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The advent of large-scale computing equipment has made these concepts feasible. 
A logical extension of the technique considered here would be to put an additional loop 
around the object dynamic system. This loop would determine a model structure with 
which to estimate parameters. These parameters would permit state determination. This 
would approach the advanced objective previously mentioned. This research will be con­
fined to those cases for which a rational model structure has been chosen. 

To perform a linear analysis, a mathematical model structure must be contrived or 
selected. Many considerations contribute to the selection of a rational model structure. 
The first step is to define a response matching criterion and then choose a model struc­
ture capable of fulfilling the criterion. This fulfillment, generally checked by simulation, 
is accomplished by time response comparison, frequency response comparison or, more 
generally, a combination of both. The inclusion of small signal nonlinearities, such as 
stiction, windup, hysteresis, and deadband, is dictated by the dynamic effect on the 
system as ascertained by the response matching criterion. A central feature of model 
structure selection is system dimensionality truncation. Dimensionality truncations for 
model selection are of two types; those due to modeling complexity, and those to 
reduce dimensionality of an already chosen model structure. Modeling complexity is 
necessarily broken at some level since most complex system models could be made 
infinite in extent. These truncations are made on the basis of insight, feel, experience, 
and logistics of the computational equipment available. A rational choice of model struc­
ture may simply be the exclusion of dynamic effects in some frequency regime for which 
the control and/or the plant are nonresponsive. A more complicated- scheme consists of 
including only coupling dynamics. The implementation of the coupling dynamics scheme 
is straightforward although sometimes computationally difficult. A subcomponent repre­
sentation is determined first as an isolated system and then compared to the subcom­
ponent representation in the closed-loop system. If the pole-zero representation moves 
more than some judgmental amount, that subeomponent must be included in the overall 
system dynamics. If the subcomponent's dynamics may be discarded, the steady-state 
contribution is accounted for algebraically. A simple state variable criterion is to eliminate 
those states whose derivatives remain less than some judgmental amount. Many other 
schemes may be devised as well as combinations of these schemes. The ultimate criterion 
is the satisfactory working of the finally designed and analyzed system. 

The purpose of the research may be summarized as providing the "best" repre­
sentation of the system linear model, or Jacobian, for a given configuration. Best repre­
sentation means the best model attainable under a qualitative judgment involving 
accuracy, measurement inaccuraeies, and system disturbance. The principal objective is 
the assessment of the validity of the mathematical model used to design a subject system. 

While there are other techniques providing the same information, the proposed 
technique reduces the system history required for solution. Most estimation techniques 
avoid the partially measured state vector because the standard approach is to adjoin the 
unmeasured states to the parameter matrix. The result is that an n-squared problem has 
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CHAPTER I 
INTRODUCTION 

Statement of the Problem -and Objectives 

An advanced objective of control system theory is to build a learning device so an 
unknown system is directed to some goal by the device. First the identification of the 
system is implemented. Based on the identification, the state of the system is determined. 
An appropriate control stimulus results in a response that satisfies some rational figuire of 
merit. This is presently accomplishable in only basic systems [1] : The purpose of this 
researchl is to develop and demonstrate a technique, consisting of several concepts, that 
permits simultaneous calculation of the state and a reasonable facsimile of the plant. 
These concepts center upon state reconstruction and parameter estimation. 

There is a certain amount of literature using these concepts [2,3], but only 
recently have the combined concepts of state reconstruction and parameter estimation 
been exploited [4] to provide information simultaneously of the state and the system 
representation. The literature is confined to linear autonomous systems, while this 
research will attempt to extend the developed techniques to nonautonomous and non­
linear systems. The technique of Reference 4 requires a Liapunov function of the 
unknown system, which is possible for linear systems. The advantage is the synthesis of a 
globally convergent scheme. The disadvantages are that the Liapunov function may not 
exist for nonautonomous and nonlinear systems. The method of this research uses a steepest 
descent of gradient type method. A disadvantage of a gradient method is that initial 
estimates must be close. However, in practice, the system is reasonably well known and 
this disadvantage is not overwhelming. 

This paper will attempt to apply the combined techniques of parameter estima­
tion and state reconstruction to the measurements of nonlinear physical systems. In 
practice, linear systems do not exist. However, there are regions of operation on which 
any system exhibits nearly linear behavior. The limitation may exist that the region of 
linearity is too small or that expected excitations will drive the system out of its linear 
region. In any case, a comprehensive control or system analysis begins with a linearization 
of the subject system. For many applications, the analysis either forms a basis for design 
or provides a rationale for redesign or alteration of the system. A fundamental, but some­
times unanswered, question is "how good a representation of the system is this linear 
model?" In many fields and applications, an a posteriori analysis is undertaken to assess 
the mathematical modeling accuracy. Generally, this consists of a manual iterative assess­
ment until some degree of accuracy is achieved. 

Parameter estimating state reconstruction can be applied, as a black box, to a 
system's measurements to provide a real-time assessment of the current linear model of 
that system. By assessing the response from different pieces of hardware, statistics may 
be compiled as' to the spread of that system's operation. An analysis of extreme condi­
tions provides an assessment of the sensitivity of the system to a real environment. As a 
result, a quantitative assessment of the system design analysis is possible. 



been expanded to an n-squared plus n problem. On the other extreme, the Liapunov 
approach becomes difficult for systems of greater than single output because a Liapunov 
function must be contrived for each of the outputs which also are coupled. The proposed 
technique retains the n-squared dimensionality of totally measured systems. 

Figure 1-1 is a diagram of the system description. A state reconstructor is used to 
recover the unmeasured states. The state reconstructor is used with the reference model 
to form an error for the estimation process. Establishing validity of using the state recon­
structor output and addressing coupled systems dynamics are the principal concerns to be 
analyzed. 

Chapter Description 

Chapter I is a delineation of the area of research with an identification of prob­
lem areas and overall objectives. Chapter II will develop the observability theorems for 
the systems to be considered. This will be followed by developing and presenting the 
necessary observer or state reconstruction theory to support the research. The treatment 
will be subdivided to treat linear time invariant, linear time varying, and nonlinear sys­
tems. Chapter III will address parameter estimation with state reconstruction. The prob­
lem of model structure and model matching criteria will be analyzed. 

Chapter IV will develop a dynamic model of the CTL-V Space Shuttle POGO test 
facility to be analyzed by the technique of this paper. CTL-V is a particularly good 
example since fully half of the involved parameters are unmeasurable. A nonlinear model 
will be developed and the linearized equivalent will be analyzed dynamically at the rated 
power level operating point. Chapter V will design the necessary observers, to permit 
application of the technique, and present the results of the simulation and analysis. 
Finally the technique will be summarized considering its advantages, disadvantages, and 
unique characteristics. 
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CHAPTER II
 
OBSERVABILITY AND OBSERVERS
 

Paramount to any closed-loop control consideration is the measurability and/or 
observability of the object dynamic system. An unobservable system may be controllable 
only in an open-loop sense. Therefore, this research will be confined to closed-loop con­
trol and thus observable systems. Observability will be dealt with in detail, particularly 
those aspects pertaining to linear constant coefficient, linear time varying, and nonlinear 
dynamic systems. Observability is a required condition for the state reconstruction 
process and is included for completeness. 

Many unobservable systems may be recast in a form tractable to the technniques 
of this research. The procedure consists of partitioning the system into observable and 
unobservable parts. The partitioned observable part may then be handled as an observable 
system. If the unobservable partition interacts with the observable partition, the inter­
acting elements may be treated as disturbance inputs to the observable system. The par­
titioning process can be accomplished by means of a transformation to controllability­
observability canonical form [5]. 

A pedagogic examination of the relationship between controllability and observa­
bility will aid in the development of the requirements for observability. If x is an n-space 
representation of the system, y is an rn-space representation of the measurements of that 
system, and x0 is the initial state, then the controllability problem may be defined as the 

existence of a solution from x0 to a desired state, xf. The observability problem is 

defined as the existence of a unique one-to-one mapping from x to y. This has been 
elucidated by Kalman [5] as the principle of duality. The principle of duality [6] 
depends on the uniqueness of the solution and the mapping. This principle applies to 
linear constant coefficient and linear time varying systems. However, for nonlinear sys­
tems, existence is not necessarily uniqueness and the principle does not apply 17]. It 
remains to develop the conditions for assuring.a unique one-to-one mapping from x to y 
for the various dynamical systems. 

Observability Theorems 

Theorem: (Linear time invariant) 

The system 

* = Ax 

y = CTx
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where x is an 	ni vector, y is an m vector (m < n),, A is n x n, and CT is m x n, is com­

pletely observable if and only if the composite n x mn matrix 

[C, ATC.... 	 ATo-IC] 

is of rank n. The proof of the preceding is given in many texts [6,8].
 

Theorem: (Linear time varying)
 

The system
 

;Z = A(t)x • 

y = CT(t)x 

where the variables are as previously defined, is completely observable on the time ,inter­
val to < t < t1 if and only if the matrix 

t!
 

M(t0 ,t1 ) = 	 f T(r,t 0 ) Cr) CT(r) ,(r,t0 ) dr
 

to
 

is nonsingular. The matrix 4')(t,t 0 ) is the unique fundamental matrix satisfying 

d 
-4 (tto) = A(t) (t,t0 ) , 41)(t 0,t0 ) = In 

For compllete observability, the above must hold for every to and some finite t I > t0. 
The proof ofthe\preccding theorem-is likewise found in most modern control texts 
[6,81. 

For nonlinear systems, a more precise definition of terms is required because 
existence and uniqueness are& o longer equivalent. The nonlinear system may be repre­
sented as 
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) = f(t,x) 

Enf:[t 0 ,t1 ] xS2CE' x En 	 (2-1) 

with 	measurements 

y = 	h(t,x) 

h:[t0 ,t1 ] xS2CE' x En Em (2-2) 

The initial state x(t 0 ) is in general unknown since m < n. Now assume that the th order 

derivatives of f and h exist for every xe2 and for every te[t 0 ,t1 ] where km > n. Expand 
y(t) as a Taylor series 

y(t) 	 = y(t 0 ) + y*(t0 )(t - to) + ... + £! (t - t0 ), (2-3) 

where 

y(t 0 ) = h(x(t 0 ), to) A h0 (x(t 0 ), to) 

(x(t0 ), to )  t0)= "-- (x(t 0 )'t0 ) + -	 f(x(t 0 ),t0 ) A h(x(t0),t0 ) 

Now define 

H(x(t 0 )) 

where 

[Y(t 0 ) "h0 (x(t 0 ,t0 )1 

z H(x(t 0 )) = (2-4) 

-1 )hth 1[(xh(oto) 



The nonlinear map H(x(t 0 )) is called the "observability mapping" of the system. The 

system described by Eqs. (2-1) and (2-2) is said to be completely observable in E0 on 

the time interval [to,t ] if there exists a one-to-one correspondence between the set 0 

of initial states and the set of trajectories of the observed output y(t) for te[t 0 ,t1 ]. If 

the observability map H is one-to-one 4C to H(20), then knowing z uniquely determines 

x(t 0 ) so that the system is completely observable. Several publications [7,9] have investi­

gated these conditions for global observability. 

