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Control-configured vehicle technology has increased the demand for

detailed analysis of dynarnic stability and control, handling and ride

qualities, and control system dynamics at earl y stage. of preliminary

design. An approximate, but reasonably accurate, set of equations of

motio , . are needed for these early analyses. Such a formulation is

developed for the longitudinal dynamics of elastic airplanes. It mar?s

use of only rigid-body Aerodynamic stability derivatives in formulating

the forces ana moments due to elastic notion. k rification of accuracy

using data for the B-1 airplane shoves very good agreement. Frequencies

and damping ratios of the coupled modes corresponding to complex roots of

the characteristic equat i ons agree closely with four symmetric elastic

modes included.
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c	 - mean aerodynamic chord (ft)

C 
	 s drag coefficient

CL	= lift curve slope stability derivative
a

CL	= lift coefficient due to elevator deflection stability deriva-

e	 tive.

Cm	pitching moment coefficient due to angle of attack stability
a

derivative

Cm	= pitching moment coefficient duu to wing downwash on tail
a

stability aerivative

Cm	pitching moment coefficient due to pitch rate stability

4
derivative

Cm = pitching moment coefficient due	 to elevu,,,o deflection	 stabil-

ity derivative

F i =	 ith eiastic mode aerodynamic force coefficient in y-direction
W

due to plunge velocity of C.G. (1/sec)

F i =	 ith elastic mode aerodynamic force coefficient in z-directicn

Cj
due to jth mode yeneralized displacement	 (1/sec")

F i. =	 ith elastic mode aerodynamic force coefficient in z-direction
Fj

due to jth mode generalized velocity	 (1/sec)

F i	= ith elastic mode aerodynamic force coefficient in z-direction

	

se	
due to elevator deflection (ft/sect)

F 
	 = ith elastic mode aerodynamic force coefficient in z- direction
w

	

g	 due to vertical gust velocity (1/sec)

I 
	 = mass moment of ineiJ a about y-axis (Slug-ft2)

M	 = total airplane mass (slugs)

d

a.

1
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Mw	= aerodynamic pitching moment stability derivative due to plunge

velocity of C.G. (rad/ft-sec)

%	 = aerodynamic pitching moment stability derivative duc to down-

wash from wing to tail (rad/ft)

M 
	 = aerodynamic pitching moment stability derivative due to pit=h

rate (1/sec)

M s	 - aerodynamic pitching moment stability derivative, due to
P

elevator deflection (1/se6 )

M F	 aerodynamic pitching moment coefficient due to ith elastic

mode generalized displacement (rad/ft- sect)

M •
i
	aerodynamic pitching moment coefficient due to ith elastic

^
mode generalized velocity (rad/ft-sec)

M`_	 = aerodynamic pitching moment coefficient due to ith elastic
°i

mode generalized acceleration (rod/ft)

M i	= 
J ` 

m(x,y)g i z (x,y)dxdy	 ith elasvic mode generalized mass

y x
(lugs)

qg (t)	 = pitch gust velocity (rad/sec)

S or S 	 = wing planform reference area (02)

SHT	
= horizontal tail planform reference area (ft2)

Uo	 = trim flight velocity (ft/sec)

w(x,y,t) = local plunge velocity in z-direction (ft/sec)

wg (t)	 = vertical gust velocity at C.G. in negative z-direction (ft/sec)

Z 
	 = aerodynamic force Stdbility derivative in z-direction due to

plunge velocity of C.G. (1/sec)

Z,	 = aerodynamic: force stability derivative in z-direction due to
e

elevator deflection (ft/rad-sect)
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Z^ z aerodynamic force coefficient in z-direction due to ith
i

elastic mode generalized displuceownt 	 (l/scc?)

