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LOW-ENERGY ELECTRON SCATTERING FROM CO

1. . Ab-initio STUDY USING THE FRAME-TRANSFORMATION THEORY

N. Chandra

ABSTRACT

The Wigner-Eisenbud R-matrix method has been combined with the frame-
transformation theory to study electron scattering from molecular systems.
The R-matrix, calculated at the boundary point of the molecular core-radius—
which defines the inner-region—in a molecule fixed-frame of reference in the
fixed-nuclei approximation, has been ‘;;ra.nsformed to‘the space-frame in order
to continue the solution of the scattering equations in the outer-region where
rotational motion of the nuclei is taken into account. This procedure has heen
applied to a model calculation of thermal-energy electron scattering from CO.
The dependence of the rotational transition cross-sections on the core-radius
has bheen studied. This test case demonstrates, for the first time, the usefulness
of frame-transformation theory to study the scattering of electrons from polar
molecules in general and CO in particular by more ab-initio methods. A general
methodology has been developed for adapting the single-center pseudo-potential
method to the proposed amalgamation of the R-matrix and the frame-
transformation theories in order to perform a fundamental calculation of the

interior problem. A comprehensive study of e”-CO scattering is carried out

1ii



on the basis of this methodology. The calculated momentum transfer cross-
section is in very good agreement with the experimental measurements for
thermal energy electron scattering from carbon monoxide, The rotational ex-
citation and de-excitation, and total scattering and momentum fransfer cross-
sections computed from this method also reproduce the 1.75 eV 2Il resonance;
while those obtained from an extension of the model calculation mentioned above
fail to do so. In particular, we find that for rotationally inelastic scatiering in
the resonance region the cross-sections for (0-4) and (1~ 3) transitions are

the largest among those which start from the ground and first rotational states
of CO molecule respectively. The angular distributions for various electron

impaect rotational transitions in carbon monoxide have also been computed.
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INTRODUCTION

The absence of a center of symmetry in heteronuclear diatomic molecules,
which also gives rise to a non~vanishing permanent dipole moment, makes it
more difficult, physically as well as numerically, to study electron scatter-
ing from polar molecular targets compared fo that from homonuclear systems.
We have shown in a recent con:uma_nic\ati‘on1 (hereafter referred to as I) that
for electron scattering in a frame of reference attached to the molecule (i.e.,
the molecular-frame or the body-frame of reference) the single-center ex-
pansions of the bound and continuum molecular orbitals converge very well even
for complex targets, albeit at a slow rate for low symmetry systems.

For heteronuclear molecules this problem of slow convergence is com-
pounded by the fact that because of the presence of a long-range r 2 electron-
dipole interaction potential the phase shift for higher angular momenta behave s'
as £°?% for eleej:ron scattering from a fixed polar meoelecule in body-frame of
reference. As a result, the total scattering cross-section, averaged over all
molecular orientations, diverges logarithmicallyl in the fixed-nuclei approxi-
matio'nz. (However, as ‘proved in I, the momentum transfer cross-section is

finite even in this approximation.) The fact that the time-averaged field of a



rotating dipole is zero makes il necessary that in order to obtain finite total
cross-section the rotational motion of the nuclei should be included in the
etiuations for scattering of an electron from a polar molecule,

Among‘si-: the existing theoretical formulations of electron-molecule colli-
sions, the use of the fundamental theory of Arthurs and i)alga.rno3 for scatter-
ing of a structureless particle from a rigid rotor makes a natural choice to
study tﬁe electron-polar molecule scattering. This space (lab)-frame formula-
tion of the collision problem retains the rotational kinetic energ;;r terms in the
total Hamiltonian of the (electron + molecule)-system.

There have been several attempts to apply this theory to elecﬁon scatter-
ing from varioys polar molecular targets.” Almost all of these studies are,
however, phenomenological in nature based upon some ad-hoc semi-emperical
potentials whe;:'e no account has been taken to represent the highly anisotropic
short-range terms a.ﬁd the exchange effects of the electron-molecule interaction
in the scattering equations,

3 the total wave function of the

In the formalism of Arthurs and Dalgarno
{electron + molecule)-system is expanded in the basis set designated collectively
by the qua1.1tum number j for nuclear rotation, 4 for“ orbital angular momentum
of the incident electron (and also v if the nuclear vibration is taken into account).
This expansion, in prineiple, should yield accurate cross-sections for electron

impact (vibration-) rotation transitions in a diatomic molecule. However, in

practice it has been found that even for such simple system as H, , where the

[



short-range terms are not so non-central and strong, it.is extremely difficult
to carry out the expansion in (v)j€ basis channels to complete convergence
lirnit.2* Therefore, the application of this theory to ‘electron scattering from
more complex systems with an emphasis to represent the nuclear singularities
and the exchange effects in the scattering equations as accurately as possible
and in a non-phenomenological way will become almost impossible numérically.

Although the expansion of the total wave function in 4, which forms the
only basis channel for electron scattéring in a body-frame of reference in
fixed-nuclei approximation, does converge very well, but the fact that the total
cross-section for scattering from polar molecules in this approximation is not
finite' also excludes the possibility of using the adiabatic-nuclei theory?® to
calculate vibration-rotation excitation cross-sections for eléctron-heteronuclear
molecule collisions.

The natural question which one should ask now is that is it physically valid
to perform the Born-Oppenheimer separation of the electronic and nuclear
' motions at some stage in the electron-molecule collision process? The well-
known answer to this question lies in the fact that whether in any part of the
whole secattering region the duration of collision is smaller than the time period
for vibration and/or rotation of the nuclei. When the electron is far away from

the molecular core, where the nuclear singularities are not so effective and the

short-range and exchange terms have almost vanished, the slow motion of the



electron compared to the vibration-rotation will certainly cause the Born-

Oppenheimer approximation to break down. In this outer region, therefore,
one will have, to include the nuclear kinetic energy terms in the scattering.

.equations. -

_ The validity of the Born-Oppenheimer approximation in the inner-molecule
core region is, however, a much more involved question. A naive reasoning
based upon the observation that an increase in the incident electron's velocity
due. to strong attractive short-range forces will cause the electron te move
faster in this region than the vibrating-rotating nuclei will lead to the conclusion
that the separation of the electronic and nuclear motions will always be valid in
the inner-region. However, a8 recently discovered by Chandra and Temkin® in
their study -of vibrational excitation in e -N, scattering and previously discussed
by Herzenberg’ for other molecular systems, a trapping of the incident electron
in the non- centrai molecular field—which is a combination of the centrifugal
barrier, permanent moments, and the induced dipole polarizability—may always
enhance the transition time such that before the incident electron becomes free
again the molecular nuclei are able to change their configuration, Under these
circumstances one can certainly not neglect the effects of the nuclear motion
relative to that of the incident electron. ']E‘herefore the validity of the Born-
Oppenheimer approximation in the molecular core-region is not -always -a pre-

- determined fact.



When the separation of the motions of the incident electron and the nuclei
in the molecular core-region is a viable approximation one can always neglect
the nuclear vibration-rotation in the immer part of the configuration space.
These two different physical situations—where one uses a fixed-nuclei approxi-
mation in the inner-region and consider the nuclear rotation in the outer-region
in a space-fixed frame of reference—have been combined by an orthogonal
transformation operator at the common boundary point by éhang and Fano® in
their frame~transformation (f.-t.) theory of electron-molecule scattering.

If the Born-Oppenheimer approximation is valid for electron collision with
certain polar molecules in the core-region then the f.-t. theory will provide a
natural frame-work for studying electron scattering from such target systems.
A fixed-nuclei treatment in the inner-region will make very convenient the
inclusion of nuclear singularities and the exchange effects in the scattering
equations. At the same time the introduction of the nuclear rotation in the
scattering equations in the outer-region will cause all the scattering cross-
sections to be finite which are otherwise undefined in fixed~ and adiabatic-nuclei
approximations. The convergence problem in the basis set (if) in a lab-frame
in the outer-region is not expected to be so severe now as the strong non-central
short-range inferaction potential ferms are almost negligible and it is only the
long-range terms which will have to be considered.

Awmong the diatomic heteronuclear molecules, carbon monoxide is a case of

particular interest. Apart from being important from a space and environmental



point of view, high-energy CO lasers play a significant role in secientific, appli-
cations, The electron swarm data for CO molecule have yielded scattering
cross-sections over a considerable range of enent'gy.9 Moreover, the time
period for the rotationsll motion of carbon monoxide is.larger than the duration‘
of collision of an electron with this molecule. Being iso-electronic to N,, it-has
a closed-shell ground electronic state configuration. We have reported in I that
the single-center pseudo-potential method, originally introduced by Burke and
Chandra'® in their fixed-nuclei study of e”-N, seattering and recently proved
to be extremely successful® in electron impact vibrational excitation of nitrogen
molecule, works very Wellléven for electron scattering from CO.,

In view. of these considerations and in continuation to our efforts of study-
ing the electron-molecule collisions from first principles using ab-initio

1:2,0,10, 10 0 have, therefore, employed the f.-t, theory to study

methods,
rotationally elastic and inelastic e - CO scattering. "Earlier Chandra and
Gianturco'? gave a brief description of the methodology of applying the f.-t.
theory to study electron-molecule scattering in general and e ~-CO scattering
in particular. (Note that the results of this letter with regard to COare no -
longer valid because of an error discovered later and discussed in.detail in I;)
Short reports on the progress of the present work have been given elsewhere.!?
In Section II we shall review the essential elements of the f.-t..theory and

give the relevant formulae. Chang and Fano® have suggested that the wave-

functions and their derivatives, obtained by solving the fixed-nuclei scattering



equations in the inner-region, should be transformed separately to a space~

fixed frame of reference to continue the soluigion of the scattering equations in
the outer-region. In our methodology of implementing the f.-t. theory we cal-
culate the Wigner” R-matrix at the boundary point by using the solutions and
the derivatives of the fixed-nuclei equations in the imner-region. This R-matrix
is then transformed to the lab-frame by applying the orthogonal transformation
given by Chang and Fano.’ The computati-on of a body-frame R-maftrix, its trans-
formation to a space-fixed frame of reference, and then the subsequent matching
to the solutions of the outer-region equations for calculating the §—ma;crix has
been discussefi in Section II.

To our knowledge the present work shall constitute the very first application
of the f.-t. theory for studying the electron-molecule collisions, (Henry and
Chang'® and Chang 18 had tried to apply this theory to e"-H, scattering. In
their studies they have made an approximation by neglecting the solutions of the
scattering equations in the outer-region in the lab-frame. In a recent communi-
cation!” Chandra has shp\am that under this approximation the f.-t{. and the
adiabatic-nuclei ‘theo:fies are equivalent. . Therefore, the e"-H, calculation of
Henry and Chang'® and also that of Chang '® essentially reduces to an applicatic;n
of the adiabatic-nuclei theory.) In order to carry out a complete f.-t. {reatment
the numerical implementation of the procedure, briefly pointed out in the pre-
ceding pgragraph, becomes a complex and arduous task. We, therefore, thought

‘it to be extremely important to test this theory and develop a feeling about its



phyéics and the confidence in our numerical procedure by applying it first to a
previously undertaken semi-empirical calculation based upon some simpie
potential.

In the first part of Section IV we describe in detail our test study of the
application of the f.-t. theory to a model caleulation of thermal energy electron
scattering from CO done by Crawford and Dalgarno % and eompare Our new
results with those of their rotational close-coupling calculations. In the second
part of this section we discuss how the single-center pseudo-potential method
can be adapted to our methodology, the effect of different choices of the boundary
point—defining the inner-molecular core region—where a transformation is per-
formed from a molecule- to a space-fixed frame of reference, and the conver-
gence of the (j¥) basis set in the outer-region. The final differential and in-
tegrated cross-sections for electron impact rotational transitions in a.CO
molecule together with the total scatiering and moment].lm transfer eross-sections
are also presented in Section IV. In the concluding Section V we shall briefly
discuss, on the basis of our present experience, the usefulness of the f.-t. theory
in studying the eleciron-molecule collision in general and the electron—polar

molecule scattering in particular,

II. THEORY

A. Electron Scattering in a Space-Fized Frame of Reference

The total Hamiltonian of the (electron + molecule)-system can be written as

(in a.u.)



-

1 -t - = A g -
-5 ‘(7; +H (ry.. T R) + H o R) + V(... T3 R): (2.1)

The Schrodinger equation

-

H T, .- TpR) ® (T T B = e R 0,(Fp. - iR (2.2)

describes the nth state of the. motion of N electrons of the target molecule,
Ho ®) Y, R)=BiG + 1) ¥, ® 2.3)
3

is the eigenvalue equation for the rofation of the nuclei when the molecule ig in
its 's electronic state, and in Eq. (2.1) we do not consider the vibrational motion
of the nuclei. In Eq..(2.3) the rotational constant B = (2I)~1, where I is the
moment of inertia of the molecule. The electron-molecule interaction energy

is given by

N
. z z
VG E T =) b A ) e
d |7 -7 T - R {7 RBI

where'Z, and Z; are the atomic charges of the two nuclei A and B separated
by distances |R Al and i§B! from the center of mass of the molecule.

In our discussion primed co-ordinates will always be referred to the body-
frame of reference which is rotating with the molecule and whose polar axis is
defined along the line joining the two nuclei with center of mass of the molecule
as its origin. The space-fixed frame of reference or the so called lab-frame

will be denoted by unprimed coordinates. The polar axis of this frame is slong



9

the direction of incidence. We follow Rose's convention®® and define three
Euler angles a, 83, and ¥ in order to rotate a space co-ordinate system into
-coincidence with the molecule-fixed frame. Fora Iiﬁe'a;r molecule aritgle‘ Y can
have any arbitrary value (we set it to be equal to zero) and B and o are the
polar angles?® © and® of the internuclear axis with respect to the lab frame.
Therefore, R= (R,9,0), D(a, B, ¥) =D (@, 0,0), and the eigenfunction ;for ‘the

Hamiltonian H__  in Eq. (2.3) can be written as

t

23 +1
L7

Yi my Cﬁ) = Yj my ©.0) = DrJ;le @, 8)- (2_'5)

In order to formulate the theory of electron scattering from a rigid rotating
diatomic molecule ir a space-frame, Arthurs and Dalgarno® developed a basis
set which is an eigenfunction of the square of the total angular momentum J and
its projection M along the polar axis of this frame. According to the Hund's
coupling scheme (d)?%(® .the orbital angular momentum £ of the incident

electron is coupled with the angular momentum j of the nuclear rotation to.form

the constant of the motion J = T-*- T whose eigen-functions are given by

“ oA, A @RI+ RTFD 13 4 TN s -

hE _ 3

AR D=1 ]/ o (mj ng _M’Déjo(R')Y,ﬂmlg(r).
m3 g ' ’

(2.6)

(For the definitions of 3-j, 6-j symbols, ete., see, for example, Rotenberg

et al?' ) Note that

10



‘yf'j%(—f?,—f) = (-1) +t ‘yg’}(ﬁ, ) 2.7)

have a well defined parity.

We now substitute the foliowing expansion

YME L T, TR =@, (F,, - T R) £t E u:j[,/ﬂ,(r)‘y‘jbf%, R 1) (2.8)
t’ﬁf
1

for the total wavefunction (see Ref. 2 for the antisymmetrization of this wave-
function in e” -H, scattering) in Eq. (2.1) and derive a set of coupled radial

scattering équations by using the orthogonality of the ground electronic state

wavefunction @, and of the basis set YIM:

@ A+ 1) EUDTR
(2.9)
=2 ) QGBI vy,
j"ﬁ'
where
V(TR = 0y T B) VG T i Bl @G T B (2.10)

and E, is the total energy of the colliding particles. The right hand side of
Eq. (2.9) is diagonal in J and M and also independent of M because the infer-

action potential given by Eq. (2.10) is invariant under rotation of all co-ordinates.

11



One can always write Eqg. (2.10) as a multipole expansion??

