TO 7

IF (DKAG(1, 1) .NE. PP(1) .GT. DKAG(NDKAG, 2) .NE. PP(NPP)) GO TO 999
7 IF (DEI (1,1) .NE. PP(1)) .OR. DEI (NDEI ,2) .NE. PP(NPP)) GO TO 999

C INITIALIZE DATA.
NZ = 2*NPP
DO 10 I=1,NZ
DO 10 J=1,NZ
10 Z(I,J) = 0.0
NBAYS = NPP-1

C
DO 95 T = 1,2
IF (NT .EQ. 1 .AND. NDKAG .EQ. 0) GO TO 95
IF (NT .EQ. 1) NSEGS = NDKAG
IF (NT .EQ. 1) X2SAVE = DKAG(I,1)
IF (NT .EQ. 2) NSEGS = NDEI
IF (NT .EQ. 2) X2SAVE = DEI(I,1)

C
DO 90 I=1,NSEGS
GO TO (21,22), NT
21 X1 = DKAG(I,1)
X2 = DKAG(I,2)
V1 = DKAG(I,3)
V2 = DKAG(I,4)
GO TO 30
22 X1 = DEI(I,1)
X2 = DEI(I,2)
V1 = DEI(I,3)
V2 = DEI(I,4)

30 IF (X1 .GE. X2 .OR. X1 .NE. X2SAVE) GO TO 999
IF (V1 .LE. 0.0 .OR. V2 .LE. 0.0) GO TO 999
X2SAVE = X2
DO 32 K=1,NBAYS
IF (X1 .LT. PP(K+1)) GO TO 34
CONTINUE
34 XP = X1
VP = V1
36 IF (X2 .LE. PP(K+1)) GO TO 38
XQ = PP(K+1)
VQ = V1 + (XQ-X1)*(V2-V1)/(X2-X1)
GO TO 39
38 XC = X2
VQ = V2
39 PL = X0-XP
HP = XP-PP(K)
HQ = X0-PP(K)
A = (VP*HQ - VQ*HP)/PL
B = (VQ-VP)/PL
VLOG = HLOG(VQ/VP)
GO TO (50,60), NT

50 IF (B .EQ. 0.0) GO TO 55
Z(K,K) = Z(K,K) + VLOG/b
GO TO 70
55 Z(K,K) = Z(K,K) + PL/VP
STIF2 -- 3/4

GO TO 70

60 L = K*NPP
 IF (B > 0.0) GO TO 65
 Z(K,K) = Z(K,K) + (H**2-HP**2)/(2.*B) - A*PL/B**2 +A**2*VLOG/B**3
 Z(K,L) = Z(K,L) + PL/B - A*VLOG/B**2
 Z(L,L) = Z(L,L) + VLOG/B
 GO TO 70

65 Z(K,K) = Z(K,K) + (H**3-HP**3)/(3.*VP)
 Z(K,L) = Z(K,L) + (H**2-HP**2)/(2.*VP)
 Z(L,L) = Z(L,L) + PL/VP

C 70 IF (X2 LE PP(K+1)) GO TO 90
 K = K+1
 XP = XQ
 VP = VQ
 GO TO 36

90 CONTINUE
95 CONTINUE

C NPP1 = NPP + 1
 STR21 = Z(1,1)
 STR22 = Z(1,NPP1)
 STR23 = Z(NPPL,NPP1)
 Z(1,1) = 0.
 Z(1,NPP1) = 0.
 Z(NPPL,NPP1) = 0.
 DO 120 K=1,NBAYS
 L = K + 1
 M = K + NPP
 N = M + 1
 D = STR21*STR23 - STR22**2
 BL = PP(K+1) - PP(K)
 STR11 = STR23/D
 STR12 = -STR22/D
 STR13 = STR21/D
 STR21 = Z(L,L)
 STR22 = Z(L,N)
 STR23 = Z(N,N)
 Z(K,K) = Z(K,K) + STR11
 Z(K,L) = -STR11
 Z(K,M) = Z(K,M) + STR12
 Z(K,N) = -BL*STR11 + STR12
 Z(L,L) = STR11
 Z(L,M) = -STR12
 Z(L,N) = -Z(K,N)
 Z(M,M) = Z(M,M) + STR13
 Z(M,N) = -BL*STR12 + STR13
120 Z(N,N) = B**2*STR11 + 2.*BL*STR12 + STR13

C C SYMMETRIZE.
 DO 160 I=1,NZ
 DO 160 J=I,NZ
 160 Z(I,J) = Z(I,J)
 RETURN

C
999 CALL ZXBOMB (6HSTIF2, NERROR)
END
SUBROUTINE SYMLH (A,N,KR)
DIMENSION A(KR,1)

C SYMMETRIZE MATRIX A BY PLACING VALUES FROM
C ABOVE THE DIAGONAL BELOW THE DIAGONAL.
C CODED BY RL WOHLLEN. FEB 1965.

C SUBROUTINE ARGUMENTS
C A = INPUT, OUTPUT SUPPLIED AND RESULT MATRIX. SIZE(N,N).
C N = INPUT SIZE OF MATRIX A (SQUARE).
C KR = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.

DO 10 I=1,N
 DO 10 J=1,N
 10 A(J+1) = A(I,J)
RETURN
END
SUBROUTINE SYMUH (A,N,KR)
DIMENSION A(KR,1)

SYMENIZE MATRIEX A BY PLACEING VALUES FROM
BELOW THE DIAGONAL ABOVE THE DIAGONAL.
CODED BY RL WOHLN. FEB 1965.

SUBROUTINE ARGUMENTS
A = INPUT, OUTPUT SUPPLIED AND RESULT MATRIX. SIZE(N,N).
N = INPUT SIZE OF MATRIX A (SQUARE).
KR = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.

DO 10 I=1,N
 DO 10 J=1,N
10 A(I,J) = A(J,I)
RETURN
END
SUBROUTINE TERPI (XA, XZ, YA, YZ, NXA, NXZ, NCA, KA, KZ)
DIMENSION XA(1), XZ(1), YA(KA,1), YZ(KZ,1)
C LINEAR INTERPOLATION.
C VALUES OF XZ MAY BE OUTSIDE OF XA. (EXTRAPOLATION).
C CODED BY RF HRUDA. SEPTEMBER 1965.
C
SUBROUTINE ARGUMENTS
C XA = INPUT VECTOR OF X-COORDINATES FOR ROWS OF YA. MUST BE IN
C INCREASING ORDER. SIZE(NXA).
C XZ = INPUT VECTOR OF X-COORDINATES FOR INTERPOLATED VALUES.
C SIZE(NXZ).
C YA = INPUT MATRIX OF Y-COORDINATES TO BE INTERPOLATED.
C SIZE(NXA,NCA).
C YZ = OUTPUT MATRIX OF INTERPOLATED Y-COORDINATES. SIZE(NXZ,NCA).
C EACH COLUMN OF YZ HAS INTERPOLATED VALUES OF THE
C RESPECTIVE COLUMN OF YA.
C NXA = INPUT NUMBER OF XA STATIONS, ROWS OF MATRIX YA.
C NXZ = INPUT NUMBER OF XZ STATIONS, ROWS OF MATRIX YZ.
C NCA = INPUT NUMBER OF COLUMN VECTORS IN MATRICES YA, YZ.
C KA = INPUT ROW DIMENSION OF YA IN CALLING PROGRAM.
C KZ = INPUT ROW DIMENSION OF YZ IN CALLING PROGRAM.
C
DO 30 K=1,NXZ
DO 10 I=1,NXA
 IF(XZ(K).LE.XA(I+1) .OR. (I+1).EQ.NXA) GO TO 20
10 CONTINUE
20 DO 30 J=1,NCA
30 YZ(K,J) = YA(I,J) + (XZ(K) - XA(I)) * (YA(I+1,J) - YA(I,J)) /
 (XA(I+1) - XA(I))
C
RETURN
END
SUBROUTINE TERP2 (XA, XZ, YA, YZ, NXA, NXZ, NCA, KA, KZ)
DIMENSION XA(1), XZ(1), YA(KA,1), YZ(KZ,1)

C DIPARABOLIC INTERPOLATION.
C (PARABOLIC INTERPOLATION IN FIRST, LAST BAYS AND OUTSIDE XA).
C VALUES OF XZ MAY BE OUTSIDE OF XA. (EXTRAPOLATION).
C CALLS FORMA SUBROUTINE ZZBOMB.
C CODED BY RF HRUDA. FEBRUARY 1965.
C LAST REVISION BY WA BENFIELD. MARCH 1976.
C
SUBROUTINE ARGUMENTS
C XA = INPUT VECTOR OF X-COORDINATES FOR ROWS OF YA. MUST BE IN
C INCREASING ORDER. SIZE(NXA).
C XZ = INPUT VECTOR OF X-COORDINATES FOR INTERPOLATED VALUES.
C SIZE(NXZ).
C YA = INPUT MATRIX OF Y-COORDINATES TO BE INTERPOLATED.
C SIZE(NXA,NCA).
C YZ = OUTPUT MATRIX OF INTERPOLATED Y-COORDINATES. SIZE(NXZ,NCA).
C EACH COLUMN OF YZ HAS INTERPOLATED VALUES OF THE
C RESPECTIVE COLUMN OF YA.
C NXA = INPUT NUMBER OF XA STATIONS, ROWS OF MATRIX YA.
C NXZ = INPUT NUMBER OF XZ STATIONS, ROWS OF MATRIX YZ.
C NCA = INPUT NUMBER OF COLUMN VECTORS IN MATRICES YA, YZ.
C KA = INPUT ROW DIMENSION OF YA IN CALLING PROGRAM.
C KZ = INPUT ROW DIMENSION OF YZ IN CALLING PROGRAM.
C
NERROF EXPLANATION
C 1 = LESS THAN 3 STATIONS.
C
IF (NXA .LT. 3) GO TO 999
C
DO 460 K=1,NXZ
IF (XZ(K) .LE. XA(2)) GO TO 100
IF (XZ(K) .GE. XA(NXA-1)) GO TO 300
DO 50 I=3,NXA
IF (XZ(K) .LE. XA(I)) GO TO 200
50 CONTINUE
C
FIRST BAY OR LEFT EXTRAPOLATION.
100 BAYL = XA(2) - XA(1)
H = (XZ(K) - XA(1))/BAYL
D = (XA(3) - XA(1))/BAYL
DO 102 J=1,NCA
102 YZ(K,J) = YA(I,J)*(H**2 - H*(1.0 + D)/D)
* + YA(2,J)*((H**2 - H*D/(1.0 - D)
* + YA(3,J)*(-H**2 + H)/(D - D**2)
GO TO 400
C
INTERIOR BAY.
200 BAYL = XA(I) - XA(I-1)
H = (XZ(K) - XA(I-1))/BAYL
C = (XA(I-2) - XA(I-1))/BAYL
D = (XA(I+1) - XA(I-1))/BAYL
DO 202 J=1,NCA
202 YZ(K,J) = YAZ(I-2,J)*(H**3-2*O*H**2+H)/(C-C**2)
 * + YA(I-1,J)*(H**3*(C-D)+H**2*(2.0*D-C)-H*(D+C*D)+C*D)/(C*D)
 * + YA(I,J)*(H**3*(D-C)+H**2*(1.0-2.0*D+C)-H*C*(1.0-D))/
 ((1.0-D)*(1.0-D))
 * + YA(I+1,J)*(-H**3+H**2)/(D-D**2)
 GO TO 400

C
C LAST BAY OR RIGHT EXTRAPOLATION...
300 BAYL = XA(NXA)-XA(NXA-1)
 H = (XZ(K,J)-XA(NXA-1))/BAYL
 C = (XA(NXA-2)-XA(NXA-1))/BAYL
 DO 302 J=1,NCA
302 YZ(K,J) = YA(NXA-2,J)*(-H**2+H)/(C-C**2)
 * + YA(NXA-1,J)*(-H**2+H*(1.0+C)+C)/C
 * + YA(NXA,J)*(-H**2-H*(1.0-C))/C

C
400 CONTINUE
 RETURN

C
999 CALL ZZBOMB (6HTERP2 ,NERROR)
 END
THE PURPOSE OF THIS ROUTINE IS TO DETERMINE THE ELAPSED CPU TIME BETWEEN DEFINED POINTS IN A PROGRAM. UP TO 10 DEFINED TIME CHECKS CAN BE OBTAINED USING THIS ROUTINE. THE ROUTINE IS USED BY CALLING IT AT THE POINT IN THE PROGRAM WHERE THE TIME CHECK IS TO START AND THEN CALLING IT AGAIN AT THE POINT WHERE THE TIME CHECK IS TO END. THE TIME CHECK IS IDENTIFIED BY THE ARGUMENT NAMCHK AS AN A6 VARIABLE (IE NAMCHK=6HTIME 1). IF MORE THAN ONE TIME CHECK IS MADE USING THE SAME NAME FOR THE ARGUMENT NAMCHK THE SUM OF THE ELAPSED TIMES WILL BERecordED.

BEFORE THIS ROUTINE CAN BE USED IT IS NECESSARY TO INITIALIZE IT. THIS DONE BY CALLING IT WITH NAMCHK=6HTBEGIN.

ARGUMENT
NAMCHK - INPUT (A6 FORMAT) - TIME CHECK IDENTIFICATION
IF(NAMCHK=6HTBEGIN) ROUTINE IS INITIALIZED
IF(NAMCHK=6HTPRINT) RESULTS ARE PRINTED

FORM SUBROUTINES CALLED ARE PAGEHD AND ZZBOMB.

2000 FORMAT(/1X123(1H-1))
2010 FORMAT(/$51X24(1H*)/51X24H* CPU TIME CHECK TABLE *,
 $/37X50(1H*)/37X*,
 $/50H* NAME OF * TOTAL * NUMBER OF * AVERAGE */37X*,
 $/50H* TIME CHECK * CPU TIME * CHECKS MADE * CPU TIME */37X50(1H*))
2020 FORMAT(37X*,
 $/4H* ,A6,5H* ,F8.2,2H *5X,13,5X2H* ,F8.2,2H *
 /37X50(1H))
 IF(NAMCHK .EQ. 6HTBEGIN) GO TO 60
 IF(NAMCHK .EQ. 6HTPRINT) GO TO 80
 L=NTM+1
 CALL CPUTIM(ICTIM)
 C1=ICTIM
 C1=C1/1000000.
 I1.'NTM .NE. 0) GO TO 30
10 NERROR=1
 IF(L .GT. KT) GO TO 999
 NAM(L)=NAMCHK
 NTM=L
20 TLAS(L)=C1
 RETURN
30 DO 40 I=1,NTM
 LL=I
 IF(NAMCHK .EQ. NAM(I)) GO TO 50
40 CONTINUE
 GO TO 10
50 L=LL
 IF(TLAS(L) .LT. 0.) GO TO 20
 TOTT(L)=TOTT(L)+{C1-TLAS(L)}
 TLAS(L)=-1.
 NOCK(L)=NOCK(L)+1
 RETURN
60 NTM=0
 DO 70 I=1,KT
 NOCK(I)=0
 NAM(I)=6H
 TOTT(I)=0.
70 TLAS(I)=-1.
 RETURN
80 IF(MINI .NE. 4*MINI) GO TO 90
 IF(NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 90
 NN=10+NTM/2
 IF(NLINE+NN .GT. MAXLIN) GO TO 90
 WRITE(NOT,2000)
 NLINE=NLINE+2
 GO TO 100
90 CALL PAGEHD
100 WRITE(NOT,2010)
 NLINE=NLINE+8
 NERROR=2
 IF(NTM .EQ. 0) GO TO 999
 DO 120 I=1,NTM
 IF(NLINE+2 .LE. MAXLIN) GO TO 110
 CALL PAGEHD
 WRITE(NOT,2010)
 NLINE=NLINE+8
110 C2=NOCK(I)
 C1=TOTT(I)/C2
 WRITE(NOT,2020) NAM(I),TOTT(I),NOCK(I),C1
120 NLINE=NLINE+2
 RETURN
999 CALL ZZBOMB(6H,TIMCHK,NERROR)
END
SUBROUTINE TRAE2 (IXRUNO, IXNAME, IFA, IFB, IFC, IFD, IFE, E,
* ZTMM, STARTT, ENDT, MLTXTP, NWRITE, ZIDENT, STA,
* ZNAME, NZ, KZ, NXTAPE, NZTAPE, STOREZ)

DIMENSION A(KZ,1), B(KZ,1), C(KZ,1), D(KZ,1), E(1), ZTMM(KZ,1), ST(1),1),
* ZIDENT(1), STOREZ(KZ,1)

DIMENSION STOREY(N)
COMMON /LWRKV1/ XDD(250), XD(250)
COMMON /LWRKV2/ X(250), Z(250)
COMMON /LWRKV3/ F(500)
COMMON /ISTART/ IXRUNO, ZDATE, NPAGE, UNAME(3), TITLE1(12), TITLE2(12)
COMMON /LINE/ NLIN, MAXLIN, MINI
DOUBLE PRECISION S, SS, ZERO
DATA NIT, NF, NLPP, BUF, EOT/
* 54, 0, 335CHET/

C SOLVE THE MATRIX EQUATION
C Z(T) = A*DD(T) + B*XI(T) + C*X(T) + D*F(T) + E
C THAT IS, THE ADDITIONAL EQUATIONS TO GET SHEAR, BENDING MOMENT, ETC.
C T, XDD, XD, X, F ARE OBTAINED FROM NXTAPE (OUTPUT OF TIME RESP SUBRT).
C NXTAPE IS POSITIONED BY SEARCHING FOR RUN NUMBER (IXRUN) AND
C NAME (IXNAME).
C THE ANSWER Z(T) WILL BE WRITTEN ON NZTAPE EVERY MLTXTP*XDELTA (OF
C TIME RESP) AND ON PAPER EVERY NWRITE*(MLTXP*XDELTA).
C NZTAPE MUST HAVE BEEN_INITIALIZED WITH SUBROUTINE INTAPE. A HEADER,
C TIME POINT DATA, AND END-OF-FILE WILL BE WRITTEN ON NZTAPE HERE.
C THE MAXIMUM AND MINIMUM VALUES OF Z WILL BE DETERMINED AND OUTPUT
C THRU MATRIX ZTMM.
C COMMON /ISTART/ IS_DEFINED IN SUBROUTINE START.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SUBROUTINES PAGEHD, ZZBOMB.
C THE MAXIMUM SIZES ARE (BASED ON DIMENSIONS OF XDD, XD, X, F, Z)
C NX = 250
C NF = 500
C NZ = 250
C CODED BY RL WOHLEN. MARCH 1965.
C LAST REVISION BY RL WOHLEN. MARCH 1976.

SUBROUTINE ARGUMENTS
C IXRUNO = INPUT RUN NUMBER OF TIME RESPONSE DATA TO BE READ FROM
C NXTAPE. (A6 FORMAT).
C IXNAME = INPUT IDENTIFICATION OF TIME RESPONSE DATA TO BE READ FROM
C NXTAPE. (A6 FORMAT).
C IFA = INPUT A NEED NOT BE DIMENSIONED IN MAIN PROG FOR IFA = 0
C A = INPUT MATRIX COEFFICIENT OF XDD. SIZE (NZ, NX).
C IFB = INPUT B NEED NOT BE DIMENSIONED IN MAIN PROG FOR IFB = 0
C B = INPUT MATRIX COEFFICIENT OF XD. SIZE (NZ, NX).
C IFC = INPUT C NEED NOT BE DIMENSIONED IN MAIN PROG FOR IFC = 0
C C = INPUT MATRIX COEFFICIENT OF X. SIZE (NZ, NX).
C IFD = INPUT D NEED NOT BE DIMENSIONED IN MAIN PROG FOR IFD = 0
C D = INPUT MATRIX COEFFICIENT OF F. SIZE (NZ, NF).
C IFE = INPUT E NEED NOT : E DIMENSIONED IN MAIN PROG FOR IFE = 0
C E = INPUT VECTOR. SIZE (NZ).
C ZTMM = OUTPUT MATRIX OF Z MAX, MIN AND TIMES. SIZE (NZ, 4).
COL 1 = Z MAX, COL 2 = TIME AT Z MAX, COL 3 = TIME AT Z MIN, COL 4 = TIME AT Z MIN.

STARTT = INPUT
START TIME FOR ADDITIONAL EQUATIONS. MAY BE GREATER THAN START TIME USED IN TIME RESPONSE. IF LESS, TIME RESPONSE START TIME IS USED.

ENDT = INPUT
END TIME FOR ADDITIONAL EQUATIONS. MAY BE LESS THAN END TIME USED IN TIME RESPONSE. IF GREATER, TIME RESPONSE END TIME IS USED.

MLTXTP = INPUT
MULTIPLE OF TIME RESPONSE POINTS TO USE FOR ADD. EQUATIONS.
MLTXTP = 1 USE EVERY TIME RESP POINT (1,7,3,...)
MLTXTP = 2 USE EVERY SECOND TIME RESP POINT (1,3,5,...) ETC

NWRITE = INPUT
MULTIPLE OF ADDITIONAL EQUATIONS POINTS TO WRITE ON PAPER.
NWRITE = 1 WRITE EVERY POINT (1,2,3,...)
NWRITE = 2 WRITE EVERY SECOND POINT (1,3,5,...) ETC

ZIDENT = INPUT
HEADING FOR Z IN PRINTED OUTPUT. (12A6 FORMAT).

STA = INPUT
STATIONS FOR ROWS OF Z IN PRINTED OUTPUT. SIZE (NZ).

ZNAME = INPUT
IDENTIFICATION OF ADDITIONAL EQS DATA TO BE WRITTEN ON NZTAPE. (A6 FORMAT).

NZ = INPUT
NUMBER OF ROWS IN A,B,C,D,E,ZTMM,STOREZ. MAX=250.

KZ = INPUT
ROW DIMENSION OF A,B,C,D,E,ZTMM,STOREZ IN CALLING PROG.

NXTAPE = INPUT
NUMBER OF TAPE FROM WHICH T,D,XD,XF WILL BE READ (EG 1).

NZTAPE = INPUT
NUMBER OF TAPE ON WHICH T,Z WILL BE WRITTEN. (EG 10).

STOREZ = INPUT
WORKSPACE MATRIX TO STORE SIX COLUMNS OF Z FOR PRINTING. SIZE (NZ,6).

THE OUTPUT DATA (TO BE WRITTEN ON NZTAPE AND PAPER) IS
T = TIME
Z = SHEAR, BENDING MOMENT, ETC. SIZE(NZ).

ERROR EXPLANATION
1 = SIZE EXCEEDANCE.
2 = X AND Z DATA CANNOT SHARE SAME TAPE.
3 = REQUESTED RUN NUMBER OR NAME CANNOT BE FOUND.
4 = NX OR NF EXCEEDS ALLOWABLE SIZE.

2010 FORMAT (/ 15X, 12A6 // 9X,6HTIME = F14.6,5F17.6)
2011 FORMAT (2X,3HRCH, 3X,7HSTATION)
2012 FORMAT (15,6X,A6,6E17.6)
2050 FORMAT (/ 1X 123(1H-))

IF (NZ .GT. 250) GO TO 999
NERRORE=1

IF (NXTAPE .EQ. NZTAPE) GO TO 999
NERRORE=2

SEARCH NXTAPE FOR CORRECT HEADING.
REWIND NXTAPE
2 READ (NXTAPE) ITRUNO,ITNAME,IFOTCK,XSTART,XDELTA,XEND,NX,NF,NXTP
IF (ITRUNO.EQ.1XRUNO .AND. ITNAME.EQ.1XNAME) GO TO 5
NERRORE=3
IF (IENDCK .EQ. 3HEOT) GO TO 999
DO 3 IXTP=1,NXTP
3 READ (NXTAPE)
 GO TO 2
5 IF (NX .GT. 250 .OR. NF .GT. 500) GO TO 999
 ZSTART = START
 ZEND = END
 IF (ZSTART .LT. XSTART) ZSTART = XSTART
 IF (ZEND .GT. XEND) ZEND = XEND
 XDELTA = .5*XDELTA
C
C FIND X-TIME POINT NUMBER FOR ZSTART.
 DO 6 IXTP=1,NXTP
 XTIME = XSTART + FLOAT(IXTP-1)*XDELTA
 IF (...) GO TO 7
 CONTINUE
6 IXTPZS = IXTP
 ZSTART = XTIME
C
C FIND X-TIME POINT NUMBER FOR ZEND.
 IZTP = 1
8 IXTP = IXTP + MLTXTP
 XTIME = XSTART + FLOAT(IXTP-1)*XDELTA
 IZTP = IZTP+1
 IF (...) GO TO 8
 IXTPZE = IXTP-MLTXTP
 ZEND = XSTART + FLOAT(IXTPZE-1)*XDELTA
 NZTP = IZTP-1
 ZDELTA = FLOAT(MLTXTP)*XDELTA
C
C SKIP RECORDS ON NXTAPE UP TO X-TIME POINT NUMBER FOR ZSTART.
 IF (...) GO TO 10
 IXZSM = IXTPZS-1
 DO 9 I=1,IXZSM
9 READ (NXTAPE)
C
C SEARCH NXTAPE FOR END OF WRITTEN DATA.
10 IF (NXTAPE .LE. 0) GO TO 20
 REWIND NXTAPE
15 READ (NXTAPE) BUFIN,BUFIN,FOTCK,(BUFIN,I=1,4),NREC
 IF (...) GO TO 17
 DC 16 IREC=1,NREC
16 READ (NXTAPE)
 GO TO 15
17 BACKSPACE NXTAPE
 WRITE (NXTAPE) IZRUNO,ZNAME,ZDATE,ZSTART,ZDELTA,ZEND,NZ,NZTP,
 (BUF,I=1,11),(ZIDENT(I),I=1,12),(STA(I),I=1,NZ)
C
C ADDITIONAL EQUATIONS LOOP.
20 IXTP = MLTXTP-1
 DO 399 IXTP=IXTPZS,IXTPZE
 LXTP = LXTP+1
 IF (...) GO TO 25
 READ (NXTAPE)
GO TO 309
25 READ (NXTAPE) T, (F(J), J=1,NF), (XDD(I), I=1,NX), (XD(I), I=1,NX),
 (X(I), I=1,NX)
 LXTP = 0
 DO 35 I=1,NZ
 35 Z(I) = 0.
 IF (IFA .EQ. 0) GO TO 50
 DO 45 I=1,NZ
 SS = ZERO
 DO 46 J=1,NX
 S = A(I,J)*XDD(J)
 46 SS = SS + S
 45 Z(I) = Z(I) + SS
 IF (IFB .EQ. 0) GO TO 60
 DO 55 I=1,NZ
 SS = ZERO
 DO 56 J=1,NX
 S = E(I,J)*XD(J)
 56 SS = SS + S
 55 Z(I) = Z(I) + SS
 IF (IFC .EQ. 0) GO TO 70
 DO 65 I=1,NZ
 SS = ZERO
 DO 66 J=1,NX
 S = (I(J)*X(J)
 66 SS = SS + S
 65 Z(I) = Z(I) + SS
 IF (IFD .EQ. 0) GO TO 80
 DO 75 I=1,NZ
 SS = ZERO
 DO 76 J=1,NF
 S = D(I,J)*F(J)
 76 SS = SS + S
 75 Z(I) = Z(I) + SS
 IF (IFE .EQ. 0) GO TO 100
 DO 85 I=1,NZ
 SS = ZERO
 GO TO 100
 85 Z(I) = Z(I) + E(I)

C
C WRITE T,Z ON NZTAPE FOR LATER USE.
 100 IF (NZTAPE .GE. 0) WRITE (NZTAPE) T, (Z(I), I=1,NZ)

C
C CALCULATE MAXIMUM AND MINIMUMS OF Z. PLACE IN ZTMM.*
C COL 1 = Z MAX , COL 2 = TIME OF Z MAX ,
C COL 3 = Z MIN , COL 4 = TIME OF Z MIN .
C IF (IXTP .GT. IXTPZ) GO TO 150
 IF (I10 I=1,NZ
 ZTMM(I,1) = Z(I)
 ZTMM(I,2) = T
 ZTMM(I,3) = Z(I)
I10 ZTMM(I,4) = T
 NCOL = 0
 GO TO 100
 150 DO 155 I=1,NZ
 IF (Z(I) .LE. ZTMM(I,1)) GO TO 152
 ZTMM(I,1) = Z(I)
 155
TRAE2 -- 5/ 5

152 IF (Z(I) .GE. ZTMM(I,3)) GO TO 155
ZTMM(I,3) = Z(I)
ZTMM(I,4) = T
155 CONTINUE

C SEE IF DATA SHOULD BE PRINTED.