Theorem: 

The system described by Eqs. (2-1) and (2-2) is completely observable in the set 
20 of initial states on the time interval [t 0 ,tl] if 

(1) Qm = n, where n is the span of the state, m is the number of outputs, and 
2 is the 9th derivative of f and 11 which are assumed to exist. 

(2) The observability mapping of this system is differentiable. 

(3) There exists an e > 0 such that the absolute values of the leading principal 
minors A1, A2 , ... , An of the system Jacobian satisfy 

IA21 [An I 

for all xeEn, then H is one-to-one from En onto H(En). This result is pioven in 
Reference 9. 

The development of the conditions for nonlinear observability gives visibility to a 
minor theorem that can be applied to linear systems. If the observability mapping is 
related to linear systems, it reduces to the familiar form of the condition for observabil­
ity. Another use may be made of these results. First, consider the case where there is 
only one measurement. Now the vector z is simply 

y 
"cT
 

CTA 

z x (2-5) 

y(n-1)] cTAn-l 
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which is the transpose of the observability matrix. This matrix must be of.rank n since 
the system is observable so that premultiplying by the transponse afid taking the inverse, 
Eq. (2-5) may be written as 

cT T CT -1 " Y 

CTA CTA TA 

x "(2-6) 

cTAn-l CTAn- I CTAn - 1 y(n-l) 

Given the output and n-i derivatives of the single output, the n-state vector may be 
deterministically obtained. This result is of little use because, in practice, it is difficult to 
differentiate the measurement with great insensitivity or precision. 

Observers 

Observer or state reconstructors have been repeatedly examined in the literature 
since Luenberger [10,11] quantified the concept. The reason for this interest was the 
advent of state variable theory [6], which organized a dynamic system in such a fashion 
that the observations of system are not necessarily the measure of the system. The sys­
tem may be made up of n states and observed by m observations where n is not neces­
sarily equal to m, but generally is greater than m. The observer fills a need to have n 
states from m observations.i 

The objective of the observer process is to provide reasonable approximations to 
those states that are not directly measured. Then these states are available for use in the 
implementation of a control law or strategy. Observers also find use in system estimation 
and identification. The conceptual basis for the observer lies in the process of driving an 
auxiliary dynamic system with the available outputs of the subject dynamic system. 

The state reconstructor is an auxiliary dynamic system that deterministically 
calculates the states using the difference between the real measurements and the measure­
ments from the reconstructor. The state reconstructor is an intriguing mathematical 
phenomenon because apparently "free information" is acquired. That is, m measurements 
are sufficient to determine an n-vector state. Considerable attention has been focused on 
"reduced order observers." If some of the states are directly observed the system may be 
partitioned to form two related systems. These related systems consist of one measured 
and the other reconstructed. 

One of the most significant problems of observers is knowing initial conditions for 
the reconstructor system. The initial conditions of the measurements are apparent but 
these are not necessarily the states. This problem is complicated by errors in the system 
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parameters. A solution to this dilema is the "robust observer" that will be investigated 
further. These observers have the property of converging to the proper state even though 
the differential equation coefficients are not accurately known. This is accomplished in a 
manner analogous to integrating out steady-state error. 

Observer Development 

An auxiliary dynamic system will almost always serve as an observer in that its 
state will tend to follow a linear transformation of the subject dynamic systems state. 
The design of the observer consists of incorporating that linear transformation into the 
process, thus providing an immediate and direct measure of the state. 

Let D1 be a free dynamic system describable by 

=k(t) Ax(t) (2-7) 

and D 2 will be the auxiliary dynamic system of the form 

2(t) = Fz(t). (2-8) 

This auxiliary system will be driven by the outputs of Eq. (2-7) 

=y(t) CTx(t) (2-9) 

so that 

i(t) = Fz(t) + Hx(t) (2-10) 

where 

=H KCT (2-11) 

in which K is a gain matrix selected to achieve some goal. Now 

i(t) - Pk(t). = Fz(t) + HPx(t) - PAx(t) (2-12) 

10 



If 

H = PA - FP (2-13) 

then 

i(t) - Pk(t) = F(z(t) - Px(t)) (2-14) 

which has 

z(t) = Px(t) (2-15) 

as a solution, demonstrating the assertion of the preceding paragraph. Notice that D1 and 
D2 need not have the same dimension. 

This suggests the "identity observer" where the transformation P is the identity 
matrix. For this type of observer, 1I) and D2, must be the same dimension. Note that z(t) 

becomes an estimate of x(tJ, F becomes A-Il, and Eq. (2-10) may be rewritten as 

i(t) = (A - KcT) (t) + KCTx(t) (2-16) 

Let the error between x(t) and x(t) be defined as c(t). Now, 

(t) = ,i(t) - 2(t) 

= Ax(t) A (t) + KCT2(t) - KCTx(t)
 

= (A - KCT)(x(t) - 2(t))
 

= (A - KCT) e(t) (2-17)
 

which expresses the dynamics of Figure 2-1. 
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If CT and A are real matrices, then the eigenvalues of A - KCT can be mttde to 
correspond to the set of eigenvalues of any n x n real matrix by suitable choice of K if 
and only if (CT,A) is completely observable. This has been proven in the literature several 
times, notably by Gopinath [12]. This implies that e(t) may be driven to zero arbitrarily 
fast by suitable choice of eigenvalues of the augmented system A - KcT. The response is 
normally dictated by a trade between accuracy and performance. If the eigenvalues are 
made extremely large negative, the system tends to act as a differentiator and is highly 
sensitive to noise and other disturbances. Some of these effects will be demonstrated with 
a subsequent example, 

The observer is easily expressed as difference equations. Equation (2-7) becomes 

x(k + 1) = G(T) x(k) + H(T) U(k) (2-18) 

where G(T) = eAT, and Eq. (2-16) becomes 

x(k + 1) = G'(T) x(k) + L(T) x(k) + L'(T) U(k) (2-19) 

where G'(T) e(A-KCT)T 

T 

L(T) = f e(A -KCT)r KC T dr (2-20) 

0 

and 

T 

L'(T) f e(A-KCT)r B dr (2-21) 

0 

This may be represented as in Figure 2-2. If the system is not totally observable, then the 
ability to place eigenvalues is restricted. In fact, some of the errors may be unbounded. 
This does not imply a lack of system controllability but rather a lack of adequate control 
command to the state reconstructor. Only if the system is totally observable can the 
eigenvalues of the error system be arbitrarily placed. Without total observability, the 
reconstructor will be uncontrollable. 
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Let M be the nonsingular transformation that takes the system to observable 
canonical form: 

x = Mz (2-22) 

Rewriting Eq. (2-16) 

Mz = AMS + BU + K(CTMz - CTM (2-23) 

W = AMz + BU (2-24) 

C Mz - MS, (2-2 

6 W - MQ (2-26 

= (AM - KCTM) M-le (2-27) 

But 

CTM = (CT' : 0 m k ) 

where CT ' is in x n-k where k states arc unobservable, and KcTM is n x n-k. It is 
apparent that the last k columns of AM are unaffected by choice of K 

Nonlinear observers have been developed for several cases [13,14,15]. In general, 
these observers are highly system dependent, and are very sensitive to initial conditions 
and gains. System dependent means that the closed form observer may be developed only 
for distinct classes of nonlinear systems. Further restrictions are the conditions required 
for one-to-one mappings which assure observability. More general realizations of 
observers, characterized by Reference 13, require nonlinear gain schedules for con­
vergence and limitations on initial conditions. 

Observers for Use in Estimation 

The principal problems in applying observers to estimation are isolating the 
dynamics of the system from the dynamics of the observer and knowing the matrix A-
The observer existence is based on some knowledge of the matrix A. While in many cases 
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the accuracy of the reconstruction process is independent for small errors of the precision 
with which A is known, there are cases where the observer will diverge [16]. Due to 
manufacturing tolerances, material acquisition, sensor accuracy, modeling truncation, and 
a myriad of other reasons, the A matrix will never be precisely known. The concept of 
an observer is analogous- to a pole'zero canceling-compensation so that sensitivity is -an 
inherent design problem. 

Observers of rank less than n are known as reduced order observers. The unrecon­
structed states are obtained directly from measurements and the system is partitioned to 
separate the directly measured states from the rest. The remaining states are recovered by 
an observer of order n minus the number of measured states. The minimal observer 
results when all the measurements are used to identify specific states. However, the 
minimal observer results in a totally open-loop observer for the unmeasured states. Philo­
sophically, reduced order observers are attractive due to the reduced dimension. In prac­
tice the reduced order observer only simplifies the observer design. This simplification is 
easily outweighed by certain advantages of the identity observer. A minor theorem [17] 
shows that any identity observer is robust. Battacharyya [17] defines a robust observer 
as a closed loop system, closed on the error between plant and estimate, and one that 
possesses redundancy. Measurement redundancy means that, implicitly or explicitly, at 
least one linear combination of states is contained in the measurements. 

These recent studies [16,17] havebeen directed to the sensitivity of observers. 
While the emphasis of these studies has been on reduced order observers, the sensitivity 
results generally apply and will be used as justification for assertions and assumptions of 
this research. The primary assertion is, if a robust observer is designed, the estimated 
states will converge asymtotically to the states even if errors exist in the estimate of the 
plant parameters. The use of identity observers removes the concern that the observer is 
not robust. Further the observers will be designed so the augmented system eigenvalues 
are critically damped. This stipulation is of little value for linear systems not disturbed by 
random inputs. However, for weakly nonlinear and perturbed systems, intuition and 
experience indicate the critically to highly overdamped roots will behave in a superior 
manner. 
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CHAPTER III
 
PARAMETER ESTIMATING STATE RECONSTRUCTION
 

Complex multiloop system analysis and control- design are most generally pre­

dicted on a linear analysis. Sufficient mathematical modeling is developed to assure a 
at least in the region of interest. Therefore,reasonable facsimile of the physical process, 

it is highly desirable to quantify differences between behavior, in the small, of the 

process and its analysis linear model. This quantification provides a final step in the 

design cycle, and determines expected variations from the process description used in the 

system design. These variations may be sufficiently large to dictate redesign of the con­

trols or of the process itself. Unfortunately, all states are generally not available through 

measurement, so that the process of determining the best linear model is coupled with 

determining the states on a time history basis. The basic assumptions of this chapter are: 

that a model structure has been determined, that the system inputs are known, that there 

is no input disturbance or measurement noise, and that measurement of the state is 

incomplete, 

Estimation of Partially Measured Systems 

There are two alternatives available to solve the problem of estimating the param­

eters of a system whose states are not all available through measurement. The first is to 

augment the parameter estimation problem with the unmeasured states. The second is to 

develop in-line estimation algorithms which permit the simultaneous calculation of the 

desired parameters and states. The former results in an increase in dimensionality of the 

problem. In general, the parameter estimation problem is an n-squared problem. Augmen­

tation can raise this to as high as n-squared plus n. This causes a long data stream to be 

required in the claculations and may result in convergence problems due to the age of 

oldest data. The latter approach is likewise potentially an n-squared plus n problem, but 

the data stream is the same as for a fully measured estimation problem. There are several 

methods available for the calculation of the states. The most straightforward approach is 

the state reconstructor or observer. 

