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THE PROPER WEIGHTING FUNCTION
FOR RETRIEVING TEMPERATURES

FROM SATELLITE MEASURED RADIANCES

One class of methods for converting satellite measured radiances into atmos-
pheric temperature profiles, involves a linearization of the radiative transfer
equation — e.g.,

s
AR -	 Wi nT i .
	 (1)

where Z^ T. is the deviation of the temperature in layer i from that of a refer-
ence atmosphere, A R is the difference in the radiance at satellite altitude from
the corresponding radiance for the reference atmosphere, and W; is the dis-
crete (or vector) form of the T-weighting (i.e., temperature weighting) function
W(P), where P is pressure. The top layer of the atmosphere corresponds to
i = 1, the bottom layer to i = s - 1, and I = s refers to the surface. Lineariza-
tion in temperature (or some function of temperature) is at the heart of all linear
or matrix methods. The question we raise here is: What is the weighting func-
tion that should be used in Eq. (1) ?

Methods based upon statistical regression determine W empirically, but those
methods that involve direct inversion (see Fleming and Smith, 1972, for an excel-
lent review) use the Expression

W M = dB(T) I 4T.
dT	 '

Ti

where B(T) is the blackbody radiance at temperature T, .^i i = 7;_ 1 - ri,
`

	

	 rl is the transmission from the top of the atmosphere to the bottom boundary of
the ith layer for i < s, To = 1, and r = 0. All quantities are calculated for
the reference atmosphere. The continuous form of the atmospheric part of
W M is

i)	 dIn	 dT (P)
W	 (P)	

dT	 d I II P
IT(P)
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B(T(p' ))
P

dFdT [T(P)lpP']

[dT (P) d l n P] F l n P,

a

d In P', (3)

where 1nP is the height parameter. This expression for the weighting function
is correct if T (P) is independent of the temperature profile T(P). Otherwise,
there is an additional term that comes from differentiating T with respect to
temperature. (In performing the integration, one must note that r(P) is a func-
tional of T(P') for 0 P' S P, which, where necessary to be explicit, will be
denoted by r [T(P'N P ; P]). The proper linearization of the radiative transfer
equation, when r depends upon the atmospheric temperature profile, leads to the
proper T-weighting function

W = W (1) + W(2)

where

s	
dAT.W (t) _	 B(T^) dT^
	 (2)

In continuous form, W (P) = W (1) (P) + W (2) (P), where

dF T [T(P)I o s ; Ps]
W (2) (p) :7+ B (TS) [dT (P) d I n P] F

where d F denotes the functional derivative. The first term contains the func-
tional derivative of the transmission to the surface with respect to T(P); in the
integral the transmission has been differentiated twice: first a (logarithmic)
derivative with respect to P' and then a functional derivative with respect to
T(P). These expressions are derived in the Appendix.

With the T-weighting function properly defined, its physical significance is
readily apparent. W(P) is the change in the radiance measured at the top of the
atmosphere per unit change of temperature over a unit extent of the height
parameter In P. Thus,

f

PS
AR--WS ATS +W (P) AT (P) d l r, P.

r

which is the continuous form of Eq. (1). Of course, this equation is strictly cor-
rect only in the limit , T • 0 and is practically correct whenever the non-linear
terms in the relation between temperature and radiance can be neglected. The
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corresponding equation using W 1 (P) can be considered practically correct only
with the additional limitation that the dependence of transmission on temperature
can be neglected.

A comparison of W ( " (P) with W(P) for typical sounding channels (NIMBUS 6
HIRS channel 5, centered at 717 cm -1 , and channel 13, centered at 2244 cm 1 )

is shown in Fig. 1, calculated for the U.S. Standard Atmosphere (mid-latitude,
spring/fall).	 The differences are significant. 	 For the 717 cm -1 channel, the
integral of W 1	 (P) from 0 to P s is 1.09 ergs/(cm • sec • str • °K), while the
corresponding integral of W(P) is 0.79. 	 Thus, the neglect of W(2) (P) would

_ overestimate by 38% the effect on the radiance of a uniform change in atmos-
pheric temperature.	 For the 2244 cm- ' channel, the overestimate of the radi-
ance due to neglect of W ( 2) is about half as much, 18%. 	For non-uniform
temperature changes, the error can be larger or smaller.