C COLLECT SIX COLUMNS OF T AND Z BEFORE PRINTING.

190 NCOL = NCOL + 1
STORE(T(NCOL)) = T
DO 200 I=1,NZ
200 STOREZ(I,NCOL) = Z(I)
NW = 0
210 NW = NW + 1
IF (IXTP.LT.IXTPZE .AND. NW.LT.NWRITE) GO TO 210
381 NZS = NZE + 1
NZE = NZ
IF ((NZE-NZS) .GT. (NLPP-11)) NZE=NZE+(NLPP-11)
IF (MINI .NE. 4HMINI) GO TO 800
IF (NLINE .LE. 5 .OR. NLIN .GE. MAXLIN) GO TO 800
IF ((NLIN+2+5+NZ) .GT. MAXLIN) GO TO 800
WRITE (NOT,2050)
NLINE = NLINE + 2
GC TC 810
800 CALL PAGEFD
810 WRITE (NOT,2010) (ZIDENT(I), I=1,12), (STORET(I), I=1,NCOL)
WRITE (NOT,2111)
NLINE = NLINE + 5
DO 387 I=NZS,NZE
NLINE = NLINE + 1
387 WRITE (NOT,2120) I,STA(I),(STOREZ(I,J),J=1,NCOL)
IF (NZ .GT. NZE) GO TO 381
NCOL = 0
399 CONTINUE

C IF (NZTAPE .LT. 0) RETURN
WRITE (NZTAPE) BUF,BUF,EDT,(BUF,I=1,16)
ENDFILE NZTAPE
RETURN

C 999 CALL Z250MB (6HTRAE2 ,NERROR)
END
SUBROUTINE TRANS (A, Z, NRA, NCA, KRA, KRZ)
DIMENSION A(KRA,1), Z(KRZ,1)

TRANSPOSE MATRIX A INTO MATRIX Z.
CODED BY RL WOHLER. FEB 1965.

SURROUNINE ARGUMENTS
A = INPUT MATRIX. SIZE(NRA,NCA).
Z = OUTPUT RESULT MATRIX. SIZE(NCA, NRA).
NRA = INPUT NUMBER OF ROWS OF MATRIX A, COLS OF MATRIX Z.
NCA = INPUT NUMBER OF COLS OF MATRIX A, ROWS OF MATRIX Z.
KRA = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.
KRZ = INPUT ROW DIMENSION OF Z IN CALLING PROGRAM.

DO 10 I=1,NRA
 DO 10 J=1,NCA
 10 Z(J,I) = A(I,J)
RETURN
END
SUBROUTINE TRMM (IXRUNO,IXNAME,XTMM,STARTT,ENDT,NX,KX,NXTAPE)

DIMENSION XTMM(KX,1)

COMMON /LPKVI/ YD(250), XD(250)
COMMON /LPKVI2/ X(500)

C FIND XDD, XD, X MAXIMUMS, MINIMUMS, AND TIME OF OCCURRENCE FROM TIME RESPONSE TAPE.
C NXTAPE IS POSITIONED BY SEARCHING FOR RUN NUMBER (IXRUNO) AND NAME (IXNAME).
C THE MAXIMUM SIZE IS (6/-ED ON DIMENSIONS OF XDD, XD, X)
C NX = 250
C DEVELOPED BY RL WOHLEN. NOVEMBER 1975.
C LAST REVISION BY WA EENFIELD. MARCH 1976.

SUBROUTING ARGUMENTS
C IXHRUNO = INPUT RUN NUMBER OF TIME RESPONSE DATA TO BE READ FROM NXTAPE. (A6 FORMAT).
C IXNAME = INPUT IDENTIFICATION OF TIME RESPONSE DATA TO BE READ FROM NXTAPE. (A6 FORMAT).
C XTMM = OUTPUT MATRIX OF MAX, MINS AND TIMES. SIZE(NX,12).
C COL 1 = XDD MAX COL 2 = TIME AT XDD MAX
C COL 3 = XDD MIN COL 4 = TIME AT XDD MIN
C COL 5 = XD MAX COL 6 = TIME AT XD MAX
C COL 7 = XD MIN COL 8 = TIME AT XD MIN
C COL 9 = X MAX COL 10 = TIME AT X MAX
C COL 11 = X MIN COL 12 = TIME AT X MIN
C STARTT = INPUT START TIME FOR MAXIMUM, MINIMUMS. MAY BE GREATER
C THAN START TIME USED IN TIME RESPONSE. IF LESS,
C TIME RESPONSE START TIME IS USED.
C ENDT = INPUT END TIME FOR MAXIMUM, MINIMUMS. MAY BE LESS
C THAN END TIME USED IN TIME RESPONSE. IF GREATER,
C TIME RESPONSE END TIME IS USED.
C NX = OUTPUT NUMBER OF ROWS IN MATRIX XTMM. MAX=250.
C KX = INPUT ROW DIMENSION OF XTMM IN CALLING PROGRAM.
C NXTAPE = INPUT NUMBER OF TAPE FROM WHICH T0XDD, XD, X WILL BE READ.
C (EG 1).

ERROR EXPLANATIONS
C 1 = REQUESTED RUN NUMBER OR NAME CANNOT BE FOUND.
C 2 = SIZE EXCEEDANCE.
C
C SEARCH NXTAPE FOR CORRECT HEADING.
C REWIND NXTAPE
2 READ (NXTAPE) IXHRUNO, IXNAME, IEOTCK, XSTART, XDDELTA, XEND, NX, NF, NXP
IF (ITRUNO.EQ.IXHRUNO .AND. ITNAME.EQ.IXNAME) GO TO 5
NERROR=1

IF (IEOTCK .EQ. 3HECT) GO TO 999
DO 3 IXTP=1,NXP
3 READ (NXTAPE)
GO TO 2

5 IF (NX .GT. 250) GO TO 999
Strmm = STARTT
Endmm = ENDT
IF (Strmm .LT. XSTART) Strmm = XSTART

TRMM --- 1/3
IF (ENDMM .GT. XEND) ENDMM = XEND
HXDEL = .5*XDELTA

IF (ENDMM .GT. XEND) ENDMM = XEND
HXDEL = .5*XDELTA

C FIND X-TIME POINT NUMBER FOR MAX-MIN START.
DO 6 IXTF=1,NXTP
 XTIME = XSTART + FLOAT(IXTF-1)*XDELTA
 IF (ARS(IXTM=T-XTIME) .LE. HXDEL) GO TO 7
6 CONTINUE
7 IXTPS = IXTP

C FIND X-TIME POINT NUMBER FOR MAX-MIN END.
8 IXTP = IXTP + 1
 XTIME = XSTART + FLOAT(IXTP-1)*XDELTA
 IF (XTIME .LE. (ENDMM+HXDEL)) GO TO 8
 IXTPE = IXTP - 1

C SKIP RECORDS ON NXTAPE UP TO X-TIME POINT NUMBER FOR MAX-MIN START.
IF (IXTPS .GT. IXTPS) GO TO 100
IXTSM1 = IXTPS-1
DO 9 I=1,IXTSM1
9 READ (NXTAPE)

C FIND MAXIMUMS AND MINIMUMS. PLACE IN XTMM.
C COL 1 = XDD MAX COL 2 = TIME AT XDD MAX
C COL 3 = XDD MIN COL 4 = TIME AT XDD MIN
C COL 5 = XD MAX COL 6 = TIME AT XD MAX
C COL 7 = XD MIN COL 8 = TIME AT XD MIN
C COL 9 = X MAX COL 10 = TIME AT X MAX
C COL 11 = X MIN COL 12 = TIME AT X MIN

100 DO 399 IXTP=IXTPS,IXTPE
 READ (NXTAPE) T, (DUM,J=1,NF), (XDD(I),I=1,NX), (XD(I),I=1,NX),
 (X(I),I=1,NX)
 * IF (IXTP .GT. IXTPS) GO TO 200
 DO 110 I=1,NX
 XTM(1) = XDD(I)
 XTM(2) = T
 XTM(3) = XDD(I)
 XTM(4) = T
 XTM(5) = XD(I)
 XTM(6) = T
 XTM(7) = X(I)
 XTM(8) = T
 XTM(9) = X(I)
 XTM(10) = T
 XTM(11) = X(I)
110 XTM(I+1) = T
 GO TO 399
200 DO 240 I=1,NX
 IF (XDD(I) .LE. XTM(I,1)) GO TO 215
 XTM(I, 2) = T
215 IF (XDD(I) .GE. XTM(I,3)) GO TO 220
 XTM(I, 3) = XDD(I)
 XTM(I, 4) = T
220 IF (XD(I) .LE. XTM(I,5)) GO TO 225
XTMM(I, 5) = XD(I)
XTMM(I, 6) = T
225 IF (XD(I) *GE* XTMM(I, 7)) GO TO 230
XTMM(I, 7) = XD(I)
XTMM(I, 8) = T
230 IF (X(I) *LE* XTMM(I, 9)) GO TO 235
XTMM(I, 9) = X(I)
XTMM(I, 10) = T
235 IF (X(I) *GE* XTMM(I, 11)) GO TO 290
XTMM(I, 11) = X(I)
XTMM(I, 12) = T
290 CONTINUE
C
399 CONTINUE
C
RETURN
C
999 CALL ZZBOMB (6HTRMM , NERROR)
END
SUBROUTINE TRPSD (IXPUNO, IXNAME, IRAE, IEXP, STARTT, MLTXTP, ZPSD, *
 NFREQ, TIMPER, NXTAPE, WRKV)

DIMENSION ZPSD(1), WRKV(1)
COMMON /LWRKV1/ X(500)

CALCULATE PSD OF ONE ROW OF TIME RESPONSE ADDITIONAL EQUATIONS
(ADD EQ) DATA FROM SUBROUTINE TRAE2. DEFINE X = ADD EQ, Z = PSD.
X IS OBTAINED FROM NXTAPE (OUTPUT OF ADD EQ SUBROUTINE TRAE2).
NXTAPE IS POSITIONED FOR SEARCHING FOR RUN NUMBER (IXRUNO) AND
NAME (IXNAME).
CALLS FORMA SUBROUTINE ZZBOMB.
THE MAXIMUM SIZE IS (BASED ON DIMENSION OF X)
NX = 500
CODED BY RL WOHLER. JANUARY 1976.
LAST REVISION BY WA BENFIELD. MARCH 1976.

SUBROUTINE ARGUMENTS
IXRUNO = INPUT RUN NUMBER OF ADD EQ DATA TO BE READ FROM NXTAPE.
 (A6 FORMAT).
IXNAME = INPUT IDENTIFICATION OF ADD EQ DATA TO BE READ FROM
 NXTAPE. (A6 FORMAT).
IRAE = INPUT ROW NUMBER OF ADD EQ USED IN PSD CALCULATION.
IEXP = INPUT EXPONENT OF 2. GIVES NUMBER OF TIME POINTS USED
 IN PSD CALCULATION. NZTP = 2**IEXP. MAX IEXP = 13.
 EG, IEXP = 5, 10, 11, 12, 13.
 NZTP = 32, 1024, 2048, 4096, 8192.
STARTT = INPUT START TIME FOR PSD CALCULATION. MAY BE GREATER THAN
 START TIME USED IN ADD EQ. IF LESS, ADD EQ START TIME
 IS USED.
MLTXTP = INPUT MULTIPLE OF ADD EQ POINTS TO USE FOR PSD CALCULATION.
 MLTXTP = 1 USE EVERY ADD EQ POINT (1, 2, 3, ...)
 MLTXTP = 2 USE EVERY SECOND ADD EQ POINT (1, 3, 5, ...)
 ETC
ZPSD = INPUT WORKSPACE VECTOR. MUST BE DIMENSIONED AT LEAST 2*NZTP
 WHERE NZTP = 2**IEXP.
 = OUTPUT VECTOR OF PSDS AT VARIOUS FREQUENCIES FOR ROW IRAE
 OF ADD EQ.
 ZPSD(1) AT FREQ = 0
 ZPSD(2) AT FREQ = 1/DATA TIME PERIOD
 ZPSD(3) AT FREQ = 2/DATA TIME PERIOD
 ETC
 ZPSD(NZTP/2) AT FREQ = (NZTP/2 - 1)/DATA TIME PERIOD.
NFREQ = OUTPUT NUMBER OF FREQUENCIES AT WHICH PSD IS CALCULATED.
 NFREQ = NZTP/2 WHERE NZTP = 2**IEXP.
TIMPER = OUTPUT TIME PERIOD AT WHICH PSD IS CALCULATED.
NXTAPE = INPUT NUMBER OF TAPE FROM WHICH X WILL BE READ. (EG 1).
WRKV = INPUT WORK VECTOR. DIMENSION AT LEAST NZTP/2-1 IN CALLING
 PROGRAM.

ERROR EXPLANATION
1 = MAXIMUM ALLOWABLE EXPONENT SIZE EXCEEDED.
2 = REQUESTED RUN NUMBER OR NAME CANNOT BE FOUND.
3 = SIZE EXCEEDANCE.

DEFINITION... X IS ADDITIONAL EQUATIONS, Z IS PSD.
IF (IEXP .GT. 13) GO TO 999
NZTP = 2**IEXP
NXTP = NZTP + (NZTP-1)*(MLTXTP-1)

C SEARCH NXTAPE FOR CORRECT HEADING.
REWIND NXTAPE
2 READ (NXTAPE) ITRUNO, ITNAME, IFOTCK, XSTART, XDELTA, XEND, NX, NXREC
IF (ITRUNO.EQ.IXRUND .AND. ITNAME.EQ.IXNAME) GO TO 5

IF (IEOTCK .EQ. 3HEOT) GO TO 999
DO 3 IXREC=1, NXREC
3 READ (NXTAPE)
GO TO 2

5 IF (NX .GT. 500) GO TO 999
HXDEL = .5*XDELTA

C FIND X-TIME POINT NUMBER FOR ZSTART.
ZSTART = XSTART
IF (ZSTART .LT. XSTART) ZSTART = XSTART
DO 6 IXTP=1, NXTP
XTIME = XSTART + FLOAT(IXTP-1)*XDELTA
IF (APS(ZSTART-XTIME) .LE. HXDEL) GO TO 7
6 CONTINUE
7 IXTPZS = IXTP
ZSTART = XTIME

C FIND X-TIME POINT NUMBER FOR ZEND.
ZEND = ZSTART + FLOAT(NXTP-1)*XDELTA
If (NZNCI - GT - XEND) GO TO 999
IXZSM1 = IXTPZS - 1

C SKIP RECORDS ON NXTAPE UP TO X-TIME POINT NUMBER FOR ZSTART.
IF (IXTPZS .EQ. 1) GO TO 10
IXZSM1 = IXTPZS - 1
DO 9 I=1, IXZSM1
9 READ (NXTAPE)

C READ ADDITIONAL EQUATIONS DATA.
10 SUM = 0.0
IZTP = 0
LXTP = MLTXTP-1
DO 399 IXTP=IXTPZS, IXTPZE
LXTP = LXTP+1
IF (LXTP .EQ. MLTXTP) GO TO 25
READ (NXTAPE)
GO TO 399
25 READ (NXTAPE) TR, (X(I), I=1, NX)
LXTP = 0
SUM = SUM + X(I)IRAEC
IZTP = IZTP+1
ZPSD(IZTP) = X(IRAEC)
IZTP = IZTP+1
ZPSD(IZTP) = 0.0

CONTINUE

C SUBTRACT AVERAGE VALUE FROM ORIGINAL DATA.
 AVRG = SUM/FLOAT(NZTP)
 NZTP2 = 2*NZTP
 DO 510 IZ = 1, NZTP2, 2
 510 ZPSD(I2) = ZPSD(I2) - AVRG

C CALCULATE FOURIER COEFFICIENTS.
 CALL FORT (ZPSD, IEXP, WRKV, -1, IERR)

C FORM PSD VALUES.
 TIMPER = ZEND-ZSTART
 TWOPIR = 2.*TIMPER
 NFREQ = NZTP/2
 DO 520 I = 1, NFREQ
 I2 = 2*I
 520 ZPSD(I) = TWOPIR*(ZPSD(I2-1)**2 + ZPSD(I2)**2)

RETURN

C 999 CALL ZZBOMB (6HTRPSD, NERROR)

END
SUBROUTINE TRSP1 (A,B,C,D,TABT,TABF,XDO,XO,START,DELTAT,ENDT,
* NWRITE,NX,NF,NTF,XNAME,KF,NTAPE,NUT1)
DIMENSION A(KA,1),B(KA,1),C(KA,1),D(KA,1),TABT(KF,1),TABF(KF,1),
* XDO(1),xo(1)
DIMENSION P(4)
COMMON /LWRKV1/ XDD(250),XO(250)
COMMON /LWRKV2/ QD(250),Q(250)
COMMON /LWRKV3/ X(250),AIDF(250)
COMMON /LWRKV4/ F(500)
COMMON /LSTART/ IRUNNO,DATE,NPAGE,XNAME(3),TITLE1(12),TITLE2(12)
COMMON /LINE/ NLIN,MAXLIN,MINI
DOUBLE PRECISION S,SS,ZERO
DATA ZERO/0.0D/
DATA NIT9,NOT/5,6/
DATA NLPP,BUF,DIVTC1,EOT/
* 54,0,1,E+35,3HEOT/
C C RESPONSE ROUTINE TO SOLVE THE SECOND ORDER DIFFERENTIAL EQUATION
C (A1XDD + B1XDD + C1X + D1F) = 0 FOR XDD, XD, X.
C FOURTH ORDER RUNGE-KUTTA (GILL MODIFICATION) NUMERICAL INTEGRATION
C IS USED.
C VECTOR F IS OBTAINED BY LINEAR INTERPOLATION USING TABT,TABF.
C MATRICES A,B,C,D SHOULD NOT SHARE SAME CORE LOCATION (DUE TO MULTB).
C THE ANSWERS (T,F,XDD,XDTX) WILL BE WRITTEN ON NTAPE EVERY DELTAT AND
C ON PAPER EVERY NWRITE * DELTAT.
C NTAPE MUST HAVE BEEN INITIALIZED WITH SUBROUTINE INTAPE. A HEADER,
C TIME POINT DATA, AND END-OF-FILE WILL BE WRITTEN ON NTAPE HERE.
C COMMON /LSTART/ IS DEFINED IN SUBROUTINE START.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SUBROUTINES INV1,MULTB,PAGEH1,ZZBOMB.
C THE MAXIMUM SIZES ARE (BASED ON DIMENSIONS OF XDD,XD,X,F)
C NX = 250
C NF = 500
C CODED BY RL WOHLLEN. MARCH 1965.
C LAST REVISION BY RL WOHLLEN. MARCH 1976.
C C SUBROUTINE ARGUMENTS (ALL INPUT)
C A = MATRIX COEFFICIENT OF XDD. SIZE (NX,NX). * DESTROYED *
C B = MATRIX COEFFICIENT OF XD. SIZE (NX,NX). * DESTROYED *
C C = MATRIX COEFFICIENT OF X. SIZE (NX,NX). * DESTROYED *
C D = MATRIX COEFFICIENT OF F. SIZE (NX,NF). * DESTROYED *
C TABT = TABLE OF TIMES FOR FORCE IN TABF. SIZE (NF,NTF).
C TABF = TABLE OF FORCES. SIZE (NF,NTF).
C XDO = VECTOR OF INITIAL VELOCITIES. SIZE (NX).
C XO = VECTOR OF INITIAL DISPLACEMENTS. SIZE (NX).
C START = START TIME.
C DELTAT = INTEGRATION STEP SIZE.
C ENDT = END TIME.
C NWRITE = MULTIPLE OF INTEGRATION POINTS TO WRITE ON PAPER.
C NWRITE = 1 WRITE EVERY POINT (1,2,3,...)
C NWRITE = 2 WRITE EVERY SECOND POINT (1,3,5,...)
C FTC
C NF = NUM效 OF ROWS IN TABT,TABF. NUMBER OF COLS IN D. MAX=500.
C NTF = NUMBER OF COLS IN TABT,TABF.
IDENTIFICATION OF DATA TO BE WRITTEN ON NTAPE. (A6 FORMAT).

ROW DIMENSION CIF AIB C D IN CALLING PROGRAM.

ROW DIMENSION OF TABB TABF IN CALLING PROGRAM.

NTAPE = NUMBER OF TAPE ON WHICH ANSWERS WILL BE WRITTEN. (E.G. 10).

NUT1 = NUMBER OF THE UTILITY TAPE. (E.G. 4).

THE OUTPUT DATA (TO BE WRITTEN ON PAPER AND NTAPE) IS

T = TIME

F = FORCE OBTAINED BY LINEAR INTERPOLATION ON TABF. SIZE (NF).

XDD = ACCELERATION. SIZE (NX).

XD = VELOCITY. SIZE (NX).

X = DISPLACEMENT. SIZE (NX).

AIDF = A**-1*D*F. SIZE (NX). (WRITTEN ON PAPER ONLY).

ERROR EXPLANATION:

1 = SIZE EXCEEDANCE.

2 = START TIME LESS THAN TABLE BOUNDS.

3 = END TIME GREATER THAN TABLE BOUNDS.

4 = RUN HAS DIVERGED.

THE INPUT SCALARS TO SUBROUTINE TRSP1 ARE,

2001 FORMAT (/15X,42H THE INPUT SCALARS TO SUBROUTINE TRSP1 ARE,

1 //23X, 10H STARTT = F10.6,

2 //23X, 10H DELTAT = F10.6,

3 //23X, 10H ENDT = F10.6,

4 //23X, 10H NWRITE = I5)

2040 FORMAT (/9X,6H TIME = F10.6)

2050 FORMAT (/9X,15H APPLIED FORCES / (10X, 5E16.8))

2060 FORMAT (/ 9X,4H ROW, 6X,13H ACCELERATION, 8X,9H VELOCITY,

* 10X,13H DISPLACEMENT, 4X,19H A**-1 * D * FORCES //

* (10X, 13, 4E20.8))

2250 FORMAT (/ 1X 123{ih-})

IF (NX .GT. 250 .OR. NF .GT. 500) GO TO 999

C IF MINI .GE. 4MMINI GO TO 10

IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 10

WRITE (NOT,2250)

NLINE = NLINE + 2

GO TO 11

10 CALL PAGEHD

11 WRITE (NOT,2001) STARTT,DELTAT,ENDT,NWRITE

NLINE = NLINE + 13

C SEARCH NTAPE FOR END OF WRITTEN DATA.

REWIND NTAPE

5 READ (NTAPE) BUF1N,BUF1N,IENTCK,(BUF1N,I=1,5),NREC

IF (IENTCK .EQ. 3HEMT) GO TO 7

DO 6 IRCN=1,NREC

6 READ (NTAPE)

GO TO 5

7 BACKSPACE NTAPE

C
CHECK TIME TABLE (TABT).
DO 18 I=1,NF
 IF (STARTT .LT. TABT(1,I)) GO TO 999
 DO 12 J=2,NF
 IF (TABT(1,I-1) .GE. TABT(I,J)) GO TO 14
 12 CONTINUE
 J = NTF+1
14 IF (ENDT-STARTT .LE. TABT(I,J-1)) GO TO 18
 NERROR = 3
 GO TO 999
18 CONTINUE

C CALCULATE NUMBER OF TIME POINTS TO BE USED.
 NTP = (ENDT-STARTT)/DELTAT + 1.1
C CALCULATE A**-1*B, A**-1*C, A**-1*D.
REBUILD NUTI
WRITE (NUTI) ((B(I,J), I=1,NX), J=1,NX) B=B
CALL INVI (A, B, NX, KA) B=AI
DO 45 J=1,NX
DO 45 I=1,NX
45 A(I,J) = B(I,J)
REBUILD NUTI
WRITE (NUTI) ((B(I,J), I=1,NX), J=1,NX) B=B
CALL MULTB (A, B, NX, NX, NX, NX, KA, KA) B=AI
CALL MULTB (A, C, NX, NX, NX, NX, KA, KA) C=AI
CALL MULTB (A, D, NX, NX, NX, NX, KA, KA) D=AI

C SET INITIAL VALUES.
WRITE (NTAPE) IRUNNO, XNAME, DATE, STARTT, DELTAT, ENDT, NX, NF, NTP,
* (BUF, I=1,10)
 T = STARTT
 NW = NWRITE
 DO 80 I=1,NX
 QD(I) = 0.0
 Q (I) = 0.0
 XD(I) = XDO(I)
 80 X(I) = X0 (I)
 DO 86 I=1,NF
 DO 84 J=1,NF
 I: (T .LE. TABT(I,J+1) .OR. (J+1)=NTF) GO TO 86
 84 CONTINUE
 F(I) = TABF(I,J) + (T-TABT(I,J)) * (TABF(I,J+1)-TABF(I,J)) /
* (TABT(I,J+1)-TABT(I,J))
 DO 96 I=1,NX
 SS = ZERO
 DO 94 J=1,NF
 S = D(I,J)*F(J)
 94 SS = SS + S
 96 AIDF(I) = SS
 DO 97 I=1,NX
 XDD(I) = AIDF(I)
 97 CONTINUE
 GO TO 999

DO 98 J=1,NX
S = B(I,J)*XD(J)
SS = SS + S
S = C(I,J)*X(J)
98 SS = SS + S
99 XDD(I) = XDD(I) - SS

C
C SET INTEGRATION CONSTANTS.
P(1) = .5
P(2) = 1. - SQRT(.5)
P(3) = 1. + SQRT(.5)
P(4) = .5

C INTEGRATION LOOP. (K=1,HALF STEP), (K=2,HALF STEP AGAIN)
(C K=3,FULL STEP), (K=4,END OF STEP).

