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EFFECT OF REYNOLDS NUMBER ON THE SUBSONIC BOATTAIL DRAG
OF SEVERAL WING-BODY CONFIGURATIONS

David E. Reubush
Langley Research Center

SUMMARY

An investigation was conducted in the Langley 1/3-meter transonic cryogenic tunnel
to determine the effect of varying Reynolds number on the boattail drag of several wing-
body configurations. This investigation was conducted at 0° angle of attack at Mach
numbers M from 0.6 to 0.9. The Reynolds number was based on the distance from the
nose to the start of the boattail and varied from about 2.8 x 108 to 57 x 106 at ™ = 0.6,
from about 3.5 x 106 to 66 x 108 at M = 0.85, and from about 3.6 x 108 to 67 x 106 at
M = 0.9. Reynolds number was varied by operating the tunnel at stagnation pressures
which ranged from 1.2 atm to 5.0 atm and at stagnation temperatures which ranged from
about 98 K to 308 K.

Results from this investigation indicate that as the Reynolds number was increased
the boattail static-pressure coefficients in the expansion region of the boattail became
more negative while those in the recompression region became more positive. These
two trends were compensating, and as a result, there was a small (if any) effect of
Reynolds number on boattail pressure drag. Even though there were large interference
effects of the wing on the flow over the boattails, the result of this investigation is the
same as that found previously for a series of isolated boattails.

INTRODUCTION

Current prediction methods for full-scale aircraft propulsion system installation
drag rely heavily on wind-tunnel simulation of the actual conditions. Wind-tunnel tests
are required because the drag-producing components of the propulsion system are usually
installed in areas where the flow field is extremely complex; and at present, there are no
adequate theoretical techniques with which to predict these cdmplex flows. Especially in
the afterbody-nozzle region, high slopes and large boundary-layer runs result in large and
unpredictable viscous effects on boattail pressure drag. Attention has recently been
focused on scaling effects, particularly the effects of Reynolds number variation on boat-
tail pressure drag. Investigations by the Lewis Research Center (refs. 1 to 5) have
identified possible large effects of Reynolds number variation on installed boattail drag.



These flight tests used an F-106B airplane which had two research nacelles mounted
under the wings and the boattails to be tested were mounted on these nacelles. The air-
plane was flown at various altitudes to obtain boattail pressure drag data for a significant
range of Reynolds numbers. In addition to the flight tests, two scale models (5 percent
and 22 percent) of this airplane were tested in the Lewis 8- by 6-foot supersonic wind
tunnel to provide data at Reynolds numbers lower than those achievable in flight and a
comparison between flight and wind-tunnel data. Results from these investigations
showed large apparent effects of Reynolds number variation on boattail pressure drag
and indicated that the wind-tunnel boattail pressure drags could not be extrapolated to
flight. These data accentuated the need for further research in this area.

A recent investigation for a series of isolated boattail models (refs. 6 and 7) showed
that, for isolated boattails, there were no significant effects of Reynolds number on boat-
tail pressure drag. This discrepancy between the isolated boattail results and the results
of references 1 to 5 may be caused by interference effects due to adjacent airframe

surfaces.

The purpose of the present investigation is, therefore, to gain some insight as to
how the Reynolds number affects interference flows and how these effects impact the flow
over nozzle boattails. This investigation utilized two cone-cylinder nacelle models
(2.54 cm in diameter) with different boattail geometries, which had provisions for mount-
ing a 10.16-cm-span 60° delta wing on top of the nacelle in three positions with the wing
trailing edge 0.05, 0.55, and 1.55 model diameters forward of the start of the boattail. It
is believed that the wing would provide significant interference effects in the flow over the
boattail and, then, the resulting interference flow field on the boattail drag could be
assessed. The boattail geometries of the two nacelles chosen were the same as those of
two boattails used in the isolated boattail investigation. One was a circular-arc—conic
with a ratio of length to model maximum diameter Z/dm of 0.96 which had some sepa-
rated flow at all test conditions and the other was a circular arc with an I / dy, of 1.77
which had all attached flow at all test conditions. The models were tested in the Langley
1/3-meter transonic cryogenic tunnel at the subsonic Mach numbers of 0.6, 0.85, and 0.9
for an angle of attack of 0°. The Reynolds number based on the distance from the nose to
the start of the boattail (20.32 cm) varied from about 2.8 x 108 to 57 x 106 at M = 0.6,
from about 3.5 x 108 to 66 x 106 at M = 0.85, and from about 3.6 x 106 to 67 x 106 at
M = 0.9. Limited portions of these data have been previously published in references 8

