General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



A ol— - —- - N - —

(NASA=CF=148205) A UNIQUE FORMULATICN OF N76-26187
ELASTIC AIFPLANE LOKGITUDINAL EQUATICLS OF
MOTICN (Purdue Univ.) 25 p HC $3.50

CSCL 01C Unclas
Gi/05 4231

P UNIQUE FORMULATION OF ELASTIC
AIRPLANE LONGITUDINAL EQUATIONS OF MOTION

Robert L. Swaim* and Donald G. Fullman®

Purdue University, West Lafayette, Indiana

ABSTRACT

Control-configured vehicle technology has increased the demand for
detailed analysis of dynamic stability and control, handling and ride
qualities, and control system dynamics at early stages of preliminary
design. An approximate, but reasonably accurate, set of esuations of
motion are needed for these early analyses. Such a formulation is
developed for the longitudinal dynamics of elastic airplanes. It makes
use of only rigid-body aerodynamic stability derivatives in formulating
the forces and moments due to elastic motion. Verification of accuracy
using data for the B-1 airplane shows very good agreement, Frequencies
and damping ratios of the coupled modes corresponding to complex roots of
the characteristic equations agree closely with four symmetric elastic

modes included.
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NOMENCLATURE

- = mean aerodynamic chord (ft)

CD = drag coefficient

CLu = 1ift curve slope stability derivative

cLs = 11ft coefficient due to elevator deflection stability deriva-
. tive,

Cma = pitching mement coefficient due to angle of attack stability

derivative

Cm- = pitching moment coefficient due to wing downwash on tail

a

stability derivative

Cmq = pitching moment coefficient due to pitch rate stability
derivative
Cm6 = pitching moment coefficient due to elevu..: deflection stabil-
. ity derivative
F1" = ith eiastic mode aerodynamic force coefficient in y-direction
due to plunge velocity of C.G. (1/sec)
Fic = ith elastic mode aerodynamic force coefficient in z-directicn
J due to jth mode generalized displacement (1/sec?)
F1; = ith elastic mode aerodynamic force coefficient in z-direction
E due to jth mode generalized velocity (1/sec)
F16 = fth elastic mode aerodynamic force coefficient in z-direction
. due to elevator deflection (ft/sec?)
F1w = ith elastic mode aerodynamic force coefficient in z-direction
9 due to vertical qust velocity (1/sec)
Iy = mass moment of inerLia about y-axis (slug-ft2)

M = total airplane mass (slugs)




M = aerodynamic pitching moment stability derivative due to plunge
velocity of C.G. (rad/ft-cec)
Hg = aerodynamic pitching moment stability derivative duc to down-

wash from wing to tail (rad/ft)

Hq = aerodynamic pitching moment stability derivative due to pitch
rate (1/sec)
M6 = aerodynamic pitching moment stahility derivative due to
o

elevator deflection (1/sec?)
M = aerodynamic pitching moment coefficient due to ith elastic

mode generalized displacement (rad/ft-sec?)

Méi = gerodynamic pitching moment coefficient due to ith elastic
mode generalized velocity {rad/ft-sec)

MEi * aerodynamic pitching moment coefficient due to ith elastic
mede generalized acceleration (rad/ft)

M1 = J { m(x.y)¢12(x.y)dxdy ith elastic mode generalized mass
Y X (slugs)

qg(t) = pitch gust velocity (rad/sec)

S or Sy = wing planform reference area (ft?)

Syt = horizontal tail planform reference area (ft?)

Ug = trim flight velocity (ft/sec)

wix,y,t) = local plunge velocity in z-direction (ft/sec)

wg(t) = yertical gust velocity at C.G. in negative z-direction (ft/sec)

Z = aerodynamic force stability derivative in z-direction due to
plunge velocity of C.G. (1/sec)

Z5 = aerodynamic force stability derivative in z-direction due to

elevator deflection (ft/rad-sec?)
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aerodynamic force coefficient in z-direction due to ith
elastic mode generalized displacement (1/sec?)
aerodynamic force coefficient in z-direction due to ith
elastic mode generalized velocity (1/sec)

local angle of attack (rad)

elevator deflection (rad)

ith elastic mode structural damping ratio

ith elastic mode generalized displacement in z-direction (ft)
local pitch angle (rad)

free stream air denzity (slugs/ft?)

free-free undamped natural frequency of ith elastic mode
(rad/sec)

ith elastic mode normalized mode shape

3 (X0y)
13: - sliope of ¢i(x.y) with respect to x (1/ft)

ith elastic mode motion-dependent generalized force in z-

direction (ft/sec?)

ith elastic mode gust-induced generalized force in z-direction

(ft/sec?)