V(R = Z V() B(B:R) (2.11)

I

of the molecular charge distribution about the center of mass of the molecule.
Here P is the Legendre polynomial of order 4. The summation index # will
have both even and odd integral values for molecular systems which belong to
the C, point group, e.g., the heteronuclear diatomic molecules like Cé); but
only even integral values for D, symmetry group molecules which possess a
center of symmetry (e.g., N,, CO,, ete.). In Eq. (2.11) we have not shown the
parametric dependence of V,(r) over the inter—-nu;:lear separation R,
After substituting (2.11), the vight hand side of Eq. (2.9) can be si::nplified.3

The final form of the radial equations for scattering in a space-frame will then

become
a2 L@ +1) ol T
l:dr2 ) 2 ' kj:l u’{(r)

I 2
=2 ’Z/ﬁ’ Z 1YTE Y2 4+ 1y 2d + 1) @i+ 1) @Y+ 1) (0 o 0)
] K

,{" ,{J’: ) jt ,gr J— I ’
) (0 0 0){{ ; ;,L}V”(r)uj"g'(r)’ (.2.12)

12



where
k?=2{E; -~ ¢ -Bj(i + 1. (2.13)

For the same value of J, this sysiem of equations splits up into two different
sets according to-the parity (-1) it . One solves the coupled Egs. (2.12), sub-

ject to the following boundary conditions

J
Myg 40 g

- . 1 1
1/2 v =4
’1_'}6 kj .|:51n (kj: r--2-fﬁ 77) 8”, Sr{/f,” +Cos(kj,r—2f\°, ‘J'T)

I 2
Kj,/ﬁ,,jf[,] for 12, >0

~_ lk '1-1/2

r—w 3

exp(- |kj:! ) for kf, <0, ] (2.14)

in order to calculate the scattering matrix
87 = (1 +iKY) (1 - iKI)" (2.15)

-and the transition matrix
T =g) —1=2igT(1 - igT)™" (2.16)

The first set of (j',4") subscript on ul in Eq. (2.14) refers to the outgoing
channel while the second set (j,¥) is for the incident channel.
The formulae for various cross-sections for a transition from molecular

rotational state j to j' have been derived by Arthurs and Dalgarno in the original
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paper. 3 However, these expressions can be further simplified 23 by using the

— - —_ -ty - - -
concept of angular momentum transfer, 4, =j' -j=4 -4 (whereJ=j+ 1 =

3t + :{5'), introduced by Fano and Dill>* 1n this simplified form the differential
cross-section for (j—i") transition becomes

do ko2
i

isjl (i _ 92.17
ar Ca@isDn [0 T flees6) .
where
AU = (1)L (2L + 1) Z A A A
PRI
& £ L\ /4, 4, D
vt sy, + 1) 28 + 1) (24, +1) \0 0 0/\0 0 ©
14, £ 4 L) A, 4
Z D (2{t+1){,t boa [ S5t id O i, (2.18)
,gt 2 1 t
/Et
The new © matrix is obtained from the transition matrix T? by the following
relation
£ ity £
t _ thoorg
T -.Z (=17 2 + 1) {£ o I} Tl a, (2.19)
i

The advantage of relation (2.19) compared to that given by Arthurs and Dalgarno
in Eq. (19) of their paper?® is that two infinite sums over J, present in their
expression, have now been replaced by a single sum over ’ﬁt whose values are
restricted by the inequality

larger of ([4-4'|, |i-3'|) < 4,< smaller of (£ +4', j+j").

The scattering cross-section for the transition (j-j') is given by

14



'l‘Tk'.-2 r Wk?z /ﬂ
) NV Lo W I ? 24+ 1) |8 5, 17
T T35 41 O 2j+1 ,(‘+)Ii‘ﬂ"j’f‘l

£ AL

t

- Z ! |* 2.20
=§m ; (23 + 1) ITj'fE’,jrﬂ . (2.20)
%

And the momentum transfer cross-section for (j-j') transition becomes

d, .,
cr’;’qj, = —-{;—5—3— (1 -~ cos &) d

(2.21)

I
|
3
oy
>
= |
Y
5
|
=
o=
~
LY
-
L~

However, the total scattering and the momentum transfer cross-sections,

oiy=) o, (2.22)

!
]

and

O‘m(j):z O'?_.il (2.23)

[
}

respectively, are nearly independent of the initial rotational state j of the
molecule®’ except close to threshold.

The coupled radial scattering Egs. (2.12) are exact and their solution should,

in principle, give the correct results for electron impact rotational transitions

15



in a diatomic molecule. However, slow convergence in the basis channel (j£)
in the presence of the strong non-ceniral foreces makes the solution of these

equations numerically an arduous task.

B. Electron Scattering in a Molecule-Fixed Frame of Reference

In a co-ordinate system fixed to the nuclei, i.e. the body-fixed frame of
reference, the internuclear axis becomes the quantization axis and the com-
ponent A of the total angular momentum J along this axis comes entirely from

the orbital angular momentum of the incident electron, hecause

TRy, =(G+d) R=A -R=n,

if the target molecule is in its 'S electronic state. This basically corresponds

> where the electron orbital angular

to the Hund's coupling scheme (a)’°¢®
momentum :5 is coupled with the inter-nuclear axis. The eigenfunctions of J;;
will now form a natural choice for the basis set. These basis functions are a
linear combination of the products of Y{h(f') and ng ;(f{). The former of
these two components belongs to the single-center expansions of the continuum
electron orbital about the center of mass of the molecule while the latter is a
symmetric top wavefunction?® used for the nuclei as the angular momentum
component A along the internuclear axis is now not necessarily zero. There-

fore, following Chang and Fano®, these basis function for a diatomic molecule

can he written as
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JMR o~ By 2T +1 ~ * oA ~ * -
n ER = Vet B o ® ey (GO0 ®. @24

In a linear molecule any plane through the inter-nuclear axis is a pllane of
symmetry. The variable % in Eq.(2.24), which can have only +1 or -1 values,
determines the symmetry of the wavefunction upon reflection through this plane.

In order to determine the parity of this function, an inversion of all (electronic
plus nuclear) co-ordinates through the origin (the center of mass in present

case) can be visualized?’ as () a reflection o of the electronic co-ordinates

in the symmetry plane passing through the inter-nuclear axis and (ii) the inversion
of the nuclear co-ordinates. The successive application of these two operations

gives rise to the following relation
Xpn (-F',-R) = 9(-1) X317 (7, R). (2.25)

Thus the parity of the body frame basis functions (2.24) is 77(—1)J . Since J is a
constant of the motion, the parity of the 1ab frame basis functions (2.6) ean also
be considered as (—1)j+’f'+] instead of (-1)’ +t [see Eq. (2.7)) and then 7 =
-1y

The two basis fungtions of space- and molecule-fixed frames of reference,
given by Eqs. (2.6) and (2.24) respectively, can be related to each other by an

orthogonal operator
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Q(/EJ.,,) (- I)J""B"‘}\- V——-( 4 ]> Lym(-1)1" (2.26)

0 A - V23,

such that

xIMn _ SN 9.27

f[’,-)\ - ‘yj’EQj}\. (2.27)

J
and
a8 JMnQ('ﬁJn)
id T Xon I (2.28)

A

where a superscript T denotes a transpose of the operator. Other properties
of the transformation operator (2.26} have been discussed in detail in Ref. 8
as well by Fano in his two earlier I:uatpew_"s.2 8

The total wavefunction for the Hamiltonian (2.1) in a molecule-fixed frame

of reference can now he expanded as
M < PR S . A' a7 D ’
W@, RLTIR) = 0, (L TR 17 E £ () X303, (. R) (2.29)
AN

and the radial scattering equation, equivalent to (2.9), becomes

r

2 L+ 1) Mepy = Y
[gr‘é -2 " 2(ET - EO):| ffﬂ(r) =2 ;<Y,E}\ IV] Y,E4}\>f,g:(r)

LT .. £ A
+ 2B Z Q}ij IMT 3G+ D Qj()L;T"T)f% (r). (2.80)
A
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*

(Note that in the molecule-fixed frame of reference D' are not eigenfunctions
of H__.). After substituting the multipole expansion (2.11), the integral in the
first term on the right hand side of the above equation can be simplified to the

following form

<Y/Eh vl Y«‘i'O = Zv#(r)JYjEP\(f-') PT') Y., (F') di
H®

’{’/ ’ﬁ' ¥ ’E ’g’
= (= ¥ ! _].l % V (r).

(2.31)
Eq. (2.30) is diagonal in J and 1. While the first term on the right hand side
of Eq. (2.30) is‘ diagonal in A but the second term, which is diagonal in 1,
represents the coupling of the incident eleciron's motion with nuclear rotation.
This term comes from H__, , present in the Hamiltonian (2.1), operating on i
of the basis function (2.25).
Eqs. (2.9) and (2.30) present an exact description of the same'physical

situation in two geometrically different frames of reference. Ome can indeed

write
. A ,E T
IOE Z YRORNEA (2.32)
X
and
() = Z u £ Q;im)' (2.33)

i
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{In these two equations we have introduced a superscript 7 on functions u and f
to denote their parities explicitly.] A transformation from a body- to the space-

frame, of vice versa, does not change the-dynamics of the collision problem.

C. Fixed-Nuclei Approximation and the Frame-Transformation Theory

The body-frame scattering Eq. (2.30) can be further simplified by making
an approximation. On comparing the two terms on the right hand side of this
equation, one will notice that owing.to the smallness of the rotational constant
B (= 7.30 x 10™* eV for the lighter most molecule H,) there will be a region of
the configuration space close to the nuclei where first of these two terms will
dominate the whole scattering process. The multipoie terms V# of Eq. (2.31)
are usually very strong in the neighborhood of 1_:he nuclei for higher values of
(Sée Fig, 1 of I and Ref, 29). The neglect of those terms which contain the
rotational constant B should have very little effect on the solutions of the body-
frame equations in this inmmer part of the configuration space.

After dropping H_ . in the molecular core-region the Hamiltonian (2.1)

t
then describes merely the electronic motion of the colliding systems. This
essentially means invoking the zeroth-order (fixed-nuclei) approximation in the

0

Born-Oppenheimer separation®’ of the electronic and nuclear motions. The

body-frame radial scattering equation (2.30) takes up the following simple form
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& Ad+1) . K2 fx(r)
2 2

dr? r

_ 2(_1))\ V2l 11 Z‘@’ﬁ'_ﬂ (rﬂ 4 ;L) (fﬁ A #) V(0 f%,@r),
i~ 0 0 0/ \L-x 0o/ *

(2.34)
where k? = 2(E,~¢,), in the fixed-nuclei approximation. In addition to be‘ing
independent of J and 7, it now becomes diagonal in A which is the projection
of £ (|A|<4{) along the internuclear axis.

Although the fixed-nuclei approximation has been used very successiully
in calculating the bound electronic state properties of the molecules since the
publication of the classic paper of Born and Oppenheimer 1 But it was only
recently that a single-channel formulation of the electron-diatomic molecule
scattering in this approximation was developed by Temkin and Vasvada®? and
later generalized to multichannel theory independently by Temkin et 2133 and
Burke and Chandra.'’ (A relationship in between these two formulations has
been discussed in Ref. 17.) Burke et al'! have also formulated the multi-
channel scattering theory in the fixed-nuclei approximation for non-linear
molecular target systems. All these formulations are based upon the single-

center expansion

Go(r') = 7 Z Pg(e) Yy (F') (2.35)
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of the bound and

F"(F') =t Z ffE(r) Yo, () (2.36)
£

of the continuum molecular orbitals about the center of mass of the molecule.
Starting from different basis sets than that given in Eq. (2.29), all these workers
derive the coupled radial Eqgs. (2.34) for scattering of an electron from a diatom-
ic molecule in a body-fixed frame of reference in the fixed-nuclei approxi-
mation. [Henry and ChangelS and Burke and Sinfailam’® have generalized
these equations to include the exchange effects in ¢ -H, and e”-N, scattering,
respectively, by antisymmetrizing the total wavefunction of the (electron+
molecule)-system. ]

While in the inner-molecule core-region one can use the fixed-nuclei ap-
proximation but in the outer-region, away from the nuclei where short-range
terms of the interaction potential are not go strong and the long-range terms
(e.g., permanent and induced dipole moments, quadurpole moment, etc.) take
up the scattering, the nuclear vibration and/or rotation can no longer be neglected.
Also, in this region the coupling between the angular momentum £ of the in-
cident electron and the internuclear axis R is weak while between :E and"f is
sirong. A natural way of including the effects of the nuclear rotation in the
collision process in the cuter-region will, therefore, be to work in a space-
fixed frame of reference using the formulation of Authurs and Dalgarno® and

solve the scattering Eq. (2.12). If the inner-region is defined by 0 < r « r
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then in the outer region for r > r_ the highly anistropic short-range terms
and the excharige effects have become negligibly small and the long-range
terms are not so non-central and strong in their nature, it is, therefore, ex-
pected that the convergence problem in the basis set (J ) will not be so severe
now. At the same time by using a fixed-nuclei approximation for r ¢ r, , one
will be able to include the local and non-local short-range terms of the electron-
molecule interaction in the scattering equations in this region to a satisfying
degree of accuracy without increasing the complexity of the numerical work.

A molecule-fixed frame of reference, however, does not necessarily mean
a fixed-nuclei approximation unless one neglects the splitting of the rotational
levels of the molecule, i.e., the nuclei become infinitely massive. The neglect
of the miclear rotation in the inner-region in a body-frame have changed the
physics of the problem in this region. The inner- and outer-regions describe
the electron-molecule scattering in body- and space-fixed frames of reference
respectively where two entirely different physical situations prevail. Although
a transformation from one frame to the other is still carried out by the energy
independent operator (2.26) but it is no longer merely a geometri'cal trans-
formation as the word frame-transformation may imply. Instead in going from
inner (body)- to the outer-region (lab-frame) the dynamical approximations
describing the collision problem also change.

The essential approximation which one makes in deriving the fixed-nuclei

Eg. (2.34) from the body-frame Eq. (2.30) is that the effect of the rotational

23



energy terms of the molecule [second term on the right hand side of Eq. (2.30)]
can be neglected from the energy k2 (in Ryd.) of the incident electron. Although
the correct energy factor in a given channel should be kz(J ,4) [in the lab-frame
' (J,4) = k? from Eq. {2.13)] but in the fixed-nuclei approximation this quantity
simply becomes k>. The effect of this difference on the electron gcattering in
any region will be a minimal if the potential energy on the right hand side of the
fixed nuclei Eq. (2.34) is large compared to k S (7,4). If the value of the
inner molecular core radius r, becomes so big that this condition is not satisfied
then the fixed-nuclei approximation in that region will certainly break down.

One shall have to terminate the inner-region at smaller values of r_ and introduce
the space frame treatment in the outer regionfor r 2 r,.

However, under certain circumstance§ {e.g-, when the impact energy of the
incident electron is so high that owing to the smallness of B the difference in
between k> and kQ(J ,) itself becomes negligible and/or the long-range terms
of the interaction potential fall off rapidly) it is possible that the integration of
the lab-frame Eq. (2.12) in the outer-region may not make a significant contri-
bution to the scattering. (A situation similar fo this was discovered by Henry
and Chang15 and Chang16 in their study of the simultaneous vibration-rotation
excitation in e -H, scattering.) The phase shift obtained by considering the
scattering only in the inner-region in a body-frame in fixed-nuclei approximation
will be accurate enough and a space-frame treatment in the outer-region wiil

not be required, i.e., most of the phase accumulation will take place from the
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solution of the fixed-nuclei equations in the region o £ r £ r_. The adiabatic-
nuclei appra:xx:imation2 can now be used to calculate the cross-sections for eléc-
tron impact vibration-rotation transitions in a diatomic molecule.

The frame-transformation theory of electron-molecule seattering is, there~
fore, particularly useful when the energy of the incident electron is low and/or
the interaction potential consists of sufficiently long-range (e.g., r'1, r7? ete.,
type) terms which do not fall off very rapidly.

