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The advent of large-scale computing equipment has made these concepts feasible.
A logical extension of the technique considered here would be to put an additional loop
around the object dynamic system. This loop would determine a model structure with
which to estimate parameters. These parameters would permit state determination. This
would approach the advanced objective previously mentioned. This research will be con-
fined to those cases for which a rational model structure has been chosen.

To perform a linear analysis, a mathematical model structure must be contrived or
selected. Many considerations contribute to the selection of a rational model structure.
The first step is to define a response matching criterion and then choose a model struc-
ture capable of fulfilling the criterion. This fulfillment, generally checked by simulation,
is accomplished by time response comparison, frequency response comparison or, more
generally, a combination of both. The inclusion of small signal nonlinearities, such as
stiction, windup, hysteresis, and deadband, is dictated by the dynamic effect on the
systemn as ascertained by the response matching criterion. A central feature of model
structure selection is system dimensionality truncation. Dimensionality truncations for
model selection are of two types: those due to modeling complexity, and those to
reduce dimensionality of an already chosen model structure. Modeling complexity is
necessarily broken at some level since most complex system models could be made
infinite in extent. These truncations are made on the basis of insight, feel, experience,
and logistics of the computational equipment available. A rational choice of model struc-
ture may simply be the exclusion of dynamic effects in some frequency regime for which
the control andfor the plant are nonresponsive. A more complicated scheme consists of
including only coupling dynamics. The implementation of the coupling dynamics scheme
is straightforward although sometimes computationally difficult. A subcomponent repre-
sentation is determined first as an isolated system and then compared to the subcom-
ponent representation in the closed-loop system. If the pole-zero representation moves
more than some judgmental amount, that subcomponent must be included in the overall
system dynamics. If the subcomponent’s dynamics may be discarded, the stcady-state
contribution is accounted for algebraically. A simple state variable criterion is to eliminate
those states whose derivatives remain less than some judgmental amount. Many other
schemes may be devised as well as combinations of these schemes. The ultimate criterion
is the satisfactory working of the finally designed and analyzed system.

The purpose of the research may be summarized as providing the “best” repre-
sentation of the system linear model, or Jacobian, for a given configuration. Best repre-
sentation means the best model attainable under a qualitative judgment involving
accuracy, measurement inaccuracies, and system disturbance. The principal objective is
the assessment of the validity of the mathematical model used to design a subject system.

While there are other techniques providing the same information, the proposed
technique reduces the system history required for solution. Most estimation techniques
avoid the partially measured state vector because the standard approach is to adjoin the
unmeasured states to the parameter mairix. The result is that an n-squared problem has



CHAPTER |
INTRODUCTION

Statement of the Problem -and Objectives

An advanced objective of control system theory is to build a learning device so an
unknown system is directed to some goal by the device. First the identification of the
system is implemented. Based on the idenfification, the state of the system is determined.
An appropriate control stimulus results in a response that satisfies some rational figure of
merit. This is presently accomplishable in only basic systems {1]: The purpose of this
research.is to develop and demonstrate a technique, consisting of several concepts, that
permits simultaneous calculation of the state and a reasonable facsimile of the plant.
These concepts center upon state reconstruction and parameter estimation.

There is a certain amount of literature using these concepts {2,3], but only
recently have the combined concepts of state reconstruction and parameter estimation
been exploited [4] to provide information simulfaneously of the state and the system
representation. The literature is confined to linear autonomous systems, while this
research will attempt to extend the developed techniques to nonautonomous and non-
linear systems. The technique of Reference 4 requires a Liapunov function of the
unknown system, which is possible for linear systems. The advantage is the synthesis of a
globally convergent scheme. The disadvantages are that the Liapunov function may not
exist for nonautonomous and nonlinear systems. The method of this research uses a steepest
descent of gradient type method. A disadvantage of a gradient method is that initial
estimates must be close. However, in practice, the system is rcasonably well known and
this disadvantage is not overwhelming. ,

This paper will attempt fo apply the combined techniques of parameter estima-
tion and state reconstruction to the measurements of nonlincar physical systems. In
practice, linear systems do not exist. However, there are regions of operation on which
any system exhibits nearly linear behavior. The limitation may exist that the region of
linearity is too small or that expected excitations will drive the system out of its linear
region. In any case, a comprehensive control or system analysis begins with a linearization
of the subject system. For many applications, the analysis either forms a basis for design
or provides a rationale for redesign or alteration of the system. A fundamental, but some-
times unanswered, question is “how good a representation of the system is this linear
model?” In many fields and applications, an a posteriori analysis is undertaken to assess
the mathematical modeling accuracy. Generally, this consists of a manual iterative assess-
ment until some degree of accuracy is achieved. )

Parameter estimating state reconstruction can be applied, as a black box, to a
system’s measurements to provide a real-time assessment of the current lincar model of
that system. By assessing the response from different pieces of hardware, statistics may
be compiled as to the spread of that system’s operation. An analysis of extreme condi-
tions provides an assessment of the sensitivity of the system to a real environment. As a
result, a quantitative assessment of the system design analysis is possible.



been expanded to an n-squared plus n problem. On the other extreme, the Liapunov
approach becomes difficult for systems of greater than single output because a Liapunov
function must be contrived for each of the outputs which also are coupled. The proposed
technique retains the n-squared dimensionality of totally measured systems.

Figure 1-1 is a diagram of the system description. A state reconstructor is used to
recover the unmeasured states. The state reconstructor is used with the reference model
to form an error for the estimation process. Establishing validity of using the state recon-
structor output and addressing coupled systems dynamics are the principal concerns to be
analyzed.

Chapter Description

Chapter I is a delineation of the area of research with an identification of prob-
lem areas and overall objectives. Chapter II will develop the observability theorems for
the systems to be considered. This will be followed by developing and presenting the
necessary observer or state reconstruction theory to support the research. The treatment
will be subdivided to treat linear time invariant, linear time varying, and nonlinear sys-
tems. Chapter III will address parameter estimation with state reconstruction. The prob-
lem of model structure and model matching criteria will be analyzed.

Chapter IV will develop a dynamic model of the CTL-V Space Shuttle POGO test
facility to be analyzed by the technique of this paper. CTL-V is a particularly good
example since fully half of the involved parameters are unmeasurable. A nonlinear model
will be developed and the linearized equivalent will be analyzed dynamically at the rated
power level operating point. Chapter V will design the necessary observers, to permit
application of the technique, and present the results of the simulation and analysis.
Finally the technique will be summarized considering its advantages, disadvantages, and
unique characteristics.
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CHAPTER I
OBSERVABILITY AND OBSERVERS

Paramount to any closed-loop control consideration is the measurability and/or
observability of the object dynamic system. An unobservable system may be controllable
only in an open-loop sense. Therefore, this research will be confined to closed-loop con-
trol and thus observable systems. Observability will be dealt with in defail, particularly
those aspects pertaining to linear constant coefficient, linear time varying, and nonlinear
dynamic systems. Observability is a required condition for the state reconstruction
process and is included for completeness.

Many unobservable systems may be recast in a form tractable to the technniques
of this research. The procedure consists of partitioning the system into observable and
unobservable parts. The partitioned observable part may then be handled as an observable
system. If the unobservable partition interacts with the observable partition, the inter-
acting elements may be treated as disturbance inputs to the observable system. The par-
titioning process can be accomplished by means of a transformation to controllability-
observability canonical form [5]3.

A pedagogic examination of the relationship between controllability and observa-
bility will aid in the development of the requirements for observability. If x is an n-space
representation of the system, y is an m-space representation of the measurements of that
system, and X is the initial state, then the controllability problem may be defined as the

existence of a solution from xq to a desired state, x;. The observability problem is

defined as the existence of a unique one-to-one mapping from x to y. This has been
elucidated by Katman [5] as the principle of duality. The principle of duality [6]
depends on the uniqueness of the solution and the mapping. This principle applies to
linear constant coefficient and linear time varying systems. However, for nonlinear sys-
tems, existence is not necessarily uniqueness and the principle does not apply {7]. It
remains to develop the conditions for assuring.a unique one-to-one mapping from x to y
for the various dynamical systems.

Observability Theorems

Theorem: (Linear time invariant)

The system
x = Ax
'y = clx



where X is an n vector, y is an m vector (m < n),, A is n X n, and ¢Tismx n, is com-
pletely observable if and only if the composite n X mn matrix

T
ic, ATc, ... A Il

is of rank n. The proof of the preceding is given in many texts [6,8].

Theorem: (Linear time varying)

The system
X = A(t)x -
y = CT(t)x

where the variables are as previously defined, is completely observable on the time dnter-
val tg <t <ty if and only if the matrix

t
M(tg,tp) = f ¢T(r,tg) Cm) CT(n) (rtg) ar
0

18 nonsingular. The matrix ®(L,tg) is the unique fundamental matrix satisfying

4 .
5 2ig) = AW Rutg) , Pgto) = I

For complete observability, the above must hold for cvery £y and some finite t; > .

The proof of th‘e\\precediug theorem-is likewise found in most modern control texts
[6.8].

For nonlingar systems, & more precise definition of terms i5 requircd because
existence and uniquencss arg Tig longer equivalent. The nonlinear system may be repre-
sented as



X = f(tx)

f:[tgstq ] x§QCE’ x E » EN (2-1)
with measurements

y = h(t,x)

h:[tg,t;] xQCE' x EM > EM (2-2)

The initial state x(tg) is in general unknown since m < n. Now assume that the fth order

derivatives of f and h exist for every x€£) and for every te[tg,ty] where #m = n. Expand
y(t) as a Taylor series

) Y(Q)(to) 0
YW = Vi) *+ Vgt -tg) + ...t —— (t- o) (2-3)
where
v(tg) = hix(tg), tg) A hglx(tg), tg)
dh aho
¥(tg) = 3 (x(tg)tg) + a—xa (x(tg), tg) | flx(ig)tg) A hy(x(tg).tg)
Now definc
H(x(tp))
where
-y(tg) ] -h(}(x(to),to) ]
2= . He(tg)) = |- (2-4)
_3"(2'1)90) f'lsz-l(x(to),to) |




The nonlinear map H{x(tp)) is called the “observability mapping” of the system. The
system described by Egs. (2-1) and (2-2) is said to be cc?mpletely observable in g on
the time interval [tg,t 1} if there exists a one-to-one correspondence between the set QO
of initial states and the set of trajectories of the observed output y(t) for teftg,ty]. If
the obscrvability map H is one-to-one £2g to H(S2g), then knowing z uniquely determines
x(tg) so that the system is completely observable. Several publications [7,9] have investi-
gated these conditions for global observability.