In addition to reducing the sensitivity of the channel to temperature changes, the
additional term a l so shifts the position of the weighting function. 	 This is illus-
trated by WREN	 (dashed curve on left hand side of Fig. 1) which is W renormalized

t' so that its peak value is the same as W ( 1 ^ .	 The peak of W is shifted downward
from WO) 	 by about 60 mb, it is narrower above the peak, and has a larger tail
in the stratosphere.

'^ s t
The effect of the VV (2) term on temperature retrievals can best be assessed by

fconsidering W M to be the T-weighting function incorporated into the retrieval
? process and corresponding to a channel for which measurements are desired.

The actual measurements, however, are different, corresponding to the T-
weighting function W. 	 That difference can be treated as a measurement error:

S

The error thus depends upon how far the solution is from the initial guess. For
a good initial guess, such as that obtainable from forecasts, a typical value of
AT in the troposphere (below 200 mb) is tit to 3°K. Under those circumstances,

S
_'

I.' REi = 2.5	 W (2

=1

which has the value .50 and .0029 ergs/(cm • sec • ster) for the 717 cm -1 and
2244 cm-1 channels, respectively. At 213°K, the brightness temperature asso-
ciated with these channels for the standard atmosphere, these radiance Prrors
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correspond to brightness temperature errors of .43°K for the 717 cm -1 channel
and .21°K for the 2244 cm -1 channel.

The above errors, treated as radiance errors, are larger than the instrument
noise usually specified for these channels. Furthermore, these errors tend to
be consistent over a synoptic scale grid ("500 km), so that averaging the meas-
ured radiances within a grid will not reduce this error. Finally, the statistical,
or minimum-RMS, method and the closely related minimum information method
(reviewed by Fleming and Smith, 1972), which minimize the effects of radiance
errors on the retrieved profile, assume that radiance errors are independent of
atmospheric temperature, but that is certainly not the case with the error asso-
ciated with the weighting function definition. Thus, with any of the linear methods —
such as the statistical method, the minimum information method, as well as the
Backus-Gilbert method (Conrath, 1972), which rely on calculated (as opposed to
empirically determined) weighting functions — the neglect of the W(2)  term in
the weighting function may seriously affect the accuracy of the results.

For weighting functions associated with very narrow spectral intervals, essen-
tially monochromatic, the relative importance of W(2)  can be even larger. An
example of such a channel, centered at 2386.88 cm -1 and 0.3 cm-1 wide, is shown
in Fig. 2. The effect of W (2),  which is usually negative for reasons explained
below, is so strong that the proper T-weighting function is actually negative above
400 mb. It simply means that increasing the temperature in the layers above
400 mb will actually reduce the radiance in this channel. The "radiance error"
due to the neglect of W ^ 2) would be .014 ergs/(cm . sec • ster) for A T - 2.5°K.
This corresponds to an error of approximately 1°K in brightness temperature at
257°K, the brightness temperature for this channel with a standard atmosphere.

The factors which determine the sign and magnitude of W(2)  (P) can be brought
out by inserting into Eq. (3) the general form for transmission

T(P) = T [T	 P; PI _ ^Tv [T(P')Ip; PII>

Tv

	

	
P

(P) = Tv [T(P' )1 ; P] = exp - 
fo

K^, (T(P' ), P) d I n 1''
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where K„ — the volume absorption coefficient at wave number v, times the local
scale height — is a point function of pressure P' and the local temperature T(Pt).
(The angular brackets denote averaging over the spectral response of the channel.)
Carrying out the differentiation, with care in taking functional derivatives, leads
to the following expression

dK T P
W(z) (p) =	

vdT(P)' P) B (T (P)) T,, (P) - B(Ts ) 'rt,(PS)