C GILL FACTOR = .5
DO 399 ITP=1,NTP
IF (ITP .EQ. 1) GO TO 340
DO 150 K=1,4
DO 110 I=1,NX
Z = XD(I) * DELTAT
ZD = XDD(I) * DELTAT
IF (K .EQ. 4) GO TO 105
R = P(K) * (Z - Q(I))
RD = P(K) * (ZD - QD(I))
GO TO 107
105 R = (Z - 2.*Q(I))/6.
RD = (ZD - 2.*QD(I))/6.
107 X(I) = X(I) + R
XD(I) = XD(I) + RD
Q(I) = Q(I) + 3.*R - P(K)*Z
110 QD(I) = QD(I) + 3.*RD - P(K)*ZD
IF (K .NE. 1) GO TO 115
T = T + .5*DELTAT
GO TO 130
115 IF (K .NE. 3) GO TO 140
T = STARTT + FLOAT(ITP-1)*DELTAT
130 DO 136 I=1,NF
DO 134 J=1,NTF
IF (T .LE. TABT(I,J+1) .OR. (J+1) .EQ. NTF) GO TO 136
134 CONTINUE
136 F(I) = TABF(I,J) + (T-TABT(I,J)) * (TABF(I,J+1)-TABF(I,J)) /
* (TABT(I,J+1)-TABT(I,J))
140 DO 146 I=1,NX
SS = ZERO
DO 144 J=1,NF
S = D(I,J)*F(J)
144 SS = SS + S
146 AIDF(I) = SS
DO 147 I=1,NX
147 XDD(I) = AIDF(I)
DO 149 I=1,NX
SS = ZERO
DO 148 J=1,NX
S = B(I,J)*XD(J)
SS = SS + S
148 SS = SS + S
149 XDD(I) = XDD(I) - SS
150 CONTINUE

C WRITE ANSWERS ON NTape FOR LATER USE.
340 WRITE (NTape) T, (F(I), I=1, NF), (XDD(I), I=1, NX), (X(I), I=1, N,
 * (X(I), I=1, NX)

C SEE IF DATA SHOULD BE PRINTED.
IF (ITP.LT.NTP .AND. NW.LT.NWRITE) GO TO 345
NFI = NF/5
IF ((NFL*5) .NE. NF) NFL = NFL+1
IF (MIM .NE. 4HMINI) GO TO 800
IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 800
IF (INLINE+2+3+NFL+4+NX) .GT. MAXLIN) GO TO 800
WRITE (NOT,2250)

800 CALL PAGEHD
810 WRITE (NOT,2040) 1
 WRITE (NOT,2050) (F(I), I=1, NF)
 NLINE = NLINE + 3 + 3 + NFL
 NX = 1
 NXS = NX
 NFLN = (NF-1)/5+1
 IF ((NXE + NFLN) .GT. (NLPP-7)) NXE=(NLPP-7)-NFLN
342 WRITE (NOT,2060) (I, XDD(I), XD(I), X(I)), AIDF(I), I=NXS,NXE
 NLINE = NLINE + 4 + (NXE-NXS+1)
 IF (NX .EQ. NXE) GO TO 343
 NXS = NXE + 1
 NX = NXE
 IF ((NXE-NXS) .GT. (NLPP-7)) NXE=NXS+(NLPP-7)
 CALL PAGEHD
 GO TO 342
343 NW = 0
345 NW = NW+1

C SEE IF RUN HAS DIVERGED.
 NERR0R=4
 DO 350 I=1,NX
 IF (ABS(X(I)) .GT. DIVTOL) GO TO 999
350 CONTINUE

C 399 CONTINUE
C WRITE (NTape) BUF,BUF,EOT,(BUF,I=1,16)
ENDFILF NTape
RETURN
C 999 ENDFILF NTape
CALL ZZBOMB (6HTRSP1 ,NERR0R)
END
SUBROUTINE TRSPIA (A,B,C,D,FMAG,PP,VEL,GL,XDD,XO,START,DELTAT,
 ENDT,NWRITE,NX,NF,XNAME,KA,NTAPE,NUT1)
* DIMENSION AK,A1),E(KA,1),C(KA,1),D(KA,1),FMAG(1),PP(1),
* XO0(1),X0(1)
DIMENSION P(4)
COMMON /LWPKV1/ XDD(250),XD(250)
COMMON /LWPKV2/ QD(250),Q(250)
COMMON /LWPKV3/ X(250),AIDF(250)
COMMON /LWPKV4/ F(500)
COMMON /START/ IRUNNO,DATE,NPAGE,FILENAME,TITLE1(12),TITLE2(12)
COMMON /LINE/ NLINF,MAXLIN,MINI
DOUBLE PRECISION S,SS,ZERO
DATA ZEROR,0.D/
DATA A,T,NUT/5,6/
DATA NLP,NBU,FIVTOL, PI , ECT/
* 54, 0,1,E+35.3,1415927,3HEGT/
C C THIS MODIFICATION OF TRSPIA USES (1-COS)/2 FORCING FUNCTION.
C RESPONSE ROUTINE TO SOLVE THE SECOND ORDER DIFFERENTIAL EQUATION
C (A)XDD + (B)XD + (C)X = (D)F FOR XDD, XD, X.
C FOURTH ORDER RUNGE-KUTTA (GILL MODIFICATION) NUMERICAL INTEGRATION
C IS USED.
C THE FORCING FUNCTION, F , IS A SINGLE PERIOD (1-COS)/2 FUNCTION
C BEGINNING AT T=START AND FORWARD PP. THE COORDINATES ARE FORCED
C SIMULTANEOUSLY (SUDDEN ENVELOPMENT) IF VECTOR PP IS CONSTANT, OR AS
C A PENETRATING FUNCTION (EACH COORDINATE FORCE LAGS ITS PREDECESSOR
C DEPENDING ON PENETRATION RATE AND STATION SPACING) IF VECTOR PP
C IS NOT CONSTANT.
C MURCHES A,B,C,D SHOULD NOT SHARE SAME CORE LOCATION (DUE TO MULT1).
C THE ANSWERS (T,X,XDD,XD,X) WILL BE WRITTEN ON NTAPE EVERY DELTAT AND
C ON PAPER EVERY NWRITE * DELTAT.
C NTAPE MUST HAVE BEEN INITIALIZED WITH SUBROUTINE INTAPE. A HEADER,
C TIME POINT DATA, AND END-OF-FILE WILL BE WRITTEN ON NTAPE HERE.
C COMMON /START/ IS DEFINED IN SUBROUTINE START.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SUBROUTINES INV1,MULT,PAGEHD,ZPROB.
C THE MAXIMUM SIZES ARE (BASED ON DIMENSIONS OF XDD,XD,X,F)
C NX = 250
C NF = 500
C CODED BY RL WOHLER. APRIL 1965.
C LAST REVISION BY RL WOHLER. MARCH 1976.
C C SUPROUTINE ARGUMENTS (ALL INPUT)
C A = MATRIX COEFFICIENT OF XDD. SIZE (NX,NX). * DESTROYED *
C B = MATRIX COEFFICIENT OF XD. SIZE (NX, NX). * DESTROYED *
C C = MATRIX COEFFICIENT OF X. SIZE (NX,NX). * DESTROYED *
C D = MATRIX COEFFICIENT OF F. SIZE (NX,NF). * DESTROYED *
C FMAG = VECTOR OF COORDINATE FORCE MAGNITUDES SUBJECT TO (1-COS)/2
C VARIATION. SIZE(NF)
C PP = VECTOR OF COORDINATE STATIONS, (CONSTANT IF SUDDEN
C ENVELOPMENT). POSITIVE DIRECTION FOR STATIONS IS OPPOSITE
C TO VEL DIRECTION. SIZE(NF).
C VEL = PENETRATION RATE.
C GL = GUST LENGTH, PERIOD OF (1-COS)/2 FUNCTION.
C XDO = VECTOR OF INITIAL VELOCITIES. SIZE (NX).
XO = VECTOR OF INITIAL DISPLACEMENTS. SIZE (NX).
STARTT= START TIME. FORCING FUNCTION BEGINS.
DELTAT= INTEGRATION STEP SIZE.
ENDT = END TIME.
NWRITE= MULTIPLE OF INTEGRATION POINTS TO WRITE ON PAPER.
NWRITE = 1 WRITE EVERY POINT (1,2,3,...)
NWRITE = 2 WRITE EVERY SECOND POINT (1,3,5,...)

ETC
NF = SIZE OF VECTOR FMAG, NUMBER OF COLS IN D. MAX=500.
XNAME = IDENTIFICATION OF DATA TO BE WRITTEN ON NTAPE. (A6 FORMAT).
KA = ROW DIMENSION OF A,B,C,D IN CALLING PROGRAM.
NTAPE = NUMBER OF TAPE ON WHICH ANSWERS WILL BE WRITTEN. (E.G. 10).
NUT1 = NUMBER OF THE UTILITY TAPE. (E.G. 4).

THE OUTPUT DATA (TO BE WRITTEN ON PAPER AND NTAPE) IS
T = TIME
F = FORCE EVALUATED BY (1-COS)/2 EXPRESSION, SIZE (NF).
XDD = ACCELERATION. SIZE (NX).
XD = VELOCITY. SIZE (NX).
X = DISPLACEMENT. SIZE (NX).
AIDF = A**-1*D*F. SIZE (NX). (WRITTEN ON PAPER ONLY).

ERROR EXPLANATION
1 = SIZE EXCEEDANCE.
2 = RUN HAS DIVERGED.

2001 FORMAT (///15X,43H THE INPUT SCALARS TO SUBROUTINE TRSPIA ARE ,
1 //23X, 1OH STARTT = F10.6,
2 //23X, 1OH DELTAT = F10.6,
3 //23X, 1OH ENDT = F10.6,
4 //23X, 1OH NWRITE = 15
5 //23X, 1OH VEL = E15.8,
6 //23X, 1OH GL = E15.8)

2040 FORMAT (///9X,8H TIME = F10.6)
2050 FORMAT (///9X,15H APPLIED FORCES / (10X, 5E16.8))
2060 FORMAT (/// 9X,4H ROW, 6X,13H ACCELERATION, 8X,9H VELOCITY,
* 10X,13H DISPLACEMENT, 4X,19H A**-1 * D * FORCES //
* (10X, I3, 4E20.8))
2250 FORMAT (/// 1X 123(1H-1))

IF (NX .GT. 250 .OR. NF .GT. 500) GO TO 999

PRINT INPUT SCALARS.
IF (MINI .NE. 4HMINI) GO TO 10
IF (NLINE .GT. 5 .OR. NLINE .GE. MAXLIN) GO TO 10
IF ((NLINE+2+17) .GT. MAXLIN) GO TO 10
WRITE (NOT,2250)
NLINE = NLINE + 2
GO TO 11

10 CALL PAGEHD
11 WRITE (NOT,2001) STARTT,DELTAT,ENDT,NWRITE,VEL,GL
NLINE = NLINE + 17

C

ERROR=1

C
SEARCH NTAPE FOR END OF WRITTEN DATA.
REWIND NTAPE
5 READ (NTAPE) BUFIN,BUFIN,IEOTCK,(BUFIN,I=1,5),NREC
 IF (IEOTCK .GE. 3*HEOT) GO TO 7
 DO 6 IREC=1,NREC
6 READ (NTAPE)
 GO TO 5
7 BACKSPACE NTAPE

C
C CALCULATE NUMBER OF TIME POINTS TO BE USED.
 NTP = (ENDT-STARTT)/DELTAT + 1.1
C
C CALCULATE A**-1*B, A**-1*C, A**-1*D.
 REWIND NUTI
 WRITE (NUTI) ((E(I,J), I=1,NX), J=1,NX) P=E
 CALL INV1 (A, B, NX, KA) B=AI
 DO 45 J=1,NX
 DO 45 I=1,NX
45 A(I,J) = P(I,J)
 REWIND NUTI
 READ (NUTI) ((B(I,J), I=1,NX), J=1,NX) E=E
 CALL MULTB (A, B, NX, NX, NX, KA, KA) B=AIE
 CALL MULTP (A, C, NX, NX, NX, KA, KA) C=AIC
 CALL MULTE (A, D, NX, NX, NX, KA, KA) D=AID
C
C FIND FIRST STATION (FORWARD PP) TO ENTER GUST.
 FWDPP = PP(I)
 DO 50 I=1,NF
 IF (PP(I) .LT. FWDPP) FWDPP = PP(I)
50 CONTINUE
C
C SET INITIAL VALUES.
 WRITE (NTAPE) IRUNNO,XNAME,DATE,STARTT,DELTAT,ENDT,NX,NF,NTP,
 *(BUF,I=1,10)
 T = STARTT
 NW = NWRITE
 TPIGL = 2.*PI/GL
 DO 80 I=1,NX
 QA(I) = 0.*C
 Q(A) = 0.*C
 XQ(I) = XQD(I)
80 X(I) = XO(I)
 DO 84 I=1,NF
84 F(I) = 0.*C
 DO 94 I=1,NX
94 AIDF(I) = 0.*C
 DC 97 I=1,NX
 97 XDD(I) = AIDF(I)
 DO 99 I=1,NX
 SS = ZERQ
99 SS = SS + S
 SS = S + S
98 SS = SS + S
99 XDD(I) = XDD(I) - SS

C SET INTEGRATION CONSTANTS.
P(1) = .5
P(2) = 1. - SQRT(.5)
P(3) = 1. + SQRT(.5)
P(4) = .5

C INTEGRATION LOOP. (K=1,HALF STEP), (K=2,HALF STEP AGAIN),
(K=3,FULL STEP), (K=4,END OF STEP).

C GILL FACTOR = .5
DO 399 ITP=1,NTP
IF (ITP .EQ. 1) GO TO 340
DO 150 K=1,4
DO 110 I=1,NX
Z = XD(I) * DELTAT
ZD = XDD(I) * DELTAT
IF (K .EQ. 4) GO TO 105
R = P(K) * (Z - Q(I))
RD = P(K) * (ZD-QD(I))
GO TO 107
105 R = (Z - 2.*Q(I))/6.
RD = (ZD - 2.*QD(I))/6.
107 X(I) = X(I) + P
XD(I) = XD(I) + RD
Q(I) = Q(I) + 3.*R - P(K)*Z
QD(I) = QD(I) + 3.*RD - P(K)*ZD
IF (K .NE. 1) GO TO 115
T = T + .5*DELTAT
GO TO 130
115 IF (" .NE. 3) GO TO 140
T = STARTT + FLOAT(ITP-1)*DELTAT
130 FWDGPD = VEL*(T-STARTT)
DC 136 I=1,NF
F(I) = 0.0
GPD = FWDGPD - (PP(I)-FWDPP)
IF (GPD.GT.0.0 .AND. GPD.LT.GL) F(I)=FMA(I)*(1.-COS(GPD*TPIGL))/2.
136 CONTINUE
140 DO 146 I=1,NX
SS = ZERO
DO 144 J=1,NF
S = D(I,J)*F(J)
144 SS = SS + S
146 AIDF(I) = SS
DO 147 I=1,NX
147 XDD(I) = AIDF(I)
DC 149 I=1,NX
SS = ZERO
DO 148 J=1,NX
S = B(I,J)*XD(J)
SS = SS + S
S = C(I,J)*X(J)
148 SS = SS + S
149 XDD(I) = XDD(I) - SS
150 CONTINUE
WRITE ANSWERS ON NTAPE FOR LATER USE.

340 WRITE (NTAPE) T, (F(I),I=1,NF), (XDD(I),I=1,NX), (XD(I),I=1,NX)

C
C SEE IF DATA SHOULD BE PRINTED.
 IF (ITP.LT.NTP .AND. NW.LT.NWRITE) GO TO 345
 NFL = NF/5
 IF ((NFL*5) .NE. NF) NFL = NFL+1
 IF (MINI .NE. MINI) GO TO 800
 IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 800
 IF (NLINE+2+3+NFL+4+NX) .GT. MAXLIN) GO TO 800
 WRITE (NOT,2250)
 NLINE = NLINE + 2
 GO TO 110

800 CALL PAGEHD
810 WRITE (NOT,2040) T
 WRITE (NOT,2050) (F(I), I=1,NF)
 NLINE = NLINE + 3 + 3 + NFL
 NXS = 1
 NXE = NX
 NFLN = (NF-1)/5+1
 IF ((NX + NFLN) .GT. (NLPP-15)) NXE=(NLPP-15)-NFLN

342 WRITE (NOT,2060) (I, XDD(I), XD(I), X(I), AIDF(I), I=NXS,NXE)
 NLINE = NLINE + 4 + (NXE-NXS+1)
 IF (NX .EQ. NXE) GO TO 343
 NXS = NXE - 1
 NXE = NX
 IF ((NXE-NXS) .GT. (NLPP-9)) NXE=NXS+(NLPP-9)
 CALL PAGEHD
 GO TO 342

343 NW = 0
345 NW = NW+1
C
C SEE IF RUN HAS DIVerged.
 NERROR=2
 DO 350 I=1,NX
 IF (APS(X(I)) .GT. DIVTOL) GO TO 999
 350 CONTINUE
C
399 CONTINUE
C
WRITE (NTAPE) BUF,EDT,BUF(account,BUF,I=1,16)
ENDFILE NTAPE
RETURN
C
999 ENDFILE NTAPE
 CALL ZEROMB (5HTRSP1A,NERROR)
END
SUBROUTINE TRSPIB (B,C,D,TABT,TABF,XDO,XO,STARTT,DELTAT,ENDT,
* NWRITE,NX,NF,NTF,XNAME,KA,KF,NTAPE)
DIMENSION C(KA,1),D(KA,1),TABT(KF,1),TABF(KF,1),
* XDO(1),XO(1)
DIMENSION P(4)
COMMON /LWRKV1/ XDD(250),XD(250)
COMMON /LWRKV2/ OD(250),O(250)
COMMON /LWRKV3/ X(250),AIDF(250)
COMMON /LWRKV4/ F(500)
COMMON /LSTART/ RUMMC,DATE,NTAPE,UNAME(3),TITLE1(12),TITLE2(12)
COMMCM /LLINE/ NLINE,MAXLIN,MINI
DOUBLE PRECISION S,SS,ZERO
DATA ZERO/0.0/
DATA NIT,NF/5,6/
DATA NLPP,RUF,DIVTOL, ECT/
* 54 , 0.,1,E+35,3HEOT/

C THIS MODIFICATION OF TRSPI ASSUMES COEFFICIENT OF XDD IS UNITY SO
C THAT ONE LESS MATRIX SPACE IS REQUIRED.
C RESPONSE ROUTINE TO SOLVE THE SECOND ORDER DIFFERENTIAL EQUATION
C XDD + (B)XDO + (C)X = (D)F FOR XDD, XD, X.
C FOURTH ORDER RUNGE-KUTTA (GILL MODIFICATION) NUMERICAL INTEGRATION
C IS USED.
C VECTOR F IS OBTAINED BY LINEAR INTERPOLATION USING TABT,TABF.
C THE ANSWERS (T,F,XDD,XD,X) WILL BE WRITTEN ON NTAPE EVERY DELTAT AND
C ON PAPER EVERY NWRITE * DELTAT.
C NTAPE MUST HAVE BEEN INITIALIZED WITH SUBROUTINE INTAPE. A HEADER,
C TIME POINT DATA, AND END-OF-FILE WILL BE WRITTEN ON NTAPE HERE.
C COMMON /LSTART/ IS DEFINED IN SUBROUTINE STAPT.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SUBROUTINES PAGEHD,ZZROMB.
C THE MAXIMUM SIZES ARE (BASED ON DIMENSIONS OF XDD,XD,X,F)
C NX = 250
C NF = 500
C CODED BY RL WOHLEN. FEBRUARY 1967.
C LAST REVISION BY RL WOHLEN. MARCH 1976.
C
C SUBROUTINE ARGUMENTS (ALL INPUT)
C B = MATRIX COEFFICIENT OF XD. SIZE (NX,NX).
C C = MATRIX COEFFICIENT OF X. SIZE (NX,NX).
C D = MATRIX COEFFICIENT OF F. SIZE (NX,NF).
C TABT = TABLE OF TIMES FOR FORCE IN TABF. SIZE (NF,NTF).
C TABF = TABLE OF FORCES. SIZE (NF,NTF).
C XDD = VECTOR OF INITIAL VELOCITIES. SIZE (NX).
C XO = VECTOR OF INITIAL DISPLACEMENTS. SIZE (NX).
C STARTT= START TIME.
C DELTAT= INTEGRATION STEP SIZE.
C ENDT = END TIME.
C NWRITE= MULTIPLE OF INTEGRATION POINTS TO WRITE ON PAPER.
C NWRITE = 1 WRITE EVERY POINT (1,2,3,...)
C NWRITE = 2 WRITE EVERY SECOND POINT (1,3,5,...)
C ETC.
C NF = NUMBER OF ROWS IN TABT,TABF. NUMBER OF COLS IN D. MAX=500.
C NTF = NUMBER OF COLS IN TABT,TABF.
XNAME = IDENTIFICATION OF DATA TO BE WRITTEN ON NTAPE. (A6 FORMAT).
KA = ROW DIMENSION OF B,C,D IN CALLING PROGRAM.
KF = ROW DIMENSION OF TABT,TABF IN CALLING PROGRAM.
NTAPE = NUMBER OF TAPE ON WHICH ANSWERS WILL BE WRITTEN. (E.G. 10).

THE OUTPUT DATA (TO BE WRITTEN ON PAPER AND NTAPE) IS
T = TIME
F = FORCE OBTAINED BY LINEAR INTERPOLATION ON TABF. SIZE (NF).
XDD = ACCELERATION. SIZE (NX).
XD = VELOCITY. SIZE (NX).
X = DISPLACEMENT. SIZE (NX).
AIDF = A**-1*D*F. SIZE (NX). (WRITTEN ON PAPER ONLY).

ERROR EXPLANATION
1 = SIZE EXCEEDANCE.
2 = START TIME LESS THAN TABLE BOUNDS.
3 = END TIME GREATER THAN TABLE BOUNDS.
4 = RUN HAS DIVERGED.