and 9.
SYMBOLS

A cross-sectional area

Ay maximum cross-sectional area of model



AB incremental area assigned to boattail static pressure orifice for drag

integration

CD,B boattail pressure drag coefficient (see Data Reduction section)
Cp,B boattail static-pressure coefficient, p—B_—p"—'i

’ q
dy, maximum diameter of model
l length of boattail
M free-stream Mach number
P, free-stream total pressure
P, free-stream static pressure
pB boattail static pressure
qa free-stream dynamic pressure
R Reynolds number (based on length from nose to start of boattail or 20.32 cm)
Ty free-stream total temperature
X axial distance from start of boattail, positive aft
0] meridian angle about model axis, clockwise positive facing upstream, 0° at

top of model
APPARATUS AND PROCEDURE

Wind Tunnel

This investigation was conducted in the Langley 1/3-meter transonic cryogenic
tunnel, which is a single-return, continuous-flow pressure tunnel. The test section is a
regular octagon in cross section (34.29 ¢m across the flats) with slots at the corners of
the octagon and is essentially a model of the Langley 16-foot transonic tunnel test section.
This facility has the capability of operating at stagnation pressures from about 1 atm to
5 atm (1 atm = 101 325 Pa) and stagnation temperatures from about 78 K to 350 K over



the tunnel's operating Mach number range of approximately 0.05 to 1.3, Further
description of the Langley 1/3-meter transonic cryogenic tunnel can be found in refer-

ences 10 to 15.

Models and Support System

A generalized sketch of the boattailed cone-cylinder nacelle models used in this
investigation is shown in figure 1. The models were both 2.54 cm in diameter and the
resulting tunnel blockage was about 0.52 percent. A photograph of one of the models
installed in the tunnel is shown as figure 2. The two models used had a length of 20.32 cm
(8 model diameters) from the nose to the start of the boattail (characteristic length used
in Reynolds number calculation), but differing boattail geometry. Details of the geometry
of the two boattails are shown in figure 3. The boattail geometries were a circular-arc—
conic with a ratio of length to maximum diameter 1 /dm (fineness ratio) of 0.96 and a
circular arc with a fineness ratio of 1.77.

Both models have provision for mounting a 10.16-cm-span 60° delta wing (NACA
0003.9-65 airfoil) on top of the nacelles at 0° incidence in three positions (fig. 4). The
wing was mounted with its trailing edge 0.05, 0.55, and 1.05 model diameters forward of

the start of the boattail.

The models were both sting mounted with the sting simulating the geometry of a jet
exhaust plume for a nozzle operating at its design point (ref. 16). The ratios of sting
diameter to maximum diameter were both 0.50. The length of the constant diameter
portion of the sting was such that, based on reference 17, there should be no effect of the
tunnel support sting flare on the boattail pressure coefficients. Also, the sum of the boat-
tail and sting lengths (before the flare) was constant which resulted in the noses of both
models being at the same tunnel station.

The models were constructed of cast aluminum with stainless-steel pressure tubes
and stainless-steel sting cast as integral parts of the models. The pressure tubes and
sting were placed in the sand mold in the proper positions, the aluminum poured, and the
model machined to the proper contours.

Instrumentation and Tests

The two boattails were each instrumented with 50 static pressure orifices in 5 rows
of 10 orifices each (¢ = 0°, 450, 1359, 180°, and 270°) at the locations given in table I.
These orifices were connected to two remotely located pressure scanning valves.