Z = aerodynamic force coe fficient in vdirection due to ith
i

elastic mode generalized velocity	 (1/sec)

,(x,y,t) =	 local	 anqle of attack	 (rad)

V
= elevator deflection Qdd)

C I -	 ith	 elastic mode structural	 damping ratio

v i (t) a	 ith	 elastic mode generalized displacement in z-direction 	 Q Q

u(x,y,t) =	 local	 pitch angle	 (rad)

Po = free stream air denO ty (slugs/ft3)

"i
- free-free undamped natural	 frequency of ith elastic mode

(rad/sec)

y i (x,y) -	 ith elastic mode normalized mode shape

3^4i(x+Y)
y)^i (x ' Y) slope of j i (x,y)	 with	 respect to x	 (1/ft)

ax

`im (t) = ith Qlastic mode motion-dependent generalized force in z-

direction (ft/sec)

—ig (t) = ith elastic mode gust-induced generalized force in z-direction

(ft/sec 2 )

INTRODUCTION

Recent work with control-configured vehicles (CCV) and active

control technology (ACT) has improved the performance, stability, and

handling qualities of large flexible airplanes and has opened up a new

realm of design frontiersl.
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With increased sire of present day airplanes, and with the increased

ut111zation of lighter materials, the elastic behavior of these vehicles

is becoming an appreciable influence in their hindling and ride qualities.

Cue to the potential adverse etfects of elastic mode interaction with the

rigid-body dynamics, there is a need for a simplified method of modeling

the dynamic aeroelastic equations of motion for use in preliminary

control system design stages of new airplanes.

Usually, only calculated values of the rigid-body aerodynamic stabil-

ity Derivatives are available for the preliminary desi g n from sources

such as DATCOM 2 , and little, if any, information on the stability deriva-

tives due to elastic modes is available then. However. calculated values

of the symmetric and antisym.netric orthogonal elastic vibration mode

shapes and natural frequencies are usually available at the prelim nary

design stag: for use in equations of motion formulation.

We have developed a unique formulation of the equations of Motion

for elastic airplanes that makes use of rigid-body aerodynamic stability

derivatives and the elastic mode shapes and frequencies to describe the

aerodynamic forces and moments due to the elastic motion of the aircraft.

There 4 s no need for unsteady aerodynamic theories or experimental data

on elastic mode aerodynamics as with conventional formulations.

This paper describes the longitudinal dynamic formulation and veri-

fication of its accuracy using the B-1 aircraft dynamics at a high sub-

sonic flight condition.

EQUATION OF MOTION_ FORMULATION

Since the elastic modes do not produce significant drag force

perturbations compared to the rigid-body motion, the longitudinal

.PRODUCIBILITY OF T"
- N AI. PAGE IS POOR
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equation of motion is omitted and unly the plunge and pitch rigid-body

equations (short-period approximation) are included in what follows. The

fo rn,ulation of the small perturbation aerodynamic forces and moments is

bused on the local affective angle of attack, u(x,y,t), or effective

plunge velocity, w(x,y,t), where w(x,y,t) = Uon(x,y,t), and the local

effective pitch rate, 6(x,y,t).

The elastic vibration characteristics are based on the usudl approa-h

of idealizing the structure to a flat plate in the xy-plane, and the

symmetric orthogonal free-free elastic vihration mode shapes o i (x,y) are

functions of x and y coordinates in the x,y,z body axes system located at

the center of gravity 3 . The sign convention for the mode shapes, mode

slopes, and generalized displacements is given in Figures 1 and 2.

The two time domain short-period and n elastic mode small perturba-

tion equations of motion about a trim condition are given by (1).

^lZ
w(t) - U,^6(t) 

= j i ^'x^Y 
w(x,y ,t)dxdy + Z f; 6 e (t) + 7 wg(t)

Y x
e

a2
f

ay^x 	
w(x,y,t)dxdy +	 J ax^y w(x,y,t)dxdy

y 	 Y 
a2M

+	 j oxay 
H(x,y,t )dxdy + MFe r; e (t) + Mv^wg (t) + Mgq^l(t)

y x
(1 )

f 
i (t) + 25 j u) i j i (t) 4 ^ r i (t)	 _ ---im(t) +

Z w , Z 6	 qM, MV0 Mw, and M,, are the rigid-body dimensional aero-

e	 e
dynamic stability derivatives defined in (2). Z q and Zw tire assumed to

be negligible and are not included in (1).
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Z6pUaSC^ 12M
e	 'j e

Zw 	PU0S(CL + Cp)/2M
U

i
1 I

Mq n pU O SC ? Cm ; 41 

q

Mw	 UUOSCCm /2Iy

Mw = PSC2Cm•/4Iy

U M.	

pUISCCmS /2I y 	(2)

e

The integral term; and the generalized force terms in (1) are

functions of w(x,y,t), and 4(x,y,t), which can be closely approximated by

(3) and (4).