III. METHOD OF IMPLEMENTATION OF THE
FRAME-TRANSFORMATION THEORY

A. Definition and Caleulation of R-Matrix

In formulating the f.-t. theory of electron-molecule scattering, Chang and
Fano® have suggested the transformation of the solutions and derivatives of
the body-frame fixed-nuclei Eqgs. (2.34) at point r, to the lab-frame in going
from inmer- tc; the outer-region. Consequently, one has to perform two separate
transformations. Recently, the R- matrix theory, developed by Wigner and
Eisenbud ** for nuclear reactions,® has been used very extensively in electron-
atem scattering calculations.36 Here, while considering the scattering only in
one (usually laboratory) frame of reference, the interior part (r < r ) includes
both the local and non-local short-range interactions and the outer part (r > r,)
consists of only the long-range terms of the local potential. This natural
division of the whole iﬁteraction space in two parts, supplemented merely by a

similarity transformation of a matrix from body- to lab-frame in going from
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inner- to the outer-region, makes it very convenient to use the R-matrix method
for studying electron-molecule scattering in the context of -the f.-t. theory.
We adopt the same definition of the R-matrix as given by Burke and Robb,’*

namely
R(r,) = () {ow' (1) - bu()} ) o, (3.1)

where w(r}and w'(r) are a set of linearly independent solutions of Eg. (2.34)
and their derivatives respectively and b is an arbitrary constant matrix. If b

is taken to be a null matrix the expression (3.1) can be looked upon as the log-
rathmic derivate matrix of the solutions at r =r_. A set of linearly independent

solutions of (2.34) can be related to another set by a transformation

v (r) = Au(r) (3.2)
where A is a non-singular matrix which is independent of r. After substituting
(3.2) into (3.1) we find

R(ro) = () {ee' (1) = b\ ey

i.e., the R-matrix of Eq. (3.1) 1s independent of the choice of the set of linearly
independent sclutions of an equation.
In order to form the sets w(r) and w'(r), we integrate the fixed-nuclei

Egs. (2.34) in the region from 0 to r, with the following boundary conditions
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L1
T

TeA
f’E’E"\J 3%{),,

r—0
(3.3)

Here jy (x) and ny (x) are respectively the regular and irregular spherical

Bessel functions such that

j/g(x) ~eo —:’-{- sin(x - -;-rﬂw)

x5S

and

np(x) ™~ 1 cos(_x - -;- f{’fﬁ)

X—2© X

[ Note that in the fixed-nuclei approximation all channels will be open and de-
generate.] The second subscript on f)‘ in Eq. (3.3) stands for the incident
charmel. The XM-matrix calculated from Ed. (3.3) is not the correct K-matrix
as no account has been taken of the long-range terms in the inner-region

(0 £ r < r )in the solution of the fixed-nuclei equations. Instead, the calcula-
tion of Kh is based completely upon the inclusion of the short—rangé terms of
local and non-local electron-molecule interaction potential in the scattering

37

Eg. (2.34) in the molecular core region.

The convergence of the eigenphase sum

gh

Sum

= Tr [tan™} (BX B 1)] (3.4)
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will now completely depend upon the inclusion of the highly anisotropic short-

range terms and the two nuclear singularities in the fixed -nuclei Egs. (2.34).

In Eq. (3.4) B is an orthogonal matrix which diagonalizes the real symmetric

Kk—matrix. The convergence of Sium will, in fact, determine whether the single-

center expansion (2.36) in 4 of the continuum molecular orbital and the multi-

pole expansion (2.11) in n of the molecular charge distribution have converged.
The solution elements ffg pr and their derivatives ffE:B,, are now linearly

combined

A E I‘ A
wu(r) = alkfkj (r),
k=1

(3.5)

n
A E A
v (r) = aikfkj (r).
k=1

(i,j = 1,...n, the no. of coupled equations),
to form a set of linearly independent solutions z_u}\(r) and their derivatives yh' (r).
The generic program38 written by us describes in detail the method of solving
and matching a set of coupled homogeneous (or inhomogeneous) scattering equa-
tions to the asymptotic scattering boundary conditions. This program could
be readily adapted to the choice of the boundary conditions given in Eq. (3.3).

The matching procedure, needed to calculate J{P\ matrix, also yields %% the co-

efficients of linear combination a's used in Egs. (3.5). These sets of g}‘ (r)
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and ;_u“'(r) can now be employed for calculating the BK ~matrix at point r =

in a molecule-fixed frame of reference in fixed-nuclei approximation:
RY(ro) = [Ww'() e (1) - b e, (3.6)

This matrix will obviously be diagonal in A and have the dimensions equal to
the number of 4 values of the single-center expansion (2.36) that are coupled

in Eq. (2.34).

B. Transformation of R* ~Matrix and Calculation of &' ~Matrix

In the outer-region (r, £ r £ @) the space-fixed frame treatment of the
scattering process is described by Eq. (2.12). The terms V, of the electron-
molecule interaction potential now consist of only a first few long-range multi-
pole moments, permanent or induced, of the molecular charge distribﬁtion.

The coupled radial Egs. (2.12) are integrated inward fromr = wtor =r, .

The asymptotic forms given in Egs. (2.14) determine the boundary conditions

to be used to start an inward integration from r = « in order to generate a
family of solutions. If n, is the number of open channel basis sets (j £ = p)

out of the total number n, coupled'in Eq. (2.12), a set of n, linearly independent

solutions and derivatives is obtained from the following combinations

ng tng
B i In
e, Coq Yar
qg=1
{3.7)
ng g
!
QI = c uln,
pr rPq qr
q=1



of the elements of solutions of Eq. (2.12) and their derivatives respectively.

. ! !
Here we have introduced the superscript 1 = (-1) o (-1) +4 specifying
the parity [= (-1’ 7] of the basis set coupled in Eq. (2.12). In order todeter-

mine the coefficients c¢'s in Eq. (3.7) we form the R? 7 -matrix at r =r,, i.e.,
RITr )= RI"{r uJ’? (r) - bod ()} (3.8)

where constant matrix b is the same as used in Eq. (3.6).
This matrix should be equal to the RI ”(rt Y-matrix obtained by transforming
to the space-frame the E}"(r . )-matrix of Eq. (3.6) which has been calculated in

the body-frame of reference in fixed-nuclei approximation. Therefore
Wy =8 £ () - Rt (3.9)

The elements of ﬂn(rt)—matrix are given by a similarity transformation of the
Bh’(rt )-matrix carried out by the orthogonal transformation operator {! of Eq.

(2.26). Therefore,

3 ~ 1 ArmT < Jn)
R = ZQM K R}M Q.

AZ0

£ . A
min B /ﬂ R ‘ = /f,'
-2 @D @D ) (J J) i (’ J), (3.10)

A oA/ 140 0 A —A
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where 4, =smaller of ¢/ ,4',J). Because for linear molecules B"\ = g"}‘

[see Eq. (2.834)] , this transformation can also be written as’’

L. .
min B ([;} J. j, ,E., J.)
J7 - . - J A
Rig g = W23+ Q25"+ 1) ’\E/g‘ (0 N _)\)Rg,g: (0 Wy (311

n

The matrix of Eq. (3.11) is now substituted on the right hand side of Eq.
(8.9). Burke et al*® have discussed in detail the solution of the matching equa-
tion (3.9) in their formulation of the R-matrix theory of electron-atom scattering.
They have also derived the appropriate expressions relating the K-matrix to the
coefficients of linear expansion used in Eqgs. (3.7). Once KJ T_matrix is known
one can always compute the §m—matrices from Egs. (2.15) and (2.16) respectively
in order to calculate the differential and integrated cross-sections®? for electron
impact rotational transitions in a diatomic molecule.

The whole procedure of employing the f.-t. theory to study electron-molecule
scattering can, therefore, be divided into five following steps: |

(1) study the convergence of the fixed-nuclei Eq. (2.34) in the inner-region
(0<r <r)in 4 and g,

(2) compute body frame Bh-matrix atr=r for all values of A\ < rﬁmin ;

A _matrix to 877 -matrix,

(3) transform the R
(4) solve the space-frame Egs. (2.12) in the outer-region (r 2 r,) by
integrating inward from r = tor=r and match the solutions and derivatives

with R77 -matrix for caleulting the X77-matrix,
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(b) calculate the _Sm-matrix from Eq, (2.15) and then the cross-sections
for different rotational transitions.

In addition to this, one will also have to study the dependence of the final
cross-sections on the choice of the boundary point r, where the inmer- and the
outer-region are separated from each other. This will involve trying a number
of different values for r, and then deciding upon that particular value where
the results are fairly 'stabilized'. This point has been further discussed at
length in See. IV B(iii).

The last three steps, out of the above five required for the successful im-
plementation of the f.-t. theory, have to be carried out both for even and odd
i)arities, i.e., for = +1 and -1 values, for the same value of J. However, it
may also be necessary to study the convergence of the lab-frame Eqs. (2.12)
in the number of coupled chamnels (j€) in the outer-region (r 2 r,). Inthat

case, steps (3) to (5) will have to be repeated each time by increasing the num-

ber of coupled rotational states in the outer-region for each J and n values.

IV. NUMERICAL CALCULATIONS

A. Test Study: Application to 2 Model Calculation

The practical application of the £.-t. theory is a multistep process which
becomes an arduous task. We, therefore, thought it to be extremely useful to
apply this theory first to some model calculation of e™~CO scattering before

using it in more fundamental and complex situations. This test study will also
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make the physics of the problem more transparent and at the séme time provide
a good check on our whole numerical procedure.,

Crawford and Dalgarno’® have studied the scattering of thermal-energy
electrons from carbon monoxide using the close-coupling (c.f:.) formulation of
Arthurs and Dalgarno®. (The method has accordingly been called rotational
close coupling.) Their whole calculation has been done in the space-fixed frame
by solving the Eq. (2.12). They employ a semi-empirical potential which is a
combination o;f the dipole, quadrupole, and polarization potentials of carbon

monoxide. This potential, in the notation of Eq. {2.11), can be written as

: %o
Vo) s —m —,
. 2(r? 4+ 12)?
”
0 rgr,
Vl(r) =4
2
r-r
2 ¢ a) T2 Ty,
i bg + (r - rd)2
and
Y, (1) = VO () + VEP (r) (4.1)
where
[ 0 rir,
V D (r) =
(r -1 )
g. q) r > Ty
3 bi + (r - rq)2

33



and

Vgp) (I‘) = <

2
o I =T
- 2 ( o) rzr

2(x? 4 r2)? bg + (r - rp)2

p"

In this expansion (all quantities are in atomic units, unless specified otherwise)

D = 0.044, Q =~ 1.859,
(4.2)
Qg = 13.342, a, = 2.396
are respectively the dipole moment, quadrupole moment, spherical and the non-

spherical components of the polarizability of CO molecule. The values of other

seven parameters (r0 s Ty b

o T b ,r ,and b ), given in Ref. 18, were adjusted
q q P P

so that this potential, when used in Eq. (2.12), could reproduce the experimentally
measured’ momentum transfer cross-section in the energy range irom 0.005 eV

to 0.1 eV, The asymptotic form of the potential (4.1) is

Qo
Vo(r) o —,
2rt
(4.3)
D
Vl(l') m_2 H
T
and
a
2
V2(r) "-'_g.. - _Z .
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Before using the f.-t. theory, we first used this potential to study the elec-
tron scattering in the fixed-nuclei approximation in the whole region of con-
figuration space. We employed the program of Chandra.38 to solve Eq. (2.34)
in the region (0 £ r < %), The solution of these equations will now give us the
exact g}‘ -matrix of the body-frame in fixed-nuclei approximation. This matrix
was then used to compute the eigenphase sum defined in Eq. (3.4) for studying
the convergence of the single-center expansion (2.36) in 4 for %5 () =0),

21'[(}\ =1), and 2 (A =2) states of the (e +CO}-sysiem. We found'that 8 or 9 values
of 4§ were sufficient to achieve satisfactory convergence of the single-center
expansion when the model potential of Eq. (4.1) was used. The converged eigen-
phase sums for these three cases are shown in Fig. 1. There is known to be a
shape resonance’ - at about 1.75 eV for electron scattering from CO in 11 state.
We notice from Fig. 1 that the eigenphase sums calculated using the Crawford
and Dalgarno portential,1 8 given in Eq. (4.1}, does not reproduce this resonance.
However, there is a resonance behavior shown by the s state eigenphase sum
at about 1.40 eV. Similarly the n e'igenphase sum too shows a very broad
resonance at a higher energy.

In order to employ the f.-t. theory the potential (4.1) should be used in the
imer region (0 < r < r )} in the fixed-nuclei approximation. If point r_ is far
enough from the center of mass of the molecule then one is always justified in
using the asymptotic form (4.3) of this potential in the lab-frame treatment in

the outer-region. However, as the potential (4.1) is in a very simple form, we
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have used the exact potential even in ?he region for r 2 r,. In order fo caleu-
late the cross-sections for different rotational transitions from f.-t. theory we
have carried the five step process mentioned at the end of Sec. III.

A sarpling of our pariial cross-sections, o*J:I_,J 1, for trangitions (0-0),
(0-1), (1-1), and (2-2} is shown in Table I for five different values of the
incident electron energy. In the fourth column of this table the exact rotational
¢.c. results, which we have calculated and agree very well with those of Ref. 18,
are also giveﬁ. In the last five columns the cross-sections calculated from the
f.-t. theory for five diffex:ent values of r, are tabulated. [The valueb=1 was
used in.EqS. (3.6) and (3.9) in the definition of R-mafrix.]

The very first thing which one should expect from these results is that
smaller the value of r, better should be the agreement between the rotational
ec.c. and f.-t. results. This is due to the fact that the potential used in two regions
of the f.-t. theory is exactly the. same and it is only the rotational level spacing
which has been neglected in the inner-region in fixed—I;uclei approximation. A
decrease in the size of this region Wil]:, therefore, mean that the lab-frame
rotational c.c. treatment is being introduced closer to the origin. Our results
of Table I confirm this geneI"Ql conclusion, |

We also notice from the enteries of this table that the partial cross-sections
which vary most with the Values' of r, are those in which (£=0, €'=0) partial
wave coupling is present, namely o7 (j=J-j'=J). On the other hand, the o®(0-0)

cross-section is almost invariant with the values of r_ considered in this table
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and at the same time in good agreement with the exact rotational e¢.c. results.
The major contribution to the (0-0) transition with J = 0 will basically come from
Vo term of potential (4.1). The form of this term used by Crawford and
Dalgarno '8 is such that it has already assumed its asymptotic form much be-
fore the space-frame treatment is introduced at r, =4.466 (a.u) [see Egs. (4.1)
and (4.2}, r, = 1.310 (2.u.) from Ref. 18] and therefore goes off as r ™%, As a
result the V, ferm has become so small in the outer-region that most of the
phase accumulation occurs from the solution of the fixed-nuclei equations in

the inner region and a lab-frame treatment in the outer-region does not make
any significant contribution to the scattering. The cross sections for other values
of j, j', and J are almost constant for all values of r, and they agree very well
with those calculated from rotational c.c. method. This kind of behavior of the
results calculated from f.-t. theory will, however, very much depend upon the
nature of the short-range terms, which are not very strong in the present case.

Tt will probably not be too late to mention at this stage that such a good

agreement in between the rotational c.c. and f.-t. results is subject to the ac-
curacy to which the fixed-nuclei Eqgs. (2.34) are solved in the inner-region in
order to calculate the BA‘ -matrix at r = r . The accuracy of the solutions in the
present case simply means that the sufficient values of 4 are coupled in Eq.
(2.34) for the single-center expansion (2.36) of the continuum orbital to converge
for each value of \. However, such a satisfactory solution of the inner-region

equation in a body-frame of reference in fixed-nuclei approximation is a
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pre-requisite for a successiul application of the f.-t. theory for studying the

electron-molecule scattering.