Gates [ 13] points out that the use of standard linear observers causes problems 

due to the coupling dynamics between the state reconstruction process and the plant 

estimation process. These problems are of particular concern if the dynamics of the plant 

are fast. This robs the designer of flexibility in locating system poles and zeroes to better 

solve the problem. Some of thedifficulties of observers under variations have been 

addressed by Battacharyya [16]. However, if the system is stable the robust observer 

may be designed. Robust observers are stable and converge to the actual states even if the 

system differential equations are not accurately known. The reason for this convergence 

to the actual state is quite analogous to an integrator in the feedback of a control sys­

tem. The steady-state error is driven to zero. 
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If the system dynamics are reasonably fast and if the plant is stable, the design 
approach is straightforward. The approach may be described as a periodic sequential 
estimation process. This is implemented as an estimation update periodically occurring 
after the settling time of the state reconstructor has expired. This process may be viewed 
as a sequence of state reconstruction problems with the error in parameter estimate form­
ing the initial condition guess for the subsequent state reconstruction. The sequence may 
be designed to provide a set of essentially uncoupled state reconstruction problems, each 
with a successively better estimate of the differential equation coefficients. For example, 
if the system has a 0.1 see settling time, an observer with a settling time of I see is 
uncoupled from the system and generally four or five iterations provide reasonable con­
vergence. Therefore in this example, the estimation process may be completed in 4 to 5 
sec. There is inherent design flexibility to adjust these settling times (of' observer and 
estimator) for a desirable response. 

This approach appears minc desirable than the nonlinear observer-like system 
proposed by Gates. The design of Gates' observer is much more system dependent than a 
system tuning approach. This is undesirable because sufficient information concerning the 
system may not be available. A further, and more serious, disadvantage of' Gates' observer 
is that a stable configuration may not in fact exist. 

The problem is then to keep the n-squared estimation problem while developing 
simultaneously the system states. Consider a robust observer compared with a best system 
estimate or system model. If the systems We adjusted so 11hat the ovwlall computation 
cycle is longer than the augmented system %ettling time, then the states fioin the first 
may be used to reestimate the dynamics of the second. The estimation problem is now 
identical to that of the literature 18,13,181 since the accurate states are now available for 
the estimation process 

The observer system is released with its initial conditions set to the best guess of 
the states. After one settling time, accurate states will be available for estimation of the 
dynamics of the system estimate using the method of Gates [131 . The system estimate is 
needed to use as a trial horse against the observed system behavior. These systems may 
be successively stepped to the desired convergence or to follow a slowly time-varying 
system or a weakly nonlinear system. 

Time-varying, linear systems become more interesting and more complex. Now the 
dynamics of the estimator must be rapid enough to track the system tinder expected 
variations to fulfill the response matching criterion. The state reconstruction dynamics are 
chosen to be faster than the estimator within considerations of physical restrictions and 
overall stability. For nonlinear systems, one may consider first those that possess only 
small signal linearities or those that are weakly nonlinear. A well-known artifice of con­
trol analysis is to treat weakly nonlinear systems as time-varying linear systems. This 
approximation is not without risk, since an unstable system may appear to be stable in 
this type of analysis and vice vershi. If the time-varying approximation is permitted, the 
technique may be applied as with the time-varying case with the additional restriction of 
defining a region for which the response remains sufficiently weakly nonlinear. The 
example of Chapters IV and V is of this type. 
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Stability considerations for these processes are concerned with three distinct ele­
ments. The stability of the plant estimate is of primary importance. Parameter variations 
in the estimation process may move -marginally stable eigenvalues into the right half 
plane. If this occurs special tuning techniques are required to achieve the desired accuracy 
due to the observer [16] behavior. The second element is the augmented system eigen­

values of A + KCT. In practice this is seldom a difficult task because the elements of K 
are quite large in the interest of rapid system response. The variations in parameter esti­
mates are normally small, in relation to the elements of K; thus, augmented system 
eigenvalues tend to be insensitive. The last consideration is the stability of the estimation 
algorithm. Many techniques exist [18] to assure the stability of this process. 

System Diagrams and Equation Development 

The equations and block diagrams will now be developed to give form to the 
method. Since most implementation schemes are digital in nature, the equations and 
algorithm will be developed in discrete form. 

The implementation has, as its objectives, the recovery of the unmeasured states 
and the estimation of the system parameters. The unmeasured and measured states are 
direct outputs of the observer previously described. These states are used directly in the 
estimation process developed by Gates [ 13]. Figure 3-1 is a block diagram of the system 
estimation process. The plant dynamics are differenced with the dynamics of the refer­
ence model to form an error which is,used to determine the difference between the refer­
ence model and the plant. The reference model is updated with the calculated difference, 
scaled by an appropriate gain. This gain is chosen for the stability of the estimation 
process. The process is repeated until the desired convergence is achieved. 

Figure 3-2 portrays the combined state reconstruction and parameter estimation 
process. The plant, the observer, and the reference model are driven by the input U. The 
observer is also driven by the measured output of the plant. An error is formed from the 
difference of the observer and the reference model. Due to the behavior of the robust 
observer, the plant estimate 

A 
x will follow the plant x. The observer and the reference 

model use the same estimateof the plant. The previously determined error will be used to 
Calculate the difference between the plant and the reference model. The algorithm per­
forms this function. The reference model and the observer are updated by use of the 
calculated difference and again scaled by an appropriate gain chosen for estimation stabil­
ity. The process is repeated until a desired degree of convergence is achieved. 

The equations will now be developed considering known external inputs. The 
plant is assumed governed by 

x(k + 1) = G(T) x(k) + H(T) U(k) (3-1) 
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where 

G(T) = eAT (3-2) 

and 

(k+ 1)T 

H(T) = f eAr B dr (3-3) 

kT 

with measurements 

y(k) = CT x(k) (3-4) 

A is the system Jacobian, U is the known input and B is the control distribution matrix. 
The observer is described by 

K(k+ 1) = G,(T) (k) + HI(T) U(k) + L'I(T) y(k) (3-5) 

where 

(3-6)G'I(T) = e(D+KCT)T 

(k+1)T 

L(T) f e(D+KCT )r B dr (3-7) 

kT 

and
 

(k+1)T
 

L' = f e(D+ KC T ) r K dr (3-8) 

*kT 

D. is the estimate of the system Jacobian, and K is the observer gain matrix. 
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The reference model is expressed as 

xl(k + 1) = GI(T) xl(k) + HI(T) U(k) (3-9) 

where 

GI(T) = CDT (3-10) 

and 

(k+I)T 

HI(T) = f CDr B d" (3-11) 

kT 

Now, writing state in terms of the system estimate 

x(k + 1) = G(T) x(k) + SG(T) x(k) + H11(T) U(k) + SH(T) U(k) .(3-12) 

The error between the estimate and the state may be expressed as 

e(k + 1) = GI(T) e(k) + 8G(T) x(k) + 8H(T) U(k) (3-13) 

The following matrices are formed 

x - (x(0), ... x(-n-p-p+ 1)) 

UO (U(O),...,U(-n-p+ 1)) 
(3-14) 

e = (e(0),. ,e(-n-p+ 1)) 

cl (e(1),....e(-n-p +2)) 

where each column is the vector associated with the enumerated time point. Eq. (3-13) 
can be expressed as a matrix equation that has 
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(6G(T):6H(k)) = (el - G1 (T) eO LUo (3-15) 

as a solution if the inverse of the augmented state and control matrix exists. 

The system description is now updated as 

GIT) = GI(T) + 6G(T) (3-16) 

HI(T) = HI(T) + SH(T) , (3-17) 

and 

G'I(T) = G'I(T) + SG(T) (3-18) 

Eq. (3-18) is not exactly correct but, due to the magnitude of elements of K, yields 
satisfactory results. Several alternatives exist to precisely calculate G'I(T). One method is 

to recover 6D from OG(T) and recalculate G'I(T) from Eq. (3-6). Another method is to 

calculate as a continuous system using the numerical integration to discretize the system. 
The calculation, in this case, yields 5D. A variation of the last method would be to use 
the 6D to calculate the discrete parameters of Eqs. (3-6), (3-7), (3-8), (3-10), and 
(3-1 1). Precise knowledge of G (T) is not required due to the nature of the robust 

observer. A topic for future study is the development of a recursive solution to the pre­
viously described estimation. 

A Second Order Example 

To demonstrate the procedure the system 

[2] 0 F] (:D (3-19) 
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with measurement 

(0 	 (-3-20) 

x2
 

Discretizing this system results in difference equations of the form 

(xi(k + 1 2 e T - e -2 T eT-eT 2 (xlk) 

(3-21)x (k)+ 2C 2 T-T + 2e-2 T "-eTe+ 1l 2 L 

where 	T is the sampling period. 

First the observer dynamics will be developed. The error between the state and 

the state estimate is dynamically determined by the eigenvalues of A + KCT , or 

which has a characteristic equation of 

X2 +.(3-K2)X + (2K1I +2) = 0 (3-23) 

Hence the values for 

2 8K1K2 - 3 ± /l + K2 - 6K2 -

X 2 (3-24)
2 
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are the robust observer eigenvalues and may be placed almost arbitrarily. Roots may both 
be real as K2 = -2, K1 = 2 which has roots at -2 and -3. Figure 3-3 shows the response of 
the unmeasured state and state estimate with a perfect model. The settling time is almost 
3 sec. Figure 3-4 considers the response for a reasonable estimate of the state. Now the 
settling time is almost 4 sec. These dynamics are too slow for application of the estima­
tion technique. If K1 = 24, K2 = -12 which has roots at -5 and -10 then the dynamics 

are much more suitable to the application of the estimation process. Figure 3-5 presents 
the response for these observer dynamics and a perfect model. Notice the settling time is 
of the order of 0.75 sec. Figure 3-6 shows the response for a reasonable estimate of the 
system dynamics. Again the settling time is less than 1 sec. 

Figure 3-7 shows the remarkable property of robust observers to converge to the 
state even though there are errors in the plant estimate. The settling time is on the order 
of 3 sec, and this can be improved by adjusting the observer. The observers are all 
processing data from the plant 

(3-25) 

while the reasonable estimate was 

09 \" 7-0 2 
3-.) A - KCT(x-Z) (3-26) 

The gross model error is characterized as 

2\=7-0.5 
x= - - KCT(x-2) (3-27) 

which is considerably at variance with Eq. (3-25). 

The parameter estimation is delayed until reasonable convergence of the observer 
is achieved. The estimation is then initiated with the error between the trial system and 
the observer defined to be zero. Figure 3-8 presents a plot of time versus parameter esti­
mate showing the estimation convergence. 
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CHAPTER IV 
CTL-V TESTING ANALYSIS 

All large space vehicles possess a longitudinal dynamic coupling of structure and 
propulsion predictably called "POGO." The most benign stage to date is the Saturn IB 
stage which has nine tanks in a bundle and eight engines providing a maximum of statis­
tical interaction, which results in overall system damping. The Space Shuttle, due to its 
large single LOX feedline, is expected to be susceptible to POGO. Due to this concern, an 
accumulator is being designed for the Space Shuttle main engine as a decoupling and 
suppressive device. A primary qualification test for this device is the CTL-V Test series at 
the Rockwell International Rocketdyne Division, Santa Suzanna Test Facility. These tests 
will provide assurance as to the dynamic representation of the low pressuie oxidizer 
pump and the effect and effectivity of the accumulator. 