Theorem.:

The system described by Eqgs. (2-1) and (2-2) is completely observable in the set
Qg of initial states on the time interval [ig,ty] if

(1) fm = n, where n is the span of the state, m is the number of outputs, and
£ is the €th derivative of [ and h which are assumed fo axist.

(2) The observability mapping of this system is differentiable.

(3) There exists an € > 0 such that the absolute values of the leading principal
minors A3, A,, ..., A, of the system Jacobian satisfy

| A1 Al
Bylze , == > € ,..., — e
Bl TNy

for all xeE®, then H is one-to-one from E® onto H(E™). This result is proven in
Reference 9.

The development of the conditions for nonlinear observability gives visibility to 2
minor theorem that can be applied to linear systems. If the observability mapping is
related to linear systems, it reduces to the familiar form of the condition for observabil-
ity. Another use may be made of these results. First, consider the case where there is
only onc measurement. Now the vector z is simply

¥
v cTa
z =| =1 X (2-5)




which is the transpose of the observability matrix. This matrix must be of.rank n since
the system is observable so that premultiplying by the transponse and taking the inverse,
Eq. (2-5) may be written as

re 1T ror 1T Ir
cT cT cT y
cTa cTA cTa |y
x =|| ’ : . . (2-6)
cTaml| | cTan] | cTam1] ] y(o-D)

Given the output and n-1 derivatives of the singie output, the n-state vector may be
deterministically obtained. This result is of little use because, in practice, it is difficult to
differentiate the measurement with great insensifivity or precision.

Observers

Observer or state reconstructors have been repeatedly examined in the literature
since Luenberger [10,11] quantified the concept. The reason for this interest was the
advent of state variable theory [6], which organized a dynamic systcm in such a fashion
that the observations of system are not necessarily the measure of the system. The sys-
tem may be made up of n states and observed by m observations where n is not neces-
sarily equal to m, but generally is greater than m. The observer fills a nced to have n
states from m observations.

The objective of the observer process is to provide reasonable approximations to
those states that are not directly measured. Then these states are available for use in the
implementation of a control law or strategy. Observers also find use in system estimation
and identification. The conceptual basis for the observer lies in the process of driving an
auxiliary dynamic system with the available outputs of the subject dynamic system.

The state reconstructor is an auxiliary dynamic system that deterministically
calculates the states using the difference between the real measurements and the measure-
ments from the reconstructor. The state reconstructor is an intriguing mathematical
phenomenon because apparently “free information™ is acquired. That is, m measurements
are sufficient to determine an n-vector state. Considerable attention has been focused on
“reduced order observers.” If some of the states are directly observed the system may be
partitioned to form two related systems. These related systems consist of one measured
and the other reconstructed.

One of the most significant problems of observers is knowing initial conditions for
the reconstructor system. The initial conditions of the measurements are apparent but
these are not necessarily the states. This problem is complicated by errors in the system



parameters. A solution to this dilema is the “robust observer” that will be investigated
further. These observers have the property of converging to the proper state even though
the differential equation coefficients are not accurately known. This is accomplished in a
manner analogous to integrating out steady-state error.
Observer Development

An auxiliary dynamic system will almost always serve as an observer in that its
state will tend to follow a linear transformation of the subject dynamic systems state.
The design of the observer consists of incorporating that linear transformation into the

process, thus providing an immediate and direct measure of the state.

Let D be a free dynamic system describable by

() = Ax(t) @7
and D will be the auxiliary dynamic system of the form

«t) = Fz(t). (2-8)

This auxiliary system will be driven by the outputs of Eq. (2-7)

v = Clx@ 29)
so that

z(t) = Fz(t) + Hx(t) (2-10)
where

H = KCT (2-11)
in which K is a gain matrix sclected to achieve some goal. Now

z(t) - Px(t). = Fz(i) + HPx(t) - PAx(t) (2-12)

10



If
H = PA - _FP (2-13)
then

zZ(t) - Px(t) = F(z(t) - Px(t) (2-14)

which has

z(t) = Px(t) (2-15)
as a solution, demonstrating the asscrtion of the preceding paragraph. Nofice that Dy and
D2 need not have the same dimension.

This sugpests the “identity observer” where the transformation P is the identity
matrix. For this type of obscrver, 121 and Dq must be the same dimension. Note that «(t)

becomes an estumate of x(t), IY becomes A-I, and Eq. (2-10) may be rewritien as
#t) = %O = (A-KCH (W + KCTx(®) . (2-16)
Let the error between x(t) and Q(t) be delmed as e(t). Now,

x(t) - X(t)

¢(t)

Ax(®) - AR + XCTRw) - kCTx)

Il

(A - KCTY(x(t) - k(1))

I

(A - KCT) () (2-17)

which expresses the dynamics ol Figure 2-1.

11



I CT and A are real matrices, then the eigenvalues of A - KCT can be made to
correspond to the set of eigenvalues of any n x n real matrix by suitable choice of ¥ if

and only if (CT,A) is completely observable. This has been proven in the literatuze several
times, notably by Gopinath [12]. This implies that () may be driven to zero arbitrarily

fast by suitable choice of eigenvalues of the augmented system A - KCT. The response is
normally dictated by a trade between accuracy and performance. If the eigenvalues are
made extremely large negative, the system tends fo act as a differentiator and is highly
sensitive t0 noise and other disturbances. Some of these effects will be demonstrated with

a subsequent example,

The observer is easily expressed as difference equations. Equation (2-7) becomes

x(k+ 1) = G(T) x(k) + H(D Uk} | (2-18)
where G(T) = eAT, and Eq. {2-16) becomes

Mk +1) = GMRD + U xk) + LD UK {2-19)

where G(T) = Jakchr

T
L(T) = f SAKCDr T 4, (2-20)
0

and

T
L'(T) = f SLAKCDr 5 4 (2-21)
0

This may be represented as in Figure 2-2. If the system is not totally obscrvable, then the
ability to place cigenvalues is restricted, In fact, some of the crrors may be unbounded.
This does not imply a lack of system controllability but rather a lack of adequate control
command to the state reconstructor. Only if the system is totally observable can the
eigenvalues of the error system be arbitrarily placed. Without total obscrvability, the
reconstructor will be uncontrollable,
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Let M be the nonsingular transformation that takes the system to observable
canonical form:

X = Mz . (2-22)

Rewriting Eq. (2-16)

ME = AMZ + BU + K(CTMz - CTvD) (2:23)
Mi = AMz + BU (2-24)
¢ = Mz - M2 (2-2

§ = Mp - M7 (2-26
¢ = (AM - KCTM) mle (2-27)

But
The = T .
C'M = (C Omk)

' -
wherc CT is m x n-k where k states arc unobservable, and KCIM is nx n-k. It is
apparent that the last k columns of AM arce unaffected by choice of K

Nonlinecar observers have been developed for several cases [13,14,15]. In general,
these observers arc highly system dependent, and are very sensitive to initial conditions
and gains. System dependent means that the closed form observer may be developed only
for distinct classes of nonlincar systems. Further restrictions are the conditions required
for onc-to-one mappings which assure observability. More general realizations of
observers, characterized by Reference 13, require nonlinear gain schedules for con-
vergence and limitations on initial conditions.

Observers for Use in Estimation

The principal problems in applying obscrvers to estimation are isolating the
dynamics of the system from the dynamics of the observer and knowing the matrix A.
The obscrver cxistence is based on some knowledge of the matrix A. While in many cases
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the accuracy of the reconstruction process is independent for small errors of the precision
with which A is known, there are cases where the observer will diverge [16]. Due to
manufacturing tolerances, material acquisition, sensor accuracy, modeling truncation, and
a myriad of other reasons, the A matrix will never be precisely known. The concept of
an observer is analogous to a pole=zero canceling compensation so that sensitivity is-an
inherent design problem.

Observers of rank less than n are known as reduced order observers. The unrecon-
structed states are obtained directly from measurements and the system is partitioned to
separate the directly measured states from the rest. The remaining states are recovered by
an observer of order n minus the number of measured states. The minimal observer
results when all the measurements are used to identify specific states. However, the
minimal observer results in a totally open-oop observer for the unmeasured states. Philo-
sophically, reduced order observers are attractive due to the reduced dimension. In prac-
tice the reduced order observer only simplifies the observer design. This simplification is
easily outweighed by certain advantages of the identity observer. A minor theorem [17]
shows that any identity observer is robust. Battacharyya [17] defines a robust observer
as a closed loop system, closed on the error between plant and estimate, and one that
possesses redundancy. Measurement redundancy means that, implicitly or explicitly, at
least one linear combination of states is contained in the measurements.

These recent studies [16,17)have been directed to the sensitivity of observers.
While the emphasis of these studies has been on reduced order observers, the sensitivity
results generally apply and will be used as justification for assertions and assumptions of
this research. The primary assertion is, if a robust observer is designed, the estimated
states will converge asymtotically to the states even if errors exist in the estimate of the
plant parameters. The use of identity observers removes the concern that the observer is
not robust. Further the observers will be designed so the augmented system eigenvaluecs
are critically damped. This stipulation is of little value for linear systems not disturbed by
random inputs. However, for weakly nonlinear and perturbed systems, intuition and
experience indicate the critically to highly overdamped roots will behave in 2 superior
manner. '
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CHAPTER il
PARAMETER ESTIMATING STATE RECONSTRUCTION

Complex multiloop system analysis and control design are most generally pre-
dicted on a linear analysis. Sufficient mathematical modeling is developed to assure a
reasonable facsimile of the physical process, at least in the region of interest. Therefore,
it is highly desirable to quantify differences between behavior, in the small, of the
process and its analysis linear model. This quantification provides a final step in the
design cycle, and determines expected variations from the process description used in the
system design. These variations may be sufficiently large to dictate redesign of the con-
trols or of the process ifself. Unfortunately, all states are generally not available through
measurement, so that the process of determining the best linear model is coupled with
determining the states on a time history basis. The basic assumptions of this chapter are:
that a model structure has been determined, that the system inputs are known, that there
is no input disturbance or measurement noise, and that measurement of the state is
incomplete,

Estimation of Partially Measured Systems

There are two alternatives available to solve the problem of estimating the param-
eters of a system whose states are not all available through measurement. The first is to
augment the parameter estimation problem with the unmeasured states. The second is to
develop in-line estimation algorithms which permit the simultaneous calculation of the
desired parameters and states. The former results in an increase in dimensionality of the
problem. In general, the parameter estimation problem is an n-squared problem. Augmen-
tation can raise this to as high as n-squared plus n. This causes a long data stream to be
required in the claculations and may result in convergence problems due to the age of
oldest data. The latter approach is likewise potentially an n-squared plus n problem, but
the data stream is the same as for a fully measured estimation problem. There are several
methods available for the calculation of the states. The most straightforward approach is
the state reconstructor or observer.