INTRODUCTION

Recent work with contrel-configured vehicles (CCV) and active

control technology (ACT) has improved the performance, stability, and

handling qualities of large flexible airplanes and has opened up a new

realm of design frontiers!.



With increased size of present day airplanes, and with the increased
utilization of 1ighter materials, the elastic behavior of these vehicles
is becoming an appreciable influence in their handling and ride qualities.
Due to the potential adverse effects of elastic mode interaction with the
rigid-body dynamics, there is a need for a simplified method of modeling
the dynamic aeroelastic equations of motion for use in prelininary
control system design stages of new airplanes.

Usually, only calculated values of the rigid-body aerodynamic stabil-
ity derivatives are available for the preliminary desian from sources
such as DATCOM?, and Tittle, if any, information on the stability deriva-
tives due to elastic modes is available then. However, calculated values
of the symmetric and antisymmetric orthogonal elastic vibration mode
shapes and natural frequencies are usually available at the preliminary
design stage for use in cquations of motion formulation.

We have developed a unique formulation of the equations of motion
for elastic airplanes that makes use of rigid-body aerodynamic stability
derivatives and the elastic mode shapes and frequencies to describe the
aerodynamic forces and moments due to the elastic motion of the aircraft.
There is no need for unsteady aerodynamic theories or experimental data
on elastic mode aerodynamics as with conventional formulations.

This paper describes the longitudinal dynamic formulation and veri-
fication of its accuracy using the B-1 aircraft dynamics at a high sub-

sonic flight condition.

EQUATIONS OF MOTION FORMULATION

Since the elastic modes do not produce significant drag force

perturbations compared to the rigid-body motion, the longitudinal
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equation of motion is omitted and only the plunge and pitch rigid-body
equations (short-period approximation) are included in what follows. The
formulation of the small perturbation aerodynamic forces and moments is
based on the local effective angle of attack, a«(x,y,t), or effective
plunge velocity, w(x,y,t), where w(x,y,t) = Usa(x,y,t), and the local
effective pitch rate, 6(x,y,t).

The elastic vibration characteristics are based on the usual approach
of idealizing the structure to a flat plate in the xy-plane, and the
symmetric orthogonal free-free elastic vibration mode shapes ’i(*'y) are
functions of x and y coordinates in the x,y,z body axes system located at
the center of gravity®. The sign convention for the mode shapes, mode
slopes, and generalized displacements is given in Figures 1 and 2.

The two time domain short-period and n elastic mode small perturba-

tion equations of moticn about a trim condition are given by (1).

g . 322
wit) - Ug(t) = J j Y ow(x,y,t)dxdy + Z e(t) + wag(t)

axay
y X

g [ f BEMw ¢ a-’M-
o(t) = j J Txay " wix,y,t)dxdy + J J X3y X Llx,y,t)dxdy

Yy x ¥

f 8?M

+ } J ‘13? f(x,y,t)dxdy + Mdede(t) + wag(t) + qug(t)
y X
(1)
ﬁi(t) + chmir’i(t) 1 ’-ﬁ‘.i":.i(t) = —-_-—1m(t) + __','__1g(t)
(1‘].2.-0.}")
Zw. Zse. Hq, Mw. M&. and Mae are the rigid-body dimensional aero-
dynamic stability derivatives defined in (2). Zq and Zﬁ are assumed to

be negligible and are not included in (1).



Z, = -pUgS(C_ + Cp)/aM Z, = -pURsC, /oM
a e 6‘
Hq : pUOSczcmq]q[y m = onSCCmuIZIy
s = 2 & 2
M, = oS¢ cm&my "5. DUQSCCms.IZIy (2)

The integral terms and the generalized force terms in (1) are
functions of w(x,y,t), and 6(x,y,t), which can be closely approximated by
(3) and (4).

n n :

wix,y,t) = w(t) + ‘21 ¢-i(xvv)é.i(t) - E] Uo‘bi(x’y)’:i(t) (3)
= i=

- . n .

o(x,y,t) = a(t) - 1}'1 (x2y),(t) (4)

The integral terms can be written as in (5) .nd (6).