B. Application fo the Single-Center Pseudo-Potential Method

(i) Adaptation of the pseudo-potential methoed to the frame~transformation

theory

The pseudo-potential method, originally introduced in our e -N, study,m
has been found to work very well even for electron sc atte‘ring from CO in the
fixed nuclei approximation. In this method the exchange effects between the
incident and the molecular electrons are simulated by orthogonalizing the
continuum écattering orbitzal to the bound molecular orbitals of the same sym-
metry. The body-frame fixed-nuclei Eq. (2.34) are now replaced by the follow-
ing coupled inhomogeneous equations:

[dz L+ 1) +sz ffgm

dr? r2

£ 4 £ 4 pu
= 2(_1)h Y24 + 1 E 124 +1 (0 0 ‘::) ()x N 0) v, (r) f,)gr(l')
7 -
12

ﬂb .
+ Z £, 95 (). (4,4)

a=1
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Here ¢4 a (r) are the radial coefficients in the single-center expansion (2.35)
of the molecular core orbitals ¢, (r') which have the same symmetry as the
continuurn orbital F}\(i"') in Ed. (2.36). £ are the lagrange multipliers deter-

mined by the requirement that

& >0 (4.5)

for @ =1, ..n, ,the number of such bound orbitals of a particular symmetry.

As discussed in I, the program of Faisal and Tench*® was employed to con-
vert the two-center ground electronic state wave-function of CO, given by
MecLean and Yoshimine,44 info a one-center expansion about the center of mass
of the molecule. These single-center expansions of the molecular orbitals were
then used to calculate the multipole expansion (2.11) of the molecular charge
distrib‘ution.

[We will like to point out to the reader that there is an erroz: in Eg. (17)
of Ref. 22 where the electron-nuclei contribution {terms enclosed in the paren-
thesis on the right hand side of Eq. (2.4)} to the static potential has been ex-
panded into the Legendre polynominals about the center of mass of the molecule.
As the program of Faisal and Tench*® has used this expression to compute the
multipole expansion of the molecular charge distribution, the corresponding
correction should, therefore, also be rgade in this program. This error and

the correct form of the expression are given in I.]
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The highly anistropic short-range terms, nuclear singularities, and the
exchange effects are properly represented in the Eq. .(4.4) by achieving satis-
factory convergences in the expansions (2.11), (2.35),.and .(2.36) simultaneously.
We have shown in T that these f.hree expansions converge very well even for low
symmetry molecules like CO.

In order to have a resonance in the I eigenphase sum calculated from
(4.4) at about 1.75 eV, the static potential in I was augmented by a polarization

potential of the form

Vpol (?) == -2—-1; an -+ CL2P2(§ . f{)] {1- exp{.-:Cr/rO)ﬁ}], (4.5)

where

a, = 13.342,  a, = 2.396. T (4.8)

The adjustable parameter r, = 1.605 (a.u.) was found to give a resonance in gl
state at £, = 1.753 eV. The calculated values of the width (I',) and background
phase shift (5 ) for this resonance are given in Table III.,

In the context of f.-t. theory, we solve Eqs. (4.4), together with the polari-
zation potential (4.5}, in the molecular core-region (0<r<r ). The method of
solving the inhomogenocus equations together with the requirements of ortho-
gonality has been discussed in detail in ouxr prévious paper of Ref. 38, This
program could be easily adapted to calculate the fixed-nuclei B'\ ~matrix defined

in Eq. (3.6). In the outer-region (r = r, ), on the other hand, we assume that
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cpz (r) = 0 and both the static and the polarization potentials, Egs. (2.11) and
(4.5) respectively, have taken up their asymptotic forms. Therefore, for the

Space-frame Eq. (2,12) in the outer-region the potential will be given by

o

0 D
V T e,y V = —
ol 2r4 ! r2
o
V,(ry= -2, @.7)
¥ 2r¢
and
0
v =,
5 () ~

where 0 is that octopole moment of the CO molecule. The values of «; and a,

are given in Eq. (4.6). But
D=~ 0.105, Q=-1.547, (4.8)

and

0 = 4.380.

were obtained from the multipole expansion (2.11) of the CO static potential

whose calculation has been deseribed elsewhere.’

(ii) Selection of the inner-molecular core radius r,
The partial cross-sections a{ ey obtained by using the single-center

pseudo-potential in context of the f.-t. theory are given in Table II for six
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different values of r . According to the test study of Sec. I[V(A), we find that
the o—‘]! - for (j, j* = J) cross-section varies most with r,. This is associated
with the fact that in this case the s-wave is coupled with both initial and final
rotational state.s.

We have said above, while discussing the adaptation of the pseudo-potential
to f.-t. theory, that in going from imner- to the cuter-region we completely
neglect the short-range parts of the local and non-local electron molecule inter-
actions. A selection of a smaller value of r, will, therefore, mean that more
of these potential terms are being neglected in performing a frame-transformatio
even though they have not become small enough. On the other hand, performing
the transformation at a large distance from the center of mass of the molecule
corresponds fo the fact that although the potential, which is still non-negligible
due to the long-range terms, has become comparable to the rotational level
spacings but the latter has not been introduced yet into the scattering equations.
The size of the inner molecular core-region, where the fixed-nuclei approxi-
mation is being used, has now become so big that the difference in between
[k -kz(J ,4)] is no longer smaller than the potential energy terms and therefore
the nuclear rotation can ne longer be neglected from the scattering equations.

In Table II there corresponds a region between r, = 10,150 (a.u.) to r. = 13.398
(a.u.) where the partial cross-sections for all fransitions seem to have

"stabilized",
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Chang and Fano® do not give any rigorous criterion for the selection of
the boundary point r  which divides the interaction region into two parts where
iwo physically different treatments of the scatiering process are to be carried
out. All their statements concerning the choice of this point are qualitative.
We do not see any quantative way for defining the range of the inner molecular
core-region other than carrying out the f.-t. treatment at a number of different
values of r, ‘ and then selecting that value where the \'rarious cross-sections
have become fairly 'stationary'. From our test study, discussed in the pre-
ceding subsection, one will conclude that if the scattering equations in the inner-
region in fixed-nuclei approximation are solved accurately enough then the final
cross-sections for electron impact rotational transitions in a molecule will be
very close to the exact values provided a transformation from molecule- to the
space-frame is performed at a point where the results are 'stabilized’.

In the following calculations we have, therefore, used r. =11.774 (a.u.)
for the inner-molecular core radius., Note that this value of the core radius is
almost six times of the equilibrium inter_—nuclear separation (= 2.132 a.u.) in the
ground electronic state of carbon monoxide.

The existence of the boundary point r, is the central aspect of the f.-t.
theory. Selection of two different limiting values for r, will reduce the f.-f.
theory fo two well known formulations of the eleciron-molecule scattering—ior

r, =0it will reduce to the rotational c.c. theory of Authurs and Dalgarno ® and
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for v, =% become equivalent'’ to the adiabatic-nuclei theory % The existence
of a value of ¥, in between these two limits, therefore, becomes a vital point
for the applicability of the f.-t. theory. But at the same time the absence of a
rigorous criterion for deciding upon the inner-molecular radius r, makes tﬁis
theory less fundamental than, say, the rotational c.c. formula.tioﬁ of Arthurs and
Dalgarnco3, The stabilization requirement used by us in choosing a value for T,
when performing a transformation from molecule- to a space-fixed frame of
reference constitutes probably the best criterion under the existing eil:eum—
stances. Although this condition too lacks an element of rigorousness, it is
nevertheless significant that one can obtain more accurate and reliable results
with it.

An alternative way for finding a value for the core-radius will be to try to
fit the cross-sections computed from the f.-t, theory to the experimental
measurements. Although this fitting procedure will be free from all sorts of
uncertainties which may be embeded in the stabilization criterion but at the-
same time it will make the whole theory more phenomenological.

However, under certain circumstances—e.g., when the information about
the molecular core-region can be extracted from the experimental data—it is
possible to bypass the difficulties associated with the selection of 2 proper value

028 (b)

for r .. Fan while analyzing the high resolution photoabsorption spectrum

of H, and Atabek et al*S calculating the spectrum of [I, Rydberg levels of
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H,, using the f.-t. theory, have obtained the information about the core-region
of hydrogen molecule from the multichannel quantum defect methods developed
by Seaton.'®

We have now specified all the necessary quantities for the inner- and outer-
region required fo apply the f.-t. theory to study the e -CO Scatf;ering using the
pseudo-potential method, The thermal energy momentum transfer cross-section,
o™(0) [Eq. 2.28)], calculated from this method is shown by (dash-dot) curve D in
Fig. 3. The ratio of the theoretical resulis to that experimentally measured
{curve A) drops from a factor of five at 0.005 eV to about a factor of two at
0.1 eV. We have given in I an analytic proof to show that, unlike the total scat-
tering cross-section, the momentum transfer cross-section, averaged over all
molecular orientations, is finite even for electron scattering from a polar mole-
cule in a body-fixed frame of reference in the fixed-nuclei approximation.
Therefore at higher energies the momentum iransfer cross-section calculated
from the pseudo-potential using the f.-f. theory should be the same-as given in
Fig. 8 of T where it was computed in the fixed-nuclei approximation. One will
also notice that our calculated results in I does reproduce the 1.75 eV g

resonance.

(iii) Re-normalization of the dipole-term in the static potential of CO molecule
The electron-polar molecule scattering at sufficiently low-energies is very

much dominated by the long-range electron-dipole interaction.“ The values of
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the dipole, quadrupole, and octopole moments which we have used in our pseudo-
potential method are given in Eq. {4.8). (These values are in good agreement
with those computed in Ref. 44; D = -0.1007, @ = -1.634.) McLean and Yoshimine**
h'a,ve employed an extended basis set in the expansion of their two-center wave
function with seventeen STAO centered on each of the carbon and oxygen nuclei.
This sophisticated wave-function reproduces the correct ground electronic state
energy for the equilibrium inter-nuclear separation of CO, the theoretical
guadrupole moment {-1.547 a.,u.) is abc;ut 83% of the experimental value (-1.859
a.u.) but the magnitude of the dipole moment (0.105 a.u.) obtained from this wave-
function is about 2.4 times higher than the experimentally measured value (0.044
a.,u.) [cf. Egs. (4.2) and (4.8)] . (Also, the theoretically calculated dipole moment
has a sign opposite to that of the experimentally measured. This discrepancy
in sign is related to the polarity of CO molecule and the direction of the inter-
nuclear axis which have been discussed in Ref. 44) If will make a difference in
the thermal-energy electron scattering cross-sections for j - j+1 transitions
approximate;ly by a factor of (2.4)2 [See Egs..(A12) and (A13) in the Appendix].
We, therefore, thought that the easiest way to rectify the shortcoming of
the present wave function, without affecting its other properties which are in
conformity with the experiments, would be to scale down the dipole-term in

the multipole expansion (2.11) by a factor of

D |
Ly = % = 2.386. (4.9)

exp

48



This re-normalization of only the dipole-term will ensure its continuity over
the whole range of the interaction space while other multipole terms will re-
main unchanged. The multipole expansion (2.11) of the static potential will now
be replaced by

V,(r)
e -1 )

V(@:R) = PG R) (4.10)

L

in- the fixed-nuclei Eq. (4.4). This re-scaling of the V; -term should not alfer
signéficantly the short-range nature of the charge distribution of carbon-
monoxide computed from the wave function of McLean and Yoshimine.“

To consider the constant {; as a parameter in the usual sense of the word
perhaps will nc;t constitute a correct description of the present situation. The
value ¢, = 2.386 has not been arrived at by fitting our results to any of the
quantities which we intend to calculate finally. The circumstances, on the other
hand, have forced us to re-scale the dipole-term of the static potential by {4
in order to correct, rather in a phenomenological way, the deficiency of the
ground electronic state wave-function of CO molecule whose calculation in itself
is a major field of research in the domain of quantum chemistry and not the aim
of the present study.

Although re-normalization of only the dipole-term will not affect the con-
vergence properties of the single-center expansions (2.35) and (2.36) and also

of the multipole expansion (4.10) i the fixed-nuclei Eq. (4.4), which we have
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discussed in detail in I. But it will certainly require a new value for the param-
eter r, used in the polarization potential (4.5) in order to have a resonance in
the °II state eigenphase sum at about 1.75 e¢V. The procedure described in I
was repeated again but this time only for the 11 state. The new value of this
parameter obtained was r; = 1.541 (a.u.) which is not very much different than
the old one (1.605). The new eigenphase sum have been plotted in Fig. 2 and the
values of the resonance parameters in the present case are given in Table II.
One will notice that the effect of renormalization of the dipole term on the values

of &, and I, is very insignificant indeed. Also this re-scaling will not affect

0
the value of the molecular core-radius r, =11.7 74 (a.u.) defining the inner-
region of the f.-t. theory. Moreover, the new values of the multipole moments

rvequired to specify the potential (4.7) in the outer-region in a lab-frame are

now given by

o
n

-~ 0.044, Q =~ 1.547, 0 = 4.380,

(4.11)

13.342, a, = 2.396,

o
i

which differ from the old constants, given in Eq. (4.8), in the magnitude of the

dipole moment only.

(IV) Convergence in the outer-region
The last thing to be considered is the convergence of the space-frame Eq.

(2.12) in the outer-region in the basis set (j£) for each value of J and parity.
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The calculation of the cross-section for transitions involving higher rotational
states will require the solutions of equations for large values of J. At the same

time the number of coupled channels (j,£) will increase [by min (J,j) + 1 for

** _ 1} and by min (3,j) for add parity (-9 = 13

even parity {(—l)ﬁj
with the introduction of each new rotational state j. The cornsideration of higher
values of J will also mean that one has to calculate the fixed-nuclei BP\ -matrix
[Eq. (3.6)] at the boundary point r, for higher values of A, since |A| < min
(4,J) from Eq. (3.11). In addition to this, because of r~? type behavior of the
electron-dipole interaction potential, the solutions of the lab-frame Eq. (2.12)
assume their free-wave asymptotic forms at a large distance (say r=r_ ) from
the center of mass of the molecule. In the outer-region, therefore, one would
have to integrate a large set of coupled equations over a wider range of

r{r, £ r £ x ). All these factors combined together require large machine
size and the computational time. Hence the solution of Eq. (2.12) in the outer-
region in a space-frame becomes economically quite prohibitive.

We, therefore, restricted ourselves to the calculation of the cross-sections
for transitions (0-j') and (I~j'). In the present case, unlike for the homonuclear
diatomic molecules, final rotational state quanium number j' can take both even
and odd values. Thus, in Eq. (2.12) for each J we coupled only those rotational
states which were necessary for the convergence of the partial cross-sections

J

..y and Ui-J + in even and odd parities separately. In Tables IV and V we have

tabulated orgqj + and cri oy respectively with the coupling of each new
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rotational statg in even parity. These cross-sections correspond to 1.75 eV of
the incident electron energy. The convergence of the partial cross-sections for
odd parity has been.shown in Table VI.

We find that maximum number of rotational states are needed to be coupled
in even parity with J= 2, 3, and 4. It is probably due to the fact that because Il
is. a resonating state therefore maximum contribution to the cross section will
come from the coupling of the 4 = 1,2, and 3 pax:tial waves. For values of
J=2, 3, and 4 the first six or seven rotation states of the molecule can be coupled
to these values of the orbital angular momenta.

One will also notice from these three tables that the slowest rate of con-
vergence in J is for j-jxl1 and j+2 transitions. [Actually for electron impact
energies £ 0.10 eV as many as 100 values of J were required for Aj=+1
transgitions.} The-cross-sections for these tr:ansitions are directly dominated
by contribution(s) coming from the long-range electron dipole (and electron-
octopole if j+j'23) and the electron-quadrupole interactions respectively. We
also found that, for all incident electron energies, the T7 ~matrix elements for
Aj =+ 1 and 2 transitions for values of J higher than 10, obtained from the
f.-t. theory were in good agreement with those calculated from the Born approxi-
mation considering merely the V;, V, (only the quadrupole part), and V,; terms
of the interaction potential (4.7). In order to calculate the differential scatter-
ing cross-section for j - j+1 and j+2 transitions, we, therefore, replace the

exact T -matrix elements in Eq. (2.19) for J > 10 by the corresponding
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elements calculated from the Born approximation. This will also mean’ that
one has to calculate the fixed nuclei Bh -matrix at T = r, only for eleven (A=0,
.« 10) values of A.