Gates [13] points out that the use of standard linear observers causes problems
due to the coupling dynamics between the state reconstruction process and the plant
estimation process. These problems are of particular concern if the dynamics of the plant
are fast. This robs the designer of flexibility in locating system poles and zcroes to better
solve the problem. Some of thedifficulties of observers under variations have been
addressed by Battacharyya [16]. However, if the system is stable the robust obscrver
may be designed. Robust observers are stable and converge to the actual states even if the
system differential cquations are not accurately known. The reason for this convergence
to the actual state is quite analogous to an integrator in the feedback of a control sys-
tem. The steady-state error is driven to zero.
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If the system dynamics are reasonably fast and if the plant is stable, the design
approach is straightforward. The approach may be described as a periodic sequential
gstimation process. This is implemented as an estimation update periodically occurrmg
after the scttling timc of the state reconstructor has expired. This process may be viewed
as a sequence of state reconstruction problems with the crror in parameter estimate form-
ing the initial condition guess for the subscquent state reconstruction. The sequence may
be designed to provide a set of essentially uncoupled state reconstruction problems, each
with a successively better estimate of the differential cquation coefficients. For example,
if the system has a 0.1 sec scttling time, an obscrver with a scttling time of 1 scc is
uncoupled from the system and generally four or five iterations provide reasonable con-
vergence. Therefore in this example, the estimation process may be compieted in 4 1o 5
sec. There is inherent design flexibility to adjust these settling times (ol observer and
estimator) for a desirable response.

This approach appears mote destrable than the nonlincar observer-like system
proposed by Gates. The design of Gates’ observer is much more system dependent than a
system tuning approach. This is undesirable because sufficient information concerning the
system may not be available. A Turther, and more serious, disadvantage of Gates” observer
is that a stable configuration may not in facl exist.

The problem is then to keep the n-squared estimation problem while developing
simultancously the system states. Consider a robust observer compared with a best system
estimate or system model. IF the systems wme adjustied so that the overall computation
cycle is longer than the augmented system scttling time, then the stales flom the first
may be used to reestimate the dynamics ol the sccond. The estimation problem is now
identical to that ol the literature [8,13,18] since the accurate states are now available lor
the estimation process

The observer system is released with its initial conditions set to the best guess of
the states. After one settling time, accurate states will be availabic for estimation of the
dynamics of the system estimate using the method of Gates [13]. The system estimate is
needed to use as a trial horse against the observed system behavior. These systems may
be successively stepped to the desired convergence or to follow a slowly lime-varying
system or a weakly nonlinear system.

Time-varying, lincar systems become more interesting and more compiex. Now the
dynamics of the ¢stimator must be rapid enough to track the system under expected
variations to fulfill the response matching criterion. The state reconstruction dynamics are
chosen to be faster than the estimator within considerations of physical restrictions and
overall stability. FFor nonlincar systems, onc may consider first those thal possess only
small signal lincuritics or those that are weakly nonlinear. A well-known artifice of con-
trol analysis is to treat weakly nonlinear systems as time-varying lincar systems. This
approxunation is not without risk, since an unstable system may appear (o be stable in
this type of analysis and vice versa. If the time-varying approximation is permitted. the
technique may be applicd as with the time-varying case with the additional restriction of
defining a region for which the response remains sufficiently weakly nonlinear, The
example of Chapters IV and V is of this type.
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Stability considerations for these processes are concerned with three distinct ele-
ments. The stability of the plant estimate is of primary importance. Parameter variations
in the estimation process may move marginally stable eigenvalues into the right half
plane. If this occurs special tuning techniques are required to achieve the desired accuracy
due to the observer [16] behavior. ‘The second element is the augmented system eigen-

values of A + KCT. In practice this is seldom a difficult task because the elements of K
are quite large in the interest of rapid system response. The variations in parameter esti-
mates are normally small, in relation to the elements of K; thus, augmented system
eigenvalues tend to be insensitive. The last consideration is the stability of the estimation
algorithm. Many techniques exist [18] to assure the stability of this process. '

System Diagrams and Equation Deveiopment

The equations and block diagrams will now be developed to give form to the
method. Since most implementation schemes are digital in nature, the equations and
algorithm will be developed in discrete form.

The implementation has, as its objectives, the recovery of the unmeasured states
and the estimation of the system parametess. The unmeasured and measured states are
direct outputs of the observer previously described. These states are used directly in the
estimation process developed by Gates [13]. Figure 3-1 is a block diagram of the system
estimation process. The plant dynamics are differenced with the dynamics of the refer-
ence model to form an error which is used fo determine the difference between the refer-
ence model and the plant. The reference model is updated with the calculated difference,
scaled by an appropriate gain. This gain is chosen for the stability of the estimation
process. The process is repeated until the desired convergence is achieved.

Figure 3-2 portrays the combined state reconstruction and parameter estimation
process. The plant, the observer, and the reference model are driven by the input U. The
observer is also driven by the measured output of the plant. An error is formed from the
difference of the observer and the reference model. Due to the behavior of the robust
observer, the plant estimate 2 will follow the plant x. The observer and the reference
model use the same estimateof the plant. The previously determined error will be used to
calculate the difference between the plant and the reference model. The algorithm per-
forms this function. The reference model and the observer are updated by use of the
caleulated difference and again scaled by an appropriate gain chosen for estimation stabil-
ity. The process is repeated until a desired degree of convergence is achieved.

The equations will now be developed considering known external inputs. The
plant is assumed governed by

x(k +1) = G(T) x(k) + HT) UK) (3-1)
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where

G(T) = ¢AT
and
&+1)T
H(T) = f AT B dr
kT

with measurements

y(k) = CT x(k)

(3-2)

(3-3)

(3-4)

A is the system Jacobian, U is the known input and B is the contro! distribution matrix.

The observer is described by

b +1) = GIM W + H)(D UK + LY y(k)

where
Gy(T) = (D+KCT)T

(k+DT
L(T) = f (DHKCDr g g
kT

and

+1)T
T
L'l = j (DFKCH)7 ¢ 47
KT

D. is the estimate of the system Jacobian, and K is the observer gain matrix.

(3-5)

(3-0)

G-N

(3-8
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The reference model is expressed as

x((k+1) = Gy(T) xj(k) + H(T) UK)

where
G{(T) = ¢PT
and
&k+1)T
B = [ DT
KT

Now, writing state in terms of the system estimate

x(k+1) = G(T) x(k) + 8G(T) x(k) + Hy(T) Ulk) + SH(T) Uk)
The error between the estimatc and the state may be expressed as

e(k +1) = G(T)ek) + 8G(T) x(k) + SH(T) Uk)
The following matrices are formed

x0 = (x(0),....x(n-p+1)}
U0 = (U, ..., Utn-p+ 1))

el

(e(0), ..., c(n-p+1))

il

cl (C(l), LI C('H -p + 2))

(3-9)

(3-10)

(3-11)

-(3-12)

(3-13)

(3-14)

where each column is the vector associated with the enumerated time point. Eq. (3-13)

can be expressed as a matrix equation that has
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-1

(6G(T):6H(Kk)) = (el - Gy(T) 0) I.J. (3-15)
0

as a solution if the inverse of the augmented state and control matrix exists.

The system description is now updated as

G(T) = G(T) + 8G(T) (3-16)

H(T) = H(T) + §H(T) , (3-17)
and

Gi(T) = GKT) + 8G(T) . (3-18)

Eq. (3-18) is not exactly correct but, due to the magnitude of elements of K, yields
satisfactory results. Several alternatives exist to precisely calculate G'I(T). One method is

to recover 8D from §G(T) and recalculate G'l (T) from Eq. (3-6). Another method is to

calculate as a continuous system using the numerical integration to discretize the system.
The calcutation, in this case, yields §D. A variation of the last method would be to use
the 6D to calculate the discrete parameters of Egs. (3-6), (3-7), (3-8), (3-10), and
(3-11). Precise knowledge of G'I(T) is not required due to the nature of the robust

observer. A topic for future study is the development of a recursive solution to the pre-
viously described estimation.

A Second Order Example

To demonstrate the procedure the system

X1 0 1 X1 (3-19)

5(2 -2 «3 X9
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with measurement

X1

y=0 D X (3-20)

X2
Discretizing this system results in difference equations of the form

xjk + 1) 22T eT-e2T | /50
(3-21)

xq(k + 1) 26T+ 2627 T+ 2627 | \x5(k)

where T is the sampling period.

First the observer dynamics will be developed. The error between the state and
the state estimate is dynamically determined by the eigenvalues of A + KCT, or

0 I 0 Ky 0 Ky +l
+ = (3-22)

which has a characteristic equation of

Ao+ G-Kh + 2K +2) =0 . (3-23)

Hence the values for

Ko -3 /1 +Ky2 - 6K, - 8Ky

A= 5 (3-24)

1
4
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are the robust observer eigenvalues and may be placed almost arbitrarily. Roots may both
be real as K5 = -2, K1 = 2 which has roots at -2 and -3. Figure 3-3 shows the response of

the unmeasured state and state estimate with a perfect model. The settling time is almost
3 sec. Figure 3-4 considers the response for a reasonable estimate of the state. Now the
settling time is almost 4 sec. These dynamics are too slow for application of the estima-
tion technique. If Ky = 24, K5 = -12 which has roots at -5 and -10 then the dynamics

are much more suitable to the application of the estimation process. Figure 3-5 presents

the response for these observer dynamics and a perfect model. Notice the settling time is
of the order of 0.75 sec. Figure 3-6 shows the response for a reasonable estimate of the

system dynamics. Again the settling time is less than 1 sec.