The dynamic head rise characteristics of the low pressure oxidizer pump are non­
linear and not precisely known. They are modeled as nonlinear differential equations 
whose coefficients are empirically determined parameters. The accumulator characteristics 
are also ill defined because of the difficulty of obtaining good test results and isolation of 
the higher frequency effects of the accumulator. The advantages of applying the pre­
viously developed techniques are that by matching the time response the frequency 
response is likewise adjusted. That is, the linearization of the appropriate time response 
provides a frequency domain representation of the dynamic phenomena: This should be a 
"best" linear representation at that condition because the estimate is being forced to 
behave in a fashion similar to the actual system. The method is developed and modified 
to provide a neighborhood of operation of the low pressure oxidizer pump and of the 
accumulator. 

The pump modeling is defined by the Rocketdyne publication RL0000I [191 
defining the Space Shuttle main engine-engine balance and dynamic model. The facility is 
modeled in a similar fashion. Since the lines and pumps will be essentially chilled to a 
steady state during a given test, the assumption of incompressibility and thermal steady 
state is valid. Tests have shown that there is energy trade between temperature and pres­
sure but that these are small effects. The specific objectives of the analysis will be to 
better define the head rise dynamics of the pump and the parameters of the accumulator. 
The accumulator parameters are characterized by electromechanical analogy. These 
parameters consist of a compliance, an inertance, and an equivalent resistance. The reason 
for an equivalent resistance will be apparent in the equation development. The results of 
these tests and analyses will be used in the overall Space Shuttle POGO stability analysis 
to better define system stability before first flight. 

CTL-V Equation Development 

The system to be tested in CTL-V is that of Figure 4-1. The pump speed SoI 

may be assumed constant since the pump is being driven by an extremely high inertia 
electric motor- The constant pump speed allows analysis of the basic head rise charac­
teristics of the pump uncoupled from available drive torque and torque required which 

28 



couple back into flow and pump speed. PT is the pressure at the feedline inlet. The flow 

in the feedline DWFL may be represented as 

5-1L " [(PT DW2L1 dr (4-1)- -RL 

DWFL = L f[P - POS) - R 7 41 

0 

The "bubble" on the pump has pressure POS. 

t 

POS 1cB " (DWFL- DWOS) drT (4-2) 

0 

These two elements combine to simulate the 2.5 Hz first resonance of the ozidizer fed­
line. All damping arises from the resistive term of the feedline flow Eq. (4-2). 

Next is the low pressure oxidizer pump. The pump is assumed to have a dynamic 
gain of one. Mass continuity dictates that the pump be gain one at zero frequency. The 
pump is characterized simply as a nonlinear head rise device. The pump discharge pres­
sure is 

(4-3)POD1 = POS + H' 


The head rise H'will be defined by use of a dimensionless parameter 

A1 
1 S.-- DWos (4-3a) 

The head rise itself is given by 

H' = B21 PPoPlN'OP1) (4-3b) 
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where Fpopl(QOp ! ) is determined from the empirical curve of Figure 4-2. The flow 

below the pump is the same as the flow existing in the bubble and entering the pump 
and is defined 	as 

t 

DWos - LD f "(Poo - PO12)- RD(DWOS)2] dr 	 (4-4) 

0 

LD is the inertance of the fluid in the duct and the pump. RD is a lumped resistance 
coefficient combining effects of duct and pump. The pressure upstream of the accumula­
tor is dependent on the compliance, CD, of the duct itself, and has the form 

t 

P0 12 - 5D f (DWos - DWop 2 - DWA) dr 	 (4-5) 

0 

The accumulator is modeled analogously with a pressure change through a com­
pliance and a flow change due to a resistance and delta pressure. The inertance in this 
case is the mass of that fluid trapped in the standpipe leading to the accumulator. The 
compliance is a lumped compliance consisting of flexure of the housing and the com­
pressibility of the gas in the accumulator. The gas to be used on the Space Shuttle is 
GOX in contrast to helium principally used in the past. The GOX is supplied from the 
tank pressurization heat exchanger and maintains a constant level in the accumulator by 
use of an overflow port from which GOX is vented back into the feedline above the low 
pressure pump. That flow is not considered in this analysis. The gas-liquid interface is 
maintained by four layers of 3/8 in. Teflon balls which provide internal slosh suppression 
and help prevent the gas bubble from collapsing in the liquid. The pressure in the 
accumulator is modeled as 

t 

PA 	 f DW A dT (4-6) 
0 

while the accumulator flow can be represented as 
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t
 

DWA = L- f [P 0 12 - PA) - RA(DWA)2] dr (4-7) 

0
 

where CA, LA, and RA are as previously defined. 

POP2 is, in effect, an output of the system and, because of the orifice, will 
remain constant once the test conditions are established. With one exception, the equa­
tion definition is now complete. The exception is that to represent P0 12 , the flow down­
stream of the accumulator must be modeled. This is a small piece of fluid and results in a 
high frequency root. LN represents the inertance of that element and RN is its resistance. 
The flow in this section can then be expressed as 

t 

DWoP 2 012 -Poi,2 - RN(DWoP2)2] dr (4-8)-

LN 
0 

This completes the equation development required to analyze the test. 

These equations may be rewritten as a set of nonlinear differential equations: 

1RL 2
 
I)WFL- 1 T - DWFL
)OS - L (4-9)

LL LL OS-LL F 

I I 

DWFL - (:3 DWos (4-10) 

I I al'poPl R)
=
P01) 1 CB DWFL - CB l)Wos - AIBISOI )OP14 LD I)Wos 

C)1 PO13 1B"O
 

+ AIBISo1 1 - I PO)I - AIBISo ,iO l1 o12
i'l)opl LD (1))A I 1 L 

(4-11)
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1 1 RD 2 
DWOS E- POD1 - P012 " DW (4-12)

LD ODEP1 DW0S 
111 

- DWOS -012 1 DWoP 2 "1- DWA (413) 

(4-14)PA I DWA 


1 1 RA 2
 
DWA LA - PA - (4-15)P12 - DWA

A 0 A 

- I RN 2 (416)
DWoF2 -LN - ENNP2 LEN DWoP2 

Linearized Analysis of CTL-V 

These equations are in turn linearized to obtain the following set of linear differential 
equations: 

1 1 RL 
AFFL = - APT " L APos - 2 - DWFL AFFL (4-17) 

L L LL 

The term 2RLDWFL is normally thought of as being an equivalent damping resistance for 

an element. 

1 1 

APos = - AFFL B1 AFos (4-18) 
CB 

- (4-19)APO 1 CB AFFL - DiAFos + D2 APoDI D2 AP 0 12 
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where 

1 ar 2 oP1 RD 

CB OP1 E-.­
-~ ABS 1 I
~~app 3 1 ojL 

D = A1 B1So 1 aOp1 LD 

Completing the equations, 

1 1 2RDDWos

APO 1 PoDL AP0 12  2RDWOS (4-20) 

OS LD - LD AFo4 
-

1 1 1 (4-21) 
APoI2 D- AFos 6D AFOP2 ED AFA 

1 

A1 -- AF (4-22)PA CA A 

I 2RA 

AFA = EA AP 0 12 AP A DWAAFA (4-23)-

LN DWoP2 AFoP2 (4-24)AFP 2 = - AP 0 12 

Notice that POP2 has dropped out of the linear representation because it is assumed 

constant due to the orifice. At the beginning of the chapter, the equivalent resistance of 
the accumulator was discussed. The resistance is equivalent because, to a first-order 
approximation, it is zero. In Eq. (4-23), the linear term of resistance is 2 RA/LA DWA. In 

the steady state DWA is zero. Therefore, to first order the resistance effects of the 

accumulator are indeed zero. However, the resistive effects are important to the analysis 
so a small nonzero term will be forced in the analysis to assess its effect. 
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These equations can now be expressed in state variable form as 

AP ° S 

AFFL 

APODI 

x = Ax + BU ; wherex 

AFos 

A1PoI 2 

AFoP2 

APA 

AFA 

where 

-

I 

o)W 

(UL) 

0 

0 

0-

0 

0 

0 

0 

0 

0 

0 

0 

Ci 

0R 

0 

( 

A 

0 

=I 

o00 

-

0 

0LA 

) 
+ (0 

0 

D 

0 

1t) 

0 

t 

LN 

a 
l 

( 

0 

0I 

'RN 

LN- DWOI  

0 

0 

0 

0 

I 

0 

I 

0 

FA-RA/ 
LA 

I 

0 

and 

U= PT 
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In practice, flow is an unmeasurable quantity due to instrumentation difficulties. For this 
reason the pressures are all that will be.measured. The advantages, of the scheme pre-. 
sented over most identification schemes are now obvious. Fully half of the state vector is 
not available for measurement and will be recovered with an observer designed in a 
fashion described previously. 

The measurement vector now becomes 

POS 

FFL
 

POS POD1 

POD1 FOS 
CT (4-26) 

POI2 PO12 

PA 

FOP2 

FA 

These equations will be discretized using Fourth Order Runge-Kutta Integration, with 
iteration time sufficiently fast to assure reasonable accuracy. This provides satisfactory 
precision without cumbersome implementation. 

The test series will be operated in two ways, with and without the accumulator. 
The equations have been arranged to allow partitioning in this manner. Using data that 
reflect the rated power level test, the eigenvalues of the system without accumulator are 
as follows: 

Real Imaginary 

-32.45 -224.4 

-32.45 224.4 

-59.1 71.7 

-59.1 -71.7 

-5.3 0 

-0.01 0 
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Notice that the line frequency has dropped from 2.5 to 1.2 Hz. The pump and 
duct combine with critically damped roots, and the orifice segment has a 36 Hz 
resonance. 

Adding the accumulattr, the eigenvalues'become: 

Real Imaginary 

-81.8 -423.1 

-81.8 423.1 

-72.7 77.9 

-72.7 -77.9 

-37.5 48.7 

-37.5 -48.7 

-5.35 0 

-0.01 0 

The line frequency is essentially unchanged as is the pump and tipper duct. The major 
change is in the lower duct where the duct couples with the accumulator giving the 15 
Hz resonance and the accumulator couples with the flow to the orifice which has a 69 
Hz resonance. 

It remains to locate the eigenvalues of the observer and implement the identifica­
tion technique. 
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Figure 4-1. CTL-V test. 
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Figure 4-2 Low pressure oxidizer pump pressure rise characteristics. 

38 



CHAPTER V
 
CTL-V RESULTS
 

The problem of higher-order observer design, analysis, and performance will be 
discussed first, then the actual design will be developed. Results will include those of the 
CTL-V facility with and without the POGO suppressive accumulator. The principal fea­
ture is the demonstration that linear observers can be used in a state-parameter estimation 
process if sufficient care is taken in the design to insure plant-observer dynamic decou­
pling. Techniques for desensitizing observer design and the application of parameter esti­
mating state reconstruction will be examined. Sample rate selection and numerical 
difficulties will be addressed. Finally the curious phenomena of multiple equilibriac for 
fluidic systems of the CTL-V type will be analyzed. 