The differential scattering cross-section for a j-j' transition can be cal-

culated by recasting the Eq. (2.17) in the following form

e k™2 :
it 17 ) iy _BpGID)T P 8 4.12
+4(2j+1)z[*‘& 001 Blees ) (412)
L

In this relation d®._ s /dQ is the differential cross-section calculated from
Born approximation and the coefficients A, are defined by Eq. (2.18) where
maximum value of J in (2.19) is J__  beyond which the exact _’I_‘J -matrix can

be replaced by those calculated from the Born-approximation. BAL is also
calculated from Eq. (2.18) by using the Born ZJ -matrix in Eq. (2.19) up to

J ...+ L[The relevant formulae of Born approximation are given in the Appendix.]

Consequently, the scattering and the momentum transfer cross-sections for

transitions j - j+1 and j+2 are caleulated from

-3
i TH Ba(ii')] . 4.13
- O ST [AGi") L BACII" ( )

wk

and

m B_m k72 Gity _ L aah BaCi ) _ L1epih
O_]_'jl = O'].__'J.r + 2] T 1 AOJJ - E-Al 1 - AO ’ - 3— Al (4.14)
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respectively. Bo-j_,j + is the secattering and Po

‘JT‘_.J +  the momentum transfer
cross section for (j~j') transition calculated from the Born approximation

[see Egs. (Al2 and A13)].

C. Pinal Results

The momentum transfer cross-section inferred from swarm experiments
by Hake and Phelps® in the energy range between 1072 to 1.0 eV is shown by
curve A in Fig. 3. The dotted curve A' above 1.0 electron Volts, which peaks
at about 1.50 eV, was chosen by these experimentalists {o extrapolate smoothly
to their derived curve A at lower energies.

We have extended the rotational c.c. calculation of Crawford and Dalgarno 18
in a space-fixed frame of reference to higher energies. The total momentum
transfer cross-section ¢™ (0) [Eq. (2.23)] obtained from this calculation is
marked B in Fig. 3. Although the authors of Ref. 18 used seven parameters in
their potential (4.1) in order to reproduce the momentum transfer cross section
of Hake and Pheips g, but we notice from Fig. 3 that the theoretical results
(curve B) begin to deviate from the inferred values (curve A) at about 0.20 eV,
These computed results also show a very broad peak near 1.50 eV ranging
from about 0.60 to 5.0 eV. On the basis of the eigenphase sums obtained by
using the potential (4.1) in the fixed-nuclei Eq. (2.34) and shown in Fig. 1, one
will conclude that it is probably the combination of 25 and *I1 resonances which

is responsible for this broad peak in curve B (Fig. 3).
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The momentum transfer cross-section calculated by an application of our
methodelogy, developed in the preceding sections to ¢ -CO scattering is shown
by curve D of Fig. 3. These results are obtained with the re-normalized value
of the dipole-term in the static potential [Eq. (4.10)]. On comparing these new
results with those computed from-the original V, -term in the multipole ex-
pansion, which are marked C in Figure 3, we find that re-scaling of this term
has maximum effect on thermal-energy electron scattering momentum transfer
cross—section. The electron-polar molecule scattering in this energy range is
very much dominated by the long-range electron-dipole interaction.f There-
fore a decrease in the magnitude of the dipole moment by {, {Eq. (4.9)1 has
suppressed the contribution of o, to o™ (0) [Eq. (2.23)] approximately by
a factor of Qj [ see Eq. (A13)]. For higher incident electron energies the
dipole potential becomes less important and the short-range forces take up the
scaftering process. We, therefore, find that the momentum transfer cross-
section calculated with the original-dipole-term-static~potential (curve C)
decreases very rapidly with the increasing incident electron velocity and by

-the time the impact energy becomes 0.10 electron Volts the results of curve C
are only 18% higher than those of curve D.

The re-scaling of the dipole-term has, therefore, mainly affected the ex-
tremely low-energy electron scattering from CO molecule. The small differ-
ences in the values of the momentum transfer cross-sections at higher incident

electron energies calculated with two different magnitudes of the V; -term
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support our argument of Sec. IV B(iii} that a rather phenomenological re-
normalization of only the dipole-term in the multipole expansion of the static
potential does not have a serious effect on the short-range terms of the electron-
CO interaction potential.

The new momentum transfer cross-section (curve D), on the other hand,
is in very good agreement with the inferred values ? (curve A). (Hake and
Phelps do not give any error limits for their results in Ref. 9.} Also, the results
of curve D reproduce the 1.75 eV *11 resonance very well. In addition to this,
our calculated momentum transfer cross-section beyond 2 eV is indistinguisabie
from that of dotted curve A' which Hake and Phelps9 has obtained by an extra-
polation of their inferred results below 1 eV (curve A). These extrapolated
results have their maximum value around 1.50 eV which is about 0.25 electron
volts lower than the position of the maxima in the calculated curve D. Although
one can always adjust the resonance position in our pseudo-potential method by
finding an appropriate value for the parameter r, in the polarization potential
(4.5) but the magnitude of the cross-section, which is about 44% higher than the
extrapolated values of curve A' in the resonance energy region, is not controlled
by any disposable parameter in our calculation. Hake and Ph.elps9 do not dis-
cuss the accuracy or reliability of their extrapolated results of the momentum
transfer cross-section in this sensitive resonance region. A better comparison
in between the theory and experiment will, therefore, require further measure-

ments of the momentum transfer cross-section in this energy domain. However,
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our computed momentum transfer cross-section, which is obtained by using a
single parameter in the polarization potential, is in satisfactorily good agree-
ment with the experimental measurements over the whole range of energy.
Flg 4 contains the elastic scattering cross-section for (0-0) rotational

transifion. The continuous curve shows the resulis which were obtained from

an application of th'e f.-t. theory to the single-center pseudo-potential method
with re-normalized' dipole-term while the broken curve corresponds to our
extension of the rotational c.c. calculation of Crawford and Dalgarno!®  The
pseudo-potential results of the continuous curve reproduce the 1.75 eV resonance
very well. On the other hand the broken curve results not only fail to go through
this resonance properly but tiley are in considerable disagreement with those
represented by the continuous curve over the whole range of energy. The cross-
section for elastic scatfering will basically be determined by-th_e short-range
terms. A discrepancy between the two curves of Fig. 4, therefore, simply means
that the model potential (4.1) used by Crawford and Da.lga.);'no18 does not repre-~
sent the behavior of the e™-CO interaction potential at short-distances from the
center of mass of the molecule correctly.

The excitation cross section ¢,.; calculated from two different potentials

have been plotted in Fig. 5. Because of the presence of a long-range ele(l:tron-
’ dipole interaction the distant collisions in electron scattering from polar mole-

cules become quite important. The electron scattering for Aj = =1 transitions
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will very much depend upon the dipele potential. The cross-section for these
inelastic transitions in a polar molecule, therefore, will always be large at very
low incident electron energies for reasonably large values of dip(')le moment.
A very good agreement between the two curves of Fig. 5 ai low energies is in
accordance with our contention that the re-normalization of the dipole-term in
the multipole expansion of the static potential [Eq. (4.10)] of the CO molecule
has improved the asymptotic behavior of this potential without making any
significant change in its short-range nature. We again notice that, unlike the
continuous curve, the broken curve results do not show the 1.75 eV resonance.
The rotational excitation cross-sections for (0—2) and (0-3) transitions
are shown in Fig. 6. [We found that the cross-sections obtained from Crawford
and Dalgarno potential for transitions higher than (0~2) were negligibly small.]
The o,., results calculated from two different potentials are again in good
agreement up to 1.0 eV. The cross-section for this transition in the low-energy
domain will, however, depend upon the quadrupocle moment and the non-spherical
component (a,) of the induced dipole polarizability of the target molecule. For
CO molecule the value of a, is very small [Eq. (4.11)] and it gives rise to an
interaction potential which goes off as r™* [Eq. (4.7)], therefore, it is primarily
the electron-quadrupole interaction which will determine the o ,, cross-
section for low-energy electrons. As we see from Fig. 6 that this interaction

. . . . 48 . .
gives rise to almost an energy independent cross—-section. [A difference in

the magnitude of the quadrupole moment used in the model potential {Eq. (4.2)}
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and the pseudo-potential {(Eq. 4.11)} is probably giving rise to a slight difference
in the cross-sections for (0—2) transition of the broken and continuous curves
at these very low-energies.] At Iﬁgher impact energies, however, other short-
range terms become important and therefore while the pseudo-potential results
both for (0—2) and (0-3) transitions go through the resonance but the cross-
section calculated from the model potential (4.1) does not show this behavior.

The rotational excitation cross-section for (0-4) transition calculated from
the pseudo-potential method is shown in Fig. 7. (The cross-sections for transi-

tions higher than Aj = 4 were negligibly small.) Since both gy B0d oy,

3
are non-zero only in the resonance energy region (gee IMigs. 6 and 7), it is,
therefore, mainly the short-range terms of the interaction potential which are
responsible for these transitions. On comparing the magnitudes of the various
cross-sections at the resonance energy 1.75 eV one will notice that Cymg ?
although smaller than o, _, , is largest among the excitation cross-sections
for the transitions which start from the ground rotational state of CO molecule.
This result seems to be in striking similarity with the rotational excitation in

10,23,49

e”-N, scattering where we found that 'cro_, , although smaller than

4
Og-q> Was larger compared to o, in the resonance energy region.

The total scattering cross-section o {0), defined by Eq. (2.22), is shown
in Fig. 8. The good agreement between the broken and the continuous curves

at extremely low energies begins to disappear as the short-range interaction

becomes important at higher energies. Although the pseudo-potential results
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have a large spike at 1.75 electron Volis, but those calculated from Crawford
and Dalgarno *® potential (4.1) show a wide resonance type behavior around
3.00 eV. Also there is a big difference in the maximum values of the cross-
section obtained from these two different calculations.

A comparison of Figs. 3 and § will also reveal that ¢™(0) and o (0)'calcu1ated
from the model potential of Crawford and Dalgarno have their maxima at two
different energies, 1.50 and 3.00 eV respectively. While in the case of the
pseudo-potential method both of these quantities peak at 1.75 eV, which is the
position of the resonance in 1 state of the (e’+CO)-—sys1:em.42

Such a detailed comparison of the various cross-sections computed using
these two different potentials in the scattering equations makes two very im-
portant points about the nature of these interactions. The semi-empirical
potential (4.1) of Crawford and DaLc:,raJ:'no18 is good only for describing the
electron collisions with carbon monoxide at extremely low energy where the
scattering is primarily determined by various long-range terms (e.g., electron-
dipole, electron quadrupole, ete.) of the ¢ ~CO interaction. This model fails to
represent the short-range forces. It should therefore, not be used to calculate
either the low-energy elastic scattering cross-sections or to study the e” -CO
scattering at higher energies. The re-normalization of the dipole-term in the
multipole expansion of the charge distribution of carbon monoxide used in our
pseudo-potential method, on the other hand, has improved its asymptotic
behavior without altering the short-range nature of this potential is any

apparent way.
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The individual contributions to o (0) and ™(0) are given in Tables VII and
VIII respectively. Tables IX and X contain, respectively, the rotationally elastic

1=j and the momentum transfer cross-

and inelastic scattering cross-sections o
sections 0‘1’_,5 , for j' = 0 to 5. In all these tables both the scattering and the
momentum transfer cross-sections for Aj = +1 transitions are largest in the
thermal-energy region. These tables also show that all our results for individual
transitions reproduce the 1.75 eV *I1 resonance very well. In addition to this,
one would also notice that in the resonance energy region—umlike the 0-j' trans-
itions where ¢,., and oj., have the largest values for excitation cross-
sec‘cicms—-—cr1__3 and ol although smaller than the elastic O and or
respectively, are maximum among the cross-sections for inelastic transitions
which start from. the first excited rotational state of carbon monoxide. This
feature is again the same which was found both in the pure rotational excit-
ation'®: 23 and the simultaneous vibration-rotation excitation*® in e™~-N, scat-
tering. The last thing which we will like to point out from these tables is the
fact that, except for extremely~low energy values, ¢ (0) is almost equal to o (1)
(Tables VII and IX) and so is the case with o™ (0) and o™(1) (Tables VIII and X).
These agreements -between these cross-sections are in accordance to the state—
ments madEe in Egs. (2.22) and (2.2:_3) respectively.

The differential scattering.cross-sections for (0-j') and (1-j') transitions

at 0.01 eV are shown by continuous curves in Figs. 9 and 10 respectively.
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These results were obtained from the pseudo-potential method, with the re-
normalized dipole-term, combined with the f.-t. theory. The scattering process
for this value of the incident electron energy will basically be determined by the
asymptotic forms of the various long-range permanent and induced multipole
potential terms [Eq. (4.7)]. The angular distribution for both elastic transitions
(0-0) and (1—1) in Figs. 9 and 10 respectively has its maximum value in the
backward direction. The do; . ,,/dQ} peaks, on the other hand, in the forward
direction because of the importance of the long-distance collisions due to the
electron~dipole interaction, and vanishes almost completely in the backward
direction. At this impact energy the electron—quadrupolé interaction dominates
the scattering for Aj = 2 transitions and thus giving rise to an almost isotropic
angular distribution.”® The differential cross-section for higher transitions
from the ground and first rotational states were negligibly small for this

value of the incident electron energy and are not shown in Figs. 9 and 10,
respectively.

In Fig. 9 we have also shown by the broken curves the angular distribution
obtained by using the semi-empirical potential (4.1) of Crawford and Da.lgarno18
in the rotational c.c. Eq. (2.12). The results computed f-rom this potential for
(0-1) transition were indistinguishable from those of the continuous curve on
the scale of Fig. 9. As for other two transitions [ (0—0) and (0—2)], apart

from a difference in their magnitudes, general behavior of the cross-sections
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represented by the confinuous and broken curves as a function of the scattering
angle is almost identical. Note that the elastic differential scattering cross-
section for (0-0) transition, which will depend upon the short-range terms even
at 0.01 eV, vanishes in the forward direction when computed from the meodel
potential (4.1). A slight difference in the values of the (0-2) differential cross-
section of the continuous and broken curves in Fig. 9 is associated with the
difference in the magnitudes of the quadrupole moment used in two potentials
[cf. Egs. (4.2) and (4.11)].

The angular distributions for (0-j') and (1-j') transitions at 1.50 electron
Volts are drawn in Figs. 11 and 12 respectively. The continuous curves of these
figures were obtained from the single-center pseudo-potential method, with re-
normalized dipole-term, in the context of the f.-t. theory. Although the magni-
tudes of the cross—sections for the same A j values in these two figures are
different but their generai behavior as a function of the scattering angle is almost
identical. Here again we find that the curves for Aj = =1 transitions peak in the
forward direction. But, unlike those shown in Figs. 9 and 10, the differential
cross—section for these transitions now does not vanish in the backward direc-
tion. We also notice from Figs. 11 and 12 respectively that (0-2) and (1-8)
angular distributions are no longer isotropic. All these things simply mean
that it is not the long-range interactions which now determine the scattering
but the short-range forces too play an important role at this impact energy

even for these transitions.
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The broken curves in Fig. 11 are the differential scattering cross-sections
calculated from the model potential (4.1) of Crawford and ]3'31{&3;:—_11'11018 at 1,50 eV
[The cross-sections obtained from this potential for transitions higher than
(0~ 2) were negligibly small.] do,_,/dQ of the broken curve is still isctropic.
Although the angular distribution for (0-1) trangition obtained from this poten-
tiai (broken curve in Fig. 11) peaks in thé forward direction but vanishes almost
conipletely beyond 45°, This kind of behavior of the broken curves, which is
quite different from that of the continuous curves of the pseudo-potential and
shown in the same Fig. 11, implies that the short-range forces represented in
the semi-~empirical potential (4.1} of Crawiford and Dalgarno18 are so weak that
even for scattering of 1.50 eV incident energy electrons the asymptotic forms
of the electron-dipole and electron-quadrupole interaction potentials dominate
the cross-sections for (0 —»1) and (0~ 2) transitions respectively.