Figure 3-7 shows the remarkable property of robust observers to converge to the
state even though there are errors in the plant estimate. The settling time is on the order
of 3 sec, and this can be improved by adjustlng the observer. The observers are all
processing data from the plant

x = X (3-25)

while the reasonable estimate was

02 09
% - KClx-% . (3-26)
22 3.1

Ry
li

The gross model error is characterized as

05 2
L = 2 - KCTx -9 (3-27)
3 6

which is considerably at variance with Eq. (3-25).
The parameter estimation is delayed until reasonable convergence of the .observer
is achieved. The estimation is then initiated with the error between the trial system and

the observer defined to be zero. Figure 3-8 presents a plot of time versus parameter esti-
mate showing the estimation convergence.
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CHAPTER IV
CTL-V TESTING ANALYSIS

All large space vehicles possess a longitudinal dynamic coupling of structure and
propulsion predictably called “POGO.” The most benign stage to date is the Saturn IB
- stage which has nine tanks in a bundle and eight engines providing a maximum of statis-
tical interaction, which results in overall system damping. The Space Shuitle, due to its
large single LOX feedline, is expected to be susceptible to POGQ. Due to this concern, an
accumulator is being designed for the Space Shuttle main engine as a decoupling and
suppressive device. A primary qualification test for this device is the CTL-V Test series at
the Rockwell International Rocketdyne Division, Santa Suzanna Test Facility. These tests
will provide assurance as to the dynamic representation of the low pressute oxidizer
pump and the effect and effectivity of the accumulator.

The dynamic head sise characteristics of the low pressure oxidizer pump are non-
linear and not precisely known. They are modeled as nonlinear differential equations
whose coefficients are empirically determined parameters. The accumulator characteristics
are also ill defined because of the difficulty of obtaining good test results and isolation of
the higher frequency effects of the accumulator, The advantages of applying the pre-
viously developed technigues are that by maiching the time response the frequency
response is likewise adjusted. That is, the linearization of the appropriate time response
provides a frequency domain representation of the dynamic phenomena. This should be a
“best™ linear representation at that condition because the estimate is being forced to
behave in a fashion similar fo the actual system. The method is developed and modified
. to provide a neighborhood of operation of the low pressure oxidizer pump and of the
accumulator.

The pump modeling is defined by the Rocketdyne publication RLOOGOI {19}
defining the Space Shuttle main engine-engine balance and dynamic model. The facility is
modeled in a similar fashion. Since the lines and pumps will be esscntially chilled o a
steady state during a given test, the assumption of incompressibility and thermal steady
state is valid. Tests have shown that therc is encrgy trade between temperature and pres-
sure but that these are small cffects. The specific objectives of the analysis will be to
better define the head rise dynamics of the pump and the parameters of the accumulator.
The accumulafor parameters are characterized by electromechanical analogy. These
parameters consist of a compiiance, an incrtance, and an equivalent resistance. The reason
for an equivalent resistance will be appurent in the cquation development. The results of
these tests and analyses will be used in the overall Space Shuttle POGO stability analysis
to better define system stability before first flight.

CTL-V Eqguation Development

The system to be tested in CTL-V is that of Figure 4-1. The pump speed Sy

may be assumed constant since the pump is being driven by an extremely high inertia
electric motor. The constant pump speed aliows analysis of the basic head rise charac-
teristics of the pump uncoupled from available drive torque and torque required which

28



couple back into flow and pump speed. P is the pressure at the feedline inlet. The flow
in the feedline DWp may be represented as

1 2 )
DWFL = Ei f [(PT_POS) - RL DWFL] dr . (4~1)

The “bubble” on the pump has pressure Pgg.

t
1
0

These two elements combine to simulate the 2.5 Hz first resenance of the ozidizer feed-
line. All damping arises from the resistive term of the feedline flow Eq. (4-2).

Next is the low pressure oxidizer pump. The pump is assumed to have a dynamic
gain of onc. Mass continuity dictates that the pump be gain one at zero frequency. The

pump is characterized simply as a nonlincar head rise device. The pump discharge pres-
sure is

Pop; = Pog + H' . (4-3)

. - . -
The head rise H will be defined by use of a dimensionless parameter

Al
(I)Ol)l = S'c";'i' DWOS . (4-3a)

The head rise itself is given by

’

2
H" = BiSo; F'pop1(®op1) (4-3b)
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where pop1(®20py) is determined from the empirical curve of Figure 4-2. The flow

below the pump is the same as the flow existing in the bubble and entering the pump
and is defined as

t
1
DWos = Iy f [(PODI - Po12) - RD(DWOS)Z] dr . (4-4)
0

Ly is the inertance of the fluid in the duct and the pump. R is a lumped resistance

coefficient combining effects of duct and pump. The pressure upstream of the accumula-
tor is dependent on the compliance, Cpy, of the duct itself, and has the form

t
1
0

The accumulator is modeled analogously with a pressure change through a com-
pliance and a flow change due to a resistance and delta pressure. The inertance in this
case is the mass of that fluid trapped in the standpipe leading to the accumulator. The
compliance is a lumped compliance consisting of flexure of the housing and the com-
pressibility of the gas in the accumulator. The gas to be used on the Space Shuttle is
GOX in contrast to helium principally used in the past. The GOX is supplied from the
tank pressurization heat exchanger and maintains a constant level in the accumulator by
use of an overflow port from which GOX is vented back into the feedline above the low
pressure pump. That flow is not considercd in this analysis. The gas-liquid interface is
maintained by four layers of 3/8 in. Teflon balls which provide internal slosh suppression
and help prevent the gas bubble from collapsing in the liquid. The pressure in the
accumulator is modeied as

t
1 .
PA'EX f DW, d7 (4-6)
0

while the accumulator flow can be represented as
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t
- 2
DWp = - f (Poz - Pa) - RA(DDWL)? | dr (4-7)
0

where CA, LA= and RA are as previously defined.

Pops is, in effect, an output of the system and, because of the orifice, will

remain constant once the test conditions arc established. With one exception, the equa-
tion definition is now complete. The exception is that to represent Popq, the flow down-

stream of the accumulator must be modeled. This is a small picce of fluid and results in a
high frequency root. I"N represents the inertance of that clement and RN is its resistance.

The flow in this section can then be expressed as

t
1
_ 2
DWopy = | J [(1>O,2-P0p2) . RN(DWOPQ):I ar . (4-8)
0

This completes the equation development required to analyze the test.

These equations may be rewritten as a sct of nonlincar differential equations:

DW - P : P RL Dw2 (4-9)
P - ! : 4-10
lOSl = . DWFL = R DWOS ( ™ )
Cp Cp
P - | DW I DW AB,S olrop1 Kp l)w2
oDl Cy FL CjB' 0S 151201 30op; Lp 0S
Cpop1 1 lpopy
+ ABiSg) Popt - AjBiSoy - Pon

dbop) Lp dop; Lp

(4-11)
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1 1 Rp 2

DPWog = s Pop1 - iy Pora - iy DWos (4-12)
for = — DWog - — DWopy - — DW, (4-13)
Sp Cp Cp

.1
Fa = gy PVa (4-14)

. 1 1 Ry 2

R

. 1 1 N 2 ~

DWopz = Iy Porz - [ Por2 - [, DWopz - (4-16)

Linearized Analysis of CTL-V

These equations are in turn linearized to obtain the following sct of lincar differential
equations:

1 R

. 1 L
AFgp = — APp - — APgg - 2 — DWpp AF : 4-17
FL = AT - APos ; DWRLATFL (4-17)

The term 2R DWpy is normally thought of as being an equivalent damping resistance for

an element.
, 1 1
APOS = (TB- AFFL - C—B AFOS (4-18)
. 1
APOD] = C—B- AFFL - DIAFOS + DZAPODI - DZAPOIZ (4-19)
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where

1 3lpop1 Rp
D), = — - 2A{B,S — DW
1. 1B1S01 oS
Cg a®gp1 Lp
ol'pop1
, d®op; Lp

Completing the equations,

. 1 1 2RpDWgg
AFnc = — AP - —— AP~y - AF, (4-20)
QS LD OoD1 LD QI2 I"D 0S
-1 1 1
D D D
.
) 1 1 2R,
AF, = — APgpy - —— APy - —— DW,AF (4-23)
L, Lp Ly A
. 1 2RN
AFgpy = Iy APgyy - TN DWgpoAFopy, - (4-24)

Notice that Popo has dropped out of the linear representation because it is assumed

constant due to the orifice. At the beginning of the chapter, the equivalent resistance of
the accumulator was discussed. The resistance is equivalent because, to a first-order
approximation, it is zero. In Eq. (4-23), the linear term of resistance is 2R A/L A DWp. In

the steady state DW is zero. Therefore, to first order the resistance effects of the

accumulator are indeed zero. However, the resistive effects are important to the analysis
so a small nonzero term will be forced in the analysis to assess its effect.
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These equations can now be expressed in state variable form as

APOS
AFFL
APoD1
AFg
x = Ax + BU ; wherex =
APora
AFgp
APy
AF 5
where
2 0 L 0 0 0 0
(p Cy
(iﬂ’ I)\‘-'l L) 0 1} 1] 0 (4] ]
L
i 1)+ Iy 2 0 0 “
Ci
R
0 TI'—) ( 'L_;_) I)\V‘}.i) - L—l“- 1] 0 ]
1 1 ——
0 1} E'l_J 4] - (T 0 g
: TN bW
0 0 0 -'-:r:l' - "q op [¢] 1]
0 0 0 o 0 0 ‘—lA
1 i Ry
° ’ ' Ta ’ L T
and

fon

i

o
=]
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In practice, flow is an unmeasurable quantity due to instrumentation difficulties. For this
reason the pressures are all that will be.measured. The advantages. of the scheme pre-
sented over most identification schemes are now obvious. Fully half of the state vector is
not available for measurement and will be recovered with an observer designed in a
fashion described previously. )

The rmeasurement vector now becomes

Pos
Fpy,
Pog ' Popi
Popi Fos
= cT (4-26)
Pora Po1z
Pp Fopz
Pa
Fa

These equations will be discretized using Fourth Order Runge-Kutta Intcgration, with
iteration time sufficiently fast to assure reasonable accuracy. This provides satisfactory
precision without cumbersome implementation.