All tests were conducted in the Langley 1/3-meter transonic cryogenic tunnel at
Mach numbers from about 0.6 to 0.9 (primarily at M = 0.6 and 0.85) for an angle of attack



of 0°. The Reynolds number based on the distance from the nose to the beginning of the
boattail varied from about 2.8 x 108 to 57 x 106-at M = 0.6, from about 3.5 X 108 to

66 x 10 at M = 0,85, and from about 3.6 x 106 to 67 x 106 at M = 0.9. The Reynolds
number was varied by operating the tunnel at stagnation pressures which ranged from
approximately 1.2 atm to 5.0 atm and by operating the tunnel at stagnation temperatures
which ranged from about 98 K to 308 K (tests primarily conducted at 117 K and 308 K).
Tables II presents the approximate test conditions for all three Mach numbers. Boundary-
layer transition was natural for all tests.

DATA REDUCTION

Model and wind-tunnel data were recorded on magnetic tape and a digital computer
was used to compute standard force and pressure coefficients. Pressure drag coeffi-
cients, based on the maximum cross-sectional area of the model, were computed from the
measured pressures on each boattail by assigning an area to each orifice and computing
the coefficients from the following equation:

50
1
C = — - A,
D, " Gag 2, (P ") 6
i=1
Accuracy of this step-integration scheme was spot checked by plotting the pressure coeffi-
cients as a function of A /Am and integrating with a planimeter.

DISCUSSION

Boattail Pressure Coefficient Distributions

Boattail pressure coefficient distributions for the two models, each with three wing
positions, are shown in figures 5 to 10. These basic data are not discussed as such but
are summarized and discussed in the following sections. The only point to be made about
these figures is that by comparing the pressure distributions of each of the five orifice
rows, it becomes readily apparent that the presence of the wing significantly affected the
flow over the boattails. The pressures on the circular-arc—conic boattail were more
affected by the wing than those on the circular-arc boattail. This effect was probably due
to the steeper slopes and high pressure gradients for the circular-arc—conic boattail. In
addition, the closer the wing was to either of the boattails, the larger the interference
effects.



Effect of Reynolds Number on Boattail
Pressure Coefficient Distributions

Boattail pressure coefficient distributions at ¢ = 0° and ¢ = 180° for the
circular-arc~~conic boattail with the wing in the aft position were obtained at three
Reynolds numbers which span the range of Reynolds numbers. for the test Mach numbers
from 0.6 to 0.9. These distributions are shown in figure 11, The presence of the wing
significantly affected the flow over the boattail as evidenced by the differences between the
pressure coefficients at ¢ = 0° (directly behind the wing) and those at ¢ = 180°
(essentially in undisturbed flow). However, the trends with Reynolds number for both
pressure distributions are the same and these trends are also the same as those found for
the isolated series of boattails (refs. 6 and 7). That is, as the flow expands around the
shoulder of the boattail, the pressure coefficients at the different Reynolds numbers begin
to spread apart such that the higher the Reynolds number, the more negative are the
pressure coefficients in this expansion region. As the flow begins to recompress over
the aft portion of the boattail, the trend is reversed; that is, the higher the Reynolds num-
ber, the more positive are the pressure coefficients.

The pressure coefficient distributions for the other boattail-wing combinations
(figs. 12 to 16) show the same trends with Reynolds number as previously discussed. As
Reynolds number is increased, the expansion pressure coefficients become more negative
while the recompression pressure coefficients become more positive,

Effect of Reynolds Number on Boattail
Pressure Drag Coefficients

Boattail pressure drag coefficients as a function of Reynolds number for Mach num-
bers of 0.6, 0.85, and 0.9 are shown in figures 17 and 18. These figures show that, as for
the isolated boattails (refs. 6 and 7), the trends for the boattail pressure coefficients are
compensating and, consequently, there is only a small (if any) effect of Reynolds number
on boattail pressure drag, even with the interference from the wing. Therefore, it seems
that the results obtained in references 1 to 5 are not due to interference effects, such as
those of the present investigation, which can be simply produced.