Z, n £
Ww(x.y.t)dxdy = wa(t) + 1§]I~I£E1Ei(t) + Zt151(t):[ (5)

=<|s:=

eprl w(x,y,t)dxdy + I J

|

(x,y,t)dxdy

M

—5;‘—3—3 6(x,y,t)dxdy = My(t) + M;‘v}(t) + Mqé(t)

o —_—
(=

M. £, (t) M,(t)+M £, (t
"‘I 151( L 4 11 1)]

Tre expressions for Z Z; + M. Mé , and M are tabulated in Appen-
*3 0 i | i "1
dix A,
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The expression for the motion-dependent generalized force term in

the n elastic mode equations of motion of (1) is given by (7).

qﬂ.im(t) 2 :Ti J J mﬁ(x.y)dxdy (7)

axay
y x

where

n
2(t) = MLZ, w(t) + J.Z.,“cfj‘” + z;;Jr:j(t)] + Zded.(t)] (8)

and M1 is the ith mode generalized mass.
Putting (8) into (7),

—_— n .
) * F,ww(t) + JL[F,'E gy(t) + F'E Eg(t)] + F,éeé.(t) (9)

. Fi . F{- R F1 , and F1 are tabulated in Appendix A.

TR £ be W

9
The generalized force term due to C.G. referenced vertical gust
velocity wg(t) is given by (10).

:EE: - n { J T ¢i(x,))dxdy wo(t) = F, Ng(t) (10)
y X

i
Y9

Substituting (5), (6), (9), and (10) into (1), Laplace transforming,
and putting in matrix form yields (11), where four elastic modes (n=4)

have been explici*tly included.
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Since elastic mode shape and slope deta 1s usvally given as a func-

tion of Tumped mass stations, which themselves are given in xy-coordi-

nates, the doublie integrals in the terms of Appendix A can be conveniently

represant ¢ as summations over incremental areas (Axay) associated with

each lumped mass point.

Thus, 1t is necessary to develop methods for

evaluating the following partial derivative terms at each point:

a1 2 2 M. 2
6. 3 zw ? "w 3 "w " Hq
axay ' oxay ' axay ' axay " axdy

Using (2), these become

axay

ax3y

3’M
el ——#
axay

CL : CD’ cm ’ cm-' cm d
a [ o q

(12) through (16).

a?C
Z 4
'onS 2]
TN Iy (12)
22C t
colat ., o (13)
2 axay axa{l
a2C
.;_JUUSC Illa (]4)
ziy IXaY
3’C
pSc? m: (15)
3?;‘ axay
22C
sUpSc® ~ Mg (16)
la
4Iy axay
and CL are the total-airplane rigid-body non-
§
o

dimensional stability derivatives, which are known constants for a trim
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10

flight condition, We need to determine the xy area distribution of these;
f.e., the second partials in (12) through (16).
For conventional-tailed airplanes, the 1ift curve slcpe can be

reasonably approximated Ly

C, = ¢ +¢C (17)

where CLm and CLu are the wing and horizontal tail contributions.
Fuselage Tift is neglected as small, Methods for computing these can be
found in reference 2. The tail contribution 1s about ten percent of the
total. Thus,

(18)

A crude approximation, but ~ne found to be adequate for this formulation,
is to assume the derivatives to be uniformly distributed over the xy-
plane representation of each component (i.e., wing, tail, fuselage).

More accurate elliptical 1ift distributions were tried, but resulted in
very little difference to transfer function dynamics obtained from (11)

over that for the uniform distributions., Thus,

ach
a =
iy 0, for fuselage stations x (y=0)
“
. 'EMH . g;ﬂ €, » for wing stations x,y (19)
W W o
CLu
H
y 'E'“I' - Q.1 ¢, » for tail stations x,y
HT N -



Y

where SH and SHT are wing and horizontal taill x,y planform areas,
CD << CL and, therefore, co will be neglected in evaiuation of (13).
a

Since CL is due only to elevator deflection,

e
2
3 CL5 CL6
SIS e
%3y SHT , for tafl stations x,y
(20)
« 0 s for wing and fuselage stations x,y
Neglecting small effects due to the fuselage,
oG * 6 *+C (21)
c
2
15'-‘5 = "o! for wing stations x
X3y 5 E oy
cm
a -§Eﬂl , for tail stations x,y (22)
HT
= 0 , for fuselage stations x (y=0)
For the pitch damping derivatives,
cm- . cm. + cm. (23)
a QHT
C = C + L (24)
m m m
4 W ur

where WF indicates wing and fuselage combination.
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¥C,. cmau
W‘-’ - -—-5-'—’ , for wing stations x,y
Cm_
a
- —§-ﬂl , for tail stations x,y (25)
HT
= 0 , for fuselage stations x ,«0)
azcm Cr
TR,
T 3;-;-5} , for wing and fuselage stations x,y
Cmq (26)
1 w§~ﬂl , for tail stations x,y
HT