The test series will be operated in two ways, with and without the accumulator.
The equations have been arranged to allow partitioning in this manner. Using data that
reflect the rated power level test, the eigenvalues of the system without accumulator are
as follows:

Real . Imaginary
-32.45 -224.4
-32.45 2244
-59.1 71.7
-59.1 -71.7

-5.3 0

-0.01 0
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Notice that the line frequency has dropped from 2.5 to 1.2 Hz. The pump and
duct combine with critically damped roots, and the orifice segment has a 36 Hz
resonance.

Adding the accumulator, tlie eigenvalues become:

Be_al_ Imaginary
-81.8 -423.1
-81.8 423.1
=72.7 71.9
-72.7 -17.9
-37.5 48.7
-37.5 - 487

-5.35 0

-0.01 " 0

The line frequency is essentially unchanged as is the pump and upper duct. The major
change is in the lower duct where the duct couples with the accumulator giving the 135
Hz resonance and the accumulator couples with the flow to the orifice which has a 69
Hz resonance.

It remains to locate the eigenvalues of the observer and implement the identifica-
tion technique.
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CHAPTER V
CTL-V RESULTS

The problem of higher-order observer design, analysis, and performance will be
discussed first, then the actual design will be developed. Results will include those of the
CTL-V facility with and without the POGO suppressive accumulator. The principal fea-
ture is the demonstration that linear observers can be used in a state-parameter estimation
process if sufficient care is taken in the design to insure plant-observer dynamic decou-
pling. Techniques for desensitizing observer design and the application of parameter esti-
mating state reconstruction will be examined. Sample rate selection and numerical
difficulties will be addressed. Finally the curious phenomena of multiple equilibriae for
fluidic systems of the CTL-V type will be analyzed.

CTL-V Observer Design

The design of obscrvers for higher-order systems is a topic in itself. The simplest
problem is the single input system. If the subject system is observable, there arc available
n times m parameters, of the gain matrix K, to place the n cigenvalues of the augmented
observer system. If there are multiple inputs, the system may be recast as a st of single
input systems and treated individually as single input systems. However, while systems
designed in this fashion have the desired cigenvalues, the dynamics of the augmented
system can be most undesirable because of the location of the system zeros. Undesirable
energy trade takes place between the various component single-input systems. The addi-
tional degrees of freedom, in the matrix K, may be used 1o achicve a more desirable
overall dynamic response. The term “better dynamic response” must now be quantificd.
For the purpose of this rescarch, better dynamic response means critically damped with a
reasonably fast scttling time, while in general the term is dependent on the application
and the desires of the designer.

A critically damped response is desired to climinate or reduce coupling between
the plant and the observer. A further precaution is to design the augmented system cigen-
values sufficiently larger than those of the plant. This permits rapid reconstruction of the
states and reduces the propensity of the observer dynamics to couple with the plant
dynamics. The requirement to critically damp the observer eigenvalues means that some
of the desired analysis flexibility has been lost and that the technique is becoming more
system dependent. The critical damping also affccts the settling time which is another
design paramcter. The settling time determines how often new estimates of the plant
parameters can be determined. Duc to the nature of observers, only the dircctly measured
states are known before the reconstruction process. The unmeasured states become avail-
able only after the systom scttling time has passed. This time can also be affected by the
size of the crror in the initial estimates of the unmeasured states. A settling time is
required after each recalculation of the system parameters because the new estimate
represents a system discontinuity when it is used in the reconstruction process.
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A consideration that would be of low interest to most applications, but is of
secondary interest in this application, is the augmented system eigenvalues sensitivity to
parameter variationis. This interest is of two parts: first the sensitivity of the observer
dynamically to deviations in the plant estimate and, second, the stability of the estimated
systems eigenvalues-due to estimation errors. Due to the nature of the robust observer,
the dynamic behavior may be degraded as variations become large. But the system will
converge for very large variations in the parameter estimates, as was demonstrated in
Chapter IIL. In fact, the whole concept of parameter estimating state reconstruction is
based on that property. But gross excursions can cause divergence of the reconstructor
from the plant, and some designis are more or less sensitive to parameter variations. A
design procedure then is to verify a low sensitivity to parameter variations.

The second part of the problem is the closed-loop stability of the estimation
system. The augmented system may be stable but may perform inadequately for the
purposes of this research. If the parameter recalculation causes the observer plant to have
unstable eigenvalues, then quite obviously the system will have inappropriate dynamics.
Therefore, another design procedure is to analyze the sensitivity of the plant eigenvalues
to parameter variations and the overall degree of stability .of the object plant. A mar-
ginally stable or unstable system is undesirable for analysis by this technique bccause of
observer problems addressed in Chapter II, and the overall system sensitivity. The
observer problem is that if the plant is unstable, then the plant must be precisely known
and represented in the obscrver to achieve observer convergence. However, an artifice is
available to handle these kinds of difficulties, that is, to synthesize a feedback control
that stabilizes or descnsitizes the objectionable eigenvalues. This is a straightforward
classical technique that provides a system with characteristics that permit analysis by the
technique of this research, the control being included in the model structure of the new
observer of the altered system.

The eigenvalue placement for observers, as has been noted, is generally- overdeter-
mined. There are a variety of ways to choose the elements of the gain matrix K. The
particular approach for this application was selected because of the manner in which the

elements of KCT enter the augmented system matrix A + KT, By choosing K in the
form

K;p 0 .0 o 0 0
Kyy 0 0 0 0 0
0 0 K3y O 0 0

kel =1 0 Kg O O 0 -1
0 0 0 0 Ks3 O
0 VR 0 Kg3 O
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for the sixth order case, and

Kiq 0 0 0 0 0 0 0
Kopq 0 0 0 G 0 0 0
0 0 K34 0 0 0 0 0
0 0 Kag 0 0 0 0 0
KcT = (5-2)
0 0 0 0 Kss 0 0 0
0 0 0 0 Kga 0 0 0
0 0 0 0 0 0 K7q 0
0 0 0 0 0 0 Kgyg 0

for the eight order casc, the augmented system ecigenvalues can be less interactively
chosen. The system is naturally partitioned to encourage this type of gain selection.
There is some interaction, but cigenvaluc sclection is more independent than if some
more-coupled scheme were uscd. Values for K and the associated augmented system
eigenvalues are shown in Table 5-1. Sensitivity results for sixth order observers are shown
in Table 5-2 and for eighth order observers in Table 5-3. The numbers of the K matrix

are in units commensurate with the elements of the D or A matrix so that A + KCT has
meaning. If the selected elements of K are extremely large, errors in the parameter esti-
mates have little effect on the observer dynamics; however, due to the high gain, the
observer system becomes very sensitive to noise. If the elements of K are small the
observer becomes more sensitive to parameter estimate errors and the observer response
becomes sluggish. These considerations enter the observer system design process.

Physical Interpretation of the Model
The desired output is not simply the linear model, or the matrix D in the calcula-
tions. D must be interpreted to deduce the parameters of interest, namely the com-
pliances, inertances, and resistances of the CTL-V facility but, most importantly, the

slope of the pump curve. The compliance of the bubble on the pump may be determined
as

Cg = . - (5-3)
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while the feedline inertance is

The line resistance is a little more difficult to recover but may be determined as

Next the inertance of the duct may be calculated as

42
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Ly = IE

TABLE 5-1. SIXTH AND EIGHTH ORDER OBSERVER

Sixth Order Eighth Order
Eigenvalues? Eigenvalues®

Value (All Real) Value {All Real).
K;; | 12000 -100.0 1400.0 96.3
K91 1998.0 -219.3 1998.0 -138.3
K39 14717.0 -354.3 1277.0 -272.3
K49 0.0 -858.3 0.0 -544.3
K53 1500.0 -1328.1 1500.0 -859.7
Keg | -1366.0 -1496.4 -1366.0 -1127.6
Koy = - 1000.0 12122
Kgq = - 1500.0 -1305.8

a. Eigenvalues have no order relationship to values.

Ry,

Dby
2W

(5-4)

(5-5)

(5-6)



£

TABLE 5-2. SIXTH ORDER SENSITIVITY

Eigenvalue? Eigenvalue? Eigenvalue®
Value Real Imaginary Value Real Imaginary Value Real Imaginary

K11 1600.0 -97.2 0.0 1600.0 -168.4 87.3 1600.0 -184.9 0.0
Kqy | 19980 -207.6 0.0 2498.0 -168.4 -87.3 2498.0 -185.1 59.1
K3y | 14770 -238.8 0.0 1777.0 -198.0 0.0 2477.0 -185.1 -59.1
K49 0.0 -1325.9 0.0 0.0 -1337.1 0.0 623.0 -1335.1 5.6
Ks3 | 15000 -1378.9 0.0 1500.0 -1370.0 0.0 1500.0 -133%.1 -5.6
Kg3 | -1366.0 -1508.2 0.0 -1366.0 -1814.7 0.0 -1366.0 -2523.1 0.0

a. Eigenvalues have no order relationship to values.
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TABLE 5-3. EIGHTH ORDER SENSITIVITY

Eigenvalues? Eigenvalues? Eigenvalues?
Value Real Imaginary Value Real Imaginary Value Real Imaginary
Ky4 1000.0 -98.6 0.0 1000.0 -94.6 0.0 1000.0 -95.6 0.0
Koy 1998.0 -139.5 0.0 1998.0 -146.0 0.0 1998.0 -159.3 Q.0
K39 1277.0 -540.6 0.0 727.0 -493.3 -236.4 727.0 ~492.8 -236.9
K42 0.0 -506.6 2124 0.0 -493.3 236.4 0.0 -492.8 236.9
Ks3 1500.0 -506.6 212.4 1000.0 -559.8 -393.0 1000.0 -555.5 -443.8
Kg3 | -1366.0 -860.4 0.0 ~1266.0 -559.8 393.0 -1666.0 -555.5 443.8
K74 | 10000 | -1209.9 0.0 875.0 | -778.8 0.0 8750 | -778.9 0.0
Kgq 1500.0 -1294.4 0.0 800.0 -855.8 0.0 800.0 -850.9 0.0

a. Eigenvalues have no order relationship to value.