2001 FORMAT (////15X,43H THE INPUT SCALARS TO SUBROUTINE TRSP16 ARE ,
 1 /*//23X, 10H STARTT = F10.6,
 2 /*//23X, 10H DELTAT = F10.6,
 3 /*//23X, 10H ENDT = F10.6,
 4 /*//23X, 10H NWRITE = 15)
2040 FORMAT (////9X,8H TIME = F10.6)
2050 FORMAT (////9X,15H APPLIED FORCES / (10X, 5E16.8))
2060 FORMAT (////9X,4H ROW, 6X,13H ACCELERATION, 8X,9H VELOCITY,
 * 10X,13H DISPLACEMENT, 4X,19H A**-1 * D * FORCES //
 * (10X, 13, 4F20.8))
2250 FORMAT (////1X 123(1H-1)

IF (NX .GT. 250 OR NF .GT. 500) GO TO 999

PRINT INPUT SCALARS.
IF (MINI .NE. 4*MINI) GO TO 10
IF (NLINE .LE. 5 OR NLINE .GE. MAXLIN) GO TO 10
IF ((NLINE+2+13) .GT. MAXLIN) GO TO 10
WRITE (NOT,2250)
NLINE = NLINE + 2
GO TO 11
10 CALL PAGEHD
11 WRITE (NOT,2001) STARTT,DELTAT,ENDT,NWRITE
NLINE = NLINE + 13

SEARCH NTAPE FOR END OF WRITTEN DATA.
REWIND NTAPE
5 READ (NTAPE) BUFIN,BUFIN,IECTCK,(BUFIN,I=1,5),NREC
IF (IECTCK .EQ. 3HEOT) GO TO 7
DO 6 IPEC=1,NREC
6 READ (NTAPE)
GO TO 5
7 BACKSPACE NTAPE

CHECK TIME TABLE (TABT).
DO 18 I=1,NF
IF (STARTT .LT. TABT(I,1)) GO TO 999
DO 12 J=2,NF
IF (TABT(I,J-1) .GE. TABT(I,J)) GO TO 14
12 CONTINUE
J = NTF+1
14 IF (ENDT .LE. TABT(I,J-1)) GO TO 18
GO TO 999
18 CONTINUE

C
C CALCULATE NUMBER OF TIME POINTS TO BE USED.
NTP = (ENDT-STARTT)/DELTAT * 1.1

C
C SET INITIAL VALUES.
WRITE (NTAPE) 1KUNNO,XNAME,DATE,STARTT,DELTAT,ENDT,NX,NF,NTP,
 *(BUF,I=1,10)
NW = NWRITE
T = STARTT
DO 80 I=1,NX
QD(I) = 0.0
Q(I) = 0.0
XH(I) = XDO(I)
80 X(I) = XO(I)
DO 86 I=1,NF
DO 84 J=1,NF
IF (T .LE. TABT(I,J+1) .OR. (J+1).EQ.NTF) C TO 86
84 CONTINUE
86 F(I) = TARF(I,J) + (T-TABT(I,J)) * (TABF(I,J+1)-TABF(I,J)) /
 *(TABT(I,J+1)-TABT(I,J))
 *(TABT(I,J+1)-TABT(I,J))
DO 96 I=1,NX
SS = ZERO
DO 94 J=1,NF
S = D(I,J)*F(J)
94 SS = SS + S
96 AIDF(I) = SS
DO 97 I=1,NX
97 XDD(I) = AIDF(I)
DO 99 I=1,NF
SS = ZERO
DO 98 J=1,NX
S = R(I,J)*XH(J)
SS = SS + S
S = C(I,J)*XH(J)
98 SS = SS + S
99 XDD(I) = XDD(I) - SS
C
C SET INTEGRATION CONSTANTS.
P(1) = .5
P(2) = 1. - SQRT(.5)
P(3) = 1. + SQRT(.5)
P(4) = .5
C
C INTEGRATION LOOP. (K=1,HALF STEP), (K=2,HALF STEP AGAIN),
GILL FACTOR = .5
DO 399 ITP=1,NTP
IF (ITP .NE. 1) GO TO 340
DO 150 K=1,4
DO 110 I=1,NX
Z = XD(I) * DELTAT
ZD = XDD(I) * DELTAT
IF (K .EQ. 4) GO TO 105
R = P(K) * (Z - Q(I))
RD = P(K) * (ZD - QD(I))
GO TO 107
105 R = (Z - 2.*Q(I))/6.
RD = (ZD - 2.*QD(I))/6.
107 X(I) = X(I) + R
XD(I) = XD(I) + RD
Q(I) = Q(I) + 3.*R - P(K)*Z
110 QD(I) = QD(I) + 3.*RD - P(K)*ZD
IF (K .NE. 1) GO TO 115
T = T + .5*DELTAT
GO TO 130
115 IF (K .NE. 3) GO TO 140
T = STARTT + FLOAT(ITP-1)*DELTAT
130 DO 134 I=1,NF
DO 134 J=1,NTF
IF (T .LE. TABT(I,J+1) .OR. (J+1).EQ.NTF) GO TO 136
134 CONTINUE
136 F(I) = TABF(I,J) + (T-TABT(I,J)) * (TABF(I,J+1)-TABF(I,J)) /
* (TABT(I,J+1)-TABT(I,J))
140 DO 146 I=1,NX
SS = ZERO
DO 144 J=1,NF
S = D(I,J)*F(J)
144 SS = SS + S
146 AIDF(I) = SS
DO 147 J=1,NX
SS = ZERO
DO 149 J=1,NX
S = B(I,J)*XD(J)
SS = SS + S
149 XDD(I) = AIDF(I)
147 XDD(I) = AIDF(I)
DO 149 I=1,NX
SS = ZERO
DO 149 J=1,NX
S = B(I,J)*XD(J)
SS = SS + S
148 SS = SS + S
149 XDD(I) = XDD(I) - SS
150 CONTINUE
C
C WRITE ANSWERS ON NTAPE FOR LATER USE.
340 WRITE (NTAPE) T, (F(I),I=1,NF), (XDD(I),I=1,NX), (XD(I),I=1,NX),
* (X(I),I=1,NX)
C
C SEE IF DATA SHOULD BE PRINTED.
C IF (ITP.LT.NTP .AND. NW.LT.NWRITE) GO TO 345
NFL = NF/5
IF (((NFL*5) .NE. NF) NFL = NFL+1
IF (MINI .NE. 4HMINI) GO TO 800
IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 800
IF ((NLINE+2+3+NFL+4+NX) .GT. MAXLIN) GO TO 800
WRITE (NOT,2250)
NLINE = NLINE + 2
GO TO 810
800 CALL PAGEHD
810 WRITE (NOT,2040) T
WRITE (NOT,2050) (F(I), I=1,NF)
NLINE = NLINE + 3 + 3 + NFL
NXS = 1
NXE = NX
NFLN = (NF-1)/5+1
IF ((NXE + NFLN) .GT. (NLPP-15)) NXE=(NLPP-15)-NFLN
WRITE (NOT,2060) (I, XDD(I), XD(I), X(I), AIDF(I), I=NXS,NXE)
NLINE = NLINE + 4 + (NXE-NXS+1)
IF (NX .EQ. NXE) GO TO 343
NXS = NXE + 1
NXE = NX
IF ((NXE-NXS) .GT. (NLPP- 9)) NXE=NXS+(NLPP- 9)
CALL PAGEHD
GO TO 342
342 NW = 0
343 NW = NW+1
C
C SEE IF RUN HAS DIVERGED.
C
DO 350 I=1,NX
IF (ARS(X(I)) .GT. DIVTOL) GO TO 999
350 CONTINUE
C
399 CONTINUE
C
WRITE (NTAPE) BUF,BUF,EDT,(BUF,I=1,16)
ENDFILE NTAPE
RETURN
C
999 ENDFILE NTAPE
CALL ZZBOMB (6HTRSP1B,NERROR)
END
SUBROUTINE TRSPIC (B,C,D,FMAG,PP,VEL,GL,XDO,XO,STARTT,DELTAT,
* ENDT,NWRITE,NX,NF,XNAME,KA,NTAPE)
* DIMENSION B(KA,1),C(KA,1),D(KA,1),FMAG(1),PP(1),
* XDO(1),XO(1)
* DIMENSION P(4)
COMMON /LWRKV1/ XDD(250),XD(250)
COMMON /LWRKV2/ OD(250),Q(250)
COMMON /LWRKV3/ X(250),AIDF(250)
COMMON /LWRKV4/ F(500)
COMMON /LSTART/ IRUNNO,DATE,NPAGE,UNAME(3),TITLE1(12),TITLE2(12)
COMMON /LLINE/ NLINE,MAXLIN,MINI
DOUBLE PRECISION S,SS,ZERO
DATA ZEP@/0.,D/
DATA NIT,NOT/5.,6/
DATA NLPP,BUF,DIVTOL, PI , EOT/
* 54, 6.,1.*E+35,3.*145927,3*HEOT/
C
C THIS MODIFICATION OF TRSPl USES (1-COS)/2 FORCING FUNCTION (LIKE
C TRSP'IA) AND ASSUMES COEFFICIENT OF XDD IS UNITY SO THAT ONE LESS
C MATRIX SPACE IS REQUIRED THAN TRSP1A.
C RESPONSE ROUTINE TO SOLVE THE SECOND ORDER DIFFERENTIAL EQUATION
C XDD + (C)XD + (C)X = (D)F FOR XDD, XD, X.
C FOURTH ORDER RUNGE-KUTTA (GILL MODIFICATION) NUMERICAL INTEGRATION
C IS USED.
C THE FORCING FUNCTION, F , IS A SINGLE PERIOD (1-COS)/2 FUNCTION
C BEGINNING AT T=STARTT AND FORWARD PP. THE COORDINATES ARE FORCED
C SIMULTANEOUSLY (SUDDEN ENVLOPMENT) IF VECTOR PP IS CONSTANT, OR AS
C A PENEETING FUNCTION (EACH COORDINATE FORCE LAGS ITS PREDECESSOR
C DEPENDING ON PENETRATION RATE AND STATION SPACING) IF VECTOR PP
C IS NOT CONSTANT.
C THE ANSWERS (T,F,XDD,XD,X) WILL BE WRITTEN ON NTape EVERY DELTAT AND
C ON PAPER EVERY NWRITE * DELTAT.
C NTape MUST HAVE BEEN INITIALIZED WITH SUBROUTINE INTAPE. A HEADER,
C TIME POINT DATA, AND END-OF-FILE WILL BE WRITTEN ON NTape HERE.
C COMMON /LSTART/ IS DEFINED IN SUBROUTINE START.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORM SUBRoutines PAGEHD,ZZBOMB.
C THE MAXIMUM SIZES ARE (BASED ON DIMENSIONS OF XDD,XD,X,F)
C NX = 250
C NF = 500
C CODED BY RL WOHLEN. FEBRUARY 1967.
C LAST REVISION BY RL WOHLEN. MARCH 1976.
C
C SUBROUTINE ARGUMENTS (ALL INPUT)
C B = MATRIX COEFFICIENT OF XD. SIZE (NX,NX).
C C = MATRIX COEFFICIENT OF X. SIZE (NX,NX).
C D = MATRIX COEFFICIENT OF F. SIZE (NX,NF).
C FMAG = VECTOR OF COORDINATE FORCE MAGNITUDES SUBJECT TO (1-COS)/2
C VARIATION. SIZE(NF).
C PP = VECTOR OF COORDINATE STATIIONS. (CONSTANT IF SUDDEN
C ENVELOPMENT). POSITIVE DIRECTION FOR STATIIONS IS OPPOSITE
C TO VEL DIRECTION. SIZE(NF).
C VEL = PENETRATION RATE.
C GL = GUST LENGTH. PERIOD OF (1-COS)/2 FUNCTION.
C XDO = VECTOR OF INITIAL VELOCITIES. SIZE (NX).
TRSPlC--2/5

XO = VECTOR OF INITIAL DISPLACEMENTS, SIZE (NX).

STARTT = START TIME, FORCING FUNCTION BEGINS.

DELTAT = INTEGRATION STEP SIZE.

ENDT = END TIME.

NWRITE = MULTIPLE OF INTEGRATION POINTS TO WRITE ON PAPER.

NWRITE = 1 WRITE EVERY POINT (1, 2, 3, ...)

NWRITE = 2 WRITE EVERY SECOND POINT (1, 3, 5, ...)

ETC

NF = SIZE OF VECTOR FMAG, NUMBER OF COLS IN D, MAX=500.

XNAME = IDENTIFICATION OF DATA TO BE WRITTEN ON NTAPF. (A6 FORMAT).

KA = ROW DIMENSION OF B, C, D IN CALLING PROGRAM.

NTAPE = NUMBER OF TAPE ON WHICH ANSWERS WILL BE WRITTEN. (.E.G. 10).

THE OUTPUT DATA (TO BE WRITTEN ON PAPER AND NTAPF) IS

T = TIME

F = FORCE EVALUATED BY (1-CCS)/2 EXPRESSION, SIZE (NF).

XDD = ACCELERATION. SIZE (NX).

XD = VELOCITY. SIZE (NX).

X = DISPLACEMENT. SIZE (NX).

AIDF = A**-1*D*F. SIZE (NX). (WRITTEN ON PAPER ONLY).

ERROR EXPLANATION

1 = SIZE EXCEEDED.

2 = RUN HAS DIVERGED.

2001 FORMAT (/ //15X, 43H THE INPUT SCALARS TO SUBROUTINE TRSPIC ARE , 1 10H STARTT = F10.6,
2 //23X, 10H DELTAT = F10.6,
3 //23X, 10H ENDT = F10.6,
4 //23X, 10H NWRITE = I5,
5 //23X, 10H VECL = E15.8,
6 //23X, 10H GL = E15.8)

2040 FORMAT (/ //9X, 8H TIME = F10.6)

2050 FORMAT (/ //9X, 15H APPLIED FORCES / (10X, 5E16.8))

2060 FORMAT (/ //9X, 4H ROW, 6X, 13H ACCELERATION, 8X, 9H VELOCITY,
* 10X, 13H DISPLACEMENT, 4X, 19H A**-1 * D * FORCES //
* (10X, 13, 4E20.8))

2250 FORMAT (/ //1X 1231H-1)

C NERROR=1

C PRINT INPUT SCALARS.

IF (NX .GT. 250 .OR. NF .GT. 500) GO TO 999

C PRINT INPUT SCALARS.

IF (MINI .NE. 4HMINI) GO TO 10

IF (NLINE .LT. 5 .OR. NLINE .GT. MAXLIN) GO TO 10

IF ((NLINF+2+17) .GT. MAXLIN) GO TO 10

WRITE (NOT, 2250)

NLINE = NLINE + 2
GO TO 11

10 CALL PAGE+HD

11 WRITE (NOT, 2001) STARTT, DELTAT, ENDT, NWRITE, VECL, GL

NLINE = NLINE + 17

C

C SEARCH NTAPF FOR END OF WRITTEN DATA.
REWIND NTape
5 READ (NTAPE) BUFIN,BUFIN,IEOTCK,(BUFIN,I=1,5),NREC
 IF (IEOTCK .EQ. 3HEOT) GO TO 7
 DO 6 IREC=1,NREC
6 READ (NTAPE)
 GO TO 5
7 BACKSPACE NTape
C
C CALCULATE NUMBER OF TIME POINTS TO BE USED.
 NTP = (ENDT-STARTT)/DELTAT + 1.1
C
C FIND FIRST STATION (FORWARD PP) TO ENTER GUST.
 FWDPF = PP(I)
 DO 50 I=1,NF
 IF (PP(I) .LT. FWDPF) FWDPF = PP(I)
50 CONTINUE
C
C SET INITIAL VALUES.
 WRITE (NTAPE) IRUNNO,XNAME,DATE,STARTT,DELTAT,ENDT,NX,NF,NTP,
 *(BUF,I=1,10)
 T = STARTT
 NW = NWRITE
 TPIGL = 2.*PI/GL
 DO 80 I=1,NX
 QD(I) = 0.0
 Q(I) = 0.0
 XD(I) = XDO(I)
80 X(I) = XO(I)
 DO 84 I=1,NF
 84 F(I) = 0.0
 DO 94 I=1,NX
 94 AIDF(I) = 0.0
 DO 97 I=1,NX
 97 XDD(I) = AIDF(I)
 DO 99 I=1,NX
 SS = ZERO
 DO 98 J=1,NX
 S = B(I,J)*XD(J)
 SS = SS + S
 S = C(I,J)*X(J)
 98 SS = SS + S
 99 XDD(I) = XDD(I) - SS
C
C SET INTEGRATION CONSTANTS.
 P(1) = .5
 P(2) = 1.0 - SQRT(.5)
 P(3) = 1.0 + SQRT(.5)
 P(4) = .5
C
C INTEGRATION LOOP. (K=1,HALF STEP), (K=2,HALF STEP AGAIN),
C (K=3,FULL STEP), (K=4,END OF STEP).
 GILL FACTOR = .5
 DO 399 ITP=1,NTP
 IF (ITP .EQ. 1) GO TO 340
 DO 150 K=1,4

C
C INTEGRATION LOOP. (K=1,HALF STEP), (K=2,HALF STEP AGAIN),
C (K=3,FULL STEP), (K=4,END OF STEP).
 GILL FACTOR = .5
 DO 399 ITP=1,NTP
 IF (ITP .EQ. 1) GO TO 340
 DO 150 K=1,4

DO 110 I=1,NX
Z = XD (I) * DELTAT
ZD = XDD(I) * DELTAT
IF (K .EQ. 4) GO TO 105
R = P(K) * (Z - Q(I))
RD = P(K) * (ZD-QD(I))
GO TO 107

107 Y(I) = X(I) + R
XD(I) = XD(I) + RD
Q(I) = Q(I) + 3.*R - P(K)*Z

110 QD(I) = QD(I) + 3.*RD - P(K)*ZD
IF (K .NE. 1) GO TO 115
T = T + .5*DELTAT
GO TO 130

115 IF (K .NE. 3) GO TO 140
T = STARTT + FLOAT(ITP-1)*DELTAT

130 FWDPD = VEL*(T-STARTT)
DO 136 I=1,NF
F(I) = 0.
GPD = FWDPD - (PP(I)-FWDP)
IF (GPD.GT.0.0 .AND. GPD.LT.GL)F(I)=FMAG(I)*(1.-COS*GPD=TPIGHL)/2.
CONTINUE

136 DO 146 I=1,NX
SS = ZERO
DO 144 J=1,NF
S = D(I,J)*F(J)
144 SS = SS + S
146 AIDF(I) = SS
DO 147 I=1,NX
147 XDQ(I) = AIL-(I)
DO 149 I=1,NX
SS = ZERO
DO 148 J=1,NX
S = B(I,J)*XD(J)
SS = SS + S
S = C(I,J)*X(J)
148 SS = SS + S
149 XDD(I) = XDDD(I) - SS
CONTINUE

C WRITE ANSWERS ON NTape FOR LATER USE.
340 WRITE (NTAPE) T, (F(I), I=1,NF), (XDD(I), I=1,NX), (XDQ(I), I=1,NX), *(X(I), I=1,NX)

C SEE IF DATA SHOULD BE PRINTED.
IF (ITP.LT.1 .AND. NW.LT.NWRITE) GO TO 345
NFL = NF/5
IF ((NFL*5) .LT. NF) NFL = NFL+1
IF (MINI .LT. 4) HMINI GO TO 800
IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 800
IF ((NLINE+2+3+NFL+4+NX) .GT. MAXLIN) GO TO 800
WRITE (NOT,2250)
NLINE = NLINE + 2
GO TO 910
800 CALL PAGEHD
810 WRITE (NOUT,2040) T
 WRITE (NOUT,2050) (F(I), I=1,NF)
 NLIN = NLIN + 3 + 3 + NFL
 NX$ = I
 NXE = NX
 NFLN = (NF-1)/5+1
 IF ((NXE + NFLN) .GT. (NLPP-15)) NXE=(NLPP-15)-NFLN
 WRITE (NOUT,2060) (I, XDD(I), XDI(I), X(I), AIDF(I), I=NXS,NXE,
 NLIN = NLIN + 4 + (NXE-NXS-1)
 IF (NX .EQ. NXE) GO TO 343
 NX$ = NXE + 1
 NXE = NX
 IF ((NXE-NXS) .GT. (NLPP-9)) NXE=NXS+(NLPP-9)
 CALL PAGEHD
 GC TO 242
343 NW = 0
345 NW = NW+1
C
C SEE IF RUN HAS DIVERGED.

NERROR=2

DC 35G I=1,NX
 IF (ARS(X(I)) .GT. DIVTGL) GO TO 999
350 CONTINUE
C
399 CONTINUE
C
 WRITE (NTAPE) BUF,BUF,EOT,(BUF,I=1,16)
 ENDFILE NTAPE
 RE 'URN

C
999 ENDFILE NTAPE
 CALL ZZBOMP (6HTRSPIC,NERROR)
 FND
SUBROUTINE TRSP2 (A, B, C, D, TABT, TABF, XDD, XO, STARTT, DELTAT, ENDT,
 1 BETA, NWRITE, NX, NF, NTF, XNAME, KA, KF, NTAPE, NUL1)
DIMENSION A(KA,1), B(KA,1), C(KA,1), D(KA,1), TABT(KF,1), TABF(KF,1),
 1 XDD(1), XO(1)
COMMON / LWKV2/ XM1(250), XM2(250)
COMMON / LWKV3/ X(250), XD(250)
COMMON / LWKV4/ XDD(250), F(250)
COMMON / LWKV5/ XM1(250), XM2(250)
COMMON / LSTART/ IPUNNO, DATE, NPAGE, UNAME(3), TITLE1(12), TITLE2(12)
COMMON / LLINE/ NLINE, MAXLIN, MINI
DOUBLE PRECISION S, SS, ZERO
DATA ZER0/0.0/
DATA NII, NOT/5.6/
DATA NLPP, BUF, IIVOL, EOT/
 1 * 54 + 0.0,1.,E+35,3HECT/
C RESPONSE ROUTINE TO SOLVE THE SECOND ORDER DIFERENTIAL EQUATION
C \((A)XDD + (B)XD + (C)X = (D)F\) FOR XDD, XD, X.
C THIRD ORDER NEWPHA-K-CHAN-BETA NUMERICAL INTEGRATION IS USED.
C VECTOR F IS OBTAINED BY LINEAR INTERPOLATION USING TABT, TABF.
C MATRICES A, B, C, D SHOULD NOT SHARE SAME CORE LOCATION (DUE TO MULT6).
C THE ANSWERS \((T,F,XDD,XD, X)\) WILL BE WRITTEN ON NTape EVERY DELTAT AND
C ON PAPER EVERY NWRITE * DELTAT.
C NTape MUST HAVE BEEN INITIALIZED WITH SUBROUTINE INTAPE. A HEADER,
C TIME POINT DATA, AND END-OF-FIE WILL BE WRITTEN ON NTape HERE.
C COMMON / LSTART/ IS DEFINED IN SUBROUTINE START.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORM SUPROUTINES INV1, MUTL, MULTP, PAGEHO, XXC, 9.
C THE MAXIMUM SIZES ARE (BASED ON DIMENSIONS OF XDD, XL, X, F)
C \(NX = 250\)
C \(NF = 250\)
C CODED BY RL WCHLEN. MAY 1965.
C LAST REVISION BY RL WCHLEN. MARCH 1976.
C
SUBROUTINE ARGUMENTS (ALL INPUT)
C A = MATRIX COEFFICIENT OF XDD. SIZE \((NX, NX)\). * DESTROYED *
C B = MATRIX COEFFICIENT OF XD. SIZE \((NX, NX)\). * DESTROYED *
C C = MATRIX COEFFICIENT OF X. SIZE \((NX, NX)\). * DESTROYED *
C D = MATRIX COEFFICIENT OF F. SIZE \((NX, NF)\). * DESTROYED *
C TABT = TABLE OF TIMES FOR FORCETO TaPF. SIZE \((NF, NTF)\).
C TABF = TABLE OF FORCES SIZE \((NF, NTF)\).
C XDD = VECTOR OF INITIAL VELOCITIES. SIZE \((NX)\).
C XD = VECTOR OF INITIAL DISPLACEMENTS. SIZE \((NX)\).
C STARTT = START TIME.
C DELTAT = INTEGRATION STEP SIZE.
C ENDT = END TIME.
C BETA = PARAMETER OF GENERALISED ACCELERATION (BETWEEN .0 AND .25).
C NWRITE = MULTIPLE OF INTEGRATION POINTS TO WRITE ON PAPER.
C \(\text{NWRITE = 1 WRITE EVERY POINT (1,2,3,...)}\)
C \(\text{NWRITE = 2 WRITE EVERY SECOND POINT (1,3,5,...)}\)
C ETC
C \(NX = \text{SIZE OF MATRICES A, B, C (SQUARE). NUMBER OF ROWS IN D. MAX=250.}\)
C \(NF = \text{NUMBER OF ROWS IN TABT, TaPF. NUMBER OF COLS IN D, MAX=250.}\)
C \(NTF = \text{NUMBER OF COLS IN TaPF, TaPF.}\)
C XNAME = IDENTIFICATION OF DATA TO BE WRITTEN ON NTape. (A6 FORMAT).
TRSP2 -- 2/7

C KA = ROW DIMENSION OF A,B,C,D IN CALLING PROGRAM.
C KF = ROW DIMENSION OF TART,TARF IN CALLING PROGRAM.
C NTAPF = NUMBER OF TAPE ON WHICH ANSWERS WILL BE WRITTEN. (E.G. 10).
C NUT1 = NUMBER OF THE UTILITY TAPE. (E.G. 4).
C
C THE OUTPUT DATA (TO BE WRITTEN ON PAPER AND NTAPF) IS
C T = TIME
C F = FORCE OBTAINED BY LINEAR INTERPOLATION ON TABF. SIZE (NF).
C XDD = ACCELERATION. SIZE (NX).
C XD = VELOCITY. SIZE (NX).
C X = DISPLACEMENT. SIZE (NX).
C
C NERR = EXPLANATION
C 1 = SIZE EXCEEDANCE.
C 2 = START TIME LESS THAN TABLE BOUNDS.
C 3 = END TIME GREATER THAN TABLE BOUNDS.
C 4 = RUN HAS DIVERGED.
C
C 2001 FORMAT (//15X,42H THE INPUT SCALARS TO SUBROUTINE TRSP2 ARE,)
C 1 //23X, 10H STARTT = F10.6,
C 2 //23X, 10H DELTAT = F10.6,
C 3 //23X, 10H ENDT = F10.6,
C 4 //23X, 10H BETA = F10.6,
C 5 //23X, 10H NWRITE = 15)
C 2040 FORMAT (//9X,8H TIME = F10.6)
C 2050 FORMAT (//9X,15H APPLIED FORCES / (10X, 5E16.8))
C 2060 FORMAT (// 9X,4H ROW, 6X,13H ACCELERATION, 8X,9H VELOCITY,
C 1 10X,13H DISPLACEMENT // (10X, 13, 3E20.8))
C 2250 FORMAT (// 1X 123(1H-))
C
C IF (NX .GT. 250 .OR. NF .GT. 250) GO TO 999
C
C PRINT INPUT SCALARS.
C IF (MINI .NE. 4HMINI) GO TO 10
C IF (NLIN .LT. 5 .OR. NLIN .GE. MAXLIN) GO TO 10
C IF ((NLIN+2+15) .GT. MAXLIN) GO TO 10
C WRITE (NCT,2250)
C NLIN = NLIN + 2
C GO TO 11
C 10 CALL PAGEHD
C 11 WRITE (NCT,2041) STARTT,DELTAT,ENDT,BETA,NWRITE
C NLIN = NLIN + 15
C
C SEARCH NTAPF FOR END OF WRITTEN DATA.
C REWIND NTAPF
C 5 READ (NTAPF) EUFIN,BFIN,IETCK,(BUFIN,I=1,5),NREC
C IF (IETCK .EQ. 3HEOT) GO TO 7
C DO 6 IREC=1,NREC
C 6 READ (NTAPF)
C GC TO 5
C 7 BACKSPACE NTAPF
C
C CHECK TIME TABLE (TALT).
C DO 10 I=1,NF
IF (STARTT .LT. TABT(I,1)) GO TO 999
DO 12 J=2,NTF
 IF (TART(I,J-1) .GE. TABT(I,J)) GO TO 14
12 CONTINUE
 J = NTF+1
14 IF (ENDT .LE. TABT(I,J-1)) GO TO 18
 NERROR=3
GO TO 999
18 CONTINUE
C CALCULATE NUMBER OF TIME POINTS TO BE USED.
 NTP = (ENDT-STARTT)/DELTAT + 1.1
C CALCULATE J**=-1*B, A**=-1*C, A**=-1*D.
 REWIND NUTLI
 WRITE (NUTLI) ((B(I,J), I=1,NX), J=1,NX) R=B
 CALL INVI (A, B, NX, KA) B=AI
 DO 45 J=1,NX
 DO 45 I=1,NX
45 A(I,J) = B(I,J)
 REWIND NUTLI
 READ (NUTLI) ((B(I,J), I=1,NX), J=1,NX) R=B
 CALL MULTP (A, B, NX, NX, NX, KA, KA) E=AI
 CALL MULTD (A, C, NX, NX, NX, KA, KA) C=AI
 CALL MULTB (A, D, NX, NX, NF, KA, KA) D=AI
C CALCULATE INITIAL FORCE(F), ACCELERATION(XDD).
 DO 55 I=1,NF
 DO 53 J=1,NTF (J+1).EQ.NTF) GO TO 55
53 CONTINUE
55 FM1(I) = TAFB(I,J)+{(STARTT-TABT(I,J)) * (TABF(I,J+1)-TABF(I,J)) / (TABT(I,J+1)-TABT(I,J))}
 DO 66 I=1,NX
 SS = ZERO
 DO 66 J=1,NF
 S = D(I,J)*FM1(J)
65 SS = SS + S
 DO 66 I=1,NX
66 XDD(I) = SS
 DO 69 I=1,NF
 S = ZERO
 DO 69 J=1,NX
 S = B(I,J)*XDD(J)
68 SS = SS + S
 S = C(I,J)*XDD(J)
 SS = SS + S
69 XDD(I) = XDD(I) - SS
C WRITE HEADER AND ANSWERS AT START ON NTAPE FOR LATER USE.
 WRITE (*,FUF) (I=1,10)
WRITE (NTAPE) IRUNNO,XNAME,DATE,STARTT,DELTAT,ENDT,NX,NF,NTP,
* (FUF,I=1,10)
WRITE (NTAPE) STARTT, (FM1(I),I=1,NF), (XDD(I),I=1,NX),
* (XDO(I),I=1,NX), (XO(I),I=1,NX)
PRINT DATA AT START.
 NFL = NF/5
 IF ((NFL*5) .NE. NF) NFL = NFL+1
 IF (MINI .NE. 4HMINI) GO TO 70
 IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 70
 IF ((NLINE+2*3+NFL+4+NX) .GT. MAXLIN) GO TO 70
 WRITE (NOT,2250)
 NLINE = NLINE + 2
 GO TO 71