W(x,Y,t) = w(t)
+

n	 11

 
L ^ i (x,Y)Yt) -	 u0`^ i 	

'
'( x ,Y);

i
 (t)	 (3)

	i=1	 i-1	 1 

n

6(t) - i ^,(x ►Y)^Yt)	 (4)
i=1

The integral terms can be written as in (5) -nd (6).

a 2 Z	 n --

1	
^xOy w(x,y,t)dxdy = Zww(t) + I IZ^ Ci (t) + Z 

i 
Y t) 	̂ (5)

y x
i =1 - i 

r	 a 2M	 a2M•
j I ^xay w(x,y,t)dxdy +	 f aXay w(x,y,t)cJxdy

Y x	 y x

r r a2M
+ 1 I A 6(x,y,t)dxdy - Mwrr(t) + %w (t) + Mg6(t)

Y x

+	 M ^ i (t) + My c i (t) + M^	 (t)1	 (6)
1 

The expressions for Z^ , Zr , M , M , and MF are tabulated in Appen-
	i 	 'i	 i

dix A.

RM"ROD UCII3ILITY OF TI P
ORIGINAL PAGE IS PUOR
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The expression for the motion-dependent generalized force term in

the n elastic mode equations of motion of (1) is given by (7)

	

^im (t) .. 1Ti	 d7z(t) m
i (x,Y) dAdy 	(7)

Y 

where
n

Z(t)	 M[Zw w(t) ;	 [ZF. t (t) + ZF	 (t)] + Z d de (t)]	 (R)

	

J.2	 j 	 p

and M  is the ith erode generalized mass.

Putting (8) into (7),

_	 n

---im(t) = F  w (t) + i [Fi r(t) + F 	 + Fig e(t)	 (4)
w	 J =l

F i , F i 	, Fi. , F i 	, and F i 	are tabulated in Appendix A.
w	 `^	 ^^	 a e	 wy

The generalized force term due to C.G. referenced vertical gust

velocity w9 (t) is given by (10).

_	 (^	 Z
—	 ( t ) = M I J	 w ^i(x,),)dxdy w g (t) -	 i«

F	 w (t)	 (10)--ig	 ti	 ,ixjy 	 g
y x	 9

Substituting (5), (6), (9), and (10) into !1), Laplace tranyforminq,

and puttinq in matrix form yields (11), where four elastic modes (n=4)

I 	 been explicitly included.
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STABILITY DERIVATIVES

Since elastic mode shape and slope data is usually given as a func-

tion of lumped mass stations. which themselves are given in xy-coordi-

nates, the duuhle integral; in the terms of Appendix A can be conveniently

repre ,,:nt 1 as ;ummatiuns over incremental areas (oxAy) associated with

each lumped mass point. Thus, it is necessary to develop methods for

evaluating the following partial derivative terms at each point:

Zee	
32Zw
	

)"M 	 aimw	

^
JX TY ' 8x ay ' axay ' ^X3y

Using (2), these become (12) through (16).

all
L
	

32C

za, jY ^	 axaye (12) 

3 2Zw
a 

C L u-	 -Qu s ,,?CD
(13),wy ^M	 a xay	 x3y

Chl
W ;	 PUQSC (14)  y `2Iy ^xay

a4Mw uSC2 a Cm.

^x3y 4ty 	ax-5

a
2

3
FU Sc`	

a LC^^g

_ (16)
,)xay 41y	 3x,)y

C L^, C G. C, 
Clra, 

Cmy , and CL''` are the total-airpline rigid-body non-

A

dimensional stability derivatives, which are known consOnts for a trim

;II31I.m	
-, i 1a

►L PAGE IS 
1 , , .
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flight condition. We need to determine the xy area distribution of these;

i.e., the second partials in (12) through (16).

For conventional-tail ed airplanes, the lift curve slope can be

reasonably approximated by

C
L
	CL	 + CL
	

(17)

1	 "W	 aHT

where CL 

ww 

and CC	are the wing and horizontal tail contributions.