CTL-V Observer Design 

The design of observers for higher-order systems is a topic in itself. The simplest 
problem is the single input system. If the subject system is observable, there are available 
n times m parameters, of the gain matrix K, to place the n cigenvalues of the augmented
observer system. If there are multiple inputs, the system may be recast as a set of single
input systems and treated individually as single input systems. However, while systems
designed in this fashion have the desired eigenvalues, the dynamics of the augmented 
system can be most undesirable because of the location of the system zeros. Undesirable 
energy trade takes place between the various component single-input systems. The addi­
tional degrees of freedom, in the matrix K, may be used to achieve a more desirable 
overall dynamic response. The term "better dynamic response" must now be quantified.
For the purpose of this research, better dynamic response means critically damped with a 
reasonably fast settling time, while in general the term is dependent on the application 
and the desires of the designer. 

A critically damped response is desired to eliminate or reduce coupling between 
the plant and the observer. A further precaution is to design the augmented system cigen­
values sufficiently larger than those of the plant. This permits rapid reconstruction of the 
states and reduces the propensity of the observer dynamics to couple with the plant 
dynamics. The requirement to critically damp the observer eigenvalues means that some 
of the desired analysis flexibility has been lost and that the technique is becoming more 
system dependent. The critical damping also affects the settling time which is another 
design parameter. The settling time determines how often new estimates of the plant 
parameters can be determined. Due to the nature of observers, only the directly measured 
states are known before the reconstruction process. The unmeasured states become avail­
able only after the system settling time has passed. This time can also be affected by the 
size of the error in the initial estimates of the unmeasured states. A settling time is 
required after each recalculation of the system parameters because the new estimate 
represents a system discontinuity when it is used in the reconstruction process. 
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A consideration that would be of low interest to most applications, but is of 
secondary interest in this application, is the augmented system eigenvalues sensitivity to 
parameter variatiois. This interest is of two parts: first the sensitivity of the observer 
dynamically to deviations in the plant estimate and, second, the stability of the estimated 
systems eigenvalues-due to estimation -errors. Due to the nature of the robust observer, 
the dynamic behavior may be degraded as variations become large. But the system will 
converge for very large variations in the parameter estimates, as was demonstrated in 
Chapter III. In fact, the whole concept of parameter estimating state reconstruction is 
based on that property. But gross excursions can cause divergence of the reconstructor 
from the plant, and some designs are more or less sensitive to parameter variations. A 
design procedure then is to verify a low sensitivity to parameter variations. 

The second part of the problem is the closed-loop stability of the estimation 
system. The augmented system may be stable but may perform inadequately for the 
purposes of this research. If the parameter recalculation causes the observer plant to have 
unstable eigenvalues, then quite obviously the system will have inappropriate dynamics. 
Therefore, another design procedure is to analyze the sensitivity of the plant eigenvalues 
to parameter variations and the overall degree of stabilityof the object plant. A mar­
ginally stable or unstable system is undesirable for analysis by this technique because of 
observer problems addressed in Chapter II, and the overall system sensitivity. The 
observer problem is that if the plant is unstable, then the plant must be precisely known 
and represented in the observer to achieve observer convergence. However, an artifice is 
available to handle these kinds of difficulties, that is, to synthesize a feedback control 
that stabilizes or desensitizes the objectionable eigenvalues. This is a straightforward 
classical technique that provides a system with characteristics that permit analysis by the 
technique of this research, the control being included in the model structure of the new 
observer of the altered system. 

The eigenvalue placement for observers, as has been noted, is generally- overdeter­
mined. There are a variety of ways to choose the elements of the gain matrix K. The 
particular approach for this application was selected because of the manner in which the 

elements of KCT enter the augmented system matrix A + KCT. By choosing K in the 
form 

Klt 0 .0 0 0 0 

K2 1  0 0 0 0 0 

0 0 K32 0 0 0 

KCT0 0 K4 2  0 0 01 

0 0 0 0 K5 3  0 1 

0 0 0 0 K6 3  0 
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for the sixth order case, and 

Kll 0 0 0 0 0 0 0 

K2 1  0 0 0 0 0 0 0 

0 0 K3 2  0 0 0 0 0 

KCT 0 0 K4 2  0 0 0 0 0 (5-2) 

o 0 0 0 K53  0 0 0 

0 0 0 0 K6 3  0 0 0 

0 0 0 0 0 0 K7 4  0 

0 0 0 0 0 0 K8 4  0 

for the eight order case, the augmented system eigenvalues can be less interactively 
chosen. The system is naturally partitioned to encourage this type of gain selection. 
There is some interaction, but cigenvalue selection is more independent than if some 
more-coupled scheme were used. Values for K and the associated augmented system 
eigenvalues are shown in Table 5-1. Sensitivity results for sixth order observers are shown 
in Table 5-2 and for eighth order observers in Table 5-3. The numbers of the K matrix 

are in units commensurate with the elements of the D or A matrix so that A + KCT has 
meaning. If the selected elements of K are extremely large, errors in the parameter esti­
mates have little effect on the observer dynamics; however, due to the high gain, the 
observer system becomes very sensitive to noise. If the elements of K are small the 
observer becomes more sensitive to parameter estimate errors and the observer response 
becomes sluggish. These considerations enter the observer system design process. 

Physical Interpretation of the Model 

The desired output is not simply the linear model, or the matrix D in the calcula­
tions. D must be interpreted to deduce the parameters of interest, namely the com­
pliances, inertances, and resistances of the CTL-V facility but, most importantly, the 
slope of the pump curve. The compliance of the bubble on the pump may be determined 
as 

CB - (5-3)
D12 

l 
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while the feedline inertance is 

1 
LL LL-D2-1 (5-4) 

TABLE 5-1. SIXTH AND EIGHTH ORDER OBSERVER 

K1 1  

K2 1  

K32 

K4 2  

K5 3  

K6 3  

K7 4  

K8 4  

Sixth Order 

Eigenvaluesa 
Value (All Real) 

1200.0 -100.0 

1998.0 -219.3 

1477.0 -354.3 

0.0 -858.3 

1500.0 -1328.1 

-1366.0 -1496.4 

-

-

Eighth Order 

Eigenvaluesa 

Value (All Real) 

1400.0 -96.3 

1998.0 -138.3 

1277.0 -272.3 

0.0 -544.3 

1500.0 -859.7 

-1366.0 -1127.6 

1000.0 -1212.2 

1500.0 -1305.8 

a. Eigenvalues have no order relationship to values. 

The line resistance is a little more difficult to recover but may be determined as 

RL 
-D2 2 LL 

= -
2WL 

5
55 

Next the inertance of the duct may be calculated 

1 

LD = 1 

as 

(5-6) 
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TABLE 5-2. SIXTH ORDER SENSITIVITY 

Eigenvaluea Eigenvaluea Eigenvalue a 

Value Real Imaginary Value Real Imaginary Value Real Imaginary 

Kll 1600.0 -97.2 0,0 1600.0 -168.4 87.3 1600.0 -184.9 0.0 

K2 1  1998.0 -207.6 0.0 2498.0 -168.4 -87.3 2498.0 -185.1 59.1 

K3 2  1477.0 -238.8 0.0 1777.0 -198.0 0.0 2477.0 -185.1 -59.1 

K4 2  0.0 -1325.9 0.0 0.0 -1337,1 0.0 623.0 -1339.1 5.6 

K5 3  1500.0 -1378.9 0.0 1500.0 -1370.0 0.0 1500.0 -1339.1 -5.6 

K6 3  -1366.0 -1508.2 0.0 -1366.0 -1814.7 0.0 -1366.0 -2523.1 0.0 

a. Eigenvalues have no order relationship to values. 



TABLE 5-3. EIGHTH ORDER SENSITIVITY 

Eigenvaluesa Eigenvaluesa Eigenvaluesa 

Value Real Imaginary Value Real Imaginary Value Real Imaginary 

K1 1 1000.0 -98.6 0.0 1000.0 -94.6 0.0 1000.0 -95.6 0,0 

K2 1  1998.0 -139.5 0.0 1998.0 -146.0 0.0 1998.0 -159.3 00 

K3 2 1277.0 -540.6 0.0 727.0 -493.3 -236.4 727.0 -492.8 -236.9 

K4 2 0.0 -506.6 -212.4 0.0 -493.3 236.4 0.0 -492.8 236.9 

K5 3 1500.0 -506.6 212.4 1000.0 -559.8 -393.0 1000.0 -555.5 -443.8 

K6 3 -1366.0 -860.4 0.0 -1266.0 -559.8 393.0 -1666.0 -555.5 443.8 

K7 4  1000.0 -1209.9 0.0 875.0 -778.8 0.0 875.0 -778.9 0.0 

K8 4  1500.0 -1294.4 0.0 800.0 -855.8 0.0 800.0 -850.9 0.0 

a. Eigenvalues have no order relationship to value. 



The slope of the pump curve may now be evaluated as 

ar D33LD - (5-7) 
HI A1B1SoI
 

where A1 B1 is a constant and So 1 is the pump speed. The compliance of the duct is 

simply 

c - (5-8)D54 

The resistance of the duct is 

-D44LD 

RD 2.- -- (5-9)
AWD 

The inertance of the small fluid segment between the accumulator and the orifice is 
calculated as 

LN = .- (5-10)065 

and its equivalent resistance is 

-D6 6 LN 

RN = (5-11)
2W N 

The accumulator parameters are determined similarly with 

CA = &78 (5-12) 

LA -- - (5-13) 
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and 

RA = -D88LA (5-14) 

The Nonunique Equilibrium of the Sixth-Order Case 

The CTL-V test configuration has some unusual properties if the system is tested 
without the accumulator. The system no longer possesses a unique equilibrium, but is in 
equilibrium everywhere that the flows become equal. The system is stable with eigen­
values, as reported earlier, but the system has infinite equilibrium conditions. The sixth 
order system is described as0/ 0 0\ 

CB0 CB
 

I 2RL 
-LL LL DWFL 0 0 0 0 

10C D2 -D0 -) 0 

I 2RD I 
0 - -DWos 

1 1 
o 0 0 - 0

CD CD 
I 2RN ~o,, 

0 0 0 0 1 -- OW 0 1 9 
LN LCN 

(5-15) 

Now clearly 

I 
(5-16)Alos = AFFL B AFos 
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is zero if the two flows become equal, and 

AFEL ~~zAPos (2RL DWFLAFFL (-7 

determines the steady-state value of APos for the nonzero AFFL. In the pump equation 

APODI AFFL + D2 APODI - D1AFos - D2 AP 0 12  , (5-18) 

if APOD 1 is zero, then APoDI is related to the other variables as 

APOD I i5 IAFOS -D 2 APO 2 AFFL) (5-19)()(D A+) 

Proceeding,
 

AFOoDI (21 D DW 'SAFos- (5-20U)
A s= -D) APDI- OsL')A!1 

which, if AFos is zero, similarly can be solved for APODI as 

(5-21)APO[ 2 (RDW O S) AFos)APODI = LD + 

The next equation is 

== ( 2 )(AFoS - AFoP2 ) (522) 
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and finally 

AFoP2 = P I2 N DWOpj AFoP2 .(5-23) 

I-NA i LN/ 

which yields a steady-state value for AP 0 1 2 when all the flows are equal. Notice that by 

Eqs. (5-19) and (5-21) there are apparently two definitions of APODI. Both are of the 

similar form 

(5-24)APODI =AP02 + C'AF 

where in Eq. (5-19) 

C, B-I(+ (5-25)) 

and in Eq. (5-21) 

2RD DWOS (5-26)C'= 

Interestingly enough for CTL-V at the operating point corresponding to the 100 percent 
engine power level, one finds that 

KCI)=2RD DWOS (5-27) 

Therefore, any time that flows become equal, the system will be in equilibrium at that 

perturbed condition. This property is due to the particular values of the pump coin­
pliance, head rise characteristics, steady-state flow, and the duct resistance. 
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This result has no meaning in the context of the engine because the engine system 
has a closed fluid path around these elements, thus altering the overall system dynamic 
characteristics. Further, if the accumulator is added to the CTL-V system, then the sys­
tem regains a unique stable equilibrium since the flow into the accumulator must go to 
zero in the steady state. This response poses no real problem to the technique of this 
research since the system is driven in an oscillatory fashion about the null, as is true of 
CTL-V itself. 