The broken curves for the (0~ 0) transitions in Fig. 11 has two peaks of
almost equal heights in the forward and backward directions. The single mini-
mum of this curve lies hetween 55° and 65°. The continuous curve for the-
‘angular distribution of the pseudo-potentizl, on the other hand, has a crest at
about 90° with two, almost equidis‘tant, troughs on eithér sides. Thege differ-
ences in do, _ o /dQ calculated from two different potenfials exemplifies the fact
that the nature of the short-range forces represented by the Crawford and

i3

Dalgarno™™ potential (4.1) is entirely different than that of the pseudo-potential.
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The definition of the momentum transfer cross—secti.on involves a weighting
factor of (1-cos &) [see Eq. (2.21)] which takes away the forward scattering
contribution. A broad peak in the momentum transfer cross-section at about
1.50 eV {(curve B in Fig. 3) calculated from the model-potential is, therefore,
exclusively due to the rotationally elastic electrlon scatfering from carbon
monoxide.

In Figs. 13 and 14 are shown the angular distributions for (0 —j') and (1-j")
transitions calculated from the pseudo-potential at the *[I resonance energy
1.75 eV [Both the moﬁentum transfer cross-section o™ (0) (curve D in Fig. 3)
and the total integrated scattering cross-section o (0) (continuous curve in Fig. 8)
obtained from this potential have a well defined resonance at this energy.] We
notice that the 90° crest in the elastic differential cross-sections (0-0) and
(1~1) at 1.50 eV, shown in Figs. 11 and 12 respectively, have flattened out in
Figs. 13 and 14 increasing the cross-section in the backward and forward direc-
tions at 1.75 eV. This distribution of the elastic cross-section as a function of
the scattering angle at the resonance energy is very similar to what we found in
e ~N, scatfering. 10,2349

An additional interesting feature of these results is that the angular distri-
bution for Aj = #1 transitions—which is absent in e”-N, scattering—although
still has the forward s‘:cattering peak, oscillates around 90° giving rise to a

crest and trough on either side of this angle at almost symmetric positions.
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This behavior of the differential cross-section for angular distribution for
(J-j*1) transitions is the manifestation of basically a p~wave nature of the ’n
resonance present in electron scattering from carbon monoxide. The diifer-
ential scattering cross-sections for Aj = 2 and 4 transitions are, however,
almost symmetric about 90° and again very similar to the N, case 204
where they have a peak and a broad minima in the (j- j+2) and (j- j+4) transi-
tions respectively. The do’,—-, 3 /dfl , onthe other hand, increases monotom-
ically in going from forward to the backward direction.

In the end we show the differential scattering cross-section at 3.00 eV.
The (0 - j') results are drawn in Fig. 15 while those for (1 - j') in Fig. 16. The
continuous curves in these two figures again correspond to the pseudo-potential
m.ethod combined with the f.-t. theory and the re-normalized di‘pole term.
The cross-sections for Aj = £1 transitions have logt their crest and trough
around 90° which was present in the resonance energy (1.75 eV)-angular dis-
tributions shown in Figs. 13 and 14. As a matter of fact, the differential cross-
section for this transition, although still peaking in the forward direction, has
a very broad crest at about 90°. ﬁowever, the do, /A for ' =37 +2,j +3,
and j + 4, although smaller in magnitude, but basically have the same shape as
at 1.75 eV.

The angular distributions for (0 —j') transitions calculated from the

Crawford and Dalgarno®® potential (4.1) at 3.00 eV are shown by the broken
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curves in Fig. 15. {[The total integrated scattering cross-section calculated
from this potential has a broad resonance at this energy value (broken curve
in Fig. 8)]. The behavior of the broken curves in Fig. 15 is entirely different
than those of the continuous curves. The short-range terms of this model
potential fail to show any oscillations either in the (0— 1) or (0- 2) angular
distributions. On the other hand, the differential scattering eross-section. for
all three transitions—(0-0), (0-1), and (0~2)—calculated from the model- poten-

tial (4.1) of Crawford and Dalgarno18 at 3.0 eV peaks in the forward direction.

V. CONCLUSION

The work presented here probably constitutes the very first study of elec-
tron scattering from such a complex system as carbon monoxide using ab-initio
methods. Although, to check the accuracy of the various cross-sections given
here mor'e experimental measurements will be required in future but the basie
fact that the computed momentum transfer cross-section over the whole energy
range is in very good agreement with the values inferred from swarm experi-
ments is assuring enough that the other results too should be in satisfac;torily
good agreement with the future measurements.

As regard to the f.~t. theory, which has formed the basis of the present
study, our opinion is that it provides a good formalism for studying the electron-
molecule écattering from first principles. The convenience with which the short-

range forces can be included by working in a fixed-nuclei approximation in the
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inner-region and at the same time allowing the introduction of nuclear degrees
of freedom in the outer-region makes this theory quite atiractive. We have
shown here hc?W. our single-center pseudo=-potential method—combined with the
R=matrix——can be adapted to the f.-t. theory.

Our experience, however, is that inspite of all its glamour the practical
implementation of the f.-t. theory is an extremely arduous task. As we have
pointed out elsewhere in this article, it is a multistep process. The absence
of a rigorous criterion for the selection of a value for the inner-molecular core
radius, where a transformation from a molecule- to a space-fixed frame of
reference should be performed, introducés an element of uncertainty in its
applicatign. In addition to .this, considerable effort has to be made in solving
tl-le scattering problem in the outer-region in a space-fixed frame of reference.

This complexity will increase  further when one wants to include hoth the
nuclear vibration and rotation in the outer-region. A great disparity in the time
period of these raotions will now require two different points in the configura-
tion space in order to introduce in the scattering equations the Hamiltonians
associat'ed with these two modes of nuclear motion. This in turn will also mean
that one has to perform two separate transformations—one c_aach for the vibration
and .rotation. Inspite of the availability of high speed and large memory com-
puting machines, it seems to.us that one should make a very ecareful judicious

study of the problem at hand before deciding to use the f.-t. theory.
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APPENDIX
The Born approximation theory of electron-molecule scattering is very

well formulated.25 48

In this Appendix we give the relevant formulae and put
them in a form directly applicable to the present study.
The T? Lo g matrix element for a transition from the initial rotational
J 3 .l

state j to the final state j' calculated in Born approximation from a set of

coupled scattering Egs. (2.12) is given byso

BT;F’/E',Jfﬂ =-2i7 Z f#(j:/{’,:’ iti D j Ay f1/2 (kJ 11) V(1) Jfl’,+1/g(k1 r) rdr,
n=1 0 (A1)

where coefficient
s Py - p, — (M A5 grIM
G = g1 G ROl 8T >

. _ 5§ T4 m\[i 47T
- -1 Vi R D i) L1 (JJ #>( ){ }
D7 eI D@DRIDEHD A 0 0o 0 ol 5 u) e

has already been iniroduced on the right hand side of Eq. (2.12). J 061 /z(x)
is a Bessel function related to the regular spherical Bessel function of Eg.

(3.3) by the following relation

Tpar @ = VE 500.
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If the multipole expansion (2.11) of the electron-molecule electrostatic

interaction (2.4) is replaced by its asymptotic form, namely

V(T;R) = ? v, LR (- R), (A3)
7~
where » , v,, ¥y, . - ., €tc. are respectively the dipole, quadrupole, octopole,

- + +; ete. moments of the molecular charge distribution, the relation (A1) will

then become

: E e fr o p, ) dr
BT-},(E’,'J([,,:—21?T 1 f“(_] £ ,]/E, D v, L J',g,+1/2(k]:r) ;L.: (A4)
'LL=

The radial integral (A4) can be evaluated analytically. There are two

different cases to be considered:

k, =k =k (Say)> 0,

[04]

dr
J Tprarn o™ Tg gy, Got) —
0 r#

Ky T I(S - )
: 1 P |
2#1”(5)1“(3“/&-5) r (S-fﬂ -~ 5)

» [w> Q) (A5)
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and

k.>kf>0
J 1

® dr
J T4t 2179 (kv 1) Toe1s (k; p

0

L +1/2 \
k., F(S—#’) k2,
= L= +3/J2 3 i F (S_Ju':/ﬂj "S+'2—"E" ’i'g';——;- . [}1«>-—11
SRl o} VA o S T 1
J 2 2
(A6}
_where we have defined
1 :
S:E(fﬂa-'[’, +u)+1 (AT)

and F (a,b,c;z) is a hypergeometric function.”
For expressiong (A5) and (A6) to be finite the arguments of the Gamma
functions present in the numerator of these relations should be greater than

zero, i.e.,
S-u>0
Or, from (A7},
L+4d +2> . (A8)

The second 3-j symbol on the right hand side of Eq. {(A2) will be zero unless

|4 - 4] <p <4 + 4. The Born radial integral present in Eq. (A4) will,
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therefore, always converge as long as the values of 4, 4, and u satisfy the
tl;,'iailgular relation A, A/, p). ‘The Born II -matrix elements can now be com-
puted by substituting the expression (A5) or (A8), as the case may be, in Eq.
(A4). For those values of 4, 4', and 1 which do not satisfy the inequality (A8),
the BIJ -matrix element will automatically vanish because of the 3-j symbol
present in Eq. (A2).

Crawford et al?®

have derived an expression for the differential scattering
cross-section for a (j - j') transition. - For an electron-molecule interaction of

the form (A3), one can write

2
d Bor k 2 it om 2 ee
o405 ¢ 1) L § iz i key 95| (a9)
da k] 20 +1\ 9 0 0 o K A1

k=1

where fij and ]Ej + specify the directions of the initial and final momentum
resvpectively and K = 1--«:'1—1_(:1 + defines the momentum transfer during the collision
such that

Koin = |k, = ko, K, =k +k e (A10)

Because

@ e
J T P R
0 A1 2R (# + 5)

the differential scattering cross-section is, therefore, given by
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. sy 2 -
4% = 4r (2§’ + 1).1_{_5_' Z ___.__i‘i____<1 : 'u) K
d{ k, = -2“1_'(;1.+l) 0 0 0 2+ 1
2

The integrated cross-section for an inelastic transition-(j —j'), defined by,

B d Bo—i"J' T
O'j__.ji = _dQ_ dkjr

will now become

13

. . 2
Bo. ,=Si(3_j_'_.t_12 D2 (J ! 1) In Kmax

3K? 0 0 0 Koin
]
(A12)
. .1 2 S22 2p -2
+4TT2(2j’ + 1) . U,u. (J ] 'u'> Kmax - Kmin
2 2 : 1 -1y 2p + DY
I D gyp(ME)o 0 0o/ w-1y2pr+1)

where we have replaced », by D for the permanent dipole moment of the target
molecule. The first term on the right hand side of Eq. (A12) will obviously be
absent for electron scattering from homonuclear diatomic systems.

The momentum transfer cross-section

dBO’rP__, I S ~ -
Bom sz — 2L (Q-k-k..)dk..
i~i ETe) i j

is given by
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- 2 2
i’ J J’ 1 Kmi I{max
g?ﬂi,=an( )%_ T 1 ]
31{? 0 0 ¢ 2 ka: K

.. 2 2 2 Jp=2
+ 2’1‘]’2 (2j' + 1) Uﬂ (‘l J’ ’u'> Kmin - Kmax + 4“u'kjk_'|’ Kmax )
3 1 -1 2 1
kI anz Qﬂr(ﬂ_l_z) 0 0 0 (- Dpp+ ),
(A13)

The K ; eand X __ are defined in Eq. (A10) and again the first term on the

right hand side will be present only for electron scattering from polar molecules.
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Fig. 1 —

Fig. 2 —

Fig. 3 —

FIGURE CAPTIONS
Eigenphase sum calculated in the fixed-nuclei approximation from the
model potential (4.1) of Crawford and Dalgarno (Ref. 18).
Eigenphase sum calculated in the fixed-nuclei approximation using
the single-center pseudo-potential method. The dipole-term in the
static potential has been re-normalized by {, [Eq. (4¢.10)] and
ry = 1.541{a.u.) in the polarization potential (4.5). (The values of the
resonance parameters are given in Table III.)
Comparison of the momentum transfer cross-section o™ (0) (Eq. (2.23)]
versus incident electron energy obtained from different methods. A
are the results of Hake and Phelps (Ref, 9) inferred from the swarm
experiments with the dotted curve A' obtained so that it extrapolates
smoothly to the derived résults of A below 1.00 eV. B is calculated
by solving the rotational close-coupling Eqgs. (2.12) with the potential
(4.1) of Crawiord and Dalgarno (Ref. 18). C and D represent the
results obtained by using the single center pseudo-potential method
with the frame-transformation theory: the broken curve C corres-
ponds to the original dipole-term in the static potential; the continuous
curve D shows the final results of the re-normalized dipole-term in

the static potential,
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Fig. 4 —

Fig. 5 —

Fig. 6 —

Fig. 7 —

Fig. 8 —

Fig. 9 —

The elastic scattering cross-section for (0-0) rotational transition.
The broken curve was computed by solving the rotational close-
coupling Egs. (2.12) with the model potential (4.1) of Crawford and
Dalgarno (Ref. 18). The final results, shown by the continuous curve,
were obtained by combining the single-center pseudo-potential method
with the frame-transformation theory and re-normalized dipole-term
in the static potential.

Same as Fig. 4 but for (0~1) rotational transition.

Same as Fig. 4 but for (0-2) and (0-3) rotational transitions. [Thé
broken curve results for (0~3) transition were negligibly small.]
Same as Fig. 4 but for (0—~4) rotational transition. (The broken curve
results for this transition were negligibly small).

The total scattering cross-section o(0) [Eq. (2.22)]. The broken
curve was computed by solving the rotational close-coupling Eq. (2.12)
with the model potential (4.1) of Crawford and Dalgarno (Ref. 18).
The final results, shown by the continuous curve, were obtained by
combining the single-center pseudo-potential method with the frame
transformation theory and re-normalized dipole term in the static
potential.

Differential scattering cross-section for (0—0,1,2) rotational fransi-
tions at 0.01 eV. The broken curves were computed by solving the

rotational close~coupling Egs. (2.12) with the model potential (4.1)



of Crawiord and Dalgarno (Ref. 18). The final results, shown by the
continuous curves, were obtained by combining the single center
pseudo'-potential method with the frame-transformation theory and
re-normalized dipole-term in the statfic poiential.

Fig. 10 — Differential scattering cross-sections for (1-0,1,2) rotational
transitions at 0.01 eV. These results were obtained by combining
the single-center pseudo-potential method with the frame-
transformation theory and re-normalized dipole term in the static

potential.

¥ See foot note to Table IX.

Fig. 11 — Same as Fig. 9 but for (0-0,1,2,3,4) rotational transitions at 1.50 eV.
[The broken curve results for transitions higher than (0~ 2) were
negligibly small.]

Fig, 12 — Same as Fig. 10 but for (1-0,1,2,3,4,5) rotational transitions at 1.50 eV.
: See foot note to TablelX.

Fig. 13 — Same as Fig. 10 but for (0-0,1,2,3,4) rotational transitions at the
resonance energy 1.75 eV.

Fig. 14 — Same as Fig. 10 but for (1-0,1,2,3,4,5) rotational transitions at the

resonance energy 1.75 eV.

% See foot note to Table IX.

Fig. 15 — Same as Fig. 9 but for (0-0,1,2,3,4) rotational transitions at 3,00 eV,
[The broken curve results for transitions higher than (d—>2) were
negligibly small.]