Fuselage lift is neglected as small. Methods fur computing these can b(.

found in reference 2. The tail contribution is about ten percent of the

total. Thus,

CL	 n 0.9 CL

1W	 (li3)

C^	 0.1 C,
01 HT

A cr)ade Approximation, but one found to be adequate for this formulation,

is to assume the derivatives to be uniformly distributed over the xy-

plane representation of each component (i.e., wing, tail, fuselage).

More accurate elliptica; lift distributions were tried, but resulted in

very little Jifference to transfer function dynamics obtained from (11)

over that for the uniform distributions. Thus,

a2CL

ai " '	 0, for fusela ,.;f, stations x (yQ0)

CL
.W

	

S- '9 r L	 for win,i st^at;ons x,y	 (i9)
W	 W	 a

CL

B̀HT	 0^1 
CL	for tail stations x,y

I J T	 "HT	 a
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where SW and SHf are 
wirj and horizontal tail x,y planform areas.

C 
	 < C 	 and, therefore. C 0 will be neglected in evaluation of (13).

u
Since C 	 is due only to elevator deflection.

U

3 2 C C t̂'	 Cbe

axeye a _
SHT

 e • for tail stations x.y

(20)

If 0	 , nor wing And ruselayo stations x,y

Neglecting small effects due to the fuselage,

	

Cm	 Cm	 + C ra	 (21)

a	 It
	 "HT

	

3 2 Cm	 Cm%

°— _	 --	 for wing stations x,y

	

^iX3y	 $W

Cm

NT , 
for tail stations x,y	 (22)

HT

= 0	 fur fuselage stations x (y C)

For the pitch damping derivatives,

Cm •	 Cm • + Crn
	 (23)

r'	 rxW	 4 H

	

Can	 3	 C III	 + Cm	
(24)

4	 `lWF	 U'iT

,here WF indicates wing and fuselage combination.

n

I

J



(25)

(26)
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z	 .
a C	

C

	

►r ► ,	 m''yr
•

	

ax̂ y	
---
w
 , for wing stations x,y

Cm.

__°HT

SH	

. for tail stations x,y
T

n 0	 , for fuselage nations x ;i-0)

37C  Cm

-q
 • SW ^

+-FF

axay	
for wing and fuselage stations x,y

Cm

• . qHT	 for tail stations x,y
SHT

Methods for estimatinq Cm, , Cm, , C
II}
	 , and Cm	 are given in

references 3 and 4.	
'w	 ryHT	 gWF	 4NT

Knowing the airplane zla !,tic mode shapes, slopes, and five rigid-

body total-airpldn% stability derivatives, all the terms in Appendix A

and thus the coeffi^J ents in (11) can be computed.

VERIFICATION WITH B-1 AIRPLANF DYNAMICS

To verify the accuracy of the unique formulation of elastic airplane

small perturbation dynamic equations of motion developed above, the terms

in equation (11) are calculated by this method fir Use B-1 at a sea level,

Mach 0.85 flight condition and compared with the corres ponding terms in

equations provided by Rockwell in re ferences rj and 6, which were generated

by other methods.

The xy-ildnform and incremental area divisions for each mass point

for the 9--1 is depicte(I in figure 3. 	 Since the els tic modes used in

^;PRODUCWILrff OF THE
,1 t1(.INAL PAGE IS POOR
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longitudinal dynamic equations are symmetric about the x-axis, only half

of the planfo ^^ is shown in the figure.

As an example of how ti,e doubie ir,tugrals are evaluated, consider

the terns for the generalized force of the second elastic mode due to the

third mode. From Appendix A. 4t. is

-UqM I(,Z

F 	 I ^xaY 1.,(x,Y)4,(x.Y),Ixay	 (27)