The slope of the pump curve may now be evaluated as

or _ D3slp .
3@ AB;So; (>

where AB is a constant and S is the pump speed. The compliance of the duct is
simply

. 1
C = — . (5‘8)
D" by

The resistance of the duct is

-Dgalp
Rp = —~—— . (5-9)
W

The inertance of the small fluid segment between the accumulator and the orifice is
calculated as

Iy= o~ (5-10)

Ry = N (5-11)

The accumulator parameters are determined similarly with

1
Cp= e, (5-12)
D78
L, = . (5-13)
A" Dgs
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and

RA = 'DSSLA . (5-14)

The Nonunique Equilibrium of the Sixth-Order Case

The CTL-V test configuration has some unusual properties if the system is tested
without the accumulator. The system no longer possesses a unique equilibrium, but is in
equilibrium everywhere that the flows become equal. The system is stable with eigen-
values, as reported earlier, but the system has infinite equilibrium conditions. The sixth
order system is described as

0 — 0 -— 0 0
Cg Cp
! 2Ry
S -—DW 0 0 0 0
: 0
0 —E.— D2 _Dl -D")
B
X = X
0 0 : 2R DW : 0
- — bWy -—
Lp Lh Lp
1 1
0 0 0 — 0 -—
Cp Cp
I 2R
0 0 0 0 —_— W
Ly T oPr2

(5-15)

Now clearly

. 1 1
APpg = (C—B) AFpp - 61-3- AFpg (5-16)
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is zero if the two flows become equal, and
. 1 2R
AFgy =-[— JAPAe - | — | DWg AF 5-17
FL (LL) os "\ ; ) PWFLATFL (17
determines the steady-state value of APqg for the nonzero AFpy . In the pump equation
- 1
APODI = (E ) AFFL + D2APOD] - DIAFOS - D2APO[2 s (5-18)
B
if Ai}ODl is zero, then APgpyp is related to the other variables ag
AP - (.. Dy AF D, AP, : AF ) (5-19)
ODI 1'32 12705 ~ V2201 (TB FL .
Proceeding,
. 1 2Rp |
AFAc = . - ) AP -| — -DW AFng - [~ - ] AP , 5-20
0S (!-'D) ov1 -\, Pros) 4708 (LD> ol2 (5-20)

which, if AFqg is zero, similarly can be solved for APqpyy as

1 2Rp
APODI = LD - - APOIZ + - - DWOS AFOS (5-21)
Lp Lp
The next cquation is

- 1
APgy = (‘(‘;B)(AFOS - AFgpp) (5-22)
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and finally

- 1 2RN .
AFopy = (Q)APOIZ "\ gy PWorz/ AFop2 (5-23)

which vields a steady-state value for APqyg when all the flows are equal. Notice that by

Egs. (5-19) and (5-21) there are apparently two definitions of APnpy1. Both are of the
similar form

APODI = APOIZ + C'AF (5-24)

where in Eq. (5-19)

C' = 7 (5-25)
Dy
and in Eq. (5-21)
C' = 2RD DWOS (5-26)

Interestingly enough for CTL-V at the operating point corresponding to the 100 percent
engine power level, one finds that

) 1
D} - &

5 = 2R DWg (5-27)

Therefore, any time that flows become equal, the system will be in equilibrium at that
perturbed condition. This property is due to the particular values of the pump com-
pliance, head rise characteristics, steady-state flow, and the duct resistance.
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This resuit has no meaning in the context of the engine because the engine system
has a closed fluid path around these elements, thus altering the overall system dynamic
characteristics. Further, if the accumulator is added to the CTL-V system, then the sys-
tem regains a unique stable equilibrium since the flow into the accumulator must go to
zero in the steady state. This response poses no real problem to the technique of this

research since the system is driven in an oscillatory fashion about the null, as is true of
CTL-V itself.

Results and Conclusions

The most significant result is the ability of the observers or state reconstructors to
follow the small signal nonlinear signdl even though only an cstimate of the system is
known. Results in Tables 5-4, 5-5, and 5-6 demonstrate that even with cstimates that are
in error by large amounts, the robust observer provides reasonable estimates of the state
for use in the estimation process. The nonlinear small signal values are the oscillations
about the system opcrating point. The linear values are results from an analytic lineariza-
tion of the nonlincar system equations. The first group of numbers is the lincarized sys-
tem Jacobian. This matrix is the analytic linearization of the nonlinear cquations at the
system operating point. The second group of numbers is the result of the estimation
process at an instant of time, shown as the first number in the third group. The first two
matrices may be compared by positions. The first row of eight numbers in the third
group are the nonlincar states described in the first line separated by comas. The remain-
ing rows are as described above. The constrained results of Table 5-6 refer to the method
of parameter calculation. Parameter recalculations are permitted only for those elements
that, due to model structure, are dependent. That is, accumulator parameters are not
permitted to be a function of line or pump. The unconstrained estimation allows varia-
tions as with any sensitivity technique. These differences may be observed in the tables as
the estimate of the system Jacobian. These observers arc not simply following the system
but are reconverging after ecach reevaluation of parameters cach 0.02 sce. Since the
highest observer root is 200 Hz and the discharge has a resonance at 60 Hz, 2 to 4 sec is
a very long run time. Either of these strategics work. The constrained method is similar
to a steepest descent technique. The feedback gain must be small, for the constrained
approach, to maintain computationai stability.

Figures 5-1 through 5-9 demonstrate the observer response. Notice that the pres-
sure initial conditions are presumed known while there is error in the flow initial condi-
tions. The observer response quickly eliminates the flow errors before the estimation
process begins. This is a consideration in specifying a settling time. Figurc 5-5 is a blowup
of Figure 5-4 better displaying the observer response. The four second time histories of
Figures 5-1 to 5-9 are to demonstrate that the observer response does not diverge over a
long time interval, so that reasonable estimates of the unmeasured states are available for
long time periods.

Figures 5-10 and 5-11 show that the linear response is different from the small

signal nonlinear response. Recall that the observer attempts to follow the small signal
nonlinear response.
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TABLE 5-6. OBSERVER PERFORMANCE AFTER 0.81 sec (CONSTRAINED)
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Figures 5-12 through 5-17 are a sample of the estimation process response by
matrix element. For completeness, Figure 5-14 shows the response of a zero element. All
these results are for the eighth order, with accumulator case. )

Now examine results of the sixth order, without accumulator, configuration.

Figures 5-18 through 5-23 show the response of the sixth order observer for the
varying estimates of the parameters. Again the nonlinear small signal is being followed by
a linear observer. Figures 5-24 and 5-25 show the response of the nonlinear small signal
states contrasted with the linear response. The estimation response for the sixth order
example is demonstrated by Figures 5-26 through 5-29. All of the responses were excited

by a 10 Hz perturbation with an amplitude of 27.5 Ib/in.2.

As was anticipated, the technique is fraught with sensitivity, numerical, and
dynamic difficultics. The observer must be properly designed with respect to the observed
system. Appropriate time intervals must be chosen to allow different dynamics to settle
before the parameter estimation process begins. Sample rates must be chosen so that
there is numerically sufficient change in variables, providing well conditioned maftrices in
the calculation process. Gains must be chosen properly to achicve adequate evaluation
stability in the parameter estimation process. These considerations can be formidable,
especially for systems possessing a large span in eigenvalues. Trial and error generally
provide an adequate performance index to determine the times, gains, and sampling inter-
vals. The technique possesses many shortcomings in terms of implementation and system
dependence. However, the system has been demonstrated to work for the CTL-V con- .
figuration, and the technique has many advantages in application to systems whose states
cannot be directly measured.
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ArlagiansC

CehTINUE

Arli,2i=le/ci

Al )s=A[1,E)
AtZatys~la/LL
A(Za2)=m2exRLaXEN/LL
Al2s2)=1./CB
A(323)=(CON#E0L*FGPRY/LL
Al2a4)1=mZanpAl 2,3 #RCAXEN~A(S
A(3s5)2nAl323])

Athad)isles/LE
Arhasg)se2enRDaX4N/LL
Al4sBismal{443)

AtSst)=1a/Ccl

A(SIBI=mA(G24)
AlSaB)sA(BsE)

AlEsBl=le/LN
AfGag)am2anRhXEN/ LN
A(718)=8erCh

Al8a8)=1e/LA

A(8s7)=mAlR25)
A(&s8)1u~RAsLA
WRITE(B.2B1{(A(L, 2
FBRMAT(/ /L INEAR

Jusg

KC MATRIX CALCULATIBA
Ca 12C Ial.8
Cy 11C c=1.8
KC(Ilaw)anCeQ
L8 8% L=aiss

1p8 st lsl)adz1st) 2 12138)s
Yalz1)R)

2)

158}

ACORTANI/(BE1548))

CRECTau YsKCUTaud+RETaL P HC (L)

CBNTINUE
CANTINLE

51000
52.+000
63.000
84000
E5.000
56000
57000
§8.+000
§9.+000
60000
&1+000
622000
634000
642000
654000
66000
&72000
48000
62000
70000
71.000
72+ 000
73,000
74000
75000
76000
77000
78000
79000
80,000
81.000
A2+000
83.000
84000
85000
864000
87000
88000
89000
20000
91.000
92.+000
93,000
94000
95,000
$6000
37000
98,000
99000

100000
101.000



L

nigz
nloz
nlg4
nige
nloe
nio?
nlos
nlos
nlic
niilt
nlile
Alic
nlisa
aliE
alie
niiz
nilé
niis
nizc
nizl
nizz
012z
nl2s
nlze
nlze
nlaz
nlzg
nigs
nlac
nl31
nl3:z
nl33
0134
nl138
nl3e
0137
nl3s
n13s
nl&c
nlal
alaz
ntas
nl44
0148
nl4e
nl4yy
nl4s
niss
nlsg
nlsl
015z

[a¥nl

C

L9

20u

IF (IFS1enF 1)G0 O 150

WRETE (I ToeX () alatahN s (LN CI ) Tt o nN (XL LT 2 I1abN) s (XTI Ys T2ty
BAYa 2O b a T Lo hNs 10 CECtTaw)a IS unha LY sualahhs 1)

s{(A(La Yalalabal)agslanhat}

WRITE (Sa7ITs (R{TY 2 Imt28) s (XLNCIY, [1.8)s

(XLl boT=1,8 0 (XT(F}.1a1,8)

CONTEINLE

ACCELERATTUN, CALCLLATIBN

300

3l

dis

T 320

330

340

T=T4CT

JK B0

CRaT=CT

Ds 31C 1=1,AMN

Litidaxii

Cr(lysXL(1}

Ca(11s%T(1}

CalllsXri

CANTINUE

FT=2AAuSIN (WalE)

Coltid=(nate)=-01t4)) CR

DRI st (rPT=C1L )kl ult (2InCL(P )/t LeETALL
ODi{S)=001(1)%(CBh*&HlﬂFGFk/LB)ﬂ(D1(3}-U1(5)-ED*E1(4)*«E)
DDL{4)=(DI(3)mCA(EI-RUACL{g ) %01 ¢y ) y7LE
DDL¢Sa{Clr4)=Clia)~nltEyr/cL
DEL¢6)m(CL(E)I~FOFE=RARLL (E)*CL (631 /LN

BOL(7Ys(0LIEIZCAY - .