(4)

+	

PS 

B (T (P')) 
dT,, (P') 

d In P'
d In P'

P 	>
The first term in the square brackets corresponds to the diagonal of the matrix
dAT^/dT. appearing in Eq. (2), which expresses W (2) in vector form. Since
d Tv /d In P is negative, it follows that the diagonal term is always of opposite
sign to the off-diagonal elements P t < P. (The off-diagonal elements on the
other side, P' < P, are of course zero.) Assuming no temperature discontinuity
at the surface, Eq. (4) can be integrated by parts to yield

dKv(T(P), P) r PS	 dB(T(P'))
W (2) (P)	 dT(P)	 J	

Tv (P ) 
d I n P` d In P
	 (5)

P

We are now in a position to explain the sign of W ( 2) (P). For the numerical
examples considered here (Figs. 1 and 2), dK„ MT > 0 because of the location
of these channels on the wings of the CO 2 absorption band; for the dominant
absorption lines, the rotational quantum numbers of the lower states involved
in the transitions are high and the rotational energies are > M It then follows
that the occupation probabilities for those states increase with increasing
temperature, resulting in an increase of absorption with increasing temperature.
With dK„ MT > 0, the sign of W(2 )(P) depends upon the temperature gradient.
When dT(P)/d 1 n P > 0, as is generally the case in the troposphere, W ( 2) (P)
becomes negative.

The magnitude of W(2)  (P) is very sensitive to the ratio of the rotational energy
Erot to kT. For Efot > > kT (e.g., on the wings of the vibrational-rotational
absorption bands) dK„/dT is large; but for E,,,, <̂ kT (e.g., in the Q-branch)
dK„ /dT is small in magnitude and could be positive or negative. Eq. (5) also
reveals that W ( 2) (P) is approximately proportional to the temperature gradient,
and for an isothermal atmosphere, it is zero.



We conclude, therefore, that the contribution of W (2)  (P) to the proper weight-
ing function depends upon the spectral position of the channel within the absorp-
tion band and upon the temperature gradient. The largest effect is in the tropo-
sphere, as in the examples shown here, and one would expect the effect to be
smaller in stratospheric channels (in fact, it turns out to be negligible in the
Q-branch channels).

It is to be noted that the considerations in this note apply as well to methods
which linearize the radiative transfer equation with respect to the Planck func-
tion instead of temperature. In that case, the weighting function usually employed
is d-r(P)/d In P, but the proper weighting function should be

W 
(P) d In PP + cIB/dT W 

(2 (P),

and the change in radiance is related to the change in Planck radiance Z, B(P) at
each level by

f

PS

nR = 	 Wt, (P) nB(P) d 1 n P.
o

In more general applications — e.g., nonlinear retrieval methods in which the
radiative transfer equation is iteratively applied to a teripei ature profile which
undergoes correction at each iteration step — functional deri iatives can be used
in a Taylor series expansion to relate the transmission function for one temper-
ature profile T(P) to the transmission function for a corrected temperature
profile T(P) +A T(P). For example, if the original transmission function is
T (P) then the transmission for the corrected temperature profile is 'g iven by

f

d T [T(P )

o

P 	 ^

T (P) +	 F
O; P] 

L1T(P') d 1 n P'
 [dT(P') d InP']F

1 ff I 2 , [ T (P ' ) 1" ; P1
+ — 	 AT(P) 1T(P' ) (1 In P' (1 In P

 [dT(P") d I n P"] F [dT(P') d I n P' ] F

terms with higher order

functional derivatives
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r In practice, it is not necessary to go beyond the second order term, and even
the first order correction is sufficient for most applications; this will be the
subject of a paper currently under preparation.

To summarize, we have called attention to a potentially serious omission in the
application of linear methods to the retrival of temperatures from satellite

• measured radiances. The weighting functions usually employed do not properly
take into account that atmospheric transmission itself depends upon temperature.