Fig. 16 — Same as Fig. 10 but for (1-0,1,2,3,4,5) transitions at 3.00 eV,
§See foot note to Table IX.
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Figure 1. Eigenphase sum calculated in the fixed-nuclei
approximation from the model potential (4£.1) of Crawford
and Dalgarno (Ref. 18).
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Figure 2. Eigenphase sum calculated in the fixed-nuclei approximation using the single-center
pseudo-potential method. The dipole-term in the static potential hag been re-normalized by [,
[Eqg. (4.10)] and r, = 1,541 (a.u.) in the polarization potential (4.5). (The values of the resonance
parameters are given in Table I1I1.)
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Figure 3. Comparison of the momentum transfer cross-section o™ (0) [Eq. (2.23)]
versus incident electron energy obtained from different methods. A are the re-
sults of Hake and Phelps (Ref. 9) inferred from the swarm experiments with the
dotted curve A’ obtained so that it extrapolates smoothly to the derived resulis of
A below 1.00 eV. B is calculated by solving the rotational close-coupling Egs.
(2.12) with the potential (4.1) of Crawford and Dalgarno (Ref. 18). C and D repre-
sent the results obtained by using the single center pseudo-potential method with
the frame-transformation theory: the broken curve C corresponds to the original
dipole-term in the static potential; the continuous curve D shows the final results
of the re-normalized dipole-term in the static potential.
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Tigure 4, The elastic scattering cross-section for (0-0) rotational transition, The broken
curve was computed by solving the rotational close-coupling Egs. (2.12) with the model poten-
tial (4.1) of Crawford and Dalgarno (Ref. 18). The final results, shown by the continuous curve,
were obtained by combining the single-center pseudo-potential method with the frame-
transformation theory and re-normalized dipole-term in the static potential.
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Figure 6. Same as Fig. 4 but for (0-2) and (0-3) rotational transitions.
[ The broken curve results for (0-3) transition were negligibly smail.]
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Figure 7. Same as Fig. 4 but for (0—4) rotational transition. (The broken curve
results for this transition were negligibly small).
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Figure 8. The total scattering cross-section ¢(0) [Eq. (2.22)] . The
broken curve was computed by solving the rotational close-coupling
Eq. (2.12) with the model potential (4.1) of Crawiford and Dalgarno
(Ref. 18). The final results, shown by the continuous curve, were ob-
tained by combining the single-center pseudo-potential method with -
the frame transformation theory and re-normalized dipole term in the
gtatie potential.
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Figure 9. Differential scattering cross~section for (0-0,1,2)
rotational transitions at 0.01 €V. The broken curves were
computed by solving the rotational close-coupling Egs. (2.12)
with the model potential (4.1) of Crawford and Dalgarno (Ref.
18). The final results, shown by the continuous curves, were
obtained by combining the single center pseudo-potential

method with the frame~transformation theory and re-normalized
dipele~term in the static potential,
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Figure 10, Differential scattering cross-sections for
(1~0,1,2) rotational transitions at 0.01 eV. These re-
sults were obtained by combining the single-cénter

pseudo-potential method with the frame-transformstion
theory and re-normalized dipole term in the static po-

tential,

$3ee footnote to Table IX.

87


http:ENERGY�=O.01

INCIDENT ELECTRON ENERGY=1.50 eV

- i'=4 - —
020 |—
0.10 —

0.0 [ ' '

6,20 - i=3 —

0 s i 374 Frs
ANGLE (RADIANS)

Figure 11. Same as Fig. 9 but for (0-0,1,2,3,4)

rotational transitions at 1.50 eV. [The broken curve

results for transitions higher than (0-2) were neg-
ligibly small.]
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Figure 12. Same as Fig. 10 but for (1~0,1,2,3,4,5)
rotational transitions at 1.50 V. .
8 See footnote to Table IX.
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Figure 13. Same ag Fig. 10 but
for (0-0,1,2,3,4} rotational
transitions ai the resonance
energy 1.75 eV,
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Figure 14. Same as Fig. 10 but
for (1-0,1,2,3,4,5) rotational
transitions at the resonance energy

1.75 eV.
$ See footnote to Table IX.
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Figure 15. Same as Fig. 9 but for
{0-0,1,2,3,4) rotational transitions
at 3.00 eV. [The broken curve re-
sults for transitions higher than
(0-2) were negligibly smail.]
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Figure 16. Same as Fig. 10 but
for (1 - 0,1,2,3,4,5) transitions
at 3.00 eV.
§See footnote to Table IX.
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Comparison of & g

Energy  j - 3'

(ev)

0.005 0-+0

0.05 G0

0.10 0=+0

* ¢.c. = rotational close-coupling;

§ see Eq. (3.G):

T 1n atomic units,

ORIGINAL PAGRE IS
OF POOR QUALITY

J

NPFPORHOMNMNHOMNMFOMNMMFONFONMRFODNIEDMNMHEHONMONKROMNEO

v

Exact

(c.c)*

0.356
0.037
0.002
5.142
9.669
5.603
0.134
0.479
0.020
0.005
0.056
0.511
2.251
0.328
0.009
0.532
0.874

0.519-

0.052
2.466
0.111
0.003
0.004
2.482
3.463
0.667
0.021
0.270
0.430
0.258
0.024
3.698
0.249
0.002
0.007
3,709

4.406

0.352
0.037
0.002
4.142
9.670
5.603
0.134
0.464
0.020
0.005
6.056
0.494
2.243
0.328
0.009
0.532
0.874
0.519
G.051
2.430
0.114
0.003
0.004
2.445
3.458
0.667
0.021
0.270
0.430
0.258
0.023
3.656
0.258
0.002
0.007
3.666

o Table 1
. (AQ) Calculated from the Frame-Transformation
Theory with the Close-Coupling Results Obtamed Using Crawford and
Dalgarno (Ref. 18) Potential

Frame-transformation (b§=l.0), rﬁf

94

6.090

0.352
0.037
0.002
£.142
9.670
5.603
0.134
0.446
0.020
0.005
0.056
0.472
2.243
0.328
0.009
0.532
0.874
0.519
0.051
2.388
0.115
G.003
¢.003
2.397
3.458
0.667
0.021
0.270
0.430
0.258
0.023
3.606
0.26%1
0.002
0.067
3.609

7.714

0.352
0.037
0-.002
4.142
9.670
5.603
0.134
0.429
0.020
0.005
0.056
0.445
2,243
0.328
0.009
0.532
0.874
0.519
0.051
2.349
0.116
0.003
0.003
0.338
3.458

0.667.

0.021
0.270
0.430
0.258
0.023
3.560
0.264
0.002
¢.007
3.540

9.338

0.352
0.037
0.002
4,142
9.671
5.603
0.134
0.412
0.020
0.005
0.056
0.412
2.242
0.328
0.009
0.533
0.874
0.519
0.051
2.311
0.117
0.003
0.003
2,265
3.458
0.667
0.021
0.270
0.430
0.258
0.023
3.516
0.267
0.002
0.007
3.457

10.150

0.352
0.037
0.002
4.142
9.671
5.603
0.134
0.404
0.020
0.005
0.056
0.393
2.242
0.328
0.009
0.533
0.874
0.519
0.051
2.292
0.117
0.003
0.003
2.223
3.458
0.667
0.021
0.270
0.430
0.258
a.023
3.494
0.269
0.002
0.007
3.409



Table IT
4 -JT it (ﬁ&z) Caleulated from the Frame-Transformation Using the Pseudo-Potential

t

Energy j+j3’ J Frame-transformation (b+=1.0), rz =
{eW) 6.902 8.526 10.150 11.774 13.398 15.022
0.005 0=-0 0 0.990 1.341 1.452 L.485 1.4935 1.497
1 0.142 0.138 0.137 0.137 0.137 0.137
2 0.0z24 0.023 0.023 0.023 0.023 0.023
01 0 23.319 22.867 22.820 22.812 22.810 22.810
1 54.900 533.848 53.744 53.727 53.723 53.721
2 32.352 31.787 31.745 31.742 31.742 31.742
l1-+1 0 0.189 0.188 0.187 0.187 0.187 0.187
1l 0.987 1,343 1.448 L.457 L.435 1.397
2 0.172 0.166 0.166 0.165 0.165 0.165
2+2 0 0.008 0.008 0.008 0.008 0.008 0.008
1l 0.122 0,121 0.120 0,120 0.120 0.120
2 1.816 2,345 2.489 2.463 2.352 2.185
0.05 0=+0 0 5.614 6.305 6.519 6.582 6.600 6.605
1 0.211 0.208 0.207 0.207 0.207 0.207
2 (.011 0.011 0.011 0.011 0.011 0.011
0=+1 0 2.397 2.307 2.286 2.280 2.278 2.278
1 4.340 4.206 4,179 4.171 4.167 4,166
2 3.008 2.955 2.951 2.951 2.951 2.951
1-+1 0 0.054 0.054 0.054 0.054 0.054 0.054
1 5.551 6.284 6.487 6.513 6.474 6.406
2  0.074 0.073 0.073 0.074 0.075 0.076
222 0 0.003 0.003 0.003 0.003 0.003 0.003
1 0.011 ¢.011 0.011 0.011 0.0L1 0.010
2  5.656 6.491 6.719 6.6%92 64540 6.311
0.10 0=-+0 0 7.588 8.324 8.530 8.615 8.634 8.638
1 0.327 0.320 0.318 0,317 0.317 0.317
2 0.022 0.022 0.022 0.022 0.022 0.022
0-1 0 0.919 0.862 0. 846 0.840 0.839 0.839
1 1.843 1.764 L.744 1.738 1.735 1.734
2 1.502 1.475 1.473 1.473 1.474 1.474
1+1 0 0.033 G.034 0.034 0.034 0.034 0.033
1 7.507 8.292 8.508 8.537 8.500 8.438
2 0.:20 0.118 0.119 : 0.121 0.124 0.129
2+ 2 0 0.002 0.002 .002 0.002 0.002 0,002
1 0.002 0.002 0.002 0.002 0.002 0.002
2 7.386 8.278 8.526 8.511 8.374 8.167

T see Eq. (3.6);
* in atomic units,
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Table IiL
Values of r, [Eq. (4.5)] and of the ’l Resonance Parameters

The multipole expansion (2.11) of the static
potential of CO molecule

T, (a.u.) 60 (rad.) Er {eV) Fo (eV)
Contains the original dipole tern 1.605 -0.082 1.753 0.278
Contains the dipole term renormalized by L3
[Egqs. (4.9) and (4.10)] 1.541 ~0.067 1,740 0,242
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Table IV

Convergence of o] _ . (1?&2), Calculated from the Frame~Transformation
Theory using the Pseudo-Potential, with the Number of Rotational States
Coupled in Eq. (2.12) in the Outer-Region: Incident Electron Energy = 1.75
eV, r, = 11.774 (a.u.), Even Parity’

10

Jmax ~

! ¥
Ne 0+0
2 3 10.860
3 4 10.861
3 5 10.861
5 - & 10.861
2 5 0.647
3 7 0.959
4 9 0.959
5  1f  0.959
2 6  26.872
3 9 24.914
4 12 17.551
5 .15 17.547
6 18  17.548
7 21 17.548
2 6  0.059
3 10 0.059
4 14  0.059
5 18 0.059
6 22 0.059
2 ° 6  0.015
3 10 0.015
4 15 0.015
5 20  0.015
6 25  0.015
7 30  0.015
2 6  0.005
3 10 0.005
4 15 0.005
5 21 0.005
2 6  0.002
3 10 0.002
4 15 0.002
2. 6  0.001
3 10  0.001
4 15 0.001
2 6  0.001
3 10 0.001
4 15 0.001
2 6  0.000
3 10 0.000
4 ° 15  0.000
2 6  0.000
310 0.000
4 15 0.000

-1

.691
.699
.699
.699
.103
547
.546
.547
.209
4.107
3.852
3.850
3.850
3.850
0.018
0.016
0.015
0.011
0.011
0.008
0.008
0.008
0.008
0.0908
0.008
0.007
0.007
0.007
0.007
0.006
0.006
0.006
0.005
0.005
0.005
0.004
0.004
0.004
0.004
0.004
0.004
0.003
0.003
0.003

PR OIOOO0O

0-2

0.335
0.338
0.338
0.338
1.416
0.6738
0.679
0.679
7.471
6.868
6.445
6.441
6.442

6.442°

0.029
0.039
0.030
0.033

0.033

0.019
0.010
0.019
0.010
0.011
0.011
0.007
0.007
0.007
0.007
0.004
0.004
0.004
0.003
0.003
0.003
0.002
0.002

- 0.002

0.001
0.001
0.001
0.001
0.001
0.001

03

0.001
0.001
0.001

2.142
2.141

2.141

3.142
2.122
2.138
2.138
2.138

0.063
n.003
0.003
0.003

0.000

0.000
n.000
0.001
0.001

0.000
0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0. 000

0.000

0.000
0.000

0.000
0.000

18.651
18.636
18.634
18.634

0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000

0.000

0.000

0.0600

0.000

0.000

0»5

0.000

0.000

0.001
0.001
0.001

0.001
0.001

0.000
0.000
0.000

0.000

1.001
0.001

0.000

0.001
0.001

0+7

0.006

0.000

iSee text for the description of these quantities.

Highest rotational state (starting from j' = Q) coupled in Eq..(2.12)}.
Total number of coupled channels (j4) in Eq. (2.12).


http:Eq..(2.12

Convergence of gJ“] ' (A2 ), Calculated from the Frame~Transformation

Table V

Theory using the Pseudo~Potential, with the Number of Rotational States
Coupled in Eq. (2.12) in the Outer-Region: Incident Electron Energy = 1.75
ev, r, =11.774 (a.u.), Even Parity§

— WP = D) b B = 1 —
OO OURIOONW-FOOORXEFNWOUO R OSIOTOU & W

3]
[y

ol b e b s e e
OO RTIORHUIO G

10
10
15

UM WP ONPEWNERRNONBWNSNONEWMNOORWNSNOMAWN OB WN O S WR

10

0.230
0.233
0.233
0.233
1.702
1.516
1.516
1.516
1.403
1.369
1.234
1.284
1.284
1.284
0.006
0.005
0.005
0.004
0.004
0.003
0.003
0.003
0.003
0.003
0.003
0.002
0. 002
0.002
0.002
0.602
0.002
0.002
0.002
0.002
0.402
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001

1+1

0.238
0.245
0.245
0.245
21.981
18.825
18.823
18.823
0.168
0.285
0.547
0.547
0.547
0.547
15.695
15.457
14.323
10.576
10.573
0.020
0.019
0.019
0.019
0.019
0.019
0.004
0.004
0.004
0.004
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.000
0.000
0.0c0
0.000
0.000
0.000
0.000
0.000

1+2

0.005
0.005
0.005
0.005
1.292
0.974
0.983
0.983
1.074
1.019
0.959
0.958
0.958
0.959
2.234
2.078
2.037
1.971
1.970
0.007
0.008
0,007
0.007
0.004
0.004
0.003
0.003
0.003
£.003
¢.003
0.003
¢.003
0.0n2
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.0602
0.002
0.002
0.002

1+3

0.
0.
0.

5.
5.
5.

0.
0.
0.
0.
0.

2.
1.
1.
1.

0.
0.
0.
0.
0.

0.
0.
0.

oo o0 oS

oo o0

002
002
4074

082
077
076

867
404
404
404
404

081
894
754
753

012
012
012
014
014

003
003
003

.002
.0o2

.001
.001

.001
.001

.001
.001

.000
.000

14
0.000

0.000

0.001
0.001

1.225
1.224
1.224
1.224

1.750
1.211
1.220

0.601
0.001
0.002
0.002

0.000
0.000

0.000
0.000
0.000
0.000

0.000

1+5

0.000

0.000

0.000
0.000
0.000

10.367
10.358

0.000
0.000
0.000

0.000

16

0.000
0.000

0.001

0.001
0.001

17

0.000

0.000

nge text for the definition of these quantities.
Highest rotational state (starting from j' = 0) coupled in Eq. (2.12).

t+
Total number of coupled channels (ji) in Eq. (2.12).