Dn1(8)=(01(5)'01(7)-RA¢21(8iI/LA

LA 33¢ T:=1,nh

BRZit)=Ge

DR3(I)=a.

Ci3a(I)=Cs

Bo 3EC Latahb

CLEC1ISCOCE(II4A(T 22 RC2 (D)

IF (ILMN.NE.CQICB TO 315

DRZCI)=CDEC I +D¢Iaul b3 () 4KC (T2 0% (B2t =03 5))

IF CILNeEGWLICDE( ) anE3 0 1) +L{ a0y 403 (I +KE( 1 ) % (L1 (J)=XS(JI DB )
)

Co4CI¥=LDs (100 oD aD4 ()

CANTINLF

DRE(2)=Coz(2)+FT/LL

Dp2i2y=cbs21+PT/LL

End¢2)=Coar@)+4FT/LL

IF (JKshEWp) G8 TO 38C

uRFJK4 ]

g 37¢ Ist,NN
Z1{uks DY =CT#0EL L)
ZZ(GKs LY eOTHEC2L )
Z3(uK+[1sTHEC3( ]}
Za(uKs [)=CT+DCu (1)
IF (JKeGE-4) GO T8 z&C

102000
103.000
104000
105000
106000
107000
108,000
109000
110000
111000
112000
113,000
114000
115,000
1162000
117000
118000
119.000
120+000
1214000
122000
123000
1244000
125000
1264000
127000
1284000
123000
1304000
1314000
1324000
+33.000
134000
138+000
136,000
137000
133000
139000
1404000
1414000
142000
1434000
144000
1454000
1464000
147000
148000
143000
150.000
151 .000
158000



j&ﬂ:fjjfxlf) ﬁlC“)é[ A0
o FHY4 TVHIOEd

SL

nl6s
nlBy
0158
nlse¢
0157
N15E
nlss
0lec
niél
nlez
nles
nléy
nlék
nleé
nla?z
nlgk
nleés
nl7c
nl71
nize
nl7:2
nl74
nl7e
nl7&
nL77?
nl7a
nl7s
al&c
alud
nlgz
n183
“184
186
aiee
niaz
niye
n18%
nlac
nigl
nigz
nl93z
Nig4
nl19s
nlge
0is7?
nisg
nlas
neoc
0201
n2oz
neQ3

36
37q
38
3%9¢

39

352

384
C

hue
tio

I (CKenE43) €O TH 38C
Ci{lyeXtl)sdl(uks 1)
CrllysXL (420K ]
Ul sXTIII+L3 (LK )
Bally=xp (13424 (uKs 1)
Lyl

Gt T8 3&(c

CH{Ll}sX{I +/l(aKaT)/p>
LatrdsX L1 1+22 0 Kal) 22
DECI)=XT 1 Y#Z3 (KA1 /E
Datl)axr (11424 (ka1
CR=T=CTr2.

CuNTIMNCE

CHNTINLF

Gn Te 31¢

IF (LKeMEa1) €8 To 28C
vKEwK+]l

G 15 34c

IF (urehEa?) 68 TE 2g1
vEaud+l

6o T8 Jag

IF (uK+hEWR) CO T8
wKELK4]

Go 18 340

IF (uKehEas4) €0 T8 Zg4
WK EGKH]

GH 883 Iz1sih

i

/2]
g
™~y

FD)sACI)+(ZA( o] ) E 0 20 1142 0aZA (R L) +71 (ha 1)) 260

KE DY sALC DY 22 L a1 )4G0 2 & 1 14Pan7P (24 1342210 421)) /6
XTIy s XTIV (23 s LB an 23 (20 4P s xZ23 (30 [V 423 (44T)) /6
AMALY sV UL I+ (2R 00 s BV 42 o n 2Bl +P v a0 (30 10424 (4 1)) /s

CHNTINLE

De=xt

Go 16 3¢C

Dy S5 [s1ls0hh
XB(Iy=DBC1(1l)
xeclely=Lezel)
XLT(LY=sLDsS ()
XM (I Y=LC4 )
CahTIMLE

FEASLREVMERTS

Lty #1C Ismg.iv

Ytl)aCa

YT(I)Y=0.

CH 40C c=1sMN
YeE)sy{I 4 (Taud Xy}
YTCIY=YT(EY4CCla0 ) #xT(L)
CuhTINUE

CanTINLE

Ca 415 I151,a
ALDNCIImx{I)=XE{ 1)

153.000
154.000
155.00¢
166,000
167 +000
188 ¢000
163000
160 00
161 «000
1624000
1634000
164000
165000
16000
167000
168000
1694000
170000
171600
1724000
173.000
174000
175.000
176,000
1770600
178.000
179,000
180.+000
181000
182.+Q00
183+000
184000
185000
186 +Q000
187 +000
188,000
182000
150,000
191.000
192000
193000
194 +000
195 .000
196000
197 +000
158000
195,000
200000
201,000
2024000
203,000



SL

n204
na2os
naoe
n2¢?
na2gea
NENS
n2lc
021t
n21z
na1z
n2i4
nZ1E
nN2le
0217
nZ1E
naig
ngac
n2z21
n22g

N22s-

n224

(1228

n2ge

-NEZE

n228

-n2es.

n23p
n231
n23z
nels
n234
nE3S
n23é
n237z
“h238
n23c
nEds
nadl
n24z
nays
ne&y
N24E
y-r
n247
N24e
Nna24s
G280
nest
n282
253
0254

520

421

4oz

423

424

480

485
430
C

LY ==

Wwmre -

wn -~

CahTINUE

Moahl+i

IF (MLEGaLKINL=C -

IF C(IFS1anF+1)GB T8 420

IF (NLoEQuOIWRITE (6T a{XCI)aleluhNY  EXLACTY, Isl hN){X (13,124, NN
FUXFLIIaTa oNNe Ly aCXvOI)aTat oty (Dt ) aTutahat) s ulsNNat}
PU(ALTAL Y eT=1aNN LY ds1aNNL L)

CARTINLE

Ir (IFS«EG«Q}GO T8 451

IF (IFSEG+1)}GO TO 472

IF (IFS.EGe2}G8 TH 423

GO TO 44

IF (NLeECeQIWRITE(SapiTotx(I)ra128)

G T 44

IF (ALeECagIWRITE (S 9 Tt D) st a(XLNCEaTntaR)a
(XL{I)atel B} (XTUEY, Ia1,8)

G T8 4r4

IF (hL-EG-nIhFITE{5JP)T;(X(I):I=1:ﬂln(XLh{l)JT‘1-8)

s CRLATY s =1, B p XTI alel, Bla (XML 2T5128)

GO TH 4p4

FORMAT{ ' TIME/BLEBLE FRESSesLINE FLOWIHEABRISFsCLCT FLBWJDISCH. PR
ESSesCISCe FLOWIACCLMe FRESSesACCLNMe FLBR1/1F10+4/8F15.8)
FARMAT( /' TIME/BLABLE FRESE.,LIMNE FLBW, HEADRISF,CUCT FLAWLCISCH, PR
ESSssLISChe FLBWa ACCLMe PRESS,ACCUMe FLAWI/1F10+4/85168.8/
INONLINEAR SMALL SIGNAL STATESI/RE15.8/1LINEARIZED STATES1/8E15e8/
{BBSERVYER STATES!/8E15s8,0)

FARMAT(/1TINME/BLEBLE PRESS+sLINE FLOWs KEACRISF,CLCT FLAWADISCHs PR
ESSealISCH FLGWAACCUM. FRESS.2ACCLY, FLBWY/1F1046/8E15.8/

INONL INEAR SMALL SIGNAL STATES!/RE1548/tLINEARTZFD STATES1/8E4E48/
'UESERVER STATES!/BE15+8/ 1 MODEL STATESI/8R154R/)

CONTINUE

IF (KL+EQan)GE TB 78p

IF (M,¢hNE+0)GB TB 780

KpakBel

IF (KBsEQs1)GA T8 42n

Go T8 4s90

DA 4BS Tal,hh

Xe{l)sXT(D)

XDM{1)=XBT(1)

CBNTINLE

IF (KBeCTe01)GA TO 75n

IF (JuehEap)GB T8 Bep
RTINS

Jada

Da BEL Imi,Ni
ECIYeXT(I)mXM(I}
ER{IJeXL(D)=XM(T)
ERCI)aXCT(T)=XDM( 1)
ERD(INaXDL(I}wXCM(I)
DE(I)=0.C

204000
205000
P06.000
07000
208,000
PO?-OOO
P10+000
7114000
P12e0Q0
P13.000
214000
P15,000
216000
91?-000
7184000
?1?0000
A202000
21000
AREWQ00
223000
24000
228000
PP6,000
P27 2000
P28+000
PE23+000
730000
P31,000
P32.000
P33.000
234,000
935-000'
P26+000
P37«000
P38+000
P3%+000
240000
2414000
Ah2«000
PL3+000
P44e000
P45.000
246000
47000
2484000
A4S.000
A50.,000
P51.000
A52+000
P53.000
A54.4000



Li

NERE
s25¢e
neEs?
ne5e
nehs
nEsalt
YL 3
HEAE
nE63
rebs
n26s
aRbE
nEsd
neeE
nees
n27¢
nazi
ng?&
nETE
ne@7 4
Ne7e
nA7e
nE77
02?8
n&ls
HERs
négs
Nne2_Ee
BEAR
négh
nERE
(R
nes7
n2aE
6285
nEsge
nag1
aR3e
nEgE
YT
BE9E
n2ge
ness
nags
n29s
63Ge
#3301
tvd02
0363
o304
6305

