General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Investigation of Environmental Change Pattern in Japan

(Investigation of the Ecological Environment Index from Observation of the Regional Vegetation cover and Their Growing Condition)

Takakazu Maruyasu

Dr. Iwao Nakajima
Co-Investigator

Section Chief of Management Technology.
Forest Experiment Station.
Ministry of Agriculture and Forestry.
Shimomeguro 5-37 Meguro, Tokyo

Quarterly Report

May 1, 1976
Investigation of the Ecological Environment
Index from Observation of the Regional Vegetation coverd and Their Growing Condition.

Iwao Nakajima
Forest Experiment Station
Ministry of Agriculture and Forestry.

Abstract

1. Determination of the forest boundary on LANDSAT data.

a. Correspondence method of LANDSAT data on earth surface. That is necessary to correspond LANDSAT data on earth surface in each pixel unit at the area of complicated natural features also forest vegetation types. We investigated the most effective corresponding method in nallow forest area as follow diagramme in Table 1. As the results on this work the correlation coefficient of total pixels in a compartment of CCT out put and compartment area was r=0.93. Then the real correspondence accuracy in each surface was limited inner 1 pixel replacement.

b. The relationships between MSS data response and forest cover types. The results of the investigations of MSS response and forest type recognition shows the good identification effect on forest, field, construction and bare land in band 4 and 5. But the band 6 and 7 data have the good information for natural features. 2 kinds of artificial conifer forests, 2 types of natural conifer forest types and hard wood types are recognized by the influenced light values changes by natural feature must be make more study.

2. The application of LANDSAT data from regional forest conservation plan. The landcover information by LANDSAT data was combined with census data, topographic data or regional planning data for analysis the forest functions on social lifes and evaluate each faculties such as timber production, water shade potentialicy, elosion or flood control and recreation purposes of habitants of regional area. Then the regional forest conservation plan was prepared in north Kanto area of about 1500 km². Every forest faculties was qualified in each 2 x 2 km quadrate unit. The land use zoning work have been down very effectively by ADPopperation. The working system shows in follow diagramme Table 2. As the results of this work the LANDSAT data show very efficient utilization faculties for analyse the land cover condition with social life of the regional habitants as the foundamental informations of basic environmental conservation and development of the wide area.
Table 1

<table>
<thead>
<tr>
<th>LANDSAT Color Composite</th>
<th>Topographic Map (1:50,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1,000,000</td>
<td>Base map (1:10,000)</td>
</tr>
</tbody>
</table>

B. and W. picture of each band 1:100,000

1. Selection of the Pre-working Area and reformat on CCT of subjective forest area

2. Divide the forest area on MSS Picture (1:100,000)

3. Selection of significant point

4. Selection of control point

5. Transfer the control points and forest boundary on Air photos.

6. Correspondence the boundary on Air photos and MSS Picture.

7. Selection of working area and new MT filing on CCT.

8. Emphasised natural feature digital map print out on working area by using two dimensional slicing method of Band 5 and 7.

9. Determination of Forest boundary and divide the forest compartment boundary on CCT coordinate.

10. Correction of forest boundary by area check.

11. Correspond base file of CCT. and Base map.