Results and Conclusions 

The most significant result is the ability of the observers or state reconstructors to 
follow the small signal nonlinear signal even though only an estimate of the system is 
known. Results in Tables 5-4, 5-5, and 5-6 demonstrate that even with estimates that are 
in error by large amounts, the robust observer provides reasonable estimates of the state 
for use in the estimation process. The nonlinear small signal values are the oscillations 
about the system operating point. The linear values are results from an analytic lineariza­
tion of the nonlinear system equations. The first group of numbers is the linearized sys­
tem Jacobian. This matrix is the analytic linearization of the nonlinear equations at the 
system operating point. The second group of numbers is the result of the estimation 
process at an instant of time, shown as the first number in the third group. The first two 
matrices may be compared by positions. The first row of eight numbers in the third 
group are the nonlinear states described in the first line separated by comas. The remain­
ing rows are as described above. The constrained results of Table 5-6 refer to the method 
of parameter calculation. Parameter recalculations are permitted only for those elements 
that, due to model structure, are dependent. That is, accumulator parameters arc not 
permitted to be a function of line or pump. The unconstrained estimation allows varia­
tions as with any sensitivity technique. These differences may be observed in the tables as 
the estimate of the system Jacobian. These observers are not simply following the system 
but are reconverging after each reevaluation of parameters each 0.02 sec. Since the 
highest observer root is 200 Hz and the discharge has a resonance at 60 Hz, 2 to 4 sec is 
a very long run time. Either of these strategies work. The constrained method is similar 
to a steepest descent technique. The feedback gain must be small, for the constrained 
approach, to maintain computational stability. 

Figures 5-1 through 5-9 demonstrate the observer response. Notice that the pres­
sure initial conditions are presumed known while there is error in the flow initial condi­
tions. The observer response quickly eliminates the flow errors before the estimation 
process begins. This is a consideration in specifying a settling time. Figure 5-5 is a blowup 
of Figure 5-4 better displaying the observer response. The four second time histories of 
Figures 5-1 to 5-9 are to demonstrate that the observer response does not diverge over a 
long time interval, so that reasonable estimates of the unmeasured states are available for 
long time periods. 

Figures 5-10 and 5-11 show that the linear response is different from the small 
signal nonlinear response. Recall that the observer attempts to follow the small signal 
nonlinear response. 
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TABLE 5-6. OBSERVER PERFORMANCE AFTER 0.81 sec (CONSTRAINED) 

LINEARIZED SYSTEM JAC0BIAN
 on 0oonoor o nocnnnor nnc3 nOf onOO ,ontooonnE.OOCCOCOE 00 ..1428571.5
,CqooCOOcE 00 .14285715E 03 

,20oooco00E ol -.10566q97E 01 CocOC0000E 00 *00000000E 00 -0000000E 00 ,OOOOO00OE 00 .O0000OOE 00 000000E 00
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.OncoOnnE 00 .14285715E 03 -.32846130E 02 -95302E67F o2 


Q0000000E 00

.C000C000E 00 ,OOOOOOCOE 00 .76923065E 02 -,11136920E 03 -.76523069E 02 ,000000E 00 .,00O000E 00 


.1249997 n3 *ooonfocE o0 .o12499997E Q3 .00000000E 00 -,12499997E n,
.Co00cO00E 00 .000000COE O0 .OOCOOCOOE 00 
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*O0OOCOO0E 00 ,143165742 02 ,OGCOOOCOE CO -14315?62E 03 ,00000O0CE 00 .OOOOoOOE 00 .00000000E 00 ,OOOOOOOOE 00
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.OOOCOOOE 00 .143217532 03 -.332022S2 02 :..36000S7E 02 .32647186E 02 *OOOOOOOOE 00 .00000000E 00 000000OE 00
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*CO0OrOOOE 00 *ooooo0nE Co GooCnootoE co ocoooonnF no .9999A9972A92S21 n3 ,onoOno2 go ..
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NoNLINEAR SMALL SIGNAL STATES
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Figures 5-12 through 5-17 are a sample of the estimation process response by 
matrix element. For completeness, Figure 5-14 shows the response of a zero element. All 
these results are for the eighth order, with accumulator case. 

Now examine results of the sixth order, without accumulator, configuration. 

Figures 5-18 through 5-23 show the response of the sixth order observer for the 
varying estimates of the parameters. Again the nonlinear small signal is being followed by 
a linear observer. Figures 5-24 and 5-25 show the response of the nonlinear small signal 
states contrasted with the linear response. The estimation response for the sixth order 
example is demonstrated by Figures 5-26 through 5-29. All of the responses were excited 

by a 10 Hz perturbation with an amplitude of 27.5 lb/in. 2 . 

As was anticipated, the technique is fraught with sensitivity, numerical, and 
dynamic difficulties. The observer must be properly designed with respect to the observed 
system. Appropriate time intervals must be chosen to allow different dynamics to settle 
before the parameter estimation process begins. Sample rates must be chosen so that 
there is numerically sufficient change in variables, providing well conditioned matrices in 
the calculation process. Gains must be chosen properly to achieve adequate evaluation 
stability in the parameter estimation process. These considerations can be formidable, 
especially for systems possessing a large span in eigenvalues. Trial and error generally 
provide an adequate performance index to determine the times, gains, and sampling inter­
vals. The technique possesses many shortcomings in terms of implementation and system 
dependence. However, the system has been demonstrated to work for the CTL-V con- . 
figuration, and the technique has many advantages in application to systems whose states 
cannot be directly measured. 
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Figure 5-1. Eighth order observer response for APos. 
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Figure 5-2. Eighth order observer response for AFFL. 

54
 



2 

-2 1 1 1 1__ i _ _ i t 1 1 . . . i 

0 1 2 

0 - NONLINEAR SMALL SIGNAL TIME WsnOt 
X-OBSERVER 

Figure 5-3. Eighth order observer response for APODL. 
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Figure 5-4. Eighth order observer response for AFos. 
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Figure 5-5. Eighth order observer response for AFos (enlarged). 
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Figure 5-7. Eighth order observer response for AFOp 2. 
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Figure 5-8. Eighth order observer response for APA. 

57 



050­

0 2 5 
r 

u. 000. 

-#0 - ­

0 1 2 

0 -NONLINEAR SMALL SIGNAL TIME iet)
 
X -OBSERVER
 

Figure 5-9. Eighth order observer response for AFA. 
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Figure 5-10. Eighth order linear and nonlinear response for APos. 
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Figure 5-18. Sixth order observer response for APos. 
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Figure 5-19. Sixth order observer response for AFFL. 
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Figure 5-20. Sixth order observer response for APOD 1. 

0 

I 	 II Ii I I I
 
6-­

0 I 234
 

0 - NONLINEAR SMALL SIGNAL TIME (see)
 
X - OBSERVERI
 

Figure 5-2 1. Sixth order observer response for AXF 0 s. 
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Figure 5-22. Sixth order 	observer response for AP 0 1 2. 
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Figure 5-24. Sixth order linear and nonlinear response for APos. 
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Figure 5-25. Sixth order linear and nonlinear response for AFFL. 
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qtD(r,),J,1,8),Iz1,8)
63.000
 
54.000
 
55,000
 
66.000
 
;7.000
 
58,000
 
59,000
 
60,000
 
61.000
 
62.000
 
A3 .000
 
64.000
 
65.000
 
66.000
 
67.000
 
68.000
 
69,000
 
70,000
 
71.000
 
72.000
 
73.000
 
74.000
 
75.000
 
76,000
 
77.000
 
78,000
 
79,000
 
80 000
 
81.000
 
82.000
 
83.000
 
84 -000
 
85.000
 
86.000
 

88.000
 
89,000
 
90.000
 
91.000
 
92.000
 
93,000
 
94.000
 
95.000
 
96.000
 
97.000
 
98,000
 
99.000
 
100.000
 
101.000
 



n1o IF (IFSI.r.I)GO TO 150 
 t02.000
n10o hIEC6)T~ XCZ),I~1,dk),(XLN{I),!=1,h),(CtcL),I~ls~,)j(XTC1),=11 
 103.000
0104 1 t)'(),O sItLt'Nsj), C(C(I..4, I=I sks)su=1stKj.1 104.000
 
olOF E i((A( ls. ,T1N1),aljkJ 105.000
flot0 190 "RIE(5,7)T, (X( IXl8)j XLr(1),1=1,8), I06.000
 
n107 1 (XL)1)jI=I),(cT1 I=jS) 
 107.000
o10s 20c CONTINL2
los 108.000
 
nlb C 
 nlic c110,000 109.000
 

111.000
nll C ACCELEFATIuK.CALCULATICN 

0112 TzTCT 
 ii.000
 
0114 DswT-DT 
 114.000
 
ill 300 DO 31C 1.1,&h 
 115.000
0116 Di(I)=X(1) 
 116.000
n117 DP(I)-XL(I) 
 t17.000
 
nl1 Dq(I)aXT(I) 
 118000
nlis 04(f)lXf(I) 
 119.000

ol2c 310 CONTINUE 
 120.000

01o2 FTAAN*SIN(W*05) 
 121.000
 
n12F DDI12)'(01.2)-D(4),Cf 
 122.000
o123 fi2= Cp-iilpLCc).jp.W +TL 123.000
m124 O±3C0(4CfkSlFFJ/C*D(3-l5RDD()a)124.000