70 CALL PAGEHD

71 WRITE (NOT,2040) STARTT
 WRITE (NOT,2050) (FM1(I), I=1,NF)
 NLINE = NLINE + 3 + 3 + NFL
 NX = 1
 NXE = NX
 NFLN = (NF-1)/5+1
 IF ((NXE+NFLN) .GT. (NLPP-15)) NXE=(NLPP-15)-NFLN

82 WRITE (NOT,2060) (I,X0D(I),X0D(I),X0D(I), I=NXS,NXE)
 NLINE = NLINE + 4 + (NXE-NXS+1)
 IF (NX .EQ. NXE) GO TO 83
 NXS = NXE + 1
 NXE = NX
 IF ((NXE-NXS) .GT. (NLPP-9)) NXE=NXS+(NLPP-9)
 CALL PAGEHD
 GO TO 82

83 NW = 1

C CALCULATE SCALAR CONSTANTS FOR INTEGRATION.
 C1 = DELTAT / 2.
 C2 = (.5 - FETA) * DELTAT**2
 C3 = (.25 - FETA) * DELTAT**3
 C4 = FETA * DELTAT**2
 C5 = 1./DELTAT
 C6 = 1. / DELTAT**2
 C7 = -2. + 1./FETA
 C8 = (1. - 2.*FETA) * DELTAT**2

C CALCULATE AT START TIME + DELTA TIME.
 T = STARTT + DELTAT
 DO 95 I=1,NF
 DO 93 J=1,NTF
 IF (I .LE. TABT(I,J+1) .OR. (J+1).EQ.NTF) GO TO 95
 CONTINUE

95 F(I) = TABF(I,J) + (T-TABT(I,J)) * (TABF(I,J+1)-TAFF(I,J)) / (TABT(I,J+1)-TABT(I,J))

REWIND NUTI
 WRITE (NUTI) ((B(I,J), I=1,NX), J=1,NX)
 WRITE (NUTI) ((D(I,J), I=1,NX), J=1,NF)
 WRITE (NUTI) ((C(I,J), I=1,NX), J=1,NX)
 CALL MULT (B,C,A,NX,NX,NX,KA,KA)
 DO 101 I=1,NX
 DO 100 J=1,NX

100 A(I,J) = C1*B(I,J) - C2*C(I,J) - C3*A(I,J)

101 A(I,I) = 1. + A(I,I)
 DO 111 I=1,NX

111 END
DO 110 J=1,NX
110 B(I,J) = C1*F(I,J) + C4*C(I,J)
111 B(I,I) = 1. + B(I,I) \hspace{1cm} B=S
CALL INV1 (B,C,NX,KA)
WRITE (NUT1) ((C(I,J), I=1,NX), J=1,NX)
CALL MULT (C,A,NX,KA)
CALL MULT (A,XG,XM1,NX,KA)
REWOIND NUT1
READ (NUT1) ((A(I,J), I=1,NX), J=1,NX) \hspace{1cm} B=AIB
CALL MULT (B,E,A,NX,KA)
DO 121 I=1,NX
121 A(I,I) = DELTAT + A(I,I) \hspace{1cm} A=C
CALL MULT (C,A,NX,KA)
CALL MULT (A,XD0,XM2,NX,KA)
CALL MULT (C,D,NX,KA)
CALL MULT (D,F,FM2,NF,KA)
DO 131 I=1,NX
130 B(I,J) = C5*B(I,J) \hspace{1cm} B=R
131 B(I,I) = C2 + B(I,I) \hspace{1cm} B=S1R
CALL MULT (C,E,NX,KA)
READ (NUT1) ((D(I,J), I=1,NX), J=1,NF)
CALL MULT (D,F,NF,KA)
CALL MULT (D,F,FM2,NF,KA)
DO 140 I=1,NX
140 X(I) = XM1(I) + XM2(I) + C4*FM2(I) + X(I) \hspace{1cm} X=X1
REWOIND NUT1
READ (NUT1) ((R(I,J), I=1,NX), J=1,NX)
READ (NUT1) ((D(I,J), I=1,NX), J=1,NF)
READ (NUT1) ((C(I,J), I=1,NX), J=1,NX)
DO 146 I=1,NX
SS = ZERO
DO 144 J=1,NF
S = D(I,J)*F(J)
SS = SS + S
DO 146 I=1,NX
SS = SS + S
144 SS = SS + S
146 XDD(I) = SS
DO 149 J=1,NX
SS = ZERO
DO 148 J=1,NX
S = B(I,J)*XD(J)
SS = SS + S
S = C(I,J)*X(J)
148 SS = SS + S
149 XDD(I) = XDD(I) - SS
C
C CALCULATE CONSTANT COEFFICIENT MATRICES FOR TIME T2,T3,ETC.
DO 151 I=1,NX
DO 150 J=1,NX
150 E(I,J) = -C8*C(I,J) \hspace{1cm} B=T
151 B(I,I) = 2. + E(I,I) \hspace{1cm} B=SI
CALL MULT (A,R,NX,KA)
DO 151 I=1,NX
REAAAAW NUTI!
READ (NUTI) (A(I,J), I=1,NX), J=1,NX
DO 160 I=1,NX
DO 160 J=1,NX
160 C(I,J) = -C1*A(I,J) + C4*C(I,J)
161 C(I,I) = 1. + C(I,I)
READ (NUTI)
READ (NUTI) (A(I,J), I=1,NX), J=1,NX
CALL MULT (A,C,NX,NX,KA,KA)
CALL MULT (A,S,NX,NX,NTF,KA,KA)
DO 180 I=1,NX
DO 180 J=1,NF
180 D(I,J) = (4*D(I,J)
DO 185 I=1,NX
185 XM1(I) = XD(I)
C
C CALCULATE X, XD, XDD FOR TIME = T2, T3, ETC.
DO 399 ITP = 2, NTP
IF (ITP = 0 .OR. 2) GO TO 340
DO 191 I=1,NX
XM2(I) = XM1(I)
191 XM1(I) = X(I)
DO 192 I=1,NF
FM2(I) = FM1(I)
192 FM1(I) = F(I)
T = STARTT + FLOAT(ITP-1)*DELTAT

C
DO 194 I=1,NF
DO 193 J=1,NTF
IF (T .LT. TABT(I,J+1) .OR. (J+1) .EQ. NTF) GO TO 194
193 CONTINUE
194 F(I) = TABF(I,J) + (T-TABT(I,J)) * (TABF(I,J+1)-TABF(I,J)) /
* (TABT(I,J+1)-TABT(I,J))
DO 201 J=1,NTF
201 FM2(J) = F(J) + C7*FM1(J) + FM2(J)
DO 206 J=1,NX
SS = ZERO
DO 204 J=1,NF
S = D(I,J)*FM2(J)
204 SS = SS + S
206 XD(I) = SS
DO 208 I=1,NX
SS = ZERO
DO 207 J=1,NX
S = B(I,J)*XM1(J)
207 SS = SS + S
S = C(I,J)*XM2(J)
208 XM1(I) = SS + S
DO 209 I=1,NX
XD(I) = C5 * (X(I) - XM1(I))
209 XD1(I) = C6 * (X(I) - 2.*XM1(I) + XM2(I))
C
C WRITE ANSWERS ON NTAPE FOR LATER USE.
340 WRITE (NTAPE) T, (F(I), I=1,NF), (XDD(I), I=1,NX), (XM(I), I=1,NX), *
 C
 C SEE IF DATA SHOULD BE PRINTED.
 IF (ITP.LT.NTP AND NW.LT.WRITE) GO TO 345
 NFL = NF/5
 IF ((NFL*5) .NE. NF) NFL = NFL+1
 IF (MINI .NE. 4HMINI) GO TO 800
 IF (NLINE .LE. 5 OR. NLINE .GE. MAXLIN) GO TO 800
 IF ((NLINE+2+3+NFL+4+NX) .GT. MAXLIN) GO TO 800
 WRITE (NOT,2250)
 NLINE = NLINE + 2
 GO TO 810
800 CALL PAGEHD
810 WRITE (NOT,2040) T
 WRITE (NOT,2050) (F(I), I=1,NF)
 NLINE = NLINE + 3 + 3 + NFL
 NXS = 1
 NXE = NX
 NFLN = (NF-1)/5+1
 IF ((NXE + NFLN) .GT. (NLPP-15)) NXE=(NLPP-15)-NFLN
342 WRITE (NOT,2060) (I, XDD(I), XD(I), X(I), I=NXS,NXE)
 NLINE = NLINE + 4 + (NXE-NXS+1)
 IF (NX .EQ. NXE) GO TO 343
 NXS = NXS + 1
 NXE = NY
 IF ((NXE-NXS) .GT. (NLPP-9)) NXE=NXS+(NLPP-9)
 CALL PAGEHD
 GO TO 342
343 NW = 0
345 NW = NW+1
C
C SEE IF RUN HAS DIVERGED.
 NERROR=4
DO 350 I=1,NX
 IF (ARS(X(I)) .GT. D1VTOL) GO TO 999
350 CONTINUE
C
399 CONTINUE
C
WRITE (NTAPE) BUF,BUF,EOT,(BUF,I=1,16)
ENDFILE NTAPE
RETURN
C
999 ENDFILE NTAPE
 CALL ZZBOMB (HTRSP2,NERROR)
END
SUBROUTINE TRSP2A (A,B,C,D,FMAG,PP,VEL,GL,XDD,XO,STARTT,DELTAT,
* ENDT,BETA,NWRITE,NX,NF,XNAME,KA,NTAPE,NUN)
DIMENSION A(KA,1),B(KA,1),C(KA,1),D(KA,1),FMAG(1),PP(1),
* XDD(1),XO(1)
COMMON /LRPVK2/ XM(250),XM2(250)
COMMON /LPPKV3/ X(250),XD(250)
COMMON /LPPKV4/ XDD(250),FD(250)
COMMON /LPPV5/ FM(250),FM2(250)
COMMON /LASTT/ IUNNO,DATE,NPAGE,UNAME(3),TITLE1(12),TITLE2(12)
COMMON /LLINE/ NLINE,MAXLIN,MINI
DOUBLE PRECISION S,SS,2RO
DATA ZFPO/0.0/
DATA NIT,NCT/5,6/
DATA NLP,LPP,FUW,DVTC,PI,EDT/
* 54, 0.1, 3.5, 3.1415927, 3.0/0T/07
C THIS MODIFICATION OF TRSP2 USES (1-COS)/2 FORCING FUNCTION.
C RESPONSE ROUTINE TO SOLVE THE SECOND ORDER DIFFERENTIAL EQUATION
C (A)XDD + (B)XD + (C)X = (D)F FOR XDD, XD, X.
C THIRD ORDER NEWMARK-CHIAN-BETA NUMERICAL INTEGRATION IS USED.
C THE FORCING FUNCTION, F, IS A SINGLE PERIOD (1-COS)/2 FUNCTION
C BEGINNING AT T=STARTT AND FORWARD PP. THE COORDINATES ARE FORCED
C SIMULTANEOUSLY (SUDDEN ENVIRONMENT) IF VECTOR PP IS CONSTANT, OR AS
C A PENETRATING FUNCTION (EACH COORDINATE FORCE LAGS ITS PREDECESSOR
C DEPENDING ON PENETRATION RATE AND STATION SPACING) IF VECTOR PP
C IS NOT CONSTANT.
C MATRICES A,B,C,D SHOULD NOT SHARE SAME CORE LOCATION (DUE TO MULTB).
C THE ANSWERS (T,X,XDD,XD,X) WILL BE WRITTEN ON NTAPE EVERY DELTAT AND
C ON PAPER EVERY NWRITE * DELTAT.
C NTAPE MUST HAVE BEEN INITIALIZED WITH SUBROUTINE NTAPE. A HEADER,
C TIME POINT DATA, AND END-OF-FIILE WILL BE WRITTEN ON NTAPE HERE.
C COMMON /LASTT/ IS DEFINED IN SUBROUTINE START.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C ALL SUPROUTINE ARGUMENTS ARE INPUT
C A = MATRIX COEFFICIENT OF XDD, SIZE (NX,NX). * DESTROYED *
C B = MATRIX COEFFICIENT OF XD, SIZE (NX,NX). * DESTROYED *
C C = MATRIX COEFFICIENT OF X, SIZE (NX,NX). * DESTROYED *
C D = MATRIX COEFFICIENT OF F, SIZE (NX,NF). * DESTROYED *
C FMAG = VECTOR OF COORDINATE FORCE MAGNITUDES SUBJECT TO (1-COS)/2
C VARIATION. SIZE(NF).
C PP = VECTOR OF COORDINATE STATIONS, (CONSTANT 1° SUDDEN
C ENVIRONMENT). POSITIVE DIRECTION FOR STATIONS IS OPPOSITE
C TO VEL DIRECTION. SIZE(NF).
C VEL = PENETRATION RATE.
C GL = GUST LENGTH, PERIOD OF (1-COS)/2 FUNCTION.
C XDD = VECTOR OF INITIAL VELOCITIES. SIZE (NX).
C XO = VECTOR OF INITIAL DISPLACEMENTS. SIZE (NX).
C STARTT= START TIME. FORCING FUNCTION BEGINS.
DELTA = INTEGRATION STEP SIZE.
ENDT = END TIME.
BETA = PARAMETER OF GENERALISED ACCELERATION (BETWEEN .0 AND .25).
WRITE = MULTIPLE OF INTEGRATION POINTS TO WRITE ON PAPER.
WRITE = WRITE EVERY POINT (1, 2, 3, ...)
WRITE = WRITE EVERY SECOND POINT (1, 3, 5, ...)

ETC

NF = SIZE OF VECTOR FMAG, NUMBER OF COLS IN D. MAX=250.
XNAME = IDENTIFICATION OF DATA TO BE WRITTEN ON NTAPE. (AG FORMAT).
KA = ROW DIMENSION OF A, B, C, D IN CALLING PROGRAM.
NTAPE = NUMBER OF TAPE ON WHICH ANSWERS WILL BE WRITTEN. (E.G. 10).
NTAP = NUMBER OF THE UTILITY TAPE. (E.G. 4).

THE OUTPUT DATA (TO BE WRITTEN ON PAPER AND NTAPE) IS
T = TIME
F = FORCE EVALUATED BY (1-COS)/2 EXPRESSION, SIZE (NF).
XDD = ACCELERATION. SIZE (NX).
XD = VELOCITY. SIZE (NX).
X = DISPLACEMENT. SIZE (NX).

ERROR EXPLANATION
1 = SIZE EXCEEDANCE.
2 = RUN HAS DIVERGED.

2001 FORMAT (///15x, 43h THE INPUT SCALARS TO SUBROUTINE TRSPZA ARE ,
1 //23x, 10H STARTT = F10.6,
2 //23x, 10H DELTAT = F10.6,
3 //23x, 10H ENDT = F10.6,
4 //23x, 10H BETA = F10.6,
5 //23x, 10H NWRITE = I5,
6 //23x, 10H VEL = E15.8,
7 //23x, 10H GL = E15.8)

2040 FORMAT (///9x, 8H TIME = F10.6)
2050 FORMAT (///9x, 15h APPLIED FORCES / (10X, 5E16.8))
2060 FORMAT (///9X, 5H ROW, 6X, 13H ACCELERATION, 8X, 9H VELOCITY,
1 10X, 13H DISPLACEMENT // (10X, 13, 3E20.8))
2250 FORMAT (//1X 123(1H-))

IF (NX .GT. 250 .OR. NF .GT. 250) GO TO 999

PRINT INPUT SCALARS.
IF (MINI .NE. 4*MINI) GO TO 10
IF (NLINE .LE. 5 .OR. NLINE .GT. MAXLIN) GO TO 10
IF (NLINE + 2*19 .GT. MAXLIN) GO TO 10
WRITE (NOT, 2250)
NLINE = NLINE + 2
GO TO 11
10 CALL PAGE
11 WRITE (NOT, 2001) START, DELTAT, ENDT, BETA, NWRITE, VEL, GL
NLINE = NLINE + 19

SEARCH NTAPE FOR END OF WRITTEN DATA.
REWIND NTAPE
5 READ (NTAPF) RUFIN, RUFIN, IEOTCK, (BUFIF, I=1, 5), NREC
 IF (IEOTCK .EQ. 3HEOT) GO TO 7
 DO 6 IRFC = 1, NREC
6 READ (NTAPE)
 GO TO 5
7 BACKSPACE NTAPE

C CALCULATE NUMBER OF TIME POINTS TO BE USED.
 NTP = (ENDT - STARTT) / DELTAT + 1.1

C CALCULATE A**-1* B, A**-1 * C, A**-1 * D.
 REWIND NUT1
 WRITE (NUT1) ((B(I, J), I=1, NX), J=1, NX) B = B
 CALL INV1 (A, B, NX, KA)
 B = A1
 DO 45 J = 1, NX
 DO 45 I = 1, NX
45 A(I, J) = F(I, J)
 REWIND NUT1
 READ (NUT1) ((B(I, J), I=1, NX), J=1, NX) B = B
 CALL MUL & (A, B, NX, NX, KA, KA)
 C = A1B
 CALL MUL & (A, D, NX, NX, NF, KA, KA)
 D = AID

C FIND FIRST STATION (FORWARD PP) .0 ENTER GUST.
 FWDP = PP(I)
 GO TO 50
 IF (PP(I) .LT. FWDP) FWDP = PP(I)
50 CONTINUE
 TPIGL = 2.*PI/GL

C CALCULATE INITIAL FORCE(F), ACCELERATION(XDD).
 DO 55 I = 1, NF
55 FM1(I) = 0.
 DO 69 I = 1, NX
59 XDD(I) = XDD(I) - SS
 DO 68 J = 1, NX
68 D = A(I, J)*XDO(J)
 SS = SS + D
 S = C(I, J)*XG(J)
 SS = SS + S
 SS = SS + S
69 XDD(I) = XDD(I) - SS

C WRITE HEADER AND ANSWERS AT START ON NTAPE FOR LATER USE.
 WRITE (NTAPE) IRUNNO, XNAME, DAXT, STARTT, DELTAT, ENDT, NX, NF, NTP,
 * (PUF, I=1, 10)
 WRITE (NTAPE) STARTT, (FM1(I), I=1, NF), (XDD(I), I=1, NX),
 * (XDU(I), I=1, NX), (XO(I), I=1, NX)

C PRINT DATA AT START.
 NFL = NF/5
 IF (NFL*5 .NE. NF) NFL = NFL + 1
 IF (MINI .NE. 4*MINI) GO TO 70
 IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 70
 IF (NFL+2+3*NFL+4*NX .GT. MAXLIN) GO TO 70
 WRITE (NOD, 2250)
NLIN = NLINE + 2
GO TO 71

70 CALL PAGEHD

71 WRITE (NOT,2040) STARTT
WRITE (NOT,2050) (FM1(I), I=1,NF)
NLIN = NLINE + 3 + 3 + NFL
NXS = 1
NXF = NX
NFLN = (NF-1)/5+1
IF ((NXE + NFLN) > GT. (NLPP-15)) NXE=(NLPP-15)-NFLN

82 WRITE (NOT,2060) (I,XDD(I),XDO(I),XO(I), I=NXS,NXE)
NLIN = NLINE + 4 + (NXE-NXS+1)
IF (NXE EQ. NXE) GO TO 83
NXS = NXE + 1
NXE = NX
IF ((NXE-NXS) > GT. (NLPP- 9)) NXE=NXS+(NLPP- 9)
CALL PAGEHD
GO TO 82

83 NW = 1

C

C CALCULATE SCALAR CONSTANTS FOR INTEGRATION.
C1 = DELTAT / 2.
C2 = (.5 - BETA) * DELTAT**2
C3 = (.25- BETA) * DELTAT**3
C4 = BETA * DELTAT**2
C5 = 1./DELTAT
C6 = 1./DELTAT**2
C7 = -2. + 1./BETA
C8 = (1. - 2.*BETA) * DELTAT**2

C

C CALCULATE AT START 1E + DELTA TIME.
T = START + DELTAT
FWDGPD = VEL*(T-STARTT)
DO 95 I=1,NF
F(I) = 0.0
GPD = FWDGPD - (PP(I)-FWDPP)
IF (GPD.GT.0.0 .AND. GPD.LT.GL)F(I)=FMAG(I)*(1.-COS(GPD*TP1GL))/2.

95 CONTINUE

REWIND NUTI
WRITE (NUTI) ((B(I,J), I=1,NX), J=1,NX) c=AIb
WRITE (NUTI) ((D(I,J), I=1,NX), J=1,NF) d=AI d
WRITE (NUTI) ((C(I,J), I=1,NX), J=1,NX) c=AI c
CALL MULT (B,C,A,NX,NX,NX,KA,Ka)
DO 101 J=1,NX
d=AI b
DO 100 I=1,NX
A(I,J) = C1*B(I,J) - C2*C(I,J) - C3*A(I,J)
100 A(I,J) = 1. + A(I,J)
DO 111 J=1,NX
DO 110 I=1,NX
110 B(I,J) = C1*B(I,J) + C4*C(I,J)
111 B(I,J) = 1. + B(I,J)
CALL INV1 (R,C,NX,KA)
c=SI
WRITE (NUTI) ((C(I,J), I=1,NX), J=1,NX)
c=AI SI
CALL MULTB (C,A,NX,NX,KA,Ka)
CALL MULY (A,X0,XM1,NX,1,KA,Ka)
XM1=AX0
REWIND NUTI
READ (NUTI) ((B(I,J), I=1,NX), J=1,NX)
CALL MULT (B,Y,A,NX,NX,NX,KA,KA)
DO 120 I=1,NX
DO 120 J=1,NX
120 A(I,J) = -C3*A(I,J)
121 A(I,I) = DELTAT + A(I,I)
CALL MULTB (C,A,NX,NX,NX,KA,KA)
CALL MULT (A,AXDO,XM2,NX,NX,1,KA,KA)
CALL MULTB (C,AXNO,NX,NF,KA,KA)
CALL MULT (D,F,FM2,NX,NF,1,KA,KA)
DO 131 I=1,NX
DO 131 J=1,NX
130 B(I,J) = C3+B(I,I)
131 B(I,I) = C2 + B(I,I)
CALL MULTB (C,P,NX,NX,NX,KA,KA)
READ (NUTI) ((D(I,J), I=1,NX), J=1,NF)
CALL MULTB (R,D,NX,NX,NF,KA,KA)
CALL MULT (D,FM1,X,NF,1,KA,KA)
DO 140 I=1,NX
X(I) = XM1(I) + XM2(I) + C4*FM2(I) + X(I)
140 XD(I) = C5 * (X(I) - XO(I))
REWIND NUTI
READ (NUTI) ((E(I,J), I=1,NX), J=1,NX)
READ (NUTI) ((D(I,J), I=1,NX), J=1,NF)
READ (NUTI) ((C(I,J), I=1,NX), J=1,NX)
DO 146 I=1,NX
S = D(I,J)*F(J)
DO 144 J=1,NF
SS = SS + S
DO 144 J=1,NF
SS = SS + S
C = C(I,J)*X(J)
148 SS = SS + S
149 XD(I) = XD(I) - SS
C CALCULATE CONSTANT COEFFICIENT MATRICES FOR TIME T2,T3,ETC.
DO 151 I=1,NX
DO 150 J=1,NX
150 B(I,J) = -C8*C(I,J)
151 B(I,I) = 2. + P(I,I)
READ (NUTI) ((A(I,J), I=1,NX), J=1,NX)
CALL MULTB (A,B,NX,NX,NX,KA,KA)
REWIND NUTI
READ (NUTI) ((A(I,J), I=1,NX), J=1,NX)
DO 160 I=1,NX
DO 160 J=1,NX
160 C(I,J) = -C1*A(I,J) + (4*C(I,J)
161 C(I,I) = 1. + C(I,I)
READ (NUTI)
TRSP2A -- 6/7

READ (NUT1)
READ (NUT1) ((A(I,J), I=1,NX), J=1,NX)
CALL MULT(A,C,NX,NX,NX,KA,KA)
CALL MULTP(A,D,NX,NX,NF,KA,KA)
DO 180 I=1,NX
DO 180 J=1,NF
180 D(I,J) = C4*G(I,J)
DO 185 I=1,NX
185 XM1(I) = X0(I)