Methods for estimating Cm. i Cm- ’ Cm , and C are given in

i 5 a R
references 3 and 4, W HT WF HT

Knowing the airplane elastic mode shapes, slopes, and five rigid-
body total-airplane stability derivatives, all the terms in Appendix A

and thus the coefficients in (11) can be computed.

VERIFICATION WITH B-1 AIRPLANE_DYNAMICS

To verify the accuracy of the unique fornulation of elastic airplane
small perturbation dynamic equations of motion developed above, the terms
in equation (11) are calculated by this method fur the B-1 at a sea level,
Mach 0.85 flight condition and compared with the corresponding terms in
equations provided by Rockwell in references & and 6, which were generated
by other methods.

The xy-planform and incremental area divisions for each mass point

for the B-1 is depicted in Figure 3. Since the ela:tic modes used in

1 FPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR



13

longitudinal dynamic equations are symmetric about the x-axis, only half
of the planform is shown in the figure.

As an example of how tlie double integrals are evaluated, consider
the term for the generalized force of the second elastic mode due to the
third mode. From Appendix A, it is

Fa

E B‘Z
e I ( $, (x.y)¢ (x,y)dxdy (27)

J \xdy
y X

3
(‘,J 1.!:.

One half of the value is obtained by summing over the 97 stations in

Figure 3; the otrer half coming from the symmetric right side planform

not shown.
97 42
1 v “UoM - Zw )
7 Fay, I e 151(g;;;)ia:(1)¢3(i)(axAy)i (26)

The \AxAy)1 “erm is the area associated with each lumped mass point in
Figure 3. ¢2(1) and ¢;(i) are the values of the second mode shape and
t:;rd mode siope in the chordwise x-direction at the ith mass point.
<523§) has three constant values; one for fuselage stations, one for wing
stations, and one for horizontal tail stations, €L = 3.94 for this B-1
flight condition. Wing and tail areas are S = SH = ?946 ft2, SHT = 502

ft?, From (19),

52 0, fuselage stations

= {18.42 x 107" /ft2?, wing stations (29)

7.14 x 107"/€t2, tail stations

From (13), with cD neglected as small,
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0, fuselage stations
3%z

omel) . ® =02,
TR 5.708 x 10 "/ft‘-sec, wing stations (30)

-2.213 x 107"/ ft?-sec, tail stations

The calculation of (28) gives F,&H = 5,8459, which compares with 6.6257
obtained from Rockwell's fOrmulat%on of the equations.

All other coefficients in (11) were similarly evaluated anc are
tabulated, along with the values from Rockwell's B-1 equations of motion,
in Appendix B, spproximately 80 percent of the terms show good agreement
with the B-1 data. In view of the approximate nature of the formulation,
this is reasonable confirmation of the validity of the method.

A further check was made by comparing the roots of the character-
istic equations for the B-1 data and this formulation by expanding the
determinant of the 6x6 matrix of pelynomials and coefficients in (11).
The coupled frequencies in rad/s and damping ratios were calculated for

eack pair of complex roots. The comparisons are shown in Table 1. It is

TSRS AT S TR - T Esei 4 Eak e i 0 F T A & AT > v

TABLE 1 FREQUENCIES AND DAMPING RATIOS

B-1 Data Unique Formulation
Frequency Damping Frequency Damping
2.868 0.489 3.103 0.492
13.298 0.053 13.709 0.034
21.375 0.031 21.221 0.025
22.020 0.020 22.020 0.020
22.480 0.206 25.366 0.233

e S e R B R R i R = T a

evident from the data in this table that the new formulation of the

equations of motion is surprisingly accurate considering the level of
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approximations made. The four symmetric elastic modes of the B-1 had
free-free undamped natural frequencies of 13.591, 14,123, 21.198, and
22.055 rad/s. A1l had 0.02 structural damping ratios. The first 1ine of
numbers in Table 1 corresponds to the short-period frequency and damping

ratio,

CONCLUSIONS

The unique method of formulation of the longitudinal small perturba-
tion equations of motion for elastic airplanes described herein allows
the expression of aerodynamic forces and moments, due to elastic vibra-
tion, in terms of rigid-body aerodynamic stability derivatives. Thus, it
serves as a useful preliminary design tool for airplane stability and
control, handling and ride qualities, and control system design studies.