Y x

One half of the value is obtained by summing over the 97 stations in

Fiqure 3; the other halt corning from the symmetric  right sidr, planform

riot showy,

1	 -UpM y% ;,^:twF2y3 -	 2 i t t ( dx)y) i _ (^)^3(^)(nxry)i

The kLXAY) i ;erm is the area a,.sociated with each lumped mass point in

Figure 3. $ 2 (1) and o3(i) are the values of the second mode shape and

third mode slope in the chordwise x-direction at the ith mass point.
a21w

(^X ŷ ) i has three constant. values; one for fuselage stations, one for wing

stations, and one for horizontal tail stations.	 C	 = 3.94 for this B-1
L

rj

flight condition,. Wing and tail areas are S 3 Sli	 1946 ft^ , SHT = 502

fe. from (19),

0, fuselaye stations

L—̀	 18.42 x 1n - /it.-, wind stations	 (29)

( 7.14 x 10 /ft 2 , tail stations

MW

(28)

From (13), with C O neglActad as small,
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0, fuselage stations
2

( ^x w )i	
'5.108 x 10-4 /ft1 -sec, wing stations	 (30)

(-2.213 x 10-"/ft='-sec, tail stations

The calculation of (28) gives F 2 , - 5.8459, which compares with 6.6257

obtained from Rockwell's formulation of the equations.

All other coefficients in (11) were similarly evaluated aria are

tabulated, along with the values from Rockwell's B-1 equations of motion,

in Appendix b. Approximately 80 percent of the terms show good agreement

with the R-1 data. 'n view of the approximate nature of the formulation,

this -is reasonable confirmation of the validity of the method.

A further check was made by comparing the roots of the character-

istic equations for the B-1 data and this formulation by expanding the

determinant of the Gx6 matrix of polynomials and coefficients in (11).

The coupled frequencies in rad/s and damping ratios were calculated for

each pair of complex roots. The comparisons are shown in Table 1. It is

TABLE 1 FREQUENCIES AND DAMPING RATIOS

B-1 Data
	

Unique formulation

_requencj	 Dampi!
	

Fre uepV	 Dam in4

2.668	 0.489
	

3.103	 0.492

13.298 0.053 13.709 0.034

21.375 0.031 21.221 0.025

22.020 0.020 22.020 0.020

22.480 0.206	 25.366	 0.233

evident from the data in this table that the new formulation of the

equations of motion is surprisingly accurate considering the level of

r
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approximations made. The four symmetric elastic modes of the B-1 had

free- tree undamped natural frequencies of 13.591, 14.123, 21.193, and

22.055 rad/s. All had 0.02 structural damping ratios. The first line of

numbers in Table 1 corresponds to the short-period frequency and damping

ratio.

CONCLUSIONS

The unique method of formulation of the longitudinal small perturba-

tion equations of motion for elastic airplanes described herein allows

the expression of aerodynamic forces and moments, due to elastic vibra-

tion, in terms of rigid-body aerodynamic stability derivatives. Thus, it

serves as a useful preliminary design tool for airplane stability and

control, handling and ride AuaIities, and control system design studies.

The good accuracy of the method ha y been established by comparison

With more accurate data for the B-1 airplane. The lack of complete

information on tie planronn geometry of the B-1 and our having to analyt-

ically calculate mode slopes by curv y: fits from the mode shape data,

probably accounts for much of .chat differences appear in the term by term

comparisons in Appendix B. Therefore, the new method is probably even

more accurate than this one a-ample comparison indicates.

W° nave developed a similar formulation for the lateral-directional

dynamics with the anti symmetric elastic modes included and are presently

checking its accuracy. This formulation will be published in a sequel

paper to the present one.



16

	

APPENDIX A.	 UATIUN-
- COEFFICIENTS

-	 -
E .QU ---  —	 —

(	
aZZ

	

Z E 	 _UOI	 ax + Y mt 
(x,y)dxdy

	

i	 y x

;2Z

i

	

Z•	 ,	 w o(x.y)dxd./

	

Ei	 ixay 
y 

a?M•

	M`	 - J J ^--J ,j(x,y)dxdy

	

i	 yx

OY

f 
a^ M	

11%a
2M 	,

	

C	
J ^x.^y m i ( x .Y) - DO axay + ax y^^ i ( x ► y ) dxdy
M 

'	 y x

32M

	

1.1 t,
	U J )	

jxly 0i(x,y)dxciy
y x

a?Z

	

^i	 ,M. fj ^xdy Gi(x,y)dxdy
w	 y x

liom	 a2Z

	