012F D:1Cq)=(01(3).D1(r}..#( 

4)*r1(4 ))fl. 
 125.000
 
n126 D12(cS=(1)-01c )-oica))/CL 
 426.000

0127 Ot1(6)n(DIrE)-OF2-RkDa 6)*01(6i/LN 
 127.000
nl8 DD(7)-(01(P)/ICA) 
 IP8.000
 
nI2 D12(8)9(.Ic5)-cI7)-A*218))/LA 
 129.000
 
012C Do A3C Ii,NK 430.000
 
n131 Dij(f)O. 
 131.000

n132 DO3(I)=o. 
 132,000
0133 01,4( )=c. 133.000
 
n134 Dd 32C =lSNN 
 134.000
O135 Ut2(I=CD (I)tACIJiCacJ) 
 136.000
n136 IF (ILN.NE.O)CO TO 315 
 136.000
n137 3(1 )-C03( I)+D(Is0)*Z3Cj)+KC(I,,)*m2c(k.D3(_)) 137.000

n138 315 IF (ILN.EC.1)0D3(1!:t3(1)+CCInjl*f3( f+KC(Ld)e(L1eJ).XB(J),oseu) 
 138,000
013S I ) 
 139.000
n14c "320 
 1 
 140.000
n141 330 CHKTI1ILP 141.000

0142 D02(2)=CD0(2)+PM/LL 142.000
0143 D03(2)=CD3(2)tPT/LL 143.000
 
0144 DO4(2)-CC4(2)iPT/LL 
 144.000
0145 IF (JX*.NEO) 08 TO GRC 
 145.000
 
0146 k=:K41 
 146.000
n147 340 DO 37C Tot,NN 
 147.000
0148 ZI(uKI)=CT*DCI(I) 
 148.000

0145 ZP(,KJI):CT*CC2(I) 
 149.000
olSc Z3(LjkIODT*rDC3CI) 
 I0.000
 
0151 Z4(KjI)zGT*DC4(I) 
 i±.000

015 IF (Jk.GE.4) 08 TO nA0 152.000
 



o153 IrF (uX-N.R)3 C8 T 7 C IQ~.000 
n154 01(J),XC1)+L1(ok, IS4.0001£DP(I),XL(1 )+ZA( KI) 	 I55.000
 

0156 Di);X7(I)+LS(.K,1) 156.000 
0157 O'.(1);XI(1 )ZM(1K) I 7.0Cc 
nIIsa 16 3 c 1F9.000 

016C D35oI)X(I)+/.( KI2/P. 160U00 
0)161 UM !)D=XL{ I)+22(JCJI),2. 161.000 
r162 D3(I)=XT(I )+Z3U(,K,)/2. 162.000 
0163 04(1)];Xp(1) IZ-f(jsI)/,ci 	 i63 000 

n164 C'=T-CT,2. 164.0u; 
n16E 36ti CtNIINLE 16b,000 
n166 37( CfiNTh1LF 16b.COQ 
)167 Got TO 31c 167.000 
nl6 18 IF di TU 3 C 168-0008c 	 t8..XE.l) 

,165 K=OK+I 169000
 
0l7C (11 76 34c 170.000
 
nl71 39) IF (hs.-NtP) CO T6 191 171.000
 
n172 k= 41 172.000
 
rI7 	 Go Te 34c 173.000
 
.174 391 IF (,R.k ) 00 T6 --a 174.0o0
 
n,179 K-= 41 175.000
t 

n176 GH Td 340 176.000 
n177 392 IF (uK.NE.4) C8 TO 9 177000 
c7s .jK-K4i 178 .000 
c175 Gh 39'.hiN' 179.000 
ci8c )(Z1(ilI)t2. ZIc I)42.*Zi(3'!)+71(4,1)/6. 10)(I180.000
 
jib) 	 ,.L2(aI}t7o.I1)+Z2(4,1T)/6. 1b1100XL(I1)+2(1,Ii41g.O00
 
r.182 X1(1);XT(I+,, 4 2 4 I)+23(4,T)/6, 	 18a.000 
P.18 	 AP )lxu I)+(2 (1,)t .Z (4'X)+?.M;4C3, )+24(41)/b. IR3.000 
.184 39.3 CbNTINL9 18,000
l8sOr,- T 	 185,000
 

ril86 Go 16 3cc 186,000 
n,87 394 DH 355 I=I.N 187.000 
O18a X( 1)OCDl(1) 188.000 
c189 xcrT(I)=tD3(1) 190.000 

0191 Xr( I)=CO4(1) 191.000 

n192 395 C6TIk L 192.000 
n19G C fr2ASL('ErENTS 193.000 
0I94 D 41C IcjVP 194.000 
n195 Y(1)rC. Iq5.000 
n196 YTJ)rO. i96 .000 
n197 Ut 40C 97.00011.Nk 

c1s Y(1)=Y(1)4C(IJ)*XL(,,) 198.000
 
0195 YT(I):YT(Il+C(Ij)*xT(,) 199.000
 

n20c 4U0 CuNTINUE 	 P00.000 
)20l 410 CtiNTINUF P01.000 
202 DO 41511,6 P02.000 

0203 XLN(I)=X(1)XSI) P03.000 



00204 
--a 

0205 

n206 

n2o7 

n208 

n09 


0211 

m212 

0213 

n214 

n21E 

0216 

o217 


o212 

021s 

022C 

n221 

n222 

.o223-
n224 


,0225

n226 

.n227. 

m228 

-n225. 

o2S3 

n211 

n232 

n233 

0234 

n235 

n236 

n237 

m238 

n23S 

024C 

n241 

n24P 

n243 

n244 

0245 

,246 

n247 

n248 

o249 

n25c 

0251 

n252 

0253 

n254 


415 	 CONTINUE 

NL- NL+1 

IF CkLEG.LOKNL=0 

IF CIFPSI.NF1)ca TO 420 

IF (NL.EQ,O)WRITE(6)T,(XcI)A i t)LeXLI(1),I=INk{Xi (II, I=INNl 


2 D(X( Ii Ns1)J1,N(1) 


420 	 CRNTItIUE 

IF eIFSEGo-G8 TO 4Pi 

IF CIFS.EC.I)QO TO 4P2 

IF CIFS.EG.yGe T 475 

GO TO 424 

421 IF C&LEC.o)8ITE(5J6)Tcx(cI)ifz4 1g) 
Go TO 4P4 

422 IF CN*CIWIESP.,XC)Il,) XLCjI*.)
2 CXL(I I i.0,(XT(I),I.1,8) 

Go TO 44 
423 IF (NL.EOo)WITE{ sfT X(),Inlg).(XLN{),r.±.s) 

1P?(XI1,),XCIla,(M S 
- GO -TO 404 

6 	 FORMAT(/TTME/L82LE FRESS,PLINE FI.BfwHEADRISFC)CT FLBADISCH. PR 

i ESS.JCISC. FLOUACCLM. FRESS.,ACCLr. FLB6I/IFIO.A/8FrS.8)


7 FORMAT(/ITIME/ELSBLE PRESS.,LINE FLAW,HEAORISFCL!CT FLAWDISCH. PR 

1, ESS.JCISCI. FLOI,,ACCLM. pRESSACCUM. FL8%/i51O.A/8FiS,8/ 

2 IhONLINEAR SMALL SIGNAL S7ATES'/R£1S.8/'l-hNARIZFD STATESI/SEIS.8/ 

3 t8BSEFVEN STATESI/SE1E.2/)


8 	 FaRkAT(/iTTME/BLBLE PRESS.,LINE FL6WHEACRISFCItCT 
FLRWDISCH, PR 

1. ESS,CISC-.FL68,ACCUM. FRESS.,ACCLV. FLOaI/IFIO,6/SE15.8/ 

2 'NONLINEAR SMALL SIGNAL STATESt/RE5.8,/LINEARIZFD STATESI/BEIE,8 

3 'UeSERVER STATESI/BEIE,rv ODEL RTATSI/SFE5,AR/)


424 	 COhTINUE 

IF (KL.EQ.o)GO TO 79 

IF (NL.NE.o)G TO 79n 

KBRKB-1 

IF (KBE.Q.I)G TO 4a) 

Gd TO 490 


480 	 DO 485 1atNk 

XrI(I-XT(I) 

XD(I)=XDT(I) 


485 C6NTIhUF 
'9O IF (XS.GTeoGO TO 79o 
C 

IF (JJ.KE.0oG6 TO 5 0C 

jjN.K 


SOo J.Jp 

DO 52C I.I,NN 

E(l)")cT(I)-X(i) 

ER(I).XL(1)"XN(I) 

Eo(I).XcT(1)-XDV(I) 

ERD(I)=XDL(I-xt (1) 

DE(I)O.C 


P04,000
 

P05.000
 
P06.000
 
po7.ooo

p08.000
 

P09.000
 

P11.000
 
P12.000
 
P13.000
 
;-14-000
 
P15.000
 
P16.000
 
Pi7.000
 

Pi,9.000
 
2P.000
 
P21.000
 
P2.000
 
P23.0000
 
P24.000
 

,a 


926.000
 
p.O00
 
2.0ooo
 
n28.000
 
P29 .000
 
P3,000
 
P31.000
 
P32000
 
P33.000
 
P34.000
 
P35.000
 
36.ooo'
 

P37.000 
P38.000
 
P39.000
 
P40.000
 
P41 .000
 
P42.000
 
P43.000
 
P44.o00
 
P45.000
 

246.000
 
P47.000
 
R48,000
 
P49,000
 
P50.000
 
P61.000
 
P52.000
 
Ps3.ooo
 
P54.000
 



6 
0255 Df 51C KKn1,KN 955,000 
3256 DOi l~zEII)4DU,<I)hF Kcj PS6,000 
n257 510 CONTINLE P57.000 
1258 C P58.000 
2s5s -59,000 

n260 MW 1,.)-XTt 1) P160.000 
n261 520 CONTIMLE P61.000 
(j262 P62 .000 
n263 Jd P63,000 
fl266 06 53c Ial.irP 964.000 
o265 Xt().XT(I) 965.oo 
n266 X0?(I)-XDT(U) p66.000 
n267 530 CONTIhU P67.ooo 
n26E IF (J*NE.C)G& TO 79C P68000 
6265 
o 2 7 C 600 

ZNN 
Do 62C II.M' 

.69,000 
P70000 

n271 IF (I.EG,.)Ge TO 61C P71.000 
n272 P(I).=c, P72.000 
n27- G6 TO 62C P73.000 
n274 610 PU)=.o 974,000 
n275 620 CeNTINUE P75.000 
R71 DO 64c I.i,NN P76.000 
0277 DO 63C KKAthk P77.000 
n278 
n27S 

630 
640 CONTINUE 

PtIjkK)-MX4!K<)p78.000 
P79.000 

o2Bc DO 635 I.INN 90,0000 
oSSI 
n282 

635 
VNN,1 

P1MI.(j;O.CP,000 
P82.000 

, ;A 
1282 
284 

DO 65C 11,M 
L.I 

P83.00 
P84.000 

MaSE DO 65C .,aLM\ P85,000 
o2s6 
02 8 7 

IF (5J.I.~C)670 65C 
Dc 658 kK=LN 

986.000 
P87.000 

0282 658 8P88.KBJJJKI}-.(TsKflNBb'usf1t/H(I) P8.000 
r628S PIUfshPCJLA-P{!}*B(.uI)/8(I) P89.000 
n29c 650 CONTINUE P90.000 

92 KKNN.-I 93.000 

o294 L=:KR i P94.000 
029E DO 660 .J.LNN p95.000 
o296 660 PiFK);P(KK)PMXIN(JJsJ)0E(KK*'J) P96.000 
0297 MXIN(KJ).P(K}/B(KKKK) 297,000 
n298 670 CONTINUE P98.000 
n29S JZ4.j P99.000 
630C IF (J.NE.c)G8 TO 60Ct 300.000 
ao01 KP=KA oE,000 

0302 DO 72C Iai,tN 302,000 
030- DO 71C M1.NN 303.000 
q304 DA(I,.).C.o 304.000 
30e D6 70c K=tNN 305.000 



'30# !)A(1 )UAt I (I+rKKxIf($,. 3o6.*000 
03c0 

S30 
700 
71C 

CfiNTIb 
CoTItLE 

07.000 
308.000 

o09 
n3Ic 

720 
C 

CONTINUr q09.000
ql0.000 

o5li Cti 757 Il.Nt '11.000 
o3 
0313I(I,u)=C. 