R Table VI
Convergence of o*Jl_,j . (Az), Caleulated from the Frame-Transformation
Theory using the Pseudo-Potential, with the Number of Rotational States
Coupled in Eq. (2.12) in the Outer-Region: Incident Electron Energy = 1.\
eV, r, = 11.774 (a.u.), Odd Parity®

J G N 1+l 192 1+3 14 1+5 1-+6
max [
1 2 2 0,440 | 2.972
3 3 0.444 | 2.987 0.003
4 4 0.444 | 2.987 0.003 0.000
5 5 0.444 | 2.987 0.003 0.000 0.000
2 2 3 2.596 | 0.802
3 5 1.727 | 0.993 5.529 |
4 7 1.730 | 0.998 5.525 0.001
5 9 1.730 | 0.998 5.525 0.001 0.000
6 11 1.730 | 0.998 5.525 0.001 0.000 0,000
3 2 3 0.045 | 0.004
3 6 0.045 | 0.004 0.005
4 9 0.045 | 0.003 0.005 0.000
5 12 0.045 | 0.003 0,005 0.000 0.000
6 15 0.045 | 0.003 0.005 0.600 | 0.000 0.000
4 2. 3 0.014 | 0.002
3 6 0.014 | 0.002 0.002
4 10 0.014 | 0.002 0.002 0.000
5 14 0.014 | 0.002 0.002 0.000 0.000
5 2 3 0.006 | 0.002
3 6 0.006 | 0.002 0.001
A 10 0.006 | 0.002 0.001 ¢.000
5 15 0.006 | 0.002 0.00%L 0.000 0.000
6 20 "0.006 | 0.002 0.001 | "0.000 0.000 0.000
6 2 3 0.003 | 0.00L
3 6 0.003 | 0.001 0.001
4 10 ¢.003 | 0.00L 0.001 0.000
5 15 0.003 | 0.00L 0.001 ¢.000 0.000
7 2 3 0.002 | 0.00L :
3 6 0.002 | 0.001 0.001 -
4 10 0.002 | 0.001 0.001 0.000
5 15 0.002 | 0.001 0.001 0.000 0.000
8 2 3 0.001 | 0.001
3 6 0.001 | 0.001 0.000
4 10 0.001 | 0.001 0.000 0.000
9 2 3 0.001 | 0.001 )
3 6 0.001L | 0.001 0.000
4 10 0.00L | 0.001 0.000 0.000
10 2 3 0.001 | 0.001
3 6 0.001 | 0.001 0.000
4 10 0.001 { 0.001 0.000 0.000

§ See rext for the description of these quantities

* Highest rotational state (starting from j' = 1) coupled in Eq. (2.12). The
ground rotational state {(j' = 0) will not be present in odd parity channels.

+ Total number of coupled channels (I{) in Eq. (2.12).
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Table VII
Elastic and Excitation Cross-SectionsT for (0~j") Transitions

Incident Electron

EnergyEy (€Y %s0 %1 %2 %03 s (0]
0.005 3.17 44,38 0.68  0.00  0.00 48.23
0.008 370 3L 072 0.00  0.00 35.56
0.01 3.97  26.15 073 0.00  0.00 30.85
0.02 5.00  14.83  0.74  0.00  0.00  20.59
0.03 5.77 10.47 0.75 0.00 0.00 16,99
0.05 688 6.67  0.76  0.00  0.00 1431
0.08 8.04  4.37 0.8  0.00 0.0 13.19
0.10 8.64 358 079 000 000 13.01
0.20 0.5  2.06  0.85 0.0  0.00 13.48
0.40 120156 1.53 0.9 0.2  0.00 14.66
060 1266 1.2 1.07  0.03 0,00 15.28
0.80 1279  1.60 116  0.06  0.02 15.63
1.00 12.79 1.72 1.27 0.12 0.07 15.97
1:10 12.82  1.80 133 0.6  0.13 16.24
1.20 12.94 1.0 139  0.23  0.24  16.70
1.30 13.21 2,06 149 0.38  0.46  17.56
1.10 1380 2.3 1.65 0,53 095 19.33
1.50 15.37  3.00 2.02 0.9  2.19 23.52
1.55 16.88  3.62 241  1.33  3.50 2774
1,60 19.37 4.65 3.11 1.54 5.80 34.87
1.65 23.28  6.31  4.35  2.87  9.76  16.57
1.70 27.93 8.4l  6.18  3.95 1524  61.72
1.75 29.45  9.38 7.5  4.28 18.6¢  69.27
1.80 25.69  8.12  7.15  3.38  16.59  60.93
1.85 20.82  6.22  5.98  2.24 12.40  47.6
1.90 17.35  4.80 4.9  1.45 9.0  37.57
1.85 15.18 3.90 4.25 0.96 6.74 31.03
2.00 13.82 3.3 3.78  0.67  5.25  26.85
2.20 1151 2,38 2.9 0.22  2.65 19.75

«2.40 10.67  2.07 278 0.1 179 17.42
2.60 10019 1.93 2,73 0.07 1.4l 16.33
280 9.8 1.8 2,75  0.06  1.20 15.69
3.00 .57 178 279 0,05 1.8  15.27
3.50 9.01 1.65 2.96 0.06 0.94 14.62
4.00 8.59 1.54 3.14 0.08 0.90 14,25
4.50 8.27  1.45 3.3  0.10  0.89  14.04
5.00 §.02  1.36 3.5 0.1  0:90  13.89
600 771 121 382 014 0.95 13.83
7.00 758 1.7 4.8 017 101 13.91
8.00 758 0.7 4.27 018 1.7 14.08
9200 771 087 439 020 112 14.29

10.00 7.86 0.80 4.43 0.21 1,17 14.47
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"Table VIII -
Momentum Transfer Cross-Sections' for (0-j') Transitions

Incident Electron

123

Energy £, (eV) 0]3'*0 cr'g+1 02+2 0'3_,3 034 o (0)
0.005 3.50 11.04 0.68 0.00 0.00 15.22
0.008 4.14 6.55 0.71 0.00 0.00 11.40
0.01 4,48 5.06 0.72 0.00 0.00 10.26
0.02 5.78 2.12 0.74 0.00 0.00 8.64
0.03 6.73 1.1%8 0.75 0.00 0.G0 8.66
0.05 8.13 0.50 0.77 0.00 0.00 9.40
0.08 9,62 g.21 0.79 0.00 0.00 19,62
0.10 10.37 0.16 0.81 0.00 0.00 11.34
0.20 12.66 0.28 0.89 0.01 0.00 13.84
0.40 14,15 0.77 1.06 0.02 0.00 16.00
0.60 14,17 1.19 1.23 0.05 0.01 16.65
0.80 13.71 1.53 1.40 0.09 0.02 16.786
1.00- 13,16 1.83 1.59 0.16 0.07 16.82
1.10 12.93 1.99 1.70 0.22 0.13 16.97
1.20 12.79 2.17 1.84 0.32 0.25 17.37
1.30 12.80 2.40 2.02 0.47 0.47 18.16
1.40 13.11 2.75 2.31 0.74 0.97 10.88
1.50 14.12 3.41 2.87 1.31 2.22 23.93
1.55° 15.17 3.97 3.39 1.84 3.53 27.90
1.60 16.88 4.83 4.22 2.69 - 5.84 34.46
1.65 19.44 6.07 5.55 3.99 9.80 44,85
1.70 22.12 7.35 7.21 5.50 15.727 h7.45
1.75 22.14 7.44 7.99 5.94 18.63 62.14
1.80 18.67 5.95 7.03 4.69 16.55 52.89
1.856 14.96 1.36 5.58 3.11 12.35 40.36
1.90 - 12,51 3.33 4.51 2.01 8.90 31.32
1.95 11.04 2.74 3.84 1.34 6.70 25.66
2.00 10.13 2.40 3.43 0.93 5.21 22.10
2.20 8.54 1.92 2.83 0.31 2.62 16.22
2.40 7.85 1.81 2.74 0.16 1.77 14.33
2.60 7.38 1.76 2.78 0.10 1.39 13.41
2.80 7.00 1.73 2.85 0.08 1.19 12.85
3.00 6.68 1.70 2.94 0.08 1.07 12.47
3.50 6.03 1.61 3.20 0.09 0.94 11.87
4.00 5.56 1.52 3.45 0.12 0.90 11.55
4,50 5.20 1.42 3.69 0.15 0.91 11.37
5.00 4,94 1.33 3.92 0.17 0.93 11.29
6.00 4.58 1.16 4,34 0.22 1.00 11.30
7.00 4,37 1.03 4,70 0.25 1.08 11.43
8.00 4.22 0.92 5.00 0.28 1.18 11.60
9.00 4,09 0.83 5.23 0.30 1.26 11.71
10.00 3.97 0.77 5.38 0.32 1.33 11.77
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Table IX
Elastic and Inelastic Cross-Sections’ for (1-j') Transitions

Incident Electron

Energy® E, (V) @5 9,y 9 %L %lg Ons o)
0.005 16.35  3.33 24.98 0.3 0.00  0.00 44.9
0.008 .04  3.87 17.79 0.3  0.00  0.00 33.09
0.01 9.15 4.1 15,01 6.4l  0.00  0.00 28.71
0.02 506 5.19  B8.59 043  0.00 0,00 19.27
0.03 3.55 5.4  6.10  0.48  0.00  0.00 16.03
0.05 2.24  7.06  3.90  0.45  0.00  0.00 13.65
0.08 1.47 8.2 2.5  0.46 0.0  0.00 12.74
0.10 1.20 888 211 0.47  0.00  0.00 12.62
0.20 0.69 10.80  1.23 0.5  0.00  0.00 13.23
0.40 0.51 12.47  0.95 058 0.0  0.00 14.52
0.60 051 13.05  0.98  0.64  0.02  0.00 15.20
0.80 0.53 13.31  1.06  0.72 0.0 0.0l  15.67
1.00 0.57 13.28  1.17 079 0.07  0.04 15,92
1.10 0.60 13.3%  1.24  0.85  0.09  0.07  16.19
1.20 0.63 13.49 1.3 094  0.13  0.13  16.66
1.30 0.60 13.80  1.50  1.10  0.19  0.26 17.5¢
1.40 0.79 1851  1.78  1.41  0.30 0.5 19.32
1.50 1.00 16.19 238  2.18 0.5 1.2  23.5
1.55 1.21  17.8  2.96  3.00  0.76  1.95 27.74
1.60 1.55 20.63  3.90  4.44 111 323  34.8
1.65 2.10 25.05 5.42  6.95  1.64 5.3  46.59
1.70 2.80 30.43  7.29  10.48  2.26 8.8  61.74
1.75 3.13 32.46 8.7  12.80  2.45  10.36  69.27
1.80 2.71 28.5  6.85 1.7  1.92  9.23  60.92
1.85 2.07 2318  5.09 0.0  1.27  6.90 47.6]
1.90 1.60 19.30  3.81 6.9  0.82  5.01 37.52
1.95 1.30 16.8  3.00 5.5  0.53  3.75  30.97
2.00 1.11 15.32  2.49  4.59  0.42 291  26.84
2.20 0.79 12,68  1.67 ° 2.97  0.13  1.47  19.71
2.40 0.60 11.77  1.42  2.47  0.06  1.00 17.41
2.60 0.64 11.27 131 227 0.4 078 16.31
2.80 0.6 10.93  1.24  2.18  0.03  0.67 15.66
3.00 0.5 10.67  1.20  2.16  0.03  0.60  15.25
3.50 0.55 10.19 1.1z 239  0.03  0.52 14.60
4.00 0.5l 9.8  1.06  2.29  0.05  0.50 14.25
4.50 0.8 960 1.0  2.40  0.06  0.49  14.03
5.00 0.45  9.42  0.95 2,51  0.06  0.50  13.89
6.00 0.40 '9.24 0.8  2.72  0.08  0.53 13.83
7.00 0.3 9.2 079  2.91  0.08  0.55 13.91
8.00 9.32 9.3 072  3.05 0.1  0.59  14.09
9.00 0.29  9.46  0.67 3.4 0.1  0.62 14.29

10.00 0.27 9.64 0.62  3.17  0.12.  0.64 14.46

Tn A2,
§_ .

This value (Eq) corresponds to the energy of the electron incident on the ground
rotational sta%e of CO0. The appropriate energy of incidence for the First rotationatl

state of the molecule can be obtained from the energy conservation law:
E; = Ey - 2B, B = 2.38x107% eV for CO molecule.
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Table X
Momentum Transier Cross-Sections’ for (1-j') Transitions

Incident Electron

8

TR (e e chi The Yl Sl o)
0.005 4.07  3.64 810  0.32  0.00  0.00 16.13
0.008 2.32  4.29  4.66  0.39  0.00  0.00  11.66
0.01 1.7  4.63 3.5  0.40  0.00 0,00  10.36
0.02 0.72  5.94  1.46  0.43  0.00  0.00 8.5
0.03 0.40  6.89  0.81 044  0.00  0.00 8.5
0.05 0.17 831  0.33 045  0.00  0.00  9.27
0.08 0.07 9.8l 0.14 047 000  0.00  10.49
0.10 0.05 1058 0.1  0.48  0.00  0.00  11.22
0.20 0.09 1293  0.13  0.53  0.00  0.00 13.74
040 0.26 1453  0.53  0.64  0.01  0.00  15.97
0.60 0.40 14.65  0.82 074  0.03  0.00  16.68
080 051 1427  1.06  0.89  0.056  0.01  16.79
1.00 0061 13.80 128 0.9  0.08 0.0  16.82
1.10 0.66 13.62  1.42  1.08  0.13  0.07  16.98
1.20 072 1353 1.5 1.2l  0.18  0.13  17.35
1.30 080 13.61  1.80 142 0.7  0.26  18.16
1.40 0192 14.056 215  1.82 042  0.54  19.90
1.50 1.14 15.28  2.83 271 0.5  1.23  23.%
1.55 1.32  16.54  3.44  3.60  1.06 1.9  27.91
160 1061 18.50 4.3  5.13  1.54  3.24  34.49
1.65 2.02  21.68  5.76  7.69  2.28  5.44  44.87
1.70 2.45 25.02  7.27  11.12 314  8.49  57.49
1.75 2.43 25,3  7.52  13.08  3.80  10.35  62.18
1.80 1.99 21.48  5.97  11.58  2.67  9.22  52.9]
1.85 146 17.19  4.22 8.8  1.77 6.8  40.36
1.90 111 1431  3.07  6.60 114 5.00  31.32
1.9 0.91 12.57  2.40  5.29  0.74  3.74  25.65
2.00 080 11.51  2.00 4.3  0.58  2.90  22.15
2.20 0.64  9.67  1.41 2.8  0.18  1.86  16.22
2.40 0.60  8.95  1.27  2.43  0.09 0,99 1433
2.60 0.59  8.43  1.22  2.28  0.06  0.78  13.42
2.80 0.58 814 1.19 _  2.24  0.05  0.66  12.86
3.00 0.57 7.8  1.17 = 224 005 0.5  12.48
3.50 0.5  7.31 111 2.3 005  0.52  11.87
4.00 051  6.94  1.06  2.46  0.07  0.50  11.58
4.50 0.47  6.68  1.00 2,61  0.09  0.50 11.36
5.00 0.44 651 0.9  2.76 0.0  0.51  11.28
6.00 0.39  6.32  0.87  3.05 0.13 0.5  11.30
7.00 0.3  6.24 0.8 332 014 0.5 1.4
8.00 031  6.21 073 353 0.7  0.62 1147
9.00 0.28 6.18  0.69  3.72  0.18  0.65  11.70

10.00 0.26 6.2  0.65  3.80 0

.18 0.69 11.70

'
Tin A2,

§see foot note to Table IX.
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