510
C

B2o

&58
&50

660
570

D8 810 KK=7s0N
DELL)aCECI 4t LakK I wF (i)
COMTIMNLE

ME{Iro)=sBDe1}=DEL]}
Mx{iaudeXTe 1)
CHUATIME

U:h‘*l

B

DB BEC Isilinn
Xi1)r=XTely
ARFATYsXDTLLY
CahTinle

IF {JehE203G0 YU 750
valh

DB BEE Islenh

IF (I1+EGec)GB T8 &1c
Feliacaeg

Gg TR &3¢

Bili=zisn

CENTIRUE

Db &4C IxiashMN

Ca A3C KKalshh
BilsRK aMXtT2KK)
CONTIMNGE

S8 B3E lsiahh

LE S F S T, ¥l v
MeNhel

La 68C Tal.M

[=lsd

B8 &8¢ cucLabb

IF (B{Jusly«EGog+ 108 79 £5C

Dy BBE KK=LaNN

BtJusKKI1aB (JJsKK) =B TsKK) *B(uua 1) /B (121}
Ptdo)sPlJ Y mP {1 9B (L oaF)2B0I 1)

CoNTIANUE
MrIN(DDrJYsPIANI/BINNEND)
be-a¥c l=i.H

Kiehha]

L=Kgsd

Do B&C JJsLalh

Pili) sP (KK) weRMXIN(JuUa B)#E (KK2wL)

MxIn(KKsJ aP XK I/BIKKIKKY
CeNTINUE

Seumi

IF (JehE«CiGB T8 £0¢C
KP=KA

LA 78C Tailshh

By 73C o=iahN
Ballallsgen

D6 70¢ KEK=14BR

255000
256,000
PE7+000
258,000
PEZ 006
PHOL000
PEL OO0
PEE N0
2634000
PE4O0D
RE5. 000
&6+ 000
P67 000
2568000
694000
70000
271.000
PP2.Q00
P73.008
#74+000
P75,000
P76«0Q00
P77+000
P78+000
279,000
REOLQ00
f81+000
REE.000
223.+000
284000
85,000
FRE+0Q0
PRZ 000
PR&«000
AR5 .000
2300080
£31.000
2924000
FE3+000
94,000
£95.000
296000
237+000
»98.,000
293000
300.Q00
[01.000
302000
303000
3040060
205000



8L

£3GF
0307
N304
nige
nEtc
ELE]
0317
n3iz
ndty
031t
REBR:
ndi?
n3i1E
1318
n3de
032
ni2z
ARG
n3gk
0325
niRe
n327
Algs
n3ps
033¢
0331
N33z
n33z
n334
na%E
ni3e
n3sy
n33s
0238
fricta
n341
n342
0343
R 2]
0348
a3ke
A3k7
ELY:
N34S
Q3G
n3ti
ni%:s
n3n3
N384y
n3FHE
N3G

700
7i¢
724G
c

755
7986
757

a1

11
ig

:3

584
7582

7683

7584

e

m

+ ) NI

[P i {) L) e

Calir, dsbA e J4rE (] peRIMP AR IR L)
CHNTIMUE
ContyInLE
CubhTIRLF

£H 787 Iz1aln

4 7EE wsl:hh

Gelsral=Ca

L 788 KKaishk
Gelead=gilaaismr{ sk InrxIn{nhst

Cantinblt

CanTINLE

Gp TH 7uS

CalT lalr

FE {TFSCaERaCIWRITELR 211D subasu128) s 51aK)

b (IFSCEQe i nRITELR2IEYCICTTa o s 128 atmiaB) st INFIL )2 dn1a8001
18 (X {Iac)rwelailalale Bl (DAL Tandauxla8rs fatsi)

IF (IR CosEReEnRITE R 1S Bt an =128 s Inta R st {PF o) s du1aBis T
s apts (AMX Il susippl  I28,80,,(40A 0 W dausl i a1zl

(IMRINCT s u)ru=10BlaTuls@)p (G o) suels8)a]5148)
FRAMAT(SIESTIMATE 8F Thg &YSIEPN SACBRIANI FleE1B gy
FoRuAT{ATESTIMATE B THE SYSTLr JACRRIANY /8E15+8,RE154R/6E15+8/
BE 182 /¥EIReE/BE 1508 /BE18+8/8E1R. 5/ / IERABE MATRIX1/8E18+8/8EL5+R
FrllgeB/BE 1A 3/8E S ep/BE I8 B/ BEIqeR/REIB o RAALETATE PATRIXES

BF 1o+ E /B 1B+ B/ BE LT 8/ EE1E+8/8E18.8/8F15+8/8E18+¢3,3E15+8//

TCELTA LACHIIAN! /(BE1S+8) 1}

FERMAT [/ 1EQTIMATE BF ThHE SYSTEN JACBSIARt/BE15%+8/8E15sn/8E15+8/
BF 1B+ 5/ RE 18 +5/8E 58 /RE18 e 8/E1B. 82/t ERRAR MATRIT/AE15458/8E18 e
JPE1B8/8E 15«8 /BELS #/BE 1B 8/8E1R.8/RELG R/ /1 BTATE PATRIXV/
BF15¢8/8E1Reb/8E1518/8E18 98/ 8L 5.0 /8F15e8/851848/8E15e0//

FCELTA LACOBIANt/BEIn+B8/RE B «B/8FARRB/BEIR+8/RE1IR 8/ BE{1B+5/
BE1Se&/8E1%8/21STATE PATREX INVFREE'/BE1ReB/RE1G48/8E15+48/

BF IG+B/BE1ReR/RELT o2, BE1B+8/8E1548,/+FRECLCT 6F MATRIN AND INve:
AUBELE &}

Cd T8 79¢C

[ENTJe) ’

IF (]BW-RE.L)CH TH 7wB8

Ba{isii=Ce

La 7881 Iazahh

Batlsiiage

DR 72E2 I=b&shh

OA(EJE)SC-

Da{LsZYule

Ca{2a3)2Cs

Lty 7483 [aBarbh

Balis3)ats

Ca{2sb3=0.

8 7884 Tapahh

GA{Ls4)Y=0s

Da{LsEr=0¢

306000
3074000
368000
209 «000
210,000
341000
318000
3134000
31 4000
315+000
316,000
21 7+ 000
318+000
319+000
420000
3714000
322000
393.000
324000
3254000
326000
327 000
aR8«000
329000
3IRG 000
331000
332000
333000
534 00
335000
262000
337000
338000
239 +000
340500

'341.000

3424000
353000
3442000
3454000
346000
247 2000
248000

* 553000

350000
351000
IS «HOD
9534000
354000
355 «800

356000



6L

n3s7?
n2358a
n3ss
n3sc
n3ay
ndae
n363
n3by
hEL}
n36é
n367
0368
n36s
n3?¢
h371
n37E
n3v7z
0374
ns7e
n37e
n377
n37e
n37s
n38C
n38l

7585

7588
7587
7585

760
?27u

730

4

CA{zaE)x0
CAtBAE)zC
CA¢74B)sC
Ca 75E5 Is144
DA(T2€)=Co
CAC72E)}zCe
Datasré)aCe
Lo 7286 Ix1a7
Catls7)=Ce
Dty 7587 Ia1s4
DAtlsaB)zCw
Da{bs&)aCe
BB 77¢C lztlshh
Co 7&€C C=1laNN

CilagdaCeTaul+BALTa ¥#AGN

CohTINLE
Cy T8 788
CONTINLE

IF (T+GTTLM)CALL EXxTT

€5 TE 2cC

FORrAT{/1F10+3/(4EL16428))

C ZERB MEFORY CALL

800

CalL ZAF(KaM)
Gg T8 Ig
Enb

187 +000
IE8+000
1854000
36U+000
3614000
362IUOQ
2634000
364000
365000
16&«000
367000
368 ¢ D00
369+000
70000
271000
372000
373000
3744000
3754000
376,000
377.000
37&.000
379.000
&2 000
3814000



08

AA.
ACN

cB
cD
cEN

13+0c0
73.0c0
BZ200Q0C
244060
24060
13060
13+0G0
424000
42:00C
420000
§2ecoe
13000
32ge0co
13«0G¢
380+QCC
362+00C
13«0Ce
148.0C0
13¢00¢0
13«0C0
13+0co
13000
24QCC
42000
42000
42000
i3+000
l2S:00C
13+000
13000
13.00¢
114.+0c0
13.00¢C
13000
13+00¢
13+000
375+¢0C0
13+0C0
42+0C0
. SBs«0Q0
13t.000
148+coc
14624000
1RS+000
203060
2561 0CQ
265000
£81+0C0
304000
346000
2644000

cRB&s REFEREACF aF MaIN

é4+QCp
74000
83.0c0
484000
48000
2781000
420CC
484000
484000
48000
4Be0Cp
42000
3Z2+0Cn
3c4e0Cn
3L2«0ceo
A63+0Cn
122000
1838+QCn
121 .+0Co
132000
133000
254000
4800

11é6+0ce
138000
11740c0
118+00c0
11S5+0cc
121«0cp
25C«QCq
2520Ce
251 «0C0
253+0Co

313«000

48+000
103+0ce
132.00c
18C+0Ca
163+0Cn
15C.0C0
2C8.0¢Ce
281.0G0
2664000
283+0C0
306+0CH
347000
365+Q00

&6+Q0n
75+«0C0
84+C00
121 «CCn
371+0C0
2864000
“8!00“
B2+000
66000
77«00
71000
4de0¢0
324+QCn
3¢ée000
383+0Cn
365+CQCn
1230Cn

_135+0Cn

137+0co
14040Cn
2564000
1120000

122+000
1€4s000
135%+GCn
137.C00
140«0cn
158¢CC0
256+000
EISERTH

315000

57+0Cn
106+000
133000
151l«c0n
179000
191eGC0
2i16+0Cn
252000
2703C0
284¢0C0
311sGCn
348.000
3&6400n0

£7.000
76000
85.QC0

PE8&W0OCO
€8+0C0
128.0CC
70.0C0
124+0cC0
12440C0
1C3.000
371000
322000
BEEUOQQ
IET 000
1244000

142.0c0
158.0¢0
1444000
2594000
114000

123.0C0
160000
137.000
138.000
157«000
1644000

324000

E3.0C0
115.0C0
155,000
1£4.0G60
18G+00C0
1S4.0C0
218000
253.000
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