Fi	 ' M i J J axay	
(x,y),^^(x,y)dxdy

Cj	 y x

2 Z

	

F i	 r1 (	 YM	 i ( x ,Y)wi (x,y)dxdy

xy 

w Y

a2Z

S	

M1	 ISe

"xay	
^; (x,,^)dxdy

	

` e 	 y x

Fiw 
	
^bi(x•y)dxdy =	 Fi

	

9	
y x	 ^r



APPENDIX S. COEFF1CIEhi VALUES

Term From B-1 Equations

F lw -0.77480

Fz w 1.3590

F3w
0.80586

F1
4
 1.7902	 x	 10-3

17

From Unique Fo miulation

-0.69335

1.4180

0.81559

1.8274 x 10-3

Z C! -8.4911 -6.7715

Zr 90.322 103.32
z

Z
&

4.3792 -1.3083
3

z -5.3236

M 0 -0.72033 x 10-4* 1

M" 0 -3.6129 x 10-4
2

M•,' 0 1.4315 x 10-4•r 3

Mf 0 0.06947 x 10 -4 g

M, -7.5404 x	 10-3 -10.823 x	
10-3

^,1

M!. 50.866 x	 10-3 2.9502 x	 10-3
^2

M 7.0361	 x	 10-3 16.427	 x	 10
-3

3

M^4
-2.0060 x 10 -3 -3.0665 x	 10-3

RTTRODUCIBILITY OF THE

ORIGINAL PAGE IS POOR

Z it -0.20177 -0.01798

Z f 2.4702 1 .9202 2

ZZ3
0.14486 0.15373

ZZ4
-4.7412	 x	 10 -3 0.11254
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Term From 8-1	 Equations From Unique Formulation

M	 1 -0.18849 -0.04194

mix
-0.07903 -0.01592

MF
0.20945 0.07459

3

m^4
-0.09381 --0.01065

F 1 ^ -0.66630 -1.1180
•1

F1^ -0.28286 17.818

F''z3
0.91557 -0.07921

F, Z4 -0.19759 -0.69559

F it	 7.2681	 -31.795

F1^2	
-15.897	 643.69

F 163	 61.886	 9.640

F, C4
	

20.894	 -18.803

F2^1
0.23360 0.3412.1

F2^2
-8.2949 -10.334

F2^3

0.11424 0.00560

F 2 • 0.11188 0.11583f, 4

F2, 14.072 18.740
^1

F2 r -306.000 -415.280
•2

F2 5.8A59

F2r4
11 .211 11 	 696

F3^1
-0.12060 -0.010897

F 3 
F2

3.7634 0.04020

F3 F, -0.42578 -0.18203

F3^4
-0.25330 -0.11246

s
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Term From B-1	 Eouations From Unique Formulation

F3t1
7.0455 2.6015

F 3C2 33.993 -15.509

F 3 ^ 3 -1.9516 -1.5492

F3 3.4837 2.0596
C4

F 4 z i -3.2701	 x 10  -2.9290 x 10-4

F4 
;-2

24.031	 x 10
-4

25.469 x 10-4

F 4 -2.7776 x 10 -4 -3.4422	 x 10-4
Z 3

F 4 ^ 4 -4.0417 x 10 -4.2249 x 10-4

F441 1.6305 x 10-? -O.U4974 x	 10-2

II^ 	

F,, -9.7878 x 10 -` 3.6896 x 10
-2

.2

F4^3 0.70767 x 10
-2

0.24563 x 10
- 2

F 4 1.3340 x lU 	
2.

x	 10-2
E4

F16
-22.296 x 10 2 -15.978 x 10'

e
F 2c -2.1741	 x 10' -1.5347	 x 102

'e

Fa b 5.1537	 x 102 4.3685 x 102

e
Fo

b
0.11048 0.06489

e

FlW
-0.77350 -0.69335

9

F2W 1.3567 1.4180

F 3W9 0.80450 0.81559

9
F 4W 1.7872 x 10-3 1.8274	 x	 10-3

y

14
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Figure Cations

Figure 1. Fuselage Vertical Bending Siyn Convention

Figure 2. Wing Deflection Sign Convention

Figure 3. B-1 Mass and Area Distribution
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