C CALCULATE X, XD, XDD FOR TIME = T2, T3, ETC.
DO 399 ITP=2,NTP
IF (ITP.EQ.2) GO TO 340
DO 191 I=1,NX
XM2(I) = XM1(I)
191 XM1(I) = X(I)
DO 192 I=1,NF
FM2(I) = FM1(I)
192 FM1(I) = F(I)
T = STARTT + FLG(1-ITP-1)*DELTAT
FWDGDP = VEL*(T-STARTT)
DO 195 I=1,NF
F(I) = 0.0
GPDP = FWDGDP - PPA(I) - FWDPP
IF (GPDP.GT.0.0 .AND. GPDP.LT.0.0) F(I) = FMAG(I)*(1.0-COS((GPDP*TP1GL))/2.
195 CONTINUE
DO 201 J=1,NF
201 FM2(J) = F(J) + C7*FM1(J) + FM2(J)
DO 206 I=1,NX
SS = ZERO
DO 204 J=1,NF
S = D(I,J)*FM2(J)
204 SS = SS + S
206 X(I) = SS
DO 208 I=1,NX
SS = ZERO
DO 207 J=1,NX
S = R(I,J)*XM1(J)
SS = SS + S
S = C(I,J)*XM2(J)
207 SS = SS - S
208 X(I) = X(I) + SS
DO 209 I=1,NX
XD(I) = C5*(X(I) - XM1(I))
209 XDD(I) = C6*(X(I) - 2.*XM1(I) + XM2(I))

C WRITE ANSWERS ON NTAP FOR LATER USE.
340 WRITE (NTAPE) T, (F(I), I=1,NF), (XDD(I), I=1,NX), (XD(I), I=1,NX),
*(X(I), i=1,NX)

C SEE IF DATA SHOULD BE PRINTED.
IF (ITP.LT.NTP .AND. NW.LT.NWRITE) GO TO 345
NFC = NF/S
IF ((NFL*3) .NE. NF) NFL = NFL+1
IF (MINI .NE. NF .NE. 3) GO TO 860
IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) GO TO 800
IF ((NLINF+2+3+NFL+4+NX) .GT. MAXLIN) GO TO 800
WRITE (NCT,2250)
NLIME = NLIME + 2
GO TO E10

800 CALL PAGE+F

810 WRITE (NCT,2040) T
WRITE (NCT,2050) (F(I), I=1,NF)
NLIME = NLIME + 3 + 3 + NFL
NXX = 1
NXE = NX
NFN = (NF-1)/5+1
IF ((NXE + NFL) .GT. (NLPP-15)) NXE = (NLPP-15)-NFL

342 WRITE (NCT,2060) (I, XDD(I), XD(I), X(I), 1=NXX,NXE)
NLIME = NLIME + 4 + (NXE-NXX+1)
IF (NXE .EQ. NXE) GO TO 343
NXX = NXE + 1
NXE = NX
IF ((NXE-NXX) .GT. (NLPP-9)) NXE = NXX+(NLPP-9)
CALL PAGE+F
GO TO 342

343 NW = 0
345 NW = NW+1

GO TO 350

C SEE IF RUN HAS DIVERGED.*

C 350 I=1,NX
IF (APS(TX(I)) .GT. DIVTOL) GO TO 999
CONTINUE
C
399 CONTINUE
C
WRITE (NT,P) BUF,BUF,ETOT,(BUF,I=1,16)
ENDFILE NTAPE
RETURN
C
999 ENDFILE NTAPE
CALL ZZBOMB (6HTRSP2A,NERROR)
END
SUBROUTINE TRSP3 (A,B,C,D,TABT,TAEF,XDO,XO,STARTT,DELTAT,ENDT,*
NWRITE,NX,NF,NTF,XNAME,KD,KF,NTAPE)

DIMENSION A(1),B(1),C(1),D(KD,1),TABT(KF,1),TAEF(KF,1),*
XDO(1),XO(1)
COMMON /LWRKVL/ XDO(250), XD(250)
COMMON /LWFKV2/ X(250), TERR(250)
COMMON /LWRKVL/ AIDO(250), AIDF(250)
COMMON /LWRKVL/ F(500)
COMMON /START/ IRUNNC,DATE,NPAGE,UNAME(3),TITLE1(12),TITLE2(12)
COMMON /LINE/ XLINF,XMAX,XMIN,XMIN

DOUBLE PRECISION S,SS,ZERO

DATA ZERO/D0.0/
DATA NIT,NCLT/5,6/
DATA NLPP,EPF,DIVVCL, ECT/
* 54 , C,,1,E+35,3H05T/

C RESPONSE ROUTINE TO SOLVE THE SECOND ORDER DIFFERENTIAL EQUATION
C (A)XDD + (B)X + (C)X = (D)IF FOR XDD, XD, X.
C A, B, AND C ARE UNCOUPLED DIAGONAL MATRICES IN VECTOR FORM.
C CLOSED FORM SOLUTION IS USED TO FIND XDD, XD, AND X.
C VECTOR F IS OBTAINED BY LINEAR INTERPOLATION USING TABT,TAEF.
C THE ANSWERS (TF,XDD,XD,X) WILL BE WRITTEN ON NTAPE EVERY DEFTAT AND
C ON PAPER EVERY WRITE * DEFTAT.
C NTAPE MUST HAVE BEEN INITIALIZED WITH SUBROUTINE INTAPE. A HEADER,
C TIME POINT DATA, AND END-OF-FILE WILL BE WRITTEN ON NTAPE HERE.
C COMMON /START/ IS DEFINED IN SUBROUTINE START.
C INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
C CALLS FORMA SUBRoutines PAGEHD, ZZBOMB.
C THE MAXIMUM SIZES ARE (BASED ON DIMENSIONS OF XDD,XD,X,F)
C NX = 250
C NF = 500
C THE MAXIMUM NUMBER OF UNIQUE TIMES PAST STARTT IN TABT = 250.
C Coded by WA PENFIELD and RL WOHLKEN. FEBRUARY 1967.
C LAST REVISION BY RL WOHLKEN, MARCH 1976.
C
C SUBROUTINE ARGUMENTS (ALL INPUT)
C A = MATRIX COEFFICIENT OF XDD. INPUT AS A VECTOR,
C USED AS A DIAGONAL MATRIX. SIZE (NX). *DESTROYED*
C B = MATRIX COEFFICIENT OF XD. INPUT AS A VECTOR,
C USED AS A DIAGONAL MATRIX. SIZE (NX). *DESTROYED*
C C = MATRIX COEFFICIENT OF X. INPUT AS A VECTOR,
C USED AS A DIAGONAL MATRIX. SIZE (NX). *DESTROYED*
C D = MATRIX COEFFICIENT OF F. SIZE (NX,NF). *DESTROYED*
C TABT = TABLE OF TIMES FOR FORCE IN TAPF. SIZE (NF,NTF).
C TAEF = TABLE OF FORCES. SIZE (NF,NTF).
C XDO = VECTOR OF INITIAL VELOCITIES. SIZE (OX) . *REUSAED*
C XO = VECTOR OF INITIAL DISPLACEMENTS. SIZE (OX) . *DESTROYED*
C STARTT = START TIME.
C DEFTAT = INTEGRATION TIME INTERVAL.
C ENDT = END TIME.
C NWRITE = MULTIPLE OF INTEGRATION POINTS TO WRITE ON PAPER.
C NWRITE = 1 WRITE EVERY POINT (1,2,3,...)
C NWRITE = 2 WRITE EVERY SECOND POINT (1,3,5,...)
C ETC
C NX = SIZE OF A, B, AND C (VECTORS). NUMBER OF ROWS IN D. MAX=250.
TRSP3 -- 2/6

NF = NUMBER OF ROWS IN TAF,TABF. NUMBER OF COLS IN D. MAX=500.
NTF = NUMBER OF COLS IN TAF,TABF.
XNAME = IDENTIFICATION OF DATA TO BE WRITTEN ON NTAP. (A6 FORMAT).
KD = ROW DIMENSION OF D IN CALLING PROGRAM.
KF = ROW DIMENSION OF TAF, TABF IN CALLING PROGRAM.
NTAPE = NUMBER OF TAPE ON WHICH ANSWERS WILL BE WRITTEN. (E.G. 10).
THE OUTPUT DATA (TO BE WRITTEN ON PAPER AND NTAP) IS
T = TIME.
F = FORCE OBTAINED BY LINEAR INTERPOLATION ON TAFB. SIZE (NF).
XDD = ACCELERATION. SIZE (NX).
XD = VELOCITY. SIZE (NX).
X = DISPLACEMENT. SIZE (NX).
AIDF = A**-1*D*F. SIZE (NX). (WRITTEN ON PAPER ONLY).
NEPROC EXPLANATION:
1 = SIZE EXCEEDS DIMENSION.
2 = START TIME LESS THAN TABLE BOUNDS.
3 = END TIME GREATER THAN TABLE BOUNDS.
4 = MORE THAN 200 TIME BREAKS.

2001 FORMAT (/ / / / 15X,42H THE INPUT SCALARS TO SURROUTINE TRSP3 ARE ,
1 //23X, 16H STARTT = F10.6,
2 //23X, 16H DELTT = F10.6,
3 //23X, 16H ENDT = F10.6,
4 //23X, 16H NWRTT = 15)
2040 FORMAT (/ / 6X,8H TIME = F10.6)
2050 FORMAT (/ / 9X,15H APPLIED FORCES / (10X, 5F16.8))
2060 FORMAT (/ / 9X,4H ROW, 6X,13H ACCELERATION, 8X,9H VELOCITY,
* 10X,13H DISPLACEMENT, 4X,19H A**-1*D*FORCES //
* (10X, I3, 4E20.6))
2250 FORMAT (/ / 1X 123(IH-1))

IF (NX .GT. 250 .OR. NF .GT. 500) GO TO 999
PRINT INPUT SCALARS.
IF (MINI .NE. 4-MINI) GO TO 10
IF (NLIN .LE. 5 .OR. NLIN .GE. MAXLIN) GO TO 10
IF ((NLIN+2*12) .GT. MAXLIN) GO TO 10
WRITE (NCT,2250)
NLIN = NLIN + 2
GO TO 11
10 CALL PAGEH
11 WRITE (NCT,2001) STARTT,DELTT,ENDT,NWRTT
NLIN = NLIN + 13
SEARCH NTAP FOR END OF WRITTEN DATA.
REWRITE NTAP
5 READ (NTAP) PUTFIN,EPUTIN,IEOTCK,(BUFIN,J=1,5),NREC
IF (IEOTCK .EQ. 33EHT) GO TO 7
DO 6 IREC=1,NREC
6 READ (NTAP)
GO TO 5
7 BACKSPACE NTAP
CHECK TIME TABLE (TABT).
 DO 18 I=1,NF
 IF (STARTT .LT. TABT(I,1)) GO TO 999
 IF (TAET(I,J-1) .GE. TABT(I,J)) GO TO 14
 12 CONTINUE
 J = NTF+1
 14 IF (ENDT .LE. TABT(I,J-1)) GO TO 18
 CONTINUE
 18 CONTINUE

C CALCULATE NUMBER OF TIME POINTS TO BE USED.
 NTP = (ENDT-STARTT)/DELTAT + 1.1
 C CALCULATE CONSTANT:
 DO 45 I=1,NX
 DO 40 J=1,NF
 40 DIJ = D(I,J)/A(I)
 ASTORE = .5*R(I)/A(I)
 C(I) = C(I)/A(I)
 B(I) = SQRT(C(I)-ASTORE**2)
 A(I) = ASTORE

C
 A = DAMP/(2.*MASS)
 B = SORT(STIF/MASS - (DAMP/(2.*MASS))**2)
 C = STIF/MASS = OMEGA**2

C FIND UNIQUE TIME BREAKS (TBRK) IN TABT AFTER STARTT. MAX=250.
 NTRBK = 0
 DO 55 I=1,NF
 DO 54 J=2,NTF
 IF (TABT(I,J) .LE. STARTT) GO TO 54
 IF (TAET(I,J-1) .GE. TAPT(I,J)) GO TO 55
 IF (NTBRK .EQ. 0) GO TO 52
 50 CONTINUE
 52 NTBRK = NTBRK+1
 IF (NTBRK .LE. 250) GO TO 53
 CONTINUE
 55 CONTINUE
 53 TBRK(NTBRK) = TABT(I,J)
 54 CONTINUE
 55 CONTINUE
 DO 65 J=1,NTPPK
 IF (TBRK(I) .GE. TBRK(J)) GO TO 60
 TMIN = TBRK(I)
 TBRK(I) = TPRK(J)
 TPRK(J) = TMIN
 60 CONTINUE
 65 CONTINUE
SET INITIAL VALUES.
WRITE (NTAPE) IRUNNC,XNAME,DATE,STARTT,DELTAT,ENDT,NX,NF,NTF,
* (BUF,1=1,1.
T = STARTT
TB = STARTT
NW = NWRITE
IB = 1
DO 86 I=1,NF
DO 84 J=1,NTF
IF (T .LE. TART(I,J+1) .OR. (J+1).EQ. NTF) GO TO 86
84 CONTINUE
86 F(I) = TABF(I,J) + (T-TABT(I,J)) * (TABF(I,J+1)-TABF(I,J)) /
* (TABT(I,J+1)-TABT(I,J))
DO 88 I=1,NX
S$ = ZERO
DO 87 J=1,NF
S = D(I,J)*F(J)
87 SS = SS + S
88 AI0F(I) = SS
DO 90 I=1,NX
90 AI0F0(I) = AI0F(I)
DO 95 I=1,NX
X(I) = X0(I)
XD(I) = XDO(I)
95 XDD(I) = AI0F0(I) - 2.*A(I)*XD(I) - C(I)*X(I)

C INTEGRATION LOOP.
DO 399 ITF=1,NTF
IF (ITP .EQ. 1) GO TO 340
TX = STARTT + FLOAT(ITP-1)*DELTAT
105 T = TX
TMTR = T-TB
C SEE IF THERE IS A TIME BREAK (TB) IN TBK BETWEEN PREVIOUS TIME
C BREAK AND CURRENT TIME (T).
IF (IB .GT. NTRK) GO TO 399
IF (T .LT. TBK(IB)) GO TO 110
T = TBK(IB)
TMTR = T-TB
TB = T
IB = IB+1
110 DO 116 I=1,NF
DO 113 J=1,NTF
IF (T .LE. TART(I,J+1) .OR. (J+1).EQ. NTF) GO TO 116
113 CONTINUE
116 F(I) = TABF(I,J) + (T-TABT(I,J)) * (TABF(I,J+1)-TABF(I,J)) /
* (TABT(I,J+1)-TABT(I,J))
DO 118 I=1,NX
SS = ZERO
DO 117 J=1,NF
S = D(I,J)*F(J)
117 SS = SS + S
118 AI0F(I) = SS
C
CALCULATE RESPONSE DUE TO DISPLACEMENT, VELOCITY, FORCE AT
PREVIOUS TAII BREAK AND DUE TO CURRENT RAMP.

DO 125 I=1,NX
PS = (AIDF(I)-AIDF0(I))/TMTB
IF (C(I) .EQ. 0.0) GO TO 120
BT = E(I)*TMTB
SI = SIN(BT)
C1 = COS(BT)
AS1 = A(I)*SI
BC1 = E(I)*C1
EAE = FXP(-A(I)*TMTB)/E(I)
XOEAF = XG(I)*EAE
XDOEAB = XDG(I)*EAE
XIC1 = XOEAF*(AS1+BC1) + XDOEAB*SI
1 + AIDFO(I)*[1-EAB*(AS1+BC1)/C(I)]
2 + RS*[TMTB + (-2.*A(I)+EAE*{(A(I)**2-B(I)**2)}*SI
3 + *2.*A(I)*BC1)/C(I)]/C(I)
XD(I) = XOEAF*C(I)**2 + XDOEAB*[AS1+BC1] + AIDFO(I)*EAB*SI
1 + RS*[1-EAB*(AS1+BC1)*C(I)]
XDD(I) = XOEAF*C(I)**2*(AS1-BC1)
1 + XDOEAB*{(A(I)**2-B(I)**2)*SI-2.*A(I)*BC1}
2 + AIDFO(I)*EAB*[-AS1+BC1] + RS*EAB*SI
GO TO 125
120 XI(I) = XO(I)**2 + XDOI(I)*TMTB + .5*AIDFO(I)*TMTB**2 + RS*TMTB**3/6.
XD(I) = XDOI(I) + AIDFO(I)*TMTB + .5*RS*TMTB**2
XDD(I) = AIDFO(I) + RS*TMTB
125 CONTINUE
IF (T .GT. TB) GO TO 340
DO 130 I=1,NX
XG(I) = XIC1
XDO(I) = XDD(I)
130 AIDFO(I) = AIDF(I)
IF (T .LT. TX) GO TO 165
C
C WRITE ANSWERS ON NTAPE FOR LATEP USE.
340 WRITE (NTAPE) T, (F(I), I=1,NF), (XDD(I), I=1,NX), (XI(I), I=1,NX),
* (XIC1, I=1,NX)
C
C SEE IF DATA SHOULD BE PRINTED.
IF (ITP.LT.NTP .AND. NWT.LT.NWRITE) GO TO 345
NF = NF/5
IF ((NFL+5) .EQ. NF) NFL = NFL+1
IF (MIN1 .NE. 4*MIN) GO TO 800
IF (NLINE .LE. 5 .OR. NLINE .GE. MAXLIN) CC TO 800
IF ((NLINE+2*3+3*NFL+4*NX) .GT. MAXLIN) GO TO 800
WRITE (NOL,2250)
NLINE = NLINE + 2
GO TO 190
800 CALL PAGEXT
810 WRITE (MOD,2040) T
WRITE (MOD,2050) (F(I), I=1,NF)
NLINE = NLINE + 3 + 3 + NFL
NXS = 1
NXE = NX
NFLN = (NF-1)/5+1
IF ((NXE + NFLN) .GT. (NLPP-15)) NXE=(NLPP-15)-NFLN
342 WRITE (NOUT,2060) (I, XDD(I), XD(I), X(I), AIDF(I), I=NXS,NXE)
 NLINE = NLINE + 4 + (NXE-NXS+1)
 IF (NX .EQ. NXE) GO TO 343
 NXS = NXE + 1
 NXE = NX
 IF ((NXE-NXS) .GT. (NLPP-9)) NXE=NXS+(NLPP-9)
 CALL PAGEHD
 GO TO 342
343 NW = 0
345 NW = NW+1
C
399 CONTINUE
C
 WRITE (NTAPE) BUF,BUF,ECT,(BUF,I=1,16)
 ENDFILE NTAPE
 RETURN
C
999 ENDFILE NTAPE
 CALL ZZBOMB (6HTRSP3 ,NERROR)
 END
SUBROUTINE UMAM1 (A, RBM, UMAM, N, NRBM, K)
DIMENSION A(K,1), RBM(K,1), UMAM(K,1), W1(6,6), W2(6,6)

C GENERATE TRANSFORMATION RELATING INERTIA PLUS APPLIED LOADS TO
C APPLIED LOADS FOR INERTIALLY RESTRAINED SYSTEM.
C CALLS FORMA SUBROUTINES BBT, BTAB, INV1, MULTB, PAGEHD, ZZBOMB.
C THE MAXIMUM SIZES ARE
N = 500 (BASED ON BTAB, MULTB)
NRBM = 6
DEVELOPED BY CARL RODLEY. JANUARY 1965.
LAST REVISION BY WA BENFIELD. MARCH 1976.

SUBROUTINE ARGUMENTS
A = INPUT MASS MATRIX. SIZE(N,N).
RBM = INPUT MATRIX OF RIGID BODY MODES, (NEEDN'T BE ORTHONORMAL)
SIZE(N,NRBM).
UMAM = OUTPUT (UNITY MINUS A MESS). SIZE(N,N).
N = INPUT SIZE OF SYSTEM (NUMBER OF COORDINATES).
NRBM = INPUT NUMBER OF RIGID BODY MODES, MAX=6.
K = INPUT ROW DIMENSION OF A, RBM, UMAM IN CALLING PROGRAM.

NERROF EXPLANATION
1 = MORE THAN 6 RIGID BODY MODES.

IF (NRBM GT 6) GO TO 999

CALL BTAB (A, RBM, W1, N, NRBM, K, 6)
CALL INV1 (W1, W2, NRBM, 6)
CALL PART (W2, RBM, UMAM, N, NRBM, 6, 6)
CALL MULT (A, UMAM, N, N, N, K, K)
DO 60 I=1,N
DO 50 J=1,N
50 UMAM(I,J) = -UMAM(I,J)
60 UMAM(I,I) = 1.0 + UMAM(I,I)
RETURN

999 CALL ZZBOMB (6, UMAM, NERROF)
END
SUBROUTINE UNITY (Z, N, KR)
 DIMENSION Z(KR,1)
 C
 C GENERATE A UNITY MATRIX. (ONES ON THE DIAGONAL).
 C CODED BY RL WOHLER. FEB 1965.
 C
 C SUPROUTINE ARGUMENTS
 C Z = OUTPUT MATRIX GENERATED. SIZE(N,N).
 C N = INPUT SIZE OF MATRIX Z (SQUARE).
 C KR = INPUT ROW DIMENSION OF MATRIX Z IN CALLING PROGRAM.
 C
 DO 20 I=1,N
 DO 10 J=1,N
 10 Z(I,J) = 0.0
 20 Z(I,I) = 1.0
 RETURN
 END
SUBROUTINE UPDATE

UPDATE TAPE PROGRAM (PROGRAMMED TO WORK WITH DISK UNITS)
MAXIMUM SIZE = 40000 ELEMENTS FOR A DENSE MATRIX.
CALLS FORMA SUBROUTINES ... NONE USED.
MODIFIED FOR CONTRACT NAS8-25922, MAY 1971.

INPUT

CARD 1 = IFINIT, TAPEID, NT1, NT2 FORMAT (2A6, I13, I5)
CARD 2 = LNS, LNE FORMAT (2I5)
CARD N = 10 ZEROS (REST OF CARD BLANK) FORMAT (110)

VARIABLES

IFINIT = INITIL, NT2 WILL BE INITIALIZED AND UPDATE WILL
 START AT BEGINNING OF NT2.
= NOINIT, UPDATE WILL BEGIN AT END OF DATA ON NT2.
= STOP, PROGRAM WILL BE STOPPED.
TAPEID = TAPE I.D. FOR TAPE THAT IS TO BE INITIALIZED (EG T1234).
NT1 = LOGICAL NUMBER OF THE TAPE TO BE READ FROM (EG 11).
NT2 = LOGICAL NUMBER OF THE TAPE TO BE WRITTEN ON (EG 10).
LNS = STARTING LOCATION NUMBER OF AN UPDATE BLOCK.
LNE = ENDING LOCATION NUMBER OF THE UPDATE BLOCK.
= 0, INDICATES END OF TAPE.
(MATRICES WITH LOCATION NUMBERS LNS THRU LNE WILL BE UPDATED)

EXAMPLE OF INPUT DATA FOR SUBROUTINE UPDATE.

CARD COLUMN NUMBER
 1 2
12345678901234567890 1 2
INITIL T1234 11 10 UPDATE FROM 11 ONTO 10 AND INITIAL 10 AS T1234.
 5 9
 2 2
 19 0
 0000000000 UPDATE ONLY MATRIX 2.
NOINIT 12 10 UPDATE FROM 12 ONTO 10 (IF REQD)
 14 24
 3 7
 9 12
 0000000000 STOP
, BETA-CARD.
DIMENSION A(40000)
DATA NI,T/5*I6/
DATA Z,NSMAX, EOT, IDENSE/
* 0.40000, 3HECT.5HDENSE/
DATA NLPP/54/

C

1001 FORMAT (2A6,I3,15)
1002 FORMAT (2I5)
2001 FORMAT (IH 47X 6HUPDATE 2IX 6HPAGE NO. I3)
2002 FORMAT (/ 26X35HLISTING OF MATRICES ON LOGICAL UNITI3,7H, T'PE A6)
2003 FORMAT (/ 20X35HLISTING OF MATRICES ON LOGICAL UNITI3,7H, TAPE A6,
* 12H (CONTINUED))
2004 FORMAT (26X 51IH-- / 27X3HNO.3X7HRUN NO.4X4HNAME5X5HNR"WS
* 4X5HNCOLS4X4HDATF/
* 27X3H---3X6H------ 4X6H------4X5H------
* 4X5H-------3X6H------- /
2005 FORMAT (25XI5,3XI6,4XI6,3XI5,4XI5,4XA6)
2006 FORMAT (/ 27X 14HEND OF UPDATE.)
2007 FORMAT (/ 27X 4IHIF THE FOLLOWING DATA WAS UPDATED FROM TAPE A6 /)
2008 FORMAT (2CX 63IH-- / 27X3HNO.3X7HRUN NO.4X4HNAME5X5HNR"WS
* 4X5HNCOLS4X4HDATF/
* 27X3H---3X6H------4X6H------4X5H------
* 4X5H-------3X6H------- /
3001 FORMAT (/ 27X 42HIF THE FOLLOWING INPUT DATA WAS NOT EXECUTED,
* / 32X 5HNS 15,5X 5HLNS 15,
* / 27X 35HUPDATE CONTINUES FOR REST OF INPUT./)
3002 FORMAT (/ 27X 42HMAX SIZE EXCEEDED IN THE FOLLOWING MATRIX,
* / 25X 15,3XI6,4XI6,3XI5,4XI5,4XA6,
* / 27X 28THIS MATRIX WAS NOT UPDATED.
* / 27X 38HUPDATE CONTINUES FOR REST OF MATRICES./)

C

C READ IN HEADER CARD AND INITIALIZE CONSTANTS.
READ (NI,1001) IFINIT,TAPEID,NT1,NT2
IF (IFINIT .EQ. 4HSTOP) STOP
LN1 = 0
LN2 = 1
NPAGE = 1
WRITE (NOT,2001) NPAGE

C

C REWIND TAPES, DEFINE NT1 TAPEID, AND INITIALIZE NT2 IF NECESSARY.
REWIND NT1
REWIND NT2
READ (NT1) T1
REWIND NT1
IF (IFINIT .NE. 6HINITIAL) GO TO 111
WRITE (NT2) TAPEID,LN2,EOT,(Z,1=1,16)
REWIND NT2
LIST ANY EXISTING MATRICES ON T2.

111 READ (NT2) T2
 REWIND NT2
 WRITE (NOT,2002) NT2,T2
 WRITE (NOT,2004)
 NLINE = 1
 GO TO 113

112 NPAGE = NPAGE+1
 WRITE (NOT,2001) NPAGE
 WRITE (NOT,2003) NT2,T2
 WRITE (NOT,2008)
 NLINE = 1

113 READ (NT2) T2,LN2,1FOTCK,IRUNNO,ANAME,NR,NC,IDATE
 IF (IETOCK .EQ. 3HECT) GO TO 116
 READ (NT,)
 IF (IRUNNO .EQ. ICHK) GO TO 115
 ICHK = IRUNNO
 NLINE = NLINE+1
 WRITE (NOT,1001)

115 WRITE (NOT,2005) LN2,IRUNNO,ANAME,NR,NC,IDATE
 NLINE = NLINE+1
 IF(NLINE .GT. (NLPP-7)) GO TO 112
 GO TO 113

116 BACKSPACE NT2
 WRITE (NOT,2007) T1
 NLINE = NLINE+4

C

C READ IN DATA CARD AND POSITION T1.