- We have shown here the form for the proper weighting function. The impact of
this omission has been shown to be equivalent to a radiance brightness tempera-
ture _rror of several tenths of a degree for typical tropospheric channels on
current sounders and as much as 1°K for very narrow channels that may be em-
ployed in high vertical resolution sounders of the future. More generally, we
have presented a formalism for correcting transmission functions for changes

w

in the temperature profile; the corrections can be computed to any desired
degree of accuracy.
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APPENDIX

We can derive the proper T-weighting function by first dividing the atmosphere
into isothermal layers and treating the temperature in each layer and at the
surface as an independent variable T, , where j = 1 is the topmost layer, j = s - 1
is the bottom layer, and s corresponds to the surface. The radiance measured
at the top of the atmosphere can then be written

S

R(T 1 1 T2.... TO _	 n(T^) A -r l (T l , T2 .... T j )

where iST i = Tj-1 - T 1 , T  is the transmission from the top of the atmosphere
to the bottom boundary of the jth layer for j < s, 7'n 1, and Ts 0. The T-
weighting function is defined as the change in radiance due to a change in the
temperature in layer i, divided by the temperature change, in the limit as the
temperature change approaches zero,

W .	 "R
)T.

dB(T j )
,7^

dT,

S	
d,17

13(T^)	 .L
where the terms in the summation for j < i are dropped because they are neces-
sarily zero.

The above expression is the discrete, or vector form of the T- weighting function.

The surface component simplifies to

(113 (T
S )

WS	
d 	

's-t
S

by virtue of the fact that atmospheric transmission is independent of the surface
temperature. The atmospheric components can be expressed in continuous farm
by allowing temperature to be a continuous function of a vertical parameter x

8



1

-^1 •r-.

(ranging from 0 at the surface to ^r at the top of the atmosphere). In that case
the transmission will be a continuous point function of x, and at each point x, it
will be a continuous functional of T(x') in the range x < x' S 01 , which will be
denoted by

-r [T(x' )1'; x] .

The radiation at the top of the atmosphere will also be a functional of T(x),

	

R[ T ( x )Io] = B(TS ) T [T(x)	 01

t 
f

B J( x ')) d T[T(x)1"',: x'] dx'
d x'

The T-weighting function is defined in a manner completely analogous to the
discrete case, but taking into account the dependence of R on the funct±on T(x).
We consider a small positive change in temperature AT(x) which is zero every-
where except in the range x - 1/2Ax :^ x s x + 1/2 Ax, where Ax is a small
positive quantity. The T-weighting function is then defined as

.`.R [T(x)^ of
W(x)	 Lim

AT(x), Ax -- 0 AT(x) InxJ

which, by definition, is the functional derivative of R with respect to the function
T(x), and which will here be denoted by

dFR[T(x)1^1
W(x) -

[cIT(x) dx1F

(See, for example, Evans, 1964, for a mathematical discussion of functionals.)
Computing the differentials and then proceeding to the limit, we obtain

T	 d 7 [T(x)la; Ol
W(x) -	

13 (T)	 ^^	 I T(x' )Jx: xl , 13(TS )
(IT	 IVO (Ix	 ,dT(x	 Ix]F

fX

	 (I d r [T( x ) rt ' : x'1
B(T(x')) F	 six'

 
[dT(x) clxl,	 clx'

where the upper limit of the integral has been adjusted in recognition of the
fact that the integrand is zero for x' ^ x.

`J

r`
i

r.	 p
•



We carry this expression into the main part of the paper with the substitution
dx = -d In P for the height parameter.
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Figure 1. The T-weighting functions for two of the channels on the NIMBUS G
High-resolution Infrared Radiometer Sounder (HIRS). W, the Proper T-weight-
ing function, introduced in this paper, is compared with W") , the T-weighting
function usually employed in linear methods of retrieving temperature. 

WREN
(shown only for Ch. 5) is W renormalized so that its peak value is the same as
for W' 11,
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