The good accuracy of the method has been established by comparison
with more accurate data for the B-1 airplane. The lack of complete
information on tne planform geometry of the B-1 and our having to analyt-
ically calculate mode slopes by curve fits from the mode shape data,
probably accounts for much of what differences appear in the term by term
comparisons in Appendix B. Therefore, the new method is probably even
more accurate than this one evample comparison indicates.

W2 have developed a similar formulation for the lateral-directional
dynamics with the antisymmetric elastic modes incluced and are presently
checking its accuracy. This formulation will be published in a sequel

paper to the present one.



APPENDIX A.

EQUATION COEFFICIENTS

[
Zci = 'UoJ J TEY] oi(x.y)dxdy
y x

¢ 32l

J-;~-— 95 (x,y)dxdy
X

K -

a?M-
I I ETED) ¢1(x.y)dxdy
¥y X

< —

aZM,,
Uoj J X3y ¢1(Xoy)d1dy
y X

M a?z
H‘] I J xay ¢1(x,y)dxdy
¥ X

axay

- PSS

axay

¢ {x,v)dxdy

M B?Zw
Hi I I ETEN) by (x,y)dxdy =
y X

a2nw 34Ms

W
J {axay ¢3(xy) = Wogsgy *
X

% I I w5y 04 (%ay)e 4 (x,y)dxdy
y X
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APPENDIX B. COEFFICIENT VALUES

Term From B-1 Equations From Unigue Formulation
Fly -0.77480 -0.69335
Fay, 1.3590 1.4180
Fiy 0.80586 0.81559
Fuy 1.7902 x 10”° 1.8274 x 107°
zé: -0.20177 -0.01798
Zs 2.4702 1.9202
»2
zés 0.14486 0.15373
1. -4,7412 x 10°° 0.11254
€y
Z -8.4911 -6.7715
3
oL 90.322 103,32
=2
Z 4,3792 -1.3083
€,
Z -4.1323 -5.3236
£y
M 0 -0.72033 x 107"
€1
M 0 -3.6129 x 107"
€2
M 0 1.4315 x 107"
M- 0 0.06947 x 107"
Ey
M -7.5404 x 10° -10.823 x 10°°
1
M. 50.866 x 107> 2.9502 x 1073
2
Mz 7.0361 x 1073 16.427 x 10°°
3
Mz -2.0060 x 1073 -3.0665 x 1073
#rPRODUCIBILITY OF THE

ORIGINAL PAGE IS POOR
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From B-1 Equations

-0.18649
-0.07903

0.20945
~0.09381

-0.066630
~0.28286

0.91557
-0.19759

7.2681
-15.897
61.886
20.894

0.23360
-8.2949

0.11424

0.11188

14.002

-306.000
6.6257

11.211

-0.12060
3.7684
-0.42578
-0.25330

From Unique Formulation

-0.04194
-0.01592

0.07459
~0.01065

-1.1180
17.818
-0.07921
-0.69559

=31.795

643.69
9.640

-18.803

0.34121
-10.334

0.00560

0.11583

18.740

-415,280
5.8459

14.696

-0.010897
0.04020

-0.18203

-0.11246



From B-1 Eaquations

7.0455
33,993
-7.9516

3.4837

-3.2701 x 107"
24,031 x 107"

-2.7776 x 107"
-4,0417 x 107"

1.6305 x 1077
-9.7878 x 10°7

0.70767 x 1077
1.3340 x 10°°

-22.296 x 10?
-2.1741 x 107
6.1537 x 107
0.11048

-0.77350
1.2567
0.80450
1.7872 x 107°

From Unique Formulation

2,6015
-15.509

-1.5492

2.0596

-2.9290 x 107"
25.469 x 107"
-3.4422 x 107"
-4.2249 x 107"

-0.04974 x 107°
3.6896 x 107
0.24563 x 1072
0.18614 x 1072

-16.978 x 10°

-1.5347 x 10?
4.3685 x 10%
0.06489

-0.69335
1.4180
0.81559
1.8274 x 10°°

19
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Figure Captions

Figure 1. Fuselage Vertical Bending Sign Convention
Figure 2. Wing Deflection Sign Convention
Figure 3. B-1 Mass and Area Distribution
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