Effect of Wing Position on Boattail Drag

An interesting observation can be made which is not really a part of the Reynolds
number investigation but deserves mention., When the drag levels for the three wing posi-
tions of the two boattails are compared, it is found that the closer the wing was to the boat-
tail for each of the boattail configurations, the lower the pressure drag. In other words,
the interference effect from the wing was a beneficial one to the flow over these boattails,
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CONCLUDING REMARKS

An investigation to determine the effects of variations in Reynolds number on the
boattail pressure drag of several wing-body configurations was conducted in the Langley
1/3-meter transonic cryogenic tunnel at a 0° angle of attack at Mach numbers from 0.6 to
0.9 for Reynolds numbers up to 67 X 106, It was found that, as the Reynolds number was
increased, the boattail static-pressure coefficients in the expansion region of the boattails
became more negative, while those pressure coefficients in the recompression region of
the boattails became more positive. These trends were compensating and, thus, there
was only a small (if any) effect of Reynolds number on boattail pressure drag. Even
though there were large interference effects of the wing on the flow over the boattails,
these results are the same as those found for a series of isolated boattails. Apparently,
the large effects of Reynolds number on boattail pressure drag in previous flight test work
were not due to interference effects, such as those of the present investigation, which can
be simply produced.

Langley Research Center

National Aeronautics and Space Administration
Hampton, Va, 23665

May 24, 1976
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TABLE I.- BOATTAIL STATIC PRESSURE ORIFICE LOCATIONS

x/dm for -
Circular-arc—conic boattail at — Circular-arc boattail at —
¢p=00| =450 | ¢=1350| ¢ = 1800 | ¢ = 2700 | ¢ = 0° | ¢ =450 | ¢ = 1359 | ¢ = 1800 | ¢ = 2700
-0.0043 0.0092 0.0059 0.0029 -0.0016 -0.0016 | -0.0053 -0.0009 0.0007 -0.0008
.0940 .0996 .1029 .0982 .0935 .3619 .3569 .3600 .3661 .3641
.1906 2104 .2054 .1857 .1963 .6357 .6319 .6362 .6398 .6468
.2870 .2986 .3066 .2891 .2892 .8260 8274 8276 8311 .8241
.3887 .4041 .4054 .3963 3765 .9885 9867 .9909 .9939 .9849
4910 .4968 5017 4937 4964 1.1487 1.1297 1.1419 1.145%7 1.1425
.5899 .5988 .5928 .5905 5896 1.2865 1.2774 1.2842 1.2897 1.2899
.6906 7014 L1037 .6899 .6883 1.4208 1.4050 1.4219 1.4271 1.4150
L1837 .1984 71974 1894 .7893 1.5629 1.5593 1.5597 1.5605 1.5569
.8887 .8908 .8829 .8866 8764 1.6874 1.6833 1,6840 1.6943 1.6817




TABLE II.- APPROXIMATE TEST CONDITIONS

Ty, K

98
101
103

B> atm

5.0

4,019
4.0
4.0
3.0
3.0
2.5

2.0
2.0
1.5
1.5
1.3

M

0.6
.85
.6
.85
9
.6
.85
.9
.85
.6
.9
.6
.85
.6
.85

R

56.5 x 108
67.5
52.2
65.3
67.1
43.3
54.0
55.2
43.4
34.4
44.3
25.9
32.4
21.7
26.9
27.3
17.2
21.6
12.8
16.3
11.4
14.2
14.6
11.2
13.9
14.2
8.5
10.5
10.9
7.1
7.1
5.7
7.1
2.8
3.5
3.6

11
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Figure 1.- Boattailed cone-cylinder nacelle model. All dimensions are
nondimensionalized by model maximum diameter (2.54 cm).
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for the circular-arc—econic boattail with wing in middle position.
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Figure 10.- Boattail pressure coefficient distributions at various Reynolds numbers
for the circular-arc boattail with wing in forward position.
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Figure 13.- Effect of Reynolds number on boattail pressure coefficient distributions
for the circular-arc—conic boattail with wing in forward position.
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boattail. (Tick marks indicate repeat points.)
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(c) Wing in forward position.
Figure 18.- Concluded.
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