200 READ (NIT,1002) LNS,LNE
 IF (LNS.EQ.0) GO TO 500
 IF (LNS.LT.0) GO TO 401
 LNE1 = LNF
 IF (LNE1.LT.LNS) LNE1 = 9000
 NMATS = LNF-LNS+1
 IF (LNS.EQ.LNI+1) GO TO 300
 IF (LNS.GT.LNI+1) GO TO 201
 REWIND NT1
 LNI = 0

201 NUM = LNS-LNI-1
 IF (NUM.EQ.0) GO TO 300
 DO 202 NC=1,NMATS
 READ (NT1) T1,LN1,1EOTCK
 IF (IETOCK .EQ. 3HECT) GO TO 401
 202 READ (NT1)

C

C UPDATE A BLOCK OF NMATS MATRICES FROM T1 ONTO T2.

300 DO 305 N=1,NMATS
 IF(NLINE .LT. (NLPP-7)) GO TO 301
 NPAGE = NPAGE+1
 WRITE (NOT,2001) NPAGE
 WRITE (NOT,2003) NT2,T2
 WRITE (NOT,2008)
NLINE = 1
301 READ (NT1) T1, LN1, IEOTCK, IRUNNO, ANAME, NR, NC, IDATE
 IF (IEOTCK .EQ. 3HEOT) GO TO 260
 IF (ICHK .EQ. IRUNNO) GO TO 302
 NLINE = NLINE + 1
 WRITE (NOT, 1001)
 ICHK = IRUNNO
302 NS = NR*NC
 IF (NS .GT. NSMAX) GO TO 304
 WRITE (NT2) T2, LN2, Z, IRUNNO, ANAME, NR, NC, IDATE, IDENSE, (Z, I = 1, 10)
 READ (NT1) (A(I), I = 1, NS)
 WRITE (NT2) (A(I), I = 1, NS)
 WRITE (NOT, 2005) LN2, IRUNNO, ANAME, NR, NC, IDATE
 LN2 = LN2 + 1
 NLINE = NLINE + 1
 GO TO 305
304 WRITE (NOT, 3002) LN1, IRUNNO, ANAME, NR, NC, IDATE
 READ (NT1)
 NLINE = NLINE + 8
305 CONTINUE
 GO TO 200
C
C ERROR MESSAGE.
401 WRITE (NOT, 3001) LNS, LNE
 REWIND NT1
 LN1 = 0
 NLINE = NLINE + 5
 GO TO 200
C
C END OF UPDATE.
500 WRITE (NT2) T2, LN2, EOT, (Z, I = 1, 16)
 ENDFILE NT2
 REWIND NT2
 WRITE (NOT, 1001)
 WRITE (NOT, 2005) LN2, EOT
 WRITE (NOT, 2006)
 RETURN
END
UTAUI - 1/2

SUBROUTINE UTAUI(A,U,Z,N,KRA,KRU,KRZ)
DIMENSION A(KRA,1),U(KRU,1),Z(KRZ,1)
COMMON /LWRKV1/V(500)
DOUBLE PRECISION SUM,SS,ZER0
DATA ZERO /0.0/

UTAUI PERFORMS THE OPERATION (Z)=((U)TRANSPOSE)*(A)*(U)
WHERE U IS AN UPPER TRIANGULAR MATRIX.
UTAUI CAN ALSO PERFORM THE OPERATION
(A)=((U)TRANSPOSE)*(A)*(U) BY CALL UTAUI(A,U,A,---ETC---).

IF N IS NEGATIVE A SYMMETRIC (Z) IS COMPUTED.
MAXIMUM SIZE N=500
INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
FORMA SUBROUTINE ZZPOME IS CALLED.
CODED BY JOHN ADMIKE *NASA* AUG 1972.
LAST REVISION BY RL WOHLEN APRIL 1976.

ARGUMENTS

A - INPUT MATRIX (A) SIZE(N BY N)
U - INPUT UPPER TRIGANGULAR MATRIX (U) SIZE(N BY N)
Z - OUTPUT MATRIX (Z) SIZE(N BY N)
N - INPUT ABS(N) NUMBER OF ROWS AND COLUMNS IN (A), (U) AND (Z)
KRA - INPUT ROW DIMENSION OF (A) IN CALLING PROGRAM
KRU - INPUT ROW DIMENSION OF (U) IN CALLING PROGRAM
KRZ - INPUT ROW DIMENSION OF (Z) IN CALLING PROGRAM

ERROR EXPLANATIONS

N=IABS(N)

IF(NN .GT. 500 .OR. NN .GT. KRA .OR. NN .GT. KRU * .OR. NN .GT. KRU
* .OR. NN .GT. KRZ) GO TO 999
DO 30 I=1,NN
DO 10 K=1,NN
10 V(K)=A(I,K)
DO 30 J=1,NN
SUM=ZERO
DO 20 K=1,J
SS=V(K)*U(K,J)
20 SUM=SUM+SS
30 Z(I,J)=SUM
IF(NN .GT. 0) GO TO 70
DO 60 J=1,NN
DO 40 K=1,J
40 V(K)=Z(K,J)
DO 60 I=1,J
SUM=ZERO
DO 50 K=1,J
SS=U(K,I)*V(K)
50 SUM=SUM+SS
60 Z(I,J)=SUM
 DO 63 I=1,NN
 DO 63 J=1,NN
63 Z(J,I)=Z(I,J)
 RETURN
70 DO 100 J=1,NN
 DO 80 K=1,NN
80 V(K)=Z(K,J)
 DO 100 I=1,NN
 SUM=ZERO
 DO 90 K=1,I
 SS=U(K,I)*V(K)
90 SUM=SUM+SS
100 Z(I,J)=SUM
 RETURN
999 CALL ZZBOMB(6HUTAU1,NERROR)
 END
UTAUC1-- 1/2

SUBROUTINE UTAUC1(A,U,C,Z,N,KRA,KRU,KRC,KRZ)
DIMENSION A(KRA,1),U(KRU,1),C(KRC,1),Z(KRZ,1)
COMMON /LWPK1/ V(500)
DOUBLE PRECISION SUM,SS,ZERO
DATA ZERO /0.0/

UTAUC1 PERFORMS THE OPERATION (Z)=((U)TRANSPOSE)*A*(U)+(C)
WHERE (U) IS AN UPPER TRIANGULAR MATRIX.
UTAUC1 CAN ALSO PERFORM THE OPERATIONS
(A)=((U)TRANSPOSE)*A*(U)+(C) BY CALL UTAUC1(A,U,C,A,--ETC--)
(C)=((U)TRANSPOSE)*A*(U)+(C) BY CALL UTAUC1(A,U,C,C,--ETC--).

IF N IS NEGATIVE A SYMMETRIC (Z) IS COMPUTED.
MAXIMUM SIZE N=500
INNER PRODUCT SUMS ARE PERFORMED IN DOUBLE PRECISION.
FORMA SUBROUTINE ZZCME IS CALLED.
CODED BY JOHN ADMIRE *NASA* AUG 1972.
LAST REVISION BY RL WOHLLEN. APRIL 1976.

ARGUMENTS

A - INPUT MATRIX (A) *DESTROYED* SIZE(N BY N)
U - INPUT UPPER TRIANGULAR MATRIX (U) SIZE(N BY N)
C - INPUT MATRIX (C) SIZE(N BY N)
Z - OUTPUT MATRIX (Z) SIZE(N BY N)
N - INPUT ABS(N) NUMBER OF ROWS AND COLUMNS IN(A),(U),(C) AND (Z)
KRA - INPUT ROW DIMENSION OF (A) IN CALLING PROGRAM
KRU - INPUT ROW DIMENSION OF (U) IN CALLING PROGRAM
KRC - INPUT ROW DIMENSION OF (C) IN CALLING PROGRAM
KRZ - INPUT ROW DIMENSION OF (Z) IN CALLING PROGRAM

ERROR EXPLANATIONS
1 = SIZE EXCEEDANCE.

NN=IABS(N)
NERROR = 1

IF(NN .GT. 500 .OR. NN .GT. KRA .OR. NN .GT. KRU
 .OR. NN .GT. KRC .OR. NN .GT. KRZ) GO TO 999

DO 30 I=1,NN
 DO 10 K=1,NN
 10 V(K)=A(I,K)
 DO 30 J=1,NN
 SUM=ZERO
 DO 20 K=1,J
 SS=V(K)*U(K,J)
 20 SUM=SUM+SS
 30 A(I,J)=SUM
 IF(NN .GT. 0) GO TO 70
 DO 60 J=1,NN
 DO 40 K=1,J
 40 V(K)=A(K,J)
 DO 60 I=1,J
 SUM=C(I,J)

NN

DO 50 K=1,I
 SS=U(K,I)*V(K)
50 SUM=SUM+SS
60 Z(I,J)=SUM
 DO 63 I=1,NN
 DO 63 J=I,NN
63 Z(J,I)=Z(I,J)
RETURN
70 DO 100 J=1,NN
 DO 80 K=1,NN
80 V(K)=A(K,J)
 DO 100 I=1,NN
 SUM=C(I,J)
 DO 90 K=1,I
 SS=U(K,I)*V(K)
 90 SUM=SUM+SS
100 Z(I,J)=SUM
RETURN
999 CALL ZZBOMB(6HUTAUC1,NERROR)
END
SUBROUTINE VRCROSS (VA, VB, VZ, VAMAG, VBMAG, VZMAG, SINAB)
DIMENSION VA(3), VB(3), VZ(3)

'VECTRR (3-DIMENSIONAL) CROSS PRODUCT. (VA)CRQSS(VB) = (VZ).
C CODED BY RF HRUDA. OCTOBER 1966.
C
C SUBROUTINE ARGUMENTS
C VA = INPUT VECTOR A.
C VB = INPUT VECTOR B.
C VZ = OUTPUT VECTOR Z.
C VAMAG = OUTPUT MAGNITUDE OF VA.
C VBMAG = OUTPUT MAGNITUDE OF VB.
C VZMAG = OUTPUT MAGNITUDE OF VZ.
C SINAB = OUTPUT SINE OF THE ANGLE BETWEEN VA AND VB.
C
VZ(1) = VA(2)*VB(3)-VA(3)*VB(2)
VZ(2) = VA(3)*VB(1)-VA(1)*VB(3)
VZ(3) = VA(1)*VB(2)-VA(2)*VB(1)

SA = 0.0
SB = 0.0
SZ = 0.0
DO 10 I=1,3
SA = SA + VA(I)**2
SB = SB + VB(I)**2
10 SZ = SZ + VZ(I)**2
VAMAG = SQRT(SA)
VBMAG = SQRT(SB)
VZMAG = SQRT(SZ)
IF (VAMAG.LT.1.E-30 .OR. VBMAG.LT.1.E-30) GO TO 20
SINAB = VZMAG/(VAMAG*VBMAG)
IF (SINAB.GT.+1.0) SINAB = +1.0
IF (SINAB.LT.-1.0) SINAB = -1.0
RETURN

20 SINAB = 0.0
RETURN
END
SUBROUTINE VDOT (VA, VB, PRODCT, VAMAG, VBMAG, COSAB)
DIMENSION VA(3), VB(3)

C VECTOR (3-DIMENSIONAL) DOT PRODUCT. (VA) DOT (VB) = PRODCT.
C CODED BY RF HRUDA, OCTOBER 1968.
C
C SUBROUTINE ARGUMENTS
C VA = INPUT VECTOR A.
C VB = INPUT VECTOR B.
C PRODCT = OUTPUT SCALAR PRODUCT OF (VA) DOT (VB).
C VAMAG = OUTPUT MAGNITUDE OF VA.
C VBMAG = OUTPUT MAGNITUDE OF VB.
C COSAB = OUTPUT COSINE OF THE ANGLE BETWEEN VA AND VB.
C
SA = 0.
SP = 0.
PRODCT = 0.
DO 10 I=1,3
SA = SA + VA(I)**2
SB = SB + VB(I)**2
10 PRODCT = PRODCT + VA(I)*VB(I)
VAMAG = SQRT(SA)
VBMAG = SQRT(SB)
IF (VAMAG.LT.1.E-30 .OR. VBMAG.LT.1.E-30) GO TO 20
COSAB = PRODCT/(VAMAG*VBMAG)
IF (COSAB.GT.+1.0) COSAB = +1.0
IF (COSAB.LT.-1.0) COSAB = -1.0
RETURN

20 COSAB = 0.
RETURN
END
SUBROUTINE VM1 (XVEC, DIS, CON, AMP, TDD, CONVRT, ZV, ZM,
* NX, ND, NC, NA, NTD, KDIS, KCON, KAMP, KTDD)

DIMENSION XVEC(1), DIS(KDIS,1), CON(KCON,1), AMP(KAMP,1), TDD(KTDD,1),
* ZV(1), ZM(1)

C SUBROUTINE TO INTEGRATE PRESSURE OR WEIGHT DISTRIBUTION TO OBTAIN
C SHEAR AND MOMENT AT A SET OF PRESCRIBED STATIONS (XVEC). THE PRESSURE
C OR WT DISTRIBUTION IS AMPLIFIED BY AN AMPLIFICATION DISTRIBUTION (AMP).
C CONCENTRATED MASS ITEMS (CON) USE 2 AMPLIFICATION FUNCTIONS IN GENERAL,
C AMP ALWAYS AND TDD -(theta double dot)- IN THE EVENT OF THERE BEING
C A NON-ZERO DISTANCE BETWEEN ATTACH POINT AND CG. OR IF THERE IS LOCAL
C CONCENTRATED INERTIA. IN ANY CASE, AMP AND TDD MUST ALWAYS BE DEFINED
C (FOR EXAMPLE - MAY BE UNITY OK ZERO IN COLUMNS 3 AND 4)

NOTES...
1) THE DISTRIBUTED DATA (DIS,AMP, TDD) MUST HAVE THEIR SEGMENT
LIMITS IN ASCENDING ORDER, THE SEGMENTS MUST NOT OVERLAP AND
MUST BE IN ASCENDING ORDER.
2) ON ANY INTERVAL WHERE DISTRIBUTED DATA IS NOT DEFINED
(GAPS BETWEEN SEGMENTS), THE VALUES ON THE INTERVAL ARE ASSUMED
TO BE ZERO.
3) THE CONCENTRATED ITEMS MAY BE SUPPLIED IN ANY ORDER (ROWWISE).

CALLS SUBROUTINE Z2EDUMB.
CODED BY CARL BODLEY. AUGUST 1966.
LAST REVISION BY WA BENFIELD. MARCH 1976.

SUBROUTINE ARGUMENTS
[XVEC = INPUT VECTOR OF STATIONS WHERE SHEAR AND MOMENT ARE DESIRED.
SIZE(NX). STATIONS MUST BE IN ASCENDING ORDER.
C DIS = INPUT MATRIX OF DISTRIBUTED WEIGHT (OR PRESSURE) STRAIGHT
LINE SEGMENT DATA. SIZE(ND,4). SEE NOTES 1,2.
COL 1 = X AT SEGMENT END 1.
COL 2 = X AT SEGMENT END 2.
COL 3 = WEIGHT AT SEGMENT END 1.
COL 4 = WEIGHT AT SEGMENT END 2.
C CON = INPUT MATRIX OF CONCENTRATED ITEM DATA. SIZE(NC,4). NOTE 3.
COL 1 = ATTACH STATION OF ITEM.
COL 2 = MASS OF ITEM.
COL 3 = CENTER OF GRAVITY OF ITEM.
COL 4 = MOMENT OF INERTIA ABOUT CG OF ITEM.
C AMP = INPUT MATRIX OF DISTRIBUTED AMPLIFICATION STRAIGHT LINE
SEGMENT DATA. SIZE(NA,4). SEE NOTES 1,2.
COLUMNS ARE SIMILAR TO DIS.
C TDD = INPUT MATRIX OF SUPPLEMENTARY DISTRIBUTED AMPLIFICATION
STRAIGHT LINE SEGMENT DATA. SIZE(NTDD,4). NOTES 1,2.
COLUMNS ARE SIMILAR TO DIS.
C CONVRT = INPUT CONVERSION SCALAR. (MULTIPLIES COL 3,4 OF DIS AND
C TDD,4 OF CON).
C ZV = OUTPUT VECTOR OF SHEARS AT THE STATIONS XVEC. SIZE(NX).
C ZM = OUTPUT VECTOR OF MOMENTS AT THE STATIONS XVEC. SIZE(NX).
C NX = INPUT SIZE OF VECTORS XVEC, ZV, AND ZM.
C ND = INPUT NUMBER OF SEGMENTS (ROWS) OF DIS.
C NC = INPUT NUMBER OF CONCENTRATED ITEMS, (ROWS OF CON).
C NA = INPUT NUMBER OF SEGMENTS (ROWS) OF AMP.
C NTD = INPUT NUMBER OF SEGMENTS (ROWS) OF TDD.
C KDIS = INPUT ROW DIMENSION OF DIS IN CALLING PROGRAM.

SUBROUTINE VM1 (XVEC, DIS, CON, AMP, TDD, CONVRT, ZV, ZM,
* NX, ND, NC, NA, NTD, KDIS, KCON, KAMP, KTDD)

DIMENSION XVEC(1), DIS(KDIS,1), CON(KCON,1), AMP(KAMP,1), TDD(KTDD,1),
* ZV(1), ZM(1)

C SUBROUTINE TO INTEGRATE PRESSURE OR WEIGHT DISTRIBUTION TO OBTAIN
C SHEAR AND MOMENT AT A SET OF PRESCRIBED STATIONS (XVEC). THE PRESSURE
C OR WT DISTRIBUTION IS AMPLIFIED BY AN AMPLIFICATION DISTRIBUTION (AMP).
C CONCENTRATED MASS ITEMS (CON) USE 2 AMPLIFICATION FUNCTIONS IN GENERAL,
C AMP ALWAYS AND TDD -(theta double dot)- IN THE EVENT OF THERE BEING
C A NON-ZERO DISTANCE BETWEEN ATTACH POINT AND CG. OR IF THERE IS LOCAL
C CONCENTRATED INERTIA. IN ANY CASE, AMP AND TDD MUST ALWAYS BE DEFINED
C (FOR EXAMPLE - MAY BE UNITY OK ZERO IN COLUMNS 3 AND 4).

NOTES...
1) THE DISTRIBUTED DATA (DIS,AMP, TDD) MUST HAVE THEIR SEGMENT
LIMITS IN ASCENDING ORDER, THE SEGMENTS MUST NOT OVERLAP AND
MUST BE IN ASCENDING ORDER.
2) ON ANY INTERVAL WHERE DISTRIBUTED DATA IS NOT DEFINED
(GAPS BETWEEN SEGMENTS), THE VALUES ON THE INTERVAL ARE ASSUMED
TO BE ZERO.
3) THE CONCENTRATED ITEMS MAY BE SUPPLIED IN ANY ORDER (ROWWISE).

CALLS SUBROUTINE Z2EDUMB.
CODED BY CARL BODLEY. AUGUST 1966.
LAST REVISION BY WA BENFIELD. MARCH 1976.

SUBROUTINE ARGUMENTS
[XVEC = INPUT VECTOR OF STATIONS WHERE SHEAR AND MOMENT ARE DESIRED.
SIZE(NX). STATIONS MUST BE IN ASCENDING ORDER.
C DIS = INPUT MATRIX OF DISTRIBUTED WEIGHT (OR PRESSURE) STRAIGHT
LINE SEGMENT DATA. SIZE(ND,4). SEE NOTES 1,2.
COL 1 = X AT SEGMENT END 1.
COL 2 = X AT SEGMENT END 2.
COL 3 = WEIGHT AT SEGMENT END 1.
COL 4 = WEIGHT AT SEGMENT END 2.
C CON = INPUT MATRIX OF CONCENTRATED ITEM DATA. SIZE(NC,4). NOTE 3.
COL 1 = ATTACH STATION OF ITEM.
COL 2 = MASS OF ITEM.
COL 3 = CENTER OF GRAVITY OF ITEM.
COL 4 = MOMENT OF INERTIA ABOUT CG OF ITEM.
C AMP = INPUT MATRIX OF DISTRIBUTED AMPLIFICATION STRAIGHT LINE
SEGMENT DATA. SIZE(NA,4). SEE NOTES 1,2.
COLUMNS ARE SIMILAR TO DIS.
C TDD = INPUT MATRIX OF SUPPLEMENTARY DISTRIBUTED AMPLIFICATION
STRAIGHT LINE SEGMENT DATA. SIZE(NTDD,4). NOTES 1,2.
COLUMNS ARE SIMILAR TO DIS.
C CONVRT = INPUT CONVERSION SCALAR. (MULTIPLIES COL 3,4 OF DIS AND
C TDD,4 OF CON).
C ZV = OUTPUT VECTOR OF SHEARS AT THE STATIONS XVEC. SIZE(NX).
C ZM = OUTPUT VECTOR OF MOMENTS AT THE STATIONS XVEC. SIZE(NX).
C NX = INPUT SIZE OF VECTORS XVEC, ZV, AND ZM.
C ND = INPUT NUMBER OF SEGMENTS (ROWS) OF DIS.
C NC = INPUT NUMBER OF CONCENTRATED ITEMS, (ROWS OF CON).
C NA = INPUT NUMBER OF SEGMENTS (ROWS) OF AMP.
C NTD = INPUT NUMBER OF SEGMENTS (ROWS) OF TDD.
C KDIS = INPUT ROW DIMENSION OF DIS IN CALLING PROGRAM.

C KCON = INPUT ROW DIMENSION OF CON IN CALLING PROGRAM.
C KAMP = INPUT ROW DIMENSION OF AMP IN CALLING PROGRAM.
C KTDD = INPUT ROW DIMENSION OF TDD IN CALLING PROGRAM.
C
C NERROR EXPLANATION
C 1 = NON-POSITIVE SIZES.
C 2 = STATIONS NOT IN ASCENDING ORDER.
C 3 = INCORRECT DATA IN MATRIX AMP.
C 4 = INCORRECT DATA IN MATRIX AMP.
C 5 = INCORRECT DATA IN MATRIX TDD.
C 6 = INCORRECT DATA IN MATRIX TDD.
C 7 = INCORRECT DATA IN MATRIX DIS.
C 8 = INCORRECT DATA IN MATRIX DIS.
C
DO 10 K=1,NX
 ZV(K) = 0.0
10 ZMI(K) = 0.0

NERROR=1
IF (NX .LE. 0 .OR. NA .LE. 0 .OR. NTDD .LE. 0) GO TO 999
IF (NX .EQ. 1) GO TO 47

NERROR=2
LO 40 I=2,NX
 K = I - 1
 IF (XVEC(K) .GE. XVEC(I)) GO TO 999
40 CONTINUE

NERROR=3
47 IF (AMP(1,1) .GE. AMP(1,2)) GO TO 999
 IF (NA .EQ. 1) GO TO 48
 NAM1 = NA - 1

NERROR=4
DO 30 I=1,NAM1
 K = I + 1
 IF (AMP(I,2) .GT. AMP(K,1) .OR. AMP(K,1) .GE. AMP(K,2)) GO TO 999
30 CONTINUE

NERROR=5
48 IF (TDD(1,1) .GE. TDD(1,2)) GO TO 999
 IF (NTDD .EQ. 1) GO TO 49
 NTM1 = NTDD - 1

NERROR=6
DO 35 I=1,NTM1
 K = I + 1
 IF (TDD(I,2) .GT. TDD(K,1) .OR. TDD(K,1) .GE. TDD(K,2)) GO TO 999
35 CONTINUE

NERROR=7
49 IF (ND .EQ. 0) GO TO 85

NERROR=8
DO 20 I=1,NDM1
 K = I + 1
 IF (DIS(I,2) .GT. DIS(K,1) .OR. DIS(K,1) .GE. DIS(K,2)) GO TO 999
20 CONTINUE

C DISTRIBUTED DATA.
51 I = 1
J = 1
K = 1
VI = 0.0
GI = 0.0
XIM1 = XVEC(I)
IF (XIM1 .GT. DIS(I,1)) XIM1 = DIS(I,1)
IF (XIM1 .GT. AMP(J,1)) XIM1 = AMP(J,1)

C

50 XI = XVEC(K)
IF (XI .GT. DIS(I,2) .AND. DIS(I,2) .GT. XIM1) XI = DIS(I,2)
IF (XI .GT. DIS(I,1) .AND. DIS(I,1) .GT. XIM1) XI = DIS(I,1)
IF (XI .GT. AMP(J,2) .AND. AMP(J,2) .GT. XIM1) XI = AMP(J,2)
IF (XI .GT. AMP(J,1) .AND. AMP(J,1) .GT. XIM1) XI = AMP(J,1)
F = ((DIS(I,4)-DIS(I,3))/(DIS(I,2)-DIS(I,1)))*CONVRT
E = CONVRT*DIS(I,3) - F*DIS(I,1)
H = (AMP(J,4)-AMP(J,3))/(AMP(J,2)-AMP(J,1))
G = AMP(J,3) - H*AMP(J,1)
DX = XI - XIM1
A = 0.0
B = 0.0
C = 0.0
D = 0.0
IF (DIS(I,1) .LE. XIM1 .AND. DIS(I,2) .GE. XI) A=E+F*XIM1
IF (DIS(I,1) .LE. XIM1 .AND. DIS(I,2) .GE. XI) B=F*DX
IF (AMP(J,1) .LE. XIM1 .AND. AMP(J,2) .GE. XI) C=G+H*XIM1
IF (AMP(J,1) .LE. XIM1 .AND. AMP(J,2) .GE. XI) D=H*DX
GI = GI+VI*DX+DX**2*(A*X+C)*(A*X+B*C)/6. +B*D/12.)
VI = VI + DX*(A*X + (A*X + B*C)/2. + B*D/3.)
ZV(K) = VI
ZM(K) = GI
IF (XI .EQ. XVEC(NX)) GO TO 85
IF (XI .EQ. XVEC(K)) K=K+1
IF (XI .EQ. DIS(I,2)) AND. I+1 .LE. NO) I = I+1
IF (XI .EQ. AMP(J,2)) .AND. J+1 .LE. NA) J = J+1
XIM1 = XI
GO TO 50

C

C Concentrated Mass Items.