Cb 756 =h.P 312*000 
313.000 

o31C0 7E kz=t,RN 314.000 

nale(1316 76b75b C~~rtCBNTINL 31s,000q16.O000 

n31 7 757 CIhT11NUE 20#.000 
n3ls Ge TO 759 318.000 
f315 7b5 CtjNMIKL 31m o00 
ns2c 
n321 
n322 
323 

C 

1 

IF(F9CtC)ICs1(OI.~Z18,ul 

IF 
:1*8)'(r~(fl),=l1i),hg8)((AtI,.fls 8)1ItM) 

~~. 4 t 

20.000 
apI.00 
qlS.c1wI~ff2(C{s,1SI10iCF22.000 
3R3.000 

n324 
o325 

~ 
1I 

IF ( $c 
l~,(~ 

2~1E1sa((4,.1..~) 
.tf~)1,), 

'*)(at1juja.1 
I~.,~s) 

324.000 
2.O 

o3P6 
n327 
n32S 

Il 
12 

2 
F8RfAI(iESTIPATE OF TFE SYSTEr lACtWIA1\iUEi5.g) 
FRmA(/tESTIVATE 8P T-6 SySILt 3AcBIAhI/8ti.8,15.s/s£15.g/ 

126.000 
327.000 
328.000 

n 3 2s 
033C 

8P1P. / 1S.8/8EtS81E.8/8EjS.)iER.8 ATRIN/AE l,.8/8Ei5.8
/Z!1S,8,aEle,8 S*p/atI.,aE1 .s/gE1.,I//T rF rATRIXt! 

329.000 
A30.000 

0331 l/ 331.000 
n33? 
r331 13 

4 'ELTA LACMdIANI/CSe5.8)
F6RMACIEsrIPATE 8F TE SYSTE JACSSIAsIS,3.iEjSg/gj5.g/ 

332.000 
33.000 

0334 1 a1bs/ /8E s ,/Ei5.8/tE15.S//fERR8R VATRIh'/RE1iPa/8EiS.8 134.000 
n335 
n33e 
n337 

2 
3 
I 

8 
8F15.E!&EIR.b/8El5.8/E158/15.,915./3 
ICELTA , 

fATRIXI/ 
I5.8gE15.g/i 

335.000 
336.000 
337-000 

0333 E 8FPI.6/8LI.b//157ATF tATRIX 1kVFRSE?/8E15.8,SE1R.SE15.8/ 338.000 
33S 6 8FiO./8FI1R.88E15.2,EEI8Ei5.8/2IpeCLC1 sF fATRIX AND INV.' 139.000 

C34C 7 /t8EjS.Sl 340.000 
n341 CD 10 79C 341.000 
34 759 wo-Oj 342.000 

rl34-
034;4 

IF kISWNE.1I)GO TO 7;38 
VA(il)=C. 

343.000 
344.000 

(34 0 7561 !*3.Nk 345.000 
n346 758i DACI,I)uC. 346.000 
o347 DO 7E$2 1=4,N 47.000 
n348 
03n24 

7582 OA(CI),C. 
0AU,3}.C. 

248.000 
349*000 

n35C OR(s32=. 350,000 
n30 DO 7bb3 fnSdNN 351.000 
o:52 7583 DA(ItS)=0, 352.000 

n354 
C6DA(24)t=o. 
08 75a4 Ja6lNt 

q3.Ooo 
954.000 

n35E 
n35s 

7b84 DA(1i*)o40
0 {A(I')=0. 

355.000 
356.000 



n357 CA( ,E)=. 	 q57.000

n35 CA(5,E).C. 358.000
 
0350 CA(7i5)=C. qS9.000

036C O0 7585 I.1j4 160.000
 
0361 7585 ()A(IS6)=C 361 .00)

o3 65 0A(7s6)=C,. 
 362.o000
 
0362 CA(CO6).C. 
 363.00c
 
n364 C11 7556 I.1,7 164.000
 
n365 7586 DA(1A7).C. 365-000
 
n366 DO 7527 1I14 
 166.000
 
0362 7587 DA(I,)=C. 367.000
 
n362 	 DA(6*5)aC. q68,000
 
365 7588 DO 77C 
 3uRN
69.000
 

n37C On 76 .uNN q70.000

t371 760 C(I u)'CCTtj)tOA(lt*AGN 371, 000 
n37 77u CoITIhUE 372.000 
n373 GO T8 758 .73000 
0374 790 CaNTINLE 	 174.,000

n37h IF (T.GT.TLM)CALL E)IT 375.000
 
0376 G8 TO 2CC 376.000
 
0377 4 FORfAT(/1gF Q./(4E16.8)) 177.000
 
0378 C ZENO rvEORY CALL 
 378.000
 
n37S 800 CALL ZAP(KiM) 379.000
 
38C G8 Ye In 	 30.000
 
3 8
n 1 	 EUD 
 381.000
 



CROSS REFEREKCF nF rA-IN ±c:19 tAR 10,176 A
 
C 
o 

A 13-.0CC 
73.0C 

64 .0cc 
74.0cc 

66.on 
75.0Co 

67.000 
76.000 

68.nC0 
77.o00 

69.00)
78.000 

70.000 
79,000 

71,000
80000 

79,Oan
81.000 

82.000 83.000 84.000 85.000 87.n0Q 103.000 135.000 ;08"000 
AA. 24.000 48.0C 121.o0n 
ACN ?4,0C 48.000 371,0Cn 
R 
C 
CA 

13,0CC 
13,0CC 
s42.oc 

a7atoo 
'O0c 

48.0cc 

286,000 
48'OCc 
82.000 

P88.OCO 
280OCO 
128.000 

289,0o 
198,noo 

291.000 
199.oun 

296'000 P97.0co 

re 42.000 4.000 66.0Cc 70.OCO IP2.n00 
rD 
cEN 
A 

420C 
43000 
13-000 

48 -0OCr, 
48 Ocr 
42Oc0n 

77.00(o 
71,0co 
4 8.o0O 

126,00 
124.0o 
103.000 lq7.no0 138.000 140.000 208000 256.000 

nA. 
'20.000 
13.0cc 

322.0C 
3C4.OCo 

324,00C 
306.000 

371-000 
322.000 3P4.fl0 344.000 346.000 348-000 349.000 

350OCC 352-0Cc 353,Ocn 355:000 356.000 357.000 358.000 359000 361.000 

00l 
362.00C 
13.0cc 

363.0c 
122-0Cc 

365,OCc 
12390Cn 

367.006 
124.000 

368,000 
1p5ooo 

371.000 
126.000 127.000 128,000 12900n, 

S148C000 188,0Cc 
Do2 13,0C 131,OCo 135.0con 142.0cO 19,00 189.00c 
M03- is,000 132.0cc 137.00c 138.000 143.noo so.000 190*000 

13,0c. SD313,0occ 140.0oc 144.0oo 151.00c 191.000 
£E 13.000 254*O.C 2560cc 259.000 
T 24O00C 480Cc 112.0co 114,000 148.0O0 149.00n 150,000 151,000 164,000 
oL)1- 42.000 
PU2 
rU3 

42,000
O42000 

DI 13.000 11600c 122000 123.000 1P4.0CO IP5.000 16.O00 127-000 128.on 
- 129.0cc 138.000 154.O0n 160.000 

13.000 117 -0c 135,0Cc 137.000 IS.0oo 161.000 
n, 13,000 118,000 137.oc 138.000 196.oo 162.00o 
04 13.00c i19,0cc 140occ 151.000 163.nO 
0s 114.0cc 12i.Oco 158.000 164.000 185.00 
F 13.000 250.0CC 256.0Cn 
FO 13.000 252.00 259.000 
FR 13.000 251.000 
FRD 13,000 253.0cc 
FXII 375.000 

13.0cc 313 *00c 315,00 324.0C0 
S42,000 48#00f 57,0co S8.0o 62.co0 64,0cc 87-0oo 94000 96.0cc 

98.0cc 103,Occ 1062000 i15.000 116.nco 117.000 I18.000 119.000 130.000 
121.000 132,0Cc 133.0c 135.000 1 0.noo iq8.cco 140.000 147.0cc 148.00c 
149.0cc iI500cc 151.00c 1 4.000 155.000 156.000 157.000 160"000 161.000 
1AE.000 163o000 179,00o 180,000 181 0 000 182.000 183-00 ±87.000 188.000 
189,000 
203.000 

190.0Cc 
208 0CC 

191.ccn 
216-0Cc 

194.000 
218,000 

195.000 
2PI,co 

196.000 
240.000 

198.000 
241,000 

f99.000 
242,000 

20P.000 
249.000 

250,OcO 235100c 252000 263.000 254 ,Co EH6.000 259.000 260-000 264.000 
265.000 2t6000 270OCn 271.000 272.00 274.000 276,000 278-000 280.000 
281000 283e0c0 284.000 286.000 288,000 289.000 292-000 2934000 30P.000 
304.00 306.0Cc 311,0oC 313.000 315.Sn0 3P0.000 322.000 324,000 345.0cc 
346.000 347,000 348.0CC 351.000 3r2,nCO 364.oOo 355.0o0 360.000 361.00o 
364.000 365-000 366,00n 367.000 369.000 371.000 



CRIDES REFERENUF RF MAIN lnt9 MAR l0J,76
 
YLN 22-OCC 48.0Cc, 136.CCC 138.0C0 
IPS 2F.0CC 48-0CR. 212,OCn 223,000 914.n0 
IFSC 
IF$$ 

22-000 
RE00C 

48,00 
48,OCc, 

320,001" 
10-OCN 

3 22000 
2C7000 

:3;4,nO0 

TSk H2.0co 48,0C, 343,0Cc 
I 4e-0CO 48-0Cc, 63-0Co 64.000 87.000 95,0no 96-Ooo 98,000 103.00t) 

124-000 1:5.0Cr 237-oco 138-000 140-nCO 197-con 198*000 i99,000 208-000 
8 ,oco 259.OC, 260,OCn 26210C0 E63,nC 2bscoo 269,000C 271sooo 281.00t 
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