85 IF (NC .EQ. 0) RETURN
DO 102 I=1,NC
DO 90 J=1,NX
IF (XVEC(J) .GE. CON(I,1)) GO TO 95
90 CONTINUE
GO TO 102
95 DO 115 M=1,NA
IF (CON(I,1) .LE. AMP(M,2)) GO TO 120
115 CONTINUE
M = NA
120 VT = AMP(M,3)+(CON(I,1)-AMP(M,1))*(AMP(M,4)-AMP(M,3))/(*
quette a ligne manquante)
IF (CON(I,1) .LT. AMP(M,1) .OR. CON(I,1) .GT. AMP(M,2)) VT = 0.
IF (CON(I,1) .EQ. CON(I,3) .AND. CON(I,4) .EQ. 0.0) GO TO 105
DO 125 N=1,NDD
IF (CON(I,1) .LE. TDD(N,2)) GO TO 130
125 CONTINUUE
 N = NTDD
130 VR = TDD(N,3) + (CON(I,1) - TDD(N,1))*(TDD(N,4) - TDD(N,3))/
 * (TDD(N,2) - TDD(N,1))
 IF (CON(I,1) .LT. TDD(N,1) .OR. CON(I,1) .GT. TDD(N,2)) VR = 0.
105 VVS = CON(I,2)*VT + (CON(I,1) - CON(I,3))*VR*CONVRT
 VMS = CON(I,4)*VR*CONVRT
 DO 100 K = J, NX
 ZV(K) = ZV(K) + VVS
100 ZM(K) = ZM(K) + VMS + (XVEC(K) - CON(I,3))*VVS
102 CONTINUE
RETURN
C
999 CALL ZZBOMB (6HVM1 ,NEEOR)
END
SUBROUTINE VMTRI (PP,Z,NPP,NZ,KZ)

 DIMENSION PP(1), Z(KZ,1)

 C C GENERATE TRANSFORMATION MATRIX TO GIVE SHEARS AND BENDING MOMENTS IN C TERMS OF FORCES AND MOMENTS.
 C CALLS FOR SUBROUTINE ZZBOMB.
 C CODED BY C BODLEY. JULY 1965.
 C LAST REVISION BY WA BENFIELD. MARCH 1976.
 C
 C SUBROUTINE ARGUMENTS
 C PP = INPUT VECTOR OF PANEL POINT STATIONS. SIZE(NPP).
 C Z = OUTPUT SHEAR, MOMENT TRANSFORMATION. SIZE(2*NPP,2*NPP).
 C NPP = INPUT NUMBER OF PANEL POINTS.
 C NZ = OUTPUT SIZE OF SHEAR, MOMENT TRANSFORMATION. (NZ=2*NPP).
 C KZ = INPUT ROW DIMENSION OF Z IN CALLING PROGRAM.
 C
 C NERROR EXPLANATION
 C 1 = LESS THAN 2 PANEL POINTS.
 C 2 = PANEL POINTS NOT IN INCREASING ORDER.
 C
 IF (NPP .LT. 2) GO TO 999

 DO 5 I=2,NPP
 IF (PP(I-1) .GE. PP(I)) GO TO 999
 CONTINUE

 NZ=2*NPP
 DO 10 I=1,NZ
 DO 10 J=1,NZ
 10 Z(I,J) = 0.
 DO 25 I=1,NPP
 K=I+NPP
 DO 25 J=1,I
 L= J + NPP
 Z(I,J)=1.0
 Z(K,L)=1.0
 25 Z(K,J)=PP(I)-PP(J)
 RETURN

 C 999 CALL ZZBOMB (6HVMT1,NERROR)

END
SUBROUTINE WRITAN (IA,NR,NC,ANAME,KR)
DIMENSION IA(KR,1)
COMMON /LLINE /NLINEMAXLIN,MINI
DATA NIT,NOT/5,6/
C
C WRITE MATRIX OF ALPHA-NUMERIC CHARACTERS (A6) ON PAPER.
C REQUIRES 152 COLUMN (MINIMUM) PRINTER.
C UP TO 20 DATA FIELDS PER LINE. PRINTS ONLY NON-BLANK FIELD ROWS.
C CALLS FORMA SUBROUTINE PAGEHD.
C CODE BY JOHN ADIMIRE *NAS* OLT 1974.
C
C SUBROUTINE ARGUMENTS (ALL INPUT)
C IA = MATRIX TO BE PRINTED. SIZE(NR,NC).
C NR = NUMBER OF ROWS IN MATRIX IA.
C NC = NUMBER OF COLS IN MATRIX IA.
C ANAME = MATRIX IDENTIFICATION. (A6 FORMAT).
C KR = ROW DIMENSION OF IA IN CALLING PROGRAM.
C
2010 FORMAT (/15H OUTPUT MATRIX A6,2X 1H(?4,2H X I4,2H) /)*
2020 FORMAT (/15H OUTPUT MATRIX A6,2X 1H(14,2H X I4,2H) */
2030 FORMAT (1X, 9HCONTINUED)
2040 FORMAT (15HC ND OF WRITAN.)
2050 FORMAT (/1X131(1H-1))
C
CHECK IF NEW PAGE NEEDED
C
IF(MINI .LT. 4+MINI) GO TO 10
IF(NLINF .LE. 5 OR. NLINE .GE. MAXLIN) GO TO 10
NRC=NC/20
IF(NRC*20 .LT. NC) NRC=NRC+1
NNL=I6+NR
IF(NRC .GT. 1) NNL= 9+NR*(NRC+1)
IF(NNL+NLINF .GT. MAXLIN) GO TO 10
WRITE(NOT,2050)
NLINF=NLINF+2
GO TO 20
10 CALL PAGEHD
C
WRITE MATRIX
C
20 WRITE(NOT,2010) ANAME, NR, NC, (L,i=1,20)
NLINF=NLINF+6
DO 90 I=1, NR
NZFR=0
JS=1
30 JF=JS+19
IF(JE .LT. NC) JE=NC
DO 40 J=JS,JF
40 IF(IA(I,J) .LT. 6H) GO TO 50
GO TO 70
50 NLINF=NLINF+1
IF(NLINF .LE. MAXLIN) GO TO 60
CALL PAGEHD
WRITE (NOT,2020) ANAME,NR,NC,(L,L=1,20)
NLINE=NLINE+6
60 WRITE (NOT,2030) I,JS,(1A(I,J),J=JS,JE)
NZERO=1
70 IF(JE .EQ. NC) GO TO 80
JS=JS+20
GO TO 30
80 IF(NC .LE. 20 .OR. NZERO.EQ. 0 .OR. I .EQ. NR) GO TO 90
NLINE=NLINE+1
WRITE (NOT,2030)
90 CONTINUE
WRITE (NOT,2040)
NLINE=NLINE+2
RETURN
END
SUBROUTINE WRITE (A,NR,NC,ANAME,KR)
DIMENSION A(KP,1)
COMMON /LINE /NLINE,MAXLIN,MINI
DATA NIT,NOT/5,6/
C
C WRITE MATRIX OF REAL NUMBERS ON PAPER.
C REQUIRES 123 COLUMN (MINIMUM) PRINTER.
C UP TO 10 DATA FIELDS PER LINE. PRINTS ONLY NON-ZERO FIELD ROWS.
C CALLS FORMA SUBROUTINE PAGEHD.
C CODED BY PL WOHLER. DECEMBER 1968.
C MODIFIED BY JOHN ADMIRE *NASA* SEPT 1973
C
C SUBROUTINE ARGUMENTS (ALL INPUT)
C A = MATRIX TO BE PRINTED. SIZE(NR,NC).
C NR = NUMBER OF ROWS IN MATRIX A.
C NC = NUMBER OF COLS IN MATRIX A.
C ANAME = MATRIX IDENTIFICATION. (A6 FORMAT).
C KR = ROW DIMENSION OF A IN CALLING PROGRAM.
C
2010 FORMAT (///15H OUTPUT MATRIX A6,*2X 1H(I4,2H X I4,2H) //
* 10X,10(7X,1H(I2,1H))/)
2020 FORMAT (///15H OUTPUT MATRIX A6,*2X 1H(I4,2H X I4,2H) //
* 3X, 9HCONTINUED //10X,10(7X,1H(I2,1H))/)
2030 FORMAT (1X,215,2X,1P10E11.4)
2040 FORMAT (14H0END OF WRITE.)
2050 FORMAT (/1X123(IH-))

C CHECK IF NEW PAGE NEEDED
C
IF(MINI .NE. 4HMINI) GO TO 10
IF(NLINE .LE. 5 OR NLINE .GE. MAXLIN) GO TO 10
NRC=NC/10
IF(NBC=10 .NE. NC) NBC=NBC+1
NML=10+NR
IF(NRC .GT. 1) NNL= 9+NR*(NBC+1)
IF(NNL+NLINE .GT. MAXLIN) GO TO 10
WRITE(NCT,2050)
NLINE=NLINE+2
GO TO 20
10 CALL PAGEHD
C
C WRITE MATRIX
C
20 WRITE(NOT,201C) ANAME,NR,NC,(L,L=1,10)
NLINE=NLINE+6
DC 90 I=1,NR
NZERN=0
JS=1
30 JF=JS+9
IF(JF .GT. NC) JE=NC
DC 40 J=JS,JF
40 IF(APC(A(I,J)) .GT. 0.) GO TO 50
GO TO 70
50 NLINE=NLINE+1
IF(NLINE .LE. MAXLIN) GO TO 60
CALL PAGFHO
WRITE (NOT,2020) ANAME,NR,NC,(L,L=1),10
NLINE=NLINE+6
60 WRITE (NOT,2030) I,JS,(A(I,J),J=JS,JE)
 NZERO=1
70 IF(JE .EQ. NC) GO TO 80
 JS=JS+10
 GO TO 30
80 IF(NC .LE. 10 .OR. NZERO.EQ. 0 .OR. I.EQ. NR) GO TO 90
 NLINE=NLINE+1
 WRITE (:,2030)
90 CONTINUE
 WRITE (NOT,2040)
 NLINE=NLINE+2
 RETURN
END
SUBROUTINE WRITIM (IA,NR,NC,ANAME,KR)
DIMENSION IA(KR,1)
COMMON /LINE,MLINE,MAYLIN,MINI
DATA NIT,NOT,5,6/
C
C WRITE MATRIX OF INTEGER NUMBERS ON PAPER.
C REQUIRES 116 COLUMN (MINIMUM) PRINTER.
C UP TO 20 DATA FIELDS PER LINE. PRINTS ONLY NON-ZERO FIELD ROWS.
C CALLS FORMA SUBROUTINE PAGEHD.
C CODED BY FL WCHLEN. JULY 1968.
C MODIFIED BY JOHN ADMIRE *NASA* SEPT 1973
C
SUBROUTINE ARGUMENTS (ALL INPUT)
C IA = MATRIX TO BE PRINTED. SIZE[NR,NC].
C NR = NUMBER OF ROWS IN MATRIX IA.
C NC = NUMBER OF COLS IN MATRIX IA.
C ANAME = MATRIX IDENTIFICATION. (A6 FORMAT).
C KR = ROW DIMENSION OF IA IN CALLING PROGRAM.
C
2010 FORMAT (/15H OUTPUT MATRIX A6,2X 1H(I4,2H X I4,2H) //
* 16X,20(1:1,1H))
2020 FORMAT (/15H OUTPUT MATRIX A6,2X 1H(I4,2H X I,2H) //
* 3X,9H CONTINUED //16X,20(1X,1H(12,1H))/)
2030 FORMAT (1X,215,5X,2015)
2040 FORMAT (15H CODE OF WRITIM)
2050 FORMAT (/1X\16(1H-))

CHECK IF NEW PAGE NEEDED
C
IF(MINI .NE. 4HMINI) GO TO 10
IF(NLINES .LE. 5 OR NLINES .GE. MAXLIN) GO TO 10
NLINES=NLINES/20
IF(NC*20 .NE. NC) NBC=NBC+1
NNL=10+NC
IF(NC .GT. 1) NNL= 9+NR*(NBC+1)
IF(NNL+NLINES .GT. MAXLIN) GO TO 10
WRITE(NOUT,2050)
NLINES=NLINES+2
GO TO 20
10 CALL PAGEHD

WRITE MATRIX

20 WRITE(NOUT,210) ANAME,NR,NC,(L,L=1,20)
NLINES=NLINES+1
DL 90 I=1,NR
NZERO=0
JS=1
30 JE=JS+10
IF(JF .GT. JS) JS=JF
DO 40 J=JS,JF
40 IF(I4(I,J) .NE. 0) GO TO 50
GO TO 70
50 NLINES=NLINES+1
IF(NLINES .LE. MAXLIN) GO TO 60
CALL PAGEHD
WRITE (NCT,2020) ANAME, NR, NC, (L, L=1, 20)
NLINE=NLINE+6
60 WRITE (NCT,2030) I, JS, (IA(I, J), J=JS, JE)
 NZERO=1
70 IF(JF .NE. NC) GO TO 80
 JS=JS+20
 GO TO 30
80 IF(NC .LE. 20 .OR. NZERO.EQ. 0 .OR. I .EQ. NR) GO TO 90
 NLINE= NLINE+1
 WRITE (NCT,2030)
90 CONTINUE
 WRITE (NCT,2040)
 NLINE=NLINE+2
RETURN
END
SUBROUTINE WTAPE (A,NRA,NCA,ANAME,kr,NTAPE)
DIMENSION (AKR,1)
COMMON /LSTART/IRUNNO,DATE,NPAGE,UNAME(3),TITLE1(12),TITLE2(12)
DATA BUF,EOT,DENSE/0.,3HEOT,5HDENSE/
C
C WRITE MATRIX A ON TAPE.
C INITIALIZE TAPE WITH SUBROUTINE INTAPE.
C REWIND TAPE BEFORE FIRST USE OF THIS SUBROUTINE.
C NOTE...THIS ROUTINE IS DESIGNED SPECIFICALLY FOR WRITING ON A DISK
C (EG CDC=0 DISK). USING THIS ROUTINE TO WRITE ON A PHYSICAL
C TAPE DIRECTLY (IE WITHOUT USING THE DISK AS AN INTERMEDIARY)
C WILL PROBABLY GIVE POOR RESULTS (DUE TO THE TOLERANCE
C CHARACTERISTICS OF A TAPE DRIVE) AND SHOULD BE AVOIDED IF AT
C ALL POSSIBLE.
C CALLS FORMA SUBROUTINE Z2ZBOMB.
C CODED BY W A RENFIELD. MARCH 1966.
C REVISED BY RF HRUDA. NOVEMBER 1970.
C MODIFIED FOR CONTRACT NAS8-25922, MAY 1971.
C
C SUBROUTINE ARGUMENTS (ALL INPUT)
C A = MATRIX TO BE WRITTEN ON TAPE. SIZE(NRA,NCA).
C NRA = NUMBER OF ROWS OF MATRIX A.
C NCA = NUMBER OF COLS OF MATRIX A.
C ANAME = MATRIX IDENTIFICATION. (A6 FORMAT).
C KR = ROW DIMENSION OF A IN CALLING PROGRAM.
C NTAPF = NUMBER OF TAPE. (E.G. 10).
C
C NERRP EXPLANATION
C 1 = NON-POSITIVE ROW OR COLUMN SIZE.
C
C INTERNAL VARIABLES THAT ARE PUT ON TAPE (TRANSFERRED THRU COMMON).
C IRUNNO IS RUN NUMBER OF PROBLEM. (A6 FORMAT).
C DATE IS DATE. (A6 FORMAT). FOR EXAMPLE 15FE65.
C
C NERRP = 1
C
IF (NRA .LT. 1 .OR. NCA .LT. 1) GO TO 999
C
C SEARCH TAPE FOR END OF WRITTEN DATA.
10 READ (NTAPE) TAPEID, LN, IEOICK
IF (IEOICK .EQ. 3HEOT) GO TO 20
READ (NTAPE)
GO TO 1C
C
C END OF WRITTEN DATA HAS BEEN FOUND.
20 BACKSPACE NTAPF
WRITE (NTAPE) TAPEID, LN, BUF, IRUNNO, ANAME, NRA, NCA, DATE, DENSE,
* (BUF,1=1,10)
WRITE (NTAPE) (((A(1,J),I=1,NRA),J=1,NCA)
LN = LN + 1
WRITE (NTAPE) TAPEID, LN, EOT, (BUF,1=1,16)
ENDFILE NTAPF
REWIND NTAPF
NREC = 2 * (LN-1)
DO 30 IFEC=1,NREC
30 READ (NTAPE)
RETURN

999 CALL ZZBOMB (6HWTAPE $NERROR)
END
SUBROUTINE XLORD (V,LV,LAS,NNZA)
DIMENSION V(11),LV(11),W(256),LW(256),IU(16),IL(16)
DATA NIT,NCT/5,6/
DATA LWDIM/256/
C
C ARRANGE ELEMENT LOCATIONS (LV) INTO INCREASING ORDER.
C REARRANGE ELEMENTS (V) ACCORDINGLY.
C DEVELOPED BY R A PHILIPPS. OCTOBER 1968.
C LAST REVISION BY WA BENFIELD. MARCH 1976.
C
C SUBROUTINE ARGUMENTS
C V = INPUT VECTOR. A ELEMENTS. *DESTROYED*
C = OUTPUT VECTOR. A ELEMENTS. (ARRANGED)
C LV = INPUT VECTOR. ELEMENT LOCATIONS OF A. *DESTROYED*
C = OUTPUT VECTOR. ELEMENT LOCATIONS OF A. (ARRANGED)
C LAS = INPUT START LOCATION OF A IN V.
C NNZA = INPUT NUMBER OF NON- ZEROS IN A.
C
C NERROR EXPLANATION
C 1 = TWO LIKE LOCATION NUMBERS ENCOUNTERED.
C 2 = TWO LIKE LOCATION NUMBERS ENCOUNTERED.
C 3 = TWO LIKE LOCATION NUMBERS ENCOUNTERED.
C
3001 FORMAT (5(I12),E12.3)
3003 FORMAT (5(I12,E12.3))
C
IF (NNZA.LE.1) RETURN
LAE=LAE-1+NNZA
LAEM1=LAE-1
NSEG=1
C
C QUICK SEARCH FOR 1 OR 2 SEGMENTS.
C
DO 5 I=LAS,LAEM1
IF (LV(I).LT.LV(I+1)) GO TO 5
IF (LV(I).GT.LV(I+1)) GO TO 990
NSFG=NSEG+1
IA=I
IF (NSEG.GT.2) GO TO 6
5 CONTINUE
IF (NSFG.GT.1) RETURN
NN2S=IA-LAS+1
C
C CHOOSE BETWEEN MESH AND SINGLETON METHODS
FNNZA = NNZA
FNNZS = NNZS
X = FNNZS/FNNZA
DESCID = 60.00/(FNNZA + 142.0)
IF (X.GT. DESCID) GO TO 6
C
C MESHING METHOD
LBS = LAS
LRE=LBS-1+NNZS
LCS=LRE+1
LCF = LAE
IB=LBS
IC=LCS
IW=0
IZ=LBS-1
50 IF (LV(IB)-LV(IC)) 65,992,55
55 IW=IW+1
 W(IW)=V(IC)
 LW(IW)=LV(IC)
 IC=IC+1
 NN=1
 IF (IW.EQ.LWDIM) GO TO 95
60 IF (IC.GT.LCF) GO TO 75
 GO TO 50
65 IW=IW+1
 W(IW)=V(IB)
 LW(IW)=LV(IB)
 IR=IR+1
 NN=2
 IF (IW.EQ.LWDIM) GO TO 95
70 IF (IB.GT.LBE) GO TO 85
 GO TO 50
75 NELTM=LBE-IB+1
 I=IC-1
 DO 80 J=1,NELTM
 V(I)=V(LPF)
 LV(I)=LV(LBE)
 LBE=LBE-1
 80 I=I-1
85 IF (I.EQ.C) RETURN
 DO 90 I=1,IW
 IZ=IZ+1
 V(IZ)=W(I)
 90 LV(IZ)=LW(I)
 RETURN
95 NELTM=LBE-IB+1
 I=IC-1
 DO 100 J=1,NELTM
 V(I)=V(LBE)
 LV(I)=LV(LBE)
 LBE=LBE-1
100 I=I-1
 IR=IF+I-LBE
 LBE=IC-1
 DO 105 I=1,LWDIM
 IZ=IZ+1
 V(IZ)=W(I)
105 LV(IZ)=LW(I)
 IW=0
 GO TO (60,70),NN

* SINGLETON METHOD

C
6 M=1
I = LAS
J = LAS - 1 + NNZA
7 IF (I.GE.J) GO TO 170
110 K = I
 IJ = (J + I) / 2
 IT = LV(IJ)
 IF (LV(I) .LE. IT) GO TO 120
 LV(IJ) = LV(I)
 LV(I) = IT
 IT = LV(IJ)
 TG = V(IJ)
 V(IJ) = V(I)
 V(I) = TG
120 L = J
 IF (LV(J) .GE. IT) GO TO 140
 LV(IJ) = LV(J)
 LV(J) = IT
 IT = LV(IJ)
 TG = V(IJ)
 V(IJ) = V(J)
 "(J) = TG
 IF (LV(I) .LT. IT) GO TO 140
 LV(IJ) = LV(I)
 LV(I) = IT
 IT = LV(IJ)
 TG = V(IJ)
 V(IJ) = V(I)
 V(I) = TG
 GO TO 140
130 LV(L) = LV(K)
 LV(K) = ITT
 TG = V(L)
 V(L) = V(K)
 V(K) = TG
140 L = L - 1
 IF (LV(L) .GT. IT) GO TO 140
 ITT = LV(L)
150 K = K + 1
 IF (LV(K) .LT. IT) GO TO 150
 IF (K .LE. L) GO TO 130
 IF (L - I .LE. J - K) .C TO 160
 IL(M) = I
 IU(M) = L
 I = K
 M = M + 1
 GO TO 160
160 IL(M) = K
 IU(M) = J
 J = L
 M = M + 1
 GO TO 160
170 M = M - 1
 IF (M .GE. 0) GO TO 216
 I = IL(M)
 J = IU(M)
180 IF(J-I,GE.11) GO TO 110
 IF(I.EQ.LAS) GO TO 7
 I=I-1
190 I=I+1
 IF(I.EQ.J) GO TO 170
 IT=LV(I+1)
 IF(LV(I),LE.IT) GO TO 190
 TG=V(I+1)
 K=1
200 LV(K+1)=LV(K)
 V(K+1)=V(K)
 K=K-1
 IF(IT.LT.LV(K)) GO TO 200
 LV(K+1)=IT
 V(K+1)=TG
 GO TO 190

210 DO 215 I=LAS,LAEM1
 IF (LV(I),GE.LV(I+1)) GO TO 990
215 CONTINUE
 RETURN

C ERROR STATEMENTS
990 WRITE (NOUT,3001) LV(I)
 GO TO 995
992 WRITE (NOUT,3001) LV(IB)
995 WRITE (NOUT,3003) (LV(L),V(L),L=LAS,LAE)
 CALL ZZEQMS (SHXLORD ,NERROR)
 END
SUBROUTINE ZERO (Z,NR,NC,KR)
DIMENSION Z(KR,1)

C GENERATE A MATRIX OF ZER0ES.
C CODED BY RL "OHLEN. FEB 1965.
C
C SUBROUTINE ARGUMENTS
C Z = OUTPUT MATRIX GENERATED. SIZE(NR,NC).
C NR = INPUT NUMBER OF ROWS IN MATRIX Z.
C NC = INPUT NUMBER OF COLS IN MATRIX Z.
C KR = INPUT ROW DIMENSION OF MATRIX Z IN CALLING PROGRAM.
C
DO 10 I=1,NR
 DO 10 J=1,NC
10 Z(I,J) = 0.0
RETURN
END
SUBROUTINE ZEROLH (A, N, KR)
DIMENSION A(KR, I)

C SET LOWER HALF OF SQUARE MATRIX A TO ZERO.
C CODED BY RF HRUDA. FEB 1965.

C SUBROUTINE ARGUMENTS
C A = INPUT, OUTPUT SUPPLIED AND RESULT MATRIX. SIZE(N, N).
C N = INPUT SIZE OF MATRIX A (SQUARE).
C KR = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.

DO 10 I = 2, N
 IM1 = I - 1
 DO 10 J = 1, IM1
 10 A(I, J) = 0.0
RETURN
END
SUBROUTINE ZEROUH (A,N,KR)
DIMENSION A(KR,1)

C SET UPPER HALF OF SQUARE MATRIX A TO ZERO.
C CODED BY RF HPUDA, FEB 1965.
C
C SUBROUTINE ARGUMENTS
C A = INPUT, OUTPUT SUPPLIED AND RESULT MATRIX. SIZE(N,N).
C N = INPUT SIZE OF MATRIX A (SQUARE).
C KR = INPUT ROW DIMENSION OF A IN CALLING PROGRAM.
C
DO 10 J=2,N
 JMI = J-1
 DO 10 I=1,JMI
 10 A(I,J) = 0.0
RETURN
END
SUBROUTINE ZZBOMB(SUBNAME, NERROR)
DATA NIT, NOT /5, 6/

ZZBOMB IS CALLED WHEN AN ERROR HAS BEEN ENCOUNTERED
IN A MAIN PROGRAM OR SUBROUTINE.
ZZBOMB PERFORMS THE FOLLOWING
(1) PRINTS THE PROGRAM NAME AND ERROR NUMBER WHERE
ERROR OCCURRED.
(2) A WALK BACK IS PRODUCED
(3) A DUMP IS PRODUCED
(4) PROGRAM IS TERMINATED
CODED BY JOHN ADMIRE *NASA* AUG 1972.
MODIFIED BY JOHN ADMIRE *NASA* DEC 1975

ARGUMENTS
SUBNAME = INPUT SUBROUTINE NAME WHERE ERROR OCCURRED.
NERROR = INPUT ERROR NUMBER FROM SUBROUTINE WHERE ERROR OCCURRED.

3001 FORMAT (20H1STOP IN SUBROUTINE A6, 13H AT NERROR = 13)
WRITE (NOT, 3001) SUBNAME, NERROR

CALL SPACEDUMPSTOP
END